Science.gov

Sample records for gas avalanche photomultipliers

  1. A non-Markovian model of avalanche gain statistics for a solid-state photomultiplier

    NASA Technical Reports Server (NTRS)

    Laviolette, Randall A.; Stapelbroek, M. G.

    1989-01-01

    A solid-state photomultiplier (SSPM) capable of continously detecting individual photons of wavelength between 0.4 and 28 microns has recently been disclosed (Petroff et al., 1987). The initial response of the SSPM to single photon is a fast, high-amplitude current pulse of between 10,000 and 100,000 electrons. A phenomenological model of the SSPM avalanche process is presented which successfully predicts the shape of the observed pulse-amplitude distribution by including small history-dependent effects on the carrier transport. The model clarifies the consequences of the electric field strength and the scattering of the electrons for the development of the avalanche in the SSPM.

  2. Comparative Performance of the Photomultiplier Tube and the Silicon Avalanche Photodiode When Used as Detectors in Angular Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Kroner, D. O.; Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K.; Smythe, W. D.

    2014-12-01

    We report the results of a comparative study of two types of photometric detectors that are commonly used for, spacecraft, ground-based telescope, and laboratory observations in support of precise angular scattering investigations of the type described in a companion paper (Nelson et al., this meeting). The performance of the state of the art Hamamatsu C12703-01 Silicon Avalanche photodiode (SAD) was compared to that of the Hamamatsu R928 Photomultiplier tube (PMT). The Hamamatsu R928 evolved from a sequence of photometric detectors with a long history of use in support of laboratory and remote sensing studies, tracing backwards to include the RCA 1P21 and the RCA 931A. Two newly acquired SADs were bench tested along with a new R928 photomultiplier tube that was thermoelectrically cooled to -10 deg C. The SAD's employed electronic thermal compensation supplied by the manufacturer. The SADs and PMT measured electromagnetic radiation from solid-state lasers of wavelength 635 nm after the radiation was reflected from diffusely-scattering surfaces of varying albedos. The SADs were housed on tripods that were co-aligned with the PMT and laser. The photometric detectors were placed 4.3 meters from a reflecting disk. The disk was rotated to reduce the effect of laser speckle. All detectors in the experiment were equipped with notch filters that transmit light only of the wavelength emitted by the laser. Three SR830 DSP Lock-in Amplifiers were connected to the detectors and various setting configurations were compared in order to optimize signal to noise. Neutral Density filters (ND 0,3 and ND 0,9) were placed in the light path to determine the linearity in the response function of the detectors. We conclude that in this application SADs and PMTs produce comparable photometric precision and fidelity. SADs offer greater convenience because thermal compensation circuitry is integrated with the detector. This work was partially supported by NASA's Cassini Science

  3. Very high-gain and low-excess noise near-infrared single-photon avalanche detector: an NIR solid state photomultiplier

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-05-01

    A new family of photodetectors with a Discrete Amplification (DA) mechanism allows the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions and offers an alternative to conventional photomultiplier tubes and Geiger mode avalanche photodetectors. These photodetectors can operate in linear detection mode with gain-bandwidth product in excess of 4X1014 and in photon counting mode with count rates up to 108 counts/sec. Potential benefits of this technology over conventional avalanche photodetectors include ultra low excess noise factor, very high gain, and lower reset time (<< 1 μs). In the photon counting mode, the devices can be operated in the non-gated mode under a constant dc bias. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. We present the discrete amplification design approach used for the development of a solid state photomultiplier in the near infrared wavelength region. The demonstrated device performance far exceeds any available solid state photodetectors in the near infrared wavelength range. The measured devices have the following performance characteristics: gain > 2X105, excess noise factor < 1.05, rise time < 350ps, fall time < 500ps, dark current < 2X106 cps, operating voltage < 60V. These devices are ideal for researchers in the field of deep space optical communication, spectroscopy, industrial and scientific instