Science.gov

Sample records for gas assisted mechanical

  1. Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism.

    PubMed

    Peters, Baron; Zimmermann, Nils E R; Beckham, Gregg T; Tester, Jefferson W; Trout, Bernhardt L

    2008-12-24

    Increased interest in natural gas hydrate formation and decomposition, coupled with experimental difficulties in diffusion measurements, makes estimating transport properties in hydrates an important technological challenge. This research uses an equilibrium path sampling method for free energy calculations [Radhakrishnan, R.; Schlick, T. J. Chem. Phys. 2004, 121, 2436] with reactive flux and kinetic Monte Carlo simulations to estimate the methane diffusivity within a structure I gas hydrate crystal. The calculations support a water-vacancy assisted diffusion mechanism where methane hops from an occupied "donor" cage to an adjacent "acceptor" cage. For pathways between cages that are separated by five-membered water rings, the free energy landscape has a high barrier with a shallow well at the top. For pathways between cages that are separated by six-membered water rings, the free energy calculations show a lower barrier with no stable intermediate. Reactive flux simulations confirm that many reactive trajectories become trapped in the shallow intermediate at the top of the barrier leading to a small transmission coefficient for these paths. Stable intermediate configurations are identified as doubly occupied off-pathway cages and methane occupying the position of a water vacancy. Rate constants are computed and used to simulate self-diffusion with a kinetic Monte Carlo algorithm. Self-diffusion rates were much slower than the Einstein estimate because of lattice connectivity and methane's preference for large cages over small cages. Specifically, the fastest pathways for methane hopping are arranged in parallel (nonintersecting) channels, so methane must hop via a slow pathway to escape the channel. From a computational perspective, this paper demonstrates that equilibrium path sampling can compute free energies for a broader class of coordinates than umbrella sampling with molecular dynamics. From a technological perspective, this paper provides one estimate for

  2. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  3. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  4. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  5. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  6. Natural gas-assisted steam electrolyzer

    DOEpatents

    Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  7. Computer Assisted Introduction to Mechanics.

    ERIC Educational Resources Information Center

    Huggins, Elisha R.

    These six chapters provide an introduction to Newtonian mechanics, based on a coordinated use of text material, laboratory work, and the computer. The material is essentially self-contained so that it can serve as a short text on mechanics or as a text supplement in a regular physics course. Chapter 1 is a brief introduction to the computer…

  8. The celestial mechanics of gravity assist

    NASA Astrophysics Data System (ADS)

    Broucke, R. A.

    The celestial mechanics and fundamental principles of the gravity-assist phenomenon are discussed, and the most important situations are classified on the basis of the most simple meaningful models: the two-body problem and numerical integrations of the restricted three-body problem. The basic geometry of the velocity-vector additions involved are first reviewed. Many of the geometric results are obtained analytically, and the 'best' gravity-assist possible is sought. Emphasis is placed on the fundamental role played by the Jacobi integral in the restricted problem, and in the gravity-assist in particular. In the present study, the equations of motion are fully regularized.

  9. Integrated mechanism design with artificial intelligence assistance

    SciTech Connect

    Bohatier, C.; Silberberg, Y.; Guillot, J.

    1996-11-01

    The proposed design methodology is developed as an integrated process in the production process. A setup of design workshop is suggested. An original functional approach is proposed. Its implementation using artificial intelligence is performed by an expert system generator. This intelligent assistance prototype is open to other aided computer engineering fields. Finally, an application to mechanism design is presented.

  10. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes.

  11. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. PMID:24507472

  12. Gravity-Assist Mechanical Simulator for Outreach

    NASA Technical Reports Server (NTRS)

    Doody, David F.; White, Victor E.; Schaff, Mitch D.

    2012-01-01

    There is no convenient way to demonstrate mechanically, as an outreach (or inreach) topic, the angular momentum trade-offs and the conservation of angular momentum associated with gravityassist interplanetary trajectories. The mechanical concepts that underlie gravity assist are often misunderstood or confused, possibly because there is no mechanical analog to it in everyday experience. The Gravity Assist Mech - anical Simulator is a hands-on solution to this longstanding technical communications challenge. Users intuitively grasp the concepts, meeting specific educational objectives. A manually spun wheel with high angular mass and low-friction bearings supplies momentum to an attached spherical neodymium magnet that represents a planet orbiting the Sun. A steel bearing ball following a trajectory across a glass plate above the wheel and magnet undergoes an elastic collision with the revolving magnet, illustrating the gravitational elastic collision between spacecraft and planet on a gravity-assist interplanetary trajectory. Manually supplying the angular momentum for the elastic collision, rather than observing an animation, intuitively conveys the concepts, meeting nine specific educational objectives. Many NASA and JPL interplanetary missions are enabled by the gravity-assist technique.

  13. Diaphragmatic contraction during assisted mechanical ventilation.

    PubMed

    Flick, G R; Bellamy, P E; Simmons, D H

    1989-07-01

    Indirect evidence from airway pressure recordings in mechanically ventilated patients suggests that the diaphragm exhibits contractile activity beyond that required to trigger a ventilator-assisted breath. We used the diaphragmatic EMG to provide direct evidence of persistent contractile activity and studied the effects of alterations in ventilator-delivered flow rate and tidal volume on the duration of diaphragmatic contraction. The duration of contraction was expressed in terms of inspired volume. During a single breath, diaphragmatic force generation ceases at the point of peak electromyographic activity; hence, the inspired volume at peak EMG is the volume at the diaphragmatic off-switch (Voff). Ventilator-delivered flow rate and tidal volume were varied during assisted (patient-initiated) and controlled (ventilator-initiated) breaths while diaphragmatic EMG and inspired volume were recorded simultaneously in ten patients with a variety of illnesses requiring mechanical ventilation. Spontaneous ventilator-unassisted breaths were also recorded for comparison. We found that (1) during assisted breaths, diaphragmatic activity continued after the ventilator was triggered, (2) Voff was usually close to spontaneous tidal volume, (3) Voff increased significantly as ventilator-delivered flow rate increased, and (4) controlled breaths may also be associated with phasic electromyographic activity. The data have implications for resting patients on assisted ventilation.

  14. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis

    NASA Astrophysics Data System (ADS)

    Copinger, Patrick; Fukushima, Kenji

    2016-08-01

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the magnetic catalysis.

  15. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis.

    PubMed

    Copinger, Patrick; Fukushima, Kenji

    2016-08-19

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the magnetic catalysis. PMID:27588845

  16. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism.

    PubMed

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-01-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs. PMID:27334232

  17. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism.

    PubMed

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-06-23

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs.

  18. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

    PubMed Central

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-01-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs. PMID:27334232

  19. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

    NASA Astrophysics Data System (ADS)

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-06-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs.

  20. Mechanisms of gas bubble retention

    SciTech Connect

    Gauglitz, P.A.; Mahoney, L.A.; Mendoza, D.P.; Miller, M.C.

    1994-09-01

    Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength.

  1. Final Report. SFAA No. DEFC02-98CH10961. Technical assistance for joint implementation and other supporting mechanisms and measures for greenhouse gas emissions mitigation

    SciTech Connect

    Knight, Denise

    2001-10-15

    IIEC, a division of CERF, has developed an extensive base of experience implementing activities that support climate action by developing USIJI projects in transitional countries within Asia, Latin America, Central and Eastern Europe, and southern Africa. IIEC has been able to provide a range of technical and policy assistance to governments and industry in support of sustainable energy use. IIEC continues to work in key countries with local partners to develop and implement energy efficiency policies and standards, develop site-specific projects, and assist governing bodies to establish national priorities and evaluation criteria for approving GHG-mitigation projects. As part of this project, IIEC focused on promoting a series of activities in Thailand and South Africa in order to identify GHG mitigation projects and work within the national approval process of those countries. The sections of this report outline the activities conducted in each country in order to achieve that goal.

  2. Computer Assisted Mechanical Axis and Kinematic TKA

    PubMed Central

    McEwen, Peter; Mahoharan, Varaguna

    2016-01-01

    Introduction: Total knee arthroplasty (TKA) has traditionally been and largely continues to be aligned mechanically, that being with a neutral coronal plane mechanical tibiofemoral axis and a joint line orientated at 900 to this axis. Femoral component rotation is set by gap balancing or by externally rotating 30 from any of a number femoral reference lines. This produces a rectangular flexion gap and relaxes patellar tracking. Kinematic alignment (KA) is an alternative technique that aims to restore premorbid alignment, joint orientation and ligament tension. The basic premise for this technique is based on evidence that the medial and lateral femoral condyles consistently equate to cylinders of equal or near equal size and that therefore with a fixed radius, cruciate retaining implant, matched distal femoral, posterior femoral and proximal tibial resections, accounting for bone and cartilage already lost will reproduce the premorbid joint line and restore native premorbid kinematics. Femoral rotation is therefore referenced off the prearthritic posterior condylar axis (PCA) that is on average internally rotated to the AP axis. Kinematic alignment therefore has the potential to challenge patellar tracking, increase patellar load and potentially increase patellar complications. Method: Case control study – level of evidence III-2. Between November 2012 and June 2013 the senior author completed 104 consecutive computer assisted (CAS) kinematically aligned total knee arthroplasties (TKA) with a cruciate retaining, fixed bearing, single radius implant. The results of these surgeries were compared with the results of 91 consecutive CAS mechanically aligned TKA done between November 2011 and October 2012 using the same navigation system and implant Implant sizing and positioning as well as gap measurement and ligament balance was done with computer assistance in all cases. Data was collected prospectively and analysed retrospectively. Results: The Oxford Knee Score

  3. Mechanisms of inert gas narcosis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experiments describing the mechanism of inert gas narcosis are reported. A strain of mice, genetically altered to increase susceptibility to botulin poisoning (synaptic response) appears to increase metabolic rates while breathing argon; this infers a genetically altered synaptic response to both botulin toxin and narcotic gases. Studies of metabolic depression in human subjects breathing either air or a 30% mixture of nitrous oxide indicate that nitrous oxide narcosis does not produce pronounced metabolic depression. Tests on mice for relative susceptibilities to narcosis and oxygen poisoning as a function of fatty membrane composition show that alteration of the fatty acid composition of phospholipids increases resistance to metabolically depressant effects of argon but bas no effect on nitrous oxide narcosis. Another study suggests that acclimatization to low tension prior to high pressure oxygen treatment enhances susceptibility of mice to convulsions and death; developing biochemical lesions cause CNS metabolite reductions and pulmonary damage.

  4. Laser assisted tunneling in a Tonks–Girardeau gas

    NASA Astrophysics Data System (ADS)

    Lelas, Karlo; Drpić, Nikola; Dubček, Tena; Jukić, Dario; Pezer, Robert; Buljan, Hrvoje

    2016-09-01

    We investigate the applicability of laser assisted tunneling in a strongly interacting one-dimensional (1D) Bose gas (the Tonks–Girardeau gas) in optical lattices. We find that the stroboscopic dynamics of the Tonks–Girardeau gas in a continuous Wannier–Stark-ladder potential, supplemented with laser assisted tunneling, effectively realizes the ground state of 1D hard-core bosons in a discrete lattice with nontrivial hopping phases. We compare observables that are affected by the interactions, such as the momentum distribution, natural orbitals and their occupancies, in the time-dependent continuous system, to those of the ground state of the discrete system. Stroboscopically, we find an excellent agreement, indicating that laser assisted tunneling is a viable technique for realizing novel ground states and phases with hard-core 1D Bose gases.

  5. Laser assisted tunneling in a Tonks-Girardeau gas

    NASA Astrophysics Data System (ADS)

    Lelas, Karlo; Drpić, Nikola; Dubček, Tena; Jukić, Dario; Pezer, Robert; Buljan, Hrvoje

    2016-09-01

    We investigate the applicability of laser assisted tunneling in a strongly interacting one-dimensional (1D) Bose gas (the Tonks-Girardeau gas) in optical lattices. We find that the stroboscopic dynamics of the Tonks-Girardeau gas in a continuous Wannier-Stark-ladder potential, supplemented with laser assisted tunneling, effectively realizes the ground state of 1D hard-core bosons in a discrete lattice with nontrivial hopping phases. We compare observables that are affected by the interactions, such as the momentum distribution, natural orbitals and their occupancies, in the time-dependent continuous system, to those of the ground state of the discrete system. Stroboscopically, we find an excellent agreement, indicating that laser assisted tunneling is a viable technique for realizing novel ground states and phases with hard-core 1D Bose gases.

  6. Evaluation of Fiber Bundle Rotation for Enhancing Gas Exchange in a Respiratory Assist Catheter

    PubMed Central

    Eash, Heide J.; Mihelc, Kevin M.; Frankowski, Brain J.; Hattler, Brack G.; Federspiel, William J.

    2007-01-01

    Supplemental oxygenation and carbon dioxide removal through an intravenous respiratory assist catheter can be used as a means of treating patients with acute respiratory failure. We are beginning development efforts toward a new respiratory assist catheter with an insertional size <25F, which can be inserted percutaneously. In this study, we evaluated fiber bundle rotation as an improved mechanism for active mixing and enhanced gas exchange in intravenous respiratory assist catheters. Using a simple test apparatus of a rotating densely packed bundle of hollow fiber membranes, water and blood gas exchange levels were evaluated at various rotation speeds in a mock vena cava. At 12,000 RPM, maximum CO2 gas exchange rates were 449 and 523 mL/min per m², water and blood, respectively, but the rate of increase with increasing rotation rate diminished beyond 7500 RPM. These levels of gas exchange efficiency are two‐ to threefold greater than achieved in our previous respiratory catheters using balloon pulsation for active mixing. In preliminary hemolysis tests, which monitored plasma‐free hemoglobin levels in vitro over a period of 6 hours, we established that the rotating fiber bundle per se did not cause significant blood hemolysis compared with an intra‐aortic balloon pump. Accordingly, fiber bundle rotation appears to be a potential mechanism for increasing gas exchange and reducing insertional size in respiratory catheters. PMID:17515731

  7. Intestinal gas dynamics: mechanisms and clinical relevance

    PubMed Central

    Azpiroz, F

    2005-01-01

    Patients with functional gut disorders, irritable bowel disease, and related syndromes frequently attribute their symptoms to intestinal gas. While patients are usually convinced of their interpretation, the doctor has few arguments to confirm or refute it, and in this context intestinal gas has become a myth. Studies of intestinal gas dynamics have demonstrated subtle dysfunctions in intestinal motility. Hopefully, extension of these studies may help both in the classification of patients complaining of gas symptoms based on pathophysiological mechanisms, and in identification of objective markers to test mechanistically oriented treatment options. PMID:15951528

  8. Intestinal gas dynamics: mechanisms and clinical relevance.

    PubMed

    Azpiroz, F

    2005-07-01

    Patients with functional gut disorders, irritable bowel disease, and related syndromes frequently attribute their symptoms to intestinal gas. While patients are usually convinced of their interpretation, the doctor has few arguments to confirm or refute it, and in this context intestinal gas has become a myth. Studies of intestinal gas dynamics have demonstrated subtle dysfunctions in intestinal motility. Hopefully, extension of these studies may help both in the classification of patients complaining of gas symptoms based on pathophysiological mechanisms, and in identification of objective markers to test mechanistically oriented treatment options.

  9. New modes of mechanical ventilation: proportional assist ventilation, neurally adjusted ventilatory assist, and fractal ventilation.

    PubMed

    Navalesi, Paolo; Costa, Roberta

    2003-02-01

    Increased knowledge of the mechanisms that determine respiratory failure has led to the development of new technologies aimed at improving ventilatory treatment. Proportional assist ventilation and neurally adjusted ventilatory assist have been designed with the goal of improving patient-ventilator interaction by matching the ventilator support with the neural output of the respiratory centers. With proportional assist ventilation, the support is continuously readjusted in proportion to the predicted inspiratory effort. Neurally adjusted ventilatory assist is an experimental mode in which the assistance is delivered in proportion to the electrical activity of the diaphragm, assessed by means of an esophageal electrode. Biologically variable (or fractal) ventilation is a new, volume-targeted, controlled ventilation mode aimed at improving oxygenation; it incorporates the breath-to-breath variability that characterizes a natural breathing pattern.

  10. Study of Formation Mechanisms of Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  11. Low energy ion assisted carbon film growth: Methods and mechanisms

    NASA Astrophysics Data System (ADS)

    Ullmann, Jens

    1997-05-01

    Hydrogen-free amorphous carbon films (a-C) prepared by different ion assisted methods (i) ion assisted evaporation (IAE), (ii) unbalanced magnetron sputtering (MS), (iii) mass separated ion beam deposition (MSIBD) and (iv) filtered vacuum cathodic arc evaporation (VA) in the optimum energy range of about 100 eV were compared. Density data, Raman spectra and surface topography images show a different behaviour of the films. The different growth processes were discussed in connection with results from ion implantation experiments into IAE a-C and computer calculations of the ion-solid interactions by use of the TRIM-code. Self-interstitials in the sub-surface region of the carbon matrix created due to pure carbon ion beam bombardment (MSIBD and VA) are the key for the understanding of the densification process. The lower number of self-interstitials created during the noble-gas ion assisted processes can be compensated by extremely high argon-ion to carbon-neutral arrival ratios in the case of MS. Furthermore, the sputtered carbon atoms with energies in the range of a few eV should assist this deposition process. Without energetic carbon particles (thermal carbon atoms from the evaporation process) as in the case of neon ion assisted evaporation, it is also possible to prepare dense a-C, however with lower density (2.7 g/cm 3).

  12. Microwave-assisted generation of standard gas mixtures.

    PubMed

    Xiong, Guohua; Pawliszyn, Janusz

    2002-05-15

    Microwave heating was employed for preparation of the standard gas of volatile organic compounds (VOCs) and semivolatile organic compounds (semi-VOCs) by using a 1000 W commercial domestic microwave oven and 1 L gas-sampling bulbs. The VOCs investigated were benzene, chloroform, 1,3-dichlorobenzene, tetrachloroethylene, toluene, and 1,1,2-trichloroethane, and the semi-VOCs used were the polychlorinated biphenyls (PCBs) PCB 1016 and PCB 1248. Since these weakly or nonpolar molecules are very poor absorbers of microwave energy, an appropriate amount of water was introduced to accept microwave radiation and act as the thermal source to accelerate their evaporation. The glass bulb may also contribute thermal energy to the VOCs/semi-VOCs by accepting microwave energy to a small degree. For 0.5 microL of liquid VOCs on 10 mg of glass wool, it was shown that 15 microL of H2O and 60 s of microwave heating yielded a very efficient evaporation [97.2-106.4%, compared with a classic method (Muller, L; Gorecki, T.; Pawliszyn, J. Fresenius' J. Anal. Chem. 1999, 364, 610-616)]. For 1 microL of PCB solution (1000 microg/mL in hexane), 15 microL of H2O and 90 s of microwave heating also provided a complete evaporation. The addition of water was particularly significant for microwave-assisted evaporation of PCBs because semi-VOCs are much more difficult to evaporate than VOCs. This developed microwave technique proved to be quite simple, powerful, rapid, accurate, and safe for the preparation of VOC/semi-VOC standard gas. Solid- phase microextraction combined with gas chromatography was used for the gas analysis.

  13. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible

  14. Gas heating mechanisms in capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; Collins, Ken

    2012-10-01

    Capacitively coupled plasma (CCP) tools utilized for plasma etching of dielectric features utilize large amounts of power for processing. As a result, neutral gas heats up significantly during processing. The resulting gas density variations across the reactor can affect reaction rates, radical densities, plasma characteristics and uniformity within the reactor. In this paper, results from a two-dimensional computational investigation of an Ar/CF4 CCP discharge incorporating an energy equation solution for all ions and neutrals are discussed. The dominant neutral gas heating process is identified to be elastic collisions with ions while conduction is found to be the major mechanism of heat transport. Some species such as F and CF3 demonstrate higher temperatures than the feedstock gases owing to additional heating via charge-exchange reactions and/or Franck-Condon heating. Typical process parameters such as pressure, frequency of excitation, power and gas composition are varied to investigate their impact on gas temperature. At higher excitation frequency and/or pressure, increased elastic collisions with ions lead to greater heat generation. The heat generated per molecule of the radicals, however, decreases with increase in pressure leading to a decrease in gas temperature. The increase in neutral collision frequencies with pressure also results in the decrease in temperature difference between species in the plasma. As CF4 fraction increases, both the elastic collision cross-section and Franck-Condon heating sources increase, leading to higher gas temperatures.

  15. Mechanical Drawing of Gas Sensors on Paper

    PubMed Central

    Mirica, Katherine A.; Weis, Jonathan G.; Schnorr, Jan M.; Esser, Birgit

    2012-01-01

    This communication describes a simple solvent-free method for fabricating chemoresistive gas sensors on the surface of paper. The method involves mechanical abrasion of compressed powders of sensing materials on the fibers of cellulose. We illustrate this approach by depositing conductive layers of several forms of carbon (e.g., single-walled carbon nanotubes [SWCNTs], multi-walled carbon nanotubes, and graphite) on the surface of different papers (Figure 1, Figure S1). The resulting sensors based on SWCNTs are capable of detecting NH3 gas at concentrations as low as 0.5 part-per-million. PMID:23037938

  16. Fundamental mechanisms in flue-gas conditioning

    SciTech Connect

    Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

    1992-01-09

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  17. Fundamental mechanisms in flue gas conditioning

    SciTech Connect

    Bush, P.V.; Snyder, T.R.

    1992-01-09

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ask properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  18. Study on the gas-liquid interface and polymer melt front in gas-assisted injection molding

    SciTech Connect

    Shen, Y.K.

    1997-03-01

    The algorithms are developed to predict the gas-liquid interface in gas-assisted injection molding. The simulation of two-dimensional, transient, non-isothermal and high viscous flow between two parallel plates with the generalized Newtonian fluid is presented in detail. The model takes into account the effects of the gas-liquid interface and polymer melt front.

  19. Subchronic centrifugal mechanical assist in an unheparinized calf model.

    PubMed

    Wagner-Mann, C; Curtis, J; Mann, F A; Turk, J; Demmy, T; Turpin, T

    1996-06-01

    The purpose of this study was to determine whether the major centrifugal pumps currently in use in the United States (Medtronic, BioMedicus BioPump and Carmeda-coated BioPump, Sarns 3M centrifugal pump, and St. Jude Medical Lifestream) could function as left mechanical assist devices in the subchronic (72 h) unheparinized calf model. Calves were instrumented for left atrial to aorta ex vivo assist, and the pump flow was set at 3.5 +/- 0.4 L/min. Two calves (Sarns 3M and St. Jude) survived 72 h of pumping without clinical complications. The other 2 calves died at 62 and 66 h (Medtronic BioPump and Carmeda-coated BioPump, respectively); both had pelvic limb paralysis. The seal of the Sarns 3M pump head ruptured after approximately 36 h of pumping and required replacement. On postmortem examination, pump-associated thromboembolic lesions were detected in 3 of the 4 calves in one or more of the following organs: kidneys, pancreas, abomasum, duodenum, ileum, spleen, and lumbar spinal cord. The calf with the Sarns 3M pump had no discernable lesions. Because of the clinical abnormalities and postmortem lesions in the unheparinized calf model, it was suggested that anticoagulation is necessary for conducting centrifugal mechanical assist studies in calves using presently available technology.

  20. [Importance of mechanical assist devices in acute circulatory arrest].

    PubMed

    Ferrari, Markus Wolfgang

    2016-03-01

    Mechanical assist devices are indicated for hemodynamic stabilization in acute circulatory arrest if conventional means of cardiopulmonary resuscitation are unable to re-establish adequate organ perfusion. Their temporary use facilitates further diagnostic and therapeutic options in selected patients, e.g. coronary angiography followed by revascularization.External thorax compression devices allow sufficient cardiac massage in case of preclinical or in-hospital circulatory arrest, especially under complex transfer conditions. These devices perform standardized thorax compressions at a rate of 80-100 per minute. Invasive mechanical support devices are used in the catheter laboratory or in the intensive care unit. Axial turbine pumps, e.g. the Impella, continuously pump blood from the left ventricle into the aortic root. The Impella can also provide right ventricle support by pumping blood from the vena cava into the pulmonary artery. So-called emergency systems or ECMO devices consist of a centrifugal pump and a membrane oxygenator allowing complete takeover of cardiac and pulmonary functions. Withdrawing blood from the right atrium and vena cava, oxygenated blood is returned to the abdominal aorta. Isolated centrifugal pumps provide left heart support without an oxygenator after transseptal insertion of a venous cannula into the left atrium.Mechanical assist devices are indicated for acute organ protection and hemodynamic stabilization for diagnostic and therapeutic measures as well as bridge to myocardial recovery. Future technical developments and better insights into the pathophysiology of mechanical circulatory support will broaden the spectrum of indications of such devices in acute circulatory arrest. PMID:26860409

  1. Computer simulation of the mechanically-assisted failing canine circulation.

    PubMed

    Barnea, O; Moore, T W; Jaron, D

    1990-01-01

    A model of the cardiovascular system is presented. The model includes representations of the left and right ventricles, a nonlinear multielement model of the aorta and its main branches, and lumped models of the systemic veins and the pulmonary circulation. A simulation of the intra-aortic balloon pump and representations of physiological compensatory mechanisms are also incorporated in the model. Parameters of the left ventricular model were set to simulate either the normal or failing canine circulation. Pressure and flow waveforms throughout the circulation as well as ventricular pressure and volume were calculated for the normal, failing, and assisted failing circulation. Cardiac oxygen supply and consumption were calculated from the model. They were used as direct indices of cardiac energy supply and utilization to assess the effects of cardiac assistance.

  2. Plasma Assisted Combustion Mechanism for Hydrogen and Small Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Aleksandrov, Nikolay

    2015-09-01

    The main mechanisms of nonequilibrium gas excitation and their influence on the ignition and combustion were briefly discussed. Rotational excitation, vibrational excitation, electronic excitation, dissociation by electron impact and ionization were all analyzed, as well as the ways in which the selectivity of the gas excitation in the discharge can be controlled. The model consists of two parts. The first part describes gas excitation by electron impact - rotational, vibrational and electronic states population by pulsed discharges. The second part considers energy relaxation in the plasma (formation of Maxwell-Boltzmann equilibrium across translational, vibrational and electronic degrees of freedom of molecules), quenching and decomposition of excited states, their reactions and recombination - with formation of thermally-equilibrium pool of radicals, which could be considered as initial conditions for any detailed combustion kinetic mechanism. The mechanism was verified against available kinetic data in a wide temperature range. Despite of some lack of knowledge of mechanism details, nonequilibrium plasma demonstrates great potential for controlling ultra-lean, ultra-fast, low-temperature flames and is an extremely promising technology for a very wide range of applications.

  3. Mechanisms of gas permeation through polymer membranes

    NASA Astrophysics Data System (ADS)

    Stern, S. Alexander

    The objective of the present study is to investigate the mechanisms by which gases are transported in and through polymer membranes, and the dependence of these mechanisms on pressure and temperature. Recent work has been focused on the permeation of gases through membranes made from glassy polymers, i.e., at temperatures below the glass transition of the polymers (Tg). During the past report period, a new theoretical model of gas solubility in glassy polymers was developed and tested with experimental data from the literature. This model describes satisfactorily the shape of solubility isotherms over wide ranges of pressure and temperatures, and is particularly useful for penetrant gases with ranges of pressure and temperatures, and is particularly useful for penetrant gases which plasticize (swell) glassy polymers. Work also continued on the behavior of light gases in poly (alkyl methacrylates).

  4. High pressure test results of a catalytically assisted ceramic combustor for a gas turbine

    SciTech Connect

    Ozawa, Y.; Tochihara, Y.; Mori, N.; Yuri, I.; Kanazawa, T.; Sagimori, K.

    1999-07-01

    A catalytically assisted ceramic combustor for a gas turbine was designed to achieve low NOx emission under 5 ppm at a combustor outlet temperature over 1300 C. This combustor is composed of a burner system and a ceramic liner behind the burner system. The burner system consist of 6 catalytic combustor segments and 6 premixing nozzles, which are arranged in parallel and alternately. The ceramic liner is made up of the layer of outer metal wall, ceramic fiber, and inner ceramic tiles. Fuel flow rates for the catalysts and the premixing nozzles are controlled independently. Catalytic combustion temperature is controlled under 1000 C, premixed gas is injected from the premixing nozzles to the catalytic combustion gas and lean premixed combustion over 1300 C is carried out in the ceramic liner. This system was designed to avoid catalytic deactivation at high temperature and thermal and mechanical shock fracture of the honeycomb monolith of catalyst. A combustor for a 10 MW class, multican type gas turbine was tested under high pressure conditions using LNG fuel. Measurements of emission, temperature, etc. were made to evaluate combustor performance under various combustion temperatures and pressures. This paper presents the design features and the test results of this combustor.

  5. Environment assisted degradation mechanisms in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.

  6. SDS-assisted hydrothermal synthesis of NiO flake-flower architectures with enhanced gas-sensing properties

    NASA Astrophysics Data System (ADS)

    Miao, Ruiyang; Zeng, Wen; Gao, Qi

    2016-10-01

    A facile hydrothermal route was developed for the preparation of well-aligned hierarchical flower-like NiO nanostructure with the assistance of SDS that served as a structure-directing agent as well as a capping agent in the process of aggregation and assembly. Notably, the NiO sensors exhibit enhanced gas-sensing performance towards ethanol, which could be explained in association with the ultrathin nanosheets that are close to Debye length (LD) scale and thus get the majority carriers fully depleted due to the ionization of adsorbed oxygen, abundant effective gas diffusion paths as well as high surface-to-volume ratio to promote sufficient contact and reaction between the NiO sample and ethanol molecules, and numerous miniature reaction rooms assembled with nanosheets to make the test gas molecules stay long enough for completed gas-sensing reactions. Besides, a novel growth mechanism with the passage of reaction time was also proposed in detail.

  7. Experimental investigation of the gas flow in gas-assisted laser cutting by means of geometrically similar models

    NASA Astrophysics Data System (ADS)

    Makashev, N. K.; Buzykin, O. G.; Asmolov, E. S.

    1996-03-01

    The gas flow in the system of nozzle-cut is investigated for the case of gas-assisted laser cutting of materials. The direct measurement of pressure fields is used with geometrically similar models which simulate the configuration forming during the laser cutting of metal sheet. The effect of geometric parameters of the system on the flow pattern in the kerf and on its features responsible for the cutting quality is analyzed. The choice and proper implementation of the assisting gas blowing to the cut front zone if of great importance for the gas-assisted laser cutting. There exist many various methods and facilities for the gas delivery. Nozzle configurations of many kinds and the peculiarities of free jet streams formed by them was the subject of extensive exploration. The efficiency of the nozzle under investigation was evaluated empirically or by the pressure exerted to the flat plate in the stagnation point of normally impinging jet. Recently the attention of investigators has been redirected to the details of the gas flow in the cut kerf. This activity is connected with the development of the theoretical models of gas-assisted laser cutting which serves to appreciate the role of the gas flow parameters in the phenomena responsible for the cutting efficiency. The efficiency of the gas delivery which is characterized by the cutting speed, the maximum thickness of the cut material, or the quality parameters of cut edges depends mainly on the flow features in the cut kerf. In the present paper these features are discussed closely. The results of the investigation provide the ability to choose purposefully the geometrical parameters of the nozzle facilities for laser cutter.

  8. A mechanically assisted heat pipe using micro-pumps

    SciTech Connect

    Wong, J.L.; Campbell, G.; Hassapis, C.; Chang, W.S.

    1996-12-31

    A new mechanically assisted heat pipe has been developed and tested by the authors that combines the high performance of a pumped fluid loop with the reliability of passive heat pipes. The new unit employs micro-pumps inside a passive heat pipe to enhance the return of working fluid from the condenser to the evaporator, and thereby increases the capability of the system. This hybrid device is lighter, smaller and handles higher heat flux compared with a passive heat pipe of similar weight and dimensions. Best of all, if the mechanical pump fails, the heat transport will be impaired, but not totally paralyzed, allowing some form of lower level operation. This micro-pump design installs fins at critical locations inside the heat pipe. These fins can be parallel (flag) or perpendicular (flap) to the flow direction. By vibrating these fins in a motion similar to dolphin kicks for the flaps, and in a motion similar to a fishtail for the flags, these fins were found capable of pumping the working fluid effectively. The size and geometry of these fins were tested extensively. Several actuation approaches were examined. The results of these tests are presented in this paper.

  9. Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Lu, Xinchun; Pan, Guoshun; Lei, Yuanzhong; Luo, Jianbin

    2010-04-01

    The sapphire substrates are polished by traditional chemical mechanical polishing (CMP) and ultrasonic flexural vibration (UFV) assisted CMP (UFV-CMP) respectively with different pressures. UFV-CMP combines the functions of traditional CMP and ultrasonic machining (USM) and has special characteristics, which is that ultrasonic vibrations of the rotating polishing head are in both horizontal and vertical directions. The material removal rates (MRRs) and the polished surface morphology of CMP and UFV-CMP are compared. The MRR of UFV-CMP is two times larger than that of traditional CMP. The surface roughness (root mean square, RMS) of the polished sapphire substrate of UFV-CMP is 0.83 Å measured by the atomic force microscopy (AFM), which is much better than 2.12 Å obtained using the traditional CMP. And the surface flatness of UFV-CMP is 0.12 μm, which is also better than 0.23 μm of the traditional CMP. The results show that UFV-CMP is able to improve the MRR and finished surface quality of the sapphire substrates greatly. The material removal and surface polishing mechanisms of sapphire in UFV-CMP are discussed too.

  10. Mechanisms of gas permeation through polymer membranes

    SciTech Connect

    Stern, S.A.

    1992-01-01

    Progress is reported in two areas: (1) Concentration-temperature superposition principle (CTSP). CTSP is a theoretical model for describing the gas solubility in glassy polymers swollen by the penetrant gas. It has been extended to describe the dependence of gas diffusivity and permeability on penetrant pressure. Further extension to diffusion of gas mixtures is being studied. (2)Solubility of gases in poly(alkyl methacrylates). Solubility of methane in poly(ethyl methacrylate) and poly(n-butyl methacrylate) was measured; the Langmuir capacity constant was found to not reflect a lower excess free volume; an equation is given for relating the constant to the glass transition temperature. Solubility of ethane in the latter polymer is affected by plasticization.

  11. Investigation into the hydrogen gas sensing mechanism of cubic silicon carbide resistive gas sensors

    NASA Astrophysics Data System (ADS)

    Fawcett, Timothy J.

    The hydrogen (H2) gas sensing mechanism driving 3C-SiC resistive gas sensors is investigated in this work in which two hypotheses are proposed. One hypothesis involves the surface adsorption of H2 on the sensor surface with the adsorbed molecules influencing the flow of current in a resistive gas sensor, termed the surface adsorption detection mechanism. The second hypothesis includes the transfer of heat from the sensor to the gas, producing a change in the temperature of the device when the heat transfer characteristics of the gas change, termed the thermal detection mechanism. The heat transfer characteristics of the gas are dependent on the thermal conductivity of the gas, a property which is a strong function of gas composition. Thus, the thermal detection mechanism mainly detects changes in the thermal conductivity of a gas or gas mixture. Initial experiments suggested the surface adsorption mechanism as the detection mechanism of resistive 3C-SiC gas sensors. However, these experiments were performed in the absence of device temperature measurements. Recent experiments in which the device temperature was measured with a resistance temperature detector (RTD) in thermal contact with the device strongly support the thermal detection mechanism as being responsible for hydrogen gas detection. Experimental observations show the temperature of the resistive 3C-SiC hydrogen gas sensors changes greatly with changing hydrogen gas composition. For example, a 3C-SiC/SOI resistive sensor biased at 10 Vdc displayed a change in temperature from ˜400°C to ˜216°C, correlating to a change in current from ˜41 mA to ˜6mA, upon the introduction of 100% H2. The this 3C-SiC/SOI resistive sensor, this large decrease in temperature caused a large increase in resistance which is detected as a decrease in current. Several different experiments have also been performed to confirm the thermal detection mechanism hypothesis.

  12. Fundamental mechanisms in flue gas conditioning

    SciTech Connect

    Snyder, T.R.; Vann Bush, P.

    1995-11-01

    The overall goal of this research project has been to formulate a model describing effects of flue gas conditioning on particulate properties. By flue gas conditioning we mean any process by which solids, gases, or liquids are added to the combustor and/or the exhaust stream to the extent that flue gas and particulate properties may be altered. Our modeling efforts, which are included in our Final Report, are based on an understanding of how ash properties, such as cohesivity and resistivity, are changed by conditioning. Flue gas conditioning involves the modification of one or more of the parameters that determine the magnitude of forces acting on the fly ash particles, and can take place through many different methods. Modification of particulate properties can alter ash resistivity or ash cohesivity and result in improved or degraded control device performance. Changes to the flue gas, addition or particulate matter such as flue gas desulfurization (FGD) sorbents, or the addition of reactive gases or liquids can modify these properties. If we can better understand how conditioning agents react with fly ash particles, application of appropriate conditioning agents or processes may result in significantly improved fine particle collection at low capital and operating costs.

  13. Solar assisted gas-fired absorption heat pump

    NASA Astrophysics Data System (ADS)

    Murphy, K. P.; Burke, J. C.; Phillips, B. A.

    1982-08-01

    An evaluation of the technical and economic feasibility of coupling an absorption heat pump and an active solar system for residential applications is discussed. The absorption heat pump is based on a new absorption working pair developed by Allied. Three basic modes of coupling were considered, a series arrangement, a parallel arrangement, and a solar drive arrangement. Little overall difference in performance was found for these three modes but the solar drive was chosen for detailed study. A preliminary design of a dual mode absorption generator was developed capable of using simultaneously heat from gas and solar. The performance of such a system was examined in three cities.

  14. When gas analysis assists with postmortem imaging to diagnose causes of death.

    PubMed

    Varlet, V; Smith, F; Giuliani, N; Egger, C; Rinaldi, A; Dominguez, A; Chevallier, C; Bruguier, C; Augsburger, M; Mangin, P; Grabherr, S

    2015-06-01

    Postmortem imaging consists in the non-invasive examination of bodies using medical imaging techniques. However, gas volume quantification and the interpretation of the gas collection results from cadavers remain difficult. We used whole-body postmortem multi-detector computed tomography (MDCT) followed by a full autopsy or external examination to detect the gaseous volumes in bodies. Gases were sampled from cardiac cavities, and the sample compositions were analyzed by headspace gas chromatography-mass spectrometry/thermal conductivity detection (HS-GC-MS/TCD). Three categories were defined according to the presumed origin of the gas: alteration/putrefaction, high-magnitude vital gas embolism (e.g., from scuba diving accident) and gas embolism of lower magnitude (e.g., following a traumatic injury). Cadaveric alteration gas was diagnosed even if only one gas from among hydrogen, hydrogen sulfide or methane was detected. In alteration cases, the carbon dioxide/nitrogen ratio was often >0.2, except in the case of advanced alteration, when methane presence was the best indicator. In the gas embolism cases (vital or not), hydrogen, hydrogen sulfide and methane were absent. Moreover, with high-magnitude vital gas embolisms, carbon dioxide content was >20%, and the carbon dioxide/nitrogen ratio was >0.2. With gas embolisms of lower magnitude (gas presence consecutive to a traumatic injury), carbon dioxide content was <20% and the carbon dioxide/nitrogen ratio was often <0.2. We found that gas analysis provided useful assistance to the postmortem imaging diagnosis of causes of death. Based on the quantifications of gaseous cardiac samples, reliable indicators were determined to document causes of death. MDCT examination of the body must be performed as quickly as possible, as does gas sampling, to avoid generating any artifactual alteration gases. Because of cardiac gas composition analysis, it is possible to distinguish alteration gases and gas embolisms of different

  15. When gas analysis assists with postmortem imaging to diagnose causes of death.

    PubMed

    Varlet, V; Smith, F; Giuliani, N; Egger, C; Rinaldi, A; Dominguez, A; Chevallier, C; Bruguier, C; Augsburger, M; Mangin, P; Grabherr, S

    2015-06-01

    Postmortem imaging consists in the non-invasive examination of bodies using medical imaging techniques. However, gas volume quantification and the interpretation of the gas collection results from cadavers remain difficult. We used whole-body postmortem multi-detector computed tomography (MDCT) followed by a full autopsy or external examination to detect the gaseous volumes in bodies. Gases were sampled from cardiac cavities, and the sample compositions were analyzed by headspace gas chromatography-mass spectrometry/thermal conductivity detection (HS-GC-MS/TCD). Three categories were defined according to the presumed origin of the gas: alteration/putrefaction, high-magnitude vital gas embolism (e.g., from scuba diving accident) and gas embolism of lower magnitude (e.g., following a traumatic injury). Cadaveric alteration gas was diagnosed even if only one gas from among hydrogen, hydrogen sulfide or methane was detected. In alteration cases, the carbon dioxide/nitrogen ratio was often >0.2, except in the case of advanced alteration, when methane presence was the best indicator. In the gas embolism cases (vital or not), hydrogen, hydrogen sulfide and methane were absent. Moreover, with high-magnitude vital gas embolisms, carbon dioxide content was >20%, and the carbon dioxide/nitrogen ratio was >0.2. With gas embolisms of lower magnitude (gas presence consecutive to a traumatic injury), carbon dioxide content was <20% and the carbon dioxide/nitrogen ratio was often <0.2. We found that gas analysis provided useful assistance to the postmortem imaging diagnosis of causes of death. Based on the quantifications of gaseous cardiac samples, reliable indicators were determined to document causes of death. MDCT examination of the body must be performed as quickly as possible, as does gas sampling, to avoid generating any artifactual alteration gases. Because of cardiac gas composition analysis, it is possible to distinguish alteration gases and gas embolisms of different

  16. Simulation of gas-assisted injection mold-cooling process using line source model approach for gas channel

    SciTech Connect

    Chang, Y.P.; Hu, S.Y.; Chen, S.C.

    1998-10-01

    Gas-assisted injection molding (GAIM) process, being an innovative injection molding process, can substantially reduce production expenses through reduction in material cost, reduction in clamp tonnage and reduction in cycle time. Whether it is feasible to perform an integrated simulation for process simulation based on a unified CAE model for gas-assisted injection molding (GAIM) is a great concern. In the present study, numerical algorithms based on the same CAE model used for process simulation regarding filling and packaging stages were developed to simulate the cooling phase of GAIM using a cycle-averaged three-dimensional modified boundary element technique similar to that used for conventional injection molding. However, to use the current CAE model for analysis, gas channel was modeled by two-node elements using line source approach. It was found that this new modeling not only affects the mold wall temperature calculation very slightly but also reduces the computer time by 95% as compared with a full gas channel modeling required a lot of triangular elements on gas channel surface. This investigation indicates that it is feasible to achieve an integrated process simulation for GAIM under one CAE model resulting in great computational efficiency for industrial application.

  17. Iridium single atom tips fabricated by field assisted reactive gas etching

    NASA Astrophysics Data System (ADS)

    Wood, John A.; Urban, Radovan; Salomons, Mark; Cloutier, Martin; Wolkow, Robert A.; Pitters, Jason L.

    2016-03-01

    We present a simple, reliable method to fabricate Ir single atom tips (SATs) from polycrystalline wire. An electrochemical etch in CaCl2 solution is followed by a field assisted reactive gas etch in vacuum at room temperature using oxygen as an etching gas and neon as an imaging gas. Once formed, SATs are cooled to liquid nitrogen temperatures and their underlying structure is examined through evaporation of the apex atoms. Furthermore, a method is developed to repair Ir SATs at liquid nitrogen temperatures when apex atoms evaporate. This method may be used to fabricate Ir SAT ion sources.

  18. The mechanism of galvanic/metal-assisted etching of silicon

    NASA Astrophysics Data System (ADS)

    Kolasinski, Kurt W.

    2014-08-01

    Metal-assisted etching is initiated by hole injection from an oxidant catalyzed by a metal nanoparticle or film on a Si surface. It is shown that the electronic structure of the metal/Si interface, i.e., band bending, is not conducive to diffusion of the injected hole away from the metal in the case of Ag or away from the metal/Si interface in the cases of Au, Pd, and Pt. Since holes do not diffuse away from the metals, the electric field resulting from charging of the metal after hole injection must instead be the cause of metal-assisted etching.

  19. Mechanical ventilation and thoracic artificial lung assistance during mechanical circulatory support with PUCA pump: in silico study.

    PubMed

    De Lazzari, Claudio; Genuini, Igino; Quatember, Bernhard; Fedele, Francesco

    2014-02-01

    Patients assisted with left ventricular assist device (LVAD) may require prolonged mechanical ventilatory assistance secondary to postoperative respiratory failure. The goal of this work is the study of the interdependent effects LVAD like pulsatile catheter (PUCA) pump and mechanical ventilatory support or thoracic artificial lung (TAL), by the hemodynamic point of view, using a numerical simulator of the human cardiovascular system. In the simulator, different circulatory sections are described using lumped parameter models. Lumped parameter models have been designed to describe the hydrodynamic behavior of both PUCA pump and thoracic artificial lung. Ventricular behavior atrial and septum functions were reproduced using variable elastance model. Starting from simulated pathological conditions we studied the effects produced on some hemodynamic variables by simultaneous PUCA pump, thoracic artificial lung or mechanical ventilation assistance. Thoracic artificial lung was applied in parallel or in hybrid mode. The effects of mechanical ventilation have been simulated by changing mean intrathoracic pressure value from -4 mmHg to +5 mmHg. The hemodynamic variables observed during the simulations, in different assisted conditions, were: left and right ventricular end systolic (diastolic) volume, systolic/diastolic aortic pressure, mean pulmonary arterial pressure, left and right mean atrial pressure, mean systemic venous pressure and the total blood flow. Results show that the application of PUCA (without mechanical ventilatory assistance) increases the total blood flow, reduces the left ventricular end systolic volume and increases the diastolic aortic pressure. Parallel TAL assistance increases the right ventricular end diastolic (systolic) volume reduction both when PUCA is switched "ON" and both when PUCA is switched "OFF". By switching "OFF" the PUCA pump, it seems that parallel thoracic artificial lung assistance produces a greater cardiac output (respect to

  20. Mechanisms for leaf control of gas exchange

    SciTech Connect

    Mansfield, T.A.; Davies, W.J.

    1985-03-01

    Several mechanisms enable leaf stomata to optimize water loss with respect to carbon gain. Stomatal responses to environmental variation constitute a plant's first and second lines of defense against damaging water deficits. Changes in the concentrations of endogenous growth regulations and their influence on stomata may well be important to both defense strategies.

  1. Mechanics of buried chilled gas pipelines

    SciTech Connect

    Selvadurai, A.P.S.; Hu, J.

    1996-12-31

    This paper examines the factors influencing the modelling of soil-pipeline interaction for a pipeline which is used to transport chilled gas. The soil-pipeline interaction is induced by the generation of discontinuous frost heave at a boundary between soils with differing frost susceptibility. The three-dimensional modelling takes into consideration the time-dependent evolution of frost heave due to moisture migration, the creep and elastic behavior of the frozen soil and flexural behavior of the embedded pipeline. The results of the computational model are compared with experimental results obtained from the frost heave induced soil-pipeline interaction test performed at the full scale test facilities in Caen, France.

  2. Effect of Impeller Design and Spacing on Gas Exchange in a Percutaneous Respiratory Assist Catheter

    PubMed Central

    Jeffries, R. Garrett; Frankowski, Brian J.; Burgreen, Greg W.; Federspiel, William J.

    2014-01-01

    Providing partial respiratory assistance by removing carbon dioxide (CO2) can improve clinical outcomes in patients suffering from acute exacerbations of chronic obstructive pulmonary disease and acute respiratory distress syndrome. An intravenous respiratory assist device with a small (25 Fr) insertion diameter eliminates the complexity and potential complications associated with external blood circuitry and can be inserted by nonspecialized surgeons. The impeller percutaneous respiratory assist catheter (IPRAC) is a highly efficient CO2 removal device for percutaneous insertion to the vena cava via the right jugular or right femoral vein that utilizes an array of impellers rotating within a hollow-fiber membrane bundle to enhance gas exchange. The objective of this study was to evaluate the effects of new impeller designs and impeller spacing on gas exchange in the IPRAC using computational fluid dynamics (CFD) and in vitro deionized water gas exchange testing. A CFD gas exchange and flow model was developed to guide a progressive impeller design process. Six impeller blade geometries were designed and tested in vitro in an IPRAC device with 2- or 10-mm axial spacing and varying numbers of blades (2–5). The maximum CO2 removal efficiency (exchange per unit surface area) achieved was 573 ± 8 mL/min/m2 (40.1 mL/min absolute). The gas exchange rate was found to be largely independent of blade design and number of blades for the impellers tested but increased significantly (5–10%) with reduced axial spacing allowing for additional shaft impellers (23 vs. 14). CFD gas exchange predictions were within 2–13% of experimental values and accurately predicted the relative improvement with impellers at 2- versus 10-mm axial spacing. The ability of CFD simulation to accurately forecast the effects of influential design parameters suggests it can be used to identify impeller traits that profoundly affect facilitated gas exchange. PMID:24749994

  3. Performance comparisons of naturally and mechanically ventilated solar-assisted nurseries

    SciTech Connect

    Milanuk, M.; Bodman, G.R.; DeShazer, J.A.; Schulte, D.

    1983-12-01

    When combined with solar floor heating and careful management, naturally ventilated swine nurseries can result in energy savings and comparable pig responses to mechanically ventilated nurseries of the current design that were also solar assisted.

  4. Gas plasma sterilization of microorganisms and mechanisms of action

    PubMed Central

    SHINTANI, HIDEHARU; SAKUDO, AKIKAZU; BURKE, PETER; McDONNELL, GERALD

    2010-01-01

    The use of true gas plasmas for the inactivation of microorganisms is an area of dynamic research. Many types of gases are used as a source of plasma, and different plasma production methods have been applied. The antimicrobial mechanisms of oxygen-based gas plasmas may be due to an etching effect on microbial structures, particularly bacterial endospores resulting in shrinkage. By contrast, the definite mechanisms of actions of other gas plasma sources, such as N2, He, Ne, Ar and Xe gases, have not been clearly defined and indeed may be distinct. The speculated mechanisms of these gas plasmas involve the direct attack of metastable (excited molecular), UV and/or VUV to microbial structures, specifically the inner membrane and DNA in the core of bacterial endospores. According to this speculation, sterilized spore figures would remain unchanged. However, these mechanisms remain to be clarified. Future perspectives on the use of gas plasma for sterilization are of interest, as it is possible that appropriate sterility assurance levels can be obtained in parallel with material and functional compatibility. Traditional sterilization methods are often limited in these requirements. Therefore, gas plasma sterilization may prove to be an appropriate alternative sterilization procedure. PMID:22993596

  5. 3D Numerical study on the hollow profile polymer extrusion forming based on the gas-assisted technique

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Huang, X. Y.; Liu, H. S.

    2016-07-01

    In this study, gas-assisted extrusion method was introduced into the extrusion of the hollow profiles. To validate the feasibility of the new extrusion method, 3D numerical simulation of the hollow profiles based on gas-assisted technique was carried out by using the finite element method. The Phan-Thien-Tanner (PTT) mode was selected as the construction equation. In the simulations, the physical field distributions of four different extrusion modes were obtained and analyzed. Results showed that the extrudate effect of traditional no gas- assisted mode was poor because the extrudate swell phenomenon is obvious and the physical field values are larger. For the gas-assisted of the inner wall, the extrudate swell of the melt was more obvious than that of the traditional no gas-assisted mode on account of the no-slip boundary condition on the outer wall. For the gas-assisted of the outer wall, the dimple effect of the inner wall is more obvious owing to the no-slip boundary condition on the inner wall. However, the extrusion effect of the double walls gas-assisted mode is very good because of the full-slip effect on the both walls.

  6. MemoPA: Intelligent Personal Assistant Agents with a Case Memory Mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jia; Barthès, Jean-Paul

    A Personal Assistant (PA) agent is a software agent capable of helping people to handle tasks in their workplace. The paper proposes a memory mechanism for personal assistant agents in order to enhance agent intelligence while working with the user or with other agents. Inspired by a case memory model in the domain of Case-Based Reasoning (CBR), this paper endows PA agents with a case memory mechanism, which results in improved PA agents: MemoPAs. We present the memory mechanism of MemoPA in detail, and report a first implementation of the method. Finally, future work is outlined for improving the memory mechanism.

  7. Brillouin microspectroscopy of nanostructured biomaterials: photonics assisted tailoring mechanical properties

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.

    2016-03-01

    Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).

  8. Argon-Hydrogen Shielding Gas Mixtures for Activating Flux-Assisted Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Huang, Her-Yueh

    2010-11-01

    Using activating flux for gas tungsten arc welding (GTAW) to improve penetration capability is a well-established technique. Argon is an inert gas and the one most widely used as a shielding gas for GTAW. For the most austenitic stainless steels, pure argon does not provide adequate weld penetration. Argon-hydrogen mixtures give a more even heat input to the workpiece, increasing the arc voltage, which tends to increase the volume of molten material in the weld pool as well as the weld depth-to-width ratio. Great interest has been shown in the interaction between activating flux and the hydrogen concentration in an argon-based shielding gas. In this study, the weld morphology, the arc profile, the retained delta ferrite content, the angular distortion, and the microstructures were examined. The application of an activating flux combining argon and hydrogen for GTAW is important in the industry. The results of this study are presented here.

  9. Tunnel-field-effect-transistor based gas-sensor: Introducing gas detection with a quantum-mechanical transducer

    NASA Astrophysics Data System (ADS)

    Sarkar, Deblina; Gossner, Harald; Hansch, Walter; Banerjee, Kaustav

    2013-01-01

    A gas-sensor based on tunnel-field-effect-transistor (TFET) is proposed that leverages the unique current injection mechanism in the form of quantum-mechanical band-to-band tunneling to achieve substantially improved performance compared to conventional metal-oxide-semiconductor field-effect-transistors (MOSFETs) for detection of gas species under ambient conditions. While nonlocal phonon-assisted tunneling model is used for detailed device simulations, in order to provide better physical insights, analytical formula for sensitivity is derived for both metal as well as organic conducting polymer based sensing elements. Analytical derivations are also presented for capturing the effects of temperature on sensor performance. Combining the developed analytical and numerical models, intricate properties of the sensor such as gate bias dependence of sensitivity, relationship between the required work-function modulation and subthreshold swing, counter-intuitive increase in threshold voltage for MOSFETs and reduction in tunneling probability for TFETs with temperature are explained. It is shown that TFET gas-sensors can not only lead to more than 10 000× increase in sensitivity but also provide design flexibility and immunity against screening of work-function modulation through non-specific gases as well as ensure stable operation under temperature variations.

  10. [Mechanical circulatory assist using a miniaturized Archimedes screw].

    PubMed

    von Segesser, L K; Bisang, B; Leskosek, B; Turina, M

    1991-01-01

    An axial flow blood pump (Archimedes screw) for intraarterial left ventricular assist was evaluated in comparison to standard roller pump left heart bypass (LHBP) in 13 bovine experiments (bodyweight 74 +/- 15 kg). Full systemic heparinization (ACT greater than 500 s) was used for LHBP in comparison to limited systemic heparinization (ACT greater than 180 s) for axial. A standard battery of blood samples was taken before and at regular intervals throughout perfusion: (table; see text) Transarterial access and relatively limited blood trauma appear to be the main advantages of the evaluated axial flow blood pump. However, the impossibility to assess the pump flow may be a major problem for the management of the failing left ventricle.

  11. Environment assisted degradation mechanisms in advanced light metals

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Stoner, G. E.; Swanson, R. E.

    1989-01-01

    A multifaceted research program on the performance of advanced light metallic alloys in aggressive aerospace environments, and associated environmental failure mechanisms was initiated. The general goal is to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability.

  12. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

    2006-01-01

    This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and newly proposed

  13. Gas-evaporation in low-gravity field (cogelation mechanism of metal vapors) (M-14)

    NASA Technical Reports Server (NTRS)

    Wada, N.

    1993-01-01

    When metal and alloy compounds are heated and vaporized in a rare gas such as helium, argon, or xenon, the vaporized substances diffused in the rare gas are supersaturated resulting in a smoke of fine particles of the material congealing as snow or fog. The gas vaporizing method is a fine particle generation method. Though the method has a variety of applications, the material vapor flow is disturbed by gravitational convection on Earth. The inability to elucidate the fine particle generation mechanism results in an obstruction to improving the method to mass production levels. As no convection occurs in microgravity in space, the fine particle generation mechanism influenced only by diffusion can be investigated. Investigators expect that excellent particles with homogeneous diameter distribution can be obtained. Experiment data and facts will assist in improving efficiency, quality, and scale or production processes including element processes such as vaporization, diffusion, and condensation. The objective of this experiment is to obtain important information related to the mechanism of particle formation in the gas atmosphere (smoke particles) and the production of submicron powders of extremely uniform size.

  14. Gas-Assisted Annular Microsprayer for Sample Preparation for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Barnard, David; Shaikh, Tanvir R.; Meng, Xing; Mannella, Carmen A.; Yassin, Aymen; Agrawal, Rajendra; Wagenknecht, Terence; Lu, Toh-Ming

    2014-01-01

    Time-resolved cryo electron microscopy (TRCEM) has emerged as a powerful technique for transient structural characterization of isolated biomacromolecular complexes in their native state within the time scale of seconds to milliseconds. For TRCEM sample preparation, microfluidic device [9] has been demonstrated to be a promising approach to facilitate TRCEM biological sample preparation. It is capable of achieving rapidly aqueous sample mixing, controlled reaction incubation, and sample deposition on electron microscopy (EM) grids for rapid freezing. One of the critical challenges is to transfer samples to cryo-EM grids from the microfluidic device. By using microspraying method, the generated droplet size needs to be controlled to facilitate the thin ice film formation on the grid surface for efficient data collection, while not too thin to be dried out before freezing, i.e., optimized mean droplet size needs to be achieved. In this work, we developed a novel monolithic three dimensional (3D) annular gas-assisted microfluidic sprayer using 3D MEMS (MicroElectroMechanical System) fabrication techniques. The microsprayer demonstrated dense and consistent microsprays with average droplet size between 6-9 μm, which fulfilled the above droplet size requirement for TRCEM sample preparation. With droplet density of around 12-18 per grid window (window size is 58×58 μm), and the data collectible thin ice region of >50% total wetted area, we collected ~800-1000 high quality CCD micrographs in a 6-8 hour period of continuous effort. This level of output is comparable to what were routinely achieved using cryo-grids prepared by conventional blotting and manual data collection. In this case, weeks of data collection process with the previous device [9] has shortened to a day or two. And hundreds of microliter of valuable sample consumption can be reduced to only a small fraction. PMID:25530679

  15. Mechanisms of the water-gas-shift reaction by iron pentacarbonyl in the gas phase.

    PubMed

    Rozanska, Xavier; Vuilleumier, Rodolphe

    2008-10-01

    We analyzed the mechanisms of the water-gas-shift reaction catalyzed by Fe(CO) 5/OH (-) in the gas phase using DFT methods. The systematic analysis of the accessible reaction mechanisms and the consideration of the Gibbs free energies allows for different reaction routes than previously suggested. In the dominant catalytic cycle, the hydride [FeH(CO) 4]- is the important intermediate. Associative reaction mechanisms are not favorable under moderate and low pressures. At high pressure, a side reaction takes over and prevents the conversion of H 2O and CO to H 2 and CO 2 and leads to the formation of HCOOH.

  16. Sensing Mechanisms for Carbon Nanotube Based NH3 Gas Detection

    SciTech Connect

    Peng, Ning; Zhang, Qing; Chow, Chee L.; Tan, Ooi K.; Marzari, Nicola N.

    2009-03-31

    There has been an argument on carbon nanotube (CNT) based gas detectors with a field-effect transistor (FET) geometry: do the response signals result from charge transfer between adsorbed gas molecules and the CNT channel and/or from the gas species induced Schottky barrier modulation at the CNT/metal contacts? To differentiate the sensing mechanisms, we employed three CNTFET structures, i.e., (1) the entire CNT channel and CNT/electrode contacts are accessible to NH3 gas; (2) the CNT/electrode contacts are passivated with a Si3N4 thin film, leaving the CNT channel open to the gas and, in contrast, (3) the CNT channel is covered with the film, while the contacts are open to the gas. We suggest that the Schottky barrier modulation at the contacts is the dominant mechanism from room temperature to 150°C. At higher temperatures, the charge transfer process contributes to the response signals. There is a clear evidence that the adsorption of NH3 on the CNT channel is facilitated by environmental oxygen.

  17. Environment assisted degradation mechanisms in advanced light metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    The general goals of the research program are to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability.

  18. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 15: GAS-ASSISTED GLYCOL PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  19. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOEpatents

    Rao, Dandina N.

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  20. On mechanisms of choked gas flows in microchannels

    NASA Astrophysics Data System (ADS)

    Shan, Xiaodong; Wang, Moran

    2015-10-01

    Choked gas flows in microchannels have been reported before based solely on experimental measurements, but the underlining physical mechanism has yet to be clarified. In this work, we are to explore the process via numerical modeling of choked gas flows through a straight microchannel that connects two gas reservoirs. The major theoretical consideration lies in that, since the gas in microchannels may not be necessarily rarefied even at a high Knudsen number, a generalized Monte Carlo method based on the Enskog theory, GEMC, was thus used instead of direct simulation Monte Carlo (DSMC). Our results indicate that the choked gas flows in microchannels can be divided into two types: sonic choking and subsonic choking, because the sonic point does not always exist even though the gas flows appear choked, depending on the inlet-outlet pressure ratio and the length-height ratio of the channel. Even if the gas flow does not reach a sonic point at the outlet region, the effective pressure ratio (pi /po) acting on the channel becomes asymptotically changeless when the pressure ratio on the buffer regions (pi‧/po‧) is higher than a certain value. The subsonic choking may caused by the expansion wave or the strong non-equilibrium effect at the outlet.

  1. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases

  2. Microscale mechanisms of gas exchange in fruit tissue.

    PubMed

    Ho, Q T; Verboven, P; Mebatsion, H K; Verlinden, B E; Vandewalle, S; Nicolaï, B M

    2009-01-01

    * Gas-filled intercellular spaces are considered the predominant pathways for gas transport through bulky plant organs such as fruit. Here, we introduce a methodology that combines a geometrical model of the tissue microstructure with mathematical equations to describe gas exchange mechanisms involved in fruit respiration. * Pear (Pyrus communis) was chosen as a model system. The two-dimensional microstructure of cortex tissue was modelled based on light microscopy images. The transport of O(2) and CO(2) in the intercellular space, cell wall network and cytoplasm was modelled using diffusion laws, irreversible thermodynamics and enzyme kinetics. * In silico analysis showed that O(2) transport mainly occurred through intercellular spaces and less through the intracellular liquid, while CO(2) was transported at equal rates in both phases. Simulations indicated that biological variation of the apparent diffusivity appears to be caused by the random distribution of cells and intercellular spaces in tissue. Temperature does not affect modelled gas exchange properties; it rather acts on the respiration metabolism. * This modelling approach provides, for the first time, detailed information about gas exchange mechanisms at the microscopic scale in bulky plant organs, such as fruit, and can be used to study conditions of anoxia.

  3. Spectrum of temperature pulsations of the melt in gas-assisted cutting with fiber laser

    NASA Astrophysics Data System (ADS)

    Dubrov, Alexander V.; Zavalov, Yury N.; Dubrov, Vladimir D.; Grezev, Anatoly N.; Grezev, Nikolay V.; Makarova, Elena S.; Dubrovin, Nickolay G.

    2012-09-01

    Measurements of the temperature behavior in the zone of action of the laser-radiation on the molten metal have been performed using multichannel pyrometer. Measurements were carried out for test cutting of a 3-mm mild-steel plate with several values of cutting speed and pressure of assist gas (oxygen), using an 1800-watt Ytterbium fiber laser. It is shown that fluctuations of temperature are related to local melt's surface deformations due to unequal radiation absorption; thus the noise spectrum of temperature fluctuations reflects turbulent surface deformation caused by gas jet and capillary waves. The maximum density of turbulent energy dissipation ε depends on cutting conditions: its value rises with increasing cutting velocity and oxygen pressure in a described range of parameters. The maximum of ε is localized near depth of (1.2…1.5) mm along the cutting front. We can distinguish the specific radiation pulsation spectrum of laser cutting from other processes of radiation affection to the sample, including unwanted degrading of the quality of technological operations. The spectrum of capillary waves on the melt's surface is formed under the effect of assisted gas jet and has a function of ω-3, ω is cycle frequency. The results of this investigation can be useful for the development of monitoring and quality-control systems for the laser-cutting process.

  4. Ruptured subcapsular liver haematoma following mechanically-assisted cardiopulmonary resuscitation.

    PubMed

    Joseph, John R; Freundlich, Robert Edward; Abir, Mahshid

    2016-02-02

    A 64-year-old man with a history of ascending aortic surgery and pulmonary embolus presented with shortness of breath. He rapidly decompensated, prompting intubation, after which he lost pulses. Manual resuscitation was initiated immediately, with subsequent use of a LUCAS-2 mechanical compression device. The patient was given bolus thrombolytic therapy and regained pulses after 7 min of CPR. Compressions were reinitiated with the LUCAS-2 twice more during resuscitation over the subsequent hour for brief episodes of PEA. After confirmation of massive pulmonary embolism on CT, the patient underwent interventional radiology-guided ultrasonic catheter placement with local thrombolytic therapy and experienced immediate improvement in oxygenation. He later developed abdominal compartment syndrome, despite cessation of thrombolytic and anticoagulation therapy. Bedside exploratory abdominal laparotomy revealed a ruptured subcapsular haematoma of the liver. The patient's haemodynamics improved following surgery and he was extubated 11 days postarrest with intact neurological function.

  5. Mechanically assisted 3D ultrasound guided prostate biopsy system.

    PubMed

    Bax, Jeffrey; Cool, Derek; Gardi, Lori; Knight, Kerry; Smith, David; Montreuil, Jacques; Sherebrin, Shi; Romagnoli, Cesare; Fenster, Aaron

    2008-12-01

    There are currently limitations associated with the prostate biopsy procedure, which is the most commonly used method for a definitive diagnosis of prostate cancer. With the use of two-dimensional (2D) transrectal ultrasound (TRUS) for needle-guidance in this procedure, the physician has restricted anatomical reference points for guiding the needle to target sites. Further, any motion of the physician's hand during the procedure may cause the prostate to move or deform to a prohibitive extent. These variations make it difficult to establish a consistent reference frame for guiding a needle. We have developed a 3D navigation system for prostate biopsy, which addresses these shortcomings. This system is composed of a 3D US imaging subsystem and a passive mechanical arm to minimize prostate motion. To validate our prototype, a series of experiments were performed on prostate phantoms. The 3D scan of the string phantom produced minimal geometric distortions, and the geometric error of the 3D imaging subsystem was 0.37 mm. The accuracy of 3D prostate segmentation was determined by comparing the known volume in a certified phantom to a reconstructed volume generated by our system and was shown to estimate the volume with less then 5% error. Biopsy needle guidance accuracy tests in agar prostate phantoms showed that the mean error was 2.1 mm and the 3D location of the biopsy core was recorded with a mean error of 1.8 mm. In this paper, we describe the mechanical design and validation of the prototype system using an in vitro prostate phantom. Preliminary results from an ongoing clinical trial show that prostate motion is small with an in-plane displacement of less than 1 mm during the biopsy procedure.

  6. Solar-assisted gas-energy water-heating feasibility for apartments

    NASA Technical Reports Server (NTRS)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  7. Cryotrapping assisted mass spectrometry for the analysis of complex gas mixtures

    SciTech Connect

    Ferreira, Jose A.; Tabares, Francisco L.

    2007-03-15

    A simple method is described for the unambiguous identification of the individual components in a gas mixture showing strong overlapping of their mass spectrometric cracking patterns. The method, herein referred to as cryotrapping assisted mass spectrometry, takes advantage of the different vapor pressure values of the individual components at low temperature (78 K for liquid nitrogen traps), and thus of the different depletion efficiencies and outgassing patterns during the fast cooling and slow warming up of the trap, respectively. Examples of the use of this technique for gas mixtures with application to plasma enhanced chemical vapor deposition of carbon and carbon-nitrogen hard films are shown. Detection of traces of specific C{sub 3} hydrocarbons (<50 ppm of initial methane) in methane/hydrogen plasmas and the possible trapping of thermally unstable C-N compounds in N{sub 2} containing deposition plasmas are addressed as representative examples of specific applications of the technique.

  8. Airway secretion clearance by mechanical exsufflation for post-poliomyelitis ventilator-assisted individuals.

    PubMed

    Bach, J R; Smith, W H; Michaels, J; Saporito, L; Alba, A S; Dayal, R; Pan, J

    1993-02-01

    Pulmonary complications from impaired airway secretion clearance mechanisms are major causes of morbidity and mortality for post-poliomyelitis individuals. The purpose of this study was to review the long-term use of manually assisted coughing and mechanical insufflation-exsufflation (MI-E) by post-poliomyelitis ventilator-assisted individuals (PVAIs) and to compare the peak cough expiratory flows (PCEF) created during unassisted and assisted coughing. Twenty-four PVAIs who have used noninvasive methods of ventilatory support for an average of 27 years, relied on methods of manually assisted coughing and/or MI-E without complications during intercurrent respiratory tract infections (RTIs). Nine of the 24 individuals were studied for PCEF. They had a mean forced vital capacity (FVC) of 0.54 +/- 0.47L and a mean maximum insufflation capacity achieved by air stacking of ventilator insufflations and glossopharyngeal breathing of 1.7L. The PCEF were as follows: unassisted, 1.78 +/- 1.16L/sec; following a maximum assisted insufflation, 3.75 +/- 0.73L/sec; with manual assistance by abdominal compression following a maximum assisted insufflation, 4.64 +/- 1.42L/sec; and with MI-E, 6.97 +/- 0.89L/sec. We conclude that manually assisted coughing and MI-E are effective and safe methods of airway secretion clearance for PVAIs with impaired expiratory muscle function who would otherwise be managed by endotracheal suctioning. Severely decreased maximum insufflation capacity but not vital capacity indicate need for a tracheostomy.

  9. Research on the mechanics of underwater supersonic gas jets

    NASA Astrophysics Data System (ADS)

    Shi, Honghui; Wang, Boyi; Dai, Zhenqing

    2010-03-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.

  10. Pre-breakdown evaluation of gas discharge mechanisms in microgaps

    SciTech Connect

    Semnani, Abbas; Peroulis, Dimitrios; Venkattraman, Ayyaswamy; Alexeenko, Alina A.

    2013-04-29

    The individual contributions of various gas discharge mechanisms to total pre-breakdown current in microgaps are quantified numerically. The variation of contributions of field emission and secondary electron emission with increasing electric field shows contrasting behavior even for a given gap size. The total current near breakdown decreases rapidly with gap size indicating that microscale discharges operate in a high-current, low-voltage regime. This study provides the first such analysis of breakdown mechanisms and aids in the formulation of physics-based theories for microscale breakdown.

  11. The application of an assisting gas plasma generator for low- temperature magnetron sputtering of Ti-C-Mo-S antifriction coatings on titanium alloys

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Savostikov, V. M.; Tabachenko, A. N.; Dudarev, E. F.; Melnikova, E. A.; Shulepov, I. A.

    2015-11-01

    The positive effect of assisting influence of high-density gas plasma formed by an independent plasma generator PINK on mechanical and tribological characteristics of Ti-C- Mo-S magnetron coating on titanium alloys at lowered to 350°C temperature of coating regardless of alloy structural condition was revealed by methods of calotest, nanorecognition, scratch testing and frictional material tests. The coating formed by means of a combined magnetron plasma method reduces titanium alloys friction coefficient in multiple times and increases wear resistance by two orders of magnitude. At the same time the mechanical properties of ultra-fine-grained titanium alloys obtained by nanostructuring do not deteriorate.

  12. Mechanical Design Technology--Modified. (Computer Assisted Drafting, Computer Aided Design). Curriculum Grant 84/85.

    ERIC Educational Resources Information Center

    Schoolcraft Coll., Livonia, MI.

    This document is a curriculum guide for a program in mechanical design technology (computer-assisted drafting and design developed at Schoolcraft College, Livonia, Michigan). The program helps students to acquire the skills of drafters and to interact with electronic equipment, with the option of becoming efficient in the computer-aided…

  13. Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study

    SciTech Connect

    Christopher Orme

    2012-08-01

    Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

  14. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  15. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    PubMed

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  16. Power consumption in gas-inducing-type mechanically agitated contactors

    SciTech Connect

    Saravanan, K.; Mundale, V.D.; Patwardhan, A.W.; Joshi, J.B.

    1996-05-01

    Power consumption was measured in 0.57, 1.0, and 1.5 m i.d. gas inducing type of mechanically agitated contactors (GIMAC) using single and multiple impellers. The ratio of impeller diameter to vessel diameter was varied in the range of 0.13 < D/T < 0.59. The effect of liquid submergence from the top and impeller clearance from the vessel bottom was investigated in detail. In the case of multiple impeller systems, six different designs were investigated. The designs included pitched blade downflow turbine (PBTD), pitched blade upflow turbine (PBTU), downflow propeller (PD), upflow propeller (PU), straight bladed turbine (SBT) and disc turbine (DT). The effect of interimpeller clearance was studied for the multiple impeller system. The effect of impeller speed was studied in the range of 0.13 < N < 13.5 rotations/s. A mathematical model has been developed for power consumption before and after the onset of gas induction.

  17. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Rack, Philip D.

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.

  18. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Rack, Philip D.

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some lossmore » of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  19. Synthesis of Diacid-Assisted Indium Oxide Nanoparticles and Its CO Gas Sensing Activity.

    PubMed

    Lee, Soo-Keun; Chang, Daeic; Yang, Seung Dae; Kim, Sang Wook

    2015-12-01

    Indium oxide (In2O3) is an extreme wide band-gap oxide material with unique electronic and optical properties that is used widely in solar cells, gas sensors and optoelectronic devices. In this study, two types of In2O3 nanostructures were prepared by a simple hydrothermal method using succinic acid (SA) or malonic acid (MA) as the assistant agents. The products were characterized by powder X-ray diffractions and scanning electron microscopy (SEM). SEM of the products showed that the In2O3 nanostructures prepared in the presence of SA have a typical cubic morphology with a length and height of -30 nm, whereas the In2O3 nanostructures synthesized in the presence of MA has an atypical rock shape, length and height of 30 -300 nm. Gas sensitivity measurements suggested that both In2O3 sensors (operated at 350 degrees C) have a good response to carbon monoxide (CO) compared to the commercial In2O3 nanoparticles. The SA-In2O3 sensor showed a shorter response time and stronger response than the MA-In2O3 sensor, suggesting that the improved gas sensing performance can be attributed mainly to the surface area. PMID:26682433

  20. Synthesis of Diacid-Assisted Indium Oxide Nanoparticles and Its CO Gas Sensing Activity.

    PubMed

    Lee, Soo-Keun; Chang, Daeic; Yang, Seung Dae; Kim, Sang Wook

    2015-12-01

    Indium oxide (In2O3) is an extreme wide band-gap oxide material with unique electronic and optical properties that is used widely in solar cells, gas sensors and optoelectronic devices. In this study, two types of In2O3 nanostructures were prepared by a simple hydrothermal method using succinic acid (SA) or malonic acid (MA) as the assistant agents. The products were characterized by powder X-ray diffractions and scanning electron microscopy (SEM). SEM of the products showed that the In2O3 nanostructures prepared in the presence of SA have a typical cubic morphology with a length and height of -30 nm, whereas the In2O3 nanostructures synthesized in the presence of MA has an atypical rock shape, length and height of 30 -300 nm. Gas sensitivity measurements suggested that both In2O3 sensors (operated at 350 degrees C) have a good response to carbon monoxide (CO) compared to the commercial In2O3 nanoparticles. The SA-In2O3 sensor showed a shorter response time and stronger response than the MA-In2O3 sensor, suggesting that the improved gas sensing performance can be attributed mainly to the surface area.

  1. Inert Gas Enhanced Laser-Assisted Purification of Platinum Electron-Beam-Induced Deposits.

    PubMed

    Stanford, Michael G; Lewis, Brett B; Noh, Joo Hyon; Fowlkes, Jason D; Rack, Philip D

    2015-09-01

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar-H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. A sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.

  2. Fracture mechanics and surface chemistry investigations of environment-assisted crack growth

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.; Chou, Y. T.

    1984-01-01

    It is pointed out that environment-assisted subcritical crack growth in high-strength steels and other high-strength alloys (particularly in hydrogen and in hydrogenous environments) is an important technological problem of long standing. This problem is directly related to issues of structural integrity, durability, and reliability. The terms 'hydrogen embrittlement' and 'stress corrosion cracking' have been employed to describe the considered phenomenon. This paper provides a summary of contributions made during the past ten years toward the understanding of environmentally assisted crack growth. The processes involved in crack growth are examined, and details regarding crack growth and chemical reactions are discussed, taking into account crack growth in steels exposed to water/water vapor, the effect of hydrogen, reactions involving hydrogen sulfide, and aspects of fracture surface morphology and composition. Attention is also given to the modeling of crack growth response, crack growth in gas mixtures, and the interaction of solute atoms with the crack-tip stress field.

  3. Review of coaxial flow gas core nuclear rocket fluid mechanics

    NASA Technical Reports Server (NTRS)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  4. Theoretical study of the neutral hydrolysis of hydrogen isocyanate in aqueous solution via assisted-concerted mechanisms.

    PubMed

    Tolosa Arroyo, S; Hidalgo Garcia, A; Sansón Martín, J A

    2009-03-01

    A procedure is described for the theoretical study of chemical reactions in solution by means of molecular dynamics simulation, with solute-solvent interaction potentials derived from ab initio quantum calculations. We apply the procedure to the case of neutral hydrogen isocyanate hydrolysis, HNCO + 2 H(2)O --> H(2)NCOOH + H(2)O, in aqueous solution, via the assisted-concerted mechanisms and the two-water model. We used the solvent as a reaction coordinate and the free-energy curves for the calculation of the properties related to the reaction mechanisms, with a particular focus on the reaction and activation energies. The results showed that the mechanism with two water molecules attacking the C=N bond is preferred to the mechanism with three waters forming a ring of eight members. In addition, the aqueous medium significantly reduces the activation barrier (DeltaG(double dagger) = 13.9 kcal/mol) and makes the process more exothermic (DeltaG = -11.1 kcal/mol) relative to the gas-phase reaction, increasing the rate constant of the process to k = 4.25 x 10(5) s(-1). PMID:19209882

  5. Vortical flow characteristics of mechanical cavopulmonary assistance: Pre- and post-swirl dynamics.

    PubMed

    Throckmorton, Amy L; Chopski, Steven G; Birewar, Shravani N; Joa, Terence S; Huang, Pablo; Whitehead, Kevin K; Stevens, Randy M; Kresh, J Yasha

    2016-09-14

    Surgical optimization of the cavopulmonary connection and pharmacological therapy for dysfunctional Fontan physiology continue to advance, but these treatment approaches only slow the progression of decline to end-stage heart failure. The development of a mechanical cavopulmonary assist device will provide a viable therapeutic option in the bridging of patients to transplant or to stabilization. We hypothesize that rotational blood flow, delivered by an implantable axial flow blood pump, could effectively assist the venous circulation in Fontan patients by mimicking vortical blood flow patterns in the cardiovascular system. This study investigated seven new models of mechanical cavopulmonary assistance (single and dual-pump assist), created combinations of pump designs that deliver counter rotating vortical flow conditions, and analyzed pump performance, velocity streamlines, swirling strength, and energy augmentation in the cavopulmonary circuit for each support scenario. The model having an axial clockwise-oriented impeller in the inferior vena cava and an axial counterclockwise-oriented impeller rotating in the superior vena cava outperformed all of the support scenarios by enhancing the energy of the cavopulmonary circulation an average of 10.3% over the entire flow range and a maximum of 27.4% at %the higher flow rates. This research will guide the development of axial flow blood pumps for Fontan patients and demonstrated the high probability of %a cardiovascular benefit using counter rotating pumps in a dual support scenario, but found that this is dependent upon the patient-specific cavopulmonary anatomy. PMID:27061388

  6. Effect of He-Ar ratio of side assisting gas on plasma 3D formation during CO2 laser welding

    NASA Astrophysics Data System (ADS)

    Sun, Dawei; Cai, Yan; Wang, Yonggui; Wu, Yue; Wu, Yixiong

    2014-05-01

    Side assisting gas plays a very important role in the laser-induced plasma suppression and the gas mixture ratio directly influences the formation and behavior of the laser-induced plasma during the laser welding process. In this paper, a photography system was set up with three synchronous CCD cameras to record the plasma plume during CO2 laser welding under different He-Ar ratios for helium-argon mixed side assisting gas. Three-dimensional reconstruction of the laser-induced plasma based on the computed tomography (CT) technology was achieved from the images shot by the cameras. Four characteristics, including the volume, uniformity, parameter PA associated with plasma absorption and parameter PR associated with laser refraction, were extracted from the 3D plasma and analyzed to investigate the effect on the plasma plume morphology as well as the laser energy attenuation. The results indicated that the He-Ar ratio of the side assisting gas has a considerable influence on some characteristics while some other characteristics are not sensitive to the mixture ratio. In addition, the effect of He-Ar ratio on the laser-induced plasma varies a lot with the flow rate of the side assisting gas.

  7. Surface Defects Control for ZnO Nanorods Synthesized Through a Gas-Assisted Hydrothermal Process

    NASA Astrophysics Data System (ADS)

    Zhao, Limin; Shu, Changhua; Jia, Zhengfeng; Wang, Changzheng

    2016-08-01

    Oxygen vacancies in crystal have an important impact on the electronic properties of zinc oxide (ZnO). In this paper, ZnO nanorods with rich oxygen vacancies were prepared through a novel gas-assisted hydrothermal growth process. X-ray diffraction data showed that single-phase ZnO with the wurtzite crystal structure was obtained and the crystallite size decreased as the reaction atmosphere pressure increased. The oxygen vacancies of ZnO were confirmed using x-ray photoelectron spectroscopy and photoluminescence spectroscopy. The results showed that the concentration of oxygen vacancies could be regulated by both the atmosphere pressure and the atmosphere properties. The oxygen vacancies in ZnO samples were reduced when the pressure increase in the hydrogen reaction environment (reducing atmosphere) and the oxygen vacancies in ZnO samples were increased when the pressure increased in the oxygen reaction environment (oxidizing atmosphere).

  8. Kinetics and mechanism of the mercury(II)-assisted hydrolysis of methyl iodide.

    PubMed

    Celo, Valbona; Scott, Susannah L

    2005-04-01

    The kinetics and mechanism of the reaction of aqueous Hg(II) with methyl iodide have been investigated. The overall reaction is best described as Hg(II)-assisted hydrolysis, resulting in quantitative formation of methanol and, in the presence of excess methyl iodide, ultimately, HgI2 via the intermediate HgI+. The kinetics are biexponential when methyl iodide is in excess. At 25 degrees C, the acceleration provided by Hg2+ is 7.5 times greater than that caused by HgI+, while assistance of hydrolysis was not observed for HgI2. Thus, the reactions are not catalytic in Hg(II). The kinetics are consistent with an SN2-M+ mechanism involving electrophilic attack at iodide. As expected, methylation of mercury is not a reaction pathway; traces of methylmercury(II) are artifacts of the extraction/preconcentration procedure used for methylmercury analysis.

  9. Mechanism of gas sensing in carbon nanotube field effect transistors

    NASA Astrophysics Data System (ADS)

    Dube, Isha

    Gas sensors based on carbon nanotubes in the field effect transistor configuration have exhibited impressive sensitivities compared to the existing technologies. However, the lack of an understanding of the gas sensing mechanism in these carbon nanotube field effect transistors (CNTFETs) has impeded setting-up a calibration standard and customization of these nano-sensors for specified gas sensing application. Calibration requires identifying fundamental transistor parameters and establishing how they vary in the presence of a gas and influence the overall sensing behavior. This work focuses on modeling the sensing behavior of a CNTFET in the presence of oxidizing (NO 2) and reducing (NH3) gases and determining how each of the transistor parameters, namely: the Schottky barrier height, Schottky barrier width and doping level of the nanotube are affected by the presence of these gases. Earlier experiments have shown that the carbon nanotube-metal interface is responsible for the observed change in the CNTFET response. The interface consists of the metal contact and the depletion region in the carbon nanotube. A change in the metal work function will change the Schottky barrier height, whereas doping of the depletion region will affect the Schottky barrier width and the doping level of the carbon nanotube. A theoretical model containing these parameters was systematically fitted to the experimental transfer characteristics for different concentrations of NO2 and NH3. A direct correlation between the measured changes in the CNTFET saturated conductance and the Schottky barrier height was found. These changes are directly related to the changes in the metal work function of the electrodes that I determined experimentally, independently, with a Kelvin probe system. The overall change in the CNTFET characteristics were explained and quantified by also including changes due to doping from molecules adsorbed at the carbon nanotube-metal interface through the parameters

  10. Thermo-mechanical modeling of the electrically-assisted manufacturing (EAM) technique during open die forging

    NASA Astrophysics Data System (ADS)

    Salandro, Wesley A.

    This thesis contains all of the steps which allow the Electrically-Assisted Manufacturing (EAM) technique to be experimentally explored and analytically modeled for an electrically-assisted forging operation. Chapter 1 includes the problem statement, proposed solution, and literature reviews on EAM. Chapter 2 describes a thorough background on the EAM technique, highlights prior EAM research, and explains the research approach taken for this thesis. The coupled thermo-mechanical modeling strategy, along with the introduction of the Electroplastic Effect Coefficient (EEC) is provided in Chapter 3. Chapter 4 explains the two different approaches to determine the EEC profiles when modeling a particular metal. The simplified EAF mechanical model for electrically-assisted forging is presented in Chapter 5. Also in this chapter, the same modeling methodology (i.e. thermo-mechanical, EEC, etc.) is used to predict loads for an electrically-assisted bending (EAB) process. The following chapters explore how different material- and process-based parameters affect the EAF technique. Chapter 6 examines how different workpiece contact areas affect EAF effectiveness, along with an exploration of how well different metal forming lubricants perform with EAF. Chapter 7 explores if there is a difference in the thermal or mechanical profiles of specimens undergoing EAF forging tests with different average grain sizes. Chapter 8 examines the same effects as the previous chapter on specimens with varying levels of prior cold work. The materials- and process-based simplifications and sensitivities of the proposed modeling strategy are outlined in Chapter 9. Chapters 10-14 include the science behind the electroplastic effect, conclusions, future work, broader impacts, and intellectual merit, respectively. The overall intention of this thesis is to show the candidate's ability to take an idea for a new manufacturing process, prove that it works, and then understand and model the process

  11. Compelling Evidence for Lucky Survivor and Gas Phase Protonation: The Unified MALDI Analyte Protonation Mechanism

    NASA Astrophysics Data System (ADS)

    Jaskolla, Thorsten W.; Karas, Michael

    2011-06-01

    This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.

  12. Dual gas-bubble-assisted solvothermal synthesis of magnetite with tunable size and structure.

    PubMed

    He, Quanguo; Wu, Zhaohui; Huang, Chunyan

    2011-10-01

    We present a facile solvothermal approach by employing ammonium bicarbonate (NH4HCO3) and ammonium acetate (NH4Ac) as dual gas-bubble-generating structure-directing agent to produce of magnetite (Fe3O4) particles with tunable size ranging from 90 nm to 400 nm and controllable structures including porous and hollow construction. The size, morphology and structure of the final products are achieved by simple adjustment of the molar ratio of NH4HCO3 and NH4Ac, ammonium ion concentration and the reaction time. The results reveal that the molar ratio of NH4HCO3 and NH4Ac strongly influenced the morphology and size of magnetite particles, even could decide the kind of architecture including solid, hollow and porous to form. Particularly, ammonium ion molar concentration plays a significant role in controlling size and magnetic property for magnetite particles. Simultaneously, prolonging the reaction time is beneficial to the magnetite particles growth and inner space escalation with altered reaction time at a certain concentration of ammonium and molar ratio of NH4HCO3 and NH4Ac. Such a design conception of dual gas-bubble-assistance used here is promisingly positive and significant for hollow magnetic particles fabrication and may be extended to other nano-scale hollow construction. PMID:22400226

  13. Dual gas-bubble-assisted solvothermal synthesis of magnetite with tunable size and structure.

    PubMed

    He, Quanguo; Wu, Zhaohui; Huang, Chunyan

    2011-10-01

    We present a facile solvothermal approach by employing ammonium bicarbonate (NH4HCO3) and ammonium acetate (NH4Ac) as dual gas-bubble-generating structure-directing agent to produce of magnetite (Fe3O4) particles with tunable size ranging from 90 nm to 400 nm and controllable structures including porous and hollow construction. The size, morphology and structure of the final products are achieved by simple adjustment of the molar ratio of NH4HCO3 and NH4Ac, ammonium ion concentration and the reaction time. The results reveal that the molar ratio of NH4HCO3 and NH4Ac strongly influenced the morphology and size of magnetite particles, even could decide the kind of architecture including solid, hollow and porous to form. Particularly, ammonium ion molar concentration plays a significant role in controlling size and magnetic property for magnetite particles. Simultaneously, prolonging the reaction time is beneficial to the magnetite particles growth and inner space escalation with altered reaction time at a certain concentration of ammonium and molar ratio of NH4HCO3 and NH4Ac. Such a design conception of dual gas-bubble-assistance used here is promisingly positive and significant for hollow magnetic particles fabrication and may be extended to other nano-scale hollow construction.

  14. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  15. Schottky Barrier Catalysis Mechanism in Metal-Assisted Chemical Etching of Silicon.

    PubMed

    Lai, Ruby A; Hymel, Thomas M; Narasimhan, Vijay K; Cui, Yi

    2016-04-13

    Metal-assisted chemical etching (MACE) is a versatile anisotropic etch for silicon although its mechanism is not well understood. Here we propose that the Schottky junction formed between metal and silicon plays an essential role on the distribution of holes in silicon injected from hydrogen peroxide. The proposed mechanism can be used to explain the dependence of the etching kinetics on the doping level, doping type, crystallographic surface direction, and etchant solution composition. We used the doping dependence of the reaction to fabricate a novel etch stop for the reaction. PMID:27018712

  16. Mechanical circulatory assistance for the treatment of complications of coronary artery disease.

    PubMed

    Lamberti, J J; Anagnostopoulos, C E; Al-Sadir, J; Gupta, D S; Lin, C Y; Replogle, R L; Resnekov, L; Skinner, D B

    1976-02-01

    Surgery has become an accepted method of treatment for coronary artery disease and its complications. Revascularization results in significant improvement in symptoms for patients with angina pectoris. Occasionally, patients requiring surgery for angina pectoris will sustain reversible ischemic damage during operation; such patients can be successfully weaned from cardiopulmonary bypass with full recovery when intra-aortic balloon counterpulsation is used. Arrhythmias associated with ischemic damage to the myocardium also can be controlled when IABCP is used for physiologic assistance. Patients in cardiogenicshock of pulmonary edema after acute myocardial infarction have an ominous prognosis. When decompensation occurs, IABCP may be used to stabilize the patient and to allow study and corrective surgery if possible. The prognosis is better for patients with ventricular septal defect, although selected patients without a mechanical defect of the myocardium can be salvaged if the response to IABCP is favorable. Counterpulsation has also been shown to be useful in achieving pulsatile cardiopulmonary bypass and in assisting high-risk patients through operation. External pressure circulatory assist (EPCA) is less effective than IABCP in assisting the failing myocardium; however, the external device is noninvasive and may be a useful adjunct in situations where IABCP is not feasible.

  17. Mechanism of gas pipeline failures on Balboa Boulevard during the 1994 Northridge earthquake

    SciTech Connect

    Nishio, Nobuaki

    1995-12-31

    A possible mechanism of gas pipeline failures on Balboa Boulevard during the 1994 Northridge earthquake is proposed. This mechanism is the one that has been adopted by the Japan Gas Association in the Recommended Practice for the Earthquake-Resistant Design of Gas Pipelines. The possible mode of ground displacement that might have caused the above pipeline failures is also discussed.

  18. Do tropical wetland plants possess convective gas flow mechanisms?

    PubMed

    Konnerup, Dennis; Sorrell, Brian K; Brix, Hans

    2011-04-01

    • Internal pressurization and convective gas flow, which can aerate wetland plants more efficiently than diffusion, are common in temperate species. Here, we present the first survey of convective flow in a range of tropical plants. • The occurrence of pressurization and convective flow was determined in 20 common wetland plants from the Mekong Delta in Vietnam. The diel variation in pressurization in culms and the convective flow and gas composition from stubbles were examined for Eleocharis dulcis, Phragmites vallatoria and Hymenachne acutigluma, and related to light, humidity and air temperature. • Nine of the 20 species studied were able to build up a static pressure of > 50 Pa, and eight species had convective flow rates higher than 1 ml min(-1). There was a clear diel variation, with higher pressures and flows during the day than during the night, when pressures and flows were close to zero. • It is concluded that convective flow through shoots and rhizomes is a common mechanism for below-ground aeration of tropical wetland plants and that plants with convective flow might have a competitive advantage for growth in deep water.

  19. The mechanism of coal gas desulfurization by iron oxide sorbents.

    PubMed

    Lin, Yi-Hsing; Chen, Yen-Chiao; Chu, Hsin

    2015-02-01

    This study aims to understand the roles of hydrogen and carbon monoxide during the desulfurization process in a coal gasification system that H2S of the syngas was removed by Fe2O3/SiO2 sorbents. The Fe2O3/SiO2 sorbents were prepared by incipient wetness impregnation. Through the breakthrough experiments and Fourier transform infrared spectroscopy analyses, the overall desulfurization mechanism of the Fe2O3/SiO2 sorbents was proposed in this study. The results show that the major reaction route is that Fe2O3 reacts with H2S to form FeS, and the existence of CO and H2 in the simulated gas significantly affects equilibrium concentrations of H2S and COS. The formation of COS occurs when the feeding gas is blended with CO and H2S, or CO2 and H2S. The pathways in the formation of products from the desulfurization process by the reaction of Fe2O3 with H2S have been successfully established. PMID:25434261

  20. Do tropical wetland plants possess convective gas flow mechanisms?

    PubMed

    Konnerup, Dennis; Sorrell, Brian K; Brix, Hans

    2011-04-01

    • Internal pressurization and convective gas flow, which can aerate wetland plants more efficiently than diffusion, are common in temperate species. Here, we present the first survey of convective flow in a range of tropical plants. • The occurrence of pressurization and convective flow was determined in 20 common wetland plants from the Mekong Delta in Vietnam. The diel variation in pressurization in culms and the convective flow and gas composition from stubbles were examined for Eleocharis dulcis, Phragmites vallatoria and Hymenachne acutigluma, and related to light, humidity and air temperature. • Nine of the 20 species studied were able to build up a static pressure of > 50 Pa, and eight species had convective flow rates higher than 1 ml min(-1). There was a clear diel variation, with higher pressures and flows during the day than during the night, when pressures and flows were close to zero. • It is concluded that convective flow through shoots and rhizomes is a common mechanism for below-ground aeration of tropical wetland plants and that plants with convective flow might have a competitive advantage for growth in deep water. PMID:21175639

  1. Mechanical behavior of thermal barrier coatings for gas turbine blades

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.; Phucharoen, W.; Chang, G. C.

    1984-01-01

    Plasma-sprayed thermal barrier coatings (TBCs) will enable turbine components to operate at higher temperatures and lower cooling gas flow rates; thereby improving their efficiency. Future developments are limited by precise knowledge of the material properties and failure mechanisms of the coating system. Details of this nature are needed for realistic modeling of the coating system which will, in turn, promote advancements in coating technology. Complementary experiments and analytical modeling which were undertaken in order to define and measure the important failure processes for plasma-sprayed coatings are presented. The experimental portion includes two different tests which were developed to measure coating properties. These are termed tensile adhesion and acoustic emission tests. The analytical modeling section details a finite element method which was used to calculate the stress distribution in the coating system. Some preliminary results are presented.

  2. THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS

    SciTech Connect

    Dodson-Robinson, Sarah E.; Veras, Dimitri; Ford, Eric B.; Beichman, C. A.

    2009-12-10

    The recent discoveries of massive planets on ultra-wide orbits of HR 8799 and Fomalhaut present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms-core accretion (with or without migration), scattering from the inner disk, or gravitational instability-could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star, and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes a approx> 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for the planets' dimming with time. Any age trend would indicate that planets on wide orbits are transient relics of scattering from the inner disk. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass (approx10 M {sub Jup}) in their disks.

  3. Improvement of mechanical properties by additive assisted laser sintering of PEEK

    SciTech Connect

    Kroh, M. Bonten, C.; Eyerer, P.

    2014-05-15

    The additive assisted laser sintering was recently developed at IKT: A carbon black (CB) additive is used to adjust the polymer's laser absorption behavior with the aim to improve the interconnection of sintered powder layers. In this paper a parameter study, Polyetheretherketone (PEEK) samples were prepared with different contents of carbon black and were laser sintered with varying thermal treatment. The samples were mechanically tested and investigated by optical light and transmission electron microscopy. An influence on the morphology at the border areas of particles and intersections of laser sintered layers was found. Depending on the viscosity of the raw material and CB content, different shapes of lamellae were observed. These (trans-) crystalline or polymorph structures, respectively, influence the thermal and mechanical behavior of the virgin PEEK. Moreover, the thermal treatment during the sintering process caused an improvement of mechanical properties like tensile strength and elongation at break.

  4. Improvement of mechanical properties by additive assisted laser sintering of PEEK

    NASA Astrophysics Data System (ADS)

    Kroh, M.; Bonten, C.; Eyerer, P.

    2014-05-01

    The additive assisted laser sintering was recently developed at IKT: A carbon black (CB) additive is used to adjust the polymer's laser absorption behavior with the aim to improve the interconnection of sintered powder layers. In this paper a parameter study, Polyetheretherketone (PEEK) samples were prepared with different contents of carbon black and were laser sintered with varying thermal treatment. The samples were mechanically tested and investigated by optical light and transmission electron microscopy. An influence on the morphology at the border areas of particles and intersections of laser sintered layers was found. Depending on the viscosity of the raw material and CB content, different shapes of lamellae were observed. These (trans-) crystalline or polymorph structures, respectively, influence the thermal and mechanical behavior of the virgin PEEK. Moreover, the thermal treatment during the sintering process caused an improvement of mechanical properties like tensile strength and elongation at break.

  5. The role of silane gas flow rate on PECVD-assisted fabrication of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Hamidinezhad, Habib; Ashkarran, Ali Akbar; Abdul-Malek, Zulkurnain

    2016-03-01

    Silicon (Si) core-shell nanowires (NWs) were successfully prepared by very high frequency plasma-enhanced chemical vapor deposition technique, and the effect of silane (SiH4) gas flow rates on physicochemical properties of silicon NWs was investigated. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize SiNWs. Structural properties and morphology of NWs were studied as a function of SiH4 gas flow rate. Microscopic analysis revealed the formation of SiNWs with average tip and stem diameters ranging from 18 to 30 and 21 to 67 nm, respectively. Furthermore, the average length of Si NWs calculated based on the FESEM images was about 300-1800 nm. We have found that the growth of SiNWs increased with increasing in SiH4 gas flow rate. XRD, Raman spectra in addition to high-resolution TEM, verified the formation of crystalline SiNWs. A possible growth mechanism was suggested based on our observations.

  6. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary-disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  7. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary–disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  8. An enzyme-assisted nanoparticle crosslinking approach to enhance the mechanical strength of peptide-based supramolecular hydrogels.

    PubMed

    Li, Ying; Ding, Yin; Qin, Meng; Cao, Yi; Wang, Wei

    2013-10-01

    In this work we reported an enzyme-assisted nanoparticle crosslinking (EANC) strategy to enhance the mechanical stability of peptide-based supramolecular hydrogels by more than 3000 times. PMID:23948779

  9. Quantitative determination of oil content in small quantity of oilseed rape by ultrasound-assisted extraction combined with gas chromatography.

    PubMed

    Wei, Fang; Gao, Gui-Zhen; Wang, Xin-Fa; Dong, Xu-Yan; Li, Ping-Ping; Hua, Wei; Wang, Xu; Wu, Xiao-Ming; Chen, Hong

    2008-09-01

    Accurately quantitative determination of oil content in oilseed rape plays an important role in varieties breeding for improving oil content in seeds. However, large quantity of oilseeds were needed in order to obtain accuracy and precision results by using standard Soxhlet extraction method, which may be a handicap in analysis of small, rare and precious samples in plant breeding. In the present work, ultrasound-assisted extraction was evaluated as a simpler and more effective alternative to conventional extraction method for the isolation of oil from small quantity of oilseed rape (<20 mg). The oil of oilseed rape samples was extracted by ultrasound-assisted method, and then the fatty acids and total oil content of the seeds were qualitatively and quantitatively determined by gas chromatography (GC). Extraction efficiency of total oil obtained by ultrasound-assisted extraction through an orthogonal experiment (L(9) (3(4))) were investigated to get the best extraction conditions. Statistical analysis showed that the variable with the largest effect was the ultrasound-assisted extraction time which was followed by the ultrasound-assisted extraction power, and the liquid:solid ratio. A liquid:solid ratio of 1:4 (L:g), an ultrasound-assisted extraction time of 60 min and an ultrasound-assisted extraction power of 500 W were found to be optimal for oil extraction from oilseed rape. By comparing with the conventional method, it was found that the ultrasound-assisted extraction of oil from oilseed rape was about five times faster than the traditional extraction method. By the use of ultrasound-assisted extraction combined with GC analysis, the fatty acids and total oil content in small quantity of seeds (<20 mg) were successfully qualitatively determined and the results are in agreement with that obtained by traditional standard method.

  10. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  11. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms

    PubMed Central

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production. PMID:26657698

  12. Percutaneous mechanical assist for severe cardiogenic shock due to acute right ventricular failure.

    PubMed

    Kipp, Ryan; Raval, Amish N

    2015-05-01

    Acute right ventricular failure can lead to severe cardiogenic shock and death. Recovery may be achieved with early supportive measures. In many patients, intravenous fluid and inotropic resuscitation is inadequate to improve cardiac output. In these cases, percutaneous mechanical assist may provide a non-surgical bridge to recovery. Herein, we describe a case series of patients with severe, refractory cardiogenic shock due to acute right ventricular failure who received a continuous flow percutaneous ventricular device primarily utilizing the right internal jugular vein for out flow cannula placement.

  13. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane.

    PubMed

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M Nazmul; Tan, Tianwei

    2015-01-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient 'green technique', gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kg m(-2) h(-1)) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry. PMID:25819091

  14. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane

    NASA Astrophysics Data System (ADS)

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M. Nazmul; Tan, Tianwei

    2015-03-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient `green technique', gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kgm-2h-1) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry.

  15. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane

    PubMed Central

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M. Nazmul; Tan, Tianwei

    2015-01-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient ‘green technique’, gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kgm−2h−1) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry. PMID:25819091

  16. Determination of sulphur saturation in dolomitic sour gas reservoir using computer assisted tomography

    SciTech Connect

    Kantzas, A. )

    1991-01-01

    This paper reports on a number of very sour gas dolomitic reservoirs suspected of having large amounts of sulphur. This sulphur shows up on the form of inclusions in cores and thin-sections. There is no laboratory method currently available for the determination of the total sulphur in the reservoir rock. Solvent extraction was used for partial removal of the sulphur from two pieces of core. A preliminary project established the value of X-ray Computer Assisted Tomography (CAT) Scanning in determining residual sulphur after extraction. A procedure was established and used for the determination of the sulphur content in a number of core pieces of a target reservoir. The sulphur saturation was calculated using a computer model developed in-house. It is the first time such an approach has been attempted. The results showed a wide saturation range of the sulphur present in the core. The average sulphur saturation of eight core peices has been estimated at 34.1%. The core porosity was corrected to consider the volume occupied by the sulphur as part of the fluid volume.

  17. Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry

    PubMed Central

    Park, Jonghoo; Blick, Robert H.

    2016-01-01

    We demonstrate mechanical modulation of phonon-assisted field emission in a free-standing silicon nanomembrane detector for time-of-flight mass spectrometry of proteins. The impacts of ion bombardment on the silicon nanomembrane have been explored in both mechanical and electrical points of view. Locally elevated lattice temperature in the silicon nanomembrane, resulting from the transduction of ion kinetic energy into thermal energy through the ion bombardment, induces not only phonon-assisted field emission but also a mechanical vibration in the silicon nanomembrane. The coupling of these mechanical and electrical phenomenon leads to mechanical modulation of phonon-assisted field emission. The thermal energy relaxation through mechanical vibration in addition to the lateral heat conduction and field emission in the silicon nanomembrane offers effective cooling of the nanomembrane, thereby allowing high resolution mass analysis. PMID:26861329

  18. Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry.

    PubMed

    Park, Jonghoo; Blick, Robert H

    2016-01-01

    We demonstrate mechanical modulation of phonon-assisted field emission in a free-standing silicon nanomembrane detector for time-of-flight mass spectrometry of proteins. The impacts of ion bombardment on the silicon nanomembrane have been explored in both mechanical and electrical points of view. Locally elevated lattice temperature in the silicon nanomembrane, resulting from the transduction of ion kinetic energy into thermal energy through the ion bombardment, induces not only phonon-assisted field emission but also a mechanical vibration in the silicon nanomembrane. The coupling of these mechanical and electrical phenomenon leads to mechanical modulation of phonon-assisted field emission. The thermal energy relaxation through mechanical vibration in addition to the lateral heat conduction and field emission in the silicon nanomembrane offers effective cooling of the nanomembrane, thereby allowing high resolution mass analysis. PMID:26861329

  19. Tensorial slip theory for gas flows and comparison with molecular dynamics simulations using an anisotropic gas-wall collision mechanism.

    PubMed

    Pham, Thanh Tung; To, Quy Dong; Lauriat, Guy; Léonard, Céline

    2013-05-01

    In this paper we examine the anisotropic slip theory for gas flows based on tangential accommodation coefficients and compare it with molecular dynamics (MD) results. A special gas-wall boundary condition is employed within MD simulations to mimic the anisotropic gas-wall collision mechanism. Results from MD simulations with different surface orientations show good agreement with the slip quantification proposed in this work.

  20. Mechanical insufflation-exsufflation. Comparison of peak expiratory flows with manually assisted and unassisted coughing techniques.

    PubMed

    Bach, J R

    1993-11-01

    Pulmonary complications are major causes of morbidity and mortality for patients with severe expiratory muscle weakness. The purpose of this study was to compare peak cough expiratory flows (PCEFs) during unassisted and assisted coughing and review the long-term use of mechanical insufflation-exsufflation (MI-E) for 46 neuromuscular ventilator users. These individuals used noninvasive methods of ventilatory support for a mean of 21.1 h/d for 17.3 +/- 15.5 years. They relied on manually assisted coughing and/or MI-E during periods of productive airway secretion. They reported a mean of 0.7 +/- 1.2 cases of pneumonia and other serious pulmonary complications and 2.8 +/- 5.6 hospitalizations during the 16.4-year period and no complications of MI-E. A sample of 21 of these patients with a mean forced vital capacity of 490 +/- 370 ml had a mean maximum insufflation capacity (MIC) achieved by a combination of air stacking of ventilator insufflations and glossopharyngeal breathing of 1,670 +/- 540 ml. The PCEFs for this sample were: following an unassisted inspiration, 1.81 +/- 1.03 L/s; following a MIC maneuver, 3.37 +/- 1.07 L/s; with manual assistance by abdominal compression following a MIC maneuver, 4.27 +/- 1.29 L/s; and with MI-E, 7.47 +/- 1.02 L/s. Each PCEF was significantly greater than the preceding, respectively (p < 0.01). We conclude that manually assisted coughing and MI-E are effective and safe methods for facilitating airway secretion clearance for neuromuscular ventilator users who would otherwise be managed by endotracheal suctioning. Severely decreased MIC, but not necessarily vital capacity, is an indication for tracheostomy.

  1. Mechanisms of infrared-laser-assisted atomic ionization by attosecond pulses

    SciTech Connect

    Tong, X. M.; Ranitovic, P.; Cocke, C. L.; Toshima, N.

    2010-02-15

    We propose a mechanism to understand the infrared (IR) laser assisted atomic ionization by attosecond pulses (AP). Atomic structures in an IR laser field are described by Floquet states and atoms can be ionized to a Floquet state by a single AP through different Floquet components. The interference of ionization through different Floquet components results in the oscillation of the ionization yield as a function of the arriving time of the AP. The proposed mechanism explains the recent experimental observations [Johnsson et al., Phys. Rev. Lett. 99, 233001 (2007)]. Furthermore, we find that, for a specified photoelectron energy, the ionization yield always oscillates as a function of the relative phase between the AP and the IR laser for both He and Ar atoms.

  2. Mechanism for accurate, protein-assisted DNA annealing by Deinococcus radiodurans DdrB.

    PubMed

    Sugiman-Marangos, Seiji N; Weiss, Yoni M; Junop, Murray S

    2016-04-19

    Accurate pairing of DNA strands is essential for repair of DNA double-strand breaks (DSBs). How cells achieve accurate annealing when large regions of single-strand DNA are unpaired has remained unclear despite many efforts focused on understanding proteins, which mediate this process. Here we report the crystal structure of a single-strand annealing protein [DdrB (DNA damage response B)] in complex with a partially annealed DNA intermediate to 2.2 Å. This structure and supporting biochemical data reveal a mechanism for accurate annealing involving DdrB-mediated proofreading of strand complementarity. DdrB promotes high-fidelity annealing by constraining specific bases from unauthorized association and only releases annealed duplex when bound strands are fully complementary. To our knowledge, this mechanism provides the first understanding for how cells achieve accurate, protein-assisted strand annealing under biological conditions that would otherwise favor misannealing.

  3. Green house gas emissions from composting and mechanical biological treatment.

    PubMed

    Amlinger, Florian; Peyr, Stefan; Cuhls, Carsten

    2008-02-01

    In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.

  4. Green house gas emissions from composting and mechanical biological treatment.

    PubMed

    Amlinger, Florian; Peyr, Stefan; Cuhls, Carsten

    2008-02-01

    In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis. PMID:18338701

  5. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  6. Response surface methodology for the modeling and optimization of oil-in-water emulsion separation using gas sparging assisted microfiltration.

    PubMed

    Fouladitajar, Amir; Zokaee Ashtiani, Farzin; Dabir, Bahram; Rezaei, Hamid; Valizadeh, Bardiya

    2015-02-01

    Response surface methodology (RSM) and central composite design (CCD) were used to develop models for optimization and modeling of a gas sparging assisted microfiltration of oil-in-water (o/w) emulsion. The effect of gas flow rate (Q G ), oil concentration (C oil ), transmembrane pressure (TMP), and liquid flow rate (Q L ) on the permeate flux and oil rejection were studied by RSM. Two sets of experiments were designed to investigate the effects of different gas-liquid two-phase flow regimes; low and high gas flow rates. Two separate RSM models were developed for each experimental set. The oil concentration and TMP were found to be the most significant factors influencing both permeate flux and rejection. Also, the interaction between these parameters was the most significant one. At low Q G , the more the gas flow rate, the higher the permeate flux; however, in the high gas flow rate region, higher Q G did not necessarily improve the permeate flux. In the case of rejection, gas and liquid flow rates were found to be insignificant. The optimum process conditions were found to be the following: Q G  = 1.0 (L/min), C oil  = 1,290 (mg/L), TMP = 1.58 (bar), and Q L  = 3.0 (L/min). Under these optimal conditions, maximum permeate flux and rejection (%) were 115.9 (L/m(2)h) and 81.1 %, respectively.

  7. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    NASA Astrophysics Data System (ADS)

    Hu, Shenyang; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-10-01

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn't cause the gas bubble alignment, and fast 1-D migration of interstitials along <110> directions in the body-centered cubic U matrix causes the gas bubble alignment along <110> directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  8. Outcomes of patients implanted with a left ventricular assist device at nontransplant mechanical circulatory support centers.

    PubMed

    Katz, Marc R; Dickinson, Michael G; Raval, Nirav Y; Slater, James P; Dean, David A; Zeevi, Gary R; Horn, Evelyn M; Salemi, Arash

    2015-05-01

    The goal of this study was to assess outcomes of patients who underwent implantation of left ventricular assist devices (LVADs) at nontransplantation mechanical circulatory support centers. As the availability of LVADs for advanced heart failure has expanded to nontransplantation mechanical circulatory support centers, concerns have been expressed about maintaining good outcomes. Demographics and outcomes were evaluated in 276 patients with advanced heart failure who underwent implantation of LVADs as bridge to transplantation or destination therapy at 27 open-heart centers. Baseline characteristics, operative mortality, length of stay, readmission rate, adverse events, quality of life, and survival were analyzed. The overall 30-day mortality was 3% (8 of 276), and survival rates at 6, 12, and 24 months, respectively, were 92±2%, 88±3%, and 84±4% for the bridge-to-transplantation group and 81±3%, 70±5%, and 63±6% for the destination therapy group, comparable with results published by the national Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). The median length of stay for all patients was 21 days. Bleeding was the most frequent adverse event. Stroke occurred in 4% (bridge to transplantation) and 6% (destination therapy) of patients. Quality-of-life measures and 6-minute walk distances showed sustained improvements throughout support. In conclusion, outcomes with LVAD support at open-heart centers are acceptable and comparable with results from the INTERMACS registry. With appropriate teams, training, center commitment, and certification, LVAD therapy is being disseminated in a responsible way to open-heart centers. PMID:25772738

  9. Subchronic use of the St. Jude centrifugal pump as a mechanical assist device in calves.

    PubMed

    Curtis, J; Wagner-Mann, C; Mann, F; Demmy, T; Walls, J; Turk, J

    1996-06-01

    The purpose of this experiment was to study the effects of the St. Jude Lifestream centrifugal pump on hemodynamic and hematologic parameters and the incidence of postmortem findings in a subchronic ex vivo left ventricular assist animal model. Five calves were implanted with the pump as a left ventricular assist device (left atrial to thoracic aorta bypass) and studied for 96 h of continuous pumping under identical conditions. Heparin (100 IU/kg) was administered only in the initial saline pump prime. Throughout the protocol, mean arterial and central venous pressures averaged 102.1 +/- 4.6 and 3.4 +/- 2.2 mm Hg, respectively. Pump flow was 47.8 +/- 8.4 ml/kg/min at a mean pump speed of 1,676.3 +/- 106.1 rpm. No clinical abnormalities or mechanical malfunctions attributable to the pump were detected during the 96 h of continuous pumping for each calf. Mean plasma-free hemoglobin after 96 h was 3.9 +/- 3.7 mumol/L (p = 0.337 compared to baseline). At post mortem, renal infarctions were detected in 1 calf. No other pump-associated lesions were detected in any of the other calves. We have concluded that the St. Jude Lifestream centrifugal pump functions reliably during 96 h of continuous left heart bypass in a calf model.

  10. Surface reaction mechanisms during ozone and oxygen plasma assisted atomic layer deposition of aluminum oxide.

    PubMed

    Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit

    2010-09-01

    We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.

  11. Levosimendan may improve survival in patients requiring mechanical assist devices for post-cardiotomy heart failure

    PubMed Central

    Braun, Jan-Peter; Jasulaitis, Dominik; Moshirzadeh, Maryam; Doepfmer, Ulrich R; Kastrup, Marc; von Heymann, Christian; Dohmen, Pascal M; Konertz, Wolfgang; Spies, Claudia

    2006-01-01

    Introduction Most case series suggest that less than half of the patients receiving a mechanical cardiac assist device as a bridge to recovery due to severe post-cardiotomy heart failure survive to hospital discharge. Levosimendan is the only inotropic substance known to improve medium term survival in patients suffering from severe heart failure. Methods This retrospective analysis covers our single centre experience. Between July 2000 and December 2004, 41 consecutive patients were treated for this complication. Of these, 38 patients are included in this retrospective analysis as 3 patients died in the operating room. Levosimendan was added to the treatment protocol for the last nine patients. Results Of 29 patients treated without levosimendan, 20 could be weaned off the device, 9 survived to intensive care unit discharge, 7 left hospital alive and 3 survived 180 days. All 9 patients treated with levosimendan could be weaned, 8 were discharged alive from ICU and hospital, and 7 lived 180 days after surgery (p < 0.002 for 180 day survival). Plasma lactate after explantation of the device was significantly lower (p = 0.002), as were epinephrine doses. Time spent on renal replacement therapy was significantly shorter (p = 0.023). Conclusion Levosimendan seems to improve medium term survival in patients failing to wean off cardiopulmonary bypass and requiring cardiac assist devices as a bridge to recovery. This retrospective analysis justifies prospective randomised investigations of levosimendan in this group of patients. PMID:16420666

  12. The mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water

    NASA Astrophysics Data System (ADS)

    Yu, Zhuanni; Chen, Xiaolin; Xia, Shuwei

    2016-06-01

    In this paper, the total sugar concentration, protein concentration, lipid yield and morphology characteristics of the algae residue were determined to explain the mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water. The results showed similar variation for the sugar, protein and lipid. However, the total sugar was more similar to lipids yield, so the results showed that the reaction between ionic liquid and cellulose and hemicellulose in cell wall was the most important step which determined the lipids extration directly. And the total sugar variation may be representing the lipids yield. For later lipids extraction, we can determine the total sugar concentration to predict the extraction end product.

  13. Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors

    SciTech Connect

    Was, Gary S; Atzmon, Michael; Wang, Lumin

    2003-04-28

    The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone.

  14. Group-Theoretical Calculation of the Diffusion Coefficient via the Vacancy-Assisted Mechanism

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Fujitani, Youhei

    2005-09-01

    Lower vacancy-density in a crystalline solid slows down the tracer diffusion via the vacancy-assisted mechanism, which can be modeled by means of particles hopping to their respective nearest-neighbor lattice-sites stochastically with double occupancy prohibited. The explicit expressions of the diffusion coefficient were previously obtained for various lattices in terms of Nakazato and Kitahara’s method [Prog. Theor. Phys. 64 (1980) 2261]. This method yields a set of linear simultaneous algebraic equations as many as the number of lattice sites, which is reduced to a simple equation with respect to the diffusion coefficient in the final step of the method. We here give a systematic way of the reduction in terms of the group theory.

  15. Mechanically assisted 3D prostate ultrasound imaging and biopsy needle-guidance system

    NASA Astrophysics Data System (ADS)

    Bax, Jeffrey; Williams, Jackie; Cool, Derek; Gardi, Lori; Montreuil, Jacques; Karnik, Vaishali; Sherebrin, Shi; Romagnoli, Cesare; Fenster, Aaron

    2010-02-01

    Prostate biopsy procedures are currently limited to using 2D transrectal ultrasound (TRUS) imaging to guide the biopsy needle. Being limited to 2D causes ambiguity in needle guidance and provides an insufficient record to allow guidance to the same suspicious locations or avoid regions that are negative during previous biopsy sessions. We have developed a mechanically assisted 3D ultrasound imaging and needle tracking system, which supports a commercially available TRUS probe and integrated needle guide for prostate biopsy. The mechanical device is fixed to a cart and the mechanical tracking linkage allows its joints to be manually manipulated while fully supporting the weight of the ultrasound probe. The computer interface is provided in order to track the needle trajectory and display its path on a corresponding 3D TRUS image, allowing the physician to aim the needle-guide at predefined targets within the prostate. The system has been designed for use with several end-fired transducers that can be rotated about the longitudinal axis of the probe in order to generate 3D image for 3D navigation. Using the system, 3D TRUS prostate images can be generated in approximately 10 seconds. The system reduces most of the user variability from conventional hand-held probes, which make them unsuitable for precision biopsy, while preserving some of the user familiarity and procedural workflow. In this paper, we describe the 3D TRUS guided biopsy system and report on the initial clinical use of this system for prostate biopsy.

  16. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    SciTech Connect

    Busby, Jeremy T; Gussev, Maxim N

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be

  17. Physical Sputtering vs. Gas Assisted Etching of Silicon Dioxide with a Gallium Focused Ion Beam: Elucidating Experiments via Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Timilsina, Rajendra; Tan, Shida; Livengood, Richard; Rack, Philip

    2015-03-01

    In order to increase ion beam nanomachining precision and improve imaging resolution, fine tuning of the ion beam profile is absolutely necessary. To understand the effects of ion beam tails, experiments and Monte Carlo simulations were conducted with a 40 keV gallium beam with and without gas assisted chemical etching. A gallium ion beam was scanned in an area of 25x25 nm2 on a silicon dioxide film with and without a localized XeF2 gas at 1pA current. Four different ion doses (0.23, 0.9, 1.8 and 3.6 nC/ μm2) were experimentally considered to study the sputtered and etched via profiles. Monte Carlo simulations using EnvizION program was performed to elucidate the sputtered and gas-assisted etch process. New features including gas-assisted etching by secondary electrons and a binary collision model to dissociate the precursor molecules were introduced. Sputtered via and gas assisted etching (XeF2 precursor gas) via profiles with various gas-assist pressures were studied to understand the experimental temporal behavior. Various contributions including sputtering from primary, forward scattered, backscattered ions as well as etching by recoiled atoms and secondary electrons will be discussed.

  18. Mechanical blood trauma in assisted circulation: sublethal RBC damage preceding hemolysis.

    PubMed

    Olia, Salim E; Maul, Timothy M; Antaki, James F; Kameneva, Marina V

    2016-06-15

    After many decades of improvements in mechanical circulatory assist devices (CADs), blood damage remains a serious problem during support contributing to variety of adverse events, and consequently affecting patient survival and quality of life. The mechanisms of cumulative cell damage in continuous-flow blood pumps are still not fully understood despite numerous in vitro, in vivo, and in silico studies of blood trauma. Previous investigations have almost exclusively focused on lethal blood damage, namely hemolysis, which is typically negligible during normal operation of current generation CADs. The measurement of plasma free hemoglobin (plfHb) concentration to characterize hemolysis is straightforward, however sublethal trauma is more difficult to detect and quantify since no simple direct test exists. Similarly, while multiple studies have focused on thrombosis within blood pumps and accessories, sublethal blood trauma and its sequelae have yet to be adequately documented or characterized. This review summarizes the current understanding of sublethal trauma to red blood cells (RBCs) produced by exposure of blood to flow parameters and conditions similar to those within CADs. It also suggests potential strategies to reduce and/or prevent RBC sublethal damage in a clinically-relevant context, and encourages new research into this relatively uncharted territory.

  19. Debug of IC-card chips assisted by FIB and in-situ mechanical microprobing

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao D.; Yu, Xiang H.; Lundquist, Theodore R.

    2001-10-01

    The value of mechanical micro-probes and FIB in IC design-debug is well understood. As device dimensions shrink, navigating micro-probes within a light microscope is almost impossible. SEM or FIB, which have higher resolution as well as greater depth of focus, overcome this limitation. FIB is, also, preferred for DUT probe-point creation because its higher milling resolution capability can provide better access to lower level metallizations. IC-card chips present an unique challenge; the backside of these are often insulated so grounding must occur on the exposed front-side. Further, because these IC-card chips are small, very careful setups are required before undertaking FIB modifications. Micro-probes within the FIB chamber solved this problem. Three micro-probes were used to stimulate the chip (input-clock, ground and power) with a fourth probe used to measure output nodes. Requested FIB modifications, including rewiring of poly-silicon traces, were completed. Contacting poly-silicon requires FIB-assisted XeF2 etching through the inter-level dielectric and both fast termination and removal of XeF2 from the chamber upon poly-silicon exposure. The technique for exposing poly-silicon is described in detail. The synergy of mechanical micro-probes within the FIB chamber benefited both techniques in the design-debug task. We summarize various IC-card packaging styles and requirements to ground, micro-probe, and establish a debug platform.

  20. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    PubMed

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  1. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  2. Incidence and Outcomes of Anterior Chamber Gas Bubble during Femtosecond Flap Creation for Laser-Assisted In Situ Keratomileusis.

    PubMed

    Rush, Sloan W; Cofoid, Philip; Rush, Ryan B

    2015-01-01

    Purpose. To report the incidence and outcomes of anterior chamber gas bubble formation during femtosecond laser flap creation for laser-assisted in situ keratomileusis (LASIK). Methods. The charts of 2,886 consecutive eyes that underwent femtosecond LASIK from May 2011 through August 2014 were retrospectively reviewed. The incidence, preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed in subjects developing anterior chamber gas bubble formation during the procedure. Results. A total of 4 cases (0.14%) developed anterior chamber gas bubble formation during femtosecond laser flap creation. In all four cases, the excimer laser was unable to successfully track the pupil immediately following the anterior chamber bubble formation, temporarily postponing the completion of the procedure. There was an ethnicity predilection of anterior chamber gas formation toward Asians (p = 0.0055). An uncorrected visual acuity of 20/20 was ultimately achieved in all four cases without further complications. Conclusions. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK is an uncommon event that typically results in a delay in treatment completion; nevertheless, it does influence final positive visual outcome. PMID:25954511

  3. Incidence and Outcomes of Anterior Chamber Gas Bubble during Femtosecond Flap Creation for Laser-Assisted In Situ Keratomileusis.

    PubMed

    Rush, Sloan W; Cofoid, Philip; Rush, Ryan B

    2015-01-01

    Purpose. To report the incidence and outcomes of anterior chamber gas bubble formation during femtosecond laser flap creation for laser-assisted in situ keratomileusis (LASIK). Methods. The charts of 2,886 consecutive eyes that underwent femtosecond LASIK from May 2011 through August 2014 were retrospectively reviewed. The incidence, preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed in subjects developing anterior chamber gas bubble formation during the procedure. Results. A total of 4 cases (0.14%) developed anterior chamber gas bubble formation during femtosecond laser flap creation. In all four cases, the excimer laser was unable to successfully track the pupil immediately following the anterior chamber bubble formation, temporarily postponing the completion of the procedure. There was an ethnicity predilection of anterior chamber gas formation toward Asians (p = 0.0055). An uncorrected visual acuity of 20/20 was ultimately achieved in all four cases without further complications. Conclusions. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK is an uncommon event that typically results in a delay in treatment completion; nevertheless, it does influence final positive visual outcome.

  4. Safety and Feasibility of Laparoscopic Abdominal Surgery in Patients With Mechanical Circulatory Assist Devices.

    PubMed

    Ashfaq, Awais; Chapital, Alyssa B; Johnson, Daniel J; Staley, Linda L; Arabia, Francisco A; Harold, Kristi L

    2016-10-01

    Objectives Increasing number of mechanical circulatory assist devices (MCADs) are being placed in heart failure patients. Morbidity from device placement is high and the outcome of patients who require noncardiac surgery after, is unclear. As laparoscopic interventions are associated with decreased morbidity, we examined the impact of such procedures in these patients. Methods A retrospective review was conducted on 302 patients who underwent MCAD placement from 2005 to 2012. All laparoscopic abdominal surgeries were included and impact on postoperative morbidity and mortality studied. Results Ten out of 16 procedures were laparoscopic with 1 conversion to open. Seven patients had a HeartMate II, 2 had Total Artificial Hearts, and 1 had CentriMag. Four patients had devices for ischemic cardiomyopathy and 6 cases were emergent. Surgeries included 6 laparoscopic cholecystectomies, 2 exploratory laparoscopies, 1 laparoscopic colostomy takedown, and 1 laparoscopic ventral hernia repair with mesh. Median age of the patients was 63 years (range, 29-79 years). Median operative time was 123 minutes (range, 30-380 minutes). Five of 10 patients were on preoperative anticoagulation with average intraoperative blood loss of 150 mL (range, 20-700 mL). There were 3 postoperative complications; acute respiratory failure, acute kidney injury and multisystem organ failure resulting in death not related to the surgical procedure. Conclusion The need for noncardiac surgery in post-MCAD patients is increasing due to limited donors and due to more durable and longer support from newer generation assist devices. While surgery should be approached with caution in this high-risk group, laparoscopic surgery appears to be a safe and successful treatment option. PMID:26839214

  5. Mechanical ventilator - infants

    MedlinePlus

    ... gas measurements, and x-rays. WHAT ARE THE RISKS OF A MECHANICAL VENTILATOR? Most babies who need ventilator assistance have some lung problems, including immature or diseased lungs, which are ... for injury. Sometimes, delivering oxygen under pressure can ...

  6. THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE

    SciTech Connect

    Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q.; Fisher, R. T.; Townsley, D. M.; Meakin, C.; Reid, L. B.

    2012-11-01

    We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  7. The Detonation Mechanism of the Pulsationally Assisted Gravitationally Confined Detonation Model of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Jordan, G. C., IV; Graziani, C.; Fisher, R. T.; Townsley, D. M.; Meakin, C.; Weide, K.; Reid, L. B.; Norris, J.; Hudson, R.; Lamb, D. Q.

    2012-11-01

    We describe the detonation mechanism composing the "pulsationally assisted" gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and 56Ni yields conform better to observational values than is the case for the "classical" GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  8. Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations

    SciTech Connect

    Ertekin; King, G.R.; Schwerer, F.C.

    1983-10-01

    A mathematical formulation, applicable to both numerical simulation and transient well analysis, describing the flow of gas in very tight (k < 0.1 md) porous media has been developed. Unique to this formulation is the dual-mechanism transport of gas. In this formulation gas is assumed to be traveling under the influence of two fields: a concentration field and a pressure field. Transport through the concentration field is a Knudsen flow process and is modeled with Fick's Law of diffusion. Transport through the pressure field is a laminar process and is modeled with Darcy's law (inertial-turbulent effects are ignored). The combination of these two flow mechanisms rigorously yields a composition, pressure and saturation dependent slippage factor. The pressure dependence arises from treating the gas as a real gas. The dynamic slippage derived from this formulation is found to be most applicable in reservoirs with permeabilities less than or equal to 0.01 md. The results from this study indicate that in reservoirs of this type, differences between recoveries after ten years of production using the dynamic slip described in this paper and constant slip approaches were as great as 10% depending on the initial gas saturation. If an economic production rate is considered, differences as great as 30 can be expected.

  9. Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations

    SciTech Connect

    Ertekin, T.; King, G.R.; Schwerer, F.C.

    1986-02-01

    A mathematical formulation, applicable to both numerical simulation and transient well analysis that describes the flow of gas in very tight porous media and includes a dual-mechanism transport of gas is developed. Gas is assumed to be traveling under the influence of a concentration field and a pressure field. Transport through the concentration field is a Knudsen flow process and is modeled with Fick's law of diffusion. Transport through the pressure field is a laminar process and is modeled with Darcy's law (inertial/turbulent effects are ignored). The combination of these two flow mechanisms rigorously yields a composition-, pressure-, and saturation-dependent slippage factor. The pressure dependence arises from treating the gas as a real gas. The derived dynamic slippage is most applicable in reservoirs with permeabilities less than or equal to0.01 md. The results indicate that in reservoirs of this type, differences between recoveries after 10 years of production with the dynamic-slip and constant-slip approaches were as great as 10%, depending on the initial gas saturation. If an economic production rate is considered, differences as great as 30% can be expected.

  10. Gas-assisted focused-ion-beam lithography of a diamond (100) surface

    NASA Astrophysics Data System (ADS)

    Datta, A.; Wu, Yuh-Renn; Wang, Y. L.

    1999-10-01

    A focused Ga-ion beam is used to conduct lithography on a diamond (100) surface with the assistance of various gases (Cl2, O2, and XeF2). The beam-induced dilation and sputtering of the surface are measured by atomic force microscope. The dilation is found to be insensitive to the presence of assisting gases at low doses, while the sputtering is enhanced by O2 and XeF2 at high doses. The topographic evolution as a function of the ion dose is well described by a proposed semiempirical equation. Combining physical sputtering and XeF2-assisted etching, the lithographic process has been used to fabricate submicron structures on diamond surfaces.

  11. Dynamic gas slippage: a unique dual-mechanism approach to the flow of gas in tight formations

    SciTech Connect

    Ertekin, T.; King, G.R.; Schwerer, F.C.

    1983-01-01

    A mathematical formulation, applicable to both numeric simulation and transient well analysis, describing the flow of gas in very tight porous media has been developed. Unique to this formulation is the dual- mechanism transport of gas. In this formulation, gas is assumed to be traveling under the influence of 2 fields: a concentration field and a pressure field. Transport through the concentration field is a Knudsen flow process and is modeled with Fick's Law of diffusion. Transport through the pressure field is a laminar process and is modeled with Darcy's Law (inertial-turbulent effects are ignored). The combination of these 2 flow mechanisms rigorously yields a composition, pressure, and saturation dependent slippage factor. 21 references.

  12. Recent advances in computational methodology for simulation of mechanical circulatory assist devices

    PubMed Central

    Marsden, Alison L.; Bazilevs, Yuri; Long, Christopher C.; Behr, Marek

    2014-01-01

    Ventricular assist devices (VADs) provide mechanical circulatory support to offload the work of one or both ventricles during heart failure. They are used in the clinical setting as destination therapy, as bridge to transplant, or more recently as bridge to recovery to allow for myocardial remodeling. Recent developments in computational simulation allow for detailed assessment of VAD hemodynamics for device design and optimization for both children and adults. Here, we provide a focused review of the recent literature on finite element methods and optimization for VAD simulations. As VAD designs typically fall into two categories, pulsatile and continuous flow devices, we separately address computational challenges of both types of designs, and the interaction with the circulatory system with three representative case studies. In particular, we focus on recent advancements in finite element methodology that has increased the fidelity of VAD simulations. We outline key challenges, which extend to the incorporation of biological response such as thrombosis and hemolysis, as well as shape optimization methods and challenges in computational methodology. PMID:24449607

  13. A study on dynamic heat assisted magnetization reversal mechanisms under insufficient reversal field conditions

    SciTech Connect

    Chen, Y. J.; Yang, H. Z.; Leong, S. H.; Yu Ko, Hnin Yu; Wu, B. L.; Ng, V.; Asbahi, M.; Yang, J. K. W.

    2014-10-20

    We report an experimental study on the dynamic thermomagnetic (TM) reversal mechanisms at around Curie temperature (Tc) for isolated 60 nm pitch single-domain [Co/Pd] islands heated by a 1.5 μm spot size laser pulse under an applied magnetic reversal field (Hr). Magnetic force microscopy (MFM) observations with high resolution MFM tips clearly showed randomly trapped non-switched islands within the laser irradiated spot after dynamic TM reversal process with insufficient Hr strength. This observation provides direct experimental evidence by MFM of a large magnetization switching variation due to increased thermal fluctuation/agitation over magnetization energy at the elevated temperature of around Tc. The average percentage of non-switched islands/magnetization was further found to be inversely proportional to the applied reversal field Hr for incomplete magnetization reversal when Hr is less than 13% of the island coercivity (Hc), showing an increased switching field distribution (SFD) at elevated temperature of around Tc (where main contributions to SFD broadening are from Tc distribution and stronger thermal fluctuations). Our experimental study and results provide better understanding and insight on practical heat assisted magnetic recording (HAMR) process and recording performance, including HAMR writing magnetization dynamics induced SFD as well as associated DC saturation noise that limits areal density, as were previously observed and investigated by theoretical simulations.

  14. Vascular dysfunction in children conceived by assisted reproductive technologies: underlying mechanisms and future implications.

    PubMed

    Rimoldi, Stefano F; Sartori, Claudio; Rexhaj, Emrush; Cerny, David; Von Arx, Robert; Soria, Rodrigo; Germond, Marc; Allemann, Yves; Scherrer, Urs

    2014-01-01

    Epidemiological studies in humans have demonstrated a relationship between pathological events during fetal development and increased cardiovascular risk later in life and have led to the so called "Fetal programming of cardiovascular disease hypothesis". The recent observation of generalised vascular dysfunction in young apparently healthy children conceived by assisted reproductive technologies (ART) provides a novel and potentially very important example of this hypothesis. This review summarises recent data in ART children demonstrating premature subclinical atherosclerosis in the systemic circulation and pulmonary vascular dysfunction predisposing to exaggerated hypoxia-induced pulmonary hypertension. These problems appear to be related to the ART procedure per se. Studies in ART mice demonstrating premature vascular aging and arterial hypertension further demonstrate the potential of ART to increase cardiovascular risk and have allowed to unravel epigenetic alterations of the eNOS gene as an underpinning mechanism. The roughly 25% shortening of the life span in ART mice challenged with a western style high-fat-diet demonstrates the potential importance of these alterations for the long-term outcome. Given the young age of the ART population, data on cardiovascular endpoints will not be available before 20 to 30 years from now. However, already now cohort studies of the ART population are needed to early detect cardiovascular alterations with the aim to prevent or at least optimally treat cardiovascular complications. Finally, a debate needs to be engaged on the future of ART and the consequences of its exponential growth for public health. PMID:24964004

  15. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    PubMed Central

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-01-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered “solid-cored” CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process. PMID:25761381

  16. Design of Mechanism for Assisting Standing Movement Using Planar Linkage and Gear Train

    NASA Astrophysics Data System (ADS)

    Nango, Jun; Yoshizawa, Hisato; Liu, Jiajun

    The number of people who are in need of nursing care due to difficulties they experience with performing various activities of daily living is increasing. In particular, the action of standing up is performed frequently in daily life, and this action starts to induce pain in joints as people age. In this research, we develop a device whose seat plate follows the movement of the thigh in the action of standing up for the purpose of relieving the burden from the joints and reducing the effort associated with nursing care. The device is designed by using a planar five-link mechanism and a gear train, and only a single input is needed to drive the device. The respective lengths of the links are determined by comparing the movement of the seat plate of the device with the movement of the human thigh in the action of standing up. In addition, this device is expected to be useful for assisting users in standing up in a natural manner, including in the case when the body remains supported by the seat plate, as well as for guiding the individual movements of users in the action of standing up.

  17. A study on dynamic heat assisted magnetization reversal mechanisms under insufficient reversal field conditions

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Yang, H. Z.; Leong, S. H.; Wu, B. L.; Asbahi, M.; Yu Ko, Hnin Yu; Yang, J. K. W.; Ng, V.

    2014-10-01

    We report an experimental study on the dynamic thermomagnetic (TM) reversal mechanisms at around Curie temperature (Tc) for isolated 60 nm pitch single-domain [Co/Pd] islands heated by a 1.5 μm spot size laser pulse under an applied magnetic reversal field (Hr). Magnetic force microscopy (MFM) observations with high resolution MFM tips clearly showed randomly trapped non-switched islands within the laser irradiated spot after dynamic TM reversal process with insufficient Hr strength. This observation provides direct experimental evidence by MFM of a large magnetization switching variation due to increased thermal fluctuation/agitation over magnetization energy at the elevated temperature of around Tc. The average percentage of non-switched islands/magnetization was further found to be inversely proportional to the applied reversal field Hr for incomplete magnetization reversal when Hr is less than 13% of the island coercivity (Hc), showing an increased switching field distribution (SFD) at elevated temperature of around Tc (where main contributions to SFD broadening are from Tc distribution and stronger thermal fluctuations). Our experimental study and results provide better understanding and insight on practical heat assisted magnetic recording (HAMR) process and recording performance, including HAMR writing magnetization dynamics induced SFD as well as associated DC saturation noise that limits areal density, as were previously observed and investigated by theoretical simulations.

  18. Pearls and pitfalls in short-term mechanical circulatory assist: how to avoid and manage complications.

    PubMed

    Mohite, Prashant N; Maunz, Olaf; Simon, Andre R

    2014-10-01

    In today's era, given the worsening risk profiles of patients undergoing cardiac surgery, the increasing number of complex cardiac surgeries, and the increasing number of patients undergoing thoracic organ transplantation, short-term mechanical circulatory assist (MCA) devices are indispensable. MCA devices are capable of supporting heart and lung function and have emerged as potentially lifesaving instruments, but may prove to be as hazardous as helpful due to their inherent tendency toward hemolysis, thromboembolism, and hemorrhage. Although MCA devices are being used regularly at some specialized centers, surgeries involving MCA are not as common as other routine cardiac surgeries, and even though professionals implanting and maintaining short-term MCAs are well acquainted with operating such devices, it is not uncommon to come across complications as a result of minor mistakes committed while dealing with them. Avoiding simple mistakes and taking proper precautions while implanting and maintaining these devices can prevent major catastrophes. We discuss commonly encountered problems and complications during the implantation and maintenance of short-term MCAs and offer reasonable and practical solutions. In addition, crucial issues such as anticoagulation, replacement of the device circuit, and management of the distal perfusion cannula are discussed. Continuous and efficient monitoring of the MCA device and the patient supported on MCA, together with anticipation and avoidance of complications, is key for successful short-term MCA support.

  19. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism.

    PubMed

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-01-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered "solid-cored" CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process. PMID:25761381

  20. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-03-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered ``solid-cored'' CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process.

  1. Mechanisms of defect complex formation and environmental-assisted fracture behavior of iron aluminides

    SciTech Connect

    Cooper, B.R.; Muratov, L.S.; Kang, B.S.J.; Li, K.Z.

    1997-12-01

    Iron aluminide has excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperature with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides is being undertaken. The modeling and the experimental work will connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component at this point is on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}A{ell} and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}A{ell}. These calculations include lattice relaxation effects which are quite large. This has significant implications for vacancy clustering effects with consequences to be explored for hydrogen diffusion. The experimental work at this stage has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior. For this reason, comparative crack growth tests of FA-186, FA-187, and FA-189 iron aluminides (all with basic composition of Fe-28A{ell}-5Cr, at % with micro-alloying additives of Zr, C or B) under, air, oxygen, or water environment have been performed. These tests showed that the alloys are susceptible to room temperature hydrogen embrittlement in both B2 and DO{sub 3} conditions. Test results indicated that FA-187, and FA-189 are intrinsically more brittle than FA-186.

  2. Using Noble Gas Geochemistry to Determine the Source and Mechanism of Natural Gas Leakage into Shallow Aquifers Near Unconventional Drilling

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Whyte, C. J.

    2015-12-01

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts associated with unconventional energy development. The occurrence of fugitive gas contamination in drinking-water wells near unconventional natural gas development has been central to the debate about the environmental impacts of hydraulic fracturing, but still has a controversial origin that has variably been attributed to natural geogenic occurrences, poor well bore integrity, and crustal-scale migration of natural gas along natural deformation features. Differentiating amongst these possibilities is critical to ongoing efforts to understand the environmental implications for the presence of elevated methane and aliphatic hydrocarbons (ethane, propane, etc.) in drinking-water and a necessary step toward the development of implementable solutions that limit the occurrence of future fugitive gas events. Here we will expand upon our recent work in the Marcellus and Barnett gas fields (Jackson et al., 2013; Darrah et al., 2014; 2015) that developed noble gas techniques for distinguishing natural and anthropogenic mechanisms of natural gas migration by integrating the molecular and isotopic composition of non-hydrocarbon molecules (N2, H2S, CO2) in addition to compound specific isotopes of hydrocarbons (d2H of CH4 and d2H-C2H6 and d13C of CH4, C2H6, and C3H8) and non-hydrocarbon compounds (d15N-N2). The expanded data sets validate our initial study and support the hypothesis that a subset of drinking-water wells experience natural gas contamination following faulty well construction or poor well integrity amid a background of naturally occurring gas and salt-rich groundwater.

  3. Mechanisms of combustion limits in premixed gas flames at microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1991-01-01

    A three-year experimental and theoretical research program on the mechanisms of combustion limits of premixed gasflames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.

  4. Mechanical behaviour of metallic thin films on polymeric substrates and the effect of ion beam assistance on crack propagation

    SciTech Connect

    George, M. , E-Mail: matthieu.george@bnfl.com; Coupeau, C.; Colin, J.; Grilhe, J.

    2005-01-10

    The mechanisms of crack propagation in metallic films on polymeric substrates have been studied through in situ atomic force microscopy observations of thin films under tensile stresses and finite element stress calculations. Two series of films - ones deposited with ion beam assistance, the others without - have been investigated. The observations and stress calculations show that ion beam assistance can change drastically the propagation of cracks in coated materials: by improving the adhesion film/substrate, it slows down the delamination process, but in the same time enhances the cracks growth in the thickness of the material.

  5. Explanation of the mechanism by which CAD assistance improves diagnostic performance when reading CT images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toru; Wada, Shinichi; Yamamoto, Shinji; Murao, Kohei; Furukawa, Akira; Endo, Masahiro; Matsumoto, Mitsuomi; Sone, Shusuke

    2006-03-01

    The purpose of our research is to make clear the mechanism that a reader (physician or radiological technologist) effectively identify abnormal findings in CT images of lung cancer screening by using with CAD system. A method guessing the 2X2 decision matrix between reader / CAD and reader / reader with CAD was investigated. We suppose the next scene to be it. At first, a reader judges whether abnormal findings per one patient per one CT image are present (1) or absent (0) without CAD results. The second, a reader judges whether abnormal findings are present (1) or absent (0) with CAD results. We expresses the correlation between diagnoses by a reader and CAD system for abnormal cases and for normal cases by following formula using phi correlation coefficient:φ=(cd-ab)/√(a+c)(b+d)(b+c)(a+d). a,b,c,d: 2X2 decision matrix parameters. If TPR1=(a+c)/n, TPR2=(b+c)/n and TPR3=(a+b+c)/n for abnormal cases, TPR3=TPR1+TPR2 - TPR1×TRR2 - φ√TPR1(1-TPR1)TPR2(1-TPR2). Therefore, a=n (TPR3 - TPR1), b=n (TPR3 - TPR2), c=n (TPR1 + TPR2 -TPR3), d=n (1.0 - TPR3). This theory was applied for the experimental data. The 41 students interpreted the same CT images [no training]. A second interpretation was performed after they had been instructed on how to interpret CT images [training], and third was assisted by a virtual CAD [training + CAD]. The mechanism that makes up for a good point of a reader and a CAD with CAD in interpreting CT images was theoretically and experimentally investigated. We concluded that a method guessing the decision matrix (2X2) between a reader and a CAD decided the "presence" or "absence" of abnormal findings explain the improvement mechanism of diagnostic performance with CAD system.

  6. Experimental Study of Diode Laser Cutting of Silicon by Means of Water Assisted Thermally Driven Separation Mechanism

    NASA Astrophysics Data System (ADS)

    Romero, P.; Otero, N.; Coto, I.; Leira, C.; González, A.

    A novel variant of thermal laser dicing of crystalline silicon has been studied in this paper, by using fluid assistance to improve the reliability, flexibility and operational window of the current process. High quality laser cutting of monocrystalline and polycrystalline silicon is demonstrated by using a diode laser focused on a 1 mm spot, assisted with the use of a water or glycerol layer, and resulting in Zero Kerf cuts with low total roughness and enabling freeform cutting. This variant process is compared with conventional thermal cleaving, with and without the use of an initial stress concentratior, as well as compared with optimized conventional approaches (ablation and gas assisted cutting). Besides the effective cutting speed, the laser induced damage is studied for each alternative, as well as the potential for photovoltaic applications on mono and multicrystalline silicon, is presented. Several parameters have been studied, to achieve highest effective speed values without damage in the surface of the wafer and a homogeneous cutting quality. The high quality, speed and flexibility of water-assisted direct diode induced thermal cutting are demonstrated.

  7. Thermal mechanical modeling of gas tungsten arc welding

    SciTech Connect

    Shapiro, A.B.; Mahin, K.W.

    1986-05-01

    Welding problems encountered in development and production activities are typically solved in a ''let's try this'' approach, which can be costly and do not always provide the optimal solution. The Ongoing research at LLNL and Sandia is directed toward improving our basic understanding of what is actually occurring on a phenomenological basis in welding and to apply this knowledge to the development of a general computer-based weld model. Our approach has been to couple a well defined experiment with computer simulation to examine the effects of various moedling assumptions on the computer predictions. The application is confined to the inert gas-tungsten-arc (GTA) process. However, the results give insight into modeling other welding processes (e.g. laser, electron beam).

  8. External work output and force generation during synchronized intermittent mechanical ventilation. Effect of machine assistance on breathing effort.

    PubMed

    Marini, J J; Smith, T C; Lamb, V J

    1988-11-01

    We measured the mechanical work performed by 12 acutely ill patients during synchronized intermittent mandatory ventilation to determine the influence of volume-cycled machine assistance on inspiratory timing, respiratory muscle force development, and external work output. The frequency and tidal volume of spontaneous breaths increased at lower levels of mechanical ventilation, but inspiratory time fraction did not vary across the spectrum of machine support. As machine support was withdrawn, inspiratory work and pressure-time product increased progressively for both spontaneous and assisted breathing cycles. On a per cycle basis, work output was greater for assisted than for spontaneous breaths at all levels of comparison. Although the mean pressure developed by the patient during assisted cycles averaged approximately equal to 20% less than during adjacent unassisted cycles, contraction time averaged approximately equal to 20% longer, so that the pressure-time products were nearly equivalent for both types of cycle. Two indices of force reserve indicated that our patients taxed their maximal ventilatory capability at all but the highest levels of support. We conclude that under the conditions of this study the ventilatory pump continued to be active at all levels of machine assistance. Although work per liter related linearly to the proportion of minute ventilation borne by the patient, force generation differed little for spontaneous and machine-aided breaths at any specified level of support. Whether judged on the basis of mean developed pressure (work per liter of ventilation) or pressure-time product, little effort adaptation to volume-cycled machine assistance appears to occur on a breath-by-breath basis.

  9. Gas-assisted dispersive liquid-phase microextraction using ionic liquid as extracting solvent for spectrophotometric speciation of copper.

    PubMed

    Akhond, Morteza; Absalan, Ghodratollah; Pourshamsi, Tayebe; Ramezani, Amir M

    2016-07-01

    Gas-assisted dispersive liquid-phase microextraction (GA-DLPME) has been developed for preconcentration and spectrophotometric determination of copper ion in different water samples. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate and argon gas, respectively, were used as the extracting solvent and disperser. The procedure was based on direct reduction of Cu(II) to Cu(I) by hydroxylamine hydrochloride, followed by extracting Cu(I) into ionic liquid phase by using neocuproine as the chelating agent. Several experimental variables that affected the GA-DLPME efficiency were investigated and optimized. Under the optimum experimental conditions (IL volume, 50µL; pH, 6.0; acetate buffer, 1.5molL(-1); reducing agent concentration, 0.2molL(-1); NC concentration, 120µgmL(-1); Ar gas bubbling time, 6min; argon flow rate, 1Lmin(-1); NaCl concentration, 6% w/w; and centrifugation time, 3min), the calibration graph was linear over the concentration range of 0.30-2.00µgmL(-1) copper ion with a limit of detection of 0.07µgmL(-1). Relative standard deviation for five replicate determinations of 1.0µgmL(-1) copper ion was found to be 3.9%. The developed method was successfully applied to determination of both Cu(I) and Cu(II) species in water samples.

  10. 157. ARAIII Reactor building (ARA608) Main gas loop mechanical flow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    157. ARA-III Reactor building (ARA-608) Main gas loop mechanical flow sheet. This drawing was selected as a typical example of mechanical arrangements within reactor building. Aerojet-general 880-area/GCRE-0608-50-013-102634. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  11. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    NASA Astrophysics Data System (ADS)

    Ozcan, Ahmet S.; Lavoie, Christian; Alptekin, Emre; Jordan-Sweet, Jean; Zhu, Frank; Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M.

    2016-04-01

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  12. A microfluidic respiratory assist device with high gas permeance for artificial lung applications.

    PubMed

    Kniazeva, Tatiana; Hsiao, James C; Charest, Joseph L; Borenstein, Jeffrey T

    2011-04-01

    One of the principal challenges in artificial lung technology has been the ability to provide levels of oxygen and carbon dioxide exchange that rival those of the natural human lung, while mitigating the deleterious interaction between blood and the surface of the synthetic gas exchange membrane. This interaction is exacerbated by the large oxygenator surface area required to achieve sufficient levels of gas transfer. In an effort to address this challenge, microfluidics-based artificial lung technologies comprising stacked microchannel networks have been explored by several groups. Here we report the design, fabrication and initial testing of a parallel plate multilayered silicone-based microfluidic construct containing ultrathin gas exchange membranes, aimed at maximizing gas transfer efficiency while minimizing membrane-blood contact area. The device comprises a branched microvascular network that provides controlled wall shear stress and uniform blood flow, and is designed to minimize blood damage, thrombosis and inflammatory responses seen in current oxygenators. Initial testing indicates that flow distribution through the multilayer structure is uniform and that the thin membrane can withstand pressures equivalent to those expected during operation. Oxygen transfer using phosphate buffered saline as the carrier fluid has also been assessed, demonstrating a sharp increase in oxygen transfer as membrane thickness is reduced, consistent with the expected values of oxygen permeance for thin silicone membranes.

  13. Estimation of mechanical dispersion and dispersivity in a soil-gas system by column experiments and the dusty gas model.

    PubMed

    Hibi, Yoshihiko; Kanou, Yuki; Ohira, Yuki

    2012-04-01

    In a previous study, column experiments were carried out with Toyoura sand (permeability 2.05×10(-11)m(2)) and Toyoura sand mixed with bentonite (permeability 9.96×10(-13)m(2)) to obtain the molecular diffusion coefficient, the Knudsen diffusion coefficient, the tortuosity for the molecular diffusion coefficient, and the mechanical dispersion coefficient of soil-gas systems. In this study, we conducted column experiments with field soil (permeability 2.0×10(-13)m(2)) and showed that the above parameters can be obtained for both less-permeable and more-permeable soils by using the proposed method for obtaining the parameters and performing column experiments. We then estimated dispersivity from the mechanical dispersion coefficients obtained by the column experiments. We found that the dispersivity depended on the mole fraction of the tracer gas and could be represented by a quadratic equation.

  14. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  15. Novel view on the mechanism of water-assisted proton transfer in the DNA bases: bulk water hydration.

    PubMed

    Furmanchuk, Al'ona; Isayev, Olexandr; Gorb, Leonid; Shishkin, Oleg V; Hovorun, Dmytro M; Leszczynski, Jerzy

    2011-03-14

    In the present work, the conventional static ab initio picture of a water-assisted mechanism of the tautomerization of Nucleic Acid Bases (NABs) in an aqueous environment is enhanced by the classical and Car-Parrinello molecular dynamics simulations. The inclusion of the dynamical contribution is vital because the formation and longevity of the NAB-water bridge complexes represent decisive factors for further tautomerization. The results of both molecular dynamic techniques indicate that the longest time when such complexes exist is significantly shorter than the time required for proton transfer suggested by the static ab initio level of theory. New rate constants of tautomerization corrected for the dynamic effect of environment are proposed based on the first principles molecular dynamics data. Those values are used for the evaluation of a water-assisted mechanism that is feasible in such biological systems as E. coli cell. PMID:21253641

  16. An investigation of cutting mechanics in 2 dimensional ultrasonic vibration assisted milling toward chip thickness and chip formation

    NASA Astrophysics Data System (ADS)

    Rasidi, I. I.; Rafai, N. H.; Rahim, E. A.; Kamaruddin, S. A.; Ding, H.; Cheng, K.

    2015-12-01

    The purpose of this paper is to investigate the effects of 2 dimensional Ultrasonic Vibration Assisted Milling (UVAM) cutting mechanics, considering tool path trajectory and the effect on the chip thickness. The theoretical modelling of cutting mechanics is focused by considering the trajectory of the tool locus into the workpiece during the machining. The studies found the major advantages of VAM are come from the intermittent tool tip interaction phenomena between cutting tool and workpiece. The reduction of thinning chip thickness formations can be identifying advantages from vibration assisted milling in 2 dimensional. The finding will be discussing the comparison between conventional machining the potential of the advantages toward the chip thickness and chip formation in conclusion.

  17. Determination of total acid content in biomass hydrolysates by solvent-assisted and reaction based headspace gas chromatography.

    PubMed

    Huang, Liu-Lian; Hu, Hui-Chao; Chen, Li-Hui

    2015-11-27

    This work reports on a novel method for the determination of total acid (TA) in biomass hydrolysates by a solvent-assisted and reaction-based headspace gas chromatography (HS-GC). The neutralization reaction between the acids in hydrolysates and bicarbonate in an ethanol (50%) aqueous solution was performed in a closed headspace sample vial, from which the carbon dioxide generated from the reaction was detected by HS-GC. It was found that the addition of ethanol can effectively eliminate the precipitation of some organic acids in the biomass hydrolysates. The results showed that the reaction and headspace equilibration can be achieved within 45min at 70°C; the method has a good precision (RSD<3.27%) and accuracy (recovery of 97.4-105%); the limit of quantification is 1.36μmol. The present method is quite suitable to batch analysis of TA content in hydrolysate for the biorefinery related research. PMID:26499971

  18. Structural and composition investigations at delayered locations of low k integrated circuit device by gas-assisted focused ion beam

    SciTech Connect

    Wang, Dandan Kee Tan, Pik; Yamin Huang, Maggie; Lam, Jeffrey; Mai, Zhihong

    2014-05-15

    The authors report a new delayering technique – gas-assisted focused ion beam (FIB) method and its effects on the top layer materials of integrated circuit (IC) device. It demonstrates a highly efficient failure analysis with investigations on the precise location. After removing the dielectric layers under the bombardment of an ion beam, the chemical composition of the top layer was altered with the reduced oxygen content. Further energy-dispersive x-ray spectroscopy and Fourier transform infrared analysis revealed that the oxygen reduction lead to appreciable silicon suboxide formation. Our findings with structural and composition alteration of dielectric layer after FIB delayering open up a new insight avenue for the failure analysis in IC devices.

  19. Response mechanism for surface acoustic wave gas sensors based on surface-adsorption.

    PubMed

    Liu, Jiansheng; Lu, Yanyan

    2014-04-16

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data.

  20. Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam.

    PubMed

    Santamaria, Luigi; Sarno, Valentina Di; Natale, Paolo De; Rosa, Maurizio De; Inguscio, Massimo; Mosca, Simona; Ricciardi, Iolanda; Calonico, Davide; Levi, Filippo; Maddaloni, Pasquale

    2016-06-22

    We demonstrate continuous-wave cavity ring-down spectroscopy of a partially hydrodynamic molecular beam emerging from a buffer-gas-cooling source. Specifically, the (ν1 + ν3) vibrational overtone band of acetylene (C2H2) around 1.5 μm is accessed using a narrow-linewidth diode laser stabilized against a GPS-disciplined rubidium clock via an optical frequency comb synthesizer. As an example, the absolute frequency of the R(1) component is measured with a fractional accuracy of ∼1 × 10(-9). Our approach represents the first step towards the extension of more sophisticated cavity-enhanced interrogation schemes, including saturated absorption cavity ring-down or two-photon excitation, to buffer-gas-cooled molecular beams.

  1. Assessment of solar-assisted gas-fired heat pump systems

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  2. Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam.

    PubMed

    Santamaria, Luigi; Sarno, Valentina Di; Natale, Paolo De; Rosa, Maurizio De; Inguscio, Massimo; Mosca, Simona; Ricciardi, Iolanda; Calonico, Davide; Levi, Filippo; Maddaloni, Pasquale

    2016-06-22

    We demonstrate continuous-wave cavity ring-down spectroscopy of a partially hydrodynamic molecular beam emerging from a buffer-gas-cooling source. Specifically, the (ν1 + ν3) vibrational overtone band of acetylene (C2H2) around 1.5 μm is accessed using a narrow-linewidth diode laser stabilized against a GPS-disciplined rubidium clock via an optical frequency comb synthesizer. As an example, the absolute frequency of the R(1) component is measured with a fractional accuracy of ∼1 × 10(-9). Our approach represents the first step towards the extension of more sophisticated cavity-enhanced interrogation schemes, including saturated absorption cavity ring-down or two-photon excitation, to buffer-gas-cooled molecular beams. PMID:27273337

  3. Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time

    SciTech Connect

    Knoops, Harm C. M. E-mail: w.m.m.kessels@tue.nl; Peuter, K. de; Kessels, W. M. M. E-mail: w.m.m.kessels@tue.nl

    2015-07-06

    The requirements on the material properties and growth control of silicon nitride (SiN{sub x}) spacer films in transistors are becoming ever more stringent as scaling of transistor structures continues. One method to deposit high-quality films with excellent control is atomic layer deposition (ALD). However, depositing SiN{sub x} by ALD has turned out to be very challenging. In this work, it is shown that the plasma gas residence time τ is a key parameter for the deposition of SiN{sub x} by plasma-assisted ALD and that this parameter can be linked to a so-called “redeposition effect”. This previously ignored effect, which takes place during the plasma step, is the dissociation of reaction products in the plasma and the subsequent redeposition of reaction-product fragments on the surface. For SiN{sub x} ALD using SiH{sub 2}(NH{sup t}Bu){sub 2} as precursor and N{sub 2} plasma as reactant, the gas residence time τ was found to determine both SiN{sub x} film quality and the resulting growth per cycle. It is shown that redeposition can be minimized by using a short residence time resulting in high-quality films with a high wet-etch resistance (i.e., a wet-etch rate of 0.5 nm/min in buffered HF solution). Due to the fundamental nature of the redeposition effect, it is expected to play a role in many more plasma-assisted ALD processes.

  4. Strategies and methodologies to develop techniques for computer-assisted analysis of gas phase formation during altitude decompression

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Hall, W. A.

    1993-01-01

    It would be of operational significance if one possessed a device that would indicate the presence of gas phase formation in the body during hypobaric decompression. Automated analysis of Doppler gas bubble signals has been attempted for 2 decades but with generally unfavorable results, except with surgically implanted transducers. Recently, efforts have intensified with the introduction of low-cost computer programs. Current NASA work is directed towards the development of a computer-assisted method specifically targeted to EVA, and we are most interested in Spencer Grade 4. We note that Spencer Doppler Grades 1 to 3 have increased in the FFT sonogram and spectrogram in the amplitude domain, and the frequency domain is sometimes increased over that created by the normal blood flow envelope. The amplitude perturbations are of very short duration, in both systole and diastole and at random temporal positions. Grade 4 is characteristic in the amplitude domain but with modest increases in the FFT sonogram and spectral frequency power from 2K to 4K over all of the cardiac cycle. Heart valve motion appears to characteristic display signals: (1) the demodulated Doppler signal amplitude is considerably above the Doppler-shifted blow flow signal (even Grade 4); and (2) demodulated Doppler frequency shifts are considerably greater (often several kHz) than the upper edge of the blood flow envelope. Knowledge of these facts will aid in the construction of a real-time, computer-assisted discriminator to eliminate cardiac motion artifacts. There could also exist perturbations in the following: (1) modifications of the pattern of blood flow in accordance with Poiseuille's Law, (2) flow changes with a change in the Reynolds number, (3) an increase in the pulsatility index, and/or (4) diminished diastolic flow or 'runoff.' Doppler ultrasound devices have been constructed with a three-transducer array and a pulsed frequency generator.

  5. Fabrication of micro/nano-structures using focused ion beam implantation and XeF2 gas-assisted etching

    NASA Astrophysics Data System (ADS)

    Xu, Z. W.; Fang, F. Z.; Fu, Y. Q.; Zhang, S. J.; Han, T.; Li, J. M.

    2009-05-01

    A micro/nano-structure fabrication method is developed using focused ion beam implantation (FIBI) and FIB XeF2 gas-assisted etching (FIB-GAE). Firstly, the FIB parameters' influence on the FIBI depth is studied by SEM observation of the FIBI cross-section cutting by FIB. Nanoparticles with 10-15 nm diameter are found to be evenly distributed in the FIBI layer, which can serve as a XeF2-assisted etching mask when the ion dose is larger than 1.4 × 1017 ions cm-2. The FIBI layers being used as the etching mask for the subsequent FIB-GAE process are explored to create different micro/nano-structures such as nano-gratings, nano-electrode and sinusoidal microstructures. It is found that the method of combining FIBI with subsequent FIB-GAE is efficient and flexible in micro/nano-structuring, and it can effectively remove the redeposition effect compared with the FIB milling method.

  6. UV-assisted room-temperature gas sensing by HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Karaduman, Irmak; Barin, Özlem; Acar, Selim

    2016-06-01

    This research paper presents a detailed study of the influence of annealing temperature and UV irradiation on the sensitivity to NO2 of HfO2 thin films that can be used for the development of metal-oxide gas sensors. The HfO2 thin films were grown with a 3.3-nm thickness by using atomic layer deposition (ALD) and were annealed at different temperatures. The HfO2 thin films were characterized by using an atomic force microscope (AFM). The roughnesses of thin films were seen to have been affected by the annealing treatment. The effects of annealing temperature, as well as the operating temperature, on the response and the recovery characteristics of the HfO2 film were investigated. The results showed that both the annealing temperature and the operating temperature had significant effects on the sensing characteristics. Also, at room-temperature operation, the sensitivity of HfO2 thin films to 5 ppm of NO2 gas in air was investigated under UV irradiation. UV irradiation not only increased the response but also reduced the response and the recovery times during the gas-sensing measurements.

  7. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  8. Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Ye, Xingchen; Dai, Wei; Hou, Weiyi; Zuo, Fan; Xie, Yi

    2006-01-01

    Recently, the biomolecule-assisted synthesis method has been a new and promising focus in the preparation of various nanomaterials. But current works mainly focus on the synthesis of metal nanoparticles and nanowires using macro-biomolecules (e.g. virus, protein and DNA) as templates in the presence of a reducing agent. Beta-carotene, one of the most common bio-antioxidants, can be oxidized to form species with both hydrophilic and hydrophobic ends, which can provide an in situ soft template for the synthesis of nanomaterials. Herein, a simple beta-carotene-assisted method was developed for the first time to synthesize t-Se nanowires and nanoribbons with high crystallinity. We demonstrate that beta-carotene serves as not only the reducing agent, but also an in situ template in the preparation of Se one-dimensional nanostructures. It is found that the growth mechanism of Se nanomaterials is different from the familiar sphere-wire process. A novel flake-cracking mechanism is proposed. By this biomolecule-assisted route, Te one-dimensional nanostructures and Pd nanowires were also fabricated. The assisted-biomolecule in our method may be spread to carotenoids and other antioxidants, and thus broaden the application fields of biomolecules. Our preliminary investigations have shown that the facile, solution-phase biomolecule-assisted method can be potentially extended to the preparation of other low-dimensional nanostructures. The synthesized t-Se nanowires and nanoribbons may serve as templates to generate other tubular functional nanomaterials and find applications in the studies of structure-property relationships as well as in the fabrication of nanoscale optoelectronic devices.

  9. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    SciTech Connect

    Hashemi, S. H.; Mohammadyani, D.

    2011-01-17

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  10. Coupled simulation of CFD-flight-mechanics with a two-species-gas-model for the hot rocket staging

    NASA Astrophysics Data System (ADS)

    Li, Yi; Reimann, Bodo; Eggers, Thino

    2016-11-01

    The hot rocket staging is to separate the lowest stage by directly ignite the continuing-stage-motor. During the hot staging, the rocket stages move in a harsh dynamic environment. In this work, the hot staging dynamics of a multistage rocket is studied using the coupled simulation of Computational Fluid Dynamics and Flight Mechanics. Plume modeling is crucial for a coupled simulation with high fidelity. A 2-species-gas model is proposed to simulate the flow system of the rocket during the staging: the free-stream is modeled as "cold air" and the exhausted plume from the continuing-stage-motor is modeled with an equivalent calorically-perfect-gas that approximates the properties of the plume at the nozzle exit. This gas model can well comprise between the computation accuracy and efficiency. In the coupled simulations, the Navier-Stokes equations are time-accurately solved in moving system, with which the Flight Mechanics equations can be fully coupled. The Chimera mesh technique is utilized to deal with the relative motions of the separated stages. A few representative staging cases with different initial flight conditions of the rocket are studied with the coupled simulation. The torque led by the plume-induced-flow-separation at the aft-wall of the continuing-stage is captured during the staging, which can assist the design of the controller of the rocket. With the increasing of the initial angle-of-attack of the rocket, the staging quality becomes evidently poorer, but the separated stages are generally stable when the initial angle-of-attack of the rocket is small.

  11. CO2 Binding Organic Liquids Gas Capture with Polarity Swing Assisted Regeneration

    SciTech Connect

    Heldebrant, David

    2014-05-31

    This report outlines the comprehensive bench-scale testing of the CO2-binding organic liquids (CO2BOLs) solvent platform and its unique Polarity Swing Assisted Regeneration (PSAR). This study outlines all efforts on a candidate CO2BOL solvent molecule, including solvent synthesis, material characterization, preliminary toxicology studies, and measurement of all physical, thermodynamic and kinetic data, including bench-scale testing. Equilibrium and kinetic models and analysis were made using Aspen Plus™. Preliminary process configurations, a technoeconomic assessment and solvent performance projections for separating CO2 from a subcritical coal-fired power plant are compared to the U.S. Department of Energy's Case 10 monoethanolamine baseline.

  12. Mechanism of aneurysm formation after 830-nm diode-laser-assisted microarterial anastomosis

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Godlewski, Guilhem; Rouy, Simone

    1998-01-01

    A series of 830 nm diode laser assisted longitudinal aortorrhophy with a condition of 400 to 500 J/mm2 for one cm length of anastomosis versus conventional manual anastomoses were performed in 90 Wistar rats. With comparing with normal media process, a histologic examination of aneurysm formation was conducted. The results show that there are two important factors to cause aneurysm formation after laser assisted anastomosis: (1) vessel wall is damaged by laser heating; (2) proliferation of collagen fiber at adventitia is absent when media reconstruction.

  13. Providing training and technical assistance to customs officers and border guards: An effective mechanism to improve export controls

    SciTech Connect

    Gritton, C.A.

    1995-12-31

    With the disintegration of the Soviet Union, an increasing international concern requiring attention is illegal trafficking in nuclear and nuclear-related dual-use commodities. For the past few years, the US government, including the Department of Energy (DOE), has assisted the former Soviet Union in establishing and enhancing national export control systems. Although US assistance has been targeted to help control approved transfers, part of the focus has shifted to prevent the illegal exit of special nuclear material, dual-use items, and other nuclear-related materials. As part of a State Department initiative, a Nonproliferation and Disarmament Fund (NDF) was established to address various nonproliferation concerns. One project, funded by NDF, US Customs Service (Customs), and the DOE, focuses on assisting transit countries to prevent illegal trafficking. DOE is providing technical expertise to seven countries in the Baltics and Central Europe to help identify materials, equipment, and technology that might transit their borders. Although there are many mechanisms to prevent illegal trafficking, this paper will discuss the importance of providing international customs officials and border guards with training and technical assistance on nuclear materials and nuclear-related dual-use items. More specifically, detail of the DOE training plan will be discussed.

  14. Morphology control of surfactant-assisted graphene oxide films at the liquid-gas interface.

    PubMed

    Kim, Hyeri; Jang, Young Rae; Yoo, Jeseung; Seo, Young-Soo; Kim, Ki-Yeon; Lee, Jeong-Soo; Park, Soon-Dong; Kim, Chan-Joong; Koo, Jaseung

    2014-03-01

    Control of a two-dimensional (2D) structure of assembled graphene oxide (GO) sheets is highly desirable for fundamental research and potential applications of graphene devices. We show that an alkylamine surfactant, i.e., octadecylamine (ODA), Langmuir monolayer can be utilized as a template for adsorbing highly hydrophilic GO sheets in an aqueous subphase at the liquid-gas interface. The densely packed 2-D monolayer of such complex films was obtained on arbitrary substrates by applying Langmuir-Schaefer or Langmuir-Blodgett technique. Morphology control of GO sheets was also achieved upon compression by tuning the amount of spread ODA molecules. We found that ODA surfactant monolayers prevent GO sheets from sliding, resulting in formation of wrinkling rather than overlapping at the liquid-gas interface during the compression. The morphology structures did not change after a graphitization procedure of chemical hydrazine reduction and thermal annealing treatments. Since morphologies of graphene films are closely correlated to the performance of graphene-based materials, the technique employed in this study can provide a route for applications requiring wrinkled graphenes, ranging from nanoelectronic devices to energy storage materials, such as supercapacitors and fuel cell electrodes. PMID:24499257

  15. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    SciTech Connect

    Staller, George E.; Whitlow, Gary

    1999-04-27

    On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two meters in an actual drilling operation, The relief well is nearing 14,000 feet deep, targeting an intercept of the first well near 17,600 feet. The relief well is expected to be completed in

  16. [Ventricular assist device – Possibilities of long-term mechanical circulatory support].

    PubMed

    Englberger, Lars; Reineke, David C; Martinelli, Michele V; Mohacsi, Paul; Carrel, Thierry P

    2015-08-01

    In Switzerland 200’000 people suffer from congestive heart failure. Approximately 10’000 patients find themselves in an advanced state of the disease. When conservative treatment options are no longer available heart transplantation is the therapy of choice. Should this not be an option due to long waiting lists or medical issues assist device therapy becomes an option. Assist device therapy is separated in short-term and long-term support. Long-term support is nowadays performed with ventricular assist devices (VADs). The native heart is still in place and supported in parallel to the remaining function of the heart. The majority of patients are treated with a left ventricular assist device (LVAD). The right ventrical alone (RVAD) as well as bi-ventricular support (BiVAD) is rarely needed. The modern VADs are implantable and create a non-pulsative bloodflow. A percutaneous driveline enables energy supply and pump-control. Indication strategies for VAD implantations include bridge to transplant (short term support), bridge to candidacy and bridge to transplant. VADs become more and more a definite therapeutic option (destination therapy). VAD therapy might be a realistic alternative to organ transplantation in the near future. PMID:26227978

  17. Matrix-assisted laser desorption mass spectrometry of gas-phase peptide-metal complexes

    NASA Astrophysics Data System (ADS)

    Hortal, Ana R.; Hurtado, Paola; Martínez-Haya, Bruno

    2008-12-01

    Cation attachment to a model peptide has been investigated in matrix-assisted laser desorption experiments. Angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) is chosen as a system for study, and Cu2+ and K+ salts are used as cationizing agents. Three fundamentally different types of samples are investigated: (1) a crystalline sample of Ang I, metal salt and MALDI matrix, prepared with the conventional dried droplet method; (2) a solvent-free fine powder mixture of the same three compounds, and (3) a solution of the angiotensin and the metal salt in an ionic liquid matrix (a molten organic salt that acts as a MALDI active solvent). Effective protonation and cationization of the peptide are achieved with the three methods. The transition metal systematically provides more efficient cationization than the alkali metal. At sufficiently high concentration of the salt, the attachment of up to four copper cations to the angiotensin is observed in the MALDI spectrum. In contrast, only one K+ cation is efficiently bound to the peptide. For a given salt concentration, the highest degree of cationization is obtained in the laser desorption from the ionic liquid matrix. This is attributed to the efficient transfer of free metal cations to the desorption plume, where the complexation takes place.

  18. Mechanisms to enhance the effectiveness of allied health and social care assistants in community-based rehabilitation services: a qualitative study.

    PubMed

    Moran, Anna; Nancarrow, Susan A; Enderby, Pamela

    2015-07-01

    This research aims to describe the factors associated with successful employment of allied health and social care assistants in community-based rehabilitation services (CBRS) in England. The research involved the thematic analysis of interviews and focus groups with 153 professionally qualified and assistant staff from 11 older people's interdisciplinary community rehabilitation teams. Data were collected between November 2006 and December 2008. Assistants were perceived as a focal point for care delivery and conduits for enabling a service to achieve goals within interdisciplinary team structures. Nine mechanisms were identified that promoted the successful employment of assistants: (i) Multidisciplinary team input into assistant training and support; (ii) Ensuring the timely assessment of clients by qualified staff; (iii) Establishing clear communication structures between qualified and assistant staff; (iv) Co-location of teams to promote communication and skill sharing; (v) Removing barriers that prevent staff working to their full scope of practice; (vi) Facilitating role flexibility of assistants, while upholding the principles of reablement; (vii) Allowing sufficient time for client-staff interaction; (viii) Ensuring an appropriate ratio of assistant to qualified staff to enable sufficient training and supervision of assistants; and (ix) Appropriately, resourcing the role for training and reimbursement to reflect responsibility. We conclude that upholding these mechanisms may help to optimise the efficiency and productivity of assistant and professionally qualified staff in CBRS.

  19. A system for delivering mechanical stimulation and robot-assisted therapy to the rat whisker pad during facial nerve regeneration.

    PubMed

    Heaton, James T; Knox, Christopher J; Malo, Juan S; Kobler, James B; Hadlock, Tessa A

    2013-11-01

    Functional recovery is typically poor after facial nerve transection and surgical repair. In rats, whisking amplitude remains greatly diminished after facial nerve regeneration, but can recover more completely if the whiskers are periodically mechanically stimulated during recovery. Here we present a robotic "whisk assist" system for mechanically driving whisker movement after facial nerve injury. Movement patterns were either preprogrammed to reflect natural amplitudes and frequencies, or movements of the contralateral (healthy) side of the face were detected and used to control real-time mirror-like motion on the denervated side. In a pilot study, 20 rats were divided into nine groups and administered one of eight different whisk assist driving patterns (or control) for 5-20 minutes, five days per week, across eight weeks of recovery after unilateral facial nerve cut and suture repair. All rats tolerated the mechanical stimulation well. Seven of the eight treatment groups recovered average whisking amplitudes that exceeded controls, although small group sizes precluded statistical confirmation of group differences. The potential to substantially improve facial nerve recovery through mechanical stimulation has important clinical implications, and we have developed a system to control the pattern and dose of stimulation in the rat facial nerve model.

  20. Effect of laser parameters and assist gas on spectral response of silicon fibrous nanostructure

    SciTech Connect

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Alubiady, M.; Tan, Bo

    2010-11-15

    This article report, for the first time, the influence of laser parameters on the spectral response of weblike silicon fibrous nanostructures. These nanostructures are formed by femtosecond laser irradiation at megahertz pulse frequency under atmosphere and nitrogen ambient. The observed decreasing in reflectance is correlated with the density of fibrous nanostructures and the size of the agglomerated nanoparticles. Compared to bulk silicon, Raman spectra of fibrous nanostructures shows a downward shift and asymmetric broadening at the first order phonon peak. The shift and broadening are attributed to phonon confinement of fibrous nanostructure. Polarization and nitrogen gas modify the morphology of generated nanomaterials but does not have effect on light absorptance. Pulsewidth and pulse frequency do not have significant effect on light absorptance.

  1. Effect of laser parameters and assist gas on spectral response of silicon fibrous nanostructure

    NASA Astrophysics Data System (ADS)

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo; Alubiady, M.

    2010-11-01

    This article report, for the first time, the influence of laser parameters on the spectral response of weblike silicon fibrous nanostructures. These nanostructures are formed by femtosecond laser irradiation at megahertz pulse frequency under atmosphere and nitrogen ambient. The observed decreasing in reflectance is correlated with the density of fibrous nanostructures and the size of the agglomerated nanoparticles. Compared to bulk silicon, Raman spectra of fibrous nanostructures shows a downward shift and asymmetric broadening at the first order phonon peak. The shift and broadening are attributed to phonon confinement of fibrous nanostructure. Polarization and nitrogen gas modify the morphology of generated nanomaterials but does not have effect on light absorptance. Pulsewidth and pulse frequency do not have significant effect on light absorptance.

  2. GRAVITATIONAL INSTABILITY OF SOLIDS ASSISTED BY GAS DRAG: SLOWING BY TURBULENT MASS DIFFUSIVITY

    SciTech Connect

    Shariff, Karim; Cuzzi, Jeffrey N.

    2011-09-01

    The Goldreich and Ward (axisymmetric) gravitational instability of a razor thin particle layer occurs when the Toomre parameter Q{sub T} {identical_to} c{sub p}{Omega}{sub 0}/{pi}G{Sigma}{sub p} < 1 (c{sub p} being the particle dispersion velocity). Ward extended this analysis by adding the effect of gas drag upon particles and found that even when Q{sub T} > 1, sufficiently long waves were always unstable. Youdin carried out a detailed analysis and showed that the instability allows chondrule-sized ({approx}1 mm) particles to undergo radial clumping with reasonable growth times even in the presence of a moderate amount of turbulent stirring. The analysis of Youdin includes the role of turbulence in setting the thickness of the dust layer and in creating a turbulent particle pressure in the momentum equation. However, he ignores the effect of turbulent mass diffusivity on the disturbance wave. Here, we show that including this effect reduces the growth rate significantly, by an amount that depends on the level of turbulence, and reduces the maximum intensity of turbulence the instability can withstand by 1-3 orders of magnitude. The instability is viable only when turbulence is extremely weak and the solid to gas surface density of the particle layer is considerably enhanced over minimum-mass-nebula values. A simple mechanistic explanation of the instability shows how the azimuthal component of drag promotes instability while the radial component hinders it. A gravito-diffusive overstability is also possible but never realized in the nebula models.

  3. Mechanical Behavior of Methane Infiltrated Coal: the Roles of Gas Desorption, Stress Level and Loading Rate

    NASA Astrophysics Data System (ADS)

    Wang, Shugang; Elsworth, Derek; Liu, Jishan

    2013-09-01

    We report laboratory experiments to investigate the role of gas desorption, stress level and loading rate on the mechanical behavior of methane infiltrated coal. Two suites of experiments are carried out. The first suite of experiments is conducted on coal (Lower Kittanning seam, West Virginia) at a confining stress of 2 MPa and methane pore pressures in the fracture of 1 MPa to examine the role of gas desorption. These include three undrained (hydraulically closed) experiments with different pore pressure distributions in the coal, namely, overpressured, normally pressured and underpressured, and one specimen under drained condition. Based on the experimental results, we find quantitative evidence that gas desorption weakens coal through two mechanisms: (1) reducing effective stress controlled by the ratio of gas desorption rate over the drainage rate, and (2) crushing coal due to the internal gas energy release controlled by gas composition, pressure and content. The second suite of experiments is conducted on coal (Upper B seam, Colorado) at confining stresses of 2 and 4 MPa, with pore pressures of 1 and 3 MPa, under underpressured and drained condition with three different loading rates to study the role of stress level and loading rate. We find that the Biot coefficient of coal specimens is <1. Reducing effective confining stress decreases the elastic modulus and strength of coal. This study has important implications for the stability of underground coal seams.

  4. Electrophilic assistance to the cleavage of an RNA model phopshodiester via specific and general base-catalyzed mechanisms.

    PubMed

    Corona-Martínez, David Octavio; Gomez-Tagle, Paola; Yatsimirsky, Anatoly K

    2012-10-19

    Kinetics of transesterification of the RNA model substrate 2-hydroxypropyl 4-nitrophenyl phosphate promoted by Mg(2+) and Ca(2+), the most common biological metals acting as cofactors for nuclease enzymes and ribozymes, as well as by Co(NH(3))(6)(3+), Co(en)(3)(3+), Li(+), and Na(+) cations, often employed as mechanistic probes, was studied in 80% v/v (50 mol %) aqueous DMSO, a medium that allows one to discriminate easily specific base (OH(-)-catalyzed) and general base (buffer-catalyzed) reaction paths. All cations assist the specific base reaction, but only Mg(2+) and Na(+) assist the general base reaction. For Mg(2+)-assisted reactions, the solvent deuterium isotope effects are 1.23 and 0.25 for general base and specific base mechanisms, respectively. Rate constants for Mg(2+)-assisted general base reactions measured with different bases fit the Brønsted correlation with a slope of 0.38, significantly lower than the slope for the unassisted general base reaction (0.77). Transition state binding constants for catalysts in the specific base reaction (K(‡)(OH)) both in aqueous DMSO and pure water correlate with their binding constants to 4-nitrophenyl phosphate dianion (K(NPP)) used as a minimalist transition state model. It was found that K(‡)(OH) ≈ K(NPP) for "protic" catalysts (Co(NH(3))(6)(3+), Co(en)(3)(3+), guanidinium), but K(‡)(OH) ≫ K(NPP) for Mg(2+) and Ca(2+) acting as Lewis acids. It appears from results of this study that Mg(2+) is unique in its ability to assist efficiently the general base-catalyzed transesterification often occurring in active sites of nuclease enzymes and ribozymes.

  5. Impact of Gas-Phase Mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) Predictions: Mechanism Implementation and Comparative Evaluation

    EPA Science Inventory

    Gas-phase mechanisms provide important oxidant and gaseous precursors for secondary aerosol formation. Different gas-phase mechanisms may lead to different predictions of gases, aerosols, and aerosol direct and indirect effects. In this study, WRF/Chem-MADRID simulations are cond...

  6. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Kumai, Kazuma; Miyashiro, Hajime; Kobayashi, Yo; Takei, Katsuhito; Ishikawa, Rikio

    To elucidate the gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cells after long cycling, we developed a device which can accurately determine the volume of generated gas in the cell. Experiments on Li xC 6/Li 1- xCoO 2 cells using electrolytes such as 1 M LiPF 6 in propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) are presented and discussed. In the nominal voltage range (4.2-2.5 V), compositional change due mainly to ester exchange reaction occurs, and gaseous products in the cell are little. Generated gas volume and compositional change in the electrolyte are detected largely in overcharged cells, and we discussed that gas generation due to electrolyte decomposition involves different decomposition reactions in overcharged and overdischarged cells.

  7. Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1979-01-01

    Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.

  8. Using Cluster Gas Fractions to Estimate Total BH Mechanical Feedback Energy

    NASA Astrophysics Data System (ADS)

    Mathews, Bill

    2011-08-01

    The total mechanical feedback energy received by clusters of mass 4-11 × 10^{14} M_{sun} exceeds 10^{63} ergs and mean feedback luminosity 10^{46} erg/s. This can be estimated by comparing gas density profiles in idealized adiabatic clusters evolved to zero redshift with entropy and gas fraction profiles in clusters of the same mass. Feedback energy, stored as potential energy in the cluster gas, can be estimated by comparing the PE within the same gas mass in adiabatic and observed atmospheres which have expanded considerably. The total feedback energy far exceeds energy gained by supernovae or lost by radiation. Less than 1% of the feedback energy is deposited within the cooling radius, but the time-averaged mass inflow from cooling is nicely offset by outflow due to feedback expansion.

  9. In situ and operando spectroscopy for assessing mechanisms of gas sensing.

    PubMed

    Gurlo, Alexander; Riedel, Ralf

    2007-01-01

    The mechanistic description of gas sensing on inorganic, organic, and polymeric materials is of great scientific and technological interest. The understanding of surface and bulk reactions responsible for gas-sensing effects will lead to increased selectivity and sensitivity in the chemical determination of gases and thus to the development of better sensors. In recent years, spectroscopic tools have been developed to follow the physicochemical processes taking place in an active sensing element in real time and under operating conditions. Thus, the monitoring of the processes in "living" gas sensors is no longer an unsolvable problem. This Review gives an overview of in situ and operando spectroscopic techniques for the study of gas-sensing mechanisms on solid-state sensors.

  10. A Comparative Data-Based Modeling Study on Respiratory CO2 Gas Exchange during Mechanical Ventilation

    PubMed Central

    Kim, Chang-Sei; Ansermino, J. Mark; Hahn, Jin-Oh

    2016-01-01

    The goal of this study is to derive a minimally complex but credible model of respiratory CO2 gas exchange that may be used in systematic design and pilot testing of closed-loop end-tidal CO2 controllers in mechanical ventilation. We first derived a candidate model that captures the essential mechanisms involved in the respiratory CO2 gas exchange process. Then, we simplified the candidate model to derive two lower-order candidate models. We compared these candidate models for predictive capability and reliability using experimental data collected from 25 pediatric subjects undergoing dynamically varying mechanical ventilation during surgical procedures. A two-compartment model equipped with transport delay to account for CO2 delivery between the lungs and the tissues showed modest but statistically significant improvement in predictive capability over the same model without transport delay. Aggregating the lungs and the tissues into a single compartment further degraded the predictive fidelity of the model. In addition, the model equipped with transport delay demonstrated superior reliability to the one without transport delay. Further, the respiratory parameters derived from the model equipped with transport delay, but not the one without transport delay, were physiologically plausible. The results suggest that gas transport between the lungs and the tissues must be taken into account to accurately reproduce the respiratory CO2 gas exchange process under conditions of wide-ranging and dynamically varying mechanical ventilation conditions. PMID:26870728

  11. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion

    NASA Astrophysics Data System (ADS)

    Cecrle, Eric Daniel

    This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the

  12. Distinct "assisted" and "spontaneous" mechanisms for the insertion of polytopic chlorophyll-binding proteins into the thylakoid membrane.

    PubMed

    Kim, S J; Jansson, S; Hoffman, N E; Robinson, C; Mant, A

    1999-02-19

    The biogenesis of several bacterial polytopic membrane proteins has been shown to require signal recognition particle (SRP) and protein transport machinery, and one such protein, the major light-harvesting chlorophyll-binding protein (LHCP) exhibits these requirements in chloroplasts. In this report we have used in vitro insertion assays to analyze four additional members of the chlorophyll-a/b-binding protein family. We show that two members, Lhca1 and Lhcb5, display an absolute requirement for stroma, nucleoside triphosphates, and protein transport apparatus, indicating an "assisted" pathway that probably resembles that of LHCP. Two other members, however, namely an early light-inducible protein 2 (Elip2) and photosystem II subunit S (PsbS), can insert efficiently in the complete absence of SRP, SecA activity, nucleoside triphosphates, or a functional Sec system. The data suggest a possibly spontaneous insertion mechanism that, to date, has been characterized only for simple single-span proteins. Of the membrane proteins whose insertion into thylakoids has been analyzed, five have now been shown to insert by a SRP/Sec-independent mechanism, suggesting that this is a mainstream form of targeting pathway. We also show that PsbS and Elip2 molecules are capable of following either "unassisted" or assisted pathways, and we discuss the implications for the mechanism and role of SRP in chloroplasts.

  13. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao

    2003-10-01

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and

  14. UNDERSTANDING THE MECHANISMS CONTROLLING ENVIRONMENTALLY-ASSISTED INTERGRANULAR CRACKING OF NICKEL-BASE ALLOYS

    SciTech Connect

    Gary S. Was

    2004-02-13

    Creep and IG cracking of nickel-base alloys depend principally on two factors--the deformation behavior and the effect of the environment. We have shown that both contribute to the observed degradation in primary water. The understanding of cracking does not lie wholly within the environmental effects arena, nor can it be explained only by intrinsic mechanical behavior. Rather, both processes contribute to the observed behavior in primary water. In this project, we had three objectives: (1) to verify that grain boundaries control deformation in Ni-16Cr-9Fe at 360 C, (2) to identify the environmental effect on IGSCC, and (3) to combine CSLBs and GBCs to maximize IGSCC resistance in Ni-Cr-Fe in 360 C primary water. Experiments performed in hydrogen gas at 360 C confirm an increase in the primary creep rate in Ni-16Cr-9Fe at 360 C due to hydrogen. The creep strain transients caused by hydrogen are proposed to be due to the collapse of dislocation pile-ups, as confirmed by observations in HVEM. The observations only partially support the hydrogen-enhanced plasticity model, but also suggest a potential role of vacancies in the accelerate creep behavior in primary water. In high temperature oxidation experiments designed to examine the potential for selective internal oxidation in the IGSCC process, cracking is greatest in the more oxidizing environments compared to the low oxygen potential environments where nickel metal is stable. In Ni-Cr-Fe alloys, chromium oxides form preferentially along the grain boundaries, even at low oxygen potential, supporting a potential role in grain boundary embrittlement due to preferential oxidation. Experiments designed to determine the role of grain boundary deformation on intergranular cracking have established, for the first time, a cause-and-effect relationship between grain boundary deformation and IGSCC. That is, grain boundary deformation in Ni-16Cr-9Fe in 360 C primary water leads to IGSCC of the deformed boundaries. As well

  15. Fast low-pressure microwave assisted extraction and gas chromatographic determination of polychlorinated biphenyls in soil samples.

    PubMed

    Bruzzoniti, M C; Maina, R; Tumiatti, V; Sarzanini, C; Rivoira, L; De Carlo, R M

    2012-11-23

    A new technology equipment for low-pressure microwave assisted extraction (usually employed for organic chemistry reactions), recently launched in the market, is used for the first time in environmental analysis for the extraction of commercial technical Aroclor mixtures from soil. Certified reference materials of Aroclor 1260, Aroclor 1254 and Aroclor 1242 in transformer oils were used to contaminate the soil samples and to optimize the extraction method as well as the subsequent gas chromatographic electron capture detection (GC-ECD) analytical method. The study was performed optimizing the extraction, the purification and the gas chromatographic separation conditions to enhance the resolution of difficult pairs of congeners (C28/31 and C141/179). After optimization, the recovery yields were included within the range 79-84%. The detection limits, evaluated for two different commercial polychlorinated biphenyl (PCB) mixtures (Aroclor 1260 and Aroclor 1242) were 0.056 ± 0.001 mg/kg and 0.290 ± 0.006 mg/kg, respectively. The method, validated with certified soil samples, was used to analyze a soil sample after an event of failure of a pole-mounted transformer which caused the dumping of PCB contaminated oil in soil. Moreover, the method provides simple sample handling, fast extraction with reduced amount of sample and solvents than usually required, and simple purification step involving the use of solvent (cyclohexane) volumes as low as 5 mL. Reliability and reproducibility of extraction conditions are ensured by direct and continuous monitoring of temperature and pressure conditions. PMID:23084486

  16. Fast low-pressure microwave assisted extraction and gas chromatographic determination of polychlorinated biphenyls in soil samples.

    PubMed

    Bruzzoniti, M C; Maina, R; Tumiatti, V; Sarzanini, C; Rivoira, L; De Carlo, R M

    2012-11-23

    A new technology equipment for low-pressure microwave assisted extraction (usually employed for organic chemistry reactions), recently launched in the market, is used for the first time in environmental analysis for the extraction of commercial technical Aroclor mixtures from soil. Certified reference materials of Aroclor 1260, Aroclor 1254 and Aroclor 1242 in transformer oils were used to contaminate the soil samples and to optimize the extraction method as well as the subsequent gas chromatographic electron capture detection (GC-ECD) analytical method. The study was performed optimizing the extraction, the purification and the gas chromatographic separation conditions to enhance the resolution of difficult pairs of congeners (C28/31 and C141/179). After optimization, the recovery yields were included within the range 79-84%. The detection limits, evaluated for two different commercial polychlorinated biphenyl (PCB) mixtures (Aroclor 1260 and Aroclor 1242) were 0.056 ± 0.001 mg/kg and 0.290 ± 0.006 mg/kg, respectively. The method, validated with certified soil samples, was used to analyze a soil sample after an event of failure of a pole-mounted transformer which caused the dumping of PCB contaminated oil in soil. Moreover, the method provides simple sample handling, fast extraction with reduced amount of sample and solvents than usually required, and simple purification step involving the use of solvent (cyclohexane) volumes as low as 5 mL. Reliability and reproducibility of extraction conditions are ensured by direct and continuous monitoring of temperature and pressure conditions.

  17. Growth mechanism of a gas clathrate hydrate from a dilute aqueous gas solution: a molecular dynamics simulation of a three-phase system.

    PubMed

    Nada, Hiroki

    2006-08-24

    A molecular dynamics simulation of a three-phase system including a gas clathrate, liquid water, and a gas was carried out at 298 K and high pressure in order to investigate the growth mechanism of the clathrate from a dilute aqueous gas solution. The simulation indicated that the clathrate grew on interfaces between the clathrate and the liquid water, after transfer of the gas molecules from the gas phase to the interfaces. The results suggest a two-step process for growth: first, gas molecules are arranged at cage sites, and second, H(2)O molecules are ordered near the gas molecules. The results also suggest that only the H(2)O molecules, which are surrounded or sandwiched by the gas molecules, form the stable polygons that constitute the cages of the clathrate. In addition, the growth of the clathrate from a concentrated aqueous gas solution was also simulated, and the results suggested a growth mechanism in which many H(2)O and gas molecules correctively form the structure of the clathrate. The clathrate grown from the concentrated solution contained some empty cages, whereas the formation of empty cages was not observed during the growth from the dilute solution. The results obtained by both simulations are compared with the results of an experimental study, and the growth mechanism of the clathrate in a real system is discussed.

  18. Gas-mediated vitreous compression: an experimental alternative to mechanized vitrectomy.

    PubMed

    Thresher, R J; Ehrenberg, M; Machemer, R

    1984-01-01

    We have developed a simple technique in rabbit and baboon eyes that utilizes intravitreally injected perfluoropropane gas, which expands slowly to efficiently compress and displace nearly completely the vitreous body. There is cataract formation after extended contact of the gas bubble with the lens. However, it is rapidly reversible by reducing the duration of lens contact (gas-fluid exchange) and by using young animals. No long-term alterations in intraocular pressure or retinal function were observed, as determined by electroretinography, during the 4-month test period. Gross examination and scanning electron microscopy revealed that the vitreous cavity, shortly after full expansion of the gas bubble, was practically free of collagen. The vitreous body had been detached from most of the retina and compressed into a collagenous strand between the optic nerve head and lens in the rabbit eyes, and there was also a dense collagen accumulation on the inferior retinal surface and anterior vitreous base in the rabbits and the baboon. Large areas of the retina and medullary wings were stripped of overlying collagen. By the end of 4 months, the compressed vitreous body had expanded to become an irregular structure that remained separated from the retina in areas of previous detachment. Mechanized vitrectomy is a difficult procedure often needed in experimental work. We believe that the vitreous compression and gas-fluid exchange technique is a valid alterative to a mechanical approach. We also believe that we have a model that simulates the human situation of posterior vitreous detachment and vitreous syneresis.

  19. In vitro evaluation of an external compression device for fontan mechanical assistance.

    PubMed

    Valdovinos, John; Shkolyar, Eugene; Carman, Gregory P; Levi, Daniel S

    2014-03-01

    While Fontan palliation in the form of the total cavopulmonary connection has improved the management of congenital single ventricle physiology, long-term outcomes for patients with this disease are suboptimal due to the lack of two functional ventricles. Researchers have shown that ventricular assist devices (VADs) can normalize Fontan hemodynamics. To minimize blood contacting surfaces of the VAD, we evaluated the use of an external compression device (C-Pulse Heart Assist System, Sunshine Heart Inc.) as a Fontan assist device. A mock circulation was developed to mimic the hemodynamics of a hypertensive Fontan circulation in a pediatric patient. The Sunshine C-Pulse compression cuff was coupled with polymeric valves and a compressible tube to provide nonblood-contacting pulsatile flow through the Fontan circulation. The effect of the number, one or two, and placement of valves, before or after the compression cuff, on inferior vena cava pressure (IVCP) was studied. In addition, the effect of device inflation volume and compression rate on maintaining low IVCP was investigated. With one valve located before the cuff, the device was unable to maintain an IVCP below 15.5 mm Hg. With two valves, the C-Pulse was able to maintain IVCP as low as 8.5 mm Hg. The C-Pulse provided pulsatile flow and pressure through the pulmonary branch of the mock circulation with a pulse pressure of 16 mm Hg and 180 mL/min additional flow above unassisted flow. C-Pulse compression reduced IVCP below 12 mm Hg with 13 cc inflation volume and compression rates above 105 bpm. This application of an external compression device combined with two valves has potential for use as an artificial right ventricle by maintaining low IVCP and providing pulsatile flow through the lungs.

  20. Pulmonary arterioplasty using video-assisted thoracic surgery mechanical suture technique

    PubMed Central

    Xu, Xin; Huang, Jun; Yin, Weiqiang; Zhang, Xin; Chen, Hanzhang; Mo, Lili

    2016-01-01

    Lung cancer invading pulmonary trunk is a locally advanced condition, which may indicate poor prognosis. Surgical resection of the lesion can significantly improve survival for some patients. Lobectomy/Pneumonectomy with pulmonary arterioplasty via thoracotomy were generally accepted and used in the past. As the rapid development of minimally invasive techniques and devices, pulmonary arterioplasty is feasible via video-assisted thoracic surgery (VATS). However, few studies have reported the VATS surgical techniques. In this study, we reported the techniques of pulmonary arterioplasty via VATS. PMID:27076961

  1. [Determination of 9 residual acrylic monomers in acrylic resins by gas chromatography-mass spectrometry coupled with microwave assisted extraction].

    PubMed

    Lai, Ying; Lin, Rui; Cai, Luxin; Ge, Xiuxiu; Huang, Changchun

    2012-01-01

    A reliable gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of 9 residual acrylic monomers (methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl acrylate, butyl methacrylate, styrene, acrylic acid and methacrylic acid) in acrylic resins. Solid resin was precipitated with methanol after microwave assisted extraction with ethyl acetate for 30 min, and liquid resin was diluted with methanol directly. The nine acrylic monomers got a good separation within 20 min on a DB-WAX column. The limits of quantification (LOQs, S/N = 10) of the method were in the range of 1-10 mg/kg for liquid resin and 3-50 mg/kg for solid resin. The calibration curves were linear within 1-500 mg/L range with correlation coefficients above 0. 995. The recoveries ranged from 84.4% to 108.6% at five spiked levels. The sensitivity, recovery and selectivity of the method can fully meet the requirements of practical work.

  2. Determination of volatile organic compounds in water using ultrasound-assisted emulsification microextraction followed by gas chromatography.

    PubMed

    Leong, Mei-I; Huang, Shang-Da

    2012-03-01

    Volatile organic compounds (VOCs) are toxic compounds in the air, water and land. In the proposed method, ultrasound-assisted emulsification microextraction (USAEME) combined with gas chromatography-mass spectrometry (GC-MS) has been developed for the extraction and determination of eight VOCs in water samples. The influence of each experimental parameter of this method (the type of extraction solvent, volume of extraction solvent, salt addition, sonication time and extraction temperature) was optimized. The procedure for USAEME was as follows: 15 μL of 1-bromooctane was used as the extraction solvent; 10 mL sample solution in a centrifuge tube with a cover was then placed in an ultrasonic water bath for 3 min. After centrifugation, 2 μL of the settled 1-bromooctane extract was injected into the GC-MS for further analysis. The optimized results indicated that the linear range is 0.1-100.0 μg/L and the limits of detection (LODs) are 0.033-0.092 μg/L for the eight analytes. The relative standard deviations (RSD), enrichment factors (EFs) and relative recoveries (RR) of the method when used on lake water samples were 2.8-9.5, 96-284 and 83-110%. The performance of the proposed method was gauged by analyzing samples of tap water, lake water and river water samples. PMID:22271628

  3. Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines

    SciTech Connect

    Yiguang Ju; Frederick Dryer

    2009-02-07

    Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

  4. Nonlinear waves in mechanics and gas dynamics. Final report, 1 Jun 87-30 Sep 90

    SciTech Connect

    Liu, T.P.

    1990-12-21

    The proposer has studied nonlinear hyperbolic-parabolic partial differential equations related to gas dynamics and mechanics. Hyperbolic conservation laws with relaxation are studied with applications to kinetic theory, elasticity with memory and gas flow with thermo-non-equilibrium in mind. Nonlinear waves for the compressible Navier-Stokes equations are studied for their stability and time-asymptotic behavior. The singular behavior of the magnetohydrodynamic shock waves in the small dissipation limits is clarified, and in particular, it is shown that intermediate shocks are stable uniformly with regards to the strength of dissipations only for 2-dimensional model, and not for 3-dimensional model.

  5. Effect of pressure assist on ventilation and respiratory mechanics in heavy exercise.

    PubMed

    Gallagher, C G; Younes, M

    1989-04-01

    To assess the effect of the normal respiratory resistive load on ventilation (VE) and respiratory motor output during exercise, we studied the effect of flow-proportional pressure assist (PA) (2.2 cmH2O.l-1.s) on various ventilatory parameters during progressive exercise to maximum in six healthy young men. We also measured dynamic lung compliance (Cdyn) and lung resistance (RL) and calculated the time course of respiratory muscle pressure (Pmus) during the breath in the assisted and unassisted states at a sustained exercise level corresponding to 70-80% of the subject's maximum O2 consumption. Unlike helium breathing, resistive PA had no effect on VE or any of its subdivisions partly as the result of an offsetting increase in RL (0.78 cmH2O.1-1.s) and partly to a reduction in Pmus. These results indicate that the normal resistive load does not constrain ventilation during heavy exercise. Furthermore, the increase in exercise ventilation observed with helium breathing, which is associated with much smaller degrees of resistive unloading (ca. -0.6 cmH2O.l-1.s), is likely the result of factors other than respiratory muscle unloading. The pattern of Pmus during exercise with and without unloading indicates that the use of P0.1 as an index of respiratory motor output under these conditions may result in misleading conclusions.

  6. Amino acid tautomerization reactions in aqueous solution via concerted and assisted mechanisms using free energy curves from MD simulation.

    PubMed

    Tolosa, Santiago; Hidalgo, Antonio; Sansón, Jorge A

    2012-11-01

    A theoretical study is described of chemical reactions in solution by means of molecular dynamics simulations, with solute-solvent interaction potentials derived from AMBER van der Waals parameters and QM/MM electrostatic charges in solution. The solvent is used as the reaction coordinate, and the free energy curves to calculate the properties related to the reaction mechanism. The proposed scheme is applied to the tautomerization process in aqueous solution for some amino acids H(2)NCHR-COOH (with R = H being glycine, R = CH(3) alanine, R = CH(2)OH serine, and R = CH(2)COOH aspartic acid), focusing on the role of the solvent in the reaction (assisted versus unassisted mechanisms) and on the effect of the hydrophilic/hydrophobic character of the radical R on the activation and reaction energies.

  7. Exploded view of higher order G-quadruplex structures through click-chemistry assisted single-molecule mechanical unfolding.

    PubMed

    Selvam, Sangeetha; Yu, Zhongbo; Mao, Hanbin

    2016-01-01

    Due to the long-range nature of high-order interactions between distal components in a biomolecule, transition dynamics of tertiary structures is often too complex to profile using conventional methods. Inspired by the exploded view in mechanical drawing, here, we used laser tweezers to mechanically dissect high-order DNA structures into two constituting G-quadruplexes in the promoter of the human telomerase reverse transcriptase (hTERT) gene. Assisted with click-chemistry coupling, we sandwiched one G-quadruplex with two dsDNA handles while leaving the other unit free. Mechanical unfolding through these handles revealed transition dynamics of the targeted quadruplex in a native environment, which is named as native mechanical segmentation (NMS). Comparison between unfolding of an NMS construct and that of truncated G-quadruplex constructs revealed a quadruplex-quadruplex interaction with 2 kcal/mol stabilization energy. After mechanically targeting the two G-quadruplexes together, the same interaction was observed during the first unfolding step. The unfolding then proceeded through disrupting the weaker G-quadruplex at the 5'-end, followed by the stronger G-quadruplex at the 3'-end via various intermediates. Such a pecking order in unfolding well reflects the hierarchical nature of nucleic acid structures. With surgery-like precisions, we anticipate this NMS approach offers unprecedented perspective to decipher dynamic transitions in complex biomacromolecules.

  8. Exploded view of higher order G-quadruplex structures through click-chemistry assisted single-molecule mechanical unfolding

    PubMed Central

    Selvam, Sangeetha; Yu, Zhongbo; Mao, Hanbin

    2016-01-01

    Due to the long-range nature of high-order interactions between distal components in a biomolecule, transition dynamics of tertiary structures is often too complex to profile using conventional methods. Inspired by the exploded view in mechanical drawing, here, we used laser tweezers to mechanically dissect high-order DNA structures into two constituting G-quadruplexes in the promoter of the human telomerase reverse transcriptase (hTERT) gene. Assisted with click-chemistry coupling, we sandwiched one G-quadruplex with two dsDNA handles while leaving the other unit free. Mechanical unfolding through these handles revealed transition dynamics of the targeted quadruplex in a native environment, which is named as native mechanical segmentation (NMS). Comparison between unfolding of an NMS construct and that of truncated G-quadruplex constructs revealed a quadruplex–quadruplex interaction with 2 kcal/mol stabilization energy. After mechanically targeting the two G-quadruplexes together, the same interaction was observed during the first unfolding step. The unfolding then proceeded through disrupting the weaker G-quadruplex at the 5′-end, followed by the stronger G-quadruplex at the 3′-end via various intermediates. Such a pecking order in unfolding well reflects the hierarchical nature of nucleic acid structures. With surgery-like precisions, we anticipate this NMS approach offers unprecedented perspective to decipher dynamic transitions in complex biomacromolecules. PMID:26626151

  9. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells.

    PubMed

    Shin, Dongha; Park, Jong Bo; Kim, Yong-Jin; Kim, Sang Jin; Kang, Jin Hyoun; Lee, Bora; Cho, Sung-Pyo; Hong, Byung Hee; Novoselov, Konstantin S

    2015-02-02

    Formation, evolution and vanishing of bubbles are common phenomena in nature, which can be easily observed in boiling or falling water, carbonated drinks, gas-forming electrochemical reactions and so on. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in the liquid phase. Here, we demonstrate for the first time that the nanobubbles in water encapsulated by graphene membrane can be visualized by in-situ ultra-high vacuum transmission electron microscopy. Our microscopic results indicate two distinct growth mechanisms of merging nanobubbles and the existence of a critical radius of nanobubbles that determines the unusually long stability of nanobubbles. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensation, transmission and evaporation.

  10. [Intermediate experiment and mechanism analysis of flue gas desulfurization technology by circulating fluidized bed].

    PubMed

    Zhao, Xudong; Wu, Shaohua; Ma, Chunyuan; Qin, Yukun

    2002-03-01

    A new Circulating Fluidized Bed was designed for intermediate experiment of flue gas desulphurization, in which the flue gas flow rate was 3500 m3/h. By using it, the basic experiments were carried out to study the influence of Ca/S and supersaturated temperature on desulphurization efficiency and the effect of the recycling solid particle in the sulfur removal column on desulphurization performance. The results showed when Ca/S = 1.2, the desulphurization efficiency was increased by 15% through the recycle of solid particle; the gas velocity inside the bed could be designed higher. The mechanism analysis were also studied and the method to increase effective resident time was introduced.

  11. A Mechanism for Stimulating AGN Feedback by Lifting Gas in Massive Galaxies

    NASA Astrophysics Data System (ADS)

    McNamara, B. R.; Russell, H. R.; Nulsen, P. E. J.; Hogan, M. T.; Fabian, A. C.; Pulido, F.; Edge, A. C.

    2016-10-01

    Observation shows that nebular emission, molecular gas, and young stars in giant galaxies are associated with rising X-ray bubbles inflated by radio jets launched from nuclear black holes. We propose a model where molecular clouds condense from low-entropy gas caught in the updraft of rising X-ray bubbles. The low-entropy gas becomes thermally unstable when it is lifted to an altitude where its cooling time is shorter than the time required to fall to its equilibrium location in the galaxy, i.e., {t}{{c}}/{t}{{I}}≲ 1. The infall speed of a cloud is bounded by the lesser of its free-fall and terminal speeds, so that the infall time here can exceed the free-fall time by a significant factor. This mechanism is motivated by Atacama Large Millimeter Array observations revealing molecular clouds lying in the wakes of rising X-ray bubbles with velocities well below their free-fall speeds. Our mechanism would provide cold gas needed to fuel a feedback loop while stabilizing the atmosphere on larger scales. The observed cooling time threshold of ∼ 5× {10}8 {yr}—the clear-cut signature of thermal instability and the onset of nebular emission and star formation—may result from the limited ability of radio bubbles to lift low-entropy gas to altitudes where thermal instabilities can ensue. Outflowing molecular clouds are unlikely to escape, but instead return to the central galaxy in a circulating flow. We contrast our mechanism to precipitation models where the minimum value of {t}{{c}}/{t}{{ff}}≲ 10 triggers thermal instability, which we find to be inconsistent with observation.

  12. Adsorption energies for a nanoporous carbon from gas-solid chromatography and molecular mechanics.

    PubMed

    Rybolt, Thomas R; Ziegler, Katherine A; Thomas, Howard E; Boyd, Jennifer L; Ridgeway, Mark E

    2006-04-01

    Gas-solid chromatography was used to obtain second gas-solid virial coefficients, B2s, in the temperature range 342-613 K for methane, ethane, propane, butane, 2-methylpropane, chloromethane, chlorodifluoromethane, dichloromethane, and dichlorodifluoromethane. The adsorbent used was Carbosieve S-III (Supelco), a carbon powder with fairly uniform, predominately 0.55 nm slit width pores and a N2 BET surface area of 995 m2/g. The temperature dependence of B2s was used to determine experimental values of the gas-solid interaction energy, E*, for each of these molecular adsorbates. MM2 and MM3 molecular mechanics calculations were used to determine the gas-solid interaction energy, E*(cal), for each of the molecules on various flat and nanoporous model surfaces. The flat model consisted of three parallel graphene layers with each graphene layer containing 127 interconnected benzene rings. The nanoporous model consisted of two sets of three parallel graphene layers adjacent to one another but separated to represent the pore diameter. A variety of calculated adsorption energies, E*(cal), were compared and correlated to the experimental E* values. It was determined that simple molecular mechanics could be used to calculate an attraction energy parameter between an adsorbed molecule and the carbon surface. The best correlation between the E*(cal) and E* values was provided by a 0.50 nm nanoporous model using MM2 parameters.

  13. Mechanical and microstructural/chemical degradation of coating and substrate in gas turbine blade

    SciTech Connect

    Sugita, Y.; Ito, M.; Sakurai, S.; Gold, C.R.; Bloomer, T.E.; Kameda, J.

    1995-12-31

    The mechanical property degradation (295--1223 K) and microstructural/chemical evolution of CoNiCrAlY coatings and superalloy (Rene 80) substrates in gas turbine blades operated in- service have been studied using a small punch (SP) testing technique and scanning Auger microprobe. In SP tests, coating cracks continuously and discretely propagated at 295 K and higher temperatures, respectively. The ductile-brittle transition temperature of the coatings was increased during long time exposure of gas turbine blades to oxidizing environments while that of the substrate did not change. The low cycle fatigue life of the coatings at 295 K was also reduced in-service. Oxidation and sulfur segregation near the coating surface were found to be major causes of the mechanical degradation of the coatings.

  14. All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector

    NASA Astrophysics Data System (ADS)

    Yanzhen, Tan; Fan, Yang; Jun, Ma; Hoi Lut, Ho; Wei, Jin

    2015-09-01

    We demonstrate an all-optical-fiber photoacoustic (PA) spectrometric gas sensor with a graphene nano-mechanical resonator as the acoustic detector. The acoustic detection is performed by a miniature ferrule-top nano-mechanical resonator with a ˜100-nm-thick, 2.5-mm-diameter multilayer graphene diaphragm. Experimental investigation showed that the performance of the PA gas sensor can be significantly enhanced by operating at the resonance of the grapheme diaphragm where a lower detection limit of 153 parts-per-billion (ppb) acetylene is achieved. The all-fiber PA sensor which is immune to electromagnetic interference and safe in explosive environments is ideally suited for real-world remote, space-limited applications and for multipoint detection in a multiplexed fiber optic sensor network.

  15. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    NASA Astrophysics Data System (ADS)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.

    2016-08-01

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  16. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    SciTech Connect

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  17. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    SciTech Connect

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  18. Propagation mechanisms of guided streamers in plasma jets: the influence of electronegativity of the surrounding gas

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Norberg, Seth A.; Winter, Jörn; Johnsen, Eric; Reuter, S.; Weltmann, K. D.; Kushner, Mark J.

    2015-06-01

    Atmospheric pressure plasma jets for biomedical applications are often sustained in He with small amounts of, for example, O2 impurities and typically propagate into ambient air. The resulting poorly controlled generation of reactive species has motivated the use of gas shields to control the interaction of the plasma plume with the ambient gas. The use of different gases in the shield yields different behavior in the plasma plume. In this paper, we discuss results from experimental and computational investigations of He plasma jets having attaching and non-attaching gas shields. We found that negative ion formation in the He-air mixing region significantly affects the ionization wave dynamics and promotes the propagation of negative guided streamers through an electrostatic focusing mechanism. Results from standard and phase resolved optical emission spectroscopy ratios of emission from states of N2 and He imply different electric fields in the plasma plume depending on the composition of the shielding gas. These effects are attributed to the conductivity in the transition region between the plasma plume and the shield gas, and the immobile charge represented by negative ions. The lower conductivity in the attaching mixtures enables more extended penetration of the electric field whereas the negative ions aid in focusing the electrons towards the axis.

  19. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in seawater samples by membrane-assisted solvent extraction combined with gas chromatography-electron capture detector and gas chromatography-tandem mass spectrometry.

    PubMed

    Shi, Xizhi; Tang, Zigang; Sun, Aili; Zhou, Lei; Zhao, Jian; Li, Dexiang; Chen, Jiong; Pan, Daodong

    2014-12-01

    A highly efficient and environment-friendly membrane-assisted solvent extraction system combined with gas chromatography-electron capture detector was applied in the simultaneous determination of 17 polychlorinated biphenyls and organochlorine pesticides in seawater samples. Variables affecting extraction efficiency, including extraction solvent used, stirring rate, extraction time, and temperature, were optimized extensively. Under optimal extraction conditions, recoveries between 76.9% and 104.6% in seawater samples were achieved, and relative standard deviation values below 10% were obtained. The limit of detection (signal-to-noise ratio=3) and limit of quantification (signal-to-noise ratio=10) of 17 polychlorinated biphenyls and organochlorine pesticides in seawater ranged from 0.14ngL(-1) to 0.36ngL(-1) and 0.46ngL(-1) to 1.19ngL(-1), respectively. Matrix effects on extraction efficiency were evaluated by comparing with the results obtained using tap water. The extraction effect of developed membrane-assisted solvent extraction method was further demonstrated by gas chromatography-tandem mass spectrometry which can provide structural information of the analytes for more accurate identification, and results identical to those produced by gas chromatography-electron capture detector were obtained. These findings demonstrate the applicability of the developed membrane-assisted solvent extraction determination method for coupling to gas chromatography-electron capture detector or tandem mass spectrometry for determining polychlorinated biphenyls and organochlorine pesticides in seawater samples.

  20. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in seawater samples by membrane-assisted solvent extraction combined with gas chromatography-electron capture detector and gas chromatography-tandem mass spectrometry.

    PubMed

    Shi, Xizhi; Tang, Zigang; Sun, Aili; Zhou, Lei; Zhao, Jian; Li, Dexiang; Chen, Jiong; Pan, Daodong

    2014-12-01

    A highly efficient and environment-friendly membrane-assisted solvent extraction system combined with gas chromatography-electron capture detector was applied in the simultaneous determination of 17 polychlorinated biphenyls and organochlorine pesticides in seawater samples. Variables affecting extraction efficiency, including extraction solvent used, stirring rate, extraction time, and temperature, were optimized extensively. Under optimal extraction conditions, recoveries between 76.9% and 104.6% in seawater samples were achieved, and relative standard deviation values below 10% were obtained. The limit of detection (signal-to-noise ratio=3) and limit of quantification (signal-to-noise ratio=10) of 17 polychlorinated biphenyls and organochlorine pesticides in seawater ranged from 0.14ngL(-1) to 0.36ngL(-1) and 0.46ngL(-1) to 1.19ngL(-1), respectively. Matrix effects on extraction efficiency were evaluated by comparing with the results obtained using tap water. The extraction effect of developed membrane-assisted solvent extraction method was further demonstrated by gas chromatography-tandem mass spectrometry which can provide structural information of the analytes for more accurate identification, and results identical to those produced by gas chromatography-electron capture detector were obtained. These findings demonstrate the applicability of the developed membrane-assisted solvent extraction determination method for coupling to gas chromatography-electron capture detector or tandem mass spectrometry for determining polychlorinated biphenyls and organochlorine pesticides in seawater samples. PMID:25310709

  1. Weak and electromagnetic mechanisms of neutrino-pair photoproduction in a strongly magnetized electron gas

    SciTech Connect

    Borisov, A. V.; Kerimov, B. K.; Sizin, P. E.

    2012-11-15

    Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.

  2. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    PubMed Central

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2014-01-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. PMID:24231252

  3. Delayed-onset cerebral arterial gas embolism in a commercial airline mechanic.

    PubMed

    Hickey, Matthew J; Zanetti, Claude L

    2003-09-01

    A commercial airline mechanic was evaluated for right-sided hemianesthesia. Thorough diagnostic testing failed to identify a definitive etiology, and the mechanic was assessed as having symptoms of a left internal capsule lesion, likely from an ischemic event. On day 12 after symptom onset, he consulted a diving medicine specialist for clearance to continue recreational scuba diving. A thorough history revealed that the patient worked regularly in a compressed air environment of commercial aircraft and had experienced a rapid decompression approximately 48 h prior to onset of the hemianesthesia. The specialist considered pulmonary barotrauma-induced cerebral arterial gas embolism as a possible diagnosis. On day 13 he was treated with hyperbaric oxygen using Treatment Table VI, which produced immediate relief. Following three additional hyperbaric oxygen treatments in the next 11 d, he reported nearly total resolution of his symptoms. This occurrence is believed to be the second report of a cerebral arterial gas embolism in an aircraft mechanic or maintenance crewman and suggests that the latency between time of depressurization and the development of symptoms from a pulmonary barotrauma-induced cerebral arterial gas embolism may extend longer than previously believed.

  4. Trace analysis of trichlorobenzenes in fish by microwave-assisted extraction and gas chromatography-electron-capture detection.

    PubMed

    Wittmann, Gyula; Huybrechts, Tom; Van Langenhove, Herman; Dewulf, Jo; Nollet, Hendrik

    2003-04-18

    An analytical method consisting of extraction, clean-up, and analysis by gas chromatography-electron-capture detection (GC-ECD) was developed for the determination of trichlorobenzenes (TCBs) in fish samples. Two extraction methods, saponification and liquid-liquid extraction (S-LLE), and microwave-assisted extraction (MAE), were evaluated. In both cases, n-pentane was used as the extraction solvent. For S-LLE, the recoveries ranged from 66.6+/-9.1% for 1-bromo-4-chlorobenzene (4-BCB) to 93.5+/-4.9% for 1,2,4-trichlorobenzene (1,2,4-TCB). The recoveries were significantly lower, between 31.0+/-3.9% for 1,2,3-trichlorobenzene (1,2,3-TCB) and 52.3+/-3.0% for 1,3,5-trichlorobenzene (1,3,5-TCB), in the absence of fish. Proteins and glycerides of the fish tissue seemed to compete with TCBs for the base, and hence decreased their decomposition rate. In the case of MAE, the recoveries were highly dependent on the pressure applied during extraction. At 5 bar, much higher recoveries were obtained, from 66.7+/-15.6% for 4-BCB to 79.9+/-13.6% for 1,2,4-TCB, than at 1 bar. Sulfur formation was, however, observed at 5 bar, and interfered with the GC-ECD analysis of TCBs. Sulfur was adequately removed by copper powder treatment, which was shown not to affect the recovery of analytes. The recoveries of target analytes by S-LLE and MAE did not differ statistically (t-test, alpha = 0.01). Both methods were appropriate for the detection of TCBs at concentration levels typically observed in marine biota, i.e. approximately 1 ng/g. S-LLE was, however, more time consuming, and required larger volumes of high-purity organic solvents than MAE.

  5. Mechanical Circulatory Support for the Failing Heart: Continuous-Flow Left Ventricular Assist Devices

    PubMed Central

    Englert, Joseph A. R.; Davis, Jennifer A.; Krim, Selim R.

    2016-01-01

    Background: Heart transplantation remains the definitive therapy for patients with advanced heart failure; however, owing to limited donor organ availability and long wait times, continuous-flow left ventricular assist devices (LVADs) have become standard therapy. Methods: This review summarizes the history, progression, function, and basic management of LVADs. Additionally, we provide some clinical pearls and important caveats for managing this unique patient population. Results: Currently, the most common LVADs being implanted in the United States are second- and third-generation devices, the HeartMate II (Thoratec Corp., St. Jude Medical) and the HeartWare HVAD (HeartWare International, Inc.). A newer third-generation pump, the HeartMate III (Thoratec Corp., St. Jude Medical), is designed to create an artificial pulse and is currently under investigation in the United States. Conclusion: LVAD use is promising, will continue to grow, and has become standard therapy for advanced heart failure as a bridge to recovery, as destination therapy, and as a bridge to transplantation. PMID:27660575

  6. Mechanical Circulatory Support for the Failing Heart: Continuous-Flow Left Ventricular Assist Devices

    PubMed Central

    Englert, Joseph A. R.; Davis, Jennifer A.; Krim, Selim R.

    2016-01-01

    Background: Heart transplantation remains the definitive therapy for patients with advanced heart failure; however, owing to limited donor organ availability and long wait times, continuous-flow left ventricular assist devices (LVADs) have become standard therapy. Methods: This review summarizes the history, progression, function, and basic management of LVADs. Additionally, we provide some clinical pearls and important caveats for managing this unique patient population. Results: Currently, the most common LVADs being implanted in the United States are second- and third-generation devices, the HeartMate II (Thoratec Corp., St. Jude Medical) and the HeartWare HVAD (HeartWare International, Inc.). A newer third-generation pump, the HeartMate III (Thoratec Corp., St. Jude Medical), is designed to create an artificial pulse and is currently under investigation in the United States. Conclusion: LVAD use is promising, will continue to grow, and has become standard therapy for advanced heart failure as a bridge to recovery, as destination therapy, and as a bridge to transplantation.

  7. Is Submarine Groundwater Discharge a Gas Hydrate Formation Mechanism on the Circum-Arctic Shelf?

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2015-12-01

    Methane hydrate is an ice-like solid that can sequester large quantities of methane gas in marine sediments along most continental margins where thermodynamic conditions permit its formation. Along the circum-Arctic shelf, relict permafrost-associated methane hydrate deposits formed when non-glaciated portions of the shelf experienced subaerial exposure during ocean transgressions. Gas hydrate stability and the permeability of circum-Arctic shelf sediments to gas migration is closely linked with relict submarine permafrost. Heat flow observations on the Alaskan North Slope and Canadian Beaufort Shelf suggest the movement of groundwater offshore, but direct observations of groundwater flow do not exist. Submarine discharge, an offshore flow of fresh, terrestrial groundwater, can affect the temperature and salinity field in shelf sediments, and may be an important factor in submarine permafrost and gas hydrate evolution on the Arctic continental shelf. Submarine groundwater discharge may also enhance the transport of organic matter for methanogenesis within marine sediments. Because it is buoyancy-driven, the velocity field contains regions with a vertical (upward) component as groundwater flows offshore. This combination of factors makes submarine groundwater discharge a potential mechanism controlling permafrost-associated gas hydrate evolution on the Arctic continental shelf. In this study, we quantitatively investigate the feasibility of submarine groundwater discharge as a control on permafrost-associated gas hydrate formation on the Arctic continental shelf, using the Canadian Beaufort Shelf as an example. We have developed a shelf-scale, two-dimensional numerical model based on the finite volume method for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. The model tracks the evolution of the pressure, temperature, salinity, methane gas, methane hydrate, and permafrost fields given imposed boundary conditions, with latent heat of

  8. [Applications of multi-micro-volume pressure-assisted derivatization reaction device for analysis of polar heterocyclic aromatic amines by gas chromatography-mass spectrometry].

    PubMed

    Wang, Yiru; Chen, Fangxiang; Shi, Yamei; Tan, Connieal; Chen, Xi

    2013-01-01

    A multi-micro-volume pressure-assisted derivatization reaction device has been designed and made for the silylation derivatization of polar heterocyclic aromatic amines by N-(tert-butyldimethylsilyl )-N-methyl-trifluoroacetamide (MTBSTFA) with 1% catalyst tert-butyldimethylchlorosilane (TBDMCS) at a high temperature. The tert-butyldimethylsilyl derivatives then could be automatically analyzed by gas chromatography-mass spectrometry. Using the pressure-assisted device, the silylation reaction may occur at a temperature higher than the boiling points of the reagents, and several micro-volume samples can be simultaneously pretreated in the same device to shorten the sample-preparation time and to improve the repeatability. The derivatization conditions including the headspace volume of the vial, the evaporative surface area of the reagent, derivatization temperature and time have been discussed for the use of the pressure-assisted device. The experimental results proved that the device is an effective way for the simultaneous derivatization of several micro-volume samples at a high temperature. Compared with a common device, the derivative amounts were obviously increased when using the pressure-assisted device at 90 degrees C. Quantitative derivatization can be achieved even at 150 degrees C while there was no common device could be applied at such a high temperature due to the heavy losses of reagents by evaporation. However, no obviously higher reaction speed has been observed in such a circumstance with a higher temperature and a higher pressure using the pressure-assisted device. PMID:23667982

  9. Gas chromatography-electron capture detection determination of Dacthal and its di-acid metabolite in soil after ultrasound-assisted extraction and in situ focused microwave-assisted derivatization.

    PubMed

    Caballo-López, A; Luque de Castro, M D

    2006-09-01

    A quantitative method for the determination of Dacthal and its di-acid metabolite in soil has been developed by coupling ultrasound-assisted extraction and microwave-assisted derivatization of the analytes prior to gas chromatography-electron capture detection for individual separation and measurement. The main factors affecting both extraction efficiency and derivatization were optimized by experimental design methodology. The proposed approach allows extraction of these pollutants from spiked sediment and soil with efficiencies similar to those provided by the reference method but with a drastic reduction of both the extraction and derivatization times. The repeatability of the analyses, expressed as RSD, of Dacthal and its di-acid metabolite was 4.6% and 5.4%, respectively; meanwhile, the RSD for within-laboratory reproducibility was 8.7% and 9.2%, respectively.

  10. Versatile retraction mechanics: Implant assisted en-masse retraction with a boot loop

    PubMed Central

    Philip, Pramod; Jose, Nidhin Philip

    2015-01-01

    The purpose of this paper is to explain the versatility offered by the use of arch wires with boot loops in retraction mechanics while taking direct anchorage from mini-screws. Materials and Methods: The materials include the mini screws placed at the appropriate location and retraction arches made of 0.019 X 0.025 SS with boot loops placed distal to the lateral incisors. Mini screw provides a stable anchorage for enmasse retraction of the anterior teeth with the help of a boot loop using sliding and/or loop mechanics. Results: The arch wires with boot loops have a definite advantage over the soldered/crimpable hooks because of the versatility it offers during the process of retraction. Conclusion: An innovative approach combining the advantages of absolute anchorage using mini implants and a retraction arch with boot loop is presented here. PMID:25821373

  11. Microfluidic-assisted atomic force microscopy for the mechanical characterization of soft biological materials

    NASA Astrophysics Data System (ADS)

    Mosier, Aaron P.

    Viable methods for bacterial biofilm remediation require a fundamental understanding of biofilm mechanical properties and their dependence on dynamic environmental conditions. Mechanical test data, quantifying elasticity or adhesion, may be used to perform physical modeling of biofilm behavior, thus enabling the development of novel remediation strategies. To achieve real-time, dynamic measurements of these properties, a novel analysis platform consisting of a microfluidic flowcell device has been designed and fabricated for in situ analysis using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The flowcell consists of microfluidic channels for biofilm establishment that are then converted into an open architecture, laminar flow channel for AFM measurement in a liquid environment. Computational fluid dynamics (CFD) was used to profile fluid conditions within the device during biofilm establishment. The validity of the AFM nanoindentation measurement mechanism was confirmed in the context of the system through the elastic characterization of several non-living reference materials. Force-mode AFM was used to measure the elastic properties of mature Pseudomonas aeruginosa PAO1 biofilms and observe a dynamic response to a chemical antagonist. Elastic moduli ranging from 0.58 to 2.61 kPa were determined for the mature biofilm, which fall within the range of moduli previously reported by optical, rheometric, and microindentation techniques. A modified version of the flowcell was employed to perform similar elastic characterization of mouse submandibular glands (SMGs), demonstrating the adaptability of the system to perform ex situ analyses of a broader set of biological materials. These results demonstrate the validity of the microfluidic flowcell system as an effective platform for future investigations of the mechanical and morphological response of biofilms and other soft biomaterials to dynamic environmental conditions.

  12. Physical mechanisms that lead to large-scale gas accumulation in a volcanic conduit

    NASA Astrophysics Data System (ADS)

    Collombet, Marielle; Burgisser, Alain

    2016-04-01

    The eruption of viscous magma at the Earth's surface often gives rise to abrupt regime changes. The transition from the gentle effusion of a lava dome to brief but powerful explosions is a common regime change. This transition is often preceded by the sealing of the shallow part of the volcanic conduit and the accumulation of volatile-rich magma underneath, a situation that collects the energy to be brutally released during the subsequent explosion. While conduit sealing is well-documented, volatile accumulation has proven harder to characterize. We use a 2D conduit flow model including gas loss within the magma and into the wallrock to find steady-state magma flow configurations in the effusive regime. Model outputs yield a strongly heterogeneous distribution of the gas volume fraction underneath a dense, impermeable magma cap. Gas accumulates in inclined structures hundredths of meters long and several meters thick. These structures probably constitute the gas pockets that accumulate explosive energy and that were intuited by previous studies. We tested the numerical robustness of our results by simulating the fragmented state of the magma contained within the pockets, by testing various fragmentation criteria, and by varying computational gird size. These gas pockets are robust features that occur regardless of wallrock permeability (from very permeable at 10-12 m2 to quasi impermeable at 10-16 m2) but that are sensitive to the volume to surface ratio of the volcanic conduit. One implication is that the formation of these large degassing structures probably plays an essential role in the triggering of violent explosions. Such large scale outgassing feature may also bring a partial answer to the long standing issue of the observed gas transfer across entire magmatic systems despite high magma viscosity and no obvious physical mechanism of transfer.

  13. Mechanical Activation-Assisted Reductive Leaching of Cadmium from Zinc Neutral Leaching Residue Using Sulfur Dioxide

    NASA Astrophysics Data System (ADS)

    Zhang, Chun; Min, Xiaobo; Chai, Liyuan; Zhang, Jianqiang; Wang, Mi

    2015-12-01

    In this work, zinc neutral leaching residue was mechanically activated by ball-milling. The subsequent leaching behavior and kinetics of cadmium extraction in a mixed SO2-H2SO4 system were studied. Changes in the crystalline phase, lattice distortion, particle size and morphology, which were induced by mechanical activation, were also investigated. The activated samples showed different physicochemical characteristics, and cadmium extraction was found to be easier than for the un-activated samples. Under the same conditions, mechanical activation contributed to higher cadmium leaching. The cadmium extraction kinetics at 75-95°C was found to fit the shrinking core model. The raw neutral leaching residue, and the samples activated for 60 min and 120 min had a calculated activation energy of 65.02 kJ/mol, 59.45 kJ/mol and 53.46 kJ/mol, respectively. The leaching residue was characterized by ICP, XRD and SEM analysis. According to XRD analysis, the main phases in the residue were lead sulfate (PbSO4), zinc sulfide (ZnS) and cadmium sulfide (CdS).

  14. Gas-bubble growth mechanisms in the analysis of metal fuel swelling

    SciTech Connect

    Gruber, E.E.; Kramer, J.M.

    1986-06-01

    During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.

  15. Study of InN nanorods growth mechanism using ultrathin Au layer by plasma-assisted MBE on Si(111)

    NASA Astrophysics Data System (ADS)

    Kumar, Mahesh; Rajpalke, Mohana K.; Roul, Basanta; Bhat, Thirumaleshwara N.; Krupanidhi, S. B.

    2014-01-01

    InN nanorods (NRs) were grown on Si(111) substrate by plasma-assisted molecular beam epitaxy. The growth of InN NRs has been demonstrated using an electron-beam evaporated (~2 nm) Au layer prior to the initiation of growth. The structure and morphology of as deposited Au film, annealed at 600 °C, and InN NRs were investigated using X-ray photoelectron spectroscopy and scanning electron microscopy. Chemical characterization was performed with energy dispersive X-ray analysis. Single-crystalline wurtzite structure of InN NRs is verified by transmission electron microscopy. The formation process of NRs is investigated and a qualitative mechanism is proposed.

  16. Development of a novel technique to assess the vulnerability of micro-mechanical system components to environmentally assisted cracking.

    SciTech Connect

    Enos, David George; Goods, Steven Howard

    2006-11-01

    Microelectromechanical systems (MEMS) will play an important functional role in future DOE weapon and Homeland Security applications. If these emerging technologies are to be applied successfully, it is imperative that the long-term degradation of the materials of construction be understood. Unlike electrical devices, MEMS devices have a mechanical aspect to their function. Some components (e.g., springs) will be subjected to stresses beyond whatever residual stresses exist from fabrication. These stresses, combined with possible abnormal exposure environments (e.g., humidity, contamination), introduce a vulnerability to environmentally assisted cracking (EAC). EAC is manifested as the nucleation and propagation of a stable crack at mechanical loads/stresses far below what would be expected based solely upon the materials mechanical properties. If not addressed, EAC can lead to sudden, catastrophic failure. Considering the materials of construction and the very small feature size, EAC represents a high-risk environmentally induced degradation mode for MEMS devices. Currently, the lack of applicable characterization techniques is preventing the needed vulnerability assessment. The objective of this work is to address this deficiency by developing techniques to detect and quantify EAC in MEMS materials and structures. Such techniques will allow real-time detection of crack initiation and propagation. The information gained will establish the appropriate combinations of environment (defining packaging requirements), local stress levels, and metallurgical factors (composition, grain size and orientation) that must be achieved to prevent EAC.

  17. Microstructure and Mechanical Properties of Ultrafine-Grained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Liu, Zhiyuan; Chen, Xiaoqiang; Xu, Bin; Wu, Zhaozhi; Ruan, Shuangchen

    2016-09-01

    We proposed intermittent ultrasonic-assisted equal-channel angular pressing (IU-ECAP) and used it to produce ultrafine-grained copper. The main aim of this work was to investigate the microstructure and mechanical properties of copper processed by IU-ECAP. We performed experiments with two groups of specimens: group 1 used conventional ECAP, and group 2 combined ECAP with intermittent ultrasonic vibration. The extrusion forces, microstructure, mechanical properties, and thermal stability of the two groups were compared. It was revealed that more homogeneous microstructure with smaller grains could be obtained by IU-ECAP compared with copper obtained using the traditional ECAP method. Mechanical testing showed that IU-ECAP significantly reduced the extrusion force and increased both the hardness and ultimate tensile stress owing to the higher dislocation density and smaller grains. IU-ECAP promotes conversion from low-angle grain boundaries to high-angle grain boundaries, and it increases the fractions of subgrains and dynamic recrystallized grains. Group 2 statically recrystallized at a higher temperature or longer duration than group 1, showing that group 2 had better thermal stability.

  18. Does benign paroxysmal positional vertigo explain age and gender variation in patients with vertigo by mechanical assistance maneuvers?

    PubMed

    Wang, Jing; Chi, Fang-Lu; Jia, Xian-Hao; Tian, Liang; Richard-Vitton, Th

    2014-11-01

    Benign paroxysmal positional vertigo (BPPV) is one of the most common peripheral vestibular diseases. The aim of this study was to explore the prevalence of BPPV in vertigo patients and the characteristics of BPPV in diagnosis and repositioning using mechanical assistance maneuvers and to analyze and summarize the reasons showing these characteristics. Seven hundred and twenty-six patients with vertigo were enrolled in this study. All patients were inspected by TRV armchair (SYNAPSYS, model TRV, France). BPPV patients were identified by the examination results. The characteristics and results using TRV armchair in diagnosis and treatment of BPPV were compared and analyzed. Of 726 vertigo patients, 209 BPPV patients were diagnosed, including 58 men and 151 women, aged from 16 to 87 (mean 52.90 ± 11.93) years. There were significant differences in the proportion of BPPV in male and female vertigo patients (P = 0.0233), but no differences among all age groups (P = 0.3201). Of 209 BPPV patients, 208 cases were repositioned by TRV armchair and no one appeared to have otolithic debris relocated into another canal in the repositioning procedures. 202 cases (97.12 %) were successful and six cases (2.87 %) were effective. None of them failed. This study suggests that BPPV is one of the most common diseases in the young vertigo patients, just like that in the old ones. Female of the species has predilection for BPPV and the site of predilection is the right posterior semicircular canals (PC-BPPV). The results of repositioning are perfect using mechanical assistance maneuvers.

  19. Noble gas adsorption with and without mechanical stress: Not Martian signatures but fractionated air

    NASA Astrophysics Data System (ADS)

    Schwenzer, Susanne P.; Herrmann, Siegfried; Ott, Ulrich

    2012-06-01

    Sample preparation, involving physical and chemical methods, is an unavoidable step in geochemical analysis. From a noble gas perspective, the two important effects are loss of sample gas and/or incorporation of air, which are significant sources of analytical artifacts. This article reports on the effects of sample exposure to laboratory air without mechanical influence and during sample grinding. The experiments include pure adsorption on terrestrial analog materials (gibbsite and olivine) and grinding of Martian meteorites. A consistent observation is the presence of an elementally fractionated air component in the samples studied. This is a critical form of terrestrial contamination in meteorites as it often mimics the heavy noble gas signatures of known extra-terrestrial end-members that are the basis of important conclusions about the origin and evolution of a meteorite. Although the effects of such contamination can be minimized by avoiding elaborate sample preparation protocols, caution should be exercised in interpreting the elemental ratios (Ar/Xe, Kr/Xe), especially in the low-temperature step extractions. The experiments can also be transferred to the investigation of Martian meteorites with long terrestrial residence times, and to Mars, where the Mars Science Laboratory mission will be able to measure noble gas signatures in the current atmosphere and in rocks and soils collected on the surface in Gale crater.

  20. Gas-phase ion isomer analysis reveals the mechanism of peptide sequence scrambling.

    PubMed

    Jia, Chenxi; Wu, Zhe; Lietz, Christopher B; Liang, Zhidan; Cui, Qiang; Li, Lingjun

    2014-03-18

    Peptide sequence scrambling during mass spectrometry-based gas-phase fragmentation analysis causes misidentification of peptides and proteins. Thus, there is a need to develop an efficient approach to probing the gas-phase fragment ion isomers related to sequence scrambling and the underlying fragmentation mechanism, which will facilitate the development of bioinformatics algorithm for proteomics research. Herein, we report on the first use of electron transfer dissociation (ETD)-produced diagnostic fragment ions to probe the components of gas-phase peptide fragment ion isomers. In combination with ion mobility spectrometry (IMS) and formaldehyde labeling, this novel strategy enables qualitative and quantitative analysis of b-type fragment ion isomers. ETD fragmentation produced diagnostic fragment ions indicative of the precursor ion isomer components, and subsequent IMS analysis of b ion isomers provided their quantitative and structural information. The isomer components of three representative b ions (b9, b10, and b33 from three different peptides) were accurately profiled by this method. IMS analysis of the b9 ion isomers exhibited dynamic conversion among these structures. Furthermore, molecular dynamics simulation predicted theoretical drift time values, which were in good agreement with experimentally measured values. Our results strongly support the mechanism of peptide sequence scrambling via b ion cyclization, and provide the first experimental evidence to support that the conversion from molecular precursor ion to cyclic b ion (M → (c)b) pathway is less energetically (or kinetically) favored.

  1. Thermo-mechanical modelling of cyclic gas storage applications in salt caverns

    NASA Astrophysics Data System (ADS)

    Böttcher, Norbert; Watanabe, Norihiro; Görke, Uwe-Jens; Kolditz, Olaf; Nagel, Thomas

    2016-04-01

    Due to the growing importance of renewable energy sources it becomes more and more necessary to investigate energy storage potentials. One major way to store energy is the power-to-gas concept. Excessive electrical energy can be used either to produce hydrogen or methane by electrolysis or methanation or to compress air, respectively. Those produced gases can then be stored in artificial salt caverns, which are constructed in large salt formations by solution mining. In combination with renewable energy sources, the power-to-gas concept is subjected to fluctuations. Compression and expansion of the storage gases lead to temperature differences within the salt rock. The variations can advance several metres into the host rock, influencing its material behaviour, inducing thermal stresses and altering the creep response. To investigate the temperature influence on the cavern capacity, we have developed a numerical model to simulate the thermo-mechanical behaviour of salt caverns during cyclic gas storage. The model considers the thermodynamic behaviour of the stored gases as well as the heat transport and the temperature dependent material properties of the host rock. Therefore, we utilized well-known constitutive thermo-visco-plastic material models, implemented into the open source-scientific software OpenGeoSys. Both thermal and mechanical processes are solved using a finite element approach, connected via a staggered coupling scheme. The model allows the assessment of the structural safety as well as the convergence of the salt caverns.

  2. Reaction mechanism for the thermal decomposition of BCl3/CH4/H2 gas mixtures.

    PubMed

    Reinisch, Guillaume; Vignoles, Gérard L; Leyssale, Jean-Marc

    2011-10-27

    This paper presents an ab initio study of the B/C/Cl/H gas phase mechanism, featuring 10 addition-elimination reactions involving BH(i)Cl(j) (i + j ≤ 3) species and a first description of the chemical interaction between the carbon-containing and boron-containing subsystems through the three reactions BCl(3) + CH(4) ⇌ BCl(2)CH(3) + HCl, BHCl(2) + CH(4) ⇌ BCl(2)CH(3) + H(2), and BCl(2) + CH(4) ⇌ BHCl(2) + CH(3). A reaction mechanism is then proposed and used to perform some illustrative equilibrium and kinetic calculations in the context of chemical vapor deposition (CVD) of boron carbide. Our results show that the new addition-elimination reaction paths play a crucial role by lowering considerably the activation barrier with respect to previous theoretical evaluations; they also confirm that BCl(2)CH(3) is an important species in the mechanism.

  3. Proton-Assisted Mechanism of NO Reduction on a Dinuclear Ruthenium Complex.

    PubMed

    Suzuki, Tatsuya; Tanaka, Hiromasa; Shiota, Yoshihito; Sajith, P K; Arikawa, Yasuhiro; Yoshizawa, Kazunari

    2015-08-01

    Density-functional-theory (DFT) calculations are performed for the proposal of a plausible mechanism on the reduction of NO to N2O by a dinuclear ruthenium complex, reported by Arikawa and co-workers [J. Am. Chem. Soc. 2007, 129, 14160]. On the basis of the experimental fact that the reduction proceeds under strongly acidic conditions, the role of protons in the mechanistic pathways is investigated with model complexes, where one or two NO ligands are protonated. The reaction mechanism of the NO reduction is partitioned into three steps: reorientation of N2O2 (cis-NO dimer), O-N bond cleavage, and N2O elimination. A key finding is that the protonation of the NO ligand(s) significantly reduces the activation barrier in the rate-determining reorientation step. The activation energy of 43.1 kcal/mol calculated for the proton-free model is reduced to 30.2 and 17.6 kcal/mol for the mono- and diprotonated models, respectively. The protonation induces the electron transfer from the Ru(II)Ru(II) core to the O═N-N═O moiety to give a Ru(III)Ru(III) core and a hyponitrite (O-N═N-O)(2-) species. The formation of the hyponitrite species provides an alternative pathway for the N2O2 reorientation, resulting in the lower activation energies in the presence of proton(s). The protonation also has a marginal effect on the O-N bond cleavage and the N2O elimination steps. Our calculations reveal a remarkable role of protons in the NO reduction via N2O formation and provide new insights into the mechanism of NO reduction catalyzed by metalloenzymes such as nitric oxide reductase (NOR) that contains a diiron active site. PMID:26186365

  4. Driving pressure during assisted mechanical ventilation: Is it controlled by patient brain?

    PubMed

    Georgopoulos, Dimitris; Xirouchaki, Nectaria; Tzanakis, Nikolaos; Younes, Magdy

    2016-07-01

    Tidal volume (VT) is the controlled variable during passive mechanical ventilation (CMV) in order to avoid ventilator-induced-lung-injury. However, recent data indicate that the driving pressure [ΔP; VT to respiratory system compliance (Crs) ratio] is the parameter that best stratifies the risk of death. In order to study which variable (VT or ΔP) is controlled by critically ill patients, 108 previously studied patients were assigned to receive PAV+ (a mode that estimates Crs and permits the patients to select their own breathing pattern) after CMV, were re-analyzed. When patients were switched from CMV to PAV+ they controlled ΔP without constraining VT to narrow limits. VT was increased when the resumption of spontaneous breathing was associated with an increase in Crs. When ΔP was high during CMV, the patients (n=12) decreased it in 58 out of 67 measurements. We conclude that critically ill patients control the driving pressure by sizing the tidal volume to individual respiratory system compliance using appropriate feedback mechanisms aimed at limiting the degree of lung stress.

  5. Ultrananocrystalline diamond film deposition by direct-current plasma assisted chemical vapor deposition using hydrogen-rich precursor gas in the absence of the positive column

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Joo; Jeon, Hyeongtag; Lee, Wook-Seong

    2011-01-01

    We have investigated the ultrananocrystalline diamond (UNCD) deposition by direct-current plasma assisted chemical vapor deposition on 4 in. Si wafer using CH4H2 as well as CH4Ar gas chemistry containing additive nitrogen. CH4/N2/H2 (5%/0.5%/94.5%) and CH4/N2/H2/Ar (0.5%/5%/6%/88.5%) gas mixtures were compared as the precursor gas. Molybdenum and tungsten were compared as cathode material. Discharge voltage and current were 480 V/45 A and 320 V/60 A, for respective gas chemistry. Chamber pressure and substrate temperature were 110-150 Torr and 750-850 °C, respectively. The film was characterized by near edge x-ray absorption fine structure spectroscopy, x-ray diffraction, high-resolution transmission electron microscope, electron energy loss spectroscopy, and high-resolution scanning electron microscope. We have demonstrated that (1) elimination of the positive column, by adopting very small interelectrode distance, gave some important and beneficial effects; (2) the plasma stability and impurity incorporation was sensitive to the cathode material and the precursor gas; (3) using the conventional CH4/H2 precursor gas and tungsten cathode, the mirror-smooth 4 in. UNCD film of excellent phase-purity and grain size below 10 nm could be deposited even in the absence of the positive column. The high electric field in the unusually narrow interelectrode space and the consequent high electron kinetic energy, in conjunction with the unusually high electron current thereof, directed to the substrate, i.e., the anode, was proposed to be the source of the grain refinement to achieve UNCD at such high chamber pressure around 110-150 Torr, in the absence of the usual ion bombardment assistance.

  6. Synergistic catalytic removal NOX and the mechanism of plasma and hydrocarbon gas

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Sha, Xiang-ling; Zhang, Lei; He, Hui-bin; Ma, Zhen-hua; Wang, Long-wei; Wang, Yu-xin; She, Li-xia

    2016-07-01

    This paper using a method of catalytic adsorption combined with dielectric barrier discharge plasma which added to hydrocarbon gases. The different background gases, different dielectric properties and different pore sizes of the hydrolysis coke on the denitrification performance was studied. The effect of the coaction of plasma and the different properties of the removal of NO in flue gas was investigated, and the catalytic mechanism of the synergistic effect of plasma and hydrocarbon gas was discussed. The results shown that: The denitrification rate was significantly affected by plasma power and the initial concentration of NO; the reaction was restrained by the presence of oxygen and greatly promoted by the hydrocarbon gases. The permittivity of the catalyst has a great influence on the activity and the porous structure of the catalyst can obviously promote the reaction when the low temperature plasma combined with hydrocarbon gases.

  7. Thermal detection mechanism of SiC based hydrogen resistive gas sensors

    NASA Astrophysics Data System (ADS)

    Fawcett, Timothy J.; Wolan, John T.; Lloyd Spetz, Anita; Reyes, Meralys; Saddow, Stephen E.

    2006-10-01

    Silicon carbide (SiC) resistive hydrogen gas sensors have been fabricated and tested. Planar NiCr contacts were deposited on a thin 3C-SiC epitaxial film grown on thin Si wafers bonded to polycrystalline SiC substrates. At 673K, up to a 51.75±0.04% change in sensor output current and a change in the device temperature of up to 163.1±0.4K were demonstrated in response to 100% H2 in N2. Changes in device temperature are shown to be driven by the transfer of heat from the device to the gas, giving rise to a thermal detection mechanism.

  8. Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties

    NASA Astrophysics Data System (ADS)

    Ouyang, Xilian; Huang, Wenyi; Cabrera, Eusebio; Castro, Jose; Lee, L. James

    2015-01-01

    Hybrid nanopaper-like thin films with a graphene oxide (GO) layer sandwiched by two functionalized graphene (GP-SO3H) layers were successfully prepared from oxidized graphene and benzene sulfonic modified graphene. The hybrid graphene-graphene oxide-graphene (GP-GO-GP) nanopapers showed combination of high mechanic strength and good electrical conductivity, leading to desirable electromagnetic interference shielding performance, from the GP-SO3H layers, and superior gas diffusion barrier provided by the GO layer. These GP-GO-GP nanopapers can be readily coated onto plastic and composite substrates by thermal lamination and injection molding for various industrial applications such as fuel cell and natural gas containers.

  9. Atom-assisted quadrature squeezing of a mechanical oscillator inside a dispersive cavity

    NASA Astrophysics Data System (ADS)

    Chauhan, Anil Kumar; Biswas, Asoka

    2016-08-01

    We present a hybrid optomechanical scheme to achieve dynamical squeezing of position quadrature of a mesoscopic mechanical oscillator, that can be externally controlled by classical fields. A membrane-in-the-middle setup is employed, in which an atom in Λ configuration is considered to be trapped on either side of the membrane inside the cavity. We show that a considerable amount of squeezing (beyond the 3-dB limit) can be achieved and maintained at a transient time scale that is not affected by the spontaneous emission of the atom. Squeezing depends upon the initial preparation of atomic states. Further, a strong effective coupling (larger than the relevant decay rates) between the atom and the oscillator can be attained by using large control fields that pump the atom and the cavity. The effects of cavity decay and the phononic bath on squeezing are studied. The results are supported by the detailed analytical calculations.

  10. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids.

    PubMed

    Liu, Mingzhao; Guyot-Sionnest, Philippe

    2005-12-01

    The seed-mediated growth of gold nanostructures is shown to be strongly dependent on the gold seed nanocrystal structure. The gold seed solutions can be prepared such that the seeds are either single crystalline or multiply twinned. With added silver(I) in the cetyltrimethylammonium bromide (CTAB) aqueous growth solutions, the two types of seeds yield either nanorods or elongated bipyramidal nanoparticles, in good yields. The gold nanorods are single crystalline, with a structure similar to those synthesized electrochemically (Yu, Y. Y. et al. J. Phys. Chem. B 1997, 101, 6661). In contrast, the gold bipyramids are pentatwinned. These bipyramids are strikingly monodisperse in shape. This leads to the sharpest ensemble longitudinal plasmon resonance reported so far for metal colloid solutions, with an inhomogeneous width as narrow as 0.13 eV for a resonance at approximately 1.5 eV. Ag(I) plays an essential role in the growth mechanism. Ag(I) slows down the growth of the gold nanostructures. Ag(I) also leads to high-energy side facets that are {110} for the single crystalline gold nanorods and unusually highly stepped {11n} (n approximately 7) for the bipyramid. To rationalize these observations, it is proposed that it is the underpotential deposition of Ag(I) that leads to the dominance of the facets with the more open surface structures. This forms the basis for the one-dimensional growth mechanism of single crystal nanorods, while it affects the shape of the nanostructures growing along a single twinning axis. PMID:16853888

  11. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    SciTech Connect

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  12. Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants

    SciTech Connect

    Gauglitz, Phillip A.; Buchmiller, William C.; Probert, Samuel G.; Owen, Antionette T.; Brockman, Fred J.

    2012-02-24

    The Hanford Site has 28 double-shell tanks (DSTs) and 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. The mission of the Department of Energy's River Protection Project is to retrieve and treat the Hanford tank waste for disposal and close the tank farms. A key aspect of the mission is to retrieve and transfer waste from the SSTs, which are at greater risk for leaking, into DSTs for interim storage until the waste is transferred to and treated in the Waste Treatment and Immobilization Plant. There is, however, limited space in the existing DSTs to accept waste transfers from the SSTs, and approaches to overcoming the limited DST space will benefit the overall mission. The purpose of this study is to summarize and analyze the key previous experiment that forms the basis for the relaxed controls and to summarize progress and results on new experiments focused on understanding the conditions that result in low gas retention. The previous large-scale test used about 50 m3 of sediment, which would be unwieldy for doing multiple parametric experiments. Accordingly, experiments began with smaller-scale tests to determine whether the desired mechanisms can be studied without the difficulty of conducting very large experiments. The most significant results from the current experiments are that progressively lower gas retention occurs in tests with progressively deeper sediment layers and that the method of gas generation also affects the maximum retention. Based on the results of this study, it is plausible that relatively low gas retention could occur in sufficiently deep tank waste in DSTs. The current studies and previous work, however, have not explored how gas retention and release will behave when two or more layers with different properties are present.

  13. Synthesis and characterizations of nanoscale single crystal GaN grown by ion assisted gas source MBE

    NASA Astrophysics Data System (ADS)

    Cui, Bentao; Cohen, P. I.

    2004-03-01

    Nanoscale patterns could be induced by ion bombardment [1, 2]. In this study, an in-situ real time light scattering technique, combined with Reflection High Energy Electron Diffraction (RHEED), were used to study the surface morphology evolution during the ion beam assisted growth of GaN in a gas source MBE system. Ga was provided by a thermal effusion cell. Ammonia was used as the nitrogen source. A hot-filament Kaufman ion source was used to supply sub-KeV ion beams. Sapphire and MOCVD GaN templates were used as the substrates. A custom-designed Desorption Mass Spectrometer (DMS) was used to calibrate the growth temperature and determine the growth rate. Before growing GaN, the sapphire substrates were pretreated in an ion flux and then annealed for cleaning. The sapphire surface was then nitrided in ammonia at 1100K for about 10 min. After nitridation, a thin GaN buffer layer was prepared by a sequence of adsorption and annealing steps. During the growth, the short-range surface morphology and film quality were monitored in situ by RHEED. In a real-time way, the long-range surface morphology was monitored in-situ by light scattering technique. Photodiode array detector and CCD camera were used to record the reflected light scattering intensity and spectra profile respectively. Periodical patterns, such as ripple, have been observed during ion bombardment on GaN with or without growth. A linear theory (from Bradley and Harper 1988 [3]) has been modified to explain the dependence of ripple wavelength on ion species and ion energy. Partially supported by the National Science Foundation and the Air Force Office of Scientific Research. [1]. J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 82, 2330 (1998); J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 84, 5800 (2000). [2]. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt et al.. Science 285, 1551 (1999). [3]. R. M. Bradley

  14. Fundamental mechanisms in flue gas conditioning. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    Snyder, T.R.; Bush, P.V.

    1995-07-11

    This project is divided into four tasks. We developed our Management Plan in Task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focused on characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, was designed to examine effects of various conditioning agents on fine ash particles to determine mechanisms by which these agents alter physical properties of ash. We began Tasks 2 and 3 with an extensive literature search and assembly of existing theories. We completed this phase of the project with publication of two special Topical Reports. In our literature reviews reported in Topical Reports 1 and 2, we emphasized the roles adsorbed water can have in controlling bulk properties of powders. During the next phase of the project we analyzed a variety of fly ashes and fine powders in the laboratory. The experiments we performed were primarily designed to define the extent to which water affects key properties of ashes, powders, and mixtures of sorbents and ashes. We have recently completed a series of pilot-scale tests designed to determine the effects that adsorbed water has on fabric filtration and electrostatic precipitation of entrained fly ash particles in actual flue gas environments. Under Task 4 we will issue our Final Report that will summarize the results of our laboratory and pilot-scale work and will also include a model of flue gas conditioning. Our efforts during this reporting quarter have been directed toward production of the Draft Final Report and the Flue Gas Conditioning Model. In addition to these efforts, we have prepared a paper for presentation at the Eleventh Annual Coal Preparation, Utilization, and Environmental Control Contractor`s Conference to be held in Pittsburgh in July, 1995.

  15. Nearby early-type galaxies with ionized gas. IV. Origin and powering mechanism of the ionized gas

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Bressan, A.; Rampazzo, R.; Zeilinger, W. W.; Vega, O.; Panuzzo, P.

    2010-09-01

    Aims: A significant fraction of early-type galaxies (ETGs) exhibit emission lines in their optical spectra. We attempt to identify the producing the emission mechanism and the ionized gas in ETGs, and its connection with the host galaxy evolution. Methods: We analyzed intermediate-resolution optical spectra of 65 ETGs, mostly located in low density environments and exhibiting spectros-copic diagnostic lines of ISM from which we had previously derived stellar population properties. To extract the emission lines from the galaxy spectra, we developed a new fitting procedure that accurately subtracts the underlying stellar continuum, and accounts for the uncertainties caused by the age-metallicity degeneracy. Results: Optical emission lines are detected in 89% of the sample. The incidence and strength of emission correlate with neither the E/S0 classification, nor the fast/slow rotator classification. By means of the classical [OIII]/Hβ versus [NII]/Hα diagnostic diagram, the nuclear galaxy activity is classified such that 72% of the galaxies with emission are LINERs, 9% are Seyferts, 12% are composite/transition objects, and 7% are non-classified. Seyferts have young luminostiy-weighted ages (≲5 Gyr), and appear, on average, significantly younger than LINERs and composites. Excluding the Seyferts from our sample, we find that the spread in the ([OIII], Hα, or [NII]) emission strength increases with the galaxy central velocity dispersion σ_c. Furthermore, the [NII]/Hα ratio tends to increase with σ_c. The [NII]/Hα ratio decreases with increasing galactocentric distance, indicative of either a decrease in the nebular metallicity, or a progressive “softening” of the ionizing spectrum. The average nebular oxygen abundance is slightly less than solar, and a comparison with the results obtained in Paper III from Lick indices shows that it is ≈0.2 dex lower than that of stars. Conclusions: The nuclear (r < re/16) emission can be attributed to photoionization

  16. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation.

    PubMed

    Xie, Xiaofang; Zhang, Yongqing; Huang, Weilin; Huang, Shaobing

    2012-01-01

    Oxidation of aniline by persulfate in aqueous solutions was investigated and the reaction kinetic rates under different temperature, persulfate concentration and pH conditions were examined in batch experiments. The results showed that, the aniline degradation followed pseudo first-order reaction model. Aniline degradation rate increased with increasing temperature or persulfate concentration. In the pH range of 3 to 11, a low aniline degradation rate was obtained at strong acid system (pH 3), while a high degradation rate was achieved at strong alkalinity (pH 11). Maximum aniline degradation occurred at pH 7 when the solution was in a weak level of acid and alkalinity (pH 5, 7 and 9). Produced intermediates during the oxidation process were identified using liquid chromatography-mass spectrometry technology. And nitrobenzene, 4-4'-diaminodiphenyl and 1-hydroxy-1,2-diphenylhydrazine have been identified as the major intermediates of aniline oxidation by persulfate and the degradation mechanism of aniline was also tentatively proposed.

  17. A new technique for determining proper mechanical axis alignment during total knee arthroplasty: progress toward computer-assisted TKA.

    PubMed

    Krackow, K A; Bayers-Thering, M; Phillips, M J; Bayers-Thering, M; Mihalko, W M

    1999-07-01

    Successful total knee arthroplasty (TKA) relies on proper positioning of prosthetic components to restore the mechanical axis of the lower extremity. This report presents and analyzes a new noninvasive method using the Optotrack (Northern Digital Inc, Ontario, Canada) to accurately determine the center of the femoral head. This method, together with direct digitization of the bony landmarks of the knee and ankle intraoperatively, permits placement of the lower extremity in proper alignment intraoperatively. It also permits the surgeon to follow all the angles of movement or rotation and all displacements that occur at each step of the operative procedure. knee intraoperatively via a customized Windows-based program. In addition to presenting our first case, which, importantly, represents the first computer-assisted TKA in a patient, we report on the accuracy and reproducibility of the technique for locating the center of the femoral head obtained during an extensive series of cadaver studies. Location of the femoral head, a major aspect of effecting neutral mechanical axis alignment, appears to be possible to within 2-4 mm, which corresponds to an angular accuracy of better than 1 degree. This method requires no computed tomography scans or other preliminary marker placement. The only basic requirement other than the instrumentation described is a freely mobile hip, which is generally present in TKA patients. PMID:10418867

  18. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound.

    PubMed

    Bhasarkar, Jaykumar B; Chakma, Sankar; Moholkar, Vijayanand S

    2015-05-01

    This paper attempts to discern the physical mechanism of the oxidative desulfurization process simultaneously assisted by ultrasound and phase transfer agent (PTA). With different experimental protocols, an attempt is made to deduce individual beneficial effects of PTA and ultrasound on the oxidative desulfurization system, and also the synergy between the effects of PTA and ultrasound. Effect of PTA is more marked for mechanically stirred system due to mass transfer limitations, while intense emulsification due to ultrasound helps overcome the mass transfer limitations and reduces the extent of enhancement of oxidation by PTA. Despite application of PTA and ultrasound, the intrinsic factors and properties of the reactants such as polarity (and hence partition coefficient) and diffusivity have a crucial effect on the extent of oxidation. The intrinsic reactivity of the oxidant also plays a vital role, as seen from the extent of oxidation achieved with performic acid and peracetic acid. The interfacial transport of oxidant in the form of oxidant-PTA complex reduces the undesired consumption of oxidant by the reducing species formed during transient cavitation in organic medium, which helps effective utilization of oxidant towards desulfurization. PMID:25465876

  19. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    2006-01-01

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  20. Nanoscale gas sensors and their detection mechanisms: Carbon nanotubes and beyond

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony K.

    The research presented in this thesis focuses on the experimental investigation of nanoscale electronic devices for gas sensing applications. The majority of the experiments were conducted on carbon nanotube field-effect transistors (CNTFETs) made with variable density carbon nanotube networks. The carbon nanotube networks were grown using chemical vapor deposition on doped silicon wafers capped with silicon dioxide. Contact electrodes were attached to the networks with standard e-beam lithography and thin film deposition techniques. To better understand the sensing mechanism of CNTFETs, numerous samples were fabricated with varying densities of nanotubes and nanotube junctions. These samples were exposed to nitrogen dioxide and the change in conductance was recorded. Selected parts of the device were then passivated with a thick photoresist to determine whether they contribute to the sensing mechanism. Our previous work showed that for devices made with a single CNT, the response to nitrogen dioxide was mainly due to modifications at the contact interfaces rather than molecular adsorption on the nanotube sidewalls. However, here we show that when using CNT networks, both gas sensing mechanisms are involved. We will illustrate this through the comparison of the experimental response of high-density versus low-density CNT networks and show that the effect of adsorption is linked to the number of CNT junctions, or cross-over points, in the network. Adsorption plays a major role for high-density networks. Its effect is much weaker for low-density networks and not measureable in a single nanotube, where the response is mainly due to the electrodes. Experiments were also performed on field-effect transistor devices with molybedenum disulfide (MoS2) being substituted for the nanotubes. These devices were fabricated using the same substrates and metal deposition techniques used for carbon nanotube devices; however the MoS2 was mechanically exfoliated onto the wafers

  1. Arapahoe low-sulfur-coal fabric filter pilot plant: Volume 3, Characterization of sonic-assisted reverse-gas cleaning, May 1982--May 1984: Final report

    SciTech Connect

    Cushing, K.M.; Bustard, C.J.; Pontius, D.H.; Pyle, B.E.; Smith, W.B.

    1989-02-01

    During 1981 intense interest developed in the utility industry regarding the use of horns as a supplement to reverse-gas bag cleaning. To characterize and assess sonic-enhanced, reverse-gas cleaning, horns were installed at EPRI's 10-MW Fabric Filter Pilot Plant (FFPP) at its Arapahoe Test Facility located at Public Service Company of Colorado's Arapahoe Steam Plant in Denver, Colorado. In addition to the FFPP tests, laboratory studies of sonic cleaning were conducted to supplement the pilot plant data. To verify the applicability of the pilot plant and laboratory work to full-scale baghouses, field data from utility baghouses in which horns had been installed were collected. The purpose of the testing was to determine the range of horn frequencies and total output power most effective in removing residual dustcakes from bags in reverse-gas-cleaned baghouses and, hence, most effective in reducing baghouse pressure drop. No attempt was made to identify a specific horn or horns most appropriate for baghouse application. The report presents the results of this testing from May 1982 through May 1984. Results showed that horns can dislodge a significant fraction of residual dustcake, thereby reducing pressure drop by as much as 60% without any noticeable reduction in bag life. Although outlet particulate emissions are higher with sonic assistance, they are generally <0.01 lb/10/sup 6/ Btu---below the 1979 New Source Performance Standards of 0.03 lb/MBtu. The overall results of this sonic horn investigation indicate that reverse-gas cleaning with sonic assistance definitely promotes more effective bag filter cleaning and lower pressure drop, and it should be considered as a supplement for most reverse-gas cleaned baghouse applications. 10 refs., 37 figs., 7 tabs.

  2. An Annular Mechanical Temperature Compensation Structure for Gas-Sealed Capacitive Pressure Sensor

    PubMed Central

    Hao, Xiuchun; Jiang, Yonggang; Takao, Hidekuni; Maenaka, Kazusuke; Higuchi, Kohei

    2012-01-01

    A novel gas-sealed capacitive pressure sensor with a temperature compensation structure is reported. The pressure sensor is sealed by Au-Au diffusion bonding under a nitrogen ambient with a pressure of 100 kPa and integrated with a platinum resistor-based temperature sensor for human activity monitoring applications. The capacitance-pressure and capacitance-temperature characteristics of the gas-sealed capacitive pressure sensor without temperature compensation structure are calculated. It is found by simulation that a ring-shaped structure on the diaphragm of the pressure sensor can mechanically suppress the thermal expansion effect of the sealed gas in the cavity. Pressure sensors without/with temperature compensation structures are fabricated and measured. Through measured results, it is verified that the calculation model is accurate. Using the compensation structures with a 900 μm inner radius, the measured temperature coefficient is much reduced as compared to that of the pressure sensor without compensation. The sensitivities of the pressure sensor before and after compensation are almost the same in the pressure range from 80 kPa to 100 kPa. PMID:22969385

  3. Modelling the behaviour of mechanical biological treatment outputs in landfills using the GasSim model.

    PubMed

    Donovan, S M; Bateson, T; Gronow, J R; Voulvoulis, N

    2010-03-15

    The pretreatment of the biodegradable components of municipal solid waste (MSW) has been suggested as a method of reducing landfill gas emissions. Mechanical biological treatment (MBT) is the technology being developed to provide this reduction in biodegradability, either as an alternative to source segregated collection or for dealing with residual MSW which still contains high levels of biodegradable waste. The compost like outputs (CLOs) from MBT plants can be applied to land as a soil conditioner; treated to produce a solid recovered fuel (SRF) or landfilled. In this study the impact that landfilling of these CLOs will have on gaseous emissions is investigated. It is important that the gas production behaviour of landfilled waste is well understood, especially in European member states where the mitigation of gaseous emissions is a legal requirement. Results of an experiment carried out to characterise the biodegradable components of pretreated biowastes have been used with the GasSim model to predict the long term emissions behaviour of landfills accepting these wastes, in varying quantities. The landfill directive also enforces the mitigation of potential methane emissions from landfills, and the ability of landfill operators to capture gaseous emissions from low emitting landfills of the future is discussed, as well as new techniques that could be used for the mitigation of methane generation. PMID:20092874

  4. Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems

    SciTech Connect

    Jost Wendt; Sung Jun Lee; Paul Blowers

    2008-09-30

    The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

  5. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales

    PubMed Central

    Darrah, Thomas H.; Vengosh, Avner; Jackson, Robert B.; Warner, Nathaniel R.; Poreda, Robert J.

    2014-01-01

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ13C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., 4He, 20Ne, 36Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, 4He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, 36Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing. PMID:25225410

  6. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales.

    PubMed

    Darrah, Thomas H; Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel R; Poreda, Robert J

    2014-09-30

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ(13)C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., (4)He, (20)Ne, (36)Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, (4)He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, (36)Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing.

  7. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales.

    PubMed

    Darrah, Thomas H; Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel R; Poreda, Robert J

    2014-09-30

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ(13)C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., (4)He, (20)Ne, (36)Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, (4)He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, (36)Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing. PMID:25225410

  8. Study of detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance model.

    PubMed

    Jingyi, Zhu

    2015-01-01

    The detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance (MSR) model was studied in this paper. A numerically stimulating model based on MSR was established. And gas-ionizing experiment by adding electronic white noise to induce 1.65 MHz periodic component in the carbon nanotubes gas sensor was performed. It was found that the signal-to-noise ratio (SNR) spectrum displayed 2 maximal values, which accorded to the change of the broken-line potential function. The experimental results of gas-ionizing experiment demonstrated that periodic component of 1.65 MHz had multiple MSR phenomena, which was in accordance with the numerical stimulation results. In this way, the numerical stimulation method provides an innovative method for the detecting mechanism research of carbon nanotubes gas sensor.

  9. Study of detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance model

    PubMed Central

    Jingyi, Zhu

    2015-01-01

    The detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance (MSR) model was studied in this paper. A numerically stimulating model based on MSR was established. And gas-ionizing experiment by adding electronic white noise to induce 1.65 MHz periodic component in the carbon nanotubes gas sensor was performed. It was found that the signal-to-noise ratio (SNR) spectrum displayed 2 maximal values, which accorded to the change of the broken-line potential function. The experimental results of gas-ionizing experiment demonstrated that periodic component of 1.65 MHz had multiple MSR phenomena, which was in accordance with the numerical stimulation results. In this way, the numerical stimulation method provides an innovative method for the detecting mechanism research of carbon nanotubes gas sensor. PMID:26198910

  10. Anisotropic mechanical behaviour of sedimentary basins inferred by advanced radar interferometry above gas storage fields

    NASA Astrophysics Data System (ADS)

    Teatini, P.; Gambolati, G.; Ferretti, A.

    2010-12-01

    Natural gas is commonly stored underground in depleted oil and gas fields to provide safe storage capacity and deliverability to market areas where production is limited, or to take advantage of seasonal price swings. In response to summer gas injection and winter gas withdrawal the reservoir expands and contracts with the overlying land that moves accordingly. Depending on the field burial depth, a few kilometres of the upper lithosphere are subject to local three-dimensional deformations with the related cyclic motion of the ground surface being both vertical and horizontal. Advanced Persistent Scatterer Interferometry (PSI) data, obtained by combining ascending and descending RADARSAT-1 images acquired from 2003 to 2008 above gas storage fields located in the sedimentary basin of the Po river plain, Italy, provide reliable measurement of these seasonal vertical ups and downs as well as horizontal displacements to and from the injection/withdrawal wells. Combination of the land surface movements together with an accurate reconstruction of the subsurface geology made available by three-dimensional seismic surveys and long-time records of fluid pore pressure within the 1000-1500 m deep reservoirs has allowed for the development of an accurate 3D poro-mechanical finite-element model of the gas injection/removal occurrence. Model calibration based on the observed cyclic motions, which are on the range of 10-15 mm and 5-10 mm in the vertical and horizontal west-east directions, respectively, helps characterize the nonlinear hysteretic geomechanical properties of the basin. First, using a basin-scale relationship between the oedometric rock compressibility cM in virgin loading conditions versus the effective intergranular stress derived from previous experimental studies, the modeling results show that the ratio s between loading and unloading-reloading cM is about 4, consistent with in-situ expansions measured by the radioactive marker technique in similar reservoirs

  11. Mechanical Properties of Super Duplex Stainless Steel 2507 after Gas Phase Thermal Precharging with Hydrogen

    NASA Astrophysics Data System (ADS)

    San Marchi, C.; Somerday, B. P.; Zelinski, J.; Tang, X.; Schiroky, G. H.

    2007-11-01

    Thermal precharging of super duplex stainless steel 2507 with 125 wppm hydrogen significantly reduced tensile ductility and fracture toughness. Strain-hardened 2507 exhibited more severe ductility loss compared to the annealed microstructure. The reduction of area (RA) was between 80 and 85 pct for both microstructures in the noncharged condition, while reductions of area were 25 and 46 pct for the strain-hardened and annealed microstructures, respectively, after hydrogen precharging. Similar to the effect of internal hydrogen on tensile ductility, fracture toughness of strain-hardened 2507 was lowered from nearly 300 MPa m1/2 in the noncharged condition to less than 60 MPa m1/2 in the hydrogen-precharged condition. While precharging 2507 with hydrogen results in a considerable reduction in ductility and toughness, the absolute values are similar to high-strength austenitic steels that have been tested under the same conditions, and which are generally considered acceptable for high-pressure hydrogen gas systems. The fracture mode in hydrogen-precharged 2507 involved cleavage cracking of the ferrite phase and ductile fracture along oblique planes in the austenite phase, compared to 100 pct microvoid coalescence in the absence of hydrogen. Predictions from a strain-based micromechanical fracture toughness model were in good agreement with the measured fracture toughness of hydrogen-precharged 2507, implying a governing role of austenite for resistance to hydrogen-assisted fracture.

  12. Pathogenic mechanisms of intestinal pneumatosis and portal venous gas: should patients with these conditions be operated immediately?

    PubMed

    Mitsuyoshi, Akira; Hamada, Shinshichi; Tachibana, Tsuyoshi; Momono, Teppei; Aoyama, Hiroki; Kondo, Yuhei; Inoguchi, Kenta; Yokoyama, Daiju; Nakau, Masayuki; Suzaki, Sato; Okabe, Hiroshi; Yanagibashi, Ken

    2015-12-01

    We aimed to histologically observe portal venous gas (PVG)-causing intestinal pneumatosis (IP) and evaluate pathogenic mechanisms and therapeutic strategies, including decisions on whether emergency surgery should be performed. Autopsy was performed in two cases of nonocclusive mesenteric ischemia (NOMI). We directly histologically observed the pathogenic mechanisms of IP caused by gas-producing bacteria and IP considered to be caused by mechanical damage to the intestinal mucosa. IP can be classified hypothetically into the following types according to pathogenesis: (1) infection, (2) rupture (damage) of the intestinal mucosa + increased intestinal intraluminal pressure, and (3) mixed type. In cases of IP caused by gas-producing bacteria or IP associated with intestinal wall damage extending beyond the mucosa to the deep muscular layer, emergency surgery should be considered. However, it is highly possible that patients who test negative for infection with gas-producing bacteria whose intestinal wall damage remains only in the mucosa can be conservatively treated. PMID:26943428

  13. Effect of Gas Pores on Mechanical Properties of High-Pressure Die-Casting AM50 Magnesium Alloy.

    PubMed

    Jiang, Wei; Cao, Zhanyi; Liu, Liping; Jiang, Bo

    2016-08-01

    High-pressure die-casting (HPDC) AM50 tensile specimens were used to investigate characteristics of gas pores and its effect on mechanical properties of HPDC AM50 magnesium alloy. Combining microstructure morphology gained from optical microscopy, scanning electron microscopy (SEM), and three-dimensional (3D) reconstruction with the experimental data from uniaxial tensile testing, we pursued the relationship between gas pores and the mechanical properties of HPDC AM50 Mg alloy. Results indicate that comparing with 3D reconstruction models, 2D images like optical metallography images and SEM images have one-sidedness. Furthermore, the size and maximum areal fraction of gas pores have negative effects on the mechanical properties of HPDC AM50 Mg alloy. With increase of the maximum size of gas pores in the specimen, the ultimate tensile strength (UTS) and elongation decrease. In addition, with the maximum areal fraction becoming larger, both the UTS and elongation decrease linearly.

  14. The effect of nebulized epinephrine on respiratory mechanics and gas exchange in bronchiolitis.

    PubMed

    Numa, A H; Williams, G D; Dakin, C J

    2001-07-01

    Nebulized epinephrine has been advocated as a treatment for airway obstruction in infants with bronchiolitis; however, its effect on respiratory mechanics and gas exchange has been poorly documented to date. We performed a preinterventional and postinterventional study with primary outcome measures of mechanics (measured by single-breath occlusion passive deflation) and oxygenation and ventilation indices in order to measure the effects of nebulized epinephrine in infants requiring mechanical ventilation for RSV-positive bronchiolitis. A two-compartment model was used to describe respiratory mechanics in patients with nonlinear flow-volume curves. Nebulized epinephrine (0.5 mg/kg) was administered to 15 patients (median age, 0.19 yr; weight, 4.4 kg). Resistance decreased significantly in slow and fast compartments in 87 and 70% of patients, respectively. Median resistance in the slow compartment decreased from 0.427 to 0.198 cm H2O/ml/s (p = 0.0015) and in the fast compartment from 0.167 to 0.116 cm H2O/ ml/s (p = 0.018). Compliance, oxygenation index, and ventilation index were not significantly changed after administration of epinephrine. We conclude that nebulized epinephrine substantially improves respiratory system resistance but not oxygenation or ventilation indices. This may be because of the effects of epinephrine on oxygen consumption or ventilation-perfusion matching.

  15. Wellbore stability in oil and gas drilling with chemical-mechanical coupling.

    PubMed

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430

  16. Respiratory Mechanics and Plasma Levels of Tumor Necrosis Factor Alpha and Interleukin 6 Are Affected by Gas Humidification during Mechanical Ventilation in Dogs

    PubMed Central

    Hernández-Jiménez, Claudia; García-Torrentera, Rogelio; Olmos-Zúñiga, J. Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel O.; Baltazares-Lipp, Matilde; Gutiérrez-González, Luis H.

    2014-01-01

    The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5), mechanical ventilation with dry oxygen dispensation, and Group II (n = 5), mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77). This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05). Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02). Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation. PMID:25036811

  17. XeF2 gas-assisted focused-electron-beam-induced etching of GaAs with 30 nm resolution

    NASA Astrophysics Data System (ADS)

    Ganczarczyk, A.; Geller, M.; Lorke, A.

    2011-01-01

    We demonstrate the gas-assisted focused-electron-beam (FEB)-induced etching of GaAs with a resolution of 30 nm at room temperature. We use a scanning electron microscope (SEM) in a dual beam focused ion beam together with xenon difluoride (XeF2) that can be injected by a needle directly onto the sample surface. We show that the FEB-induced etching with XeF2 as a precursor gas results in isotropic and smooth etching of GaAs, while the etch rate depends strongly on the beam current and the electron energy. The natural oxide of GaAs at the sample surface inhibits the etching process; hence, oxide removal in combination with chemical surface passivation is necessary as a strategy to enable this high-resolution etching alternative for GaAs.

  18. Synthesis of nanoparticles from malleable and ductile metals using powder-free, reactant-assisted mechanical attrition.

    PubMed

    McMahon, Brandon W; Perez, Jesus Paulo L; Yu, Jiang; Boatz, Jerry A; Anderson, Scott L

    2014-11-26

    A reactant-assisted mechanochemical method was used to produce copious nanoparticles from malleable/ductile metals, demonstrated here for aluminum, iron, and copper. The milling media is intentionally degraded via a reactant-accelerated wear process, where the reactant aids particle production by binding to the metal surfaces, enhancing particle production, and reducing the tendency toward mechanochemical (cold) welding. The mechanism is explored by comparing the effects of different types of solvents and solvent mixtures on the amount and type of particles produced. Particles were functionalized with oleic acid to aid in particle size separation, enhance dispersion in hydrocarbon solvents, and protect the particles from oxidation. For aluminum and iron, the result is air-stable particles, but for copper, the suspended particles are found to dissolve when exposed to air. Characterization was performed using electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, solid state nuclear magnetic resonance, and X-ray photoelectron spectroscopy. Density functional theory was used to examine the nature of carboxylic acid binding to the aluminum surface, confirming the dominance of bridging bidentate binding. PMID:25343708

  19. Tailored Height Gradients in Vertical Nanowire Arrays via Mechanical and Electronic Modulation of Metal-Assisted Chemical Etching.

    PubMed

    Otte, M A; Solis-Tinoco, V; Prieto, P; Borrisé, X; Lechuga, L M; González, M U; Sepulveda, B

    2015-09-01

    In current top-down nanofabrication methodologies the design freedom is generally constrained to the two lateral dimensions, and is only limited by the resolution of the employed nanolithographic technique. However, nanostructure height, which relies on certain mask-dependent material deposition or etching techniques, is usually uniform, and on-chip variation of this parameter is difficult and generally limited to very simple patterns. Herein, a novel nanofabrication methodology is presented, which enables the generation of high aspect-ratio nanostructure arrays with height gradients in arbitrary directions by a single and fast etching process. Based on metal-assisted chemical etching using a catalytic gold layer perforated with nanoholes, it is demonstrated how nanostructure arrays with directional height gradients can be accurately tailored by: (i) the control of the mass transport through the nanohole array, (ii) the mechanical properties of the perforated metal layer, and (iii) the conductive coupling to the surrounding gold film to accelerate the local electrochemical etching process. The proposed technique, enabling 20-fold on-chip variation of nanostructure height in a spatial range of a few micrometers, offers a new tool for the creation of novel types of nano-assemblies and metamaterials with interesting technological applications in fields such as nanophotonics, nanophononics, microfluidics or biomechanics. PMID:26033973

  20. Tailored Height Gradients in Vertical Nanowire Arrays via Mechanical and Electronic Modulation of Metal-Assisted Chemical Etching.

    PubMed

    Otte, M A; Solis-Tinoco, V; Prieto, P; Borrisé, X; Lechuga, L M; González, M U; Sepulveda, B

    2015-09-01

    In current top-down nanofabrication methodologies the design freedom is generally constrained to the two lateral dimensions, and is only limited by the resolution of the employed nanolithographic technique. However, nanostructure height, which relies on certain mask-dependent material deposition or etching techniques, is usually uniform, and on-chip variation of this parameter is difficult and generally limited to very simple patterns. Herein, a novel nanofabrication methodology is presented, which enables the generation of high aspect-ratio nanostructure arrays with height gradients in arbitrary directions by a single and fast etching process. Based on metal-assisted chemical etching using a catalytic gold layer perforated with nanoholes, it is demonstrated how nanostructure arrays with directional height gradients can be accurately tailored by: (i) the control of the mass transport through the nanohole array, (ii) the mechanical properties of the perforated metal layer, and (iii) the conductive coupling to the surrounding gold film to accelerate the local electrochemical etching process. The proposed technique, enabling 20-fold on-chip variation of nanostructure height in a spatial range of a few micrometers, offers a new tool for the creation of novel types of nano-assemblies and metamaterials with interesting technological applications in fields such as nanophotonics, nanophononics, microfluidics or biomechanics.

  1. Influence of Shielding Gas and Mechanical Activation of Metal Powders on the Quality of Surface Sintered Layers

    NASA Astrophysics Data System (ADS)

    Saprykina, N. A.; Saprykin, A. A.; Arkhipova, D. A.

    2016-04-01

    The thesis analyses the influence of argon shielding gas and mechanical activation of PMS-1 copper powder and DSK-F75 cobalt chrome molybdenum powder on the surface sintered layer quality under various sintering conditions. Factors affecting the quality of the sintered surface and internal structure are studied. The obtained results prove positive impact of the shielding gas and mechanical activation. Sintering PMS-1 copper powder in argon shielding gas after mechanical activation leads to reduced internal stresses and roughness, as well as improved strength characteristics of the sintered surface. Analysis of sintered samples of mechanically activated DSK-F75 cobalt chrome molybdenum powder shows that the strength of the sintered surface grows porosity and coagulation changes.

  2. SnO2 highly sensitive CO gas sensor based on quasi-molecular-imprinting mechanism design.

    PubMed

    Li, Chenjia; Lv, Meng; Zuo, Jialin; Huang, Xintang

    2015-01-01

    Response of highly sensitive SnO2 semiconductor carbon monoxide (CO) gas sensors based on target gas CO quasi-molecular-imprinting mechanism design is investigated with gas concentrations varied from 50 to 3000 ppm. SnO2 nanoparticles prepared via hydrothermal method and gas sensor film devices SC (exposed to the target gas CO for 12 h after the suspension coating of SnO2 film to be fully dried, design of quasi-molecular-imprinting mechanism, the experiment group) and SA (exposed to air after the suspension coating of SnO2 film to be fully dried, the comparison group) made from SnO2 nanoparticles are all characterized by XRD, SEM and BET surface area techniques, respectively. The gas response experimental results reveal that the sensor SC demonstrates quicker response and higher sensitivity than the sensor SA does. The results suggest that in addition to the transformation of gas sensor materials, surface area, and porous membrane devices, the Molecular Imprinting Theory is proved to be another way to promote the performance of gas sensors. PMID:25664435

  3. Ghost peaks observed after AP-MALDI experiment may disclose new ionization mechanism of matrix assisted hypersonic velocity impact ionization

    PubMed Central

    Moskovets, Eugene

    2015-01-01

    RATIONALE Understanding the mechanisms of MALDI promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample has been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laserless matrix-assisted ionization. METHODS An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser was turned off and MALDI sample was removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly- and doubly-charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. RESULTS The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. CONCLUSIONS The observations were partially consistent with a model of

  4. Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition.

    PubMed

    Kuang, Gui-Chao; Guha, Pampa M; Brotherton, Wendy S; Simmons, J Tyler; Stankee, Lisa A; Nguyen, Brian T; Clark, Ronald J; Zhu, Lei

    2011-09-01

    A mechanistic model is formulated to account for the high reactivity of chelating azides (organic azides capable of chelation-assisted metal coordination at the alkylated azido nitrogen position) and copper(II) acetate (Cu(OAc)(2)) in copper(II)-mediated azide-alkyne cycloaddition (AAC) reactions. Fluorescence and (1)H NMR assays are developed for monitoring the reaction progress in two different solvents, methanol and acetonitrile. Solvent kinetic isotopic effect and premixing experiments give credence to the proposed different induction reactions for converting copper(II) to catalytic copper(I) species in methanol (methanol oxidation) and acetonitrile (alkyne oxidative homocoupling), respectively. The kinetic orders of individual components in a chelation-assisted, copper(II)-accelerated AAC reaction are determined in both methanol and acetonitrile. Key conclusions resulting from the kinetic studies include (1) the interaction between copper ion (either in +1 or +2 oxidation state) and a chelating azide occurs in a fast, pre-equilibrium step prior to the formation of the in-cycle copper(I)-acetylide, (2) alkyne deprotonation is involved in several kinetically significant steps, and (3) consistent with prior experimental and computational results by other groups, two copper centers are involved in the catalysis. The X-ray crystal structures of chelating azides with Cu(OAc)(2) suggest a mechanistic synergy between alkyne oxidative homocoupling and copper(II)-accelerated AAC reactions, in which both a bimetallic catalytic pathway and a base are involved. The different roles of the two copper centers (a Lewis acid to enhance the electrophilicity of the azido group and a two-electron reducing agent in oxidative metallacycle formation, respectively) in the proposed catalytic cycle suggest that a mixed valency (+2 and +1) dinuclear copper species be a highly efficient catalyst. This proposition is supported by the higher activity of the partially reduced Cu(OAc)(2) in

  5. On the Mechanism of Low-Temperature Water Gas Shift Reaction on Copper

    SciTech Connect

    Gokhale, Amit A.; Dumesic, James A.; Mavrikakis, Manos

    2008-01-30

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Periodic, self-consistent density functional theory (DFT-GGA) calculations are used to investigate the water gas shift reaction (WGSR) mechanism on Cu(111). The thermochemistry and activation energy barriers for all the elementary steps of the commonly accepted redox mechanism, involving complete water activation to atomic oxygen, are presented. Through our calculations, we identify carboxyl, a new reactive intermediate, which plays a central role in WGSR on Cu(111). The thermochemistry and activation energy barriers of the elementary steps of a new reaction path, involving carboxyl, are studied. A detailed DFTbased microkinetic model of experimental reaction rates, accounting for both the previous and the new WGSR mechanism show that, under relevant experimental conditions, (1) the carboxyl-mediated route is the dominant path, and (2) the initial hydrogen abstraction from water is the rate-limiting step. Formate is a stable “spectator” species, formed predominantly through CO₂ hydrogenation. In addition, the microkinetic model allows for predictions of (i) surface coverage of intermediates, (ii) WGSR apparent activation energy, and (iii) reaction orders with respect to CO, H₂O, CO₂, and H₂.

  6. Hovering flight mechanics of neotropical flower bats (Phyllostomidae: Glossophaginae) in normodense and hypodense gas mixtures.

    PubMed

    Dudley, Robert; Winter, York

    2002-12-01

    Existing estimates of flight energetics in glossophagine flower bats, the heaviest hovering vertebrate taxon, suggest disproportionately high expenditure of mechanical power. We determined wingbeat kinematics and mechanical power expenditure for one of the largest flower bats (Leptonycteris curasoae Martinez and Villa) during hovering flight in normodense and hypodense gas mixtures. Additional experiments examined the effects of supplemental oxygen availability on maximum flight performance. Bats failed to sustain hovering flight at normoxic air densities averaging 63% that of normodense air. Kinematic responses to hypodense aerodynamic challenge involved increases in wing positional angles and in total stroke amplitude; wingbeat frequency was unchanged. At near-failure air densities, total power expenditure assuming perfect elastic energy storage was 17-42% greater than that for hovering in normodense air, depending on the assumed value for the profile drag coefficient. Assuming a flight muscle ratio of 26%, the associated muscle-mass-specific power output at the point of near-failure varied between 90.8 W kg(-1) (profile drag coefficient of 0.02) to 175.6 W kg(-1) (profile drag coefficient of 0.2). Hyperoxia did not enhance hovering performance in hypodense air, and, with the exception of a small increase (10%) in stroke plane angle, yielded no significant change in any of the kinematic parameters studied. Revised energetic estimates suggest that mechanical power expenditure of hovering glossophagines is comparable with that in slow forward flight.

  7. Teaching assistants' performance at identifying common introductory student difficulties in mechanics revealed by the Force Concept Inventory

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2016-06-01

    The Force Concept Inventory (FCI) has been widely used to assess student understanding of introductory mechanics concepts by a variety of educators and physics education researchers. One reason for this extensive use is that many of the items on the FCI have strong distractor choices which correspond to students' alternate conceptions in mechanics. Instruction is unlikely to be effective if instructors do not know the common alternate conceptions of introductory physics students and explicitly take into account students' initial knowledge states in their instructional design. Here, we discuss research involving the FCI to evaluate one aspect of the pedagogical content knowledge of teaching assistants (TAs): knowledge of introductory student alternate conceptions in mechanics as revealed by the FCI. For each item on the FCI, the TAs were asked to identify the most common incorrect answer choice of introductory physics students. This exercise was followed by a class discussion with the TAs related to this task, including the importance of knowing student difficulties in teaching and learning. Then, we used FCI pretest and post-test data from a large population (˜900 ) of introductory physics students to assess the extent to which TAs were able to identify alternate conceptions of introductory students related to force and motion. In addition, we carried out think-aloud interviews with graduate students who had more than two semesters of teaching experience in recitations to examine how they reason about the task. We find that while the TAs, on average, performed better than random guessing at identifying introductory students' difficulties with FCI content, they did not identify many common difficulties that introductory physics students have after traditional instruction. We discuss specific alternate conceptions, the extent to which TAs are able to identify them, and results from the think-aloud interviews that provided valuable information about why TAs sometimes

  8. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges

  9. Mechanisms of gas exchange abnormality in patients with chronic obliterative pulmonary vascular disease.

    PubMed Central

    Dantzker, D R; Bower, J S

    1979-01-01

    We have examined the mechanisms of abnormal gas exchange in seven patients with chronic obliteration of the pulmonary vascular bed secondary to recurrent pulmonary emboli or idiopathic pulmonary hypertension. All of the patients had a widened alveolar-arterial oxygen gradient and four were significantly hypoxemic with arterial partial presssures of oxygen less than 80 torr. Using the technique of multiple inert gas elimination, we found that ventilation-perfusion (VA/Q) relationships were only minimally abnormal with a mean of 10% (range, 2--19%) of cardiac output perfusing abnormal units. These units consisted of shunt and units with VA/Q ratios less than 0.1. In addition, the dead space was found to be normal in each patient. There was no evidence for diffusion impairment, and the widened alveolar-arterial oxygen gradient was completely explained by VA/ inequality. Significant hypoxemia occurred only when VA/Q inequality was combined with a low mixed venous oxygen content. PMID:479367

  10. Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes

    SciTech Connect

    E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

    2002-04-08

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

  11. Applying the Different Statistical Tests in Analysis of Electrical Breakdown Mechanisms in Nitrogen Filled Gas Diode

    NASA Astrophysics Data System (ADS)

    Čedomir, A. Maluckov; Saša, A. Rančev; Miodrag, K. Radović

    2016-10-01

    This paper presents the results of our investigations of breakdown mechanisms, as well as a description of their influence on the distributions of time delay distributions, for a gas tube filled with nitrogen at 4 mbar. The values of the time delay are measured for different voltages, and the values of the relaxation times and their distributions and probability plots are analyzed. The obtained density distributions have Gaussian distributions and exponential distributions for different values of relaxation times (Gaussian for small values and exponential for large values of relaxation time). It is shown that for middle values of relaxation time the delay distributions have a shape between Gaussian and exponential distributions, which is a result of the different influences of electrical breakdown.

  12. Mechanism of Phase Transition from Liquid to Gas Under Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Li, Sen; Gu, Fan

    2010-10-01

    Liquid gasification phenomenon was observable in liquid-solid dielectric barrier discharge (DBD) experiments. Starting from classical thermodynamics, this study aimed at finding the reason of liquid gasification in the DBD experiments. Fluid statics and electrohydrodynamics were adopted to analyze the mechanism of phase transition from liquid to gas. The Sumoto effect was also employed to visually explain the change in the pressure of fluid due to the electric field. It was concluded from both theoretical analysis and experiment that the change in liquid pressure was a key factor causing liquid to gasify in DBD conditions. Furthermore, it was stressed that the liquid pressure was affected by many parameters including liquid permittivity, voltage, electric intensity, size of the discharge space and uniformity of the electric field distribution, etc. All of them affected DBD liquid gasification. The related results would provide useful theoretical evidence for multi-phase DBD applications.

  13. Compressibility effects on the dynamic characteristics of gas lubricated mechanical components

    NASA Astrophysics Data System (ADS)

    Arghir, Mihai; Matta, Pierre

    2009-11-01

    The present Note deals with the effects of compressibility on the linearized dynamic characteristics of gas lubricated mechanical components (journal and thrust bearings). Although the effect of compressibility on the static characteristics is well known, its influence on the dynamic characteristics is still not clearly understood. The present Note uses Lubrication's simplest model problems (the 1D slider) to qualitatively describe this effect. An analytic solution obtained for the parallel 1D slider depicts the variation of stiffness and damping with the excitation frequency and shows that this nonlinearity must be taken into account for squeeze number larger than 1. A convenient way of handling this nonlinearity in a dynamic system is described for an aerodynamic thrust bearing. To cite this article: M. Arghir, P. Matta, C. R. Mecanique 337 (2009).

  14. EFFECTS OF TRITIUM GAS EXPOSURE ON THE DYNAMIC MECHANICAL PROPERTIES OF EPDM ELASTOMER

    SciTech Connect

    Clark, E; Gregory Staack, G

    2007-08-13

    Samples of ethylene propylene diene monomer (EPDM) elastomer were exposed to tritium gas in closed containers initially at 101 kPa (1 atmosphere) pressure and ambient temperature for about one week. Tritium exposure effects on the samples were characterized by dynamic mechanical analysis (DMA) and radiolysis products were characterized by measuring the total final pressure and composition in the exposure containers at the end of exposure period. There was no effect of one week tritium exposure on the glass transition temperature, Tg, of the samples tested. Impurity gases produced in the closed containers included HT and lesser amounts of H{sub 2}, DTO, and CT{sub 4}. The total pressure remained the same during exposure.

  15. Investigating gas sensing mechanism of graphene oxide (GO) thin films through cross-selectivity to various gases

    NASA Astrophysics Data System (ADS)

    Kumar, Shani; Dhingra, Vishal; Garg, Amit; Chowdhuri, Arijit

    2016-05-01

    Worldwide researchers are actively engaged in utilizing Graphene and its related materials in gas sensing applications. A high surface-to-volume ratio that offers scope of optimization leading to enhanced sensing performance besides lower sensor operating temperatures are some advantages that graphene based sensors possess over conventional semiconducting metal oxide (SMO) sensors. Conventional SMO based gas sensors are known to suffer from problems of cross-selectivity where selectivity is understood to be a gas sensor's ability to preferentially detect one particular gas without responding to or experiencing interference from other gases present in the ambient. In the current study gas sensing mechanism of Graphene oxide (GO) thin films is investigated by repeatedly exposing the sensing configuration to various gases and its cross-selectivity response to the same is examined. In the investigation typical gas sensing response characteristics of the sensor configuration are studied in both oxidizing as well as reducing environments. The gas sensing data is acquired by means of Keithley 6487 picoammeter which is interfaced with a customized Gas Sensing Test Rig (GSTR) that provides a controlled ambient to the sensors for measurement of reproducible characteristics. GSTR further provided the option of varying the operating temperature and gas concentration for the different sensor configurations under study. XRD studies indicate formation of GO with typical crystallite size of 4.2 nm. UV-Vis investigations reveal a typical band-gap of 4.42 (eV) which is in conformity with those reported in the available literature.1,2

  16. Mechanical behavior of ceramic composite hot-gas filters after exposure to severe environments

    SciTech Connect

    Pysher, D.J.; Weaver, B.L.; Smith, R.G.

    1995-08-01

    A novel type of hot-gas filter based on a ceramic fiber reinforced ceramic matrix has been developed, as reported at previous Fossil Energy Materials Conferences, through research activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company. Simulated testing has been done at the Westinghouse Science and Technology Center. This filter technology has been extended to full size, 60 mm OD by 1.5 meter long candle filters and a commercially viable process for producing the filters has been developed filters are undergoing testing and demonstration use throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Demonstration tests of this ceramic composite filter along with other filters are in progress at the Tidd PFBC plant Mechanical tests were performed on the 3 M brand Ceramic Composite Candle Filter after exposure to various corrosive environments in order to assess its ability to function as a hot gas filter in coal-fired applications. Due to the different construction of ceramic composite filters and the thin composite wall versus the typical thick-walled monolithic filter, standard mechanical property tests had to be refined or modified to accurately determine the filters properties. These tests and filter property results will be described Longitudinal tensile and diametral O-ring compression tests were performed on as-produced candle filters as well as on filters which had been exposed to various environments. The exposures were for 1000 hrs at 850{degrees}C in wet air, in wet air containing Na{sub 2}CO{sub 3}, and in wet air containing NaCl. In addition, a filter which bad been coated with ash (Old Grimethorpe) was exposed to wet air at 850{degrees}C for 1000 hours.

  17. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  18. Mechanisms of gas generation from simulated SY tank farm wastes: FY 1995 progress report

    SciTech Connect

    Barefield, E.K.; Boatright, D.; Deshpande, A.; Doctorovich, F.; Liotta, C.L.; Neumann, H.M.; Seymore, S.

    1996-07-01

    The objective of this work is to develop a better understanding of the mechanism of formation of flammable gases in the thermal decomposition of metal complexants such as HEDTA and sodium glycolate in simulated SY tank farm waste mixtures. This report summarizes the results of work done at the Georgia Institute of Technology in fiscal year 1995. Topics discussed are (1) long-term studies of the decomposition of HEDTA in simulated waste mixtures under an argon atmosphere at 90 and 120{degrees}C, including time profiles for disappearance of HEDTA and appearance of products and the quantitative analysis of the kinetic behavior; (2) considerations of hydroxylamine as an intermediate in the production of nitrogen containing gases by HEDTA decomposition; (3) some thoughts on the revision of the global mechanism for thermal decomposition of HEDTA under argon; (4) preliminary long-term studies of the decomposition of HEDTA in simulated waste under an oxygen atmosphere at 120{degrees}C; (5) estimation of the amount of NH{sub 3} in the gas phase above HEDTA reaction mixtures; and (6) further, examination of the interaction of aluminum with nitrite ion using {sup 27}Al NMR spectroscopy. Section 2 of this report describes the work conducted over the last three years at GIT. Section 3 contains a discussion of the kinetic behavior of HEDTA under argon; Section 4 discusses the role of hydroxylamine. Thermal decomposition of HEDTA to ED3A is the subject of Section 5, and decomposition of HEDTA in simulated waste mixtures under oxygen is covered in Section 6. In Section 7 we estimate ammonia in the gas phase; the role of aluminum is discussed in Section 8.

  19. Mechanisms of worsening gas exchange during acute exacerbations of chronic obstructive pulmonary disease.

    PubMed

    Barberà, J A; Roca, J; Ferrer, A; Félez, M A; Díaz, O; Roger, N; Rodriguez-Roisin, R

    1997-06-01

    This study was undertaken to investigate the mechanisms that determine abnormal gas exchange during acute exacerbations of chronic obstructive pulmonary disease (COPD). Thirteen COPD patients, hospitalized because of an exacerbation, were studied after admission and 38+/-10 (+/-SD) days after discharge, once they were clinically stable. Measurements included forced spirometry, arterial blood gas values, minute ventilation (V'E), cardiac output (Q'), oxygen consumption (V'O2), and ventilation/perfusion (V'A/Q') relationships, assessed by the inert gas technique. Exacerbations were characterized by very severe airflow obstruction (forced expiratory volume in one second (FEV1) 0.74+/-0.17 vs 0.91+/-0.19 L, during exacerbation and stable conditions, respectively; p=0.01), severe hypoxaemia (ratio between arterial oxygen tension and inspired oxygen fraction (Pa,O2/FI,O2) 32.7+/-7.7 vs 37.6+/-6.9 kPa (245+/-58 vs 282+/-52 mmHg); p=0.01) and hypercapnia (arterial carbon dioxide tension (Pa,CO2) 6.8+/-1.6 vs 5.9+/-0.8 kPa (51+/-12 vs 44+/-6 mmHg); p=0.04). V'A/Q' inequality increased during exacerbation (log SD Q', 1.10+/-0.29 vs 0.96+/-0.27; normal < or = 0.6; p=0.04) as a result of greater perfusion in poorly-ventilated alveoli. Shunt was almost negligible on both measurements. V'E remained essentially unchanged during exacerbation (10.5+/-2.2 vs 9.2+/-1.8 L x min(-1); p=0.1), whereas both Q' (6.1+/-2.4 vs 5.1+/-1.7 L x min(-1); p=0.05) and V'O2 (300+/-49 vs 248+/-59 mL x min(-1); p=0.03) increased significantly. Worsening of hypoxaemia was explained mainly by the increase both in V'A/Q' inequality and V'O2, whereas the increase in Q' partially counterbalanced the effect of greater V'O2 on mixed venous oxygen tension (PV,O2). We conclude that worsening of gas exchange during exacerbations of chronic obstructive pulmonary disease is primarily produced by increased ventilation/perfusion inequality, and that this effect is amplified by the decrease of mixed venous oxygen

  20. Novel methods and self-reinforced composite materials for assessment and prevention of mechanically assisted corrosion in modular implants

    NASA Astrophysics Data System (ADS)

    Ouellette, Eric S.

    Novel methods for assessing the electrochemical and micromechanical performance of modular tapers were evaluated, and self-reinforced composite materials were developed for their potential to prevent the onset of mechanically assisted corrosion in modular taper devices. A study of the seating and taper locking mechanics of modular taper samples was conducted, and the effect on taper engagement strength of seating load, loading rate, taper moisture, and taper design/material combination was studied. The load-displacement behavior was captured during seating, and the subsequent pull off load was correlated to seating displacement, seating energy, and seating load. The primary factor affecting taper engagement strength was seating load, and loading rate and design/material factors did not have a significant impact on the quality of the taper engagement. Next, the effect of variation of 7 different design, material, and surgical factors on the fretting corrosion and micromechanical behavior during incremental cyclic fretting corrosion testing was examined using a design of experiments matrix. Seating load and head offset length were the most influential factors affecting fretting corrosion, with low seating loads and high head offsets giving rise to increased currents during sequentially incremented cyclic loads. Poly(ether ether ketone) (PEEK) fibers were produced, and the effects of varying draw down ratio, molecular weight, and post-spinning treatment on the structural and mechanical properties of the fibers were studied. Highly drawn fibers showed the highest increase in molecular orientation and mechanical properties. PEEK fibers were then utilized in the design and fabrication of self-reinforced composite PEEK (SRC-PEEK) thin film composites, and self-reinforced composite ultra-high molecular weight polyethylene (SRC-PE) produced from Spectra fiber was also introduced. Pin on disk studies were employed to understand the potential of both of these SRC materials to

  1. Degassing mechanism change regarding an eruption in 2009 at Mt. Asama revealed by volcanic gas and seismic studies

    NASA Astrophysics Data System (ADS)

    Kazahaya, R.; Shinohara, H.; Kazahaya, K.; Ohwada, M.; Mori, T.; Takeo, M.; Ohminato, T.; Ichihara, M.; Aoki, Y.; Maeda, Y.; Miyashita, M.

    2012-12-01

    Volcanic gas has a close relationship with geophysical phenomena involving eruptive activities. In particular, previous studies suggested that very-long-period (VLP) seismic signals are caused by fluid (i.e., gas and/or magma) within a volcano (e.g., Chouet et al. 2010). Investigation for VLP seismic source is crucial not only for volcanic seismology but also for understanding degassing processes at depths. In this study, at Mt. Asama, Japan, we examine VLP seismic source model of the volcano and change of degassing mechanism before and after an eruption in Feb. 2009 by means of a linkage between volcanic sulfur dioxide emission and VLP seismic moment, which was revealed by Kazahaya et al. (2011). This linear relationship between them implies that volcanic gas injected into the VLP seismic source causes a VLP pulse. Complementing it with volcanic gas composition data, we calculated pressure/volumetric changes at the VLP seismic source both by volcanic gas amount and by seismic analyses; and found a significant difference between them. We propose the VLP seismic source filled with pressure (porous) medium so as to explain this discrepancy. This linear relation between volcanic gas and VLP seismic signal allows us to calculate gas amount triggering VLP pulses from seismic record. The long-term time series of volcanic gas emission which gives rise to VLP pulses were examined; the ratio of gas emission regarding VLP pulses showed drastic change before and after the eruption in Feb. 2009. The novel timeline data suggest that degassing mechanism at the depth within the volcano changed by the eruption to excite VLP seismicity easier. GPS and infrasonic data may give constraints to comprehend the volcanic structure such as magma supply and gas exhalation, respectively. Collaboration of geochemical and geophysical studies opens up the possibility to get brand new insights within the volcano.

  2. Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of alpha-pinene.

    PubMed

    Ma, Yan; Russell, Andrew T; Marston, George

    2008-08-01

    Gas-phase ozonolysis of alpha-pinene was studied in static chamber experiments under 'OH-free' conditions. A range of multifunctional products-in particular low-volatility carboxylic acids-were identified in the condensed phase using gas chromatography coupled to mass spectrometry after derivatisation. The dependence of product yields on reaction conditions (humidity, choice of OH radical scavengers, added Criegee intermediate scavengers, NO(2)etc.) was investigated to probe the mechanisms of formation of these products; additional information was obtained by studying the ozonolysis of an enal and an enone derived from alpha-pinene. On the basis of experimental findings, previously suggested mechanisms were evaluated and detailed gas-phase mechanisms were developed to explain the observed product formation. Atmospheric implications of this work are discussed.

  3. Increasing reliability of gas-air systems of piston and combined internal combustion engines by improving thermal and mechanic flow characteristics

    NASA Astrophysics Data System (ADS)

    Brodov, Yu. M.; Grigor'ev, N. I.; Zhilkin, B. P.; Plotnikov, L. V.; Shestakov, D. S.

    2015-12-01

    Results of experimental study of thermal and mechanical characteristics of gas exchange flow in piston and combined engines are presented. Ways for improving intake and exhaust processes to increase reliability of gas-air engine systems are proposed.

  4. A biomimetic pathway for vanadium-catalyzed aerobic oxidation of alcohols: evidence for a base-assisted dehydrogenation mechanism.

    PubMed

    Wigington, Bethany N; Drummond, Michael L; Cundari, Thomas R; Thorn, David L; Hanson, Susan K; Scott, Susannah L

    2012-11-19

    The first step in the catalytic oxidation of alcohols by molecular O(2), mediated by homogeneous vanadium(V) complexes [LV(V)(O)(OR)], is ligand exchange. The unusual mechanism of the subsequent intramolecular oxidation of benzyl alcoholate ligands in the 8-hydroxyquinolinato (HQ) complexes [(HQ)(2)V(V)(O)(OCH(2)C(6)H(4)-p-X)] involves intermolecular deprotonation. In the presence of triethylamine, complex 3 (X = H) reacts within an hour at room temperature to generate, quantitatively, [(HQ)(2)V(IV)(O)], benzaldehyde (0.5 equivalents), and benzyl alcohol (0.5 equivalents). The base plays a key role in the reaction: in its absence, less than 12% conversion was observed after 72 hours. The reaction is first order in both 3 and NEt(3), with activation parameters ΔH(≠)=(28±4) kJ mol(-1) and ΔS(≠)=(-169±4) J K(-1)  mol(-1). A large kinetic isotope effect, 10.2±0.6, was observed when the benzylic hydrogen atoms were replaced by deuterium atoms. The effect of the para substituent of the benzyl alcoholate ligand on the reaction rate was investigated using a Hammett plot, which was constructed using σ(p). From the slope of the Hammett plot, ρ=+(1.34±0.18), a significant buildup of negative charge on the benzylic carbon atom in the transition state is inferred. These experimental findings, in combination with computational studies, support an unusual bimolecular pathway for the intramolecular redox reaction, in which the rate-limiting step is deprotonation at the benzylic position. This mechanism, that is, base-assisted dehydrogenation (BAD), represents a biomimetic pathway for transition-metal-mediated alcohol oxidations, differing from the previously identified hydride-transfer and radical pathways. It suggests a new way to enhance the activity and selectivity of vanadium catalysts in a wide range of redox reactions, through control of the outer coordination sphere. PMID:23080554

  5. Gas-phase and transpiration-driven mechanisms for volatilization through wetland macrophytes.

    PubMed

    Reid, Matthew C; Jaffé, Peter R

    2012-05-15

    Natural and constructed wetlands have gained attention as potential tools for remediation of shallow sediments and groundwater contaminated with volatile organic compounds (VOCs). Wetland macrophytes are known to enhance rates of contaminant removal via volatilization, but the magnitude of different volatilization mechanisms, and the relationship between volatilization rates and contaminant physiochemical properties, remain poorly understood. Greenhouse mesocosm experiments using the volatile tracer sulfur hexafluoride were conducted to determine the relative magnitudes of gas-phase and transpiration-driven volatilization mechanisms. A numerical model for vegetation-mediated volatilization was developed, calibrated with tracer measurements, and used to predict plant-mediated volatilization of common VOCs as well as quantify the contribution of different volatilization pathways. Model simulations agree with conclusions from previous work that transpiration is the main driver for volatilization of VOCs, but also demonstrate that vapor-phase transport in wetland plants is significant, and can represent up to 50% of the total flux for compounds with greater volatility like vinyl chloride.

  6. Thermal-Mechanical Studies for Gas-Cooled Space Reactor Designs

    SciTech Connect

    Kapernick, Richard J.; Creamer, William C.

    2006-01-20

    Los Alamos National Laboratory has been involved in the development of reactor concepts to be used as a power source for nuclear electric propulsion and/or for surface power sources. As part of this effort, a high fidelity thermal-mechanical analysis method has been developed for rapid performance assessments of these designs. This method has been used to study several concept alternatives, including both annular and multi-hole monolithic block designs. This paper presents the analysis method developed and results of analyses performed for a gas-cooled reactor. Key results are 1) the annular block design is lower mass than the multi-hole block design, 2) fuel temperatures are effectively controlled by adjusting the number of fuel pins in the core, 3) large thermal-hydraulic performance enhancements are produced by increasing coolant pressure and/or helium mole fraction, and 4) manufacturing and assembly parameters have relatively small effects on thermal-hydraulic performance and care should be taken to balance mechanical design complexity and reliability issues with thermal-hydraulic performance.

  7. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  8. Tactics for mechanized reasoning: a commentary on Milner (1984) ‘The use of machines to assist in rigorous proof’

    PubMed Central

    Gordon, M. J. C.

    2015-01-01

    Robin Milner's paper, ‘The use of machines to assist in rigorous proof’, introduces methods for automating mathematical reasoning that are a milestone in the development of computer-assisted theorem proving. His ideas, particularly his theory of tactics, revolutionized the architecture of proof assistants. His methodology for automating rigorous proof soundly, particularly his theory of type polymorphism in programing, led to major contributions to the theory and design of programing languages. His citation for the 1991 ACM A.M. Turing award, the most prestigious award in computer science, credits him with, among other achievements, ‘probably the first theoretically based yet practical tool for machine assisted proof construction’. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750147

  9. On the Importance of the Associative Carboxyl Mechanism for the Water-Gas Shift Reaction at Pt/CeO2 Interface Sites

    SciTech Connect

    Aranifard, Sara; Ammal, Salai Cheettu; Heyden, Andreas

    2014-03-06

    Periodic density functional theory calculations and microkinetic modeling are used to investigate the associative carboxyl pathways of the water-gas shift (WGS) reaction at the Pt/CeO2 (111) interface. Analysis of a microkinetic model based on parameters obtained from first principles suggests that the turnover frequencies for the CO-assisted associative carboxyl mechanism are comparable to experimental results. However, this microkinetic model containing various associative carboxyl pathways at interface sites cannot explain the experimentally observed activation barriers and reaction orders of Pt/CeO2 catalysts. Considering furthermore that a model of an associative carboxyl mechanism with redox regeneration, also derived from first principles and recently published by us, accurately predicts all kinetic parameters while displaying a 2 orders of magnitude higher turnover frequency, we conclude that at Pt/CeO2 interface sites, the WGS reaction follows a bifunctional Mars-van Krevelen mechanism in which support oxygen vacancies facilitate water dissociation.

  10. Microwave-assisted hydrothermal synthesis of Cu/Cu2O hollow spheres with enhanced photocatalytic and gas sensing activities at room temperature.

    PubMed

    Zou, Xinwei; Fan, Huiqing; Tian, Yuming; Zhang, Mingang; Yan, Xiaoyan

    2015-05-01

    Cu/Cu2O nano-heterostructure hollow spheres with a submicron diameter (200-500 nm) were prepared by a microwave-assisted hydrothermal method using Cu(OAc)2·H2O, PVP and ascorbic acid solution as the precursors. The morphology of the products could evolve with the hydrothermal time from solid spheres to thick-shell hollow spheres, then to thin-shell hollow spheres, and finally to nanoparticles. Moreover, the content of Cu in the products could be controlled by adjusting the hydrothermal time. The spontaneous forming of the hollow structure spheres was found to result from the Ostwald ripening effect during the low temperature (100 °C) hydrothermal reaction process. The photocatalytic degradation activities on MO under visible-light irradiation and the gas sensing activities toward the oxidizing NO2 gas of different Cu/Cu2O nano-heterostructure hollow spheres were investigated. As a result, the Cu/Cu2O nano-heterostructure hollow spheres obtained at the hydrothermal time of 30 min, with a rough/porous thin-shell structure and a Cu content of about 10.5 wt%, exhibited the best photocatalytic and gas sensing performances compared with others.

  11. Effect of Alternate Supply of Shielding Gases of Tungsten Inert Gas Welding on Mechanical Properties of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shinde, Neelam Vilas; Telsang, Martand Tamanacharya

    2016-07-01

    In the present study, an attempt is made to study the effect of alternate supply of the shielding gas in comparison with the conventional method of TIG welding with pure argon gas. The two sets of combination are used as 10-10 and 40-20 s for alternate supply of the Argon and Helium shielding gas respectively. The effect of alternate supply of shielding gas is studied on the mechanical properties like bend test, tensile test and impact test. The full factorial experimental design is applied for three set of combinations. The ANOVA is used to find significant parameters for the process and regression analysis used to develop the mathematical model. The result shows that the alternate supply of the shielding gas for 10-10 s provides better result for the bend, tensile and impact test as compared with the conventional argon gas and the alternate supply of 40-20 s argon and helium gas respectively. Welding speed can be increased for alternate supply of the shielding gas that can reduce the total welding cost.

  12. Geo-mechanical Model Testing for Stability of Underground Gas Storage in Halite During the Operational Period

    NASA Astrophysics Data System (ADS)

    Chen, Xuguang; Zhang, Qiangyong; Li, Shucai; Liu, Dejun

    2016-07-01

    A 3D geo-mechanical model test is conducted to study the stability of underground gas storage in halite, modeled after the Jintan gas storage constructed in bedded salt rock in China. A testing apparatus is developed to generate long-term stable trapezoid geostresses onto the model cavity, corresponding to the actual gas storage cavern. The time-depending character of the material is simulated using a rheological material, which was tested using a self-developed apparatus. The model cavern is built using an ellipsoid wooden mold divided into small blocks which are assembled and placed into the designed position during the model construction. They are then pulled out one by one to form the cavern. The ellipsoid cavern wall is then lined within a latex balloon. Gas is injected into the cavity and extracted to simulate the operational process of gas injection and recovery. Optical sensors embedded into the model to measure the displacement around the cavity showed that the largest deformation occurs in the middle section of the cavity. The deformation rate increases with increasing gas pressure. At 11 MPa the cavity is in equilibrium with the geostress. The pressure is highest during the gas recovery stages, indicating that gas recovery can threaten the cavern's operational stability, while high gas injection causes rock mass compression and deformation outward from the cavern. The deformation is the combination of cavern convergence and gas-induced rebound which leads to tensile and compression during gas injection and recovery. Hence, the fatigue properties of salt rock should be studied further.

  13. Chemo-mechanical microscale characterization of materials heterogeneity in oil/gas shales: linking organics and inorganics

    NASA Astrophysics Data System (ADS)

    Ferralis, N.; Abedi, S.; Grossman, J. C.; Ulm, F.

    2013-12-01

    From a materials perspective, the unconventional peculiarity of oil/gas shales resides in the intrinsic multi-scale heterogeneity in their chemical composition, organic maturity, mineralogy and microtexture. In contrast to common assumptions of maturity being driven only by the reservoir conditions (temperature and pressure), the presence of organic matter with different maturity within a few microns apart calls into question the role played by the organic and mineral heterogeneity into the chemo-mechanical properties of the material. Understanding how the upscaling of chemical diversity affects the fracturability and in general the mechanical strength of oil/gas shales is crucial. Compared to conventional oil and gas reservoirs, as well as coal, such heterogeneity requires novel and additional characterization tools from nano- to macro-scales to allow for a complete understanding of the role played by such heterogeneity in the chemo- mechanical properties of gas shales. Here we present a novel suite of chemical and mineralogical characterization tools that allow the in situ, non-destructive imaging of organic maturity and mineralogy from the microscale to the millimeter scale. This method is based on a combination of Raman, fluorescence and UV-Visible absorption spectroscopy. The upscaling is designed to provide a maturity population distribution from the nanoscale to the conventionally used macro-scale averaged parameters (such as vitrinite reflectance). Furthermore, in combination with registered micro/nano-mechanical indentation data a direct correlation of fracture mechanics and chemistry is made, allowing for the determination of high yield strain regions, relations between organic and inorganic anisotropy and interface mechanics. The underlying scientific insight at the nano and micro-scale of the potential origin of fractures in oil/gas shales, will potentially provide a connection bottom-up link to continuum fracture mechanics.

  14. CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2015-10-01

    An analysis of radiation, kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The gas flow conservation equations are coupled to the equations for DPAL kinetics and to the Beer-Lambert equations for pump and laser beams propagation. The DPAL kinetic processes in the Cs/CH4 (K/He) gas mixtures considered involve the three low energy levels, (1) n2S1/2, (2) n2P3/2 and (3) n2P1/2 (where n=4,6 for K and Cs, respectively), three excited alkali states and two alkali ionic states. Using the CFD model, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped CW and pulsed Cs and K DPALs. The DPAL power and medium temperature were calculated as a function of pump power and pump pulse duration. The CFD model results were compared to experimental results of Cs and K DPALs.

  15. Generating Singlet Oxygen Bubbles: A New Mechanism for Gas-Liquid Oxidations in Water

    PubMed Central

    Bartusik, Dorota; Aebisher, David; Ghafari, BiBi

    2012-01-01

    Laser-coupled microphotoreactors were developed to bubble singlet oxygen [1O2 (1Δg)] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiber-optic receptacles loaded with 150-μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O2 gas to the reactor chambers. In the presence of O2, singlet oxygen was generated by illuminating the sensitizer particles with 669-nm light from an optical fiber coupled to the top of the reactor. The generated 1O2 was transported through the membrane by the O2 stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (either 9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, and N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that 1O2 transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow, it arose only from 1O2-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves 1O2 mass transfer and solvation, where smaller bubbles provide better penetration of 1O2 into the flowing stream due to higher surface-to-volume contact between the probe molecules and 1O2. PMID:22260325

  16. Dissociation of carbonic acid: gas phase energetics and mechanism from ab initio metadynamics simulations.

    PubMed

    Kumar, P Padma; Kalinichev, Andrey G; Kirkpatrick, R James

    2007-05-28

    A comprehensive metadynamics study of the energetics, stability, conformational changes, and mechanism of dissociation of gas phase carbonic acid, H2CO3, yields significant new insight into these reactions. The equilibrium geometries, vibrational frequencies, and conformer energies calculated using the density functional theory are in good agreement with the previous theoretical predictions. At 315 K, the cis-cis conformer has a very short life time and transforms easily to the cis-trans conformer through a change in the O=C-O-H dihedral angle. The energy difference between the trans-trans and cis-trans conformers is very small (approximately 1 kcal/mol), but the trans-trans conformer is resistant to dissociation to carbon dioxide and water. The cis-trans conformer has a relatively short path for one of its hydroxyl groups to accept the proton from the other end of the molecule, resulting in a lower activation barrier for dissociation. Comparison of the free and potential energies of dissociation shows that the entropic contribution to the dissociation energy is less than 10%. The potential energy barrier for dissociation of H2CO3 to CO2 and H2O from the metadynamics calculations is 5-6 kcal/mol lower than in previous 0 K studies, possibly due to a combination of a finite temperature and more efficient sampling of the energy landscape in the metadynamics calculations. Gas phase carbonic acid dissociation is triggered by the dehydroxylation of one of the hydroxyl groups, which reorients as it approaches the proton on the other end of the molecule, thus facilitating a favorable H-O-H angle for the formation of a product H2O molecule. The major atomic reorganization of the other part of the molecule is a gradual straightening of the O=C=O bond. The metadynamics results provide a basis for future simulation of the more challenging carbonic acid-water system.

  17. Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste.

    PubMed

    Clemens, J; Cuhls, C

    2003-06-01

    The mechanical and biological waste treatment (MBT) is an increasingly important technology for the treatment of municipal solid waste (MSW) before landfilling. This process includes composting of the material with intensive aeration in order to minimize the organic fraction that may induce methane and leachate emissions after landfilling. The exhaust air is treated by biofilters to remove odorous and volatile organic compounds. The emission of direct and indirect greenhouse gases, namely methane (CH4), carbon dioxide (CO2), ammonia (NH3), nitric (NO) and nitrous oxide (N2O) was studied in four existing treatment plants. All gases except NO were emitted from the composting material. The emission factors were 12 to 185 kg ton(-1) substrate for CO2, 6-12 x 10(3) g ton(-1) substrate for CH4, 1.44 to 378 g ton(-1) substrate for N2O and 18-1150 g ton(-1) for NH3. In general, emission factors increased with increasing treatment time. The biofilters had no net effect on CH4, but removed 13-89% of the NH3. For CO2 the biofilters were a small, for N2O a major and for NO the exclusive source. Approximately 26% of the NH3-N that was removed in the biofilter was transformed into N2O when NH3 was the exclusive nitrogen source. Assuming that all municipal waste was treated by MBT, the emissions would account for 0.3 to 5% of the N2O and for 0.1 to 3% of the CH4 emissions in Germany, respectively. Optimising aeration and removing NH3 before the exhaust gas enters the biofilter could lead to reduced greenhouse gas emissions.

  18. Simulation of Mechanical Processes in Gas Storage Caverns for Short-Term Energy Storage

    NASA Astrophysics Data System (ADS)

    Böttcher, Norbert; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In recent years, Germany's energy management has started to be transferred from fossil fuels to renewable and sustainable energy carriers. Renewable energy sources such as solar and wind power are subjected by fluctuations, thus the development and extension of energy storage capacities is a priority in German R&D programs. This work is a part of the ANGUS+ Project, funded by the federal ministry of education and research, which investigates the influence of subsurface energy storage on the underground. The utilization of subsurface salt caverns as a long-term storage reservoir for fossil fuels is a common method, since the construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to solution mining. Another advantage of evaporate as host material is the self-healing behaviour of salt rock, thus the cavity can be assumed to be impermeable. In the framework of short-term energy storage (hours to days), caverns can be used as gas storage reservoirs for natural or artificial fuel gases, such as hydrogen, methane, or compressed air, where the operation pressures inside the caverns will fluctuate more frequently. This work investigates the influence of changing operation pressures at high frequencies on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. The salt behaviour is described by well-known constitutive material models which are capable of predicting creep, self-healing, and dilatancy processes. Our simulations include the thermodynamic behaviour of gas storage process, temperature development and distribution on the cavern boundary, the deformation of the cavern geometry, and the prediction of the dilatancy zone. Based on the numerical results, optimal operation modes can be found for individual caverns, so the risk of host rock damage

  19. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    SciTech Connect

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

    2011-01-10

    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  20. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges

  1. Comparative evaluation of gas-turbine engine combustion chamber starting and stalling characteristics for mechanical and air-injection

    NASA Technical Reports Server (NTRS)

    Dyatlov, I. N.

    1983-01-01

    The effectiveness of propellant atomization with and without air injection in the combustion chamber nozzle of a gas turbine engine is studied. Test show that the startup and burning performance of these combustion chambers can be improved by using an injection during the mechanical propellant atomization process. It is shown that the operational range of combustion chambers can be extended to poorer propellant mixtures by combined air injection mechanical atomization of the propellant.

  2. Room temperature hydrogen gas sensing characteristics of porous quaternary AlInGaN film prepared via UV-assisted photo-electrochemical etching

    NASA Astrophysics Data System (ADS)

    Quah, Hock Jin; Ahmed, Naser Mahmoud; Zainal, Norzaini; Yam, Fong Kwong; Hassan, Zainuriah; Lim, Way Foong

    2016-07-01

    This paper reports room temperature hydrogen gas sensing characteristics of porous quaternary AlInGaN prepared via ultraviolet-assisted photo-electrochemical etching in 1-4% diluted potassium hydroxide (KOH) solution. The highest sensitivity (S), the lowest response time and recovery time were obtained by the 4% KOH etched sample, owing to good adsorption and desorption of adsorbed H atoms over the largest surface area provided by the highest pore density. An increase in forward bias to 2.0 V has enhanced S (98.0%) of the sample while a relatively low bias of 0.5 V was sufficient to yield S of 81.9% in the sample.

  3. Development of an ultrasound-assisted emulsification microextraction method for the determination of chlorpyrifos and organochlorine pesticide residues in honey samples using gas chromatography with mass spectrometry.

    PubMed

    Mousavi, Mir-Michael; Arefhosseini, Seyedrafie; Alizadeh Nabili, Ali Akbar; Mahmoudpour, Mansour; Nemati, Mahboob

    2016-07-01

    A simple, rapid, and efficient ultrasound-assisted emulsification microextraction method followed by gas chromatography mass spectrometry in selected ion monitoring mode was developed for the determination of organochlorine pesticides in honey samples. The type and volume of organic extraction solvent, pH, effect of added salt content, and centrifuging time and speed were investigated. Under the optimum extraction conditions, 30 μL of 1, 2-dibromoethane (extraction solvent) was immersed into an ultrasonic bath for 1 min at 40°C. The limits of detection and quantification for all target pesticides were 0.003-0.06 and 0.01-0.2 ng/g, respectively. The extraction recovery was 91-100% and the enrichment factors were 168-192. The relative standard deviation for the method was <6% for intraday (n = 6) and <8% for interday precision (n = 4). The proposed method was successfully applied for the analysis of organochlorine pesticides in honey samples. PMID:27214344

  4. Ultrasonic nebulization extraction assisted dispersive liquid-liquid microextraction followed by gas chromatography for the simultaneous determination of six parabens in cosmetic products.

    PubMed

    Wei, Hongmin; Yang, Jinjuan; Zhang, Hanqi; Shi, Yuhua

    2014-09-01

    A simple, rapid, and efficient method of ultrasonic nebulization extraction assisted dispersive liquid-liquid microextraction was developed for the simultaneous determination of six parabens in cosmetic products. The analysis was carried out by gas chromatography. Water was used as the dispersive solvent instead of traditional organic disperser. The experimental factors affecting the extraction yield, such as the extraction solvent and volume, extraction time, dispersive solvent and volume, ionic strength, and centrifuging condition were studied and optimized in detail. The limit of detections for the target analytes were in the range of 2.0-9.5 μg/g. Good linear ranges were obtained with the coefficients ranging from 0.9934 to 0.9969. The proposed method was successfully applied to the analysis of six parabens in 16 cosmetic products. The recoveries of the target analytes in real samples ranged from 81.9 to 108.7%, and the relative standard deviations were <5.3%.

  5. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications.

    PubMed

    Alias, Mohd S; Yang, Yang; Ng, Tien K; Dursun, Ibrahim; Shi, Dong; Saidaminov, Makhsud I; Priante, Davide; Bakr, Osman M; Ooi, Boon S

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption. PMID:26688008

  6. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications.

    PubMed

    Alias, Mohd S; Yang, Yang; Ng, Tien K; Dursun, Ibrahim; Shi, Dong; Saidaminov, Makhsud I; Priante, Davide; Bakr, Osman M; Ooi, Boon S

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption.

  7. Interruption to cutaneous gas exchange is not a likely mechanism of WNS-associated death in bats.

    PubMed

    Carey, Charleve S; Boyles, Justin G

    2015-07-01

    Pseudogymnoascus destructans is the causative fungal agent of white-nose syndrome (WNS), an emerging fungal-borne epizootic. WNS is responsible for a catastrophic decline of hibernating bats in North America, yet we have limited understanding of the physiological interactions between pathogen and host. Pseudogymnoascus destructans severely damages wings and tail membranes, by causing dryness that leads to whole sections crumbling off. Four possible mechanisms have been proposed by which infection could lead to dehydration; in this study, we tested one: P. destructans infection could cause disruption to passive gas-exchange pathways across the wing membranes, thereby causing a compensatory increase in water-intensive pulmonary respiration. We hypothesized that total evaporative water loss would be greater when passive gas exchange was inhibited. We found that bats did not lose more water when passive pathways were blocked. This study provides evidence against the proposed proximal mechanism that disruption to passive gas exchange causes dehydration and death to WNS-infected bats.

  8. Rapid screening of five phthalate esters from beverages by ultrasound-assisted surfactant-enhanced emulsification microextraction coupled with gas chromatography.

    PubMed

    Yan, Hongyuan; Cheng, Xiaoling; Yan, Kuo

    2012-10-21

    A rapid ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) method coupled with gas chromatography-flame ionization detection (GC-FID) is proposed for the rapid screening of five phthalate esters in bottled beverages. In the UASEME procedure, a nonionic surfactant (Triton X-100) was used as the emulsifier, without application of any organic dispersive solvents typically required in dispersive liquid-liquid microextraction. Triton X-100 as the emulsifier accelerated the formation of fine droplets from the extraction solvent in the sample solution under ultrasound radiation, thus combining the advantages of dispersive liquid-liquid microextraction (DLLME) and ultrasound-assisted emulsification microextraction (UAEME). Under the optimum conditions, the enrichment factors of the five analytes ranged from 230 to 288 fold and the recoveries ranged from 89.3% to 100.1%. The limits of detection (LODs) based on signal to noise of 3 were 0.41-0.79 μg L(-1). Intra-assay and inter-assay precision, expressed as the relative standard deviation (RSD), were ≤5.46% and 5.81%, respectively. The proposed UASEME-GC/FID method was demonstrated to be simple, practical and environmentally friendly for the determination of trace phthalate esters in beverage samples.

  9. The laser ablation model development of glass substrate cutting assisted with the thermal fracture and ultrasonic mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Cheng; Hsiao, Wen-Tse; Hwang, Chi-Hung; Lin, Ru-Li; Andrew Yeh, Jer-Liang

    2015-04-01

    This study presents three hybrid processing models for cutting a glass substrate, and compares their cutting speeds. The three models are (I) thermal fracture cutting technology (TFCT)-assisted laser ablation, (II) ultrasonic-assisted laser ablation, and (III) ultrasonic and TFCT-assisted laser ablation. In the experiment, a 12 W 355 nm Nd:YVO4 laser system, a 40 W CO2 laser and an ultrasonic transducer were used to cut 3 mm thick soda-lime glasses. Lasers and ultrasonic transducers were used as heat sources and vibration sources, respectively. Results show that the surface morphology of the soda-lime glass sheet depends on the processing models. After cutting, the surface and cross-sectional morphology of glass substrate were observed using a portable digital microscope and residual stresses were also evaluated thanks to a photoelasticity instrument.

  10. MECHANISM FOR EXCITING PLANETARY INCLINATION AND ECCENTRICITY THROUGH A RESIDUAL GAS DISK

    SciTech Connect

    Chen Yuanyuan; Liu Huigen; Zhao Gang; Zhou Jilin E-mail: zhoujl@nju.edu.cn

    2013-05-20

    According to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as {approx}39. Degree-Sign 2 for pumping the eccentricity of the inner small body. Here we show that with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced to as low as a few degrees. The presence of the disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonance (VSR) occurs so that the mutual inclination of the two planets will be excited, which might further trigger the Kozai resonance between the two planets. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but can be integrated within a much shorter time. By scanning the parameter spaces using the evolution equations, we find that a massive planet (10 M{sub J} ) at 30 AU with an inclination of 6 Degree-Sign to a massive disk (50 M{sub J} ) can finally enter the Kozai resonance with an inner Jupiter around the snowline. An inclination of 20 Degree-Sign of the outer planet to the disk is required for flipping the inner one to a retrograde orbit. In multiple planet systems, the mechanism can happen between two nonadjacent planets or can inspire a chain reaction among more than two planets. This mechanism could be the source of the observed giant planets in moderate eccentric and inclined orbits, or hot Jupiters in close-in, retrograde orbits after tidal damping.

  11. Architectural and Biochemical Expressions of Mustard Gas Keratopathy: Preclinical Indicators and Pathogenic Mechanisms

    PubMed Central

    McNutt, Patrick; Lyman, Megan; Swartz, Adam; Tuznik, Kaylie; Kniffin, Denise; Whitten, Kim; Milhorn, Denise; Hamilton, Tracey

    2012-01-01

    A subset of victims of ocular sulfur mustard (SM) exposure develops an irreversible, idiotypic keratitis with associated secondary pathologies, collectively referred to as mustard gas keratopathy (MGK). MGK involves a progressive corneal degeneration resulting in chronic ocular discomfort and impaired vision for which clinical interventions have typically had poor outcomes. Using a rabbit corneal vapor exposure model, we previously demonstrated a clinical progression with acute and chronic sequelae similar to that observed in human casualties. However, a better understanding of the temporal changes that occur during the biphasic SM injury is crucial to mechanistic understanding and therapeutic development. Here we evaluate the histopathologic, biochemical and ultrastructural expressions of pathogenesis of the chronic SM injury over eight weeks. We confirm that MGK onset exhibits a biphasic trajectory involving corneal surface regeneration over the first two weeks, followed by the rapid development and progressive degeneration of corneal structure. Preclinical markers of corneal dysfunction were identified, including destabilization of the basal corneal epithelium, basement membrane zone abnormalities and stromal deformation. Clinical sequelae of MGK appeared abruptly three weeks after exposure, and included profound anterior edema, recurring corneal erosions, basement membrane disorganization, basal cell necrosis and stromal degeneration. Unlike resolved corneas, MGK corneas exhibited frustrated corneal wound repair, with significantly elevated histopathology scores. Increased lacrimation, disruption of the basement membrane and accumulation of pro-inflammatory mediators in the aqueous humor provide several mechanisms for corneal degeneration. These data suggest that the chronic injury is fundamentally distinct from the acute lesion, involving injury mechanisms that operate on different time scales and in different corneal tissues. Corneal edema appears to be the

  12. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    SciTech Connect

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  13. Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Saikishan; Narasimha, Roddam; Dass, N. D. Hari

    2014-01-01

    This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference ΔU across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L ×±∞. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a "vortex gas" comprising N point vortices of the same strength (γ =LΔU/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32000 vortices, with ensemble averages evaluated over up to 103 realizations and integration over 104L/ΔU. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L /ΔU. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via "violent" and "slow" relaxations [P.-H. Chavanis, Physica A 391, 3657 (2012), 10.1016/j.physa.2012.02.014], over flow time scales of order 102 and 104L/ΔU, respectively (for N =400). The final state involves a single structure that stochastically samples the domain, possibly constituting a "relative equilibrium." The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter λ close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of

  14. Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation.

    PubMed

    Zhao, Junlei; Baibuz, Ekaterina; Vernieres, Jerome; Grammatikopoulos, Panagiotis; Jansson, Ville; Nagel, Morten; Steinhauer, Stephan; Sowwan, Mukhles; Kuronen, Antti; Nordlund, Kai; Djurabekova, Flyura

    2016-04-26

    In this work, we study the formation mechanisms of iron nanoparticles (Fe NPs) grown by magnetron sputtering inert gas condensation and emphasize the decisive kinetics effects that give rise specifically to cubic morphologies. Our experimental results, as well as computer simulations carried out by two different methods, indicate that the cubic shape of Fe NPs is explained by basic differences in the kinetic growth modes of {100} and {110} surfaces rather than surface formation energetics. Both our experimental and theoretical investigations show that the final shape is defined by the combination of the condensation temperature and the rate of atomic deposition onto the growing nanocluster. We, thus, construct a comprehensive deposition rate-temperature diagram of Fe NP shapes and develop an analytical model that predicts the temporal evolution of these properties. Combining the shape diagram and the analytical model, morphological control of Fe NPs during formation is feasible; as such, our method proposes a roadmap for experimentalists to engineer NPs of desired shapes for targeted applications. PMID:26962973

  15. Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation.

    PubMed

    Zhao, Junlei; Baibuz, Ekaterina; Vernieres, Jerome; Grammatikopoulos, Panagiotis; Jansson, Ville; Nagel, Morten; Steinhauer, Stephan; Sowwan, Mukhles; Kuronen, Antti; Nordlund, Kai; Djurabekova, Flyura

    2016-04-26

    In this work, we study the formation mechanisms of iron nanoparticles (Fe NPs) grown by magnetron sputtering inert gas condensation and emphasize the decisive kinetics effects that give rise specifically to cubic morphologies. Our experimental results, as well as computer simulations carried out by two different methods, indicate that the cubic shape of Fe NPs is explained by basic differences in the kinetic growth modes of {100} and {110} surfaces rather than surface formation energetics. Both our experimental and theoretical investigations show that the final shape is defined by the combination of the condensation temperature and the rate of atomic deposition onto the growing nanocluster. We, thus, construct a comprehensive deposition rate-temperature diagram of Fe NP shapes and develop an analytical model that predicts the temporal evolution of these properties. Combining the shape diagram and the analytical model, morphological control of Fe NPs during formation is feasible; as such, our method proposes a roadmap for experimentalists to engineer NPs of desired shapes for targeted applications.

  16. Mechanical properties of aluminized CoCrAlY coatings in advanced gas turbine blades

    SciTech Connect

    Kameda, J.; Bloomer, T.E. |; Sugita, Y.; Ito, A.; Sakurai, S.

    1997-07-01

    The microstructure/composition and mechanical properties (22-950 C) in aluminized CoCrAlY coatings of advanced gas turbine blades have been examined using scanning Auger microprobe and a small punch (SP) testing method. Aluminized coatings were made of layered structure divided into four regimes: (1) Al enriched and Cr depleted region, (2) Al and Cr graded region, (3) fine grained microstructure with a mixture of Al and Cr enriched phases and (4) Ni/Co interdiffusion zone adjacent to the interface SP tests demonstrated strong dependence of the deformation and fracture behavior on the various coatings regimes. Coatings 1 and 2 showed higher microhardness and easier formation of brittle cracks in a wide temperature range, compared to coatings 3 and 4. The coating 3 had lower room temperature ductility and conversely higher elevated temperature ductility than the coating 4 due to a precipitous ductility increase above 730 C. The integrity of aluminized coatings while in-service is discussed in light of the variation in the low cycle fatigue life as well as the ductility in the layered structure.

  17. Benzyne-related mechanisms in the gas phase ion/molecule reactions of haloarenes

    NASA Astrophysics Data System (ADS)

    Linnert, Harrald V.; Riveros, José M.

    1994-12-01

    The low pressure ion/molecule reactions of NH-2, OHt- and MeO- with bromobenzene have been studied by Fourier transform ion cyclotron resonance to elucidate gas phase benzyne mechanisms. For OHt- and MeO-, the main reaction consists of benzyne elimination initiated by abstraction of an ortho proton and the subsequent formation of a solvated halide ion. Experiments with monodeuterated bromobenzenes suggest that reactions with OHt- are the result of long-lived complexes with extensive scrambling of hydrogen and deuterium. For NH-2, formation of all the isomeric bromophenide ions occurs without hydrogen-deuterium scrambling, revealing weak building in the collision complexes. The o-bromophenide ions are shown to react with other substrates by bromide transfer rather than by proton transfer, and evidence is presented that the meta and para isomers undergo isomerization to the ortho upon reaction with substrates of similar acidities. The [Delta]H0acid of bromobenzene is estimated to be 384.4 kcal mol- from bracketing experiments. An extension of these reactions to 1- and 2-bromonaphthalene provides an estimate for the heats of formation of 1,2-dehydronaphthalene (122 kcal mol-) and the 2,3-dehydronaphthalene (126 kcal mol-).

  18. [Characteristics and mechanism of sodium removal by the synergistic action of flue gas and waste solid].

    PubMed

    Yi, Yuan-Rong; Han, Min-Fang

    2012-07-01

    The carbon dioxide (CO2) in flue gas was used to remove the sodium in the red mud (RM) , a kind of alkaline solid waste generated during alumina production. The reaction characteristics and mechanism of sodium removal by the synergistic action of CO2 and RM were studied with different medium pH, reaction time and temperature. It was demonstrated that the remove of sodium by RM was actually the result of the synergistic action of sodium-based solid waste in RM with the CO2-H2O and OH(-)-CO2 systems. The sodium removal efficiency was correlated with pH, reaction temperature and time. The characteristics of RM before and after sodium removal were analyzed using X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the results showed that the alkaline materials in the red mud reacted with CO2 and the sodium content in solid phases decreased significantly after reaction. The sodium removal efficiency could reach up to 70% with scientific procedure. The results of this research will offer an efficient way for low-cost sodium removal.

  19. Preliminary Study of Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants

    SciTech Connect

    Gauglitz, Phillip A.; Buchmiller, William C.; Probert, Samuel G.; Owen, Antionette T.

    2010-10-12

    The Hanford Site has 28 double-shell tanks (DSTs) and 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. The mission of the Department of Energy’s River Protection Project is to retrieve and treat the Hanford tank waste for disposal and close the tank farms. A key aspect of the mission is to retrieve and transfer waste from the SSTs, which are at greater risk for leaking, into DSTs for interim storage until the waste is transferred to and treated in the Waste Treatment and Immobilization Plant. There is, however, limited space in the existing DSTs to accept waste transfers from the SSTs, and approaches to overcoming the limited DST space will benefit the overall mission. The purpose of this study is to summarize and analyze the key previous experiment that forms the basis for the relaxed controls and to summarize initial progress and results on new experiments focused on understanding the conditions that result in low gas retention. The work is ongoing; this report provides a summary of the initial findings. The previous large-scale test used about 50 m3 of sediment, which would be unwieldy for doing multiple parametric experiments. Accordingly, experiments will begin with smaller-scale tests to determine whether the desired mechanisms can be studied without the difficulty of conducting very large experiments.

  20. Gas breakdown mechanism in pulse-modulated asymmetric ratio frequency dielectric barrier discharges

    SciTech Connect

    Wang, Qi; Sun, Jizhong Ding, Zhenfeng; Ding, Hongbin; Wang, Dezhen; Nozaki, Tomohiro; Wang, Zhanhui

    2014-08-15

    The gas breakdown mechanisms, especially the roles of metastable species in atmospheric pressure pulse-modulated ratio frequency barrier discharges with co-axial cylindrical electrodes, were studied numerically using a one dimensional self-consistent fluid model. Simulation results showed that in low duty cycle cases, the electrons generated from the channels associated with metastable species played a more important role in initializing next breakdown than the direct ionization of helium atoms of electronic grounded states by electron-impact. In order to quantitatively evaluate the contribution to the discharge by the metastables, we defined a “characteristic time” and examined how the value varied with the gap distance and the electrode asymmetry. The results indicated that the lifetime of the metastable species (including He*and He{sub 2}{sup *}) was much longer than that of the pulse-on period and as effective sources of producing electrons they lasted over a period up to millisecond. When the ratio of the outer radius to the inner radius of the cylindrical electrodes was far bigger than one, it was found that the metastables distributed mainly in a cylindrical region around the inner electrode. When the ratio decreased as the inner electrode moved outward, the density of metastables in the discharge region near the outer electrode became gradually noticeable. As the discharging gap continued to decrease, the two hill-shaped distributions gradually merged to one big hill. When the discharge spacing was fixed, asymmetric electrodes facilitated the discharge.

  1. Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing

    NASA Astrophysics Data System (ADS)

    Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Sofo, Jorge O.

    2014-09-01

    In carbon nanotube and graphene gas sensing, the measured conductance change after the sensor is exposed to target molecules has been traditionally attributed to carrier density change due to charge transfer between the sample and the adsorbed molecule. However, this explanation has many problems when it is applied to graphene: The increased amount of Coulomb impurities should lead to decrease in carrier mobility which was not observed in many experiments, carrier density is controlled by the gate voltage in the experimental setup, and there are inconsistencies in the energetics of the charge transfer. In this paper we explore an alternative mechanism. Charged functional groups and dipolar molecules on the surface of graphene may counteract the effect of charged impurities on the substrate. Because scattering of electrons with these charged impurities has been shown to be the limiting factor in graphene conductivity, this leads to significant changes in the transport behavior. A model for the conductivity is established using the random phase approximation dielectric function of graphene and the first-order Born approximation for scattering. The model predicts optimal magnitudes for the charge and dipole moment which maximally screen a given charged impurity. The dipole screening is shown to be generally weaker than the charge screening although the former becomes more effective with higher gate voltage away from the charge neutrality point. The model also predicts that with increasing amount of adsorbates, the charge impurities eventually become saturated and additional adsorption always lead to decreasing conductivity.

  2. Stopped flow studies of the mechanisms of ozone-alkene reactions in the gas phase: tetramethylethylene

    SciTech Connect

    Martinez, R.I.; Herron, J.T.

    1987-02-12

    The reaction of ozone with tetramethylethylene (TME) has been studied in the gas phase at 294 K and 539 Pa (4 Torr) with a stopped-flow reactor coupled to a photoionization mass spectrometer. The concentrations of reactants and products were determined as a function of reaction time. The major products were (CH/sub 3/)/sub 2/CO, H/sub 2/CO, CH/sub 3/C(O)CH/sub 2/OH (hydroxyacetone), and CH/sub 3/C(O)C(O)H (methylglyoxal). Computer simulation of the experimentally observed temporal profiles supports the mechanism shown in Scheme I. The hot ester channel (R,R''COO ..-->.. R'C(O)OR''* ..-->.. products) available to the H/sub 2/COO formed by ozonolysis of terminal olefins R'R''C double bonded CH/sub 2/ is not available for alkyl-substituted R'R''COO. Thus the secondary chemistry for R'R''COO is substantially different from that for H/sub 2/COO.

  3. Fast self-diffusion of ions in CH 3 NH 3 PbI 3 : the interstiticaly mechanism versus vacancy-assisted mechanism

    SciTech Connect

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2016-01-01

    The stability of organic-inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms. We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.

  4. Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation.

    PubMed

    Mao, Yiyin; Li, Junwei; Cao, Wei; Ying, Yulong; Sun, Luwei; Peng, Xinsheng

    2014-03-26

    The scalable fabrication of continuous and defect-free metal-organic framework (MOF) films on the surface of polymeric hollow fibers, departing from ceramic supported or dense composite membranes, is a huge challenge. The critical way is to reduce the growth temperature of MOFs in aqueous or ethanol solvents. In the present work, a pressure-assisted room temperature growth strategy was carried out to fabricate continuous and well-intergrown HKUST-1 films on a polymer hollow fiber by using solid copper hydroxide nanostrands as the copper source within 40 min. These HKUST-1 films/polyvinylidenefluoride (PVDF) hollow fiber composite membranes exhibit good separation performance for binary gases with selectivity 116% higher than Knudsen values via both inside-out and outside-in modes. This provides a new way to enable for scale-up preparation of HKUST-1/polymer hollow fiber membranes, due to its superior economic and ecological advantages. PMID:24598555

  5. Evaluation of the District of Columbia Energy Office Residential Conservation Assistance Program for Natural Gas-Heated Single-Family Homes

    SciTech Connect

    McCold, Lance Neil; Schmoyer, Richard L

    2007-03-01

    At the request of the U.S. Department of Energy (DOE), Oak Ridge National Laboratory (ORNL), with assistance from the District of Columbia Energy Office (DCEO) performed an evaluation of part of the DCEO Residential Conservation Assistance Program (RCAP). The primary objective of the evaluation was to evaluate the effectiveness of the DCEO weatherization program. Because Weatherization Assistance Program (WAP) funds are used primarily for weatherization of single-family homes and because evaluating the performance of multi-family residences would be more complex than the project budget would support, ORNL and DCEO focused the study on gas-heated single-family homes. DCEO provided treatment information and arranged for the gas utility to provide billing data for 100 treatment houses and 434 control houses. The Princeton Scorkeeping Method (PRISM) software package was used to normalize energy use for standard weather conditions. The houses of the initial treatment group of 100 houses received over 450 measures costing a little over $180,000, including labor and materials. The average cost per house was $1,811 and the median cost per house was $1,674. Window replacement was the most common measure and accounted for about 35% of total expenditures. Ceiling and floor insulation was installed in 61 houses and accounts for almost 22% of the expenditures. Twenty-seven houses received replacement doors at an average cost of $620 per house. Eight houses received furnace or boiler replacements at an average cost of about $3,000 per house. The control-adjusted average measured savings are about 20 therms/year. The 95% confidence interval is approximately +20 to +60 therms/year. The average pre-weatherization energy consumption of the houses was about 1,100 therm/year. Consequently, the adjusted average savings is approximately 2% ({+-}4%)-not significantly different than zero. Most RCAP expenditures appear to go to repairs. While some repairs may have energy benefits, measures

  6. NMR Mechanisms and Fluid Typing Based on Numerical Simulation in Gas-Bearing Shale

    NASA Astrophysics Data System (ADS)

    Tan, M.; Xu, J.; Wang, X.

    2013-12-01

    In Nuclear Magnetic Resonance (NMR) survey of oil- or gas-bearing shales, the relaxation is so fast and the diffusion is so low, and oil or gas typing is difficult to distinguish from each other using the previous analysis method. To study the NMR responses in gas-bearing shale, we supposed an ideal shale model including incredible water, free and adsorbed gas, and kerogen. Firstly, we supposed a series of ideal shale models with incredible water, free and adsorbed gas, and kerogen. Then, some simulations are performed for two-dimensional T2-D plots, and NMR characteristics are summarized successfully. Then, a series of simulations of different models with different adsorbed gas fractions are made, and the NMR responses are analyzed, from which we can identify the adsorbed gas and free gas. In inversion, a hybrid method with LSQR and TSVD is proved suitable for D-T2 NMR of gas shale with slow and fast diffusion, and short and long relaxation. It is noticed that the activation sequence of NMR is also important for accurate fluid typing in gas-bearing shale. We design a series of activation sequences, and simulate the corresponding NMR echo decays, and invert the fluid properties to search for an optimal activation sequence for fluid typing purpose. Figure 1 SEM picture and petrophysical model of organic shale. (a) 2D SEM shows pore and kerogen within shale. Black deposits pore, and dark gray is kerogen, light grey is matrix including clay and silica; (b) Petrophysical model Figure 2 Comparison of 2D-NMR simulations with different adsorbed gas fractions, (a) ɛ =0.0, (b) ɛ =0.2, (c) ɛ=0.4, t (d) ɛ =0.6, (e) ɛ =0.8, and (f) ɛ=1.0. From D-T2 plots, the position and amplitude of signals in T2-D plots indicate the fluid typing and fraction of the gas or adsorbed gas.

  7. Incessant tachycardia in a patient with advanced heart failure and left ventricular assist device: What is the mechanism?

    PubMed

    Noheria, Amit; Mulpuru, Siva K; Noseworthy, Peter A; Asirvatham, Samuel J

    2016-01-01

    We present a case of incessant wide-complex tachycardia in a patient with left-ventricular assist device, and discuss the differential diagnosis with an in-depth analysis of the intracardiac tracings during the invasive electrophysiologic study, including interpretation of the relative timing of the fascicular signals during tachycardia and in sinus rhythm, and interpretation of pacing and entrainment maneuvers. PMID:27485564

  8. Suppression of the quantum-mechanical collapse by repulsive interactions in a quantum gas

    SciTech Connect

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2011-01-15

    The quantum-mechanical collapse (alias fall onto the center of particles attracted by potential -r{sup -2}) is a well-known issue in quantum theory. It is closely related to the quantum anomaly, i.e., breaking of the scaling invariance of the respective Hamiltonian by quantization. We demonstrate that the mean-field repulsive nonlinearity prevents the collapse and thus puts forward a solution to the quantum-anomaly problem that differs from that previously developed in the framework of the linear quantum-field theory. This solution may be realized in the 3D or 2D gas of dipolar bosons attracted by a central charge and in the 2D gas of magnetic dipoles attracted by a current filament. In the 3D setting, the dipole-dipole interactions are also taken into regard, in the mean-field approximation, resulting in a redefinition of the scattering length which accounts for the contact repulsion between the bosons. In lieu of the collapse, the cubic nonlinearity creates a 3D ground state (GS), which does not exist in the respective linear Schroedinger equation. The addition of the harmonic trap gives rise to a tristability, in the case when the Schroedinger equation still does not lead to the collapse. In the 2D setting, the cubic nonlinearity is not strong enough to prevent the collapse; however, the quintic term does it, creating the GS, as well as its counterparts carrying the angular momentum (vorticity). Counterintuitively, such self-trapped 2D modes exist even in the case of a weakly repulsive potential r{sup -2}. The 2D vortical modes avoid the phase singularity at the pivot (r=0) by having the amplitude diverging at r{yields}0 instead of the usual situation with the amplitude of the vortical mode vanishing at r{yields}0 (the norm of the mode converges despite of the singularity of the amplitude at r{yields}0). In the presence of the harmonic trap, the 2D quintic model with a weakly repulsive central potential r{sup -2} gives rise to three confined modes, the middle

  9. Initiation of gas-hydrate pockmark in deep-water Nigeria: Geo-mechanical analysis and modelling

    NASA Astrophysics Data System (ADS)

    Riboulot, V.; Sultan, N.; Imbert, P.; Ker, S.

    2016-01-01

    A review of recent literature shows that two geomorphologically different types of pockmarks, contribute to gas seepage at the seafloor. Type-1 pockmarks are defined as seafloor craters associated to fluid seepage and are the most classical type referred to as "pockmarks" in the literature. In contrast, Type-2 pockmarks reveal a complex seafloor morphology that may result from the formation/decomposition of gas hydrates in underlying sedimentary layers. Interpretation of very-high-resolution seismic data, sedimentological analyses and geotechnical measurements acquired from the Eastern Niger Submarine Delta reveal that Type-2 pockmarks are associated to the presence at depth of a conical body of massive gas hydrates. Based on acquired data, theoretical analysis and numerical modelling, it was possible to propose a novel geo-mechanical mechanism controlling the irregular seafloor deformations associated to Type-2 pockmark and to show that pockmark shapes and sizes are directly linked to the initial growth and distribution of sub-seafloor gas hydrates. The study illustrates the role of gas hydrates formation in the fracturation, deformation of the subsurface sediment and the formation of Type-2 pockmarks.

  10. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  11. A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-01-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  12. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis

    PubMed Central

    Simon, Ann M.; Hargrove, Levi J.

    2016-01-01

    Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed. PMID:26807889

  13. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.

    PubMed

    Ingraham, Kimberly A; Fey, Nicholas P; Simon, Ann M; Hargrove, Levi J

    2016-01-01

    Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed.

  14. Quantitative determination of dimethyl fumarate in silica gel by solid-phase microextraction/gas chromatography/mass spectrometry and ultrasound-assisted extraction/gas chromatography/mass spectrometry.

    PubMed

    Bocchini, Paola; Pinelli, Francesca; Pozzi, Romina; Ghetti, Federica; Galletti, Guido C

    2015-06-01

    Dimethyl fumarate (DMF) is a chemical compound which has been added to silica gel bags used for preserving leather products during shipment. DMF has recently been singled out due to its ability to induce a number of medical problems in people which touch products contaminated by it. Its use as a biocide has been recently made illegal in Europe. Two different extraction techniques, namely ultrasound-assisted extraction (UAE) and solid-phase microextraction (SPME), both coupled with gas chromatography/mass spectrometry were applied to the quantitative determination of DMF in silica gel. Linearity of the methods, reproducibility and detection limits were determined. The two methods were applied to the quantification of DMF in thirty-four silica gel samples used as anti-mould agents in different leather products sold in Italy, and the obtained results were statistically compared. PMID:25939646

  15. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges.

    PubMed

    Domínguez, A; Menéndez, J A; Inguanzo, M; Bernad, P L; Pis, J J

    2003-09-19

    The pyrolysis of sewage sludge was studied in a microwave oven using graphite as microwave absorber. The pyrolysis temperature ranged from 800 to 1000 degrees C depending on the type of sewage sludge. A conventional electrical furnace was also employed in order to compare the results obtained with both methods. The pyrolysis oils were trapped in a series of condensers and their characteristics such as elemental analysis and calorific value were determined and compared with those of the initial sludge. The oil composition was analyzed by GC-MS. The oils from the microwave oven had n-alkanes and 1-alkenes, aromatic compounds, ranging from benzene derivatives to polycyclic aromatic hydrocarbons (PAHs), nitrogenated compounds, long chain aliphatic carboxylic acids, ketones and esters and also monoterpenes and steroids. The oil from the electric oven was composed basically of PAHs such as naphthalene, acenapthylene, phenanthrene, fluoranthene, benzo[a]anthracene, benzofluoranthenes, benzopyrenes, indenepyrene, benzo[ghi]perylene, and anthanthrene. In contrast, these compounds were not produced in the case of microwave-assisted pyrolysis.

  16. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending.

    PubMed

    Kim, Yeon Hoo; Kim, Sang Jin; Kim, Yong-Jin; Shim, Yeong-Seok; Kim, Soo Young; Hong, Byung Hee; Jang, Ho Won

    2015-10-27

    Graphene is considered as one of leading candidates for gas sensor applications in the Internet of Things owing to its unique properties such as high sensitivity to gas adsorption, transparency, and flexibility. We present self-activated operation of all graphene gas sensors with high transparency and flexibility. The all-graphene gas sensors which consist of graphene for both sensor electrodes and active sensing area exhibit highly sensitive, selective, and reversible responses to NO2 without external heating. The sensors show reliable operation under high humidity conditions and bending strain. In addition to these remarkable device performances, the significantly facile fabrication process enlarges the potential of the all-graphene gas sensors for use in the Internet of Things and wearable electronics.

  17. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending.

    PubMed

    Kim, Yeon Hoo; Kim, Sang Jin; Kim, Yong-Jin; Shim, Yeong-Seok; Kim, Soo Young; Hong, Byung Hee; Jang, Ho Won

    2015-10-27

    Graphene is considered as one of leading candidates for gas sensor applications in the Internet of Things owing to its unique properties such as high sensitivity to gas adsorption, transparency, and flexibility. We present self-activated operation of all graphene gas sensors with high transparency and flexibility. The all-graphene gas sensors which consist of graphene for both sensor electrodes and active sensing area exhibit highly sensitive, selective, and reversible responses to NO2 without external heating. The sensors show reliable operation under high humidity conditions and bending strain. In addition to these remarkable device performances, the significantly facile fabrication process enlarges the potential of the all-graphene gas sensors for use in the Internet of Things and wearable electronics. PMID:26321290

  18. Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)

    1992-01-01

    A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

  19. Rapid analysis of six phthalate esters in wine by ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction coupled with gas chromatography-flame ionization detector or gas chromatography-ion trap mass spectrometry.

    PubMed

    Cinelli, Giuseppe; Avino, Pasquale; Notardonato, Ivan; Centola, Angela; Russo, Mario Vincenzo

    2013-03-26

    An Ultrasound-Vortex-Assisted Dispersive Liquid-Liquid Micro-Extraction (USVADLLME) procedure coupled with Gas Chromatography-Flame Ionization Detector (GC-FID) or Gas Chromatography-Ion Trap Mass Spectrometry (GC-IT/MS) is proposed for rapid analysis of six phthalate esters in hydroalcoholic beverages (alcohol by volume, alc vol(-1), ≤40%). Under optimal conditions, the enrichment factor of the six analytes ranges from 220- to 300-fold and the recovery from 85% to 100.5%. The limit of detection (LOD) and limit of quantification (LOQ) are ≥0.022 μg L(-1) and ≥0.075 μg L(-1), respectively. Intra-day and inter-day precisions expressed as relative standard deviation (RSD), are ≤8.2% and ≤7.0%, respectively. The whole proposed methodology has demonstrated to be simple, reproducible and sensible for the determination of trace phthalate esters in red and white wine samples. PMID:23498123

  20. Inactivation Kinetics and Mechanism of a Human Norovirus Surrogate on Stainless Steel Coupons via Chlorine Dioxide Gas

    PubMed Central

    Yeap, Jia Wei; Kaur, Simran; Lou, Fangfei; DiCaprio, Erin; Morgan, Mark; Linton, Richard

    2015-01-01

    Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 107 PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces. PMID:26475110

  1. Source Mechanism, Stress Triggering, and Hazard Analysis of Induced Seismicity in Oil/Gas Fields in Oman and Kuwait

    NASA Astrophysics Data System (ADS)

    Gu, C.; Toksoz, M. N.; Ding, M.; Al-Enezi, A.; Al-Jeri, F.; Meng, C.

    2015-12-01

    Induced seismicity has drawn new attentions in both academia and industry in recent years as the increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding their causes and the physics of the seismic processes in reservoirs. Previous research on the analysis of induced seismic events in conventional oil/gas fields assumed a double couple (DC) source mechanism. The induced seismic data in this study are from both Oman and Kuwait. For the Oman data, the induced seismicity is monitored by both surface network (0gas field. The data used in the study consist of 800 events located by the surface network and 2000 events from the downhole network. For the Kuwait data a surface network is used to collect the local seismic data (0mechanisms and triggering stress. We determine the full moment tensor of the induced seismicity data, based on a full-waveform inversion method (Song and Toksöz, 2011). With the full moment tensor inversion results, Coulomb stress is calculated to investigate the triggering features of the induced seismicity data. Our results show a detailed evolution of 3D triggering stress in oil/gas fields from year 1999 to 2007 for Oman, and from year 2006 to 2015 for Kuwait. In addition, the local hazard corresponding to the induced seismicity in these oil/gas fields is assessed and compared to ground motion prediction due to large (M>5.0) regional tectonic earthquakes.

  2. Microwave-assisted on-spot derivatization for gas chromatography-mass spectrometry based determination of polar low molecular weight compounds in dried blood spots.

    PubMed

    Sadones, Nele; Van Bever, Elien; Archer, John R H; Wood, David M; Dargan, Paul I; Van Bortel, Luc; Lambert, Willy E; Stove, Christophe P

    2016-09-23

    Dried blood spot (DBS) sampling and analysis is increasingly being applied in bioanalysis. Although the use of DBS has many advantages, it is also associated with some challenges. E.g. given the limited amount of available material, highly sensitive detection techniques are often required to attain sufficient sensitivity. In gas chromatography coupled to mass spectrometry (GC-MS), derivatization can be helpful to achieve adequate sensitivity. Because this additional sample preparation step is considered as time-consuming, we introduce a new derivatization procedure, i.e. "microwave-assisted on-spot derivatization", to minimize sample preparation of DBS. In this approach the derivatization reagents are directly applied onto the DBS and derivatization takes place in a microwave instead of via conventional heating. In this manuscript we evaluated the applicability of this new concept of derivatization for the determination of two polar low molecular weight molecules, gamma-hydroxybutyric acid (GHB) and gabapentin, in DBS using a standard GC-MS configuration. The method was successfully validated for both compounds, with imprecision and bias values within acceptance criteria (<20% at LLOQ, <15% at 3 other QC levels). Calibration lines were linear over the 10-100μg/mL and 1-30μg/mL range for GHB and gabapentin, respectively. Stability studies revealed no significant decrease of gabapentin and GHB in DBS upon storage at room temperature for at least 84 days. Furthermore, DBS-specific parameters, including hematocrit and volume spotted, were evaluated. As demonstrated by the analysis of GHB and gabapentin positive samples, "microwave-assisted on-spot derivatization" proved to be reliable, fast and applicable in routine toxicology. Moreover, other polar low molecular weight compounds of interest in clinical and/or forensic toxicology, including vigabatrin, beta-hydroxybutyric acid, propylene glycol, diethylene glycol, 1,4-butanediol and 1,2-butanediol, can also be

  3. Microwave-assisted on-spot derivatization for gas chromatography-mass spectrometry based determination of polar low molecular weight compounds in dried blood spots.

    PubMed

    Sadones, Nele; Van Bever, Elien; Archer, John R H; Wood, David M; Dargan, Paul I; Van Bortel, Luc; Lambert, Willy E; Stove, Christophe P

    2016-09-23

    Dried blood spot (DBS) sampling and analysis is increasingly being applied in bioanalysis. Although the use of DBS has many advantages, it is also associated with some challenges. E.g. given the limited amount of available material, highly sensitive detection techniques are often required to attain sufficient sensitivity. In gas chromatography coupled to mass spectrometry (GC-MS), derivatization can be helpful to achieve adequate sensitivity. Because this additional sample preparation step is considered as time-consuming, we introduce a new derivatization procedure, i.e. "microwave-assisted on-spot derivatization", to minimize sample preparation of DBS. In this approach the derivatization reagents are directly applied onto the DBS and derivatization takes place in a microwave instead of via conventional heating. In this manuscript we evaluated the applicability of this new concept of derivatization for the determination of two polar low molecular weight molecules, gamma-hydroxybutyric acid (GHB) and gabapentin, in DBS using a standard GC-MS configuration. The method was successfully validated for both compounds, with imprecision and bias values within acceptance criteria (<20% at LLOQ, <15% at 3 other QC levels). Calibration lines were linear over the 10-100μg/mL and 1-30μg/mL range for GHB and gabapentin, respectively. Stability studies revealed no significant decrease of gabapentin and GHB in DBS upon storage at room temperature for at least 84 days. Furthermore, DBS-specific parameters, including hematocrit and volume spotted, were evaluated. As demonstrated by the analysis of GHB and gabapentin positive samples, "microwave-assisted on-spot derivatization" proved to be reliable, fast and applicable in routine toxicology. Moreover, other polar low molecular weight compounds of interest in clinical and/or forensic toxicology, including vigabatrin, beta-hydroxybutyric acid, propylene glycol, diethylene glycol, 1,4-butanediol and 1,2-butanediol, can also be

  4. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.

    PubMed

    Appleton, J D; Cave, M R; Miles, J C H; Sumerling, T J

    2011-03-01

    Least squares (LS), Theil's (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated ²²⁶Ra in the < 2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m⁻³ whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m⁻³ for a moderately permeable geological unit to about 40 Bq m⁻³ for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m⁻³ is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil ²²⁶Ra ratio shows that whereas the published data are

  5. Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills

    SciTech Connect

    Bockreis, A. . E-mail: a.bockreis@iwar.tu-darmstadt.de; Steinberg, I.

    2005-07-01

    In order to minimise emissions and environmental impacts, only pre-treated waste should be disposed of. For the last six years, a series of continuous experiments has been conducted at the Institute WAR, TU Darmstadt, in order to determine the emissions from pre-treated waste. Different kinds of pre-treated waste were incubated in several reactors and various data, including production and composition of the gas and the leachate, were collected. In this paper, the interim results of gas production and the gas composition from different types of waste after a running time of six years are presented and discussed.

  6. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD <6.3%) and good accuracy, in which the relative deference between the data measured by the HS-GC method and the reference method were within 6.0%. The HS-GC method is simple and particularly suitable for measuring the solubility of LVLOs at elevated temperatures. This approach should be of special interest to those concerned about the impact of the presence of low-volatility organic liquids in waters of environmental and biological systems. PMID:26850316

  7. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD <6.3%) and good accuracy, in which the relative deference between the data measured by the HS-GC method and the reference method were within 6.0%. The HS-GC method is simple and particularly suitable for measuring the solubility of LVLOs at elevated temperatures. This approach should be of special interest to those concerned about the impact of the presence of low-volatility organic liquids in waters of environmental and biological systems.

  8. Surftherm: A program to analyze thermochemical and kinetic data in gas-phase and surface chemical reaction mechanisms

    SciTech Connect

    Coltrin, M.E.; Moffat, H.K.

    1994-06-01

    This report documents the Surftherm program that analyzes transport coefficient, thermochemical- and kinetic rate information in complex gas-phase and surface chemical reaction mechanisms. The program is designed for use with the Chemkin (gas-phase chemistry) and Surface Chemkin (heterogeneous chemistry) programs. It was developed as a ``chemist`s companion`` in using the Chemkin packages with complex chemical reaction mechanisms. It presents in tabular form detailed information about the temperature and pressure dependence of chemical reaction rate constants and their reverse rate constants, reaction equilibrium constants, reaction thermochemistry, chemical species thermochemistry and transport properties. This report serves as a user`s manual for use of the program, explaining the required input and the output.

  9. Effect and mechanism of coking residual ammonia water treating by flue gas.

    PubMed

    Cheng, Z J; Yin, G J; Yang, L Q; Wang, W; Cheng, D D

    2001-04-01

    The treatment of coking residual ammonia water has been a big difficult problem at home and abroad, and there is no breakthrough research achievement in the past. The invention patent "The method of treating all coking wastewater or treating coking residual ammonia water by flue gas" has been successfully used in Huaian Steel Works for high concentration and organic industry wastewater treatment. Not only can it realize the wastewater zero discharge, but also the wastewater treatment has an effect of de-sulfur and de-nitrogen for flue gas. So that the flue gas exhaust can meet the requirement of emission standard. The mass transfer and heat transfer, fly ash absorption and coagulation, acid and alkali neutralization reaction, catalysis oxidation and reduction reaction in flue gas would be the major factors.

  10. ENVIRONMENTAL ANALYSIS BY AB INITIO QUANTUM MECHANICAL COMPUTATION AND GAS CHROMATOGRAPHY/FOURIER TRANSFORM INFRARED SPECTROMETRY.

    EPA Science Inventory

    Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...

  11. Mechanisms of gas permeation through polymer membranes. Summary technical report, September 1991--August 1992

    SciTech Connect

    Stern, S.A.

    1992-12-31

    Progress is reported in two areas: (1) Concentration-temperature superposition principle (CTSP). CTSP is a theoretical model for describing the gas solubility in glassy polymers swollen by the penetrant gas. It has been extended to describe the dependence of gas diffusivity and permeability on penetrant pressure. Further extension to diffusion of gas mixtures is being studied. (2)Solubility of gases in poly(alkyl methacrylates). Solubility of methane in poly(ethyl methacrylate) and poly(n-butyl methacrylate) was measured; the Langmuir capacity constant was found to not reflect a lower excess free volume; an equation is given for relating the constant to the glass transition temperature. Solubility of ethane in the latter polymer is affected by plasticization.

  12. Investigating Differences in Isoprene Oxidation Chemistry Between Gas-Phase Mechanisms Using a Constrained Chemical Box Model

    NASA Astrophysics Data System (ADS)

    Marvin, M. R.; Wolfe, G. M.; Salawitch, R. J.; Canty, T. P.; Hanisco, T. F.; Kaiser, J.; Keutsch, F. N.; Graus, M.; Warneke, C.; De Gouw, J. A.; Gilman, J.; Lerner, B. M.; Peischl, J.; Veres, P. R.; Min, K. E.; Holloway, J. S.; Aikin, K. C.; Ryerson, T. B.; Roberts, J. M.; Brown, S. S.; Pollack, I. B.; Hatch, C. D.; Lee, B. H.; Lopez-Hilfiker, F.; Thornton, J. A.; Diskin, G. S.; Sachse, G. W.; Huey, L. G.; Liu, X.; Wisthaler, A.; Mikoviny, T.; Wennberg, P. O.; St Clair, J.; Crounse, J.; Teng, A.

    2015-12-01

    Oxidation of isoprene by OH can significantly influence concentrations of important atmospheric pollutants such as ozone and secondary organic aerosols, but the chemistry that describes the relationships between these species is complex and not fully understood. Debate on the topic has led to differences in the isoprene oxidation schemes of several gas-phase chemical mechanisms currently applied in air chemistry models. We use the University of Washington Chemical Model (UWCMv3) to evaluate these mechanisms with respect to isoprene chemistry based on observations from the SENEX and SEAC4RS aircraft campaigns. The campaigns provide constraints on compounds measured over the Southeast United States, where isoprene concentrations are high and other conditions (e.g., NOx levels) vary widely. The payloads for both missions include observations of a wide range of isoprene oxidation products, which can provide insight into specific oxidation pathways. Analysis will focus on the characterization and comparison of isoprene oxidation chemistry for established gas-phase mechanisms that are prevalent in atmospheric modeling today, including the Carbon Bond mechanism (CB05 and CB6r2) and the Master Chemical Mechanism (versions 3.2 and 3.3).

  13. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media

    SciTech Connect

    Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K. Wang, J.; Hono, K.; Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T.

    2014-06-02

    We investigated the Ag distribution in a FePtAg-C granular film that is under consideration for a heat assisted magnetic recording medium by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy and X-ray absorption fine structure. Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L1{sub 0}-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the L1{sub 0}-order in the FePt grains.

  14. Resection of the sidewall of superior vena cava using video-assisted thoracic surgery mechanical suture technique

    PubMed Central

    Xu, Xin; Qiu, Yuan; Pan, Hui; Mo, Lili; Chen, Hanzhang

    2016-01-01

    Lung cancer invading the superior vena cava (SVC) is a locally advanced condition, for which poor prognosis is expected with conservative treatment alone. Surgical resection of the lesion can rapidly relieve the symptoms and significantly improve survival for some patients. Replacement, repair and partial resection of SVC via thoracotomy were generally accepted and used in the past. As the rapid development of minimally invasive techniques and devices, partial resection and repair of SVC are feasible via video-assisted thoracic surgery (VATS). However, few studies have reported the VATS surgical techniques. In this study, we reported the crucial techniques of partial resection of SVC via VATS. PMID:27076960

  15. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  16. Mechanisms of NOx removal from flue gas by zero valent iron

    SciTech Connect

    Shiao-Shing Chen; Chih-Yu Cheng; Jung-Chun Chang; Chih-Hui Tang

    2006-06-15

    Chemical reaction between nitric oxide (NO) and zero valent iron (ZVI) was studied in a packed-bed column process with high temperatures based on ZVI strong reducing abilities. For six controlled temperatures of 523- 773 K and 400 ppm of NO (typical flue gas temperature and concentration), under short empty bed contact time, NO was completely removed for temperature of 573-773 K but not for 523 K. Breakthrough curves were conducted for the five working temperatures, and the results indicated that NO reductions by ZVI were varied from 2 to 26.7 mg NO/g ZVI. Higher temperature and longer EBCT achieved better NO removal efficiency. X-ray diffraction (XRD) and electron spectroscopy for chemical analysis (ESCA) were conducted to analyze the crystal structure and oxidation state of the reacted ZVI. Three layers of iron species were detected by XRD: ZVI, Fe{sub 3}O{sub 4}, and Fe{sub 2}O{sub 3}. ZVI was the most prevalent species, and Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} were less from the XRD analysis. By ESCA, the oxidation state on the reacted ZVI surface was determined, and the species was identified as Fe{sub 2}O{sub 3}, which is the most oxidizing species for iron. Therefore, three layers from the ZVI core to the ZVI surface can be identified: ZVI, Fe{sub 3}O{sub 4}, and Fe{sub 2}O{sub 3}. Combining the results from XRD and ESCA, the mechanisms for ZVI and NO can be proposed as two consecutive reactions from lower oxidation state (ZVI) in the core to higher oxidation state on the iron surface (Fe{sub 2}O{sub 3}). Because there was only {lt}5% ZVI used to remove NO comparing to theoretical ZVI used based on the proposed stoichiometry, it can be concluded that the heterogeneous reaction only occurred on the ZVI surface instead of on bulk of the ZVI. 11 refs., 8 figs., 3 tabs.

  17. Mechanisms of NOx removal from flue gas by zero valent iron.

    PubMed

    Chen, Shiao-Shing; Cheng, Chih-Yu; Chang, Jung-Chun; Tang, Chih-Hui

    2006-06-01

    Chemical reaction between nitric oxide (NO) andzero valent iron (ZVI) was studied in a packed-bed column process with high temperatures based on ZVI strong reducing abilities. For six controlled temperatures of 523-773 K and 400 ppm of NO (typical flue gas temperature and concentration), under short empty bed contacttime ([EBCT] 0.0226-0.0679 sec), NO was completely removed for temperature of 573-773 K but not for 523 K. Break-through curves were conducted for the five working temperatures, and the results indicated that NO reductions by ZVI were varied from 2 to 26.7 mg NO/g ZVI. Higher temperature and longer EBCT achieved better NO removal efficiency. X-ray diffraction (XRD) and electron spectroscopy for chemical analysis (ESCA) were conducted to analyze the crystal structure and oxidation state of the reacted ZVI. Three layers of iron species were detected by XRD: ZVI, Fe3O4, and Fe2O3. ZVI was the most prevalent species, and Fe3O4 and Fe2O3 were less from the XRD analysis. By ESCA, the oxidation state on the reacted ZVI surface was determined, and the species was identifled as Fe2O3, which is the most oxidizing species for iron. Therefore, three layers from the ZVI core to the ZVI surface can be identified: ZVI, Fe3O4, and Fe2O3. Combining the results from XRD and ESCA, the mechanisms for ZVI and NO can be proposed as two consecutive reactions from lower oxidation state (ZVI) in the core to higher oxidation state on the iron surface (Fe2O3): 3Fe + 4NO<--(high temperature)-->Fe3O4 + 2N2 (A1), 4Fe3O4 + 2NO<--(high temperature)-->6Fe2O3 + N2* (A2) Because there was only <5% ZVI used to remove NO comparing to theoretical ZVI used based on the proposed stoichiometry, it can be concluded that the heterogeneous reaction only occurred on the ZVI surface instead of on bulk of the ZVI. PMID:16805412

  18. Flammable Gas Safety Program: Mechanisms of gas generation from simulated SY Tank Farm wastes. Progress report, FY 1994

    SciTech Connect

    Barefield, E.K.; Boadtright, D.; Deshpande, A.; Doctorovich, F.; Liotta, C.L.; Neumann, H.M.; Seymore, S.

    1995-09-01

    This is the final report for work done at Georgia Tech during Fiscal Year 1994. The objectives of this work were to develop a better understanding of the mechanism of formation of flammable gases in the thermal decomposition of metal complexants, such as HEDTA and sodium glycolate, in simulated SY waste mixtures. This project is a continuation of work begun under earlier contracts with Westinghouse Hanford Co. Three major areas are discussed: development of a reliable analysis for dissolved ammonia, the initiation of long term studies of HEDTA decomposition in stainless steel vessels and product analyses through 3800 h, and further consideration of product analyses and kinetic data reported in FY 1993 for decomposition of HEDTA and sodium glycolate in Teflon-lined glass vessels. A brief exploration was also made of the speciation of aluminum(l1l) in the presence of HEDTA as a function of pH using {sup 27}Al NMR.

  19. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas

    SciTech Connect

    Stephen Niksa; Naoki Fujiwara

    2005-12-15

    This paper introduces a predictive mechanism for elemental mercury (Hg{sup 0}) oxidation on selective catalytic reduction (SCR) catalysts in coal-fired utility gas cleaning systems, given the ammonia (NH{sub 3})/nitric oxide (NO) ratio and concentrations of Hg{sup 0} and HCl at the monolith inlet, the monolith pitch and channel shape, and the SCR temperature and space velocity. A simple premise connects the established mechanism for catalytic NO reduction to the Hg{sup 0} oxidation behavior on SCRs: that hydrochloric acid (HCl) competes for surface sites with NH{sub 3} and that Hg{sup 0} contacts these chlorinated sites either from the gas phase or as a weakly adsorbed species. This mechanism explicitly accounts for the inhibition of Hg{sup 0} oxidation by NH{sub 3}, so that the monolith sustains two chemically distinct regions. In the inlet region, strong NH{sub 3} adsorption minimizes the coverage of chlorinated surface sites, so NO reduction inhibits Hg{sup 0} oxidation. But once NH{sub 3} has been consumed, the Hg{sup 0} oxidation rate rapidly accelerates, even while the HCl concentration in the gas phase is uniform. Factors that shorten the length of the NO reduction region factors that enhance surface chlorination, promote Hg{sup 0} oxidation. This mechanism accurately interprets the reported tendencies for greater extents of Hg{sup 0} oxidation on honeycomb monoliths with smaller channel pitches and hotter temperatures and the tendency for lower extents of Hg{sup 0} oxidation for hotter temperatures on plate monoliths. The mechanism reproduces the reported extents of Hg{sup 0} oxidation on a single catalyst for four coals that generated HCl concentrations from 8 to 241 ppm, which covers the entire range encountered in the U.S. utility industry. Similar performance is also demonstrated for full-scale SCRs with diverse coal types and operating conditions. 28 refs., 5 figs., 3 tabs.

  20. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination. PMID:26244568

  1. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE PAGES

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  2. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    SciTech Connect

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  3. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  4. Determination of volatile nitrosamines in meat products by microwave-assisted extraction and dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Campillo, Natalia; Viñas, Pilar; Martínez-Castillo, Nelson; Hernández-Córdoba, Manuel

    2011-04-01

    Microwave-assisted extraction (MAE) and dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) were evaluated for use in the extraction and preconcentration of volatile nitrosamines in meat products. Parameters affecting MAE, such as the extraction solvent used, and DLLME, including the nature and volume of the extracting and disperser solvents, extraction time, salt addition and centrifugation time, were optimized. In the MAE method, 0.25g of sample mass was extracted in 10mL NaOH (0.05M) in a closed-vessel system. For DLLME, 1.5mL of methanol (disperser solvent) containing 20μL of carbon tetrachloride (extraction solvent) was rapidly injected by syringe into 5mL of the sample extract solution (previously adjusted to pH 6), thereby forming a cloudy solution. Phase separation was performed by centrifugation, and a volume of 3μL of the sedimented phase was analyzed by GC-MS. The enrichment factors provided by DLLME varied from 220 to 342 for N-nitrosodiethylamine and N-nitrosopiperidine, respectively. The matrix effect was evaluated for different samples, and it was concluded that sample quantification can be carried out by aqueous calibration. Under the optimized conditions, detection limits ranged from 0.003 to 0.014ngmL(-1) for NPIP and NMEA, respectively (0.12-0.56ngg(-1) in the meat products). PMID:21376329

  5. Analysis of dextromethorphan and dextrorphan in decomposed skeletal tissues by microwave assisted extraction, microplate solid-phase extraction and gas chromatography- mass spectrometry (MAE-MPSPE-GCMS).

    PubMed

    Fraser, Candice D; Cornthwaite, Heather M; Watterson, James H

    2015-08-01

    Analysis of decomposed skeletal tissues for dextromethorphan (DXM) and dextrorphan (DXT) using microwave assisted extraction (MAE), microplate solid-phase extraction (MPSPE) and gas chromatography-mass spectrometry (GC-MS) is described. Rats (n = 3) received 100 mg/kg DXM (i.p.) and were euthanized by CO2 asphyxiation roughly 20 min post-dose. Remains decomposed to skeleton outdoors and vertebral bones were recovered, cleaned, and pulverized. Pulverized bone underwent MAE using methanol as an extraction solvent in a closed microwave system, followed by MPSPE and GC-MS. Analyte stability under MAE conditions was assessed and found to be stable for at least 60 min irradiation time. The majority (>90%) of each analyte was recovered after 15 min. The MPSPE-GCMS method was fit to a quadratic response (R(2)  > 0.99), over the concentration range 10-10 000 ng⋅mL(-1) , with coefficients of variation <20% in triplicate analysis. The MPSPE-GCMS method displayed a limit of detection of 10 ng⋅mL(-1) for both analytes. Following MAE for 60 min (80 °C, 1200 W), MPSPE-GCMS analysis of vertebral bone of DXM-exposed rats detected both analytes in all samples (DXM: 0.9-1.5 µg⋅g(-1) ; DXT: 0.5-1.8 µg⋅g(-1) ). PMID:25487525

  6. Determination of brominated flame retardants in electrical and electronic equipments with microwave-assisted extraction and gas chromatography-mass spectrometry.

    PubMed

    Li, Ying; Wang, Tianran; Hashi, Yuki; Li, Haifang; Lin, Jin-Ming

    2009-06-15

    Determination of brominated flame retardants in electrical and electronic equipments (EEE) was achieved through microwave-assisted extraction (MAE) and gas chromatography-mass spectrometry. Polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) including mono-brominated through deca-brominated congeners were qualified and quantified with good linearity (0.9963-0.9998) and repeatability (RSD, 1.1-8.1%). Multivariable orthogonal experimental design was used to optimize the MAE parameters. Extraction temperature and time were the most significant factors for extraction process. The extractants were cleaned up with SPE method after extraction. Recoveries of spiked blank samples ranged from 72.4% to 108.4% for most of the analytes. The method was applied to the determination of PBBs and PBDEs in several kinds of real EEE samples. It was found that no detectable level of PBBs was detected among them. Different contents of PBDEs were tested in the tested samples and the total contents ranged from 25.0 ng g(-1) to 194.0 ng g(-1). The proposed approach demonstrated an environmentally friendly and convenient alternative, which only consumed 10mL hexane to microwave extraction for 10min at 100 degrees C. PMID:19362212

  7. Orthogonal array optimization of microwave-assisted derivatization for determination of trace amphetamine and methamphetamine using negative chemical ionization gas chromatography-mass spectrometry.

    PubMed

    Chung, Li-Wen; Lin, Keh-Liang; Yang, Thomas Ching-Cherng; Lee, Maw-Rong

    2009-05-01

    An orthogonal array design (OAD) was applied to optimize microwave-assisted derivatization (MAD) for analysis of trace amphetamine (AM) and methamphetamine (MA) by negative chemical ionization gas chromatography-mass spectrometry (NCI GC-MS). The 2,3,4,5,6-pentafluorobenzoyl chloride (PFBC) was used as a derivatization reagent. Experimental factors including solvent, microwave power, and irradiation time at four-levels were studied in 16 trials by OAD(16) (4(4)). The significance of these factors was investigated using analysis of variance (ANOVA) and percent contribution (PC). Solvent is statistically demonstrated a chief factor; microwave power and irradiation time are secondary factors. Under the optimum condition, calibration curve of AM is linear over a range from 0.01 to 100 ng mL(-1) with correlation coefficient 0.9988, and MA from 0.1 to 1000 ng mL(-1) with correlation coefficient 0.9951. The limit of detection (LOD) is 1.20 pg mL(-1) for AM and 13.04 pg mL(-1) for MA. An applicability of the method was tested by analyzing urine samples from amphetamine-type stimulants (ATS)-abusing suspects. Consequently, the OAD method not only optimizes the MAD condition for determination of trace AM and MA, but identifies the effects of factor solvent, microwave power and irradiation time on the MAD performance.

  8. Rapid screening of haloacetamides in water using salt-assisted liquid-liquid extraction coupled injection-port silylation gas chromatography-mass spectrometry.

    PubMed

    Chen, Tzu-Ling; Tzing, Shin-Hwa; Ding, Wang-Hsien

    2015-11-27

    The rapid screening of trace amounts of the nitrogenous disinfection by-products, haloacetamides (HAcAms), in drinking and swimming pool water was performed by a simple and reliable procedure based on salt-assisted liquid-liquid extraction (SALLE) combined with injection-port silylation gas chromatography-mass spectrometry (IPS-GC-MS) method. The optimal SALLE conditions involved the injection of 4-mL of ethyl acetate into a 10-mL water sample (pH 7) containing 3-g of sodium sulfate. After vortex extraction for 1min and centrifugation, 10μL of the extract (mixed with 1μL of MTBSTFA) was directly determined by IPS-GC-MS. The limits of quantitation (LOQs) were determined to be 0.03-0.3μg/L. Precision, as indicated by relative standard deviations (RSDs), was less than 10% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 76% and 94%. The SALLE plus IPS-GC-MS was successfully applied to quantitatively determine HAcAms from drinking and swimming pool water samples, and the total concentrations of the compounds ranged from 0.43 to 4.03μg/L. PMID:26518495

  9. Development of a one-step microwave-assisted extraction method for simultaneous determination of organophosphorus pesticides and fungicides in soils by gas chromatography-mass spectrometry.

    PubMed

    Merdassa, Yared; Liu, Jing-fu; Megersa, Negussie

    2013-09-30

    A one-step microwave-assisted extraction (MAE) procedure was developed for the simultaneous extraction of organophosphorus pesticide and fungicide residues in soil which have been greatly used in agriculture. Parameters that could influence the MAE efficiency such as irradiation power, temperature, time and solvent were investigated, and extraction efficiencies in the range of 92.6-103.7% were obtained using 400 W (100% output) at 160 °C for 10 min with only 12 mL of acetone-hexane (2:1, v/v). The analytes in extracts were analyzed directly by gas chromatography-mass spectrometry (GC-MS) without any further cleanup. At 5 and 50 ng g(-1) fortification levels for each analyte, the average recoveries obtained were ranged from 70.0% to 120.0% with relative standard deviation (RSD) between 0.2% and 14%. The method was linear over 1-250 ng g(-1) with a correlation coefficient (r(2)) between 0.9916 and 0.9966. The detection limits (S/N=3) were between 0.10 and 0.12 ng g(-1). The applicability of the method was demonstrated by analyzing field soil samples collected from six intensive horticultural sites in Ethiopia.

  10. Membrane assisted solvent extraction coupled to large volume injection-gas chromatography-mass spectrometry for trace analysis of synthetic musks in environmental water samples.

    PubMed

    Posada-Ureta, O; Olivares, M; Navarro, P; Vallejo, A; Zuloaga, O; Etxebarria, N

    2012-03-01

    This work describes the optimisation, validation and application of membrane assisted solvent extraction (MASE) together with a large volume injection (LVI) in a programmable temperature vaporisation (PTV) injector coupled to gas chromatography-mass spectrometry (GC-MS) for the quantification of ten synthetic musk fragrances (musks) in surface and wastewater samples. Regarding the MASE, musks were extracted from 150 mL of aqueous samples to 200 μL of n-hexane hold in home-made low density polyethylene (LDPE) bags. The extraction took 240 min and the performance of the method made possible the direct analysis of the extracts by LVI-PTV-GC-MS without needing any further treatment and avoiding losses of analytes. During the optimisation of LVI-PTV set-up, the response surfaces of every analyte signal against the cryo-focussing temperature, injection speed and vent time were built. Finally, the figures of merit of the whole procedure allowed the analysis of most of the musks owing to the low method detection limits (between 4 and 25 ng L⁻¹) and good precisions (<20%). In fact, this method was successfully applied to the analysis of musks in surface and wastewater samples. Galaxolide and tonalide are the main two synthetic musks observed in most of the analysed environmental water samples.

  11. A novel ultrasound-assisted back extraction reverse micelles method coupled with gas chromatography-flame ionization detection for determination of aldehydes in heated edibles oils.

    PubMed

    Ramezani, Zahra; Mirzajani, Roya; Kardani, Fatemeh

    2015-12-01

    A novel ultrasound-assisted back extraction reverse micelles coupled with gas chromatography-flame ionization detection has been developed for the extraction and determination of some short chain aldehydes in different heated edible oil samples. After the homogenization of the oil samples with Triton X-100, 200 μL of methanol was added to facilitate the phase separation. The aqueous micelle phase has been separated by centrifugation, then it was treated with a mixture of H2O: CHCl3 and ultrasonic vibration, were used to effectively back-extraction of the analytes into the chloroform phase. The sedimented organic phase was obtained after centrifugation, withdrawn into the microsyringe and directly injected into the GC-FID system. The calibration graphs were linear in the range 0.05-20 mg L(-1). The limits of detection were in the range of 0.02-0.15 mg L(-1). This procedure was successfully applied for determination of propanal, butanal, hexanal and heptanal in real heated oil samples. PMID:26041160

  12. Determination of three antidepressants in urine using simultaneous derivatization and temperature-assisted dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection.

    PubMed

    Nabil, Ali Akbar Alizadeh; Nouri, Nina; Farajzadeh, Mir Ali

    2015-07-01

    This paper presents a fast and simple method for the extraction, preconcentration and determination of fluvoxamine, nortriptyline and maprotiline in urine using simultaneous derivatization and temperature-assisted dispersive liquid-liquid microextraction (TA-DLLME) followed by gas chromatography-flame ionization detection (GC-FID). An appropriate mixture of dimethylformamide (disperser solvent), 1,1,2,2-tetrachloroethane (extraction solvent) and acetic anhydride (derivatization agent) was rapidly injected into the heated sample. Then the solution was cooled to room temperature and cloudy solution formed was centrifuged. Finally a portion of the sedimented phase was injected into the GC-FID. The effect of several factors affecting the performance of the method, including the selection of suitable extraction and disperser solvents and their volumes, volume of derivatization agent, temperature, salt addition, pH and centrifugation time and speed were investigated and optimized. Figures of merit of the proposed method, such as linearity (r(2)  > 0.993), enrichment factors (820-1070), limits of detection (2-4 ng mL(-1)) and quantification (8-12 ng mL(-1)), and relative standard deviations (3-6%) for both intraday and interday precisions (concentration = 50 ng mL(-1)) were satisfactory for determination of the selected antidepressants. Finally the method was successfully applied to determine the target pharmaceuticals in urine.

  13. Up-and-down-shaker-assisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the determination of fungicides in wine.

    PubMed

    Chu, Shang-Ping; Tseng, Wan-Chi; Kong, Po-Hsin; Huang, Chun-Kai; Chen, Jung-Hsuan; Chen, Pai-Shan; Huang, Shang-Da

    2015-10-15

    An up-and-down-shaker-assisted dispersive liquid-liquid microextraction (UDSA-DLLME) method coupled with gas chromatography-mass spectrometry was developed for the determination of fungicides (cyprodinil, procymidone, fludioxonil, flusilazole, benalaxyl, and tebuconazole) in wine. The developed method requires 11 μL of 1-octanol without the need for dispersive solvents. The total extraction time was approximately 3 min. Under optimum conditions, the linear range of the method was 0.05-100 μg L(-1) for all fungicides and the limit of detection was 0.007-0.025 μg L(-1). The absolute and relative recoveries were 31-83% and 83-107% for white wine, respectively, and 32-85% and 83-108% for red wine, respectively. The intra-day and inter-day precision were 0.5-7.5% and 0.7-6.1%, respectively. Our developed method had good sensitivity and high extraction efficiency. UDSA-DLLME is a desirable method in terms of performance and speed.

  14. Vortex-assisted matrix solid-liquid dispersive microextraction for the analysis of triazole fungicides in cotton seed and honeysuckle by gas chromatography.

    PubMed

    Xue, Jiaying; Li, Huichen; Liu, Fengmao; Jiang, Wenqing; Hou, Fan

    2016-04-01

    A one-step analytical method termed vortex-assisted matrix solid-liquid dispersive microextraction (VA-MSLDME) was developed for the determination of seven triazole fungicides from cotton seed and honeysuckle prior to gas chromatography with electron capture detection. The VA-MSLDME was performed by mixing the matrix, primary secondary amine, acetonitrile, toluene, and water in one single system. The target fungicides in the sample were extracted, cleaned up and preconcentrated simultaneously in the matrix/acetonitrile/water/toluene system. Meanwhile, the interferences were adsorbed by the cleanup adsorbent. The extraction recoveries of the fungicides from the samples varied from 82.9% to 97.8% with relative standard deviations of 4.4-8.5%. The enrichment factors of the analytes ranged from 22 to 47, and the limits of detection were in the range of 0.05-20 μg/kg. The results demonstrated the significant predominance of VA-MSLDME in the analysis of pesticide residues in cotton seed and honeysuckle samples.

  15. Rapid determination of polycyclic aromatic hydrocarbons in grilled meat using microwave-assisted extraction and dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Kamankesh, Marzieh; Mohammadi, Abdorreza; Hosseini, Hedayat; Modarres Tehrani, Zohreh

    2015-05-01

    A simple and rapid analytical tech nique for the simultaneous determination of 16 polycyclic aromatic hydrocarbons (PAHs) in grilled meat was developed using microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by gas chromatography-mass spectrometry (GC-MS). The effective parameters in DLLME process were optimized. Good linear relationships were obtained for 16 PAHs in a range of 1-200 ng g(-1), with a correlation coefficient (R(2)) higher than 0.98. Limits of detection and limits of quantification were 0.15-0.3 ng g(-1) and 0.47-1 ng g(-1), respectively. The relative standard deviations (RSD%) for seven analyses were less than 9%. The recoveries of those compounds in grilled meat were obtained from 85% to 104%. Low consumption of the solvent, high recovery, short extraction time, no matrix interference and good merit figures compared to other methods are advantages of the proposed method. The performance of the present method was evaluated for the determination of PAHs in various types of real grilled meat samples, and satisfactory results were obtained.

  16. Rapid analysis of Fructus forsythiae essential oil by ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction followed by gas chromatography-mass spectrometry.

    PubMed

    Jiao, Jiao; Ma, Dan-Hui; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Fu, Yu-Jie; Ma, Wei

    2013-12-01

    A rapid, green and effective miniaturized sample preparation and analytical technique, i.e. ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction (ILAMD-HS-SDME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for the analysis of essential oil (EO) in Fructus forsythiae. In this work, ionic liquids (ILs) were not only used as the absorption medium of microwave irradiation but also as the destruction agent of plant cell walls. 1-Ethyl-3-methylimidazolium acetate ([C2mim]OAc) was chosen as the optimal ILs. Moreover, n-heptadecane (2.0 μL) was selected as the appropriate suspended solvent for the extraction and concentration of EO. Extraction conditions of the proposed method were optimized using the relative peak area of EO constituents as the index, and the optimal operational parameters were obtained as follows: irradiation power (300 W), sample mass (0.7 g), mass ratio of ILs to sample (2.4), temperature (78°C) and time (3.4 min). In comparison to previous reports, the proposed method was faster and required smaller sample amount but could equally monitor all EO constituents with no significant differences. PMID:24267075

  17. Vortex-assisted matrix solid-liquid dispersive microextraction for the analysis of triazole fungicides in cotton seed and honeysuckle by gas chromatography.

    PubMed

    Xue, Jiaying; Li, Huichen; Liu, Fengmao; Jiang, Wenqing; Hou, Fan

    2016-04-01

    A one-step analytical method termed vortex-assisted matrix solid-liquid dispersive microextraction (VA-MSLDME) was developed for the determination of seven triazole fungicides from cotton seed and honeysuckle prior to gas chromatography with electron capture detection. The VA-MSLDME was performed by mixing the matrix, primary secondary amine, acetonitrile, toluene, and water in one single system. The target fungicides in the sample were extracted, cleaned up and preconcentrated simultaneously in the matrix/acetonitrile/water/toluene system. Meanwhile, the interferences were adsorbed by the cleanup adsorbent. The extraction recoveries of the fungicides from the samples varied from 82.9% to 97.8% with relative standard deviations of 4.4-8.5%. The enrichment factors of the analytes ranged from 22 to 47, and the limits of detection were in the range of 0.05-20 μg/kg. The results demonstrated the significant predominance of VA-MSLDME in the analysis of pesticide residues in cotton seed and honeysuckle samples. PMID:26593567

  18. [Determination of anilines in environmental water samples by simultaneous derivatization and ultrasound assisted emulsification microextraction combined with gas chromatography-flame ionization detectors].

    PubMed

    Tian, Li-Xun; Dai, Zhi-Xi; Wang, Guo-Dong; Weng, Huan-Xin

    2015-02-01

    This research demonstrated a new method, simultaneous derivatization and ultrasound assisted emulsification microextraction combined with gas chromatography-flame ionization detector (SD-USAEME-GC-FID), for the determination of anilines in environmental water samples. In this study, several factors, such as the volume of butylchloroformate (as derivatization agent/ extraction solvent), ultrasonication time, solution pH, salt addition, and centrifuging time and speed, were optimized in order to obtain good method performance. As a result, under the optimal conditions, the method showed good linearity in the concentration range of 6-60 000 μg x L(-1) with correlation coefficients (R2) ranging from 0.999 7 to 0.999 9 for the five target anilines. The limit of detection ( LOD) , based on signal to noise ratio of 3 , ranged from 1.1-4.1 μg x L(-1). The relative standard deviations (RSD) varied from 2.4% to 5.7% (n = 6) and the enrichment factors (EF) ranged from 317 to 846. The proposed method was also successfully applied to analyze seven environmental water samples, with the relative recoveries (RR) ranging from 86.8% to 105.5%. In a conclusion, this method was convenient, highly sensitive, inexpensive and environment-friendly, and therefore, the present method can be used as a preferred method for the determination of anilines in environmental water samples. PMID:26031106

  19. Rapid screening of haloacetamides in water using salt-assisted liquid-liquid extraction coupled injection-port silylation gas chromatography-mass spectrometry.

    PubMed

    Chen, Tzu-Ling; Tzing, Shin-Hwa; Ding, Wang-Hsien

    2015-11-27

    The rapid screening of trace amounts of the nitrogenous disinfection by-products, haloacetamides (HAcAms), in drinking and swimming pool water was performed by a simple and reliable procedure based on salt-assisted liquid-liquid extraction (SALLE) combined with injection-port silylation gas chromatography-mass spectrometry (IPS-GC-MS) method. The optimal SALLE conditions involved the injection of 4-mL of ethyl acetate into a 10-mL water sample (pH 7) containing 3-g of sodium sulfate. After vortex extraction for 1min and centrifugation, 10μL of the extract (mixed with 1μL of MTBSTFA) was directly determined by IPS-GC-MS. The limits of quantitation (LOQs) were determined to be 0.03-0.3μg/L. Precision, as indicated by relative standard deviations (RSDs), was less than 10% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 76% and 94%. The SALLE plus IPS-GC-MS was successfully applied to quantitatively determine HAcAms from drinking and swimming pool water samples, and the total concentrations of the compounds ranged from 0.43 to 4.03μg/L.

  20. A fast method for the identification of Mycobacterium tuberculosis in sputum and cultures based on thermally assisted hydrolysis and methylation followed by gas chromatography-mass spectrometry.

    PubMed

    Kaal, Erwin; Kolk, Arend H J; Kuijper, Sjoukje; Janssen, Hans-Gerd

    2009-08-28

    A fast gas chromatography-mass spectrometry (GC-MS) method with minimum sample preparation is described for early diagnosis of tuberculosis (TB). The automated procedure is based on the injection of sputum samples which are then methylated inside the GC injector using thermally assisted hydrolysis and methylation (THM). The THM-GC-MS procedure was optimized for the injection of sputum samples. For the identification of Mycobacterium tuberculosis the known marker tuberculostearic acid (TBSA) and other potential markers were evaluated. Hexacosanoic acid in combination with TBSA was found to be specific for the presence of M. tuberculosis. For validation of the method several sputum samples with different viscosities spiked with bacterial cultures were analyzed. Finally, 18 stored sputum samples collected in Vietnam from patients suspected to suffer from TB were re-analyzed in Amsterdam by microscopy after decontamination/concentration and using the new THM-GC-MS method. No false positives were found by THM-GC-MS and all patients who were diagnosed with TB were also found positive using our newly developed THM-GC-MS method. These results show that the new fast and sensitive THM-GC-MS method holds great potential for the diagnosis of TB.

  1. Pore-scale mechanisms of gas flow in tight sand reservoirs

    SciTech Connect

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix

  2. Electrochemical studies of hydrogen chloride gas in several room temperature ionic liquids: mechanism and sensing.

    PubMed

    Murugappan, Krishnan; Silvester, Debbie S

    2016-01-28

    The electrochemical behaviour of highly toxic hydrogen chloride (HCl) gas has been investigated in six room temperature ionic liquids (RTILs) containing imidazolium/pyrrolidinium cations and range of anions on a Pt microelectrode using cyclic voltammetry (CV). HCl gas exists in a dissociated form of H(+) and [HCl2](-) in RTILs. A peak corresponding to the oxidation of [HCl2](-) was observed, resulting in the formation of Cl2 and H(+). These species were reversibly reduced to H2 and Cl(-), respectively, on the cathodic CV scan. The H(+) reduction peak is also present initially when scanned only in the cathodic direction. In the RTILs with a tetrafluoroborate or hexafluorophosphate anion, CVs indicated a reaction of the RTIL with the analyte/electrogenerated products, suggesting that these RTILs might not be suitable solvents for the detection of HCl gas. This was supported by NMR spectroscopy experiments, which showed that the hexafluorophosphate ionic liquid underwent structural changes after HCl gas electrochemical experiments. The analytical utility was then studied in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) by utilising both peaks (oxidation of [HCl2](-) and reduction of protons) and linear calibration graphs for current vs. concentration for the two processes were obtained. The reactive behaviour of some ionic liquids clearly shows that the choice of the ionic liquid is very important if employing RTILs as solvents for HCl gas detection.

  3. Jahn-Teller assisted polaronic hole hopping as a charge transport mechanism in CuO nanograins

    NASA Astrophysics Data System (ADS)

    Younas, M.; Nadeem, M.; Idrees, M.; Akhtar, M. J.

    2012-04-01

    Impedance spectroscopy has been employed to investigate the dielectric and electric transport phenomena in sol-gel synthesized CuO nanograins. Semiconducting features of the grains and grain boundaries have been endorsed to the thermal activation of the localized charge carriers. On cooling below 303 K, a transition from Jahn-Teller polaron hopping mechanism to the Mott's variable range hopping mechanism has been observed owing to random potential fluctuations among localized sites. Activation energies for conduction and relaxation processes at grain boundaries provide strong signatures for the involvement of Jahn-Teller adiabatic small polarons as a charge transport mechanism in CuO nanograins.

  4. Mechanization of library procedures in a medium-sized medical library: XVI. Computer-assisted cataloging, the first decade.

    PubMed Central

    Bolef, D

    1975-01-01

    After ten years of experimentation in computer-assisted cataloging, the Washington University School of Medicine Library has decided to join the Ohio College Library Center network. The history of the library's work preceding this decision is reviewed. The data processing equipment and computers that have permitted librarians to explore different ways of presenting cataloging information are discussed. Certain cataloging processes are facilitated by computer manipulation and printouts, but the intellectual cataloging processes such as descriptive and subject cataloging are not. Networks and shared bibliographic data bases show promise of eliminating the intellectual cataloging for one book by more than one cataloger. It is in this area that future developments can be expected. PMID:1148442

  5. Radar-Assisted Mapping of Massive Ice in Western Utopia Planitia, Mars: Degradational Mechanisms and Implications for Surface Evolution

    NASA Astrophysics Data System (ADS)

    Stuurman, C. M.; Levy, J. S.; Holt, J. W.; Harrison, T. N.; Osinski, G. R.

    2015-12-01

    Western Utopia Planitia remains an enigmatic region of Mars. Radar and morphological analyses have framed the area as rich in ground ice, however there exist multiple theories regarding how the ice was emplaced. Here, we combine radar and morphological analyses to characterize the recent history of water ice in western Utopia Planitia. A radar reflective interface found in SHAllow RADar (SHARAD) data in Utopia Planitia is found to correlate with layered mesas 80-110 m thick. Discontinuities in the radar reflective interface relate to degradation of the layered mesas. This work uses the extent of the reflective interface to map the previous extent of the layered mesas, which we believe constitutes the remnants of a large ice sheet formed in the Late Amazonian. The past volume of the ice sheet is to be determined by the SHARAD-assisted mapping. This volume will be related to the recent climate history of western Utopia Planitia.

  6. Performance Optimization of Priority Assisted CSMA/CA Mechanism of 802.15.6 under Saturation Regime

    PubMed Central

    Shakir, Mustafa; Rehman, Obaid Ur; Rahim, Mudassir; Alrajeh, Nabil; Khan, Zahoor Ali; Khan, Mahmood Ashraf; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-01-01

    Due to the recent development in the field of Wireless Sensor Networks (WSNs), the Wireless Body Area Networks (WBANs) have become a major area of interest for the developers and researchers. Human body exhibits postural mobility due to which distance variation occurs and the status of connections amongst sensors change time to time. One of the major requirements of WBAN is to prolong the network lifetime without compromising on other performance measures, i.e., delay, throughput and bandwidth efficiency. Node prioritization is one of the possible solutions to obtain optimum performance in WBAN. IEEE 802.15.6 CSMA/CA standard splits the nodes with different user priorities based on Contention Window (CW) size. Smaller CW size is assigned to higher priority nodes. This standard helps to reduce delay, however, it is not energy efficient. In this paper, we propose a hybrid node prioritization scheme based on IEEE 802.15.6 CSMA/CA to reduce energy consumption and maximize network lifetime. In this scheme, optimum performance is achieved by node prioritization based on CW size as well as power in respective user priority. Our proposed scheme reduces the average back off time for channel access due to CW based prioritization. Additionally, power based prioritization for a respective user priority helps to minimize required number of retransmissions. Furthermore, we also compare our scheme with IEEE 802.15.6 CSMA/CA standard (CW assisted node prioritization) and power assisted node prioritization under postural mobility in WBAN. Mathematical expressions are derived to determine the accurate analytical model for throughput, delay, bandwidth efficiency, energy consumption and life time for each node prioritization scheme. With the intention of analytical model validation, we have performed the simulations in OMNET++/MIXIM framework. Analytical and simulation results show that our proposed hybrid node prioritization scheme outperforms other node prioritization schemes in

  7. Effect of Intercritical Thermomechanical Processing on Austenite Retention and Mechanical Properties in a Multiphase TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Mohamadizadeh, Alireza; Zarei-Hanzaki, Abbas; Mehtonen, Saara; Porter, David; Moallemi, Mohammad

    2016-01-01

    The effect of dynamic microstructural evolution on austenite retention was investigated in a transformation-induced plasticity-assisted multiphase steel by compressive deformation between 993 K and 1233 K (720 °C and 960 °C) covering the intercritical two-phase region. Based on optical microscopy and electron backscatter diffraction observations, extensive dynamic recovery of ferrite occurred below 1113 K (840 °C), i.e., lower part of two-phase region, due to strain concentration in the ferrite. Deformation-induced ferrite formation occurred at temperatures between 1113 K and 1153 K (840 °C to 880 °C), i.e., upper part of two-phase region, providing up to 27 pct additional fine ferrite grains compared to the undeformed state. Dynamic recrystallization of austenite took place at temperatures above 1173 K (900 °C), above Ac3. The dynamic restoration phenomena were found to have no positive influence on austenite retention; however, shear punch test results indicated that the specimens processed at 1113 K to 1153 K (840 °C to 880 °C) had a very good combination of strength and elongation, which was attributed to the synergic effects of the transformation of retained austenite and the fine ferrite structure generated through deformation-induced ferrite formation. X-ray diffraction analysis and scanning electron microscopy showed that deformation-induced ferrite might have rejected the excess carbon to the boundaries, thereby promoting the austenite formation in these regions. The present findings suggest that austenite can be dynamically stabilized as the result of deformation-induced ferrite formation. The effect is referred to as dynamic transformation-assisted austenite retention.

  8. Performance Optimization of Priority Assisted CSMA/CA Mechanism of 802.15.6 under Saturation Regime.

    PubMed

    Shakir, Mustafa; Rehman, Obaid Ur; Rahim, Mudassir; Alrajeh, Nabil; Khan, Zahoor Ali; Khan, Mahmood Ashraf; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-09-02

    Due to the recent development in the field of Wireless Sensor Networks (WSNs), the Wireless Body Area Networks (WBANs) have become a major area of interest for the developers and researchers. Human body exhibits postural mobility due to which distance variation occurs and the status of connections amongst sensors change time to time. One of the major requirements of WBAN is to prolong the network lifetime without compromising on other performance measures, i.e., delay, throughput and bandwidth efficiency. Node prioritization is one of the possible solutions to obtain optimum performance in WBAN. IEEE 802.15.6 CSMA/CA standard splits the nodes with different user priorities based on Contention Window (CW) size. Smaller CW size is assigned to higher priority nodes. This standard helps to reduce delay, however, it is not energy efficient. In this paper, we propose a hybrid node prioritization scheme based on IEEE 802.15.6 CSMA/CA to reduce energy consumption and maximize network lifetime. In this scheme, optimum performance is achieved by node prioritization based on CW size as well as power in respective user priority. Our proposed scheme reduces the average back off time for channel access due to CW based prioritization. Additionally, power based prioritization for a respective user priority helps to minimize required number of retransmissions. Furthermore, we also compare our scheme with IEEE 802.15.6 CSMA/CA standard (CW assisted node prioritization) and power assisted node prioritization under postural mobility in WBAN. Mathematical expressions are derived to determine the accurate analytical model for throughput, delay, bandwidth efficiency, energy consumption and life time for each node prioritization scheme. With the intention of analytical model validation, we have performed the simulations in OMNET++/MIXIM framework. Analytical and simulation results show that our proposed hybrid node prioritization scheme outperforms other node prioritization schemes in

  9. Performance Optimization of Priority Assisted CSMA/CA Mechanism of 802.15.6 under Saturation Regime.

    PubMed

    Shakir, Mustafa; Rehman, Obaid Ur; Rahim, Mudassir; Alrajeh, Nabil; Khan, Zahoor Ali; Khan, Mahmood Ashraf; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-01-01

    Due to the recent development in the field of Wireless Sensor Networks (WSNs), the Wireless Body Area Networks (WBANs) have become a major area of interest for the developers and researchers. Human body exhibits postural mobility due to which distance variation occurs and the status of connections amongst sensors change time to time. One of the major requirements of WBAN is to prolong the network lifetime without compromising on other performance measures, i.e., delay, throughput and bandwidth efficiency. Node prioritization is one of the possible solutions to obtain optimum performance in WBAN. IEEE 802.15.6 CSMA/CA standard splits the nodes with different user priorities based on Contention Window (CW) size. Smaller CW size is assigned to higher priority nodes. This standard helps to reduce delay, however, it is not energy efficient. In this paper, we propose a hybrid node prioritization scheme based on IEEE 802.15.6 CSMA/CA to reduce energy consumption and maximize network lifetime. In this scheme, optimum performance is achieved by node prioritization based on CW size as well as power in respective user priority. Our proposed scheme reduces the average back off time for channel access due to CW based prioritization. Additionally, power based prioritization for a respective user priority helps to minimize required number of retransmissions. Furthermore, we also compare our scheme with IEEE 802.15.6 CSMA/CA standard (CW assisted node prioritization) and power assisted node prioritization under postural mobility in WBAN. Mathematical expressions are derived to determine the accurate analytical model for throughput, delay, bandwidth efficiency, energy consumption and life time for each node prioritization scheme. With the intention of analytical model validation, we have performed the simulations in OMNET++/MIXIM framework. Analytical and simulation results show that our proposed hybrid node prioritization scheme outperforms other node prioritization schemes in

  10. Mechanisms of soil aggregate failure by rapid increase in internal gas pressure during low-intensity burns

    NASA Astrophysics Data System (ADS)

    Jian, M.; Ghezzehei, T. A.; Berli, M.

    2015-12-01

    The incidence of low-intensity natural and managed fire is on the rise, especially in the arid and semi-arid parts of the U.S. Southwest. Yet, there is little understanding of the ramifications of such burns on soil characteristics and their associated ecological processes. In particular, effects of low-intensity fires on soil structure have generally been ignored because such fires have little effect on soil organic matter. Recently, we showed that soil aggregates subjected to rapid low-intensity heating (<200°C) deteriorate more than aggregates subjected to the same temperature but at slow heating rate. We hypothesized that rapid heating rate results in high internal gas pressure due to vaporization of pore water that exerts disruptive mechanical stress that exceeds the internal strength of the aggregates. Here, we present in situ measurements of gas pressure of aggregates subjected to low-intensity burns. We compared a wide range of aggregate wetness and temperature levels. In addition, we report direct visualization of aggregate breakdown during rapid gas expansion using dynamic environment scanning electron microscopy. Our observation to date show that the interior gas pressure of moist aggregates rise rapidly to 1.5-4kPa, whereas the pressure inside dry aggregates remain unchanged during rapid heating. These observations show that weakly aggregated soils of arid and semi-arid regions are very vulnerable to low-intensity burns.

  11. Interruption to cutaneous gas exchange is not a likely mechanism of WNS-associated death in bats.

    PubMed

    Carey, Charleve S; Boyles, Justin G

    2015-07-01

    Pseudogymnoascus destructans is the causative fungal agent of white-nose syndrome (WNS), an emerging fungal-borne epizootic. WNS is responsible for a catastrophic decline of hibernating bats in North America, yet we have limited understanding of the physiological interactions between pathogen and host. Pseudogymnoascus destructans severely damages wings and tail membranes, by causing dryness that leads to whole sections crumbling off. Four possible mechanisms have been proposed by which infection could lead to dehydration; in this study, we tested one: P. destructans infection could cause disruption to passive gas-exchange pathways across the wing membranes, thereby causing a compensatory increase in water-intensive pulmonary respiration. We hypothesized that total evaporative water loss would be greater when passive gas exchange was inhibited. We found that bats did not lose more water when passive pathways were blocked. This study provides evidence against the proposed proximal mechanism that disruption to passive gas exchange causes dehydration and death to WNS-infected bats. PMID:25944919

  12. Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types

    NASA Astrophysics Data System (ADS)

    Raizer, Yu. P.; Mokrov, M. S.

    2013-10-01

    The paper discusses current filamentation and formation of current structures (in particular, hexagonal current patterns) in discharges of the Townsend and glow types. The aim of the paper, which is in part a review, is to reveal basic reasons for formation of current patterns in different cases, namely, in dielectric barrier discharge, discharge with semiconductor cathode, and micro-discharge between metallic electrodes. Pursuing this goal, we give a very brief review of observations and discuss only those theoretical, computational, and experimental papers that shed light on the physical mechanisms involved. The mechanisms are under weak currents—the thermal expansion of the gas as a result of Joule heating; under enhanced currents—the electric field and ionization rate redistribution induced by space charge. Both mechanisms lead to instability of the homogeneous discharges. In addition, we present new results of numerical simulations of observed short-living current filaments which are chaotic in space and time.

  13. Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types

    SciTech Connect

    Raizer, Yu. P.; Mokrov, M. S.

    2013-10-15

    The paper discusses current filamentation and formation of current structures (in particular, hexagonal current patterns) in discharges of the Townsend and glow types. The aim of the paper, which is in part a review, is to reveal basic reasons for formation of current patterns in different cases, namely, in dielectric barrier discharge, discharge with semiconductor cathode, and micro-discharge between metallic electrodes. Pursuing this goal, we give a very brief review of observations and discuss only those theoretical, computational, and experimental papers that shed light on the physical mechanisms involved. The mechanisms are under weak currents—the thermal expansion of the gas as a result of Joule heating; under enhanced currents—the electric field and ionization rate redistribution induced by space charge. Both mechanisms lead to instability of the homogeneous discharges. In addition, we present new results of numerical simulations of observed short-living current filaments which are chaotic in space and time.

  14. Mechanisms of subglacial groundwater recharge as derived from noble gas, 14C, and stable isotopic data

    NASA Astrophysics Data System (ADS)

    Grundl, Tim; Magnusson, Nathan; Brennwald, Matthias S.; Kipfer, Rolf

    2013-05-01

    Noble gas, stable isotope and 14C data from samples collected along groundwater flow path within a confined Paleozoic aquifer in northeastern Wisconsin, USA are used to deduce the effect of the Laurentide Ice Sheet (LIS) on the underlying groundwater and its recharge dynamics. During the last glacial maximum the investigated area was near the center of the Green Bay Lobe of the LIS. 14C ages that extend to 26 k.a. and low δ18O derived temperatures during the time that the LIS was present indicate that aquifer recharge continued when ice covered the area. δ18O values as low as -17.5‰ and δ2H values as low as -127.7‰ indicate that a significant portion of aquifer recharge was derived from glacial meltwater that maintained its glacial isotopic signature during melting and subsequent recharge. Noble gas temperatures that remain above freezing at a constant ~3 °C, unusually high excess air (ΔNe) values and noble gas fractionation patterns indicate that recharge occurred across a very dynamic water table located within the ice sheet. This englacial hydrologic system experienced recharge heads of as much as 7.8 m. Evidence for direct recharge of basal meltwater into the aquifer is not seen. To the authors' knowledge this is the first time that noble gas and isotope tracers have been used to deduce the provenance of aquifer water beneath continental ice sheets.

  15. A multiphase fluid mechanics approach to gas holdup in bath smelting processes

    SciTech Connect

    Gou, H.; Irons, G.A.; Lu, W.K.

    1996-04-01

    In several new smelting-reduction processes for iron-making, coal and partially prereduced iron ore are added to a slag phase. In slag-based, smelting-reduction processes, the overflow of slag from the vessel is considered a major limitation to productivity; this phenomenon is commonly called slag foaming. While much has been learned from laboratory-scale studies of foaming, the superficial gas velocities are well below those encountered in production (centimeters per second compared to meters per second). A multiphase fluid dynamic model was developed to determine the relationship between gas velocity and void fraction (holdup) at industrial production rates. In the model, the drag between the gas and slag is balanced against the weight of the slag. Within the framework of the model, the only unknown quantity is a drag factor which can be extracted from experimental data. Values of this factor from water models, smelting-reduction converters, and other slag systems fall in a narrow range. The model can be used to estimate slag height in smelting-reduction vessels. The behavior of slags at high rates of gas injection is markedly different from foaming observed at low flow rates.

  16. Intensity distributions of enhanced H emission from laser-induced low-pressure He plasma and a suggested He-assisted excitation mechanism

    SciTech Connect

    Lie, Zener Sukra; Pardede, Marincan; Hedwig, Rinda; Suliyanti, Maria Margaretha; Steven, Eden; Maliki,; Kurniawan, Koo Hendrik; Ramli, Muliadi; Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Lahna, Kurnia; Kagawa, Kiichiro; Tjia, May On

    2009-08-15

    An experimental study was conducted on the spatial distributions of hydrogen emission intensities from low-pressure plasmas generated by laser ablation of zircaloy-4 and black stone targets in nitrogen and helium ambient gases. In addition to confirming the previously observed intensity enhancement effect in ambient helium gas, the hydrogen and helium emission intensities measured along the plasma expansion direction revealed remarkable extended spatial distributions featuring unexpected maxima near the far end of the plasma where the available shock-wave generated thermal excitation energy should have been significantly reduced. This 'anomalous' feature necessarily implied the presence of an additional excitation process beside the well known shock-wave excitation process which is responsible for the plasma emission of heavy atoms in low-pressure ambient gas. Further analysis of the data led to a suggested physical mechanism explaining the possible contribution of a helium metastable excited state to the unusual phenomenon observed in this experiment.

  17. Investigation of the mechanism of impurity assisted nanoripple formation on Si induced by low energy ion beam erosion

    SciTech Connect

    Koyiloth Vayalil, Sarathlal; Gupta, Ajay; Roth, Stephan V.; Ganesan, V.

    2015-01-14

    A detailed mechanism of the nanoripple pattern formation on Si substrates generated by the simultaneous incorporation of pure Fe impurities at low energy (1 keV) ion beam erosion has been studied. To understand and clarify the mechanism of the pattern formation, a comparative analysis of the samples prepared for various ion fluence values using two complimentary methods for nanostructure analysis, atomic force microscopy, and grazing incidence small angle x-ray scattering has been done. We observed that phase separation of the metal silicide formed during the erosion does not precede the ripple formation. It rather concurrently develops along with the ripple structure. Our work is able to differentiate among various models existing in the literature and provides an insight into the mechanism of pattern formation under ion beam erosion with impurity incorporation.

  18. Service water assistance program

    SciTech Connect

    Munchausen, J.H.

    1995-09-01

    The Service Water Assistance Program was developed to provide utility service water system engineers with a mechanism to quickly and efficiently address service water issues. Since its inception, its ability to assist utilities has resulted in a reduction in the operations and maintenance costs associated with service water systems and has provided a medium for EPRI awareness of industry service water issues.

  19. A study of the mechanism of microwave-assisted ball milling preparing ZnFe2O4

    NASA Astrophysics Data System (ADS)

    Zhang, Yingzhe; Wu, Yujiao; Qin, Qingdong; Wang, Fuchun; Chen, Ding

    2016-07-01

    In this paper, well dispersed ZnFe2O4 nano-particles with high magnetization saturation of 82.23 emu/g were first synthesized by microwave assisted ball milling and then the influences of pre-treatments and microwave powers to the progress were studied. It was found that under the both function of crack effect induced by ball milling and rotary motion induced by microwave the synthesized ferrtie nano-particles were well dispersed that is much different from the powders synthesized by normal high energy ball milling. The pre-treatment of ball milling can only enhance the reaction rate in the first several hours but the pre-irradiation of microwave can enhance the hole reaction rate. Further more, it was also been found that with increasing the microwave power, the more raw materials will converted into zinc ferrite in the first 5 h. 5 h latter the microwave power of 720 W is high enough for the coupling effect of microwave and ball milling with stirrer rotation speed of 256 rpm.

  20. Teaching Assistants' Performance at Identifying Common Introductory Student Difficulties in Mechanics Revealed by the Force Concept Inventory

    ERIC Educational Resources Information Center

    Maries, Alexandru; Singh, Chandralekha

    2016-01-01

    The Force Concept Inventory (FCI) has been widely used to assess student understanding of introductory mechanics concepts by a variety of educators and physics education researchers. One reason for this extensive use is that many of the items on the FCI have strong distractor choices which correspond to students' alternate conceptions in…

  1. Biomolecule-assisted synthesis and gas-sensing properties of porous nanosheet-based corundum In{sub 2}O{sub 3} microflowers

    SciTech Connect

    Zhang Wenhui; Zhang Weide

    2012-02-15

    Porous nanosheet-based corundum In{sub 2}O{sub 3} microflowers were fabricated by one-pot hydrothermal treatment of D-fructose and In(NO{sub 3}){sub 3} mixture using urea as a precipitating agent followed by calcination. The products were characterized by X-ray diffraction, scanning and transmission electron microscopy. The effects of D-fructose and urea on the fabrication of nanosheet-based corundum In{sub 2}O{sub 3} microflowers were investigated and a possible mechanism is proposed to explain the formation of the hierarchical nanostructures. The gas sensor based on the In{sub 2}O{sub 3} microflowers exhibits excellent sensing properties for the detection of formaldehyde. - Graphical abstract: Nanosheets-based corundum In{sub 2}O{sub 3} microflowers were fabricated by one-pot hydrothermal treatment of D-fructose/In(NO{sub 3}){sub 3} mixture followed by calcination, which show high performance for formaldehyde sensing. Highlights: Black-Right-Pointing-Pointer Preparation of porous nanosheet-based corundum In{sub 2}O{sub 3} microflowers. Black-Right-Pointing-Pointer Morphology and phase control of In{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Gas sensor based on the In{sub 2}O{sub 3} microflowers exhibits excellent sensing properties for the detection of formaldehyde.

  2. Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response.

    PubMed

    Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S

    2016-10-15

    We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface. PMID:27421113

  3. Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching

    NASA Astrophysics Data System (ADS)

    Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi

    2015-06-01

    The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.

  4. The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown

    SciTech Connect

    Li, Yingjie; Go, David B.

    2014-09-14

    The presence of a positive gas ion can enhance cold electron field emission by deforming the potential barrier and increasing the tunneling probability of electrons—a process known as ion-enhanced field emission. In microscale gas discharges, ion-enhanced field emission produces additional emission from the cathode and effectively reduces the voltage required to breakdown a gaseous medium at the microscale (<10 μm). In this work, we enhance classic field emission theory by determining the impact of a gaseous ion on electron tunneling and compute the effect of ion-enhanced field emission on the breakdown voltage. We reveal that the current density for ion-enhanced field emission retains the same scaling as vacuum cold field emission and that this leads to deviations from traditional breakdown theory at microscale dimensions.

  5. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    SciTech Connect

    Heldebrant, David J

    2014-08-31

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was

  6. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas.

    PubMed

    Niksa, Stephen; Fujiwara, Naoki

    2005-12-01

    This paper introduces a predictive mechanism for elemental mercury (Hg(o)) oxidation on selective catalytic reduction (SCR) catalysts in coal-fired utility gas cleaning systems, given the ammonia (NH3)/nitric oxide (NO) ratio and concentrations of Hg(o) and HCl at the monolith inlet, the monolith pitch and channel shape, and the SCR temperature and space velocity. A simple premise connects the established mechanism for catalytic NO reduction to the Hg(o) oxidation behavior on SCRs: that hydrochloric acid (HCl) competes for surface sites with NH3 and that Hg(o) contacts these chlorinated sites either from the gas phase or as a weakly adsorbed species. This mechanism explicitly accounts for the inhibition of Hg(o) oxidation by NH3, so that the monolith sustains two chemically distinct regions. In the inlet region, strong NH3 adsorption minimizes the coverage of chlorinated surface sites, so NO reduction inhibits Hg(o) oxidation. But once NH3 has been consumed, the Hg(o) oxidation rate rapidly accelerates, even while the HCl concentration in the gas phase is uniform. Factors that shorten the length of the NO reduction region, such as smaller channel pitches and converting from square to circular channels, and factors that enhance surface chlorination, such as higher inlet HCl concentrations and lower NH3/NO ratios, promote Hg(o) oxidation. This mechanism accurately interprets the reported tendencies for greater extents of Hg(o) oxidation on honeycomb monoliths with smaller channel pitches and hotter temperatures and the tendency for lower extents of Hg(o) oxidation for hotter temperatures on plate monoliths. The mechanism also depicts the inhibition of Hg(o) oxidation by NH3 for NH3/NO ratios from zero to 0.9. Perhaps most important for practical applications, the mechanism reproduces the reported extents of Hg(o) oxidation on a single catalyst for four coals that generated HCl concentrations from 8 to 241 ppm, which covers the entire range encountered in the U

  7. Mechanisms of disruptions caused by noble gas injection into tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Morozov, D. Kh.; Yurchenko, E. I.; Lukash, V. E.; Baronova, E. O.; Pozdnyakov, Yu. I.; Rozhansky, V. A.; Senichenkov, I. Yu.; Veselova, I. Yu.; Schneider, R.

    2005-08-01

    Noble gas injection for disruption mitigation in DIII-D is simulated. The simulation of the first two stages of the disruption is performed: the first one is the neutral gas jet penetration through the background plasmas, and the second one is the instability growth. In order to simulate the first stage, the MHD pellet code LLP with improved radiation model for noble gas is used. Plasma cooling at this stage is provided by the energy exchange with the jet. The opacity effects in radiation losses are found to be important in the energy balance calculations. The magnetic surfaces in contact with the jet are cooled significantly; however, the temperature as well as the electric conductivity, remains high. The cooling front propagates towards the plasma centre. It has been shown that the cooling front is accompanied by strongly localized 'shark fin-like' perturbation in toroidal current density profile. The simplified cylindrical model shows that the cooling front is able to produce the internal kink-like mode with growth rate significantly higher than the tearing mode. The unstable kink perturbation obtained is non-resonant for any magnetic surface, both inside the plasma column, and in the vacuum space outside the separatrix. The mode disturbs mainly the core region. The growth time of the 'shark fin-like' mode is higher than the Alfven time by a factor of 10-100 for DIII-D parameters.

  8. Flow mechanism of Forchheimer's cubic equation in high-velocity radial gas flow through porous media

    SciTech Connect

    Ezeudembah, A.S.; Dranchuk, P.M.

    1982-01-01

    Formal derivation of Forchheimer's cubic equation is made by considering the kinetic energy equation of mean flow and dimensional relations for one-dimensional, linear, incompressible fluid flow. By the addition of the cubic term, this equation is regarded as a modified Forchheimer's quadratic equation which accounts for the flow rates obtained beyond the laminar flow condition. The cubic equation spans a wide range of flow rates and regimes. For suitable use in gas flow studies, this equation has been adapted, modified, and corrected for the gas slippage effect. The physical basis of the cubic term has been established by using boundary layer theory to explain the high-velocity, high-pressure flow behavior through a porous path. Gamma, the main parameter in the cubic term, is related directly to a characteristic, dimensionless shape factor which is significant at higher flow rates. It is inversely related to viscosity, but has no dependence on the gas slippage coefficient in the higher flow regime. 25 references.

  9. The Application of Bileaflet Mechanical Heart Valves in the Polish Ventricular Assist Device: Physical and Numerical Study and First Clinical Usage.

    PubMed

    Malota, Zbigniew; Sadowski, Wojciech; Krzyskow, Marek; Stolarzewicz, Bogdan

    2016-03-01

    The Polish ventricular assist device (Polvad) has been used successfully in clinical contexts for many years. The device contains two single-disc valves, one at the inlet and one at the outlet connector of the pneumatic pump. Unfortunately, in recent years, a problem has occurred with the availability of single-disc valves. This article presents the possibility of using bileaflet mechanical heart valve prostheses in the Polvad to avoid a discontinuity in clinical use. The study is based on experimental and numerical simulations and comparison of the distribution of flow, pressure, and stress (wall, shear, and turbulent) inside the Polvad chamber and the inlet/outlet connectors fitted with Sorin Monodisc and Sorin Bicarbon Fitline valves. The type and orientation of the inlet valve affects valve performance and flow distribution inside the chamber. Near-wall flow is observed for single-disc valves. In the case of bileaflet valves, the main jet is directed more centrally, with lower shear stress but higher turbulent stress in comparison with single-disc valves. For clinical usage, a 45° orientation of the bileaflet inlet valve was chosen, as this achieves good washing of the inlet area near the membrane paste surface. The Polvad with bileaflet valves has now been used successfully in our clinic for over a year and will continue to be used until new assist devices for heart support are developed.

  10. Ethical challenges with deactivation of durable mechanical circulatory support at the end of life: left ventricular assist devices and total artificial hearts.

    PubMed

    Rady, Mohamed Y; Verheijde, Joseph L

    2014-01-01

    Left ventricular assist devices (LVADs) and total artificial hearts (TAHs) are surgically implanted as permanent treatment of unrecoverable heart failure. Both LVADs and TAHs are durable mechanical circulatory support (MCS) devices that can prolong patient survival but also alter end-of-life trajectory. The permissibility of discontinuing assisted circulation is controversial because device deactivation is a life-ending intervention. Durable MCS is intended to successfully replace native physiological functions in heart disease. We posit that the presence of new lethal pathophysiology (ie, a self-perpetuating cascade of abnormal physiological processes causing death) is a central element in evaluating the permissibility of deactivating an LVAD or a TAH. Consensual discontinuation of durable MCS is equivalent with allowing natural death when there is an onset of new lethal pathophysiology that is unrelated to the physiological functions replaced by an LVAD or a TAH. Examples of such lethal conditions include irreversible coma, circulatory shock, overwhelming infections, multiple organ failure, refractory hypoxia, or catastrophic device failure. In all other situations, deactivating the LVAD/TAH is itself the lethal pathophysiology and the proximate cause of death. We postulate that the onset of new lethal pathophysiology is the determinant factor in judging the permissibility of the life-ending discontinuation of a durable MCS.

  11. Fast formation and growth of high-density Sn whiskers in Mg/Sn-based solder/Mg joints by ultrasonic-assisted soldering: Phenomena, mechanism and prevention.

    PubMed

    Li, M Y; Yang, H F; Zhang, Z H; Gu, J H; Yang, S H

    2016-01-01

    A universally applicable method for promoting the fast formation and growth of high-density Sn whiskers on solders was developed by fabricating Mg/Sn-based solder/Mg joints using ultrasonic-assisted soldering at 250 °C for 6 s and then subjected to thermal aging at 25 °C for 7 d. The results showed that the use of the ultrasonic-assisted soldering could produce the supersaturated dissolution of Mg in the liquid Sn and lead to the existence of two forms of Mg in Sn after solidification. Moreover, the formation and growth of the high-density whiskers were facilitated by the specific contributions of both of the Mg forms in the solid Sn. Specifically, interstitial Mg can provide the persistent driving force for Sn whisker growth, whereas the Mg2Sn phase can increase the formation probability of Sn whiskers. In addition, we presented that the formation and growth of Sn whiskers in the Sn-based solders can be significantly restricted by a small amount of Zn addition (≥3 wt.%), and the prevention mechanisms are attributed to the segregation of Zn atoms at grain or phase boundaries and the formation of the lamellar-type Zn-rich structures in the solder. PMID:27273421

  12. Fast formation and growth of high-density Sn whiskers in Mg/Sn-based solder/Mg joints by ultrasonic-assisted soldering: Phenomena, mechanism and prevention.

    PubMed

    Li, M Y; Yang, H F; Zhang, Z H; Gu, J H; Yang, S H

    2016-06-08

    A universally applicable method for promoting the fast formation and growth of high-density Sn whiskers on solders was developed by fabricating Mg/Sn-based solder/Mg joints using ultrasonic-assisted soldering at 250 °C for 6 s and then subjected to thermal aging at 25 °C for 7 d. The results showed that the use of the ultrasonic-assisted soldering could produce the supersaturated dissolution of Mg in the liquid Sn and lead to the existence of two forms of Mg in Sn after solidification. Moreover, the formation and growth of the high-density whiskers were facilitated by the specific contributions of both of the Mg forms in the solid Sn. Specifically, interstitial Mg can provide the persistent driving force for Sn whisker growth, whereas the Mg2Sn phase can increase the formation probability of Sn whiskers. In addition, we presented that the formation and growth of Sn whiskers in the Sn-based solders can be significantly restricted by a small amount of Zn addition (≥3 wt.%), and the prevention mechanisms are attributed to the segregation of Zn atoms at grain or phase boundaries and the formation of the lamellar-type Zn-rich structures in the solder.

  13. Fast formation and growth of high-density Sn whiskers in Mg/Sn-based solder/Mg joints by ultrasonic-assisted soldering: Phenomena, mechanism and prevention

    NASA Astrophysics Data System (ADS)

    Li, M. Y.; Yang, H. F.; Zhang, Z. H.; Gu, J. H.; Yang, S. H.

    2016-06-01

    A universally applicable method for promoting the fast formation and growth of high-density Sn whiskers on solders was developed by fabricating Mg/Sn-based solder/Mg joints using ultrasonic-assisted soldering at 250 °C for 6 s and then subjected to thermal aging at 25 °C for 7 d. The results showed that the use of the ultrasonic-assisted soldering could produce the supersaturated dissolution of Mg in the liquid Sn and lead to the existence of two forms of Mg in Sn after solidification. Moreover, the formation and growth of the high-density whiskers were facilitated by the specific contributions of both of the Mg forms in the solid Sn. Specifically, interstitial Mg can provide the persistent driving force for Sn whisker growth, whereas the Mg2Sn phase can increase the formation probability of Sn whiskers. In addition, we presented that the formation and growth of Sn whiskers in the Sn-based solders can be significantly restricted by a small amount of Zn addition (≥3 wt.%), and the prevention mechanisms are attributed to the segregation of Zn atoms at grain or phase boundaries and the formation of the lamellar-type Zn-rich structures in the solder.

  14. Fast formation and growth of high-density Sn whiskers in Mg/Sn-based solder/Mg joints by ultrasonic-assisted soldering: Phenomena, mechanism and prevention

    PubMed Central

    Li, M. Y.; Yang, H. F.; Zhang, Z. H.; Gu, J. H.; Yang, S. H.

    2016-01-01

    A universally applicable method for promoting the fast formation and growth of high-density Sn whiskers on solders was developed by fabricating Mg/Sn-based solder/Mg joints using ultrasonic-assisted soldering at 250 °C for 6 s and then subjected to thermal aging at 25 °C for 7 d. The results showed that the use of the ultrasonic-assisted soldering could produce the supersaturated dissolution of Mg in the liquid Sn and lead to the existence of two forms of Mg in Sn after solidification. Moreover, the formation and growth of the high-density whiskers were facilitated by the specific contributions of both of the Mg forms in the solid Sn. Specifically, interstitial Mg can provide the persistent driving force for Sn whisker growth, whereas the Mg2Sn phase can increase the formation probability of Sn whiskers. In addition, we presented that the formation and growth of Sn whiskers in the Sn-based solders can be significantly restricted by a small amount of Zn addition (≥3 wt.%), and the prevention mechanisms are attributed to the segregation of Zn atoms at grain or phase boundaries and the formation of the lamellar-type Zn-rich structures in the solder. PMID:27273421

  15. [Study on mechanism for anti-hyperlipidemia efficacy of rhubarb through assistant analysis systems for acting mechanisms of traditional Chinese medicine].

    PubMed

    Du, Li; Yuan, Bin; Zhang, Bai-xia; Zhang, Yan-ling; Gao, Xiao-yan; Wang, Yun

    2015-10-01

    Rhubarb is a traditional Chinese medicine (TCM), wildly used in treating the disease of hyperlipidemia. However, its components are complicated, so that it is still difficult to clear the specific roles of its various components in blood lipids regulation in. So we decide to systematically study the anti- hyperlipidemia mechanism of rhubarb. We integrated multiple databases, based on entity grammar systems model, constructed molecular interaction network between the chemical constituents of rhubarb and hyperlipidemia. The network includes 231 nodes and 638 edges. Thus we infer the interactions of active targets and disease targets to clarify the anti-hyperlipidemia mechanism. And find that rhubarb can promote excretion of cholesterol; inhibit clotting factors and improve blood circulation; inhibit the release of inflammatory cytokines and maintain fat metabolism balance; inhibit cholesterol and triglyceride synthesis; and other ways to achieve lipid-lowering effect. Thus this study provides reference for novel drug development and component compatibility, and also gives a new way for the systematically study of acting mechanism of traditional Chinese medicine.

  16. Kinetics and mechanism of the gas carbothermic reduction of Cr2O3 in the absence of melts

    NASA Astrophysics Data System (ADS)

    Simonov, V. K.; Grishin, A. M.

    2014-12-01

    The kinetics of the complex reduction of Cr2O3 involving CO, H2, and their mixtures is studied, and the results are analyzed. Significant intensification of the process in the presence of dihydrogen is established. The mechanism of the H2 effect is considered. It seems reasonable to carry out Cr2O3 metallization by the gas-carbothermic reduction of the oxide involving hydrogen with the simultaneous introduction of metallic iron or a magnetite concentrate into a blend to form an iron-chromium master alloy with a restricted carbon content.

  17. Characterization of CeO2-Supported Cu-Pd Bimetallic Catalyst for the Oxygen-Assisted Water-Gas Shift Reaction

    SciTech Connect

    Fox, Elise; Velu, Subramani; Engelhard, Mark H.; Chin, Ya-Huei; Miller, Jeffrey T.; Kropf, Jeremy; Song, Chunshan

    2008-12-10

    This study was focused to investigate the roles of Cu and Pd in CuPd/CeO2 bimetallic catalysts containing 20-30 wt% Cu and 0.5-1 wt% Pd used in the oxygen-assisted water-gas shift (OWGS) reaction employing a combined bulk and surface characterization techniques such as XRD, TPR, CO chemisorption, and in-situ XPS. The catalytic activity for CO conversion and the stability of catalyst during on-stream operation increased by the addition of Cu to Pd/CeO2 or Pd to Cu/CeO2 monometallic catalysts, especially when the OWGS reaction was performed under low temperatures, below 200oC. The bimetallic catalyst after leaching with nitric acid retained about 60% of its original activity. The TPR of monometallic Cu/CeO2 showed reduction of CuO supported on CeO2 in two distinct regions, around 150 and 250oC. The high temperature peak disappeared and reduction occurred in a single step around 150oC upon Pd addition. The Pd dispersion decreased from 38.5% for Pd/CeO2 to below 1% for CuPd/CeO2 bimetallic catalyst. In-situ XPS studies showed a shift in Cu 2p peaks toward lower binding energy (BE) with concommitant shift in the Pd 3d peaks toward higher BE. Addition of Pd decreased the surface Cu concentration while the concentration of Pd remained unaltered. All these observations indicated the formation of Cu-Pd surface alloy. The valence band XP spectra collected below 10 eV corroborated the core level XP spectra and indicated that Cu is mainly involved in the catalytic reaction. The improved catalytic activity and stability of CuPd/CeO2 bimetallic catalyst was attributed to the alloy formation.

  18. [Determination of eight polybrominated diphenyl ethers in marine sediments by ultrasonically assisted alkaline degradation extraction and gas chromatography-electron capture detection].

    PubMed

    Guoguang, Wang; Dahai, Zhang; Dandan, Yang; Jialin, Peng; Xianguo, Li

    2015-08-01

    For determination of the eight polybrominated diphenyl ethers (PBDEs) in marine sediments based on gas chromatography-electron capture detection (GC-ECD), a rapid and effective method for simultaneous sample extraction and purification was developed, in which ultrasonically assisted alkaline hydrolysis was combined with solvent extraction. The sediment sample was processed in an ultrasonic bath in 2. 00 mol/L NaOH-methanol solution for 30 min, and subsequently extracted by n-hexane. The organic phase was then separated and purified by silica column and concentrated to 100 µL for GC-ECD analysis. Under the optimized conditions, the recoveries and relative standard deviations (RSDs) for eight PBDE congeners ranged from 63.6% to 110.3% and from 1.7% to 10.5% (n = 5), respectively. The limits of detection (LODs, S/N = 3) ranged from 0.002 to 0.011 ng/g except for deca-brominated diphenyl ether (BDE-209), which was 0.097 ng/g. With high accuracy, good stability and adequate recovery, the established method was successfully applied to the analysis of PBDEs in the surface sediments from Bohai Sea. The concentrations of ∑8PBDEs (sum of 2,4,4'-tribromodiphenyl ether (BDE-28), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2, 2', 4, 4', 5-pentabromodiphenyl ether (BDE-99), 2, 2', 4, 4', 6-pentabromodiphenyl ether (BDE100), 2, 2', 4, 4', 5, 5'- 1.566 to 6.760 ng/g and from 1.461 to 6.438 ng/g, respectively. A decreasing gradient of concentration was basically observed with increasing distance off the shore, indicating that anthropogenic activities, surface runoff and river inputs may be the sources of PBDEs in the sediments from Bohai Sea. PMID:26749867

  19. Determination of fragrance allergens in indoor air by active sampling followed by ultrasound-assisted solvent extraction and gas chromatography-mass spectrometry.

    PubMed

    Lamas, J Pablo; Sanchez-Prado, Lucia; Garcia-Jares, Carmen; Llompart, Maria

    2010-03-19

    Fragrances are ubiquitous pollutants in the environment, present in the most of household products, air fresheners, insecticides and cosmetics. Commercial perfumes may contain hundreds of individual fragrance chemicals. In addition to the widespread use and exposure to fragranced products, many of the raw fragrance materials have limited available health and safety data. Because of their nature as artificial fragrances, inhalation should be considered as an important exposure pathway, especially in indoor environments. In this work, a very simple, fast, and sensitive methodology for the analysis of 24 fragrance allergens in indoor air is presented. Considered compounds include those regulated by the EU Directive, excluding limonene; methyl eugenol was also included due to its toxicity. The proposed methodology is based on the use of a very low amount of adsorbent to retain the target compounds, and the rapid ultrasound-assisted solvent extraction (UAE) using a very low volume of solvent which avoids further extract concentration. Quantification was performed by gas chromatography coupled to mass spectrometry (GC-MS). The influence of main factors involved in the UAE step (type of adsorbent and solvent, solvent volume and extraction time) was studied using an experimental design approach to account for possible factor interactions. Using the optimized procedure, 0.2 m(-3) air are sampled, analytes are retained on 25 mg Florisil, from which they are extracted by UAE (5 min) with 2 mL ethyl acetate. Linearity was demonstrated in a wide concentration range. Efficiency of the total sampling-extraction process was studied at several concentration levels (1, 5 and 125 microg m(-3)), obtaining quantitative recoveries, and good precision (RSD<10%). Method detection limits were < or =0.6 microg m(-3). Finally, the proposed method was applied to real samples collected in indoor environments in which several of the target compounds were determined.

  20. In-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction and silylation prior gas chromatography-mass spectrometry for ultraviolet filters determination in environmental water samples.

    PubMed

    Clavijo, Sabrina; Avivar, Jessica; Suárez, Ruth; Cerdà, Víctor

    2016-04-22

    A novel online approach involving in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction and derivatization coupled to gas chromatography-mass spectrometry has been developed for the determination of seven UV filters extensively used in cosmetic products in environmental water samples. The effect of parameters such as the type and volume of extraction solvent, dispersive solvent and derivatization agent, pH, ionic strength and stirring time, was studied using multivariate experimental design. Extraction, derivatization and preconcentration were simultaneously performed using acetone as dispersive solvent, N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) as derivatization agent and trichloroethylene as extraction solvent. After stirring during 160s, the sedimented phase was transferred to a rotary micro-volume injection valve (3 μL) and introduced by an air stream into the injector of the GC through a stainless-steel tube used as interface. The detection limits were in the range of 0.023-0.16 μg L(-1) and good linearity was observed up to 500 μg L(-1) of the studied UV filters, with R(2) ranging between 0.9829 and 0.9963. The inter-day precision expressed as relative standard deviation (n=5) varied between 5.5 and 16.8%. Finally, the developed method was satisfactorily applied to assess the occurrence of the studied UV filters in seawater and pool water samples. Some of the studied UV filters were found in these samples and an add-recovery test was also successfully performed with recoveries between 82 and 111%.

  1. Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of synthetic musk fragrances in aqueous matrices by gas chromatography-mass spectrometry.

    PubMed

    Homem, Vera; Alves, Alice; Alves, Arminda; Santos, Lúcia

    2016-01-01

    A rapid and simple method for the simultaneous determination of twelve synthetic musks in water samples, using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was successfully developed. The influence of seven factors (volume of the extraction solvent and disperser solvent, sample volume, extraction time, ionic strength, type of extraction and disperser solvent) affecting the UA-DLLME extraction efficiency was investigated using a screening design. The significant factors were selected and optimised employing a central composite design: 80 μL of chloroform, 880 μL of acetonitrile, 6 mL of sample volume, 3.5% (wt) of NaCl and 2 min of extraction time. Under the optimised conditions, this methodology was successfully validated for the analysis of 12 synthetic musk compounds in different aqueous samples (tap, sea and river water, effluent and influent wastewater). The proposed method showed enrichment factors between 101 and 115 depending on the analyte, limits of detection in the range of 0.004-54 ng L(-1) and good repeatability (most relative standard deviation values below 10%). No significant matrix effects were found, since recoveries ranged between 71% and 118%. Finally, the method was satisfactorily applied to the analysis of five different aqueous samples. Results demonstrated the existence of a larger amount of synthetic musks in wastewaters than in other water samples (average concentrations of 2800 ng L(-1) in influent and 850 ng L(-1) in effluent). Galaxolide, tonalide and exaltolide were the compounds most detected.

  2. Analyses of polychlorinated biphenyls in waters and wastewaters using vortex-assisted liquid-liquid microextraction and gas chromatography-mass spectrometry.

    PubMed

    Ozcan, Senar

    2011-03-01

    A method was developed for viable and rapid determination of seven polychlorinated biphenyls (PCBs) in water samples with vortex-assisted liquid-liquid microextraction (VALLME) using gas chromatography-mass spectrometry (GC-MS). At first, the most suitable extraction solvent and extraction solvent volume were determined. Later, the parameters affecting the extraction efficiency such as vortex extraction time, rotational speed of the vortex, and ionic strength of the sample were optimized by using a 2(3) factorial experimental design. The optimized extraction conditions for 5 mL water sample were as follows: extractant solvent 200 μL of chloroform; vortex extraction time of 2 min at 3000 rpm; centrifugation 5 min at 4000 rpm, and no ionic strength. Under the optimum condition, limits of detection (LOD) ranged from 0.36 to 0.73 ng/L. Mean recoveries of PCBs from fortified water samples are 96% for three different fortification levels and RSDs of the recoveries are below 5%. The developed procedure was successfully applied to the determination of PCBs in real water and wastewater samples such as tap, well, surface, bottled waters, and municipal, treated municipal, and industrial wastewaters. The performance of the proposed method was compared with traditional liquid-liquid extraction (LLE) of real water samples and the results show that efficiency of proposed method is comparable to the LLE. However, the proposed method offers several advantages, i.e. reducing sample requirement for measurement of target compounds, less solvent consumption, and reducing the costs associated with solvent purchase and waste disposal. It is also viable, rapid, and easy to use for the analyses of PCBs in water samples by using GC-MS. PMID:21280211

  3. Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of synthetic musk fragrances in aqueous matrices by gas chromatography-mass spectrometry.

    PubMed

    Homem, Vera; Alves, Alice; Alves, Arminda; Santos, Lúcia

    2016-01-01

    A rapid and simple method for the simultaneous determination of twelve synthetic musks in water samples, using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was successfully developed. The influence of seven factors (volume of the extraction solvent and disperser solvent, sample volume, extraction time, ionic strength, type of extraction and disperser solvent) affecting the UA-DLLME extraction efficiency was investigated using a screening design. The significant factors were selected and optimised employing a central composite design: 80 μL of chloroform, 880 μL of acetonitrile, 6 mL of sample volume, 3.5% (wt) of NaCl and 2 min of extraction time. Under the optimised conditions, this methodology was successfully validated for the analysis of 12 synthetic musk compounds in different aqueous samples (tap, sea and river water, effluent and influent wastewater). The proposed method showed enrichment factors between 101 and 115 depending on the analyte, limits of detection in the range of 0.004-54 ng L(-1) and good repeatability (most relative standard deviation values below 10%). No significant matrix effects were found, since recoveries ranged between 71% and 118%. Finally, the method was satisfactorily applied to the analysis of five different aqueous samples. Results demonstrated the existence of a larger amount of synthetic musks in wastewaters than in other water samples (average concentrations of 2800 ng L(-1) in influent and 850 ng L(-1) in effluent). Galaxolide, tonalide and exaltolide were the compounds most detected. PMID:26653427

  4. iCONVERT: an integrated device for the UV-assisted determination of H2S via mid-infrared gas sensors.

    PubMed

    Petruci, João Flavio da Silveira; Cardoso, Arnaldo Alves; Wilk, Andreas; Kokoric, Vjekoslav; Mizaikoff, Boris

    2015-10-01

    In this technical note, we describe an integrated device platform for performing in-flow gaseous conversion reactions based on ultraviolet (UV) irradiation. The system combines, using the same footprint, an integrated UV-conversion device (iCONVERT), a preconcentrator unit (iPRECON), and a new generation of mid-infrared (MIR) gas cell simultaneously serving as a photon conduit, i.e., so-called substrate-integrated hollow waveguide (iHWG) optically coupled to a compact Fourier transform-infrared (FT-IR) spectrometer. The iCONVERT is assembled from two blocks of aluminum (dimensions, 75 mm × 50 mm × 40 mm; L × W × D) containing 4 miniaturized UV-lamps (47mm × 6 mm × 47 mm each). For the present study, the iPRECON-iCONVERT-iHWG sensing platform has specifically been tailored to the determination of H2S in gaseous samples. Thereby, the quantitative UV-assisted conversion of the rather weak IR-absorber H2S into the more pronouncedly responding SO2 is used for hydrogen sulfide detection. A linear calibration model was established in the range of 7.5 to 100 ppmv achieving a limit of detection at 1.5 ppmv using 10 min of sample preconcentration (onto Molecular Sieve 5A) at a flow rate of 200 mL min(-1). When compared to a conventional UV-conversion system, the iCONVERT revealed similar performance. Considering the potential for system miniaturization using, e.g., dedicated quantum cascade lasers (QCL) in lieu of the FT-IR spectrometer, the developed sensing platform may be further evolved into a hand-held device.

  5. Extraction of Mg(OH)2 from Mg silicate minerals with NaOH assisted with H2O: implications for CO2 capture from exhaust flue gas.

    PubMed

    Madeddu, Silvia; Priestnall, Michael; Godoy, Erik; Kumar, R Vasant; Raymahasay, Sugat; Evans, Michael; Wang, Ruofan; Manenye, Seabelo; Kinoshita, Hajime

    2015-01-01

    The utilisation of Mg(OH)2 to capture exhaust CO2 has been hindered by the limited availability of brucite, the Mg(OH)2 mineral in natural deposits. Our previous study demonstrated that Mg(OH)2 can be obtained from dunite, an ultramafic rock composed of Mg silicate minerals, in highly concentrated NaOH aqueous systems. However, the large quantity of NaOH consumed was considered an obstacle for the implementation of the technology. In the present study, Mg(OH)2 was extracted from dunite reacted in solid systems with NaOH assisted with H2O. The consumption of NaOH was reduced by 97% with respect to the NaOH aqueous systems, maintaining a comparable yield of Mg(OH)2 extraction, i.e. 64.8-66%. The capture of CO2 from a CO2-N2 gas mixture was tested at ambient conditions using a Mg(OH)2 aqueous slurry. Mg(OH)2 almost fully dissolved and reacted with dissolved CO2 by forming Mg(HCO3)2 which remained in equilibrium storing the CO2 in the aqueous solution. The CO2 balance of the process was assessed from the emissions derived from the power consumption for NaOH production and Mg(OH)2 extraction together with the CO2 captured by Mg(OH)2 derived from dunite. The process resulted as carbon neutral when dunite is reacted at 250 °C for durations of 1 and 3 hours and CO2 is captured as Mg(HCO3)2. PMID:26391815

  6. In-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction and silylation prior gas chromatography-mass spectrometry for ultraviolet filters determination in environmental water samples.

    PubMed

    Clavijo, Sabrina; Avivar, Jessica; Suárez, Ruth; Cerdà, Víctor

    2016-04-22

    A novel online approach involving in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction and derivatization coupled to gas chromatography-mass spectrometry has been developed for the determination of seven UV filters extensively used in cosmetic products in environmental water samples. The effect of parameters such as the type and volume of extraction solvent, dispersive solvent and derivatization agent, pH, ionic strength and stirring time, was studied using multivariate experimental design. Extraction, derivatization and preconcentration were simultaneously performed using acetone as dispersive solvent, N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) as derivatization agent and trichloroethylene as extraction solvent. After stirring during 160s, the sedimented phase was transferred to a rotary micro-volume injection valve (3 μL) and introduced by an air stream into the injector of the GC through a stainless-steel tube used as interface. The detection limits were in the range of 0.023-0.16 μg L(-1) and good linearity was observed up to 500 μg L(-1) of the studied UV filters, with R(2) ranging between 0.9829 and 0.9963. The inter-day precision expressed as relative standard deviation (n=5) varied between 5.5 and 16.8%. Finally, the developed method was satisfactorily applied to assess the occurrence of the studied UV filters in seawater and pool water samples. Some of the studied UV filters were found in these samples and an add-recovery test was also successfully performed with recoveries between 82 and 111%. PMID:27016119

  7. Salt-assisted dispersive liquid-liquid microextraction coupled with programmed temperature vaporization gas chromatography-mass spectrometry for the determination of haloacetonitriles in drinking water.

    PubMed

    Ma, Huilian; Li, Yun; Zhang, Haijun; Shah, Syed Mazhar; Chen, Jiping

    2014-09-01

    We report here a new analytical method for the simultaneous determination of seven haloacetonitriles (HANs) in drinking water by coupling salt-assisted dispersive liquid-liquid microextraction (SADLLME) with programmed temperature vaporizer-gas chromatography-mass spectrometry (PTV-GC-MS). The newly developed method involves the dispersion of the extractant in aqueous sample by addition of a few grams of salt and no dispersion liquid was required as compared to the traditional DLLME methods. The extractant (CH2Cl2, 50μL) and the salt (Na2SO4, 2.4g) were successively added to water (8mL) in a conical centrifuge tube that was shaken for 1min and centrifuged (3500rpm, 3min). The aliquot of sedimented phase (4μL) was then directly injected into the PTV-GC-MS system. The limits of detection and quantification for the HANs were 0.4-13.2ngL(-1) and 1.2-43.9ngL(-1), respectively. The calibration curves showed good linearity (r(2)≥0.9904) over 3 orders of magnitude. The repeatability of the method was investigated by evaluating the intra- and inter-day precisions. The relative standard deviations (RSDs) obtained were lower than 10.2% and 7.8% at low and high concentration levels. The relative recoveries ranged from 79.3% to 105.1%. The developed methodology was applied for the analysis of seven HANs in several drinking water samples in coastal and inland cities of China. It was demonstrated to be a simple, sensible, reproducible and environment friendly method for the determination of trace HANs in drinking water samples.

  8. Geophysical investigations of the methane reservoir and gas escape mechanisms on the west Svalbard margin

    NASA Astrophysics Data System (ADS)

    Minshull, T. A.; Westbrook, G. K.; Sinha, M. C.; Weitemeyer, K. A.; Henstock, T.; Chabert, A.; Vardy, M. E.; Sarkar, S.; Goswami, B.; Marsset, B.; Ker, S.; Thomas, Y.; Best, A. I.; Rajan, A.

    2012-12-01

    In 2008, over 250 bubble plumes were discovered close to the landward limit of methane hydrate stability on the west Svalbard continental margin, and sampling of ocean water in the vicinity of some of these plumes showed anomalously high methane concentrations. Many of the plumes occur in the region over which the hydrate stability field has receded during the last three decades due to ocean warming and such thermal erosion of the hydrate stability field may provide a positive feedback effect in global climate change. The presence of hydrate beneath the seabed is evidenced by the presence of a widespread bottom-simulating reflector (BSR) on the lower continental slope and by direct sampling with cores. More limited plume activity was found in deeper water at pockmark features that reach several hundred metres in diameter. During cruises in 2011 and 2012, we conducted further geophysical surveys both in the region of hydrate stability field recession on the continental slope and over a large pockmark on the nearby Vestnesa Ridge sediment drift. We conducted high-resolution seismic reflection surveys using a 90 cu. in. GI gun source and a 60-m, 60-channel hydrophone streamer, and deep-towed seismic surveys using Ifremer's SYSIF vehicle and chirp sources with 220-1050 Hz and 580-2200 Hz sweeps. We recorded both the GI-gun and the lower-frequency Chirp sources on ocean bottom seismometers to determine the velocity structure with high vertical resolution at both sites. We obtained controlled source electromagnetic (CSEM) data from both sites using a deep-towed frequency domain electromagnetic source recorded at 14 seafloor receivers with orthogonal electrodes and a towed three-component electric field receiver. At the slope site, our CSEM profile extends into deep water where a BSR is present. High-resolution and Chirp seismic reflection data show evidence for the widespread presence of subsurface gas at the slope site, both within and beneath the region of hydrate

  9. Mechanically assisted 3D ultrasound for pre-operative assessment and guiding percutaneous treatment of focal liver tumors

    NASA Astrophysics Data System (ADS)

    Sadeghi Neshat, Hamid; Bax, Jeffery; Barker, Kevin; Gardi, Lori; Chedalavada, Jason; Kakani, Nirmal; Fenster, Aaron

    2014-03-01

    Image-guided percutaneous ablation is the standard treatment for focal liver tumors deemed inoperable and is commonly used to maintain eligibility for patients on transplant waitlists. Radiofrequency (RFA), microwave (MWA) and cryoablation technologies are all delivered via one or a number of needle-shaped probes inserted directly into the tumor. Planning is mostly based on contrast CT/MRI. While intra-procedural CT is commonly used to confirm the intended probe placement, 2D ultrasound (US) remains the main, and in some centers the only imaging modality used for needle guidance. Corresponding intraoperative 2D US with planning and other intra-procedural imaging modalities is essential for accurate needle placement. However, identification of matching features of interest among these images is often challenging given the limited field-of-view (FOV) and low quality of 2D US images. We have developed a passive tracking arm with a motorized scan-head and software tools to improve guiding capabilities of conventional US by large FOV 3D US scans that provides more anatomical landmarks that can facilitate registration of US with both planning and intra-procedural images. The tracker arm is used to scan the whole liver with a high geometrical accuracy that facilitates multi-modality landmark based image registration. Software tools are provided to assist with the segmentation of the ablation probes and tumors, find the 2D view that best shows the probe(s) from a 3D US image, and to identify the corresponding image from planning CT scans. In this paper, evaluation results from laboratory testing and a phase 1 clinical trial for planning and guiding RFA and MWA procedures using the developed system will be presented. Early clinical results show a comparable performance to intra-procedural CT that suggests 3D US as a cost-effective alternative with no side-effects in centers where CT is not available.

  10. The mechanism underlying calcium phosphate precipitation on titanium via ultraviolet, visible, and near infrared laser-assisted biomimetic process

    NASA Astrophysics Data System (ADS)

    Mahanti, Moumita; Nakamura, Maki; Pyatenko, Alexander; Sakamaki, Ikuko; Koga, Kenji; Oyane, Ayako

    2016-08-01

    We recently developed a rapid single-step calcium phosphate (CaP) precipitation technique on several substrates using a laser-assisted biomimetic process (LAB process). In this process, ultraviolet (UV, λ  =  355 nm) pulsed laser irradiation has been applied to a substrate that is immersed in a supersaturated CaP solution. In the present study, the LAB process for CaP precipitation on a titanium substrate was successfully expanded to include not only UV but also visible (VIS, λ  =  532 nm) and near infrared (NIR, λ  =  1064 nm) lasers. Surface heating and plasma-mediated surface reactions (micro-deformation, oxidization, photoexcitation, and wetting) generated by UV, VIS, or NIR lasers are considered to be involved in the CaP precipitation on the titanium surface in the LAB process. The kinetics of these reactions and consequently of CaP precipitation were dependent on the laser wavelength and fluence. The higher laser fluence did not always accelerate CaP precipitation on the substrate; rather, it was found that an optimal range of fluence exists for each laser wavelength. These results suggest that for efficient CaP precipitation, a suitable laser wavelength should be selected according to the optical absorption properties of the substrate material and the laser fluence should also be adjusted to induce surface heating and plasma-mediated surface reactions that are favorable for CaP precipitation.

  11. Radiofrequency plasma assisted exfoliation and reduction of large-area graphene oxide platelets produced by a mechanical transfer process

    NASA Astrophysics Data System (ADS)

    Cardinali, Marta; Valentini, Luca; Fabbri, Paola; Kenny, Josè M.

    2011-05-01

    We present a method to produce extended few layer flakes of reduced graphene oxide starting from bulk graphene oxide platelets using Ar plasma treatment at room temperature of mechanically exfoliated platelets. Multilayer graphene oxide platelets transferred to a silicon wafer by micromechanical cleavage were thinned in a controllable and reproducible way by plasma treatment to achieve few-layer reduced graphene sheets without the use of heating or wet chemistry approaches.

  12. Experimental and Numerical Study on the Deformation Mechanism in AZ31B Mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests

    NASA Astrophysics Data System (ADS)

    Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong

    2016-06-01

    The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.

  13. A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves.

    PubMed

    Saleh, I A; Vinatoru, M; Mason, T J; Abdel-Azim, N S; Aboutabl, E A; Hammouda, F M

    2016-07-01

    The use of ultrasound-assisted extraction (UAE) for the extraction of chlorogenic acid (CA) from Cynara scolymus L., (artichoke) leaves using 80% methanol at room temperature over 15 min gave a significant increase in yield (up to a 50%) compared with maceration at room temperature and close to that obtained by boiling over the same time period. A note of caution is introduced when comparing UAE with Soxhlet extraction because, in the latter case, the liquid entering the Soxhlet extractor is more concentrated in methanol (nearly 100%) that the solvent in the reservoir (80% methanol) due to fractionation during distillation. The mechanism of UAE is discussed in terms of the effects of cavitation on the swelling index, solvent diffusion and the removal of a stagnant layer of solvent surrounding the plant material. PMID:26964956

  14. A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves.

    PubMed

    Saleh, I A; Vinatoru, M; Mason, T J; Abdel-Azim, N S; Aboutabl, E A; Hammouda, F M

    2016-07-01

    The use of ultrasound-assisted extraction (UAE) for the extraction of chlorogenic acid (CA) from Cynara scolymus L., (artichoke) leaves using 80% methanol at room temperature over 15 min gave a significant increase in yield (up to a 50%) compared with maceration at room temperature and close to that obtained by boiling over the same time period. A note of caution is introduced when comparing UAE with Soxhlet extraction because, in the latter case, the liquid entering the Soxhlet extractor is more concentrated in methanol (nearly 100%) that the solvent in the reservoir (80% methanol) due to fractionation during distillation. The mechanism of UAE is discussed in terms of the effects of cavitation on the swelling index, solvent diffusion and the removal of a stagnant layer of solvent surrounding the plant material.

  15. Dynamic expression profiles of MMPs/TIMPs and collagen deposition in mechanically unloaded rat heart: implications for left ventricular assist device support-induced cardiac alterations.

    PubMed

    Wang, Lu; Xu, Yu-Xian; Du, Xiao-Jie; Sun, Quan-Ge; Tian, Ying-Jun

    2013-09-01

    Left ventricular assist devices (LVADs) ameliorate heart failure by reducing preload and afterload. However, extracellular matrix (ECM) deposition after application of LVADs is not clearly defined. The purpose of the present study was to investigate ECM remodeling after mechanical unloading in a rat heart transplant model. Sixty male Lewis rats were subjected to abdominal heterotopic heart transplantation, and the transplanted hearts were pressure- and volume-unloaded. The age- and weight- matched male Lewis rats who had undergone open thoracic surgeries were used as the control. Left ventricle ECM accumulation and the expression/activity of matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) were measured on the third, seventh, and fourteenth days after transplantation/sham surgery. Compared with the control group, myocardial ECM deposition significantly increased on the seventh and fourteenth days after heart transplantation (P < 0.05) and peaked on the 14th day. The gelatinase activity as well as mRNA expression of MMP-2 and MMP-9 significantly increased after transplantation (P < 0.05). Both mRNA and protein levels of TIMP-1 and TIMP-2 significantly increased compared with those of the control group. Mechanical unloading may lead to adverse remodeling of the ECM of the left ventricle. The underlying mechanism may due to the imbalance of the MMP/TIMP system, especially the remarkable upregulation of TIMPs in the pressure and volume unloaded heart.

  16. Gas flow and fluidization in a thick dynamic regolith: A new mechanism for the formation of chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Huang, Shaoxiong; Sears, Derek W. G.

    1995-01-01

    We have previously shown that size and density sorting in a regolith which has been 'fluidized' by the passage or gases from the interior or the body can quantitatively explain metal-silicate fractionation, an important property of ordinary chondrites. Here we discuss whether the flow rates and flux or volatiles expected from a primitive parent body are likely to be sufficient for this mechanism. Many meteorite parent bodies may have contained volatiles. From a consideration of heat diffusion and fluid mechanics, we calculate the gas flow rate of volatiles (e.g., water) in the regolith of an asteroid-sized object heated by Al-26. Our calculations show that the flow velocities and flux of water vapor are sufficient to produce conditions suitable for fluidization. Other heat sources have yet to be considered, but literature work suggests that they may be equally effective.

  17. Plastic deformation to enhance plasma-assisted nitriding: On surface contamination induced by Surface Mechanical Attrition Treatment

    NASA Astrophysics Data System (ADS)

    Samih, Youssef; Novelli, Marc; Thiriet, Tony; Bolle, Bernard; Allain, Nathalie; Fundenberger, Jean-Jacques; Marcos, Grégory; Czerwiec, Thierry; Grosdidier, Thierry

    2014-08-01

    The Surface Mechanical Attrition Treatment is a recent technique leading to the formation of nanostructured layers by the repeated action of impacting balls. While several communications have revealed possible contamination of the SMATed surfaces, the nature of this surface contamination was analyzed in the present contribution for the treatment of an AISI 316L stainless steel. It is shown, by a combination of Transmission Electron Microscopy and Glow Discharge - Optical Emission Spectrometry, that the surface was alloyed with Ti, Al and V coming from the sonotrode that is used to move the balls as well as Zr coming from the zirshot® balls themselves.

  18. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol chemistry

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, T.; Bernard, F.; Ding, X.; Wen, S.; Zhang, Y.; Zhang, Z.; He, Q.; Lü, S.; Chen, J.; Saunders, S.; Yu, J.

    2013-08-01

    We describe here characterization of a new state-of-the-art smog chamber facility for studying atmospheric gas phase and aerosol chemistry. The chamber consists of a 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor suspended in a temperature-controlled enclosure equipped with two banks of black lamps as the light source. Temperature can be set in the range from -10 °C to 40 °C at accuracy of ±1 °C as measured by eight temperature sensors inside the enclosure and one just inside the reactor. Matrix air can be purified with NMHCs < 0.5 ppb, NOx/O3/carbonyls < 1 ppb and particles < 1 cmmechanisms of this chamber are determined and included in the Master Chemical Mechanism to evaluate and model propene-NOx-air irradiation experiments. The results indicate that this new smog chamber can provide high quality data for mechanism evaluation. Results of α-pinene dark ozonolysis experiments revealed SOA yields comparable to those from other chamber studies, and the two-product model gives a good fit for the yield data obtained in this work. Characterization experiments demonstrate that our GIG-CAS smog chamber facility can be used to provide valuable data for gas-phase mechanisms and aerosol chemistry.

  19. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism--a gas-phase ab initio study.

    PubMed

    Bharadwaj, Vivek S; Vyas, Shubham; Villano, Stephanie M; Maupin, C Mark; Dean, Anthony M

    2015-02-14

    The fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.g., n-hexane, dodecane). Succinate synthase enzymes, which belong to the glycyl radical enzyme family, are the main facilitators of these biochemical reactions. The overall catalytic mechanism that converts hydrocarbons to a succinate molecule involves three steps: (1) initial H-abstraction from the hydrocarbon by the radical enzyme, (2) addition of the resulting hydrocarbon radical to fumarate, and (3) hydrogen abstraction by the addition product to regenerate the radical enzyme. Since the biodegradation of hydrocarbon fuels via the fumarate addition mechanism is linked to bio-corrosion, an improved understanding of this reaction is imperative to our efforts of predicting the susceptibility of proposed alternative fuels to biodegradation. An improved understanding of the fuel biodegradation process also has the potential to benefit bioremediation. In this study, we consider model aromatic (toluene) and aliphatic (butane) compounds to evaluate the impact of hydrocarbon structure on the energetics and kinetics of the fumarate addition mechanism by means of high level ab initio gas-phase calculations. We predict that the rate of toluene degradation is ∼100 times faster than butane at 298 K, and that the first abstraction step is kinetically significant for both hydrocarbons, which is consistent with deuterium isotope effect studies on toluene degradation. The detailed computations also show that the predicted stereo-chemical preference of the succinate products for both toluene and butane are due to the differences in the radical addition rate constants for the various isomers. The computational and kinetic modeling work presented here demonstrates the importance of considering pre-reaction and product complexes in order to accurately treat gas phase systems that involve intra and inter

  20. Designing economic and legal mechanism of land management in oil and gas companies

    NASA Astrophysics Data System (ADS)

    Tsibulnikova, M. R.; Pogharnitskaya, O. V.; Strelnikova, A. B.

    2015-02-01

    The article deals with the problem of economic and legal relationship in the sphere of land management provided by Russian government. The gas pipeline construction serves as an example to analyze the problems connected with leasing of both federal and privately owned lands. Comparative analysis of costs made by Gazprom to lease the lands at the stage of construction has been conducted. It has been concluded that the government should regulate relationships within the land sector to harmonize the interests of the Federation and private landowners.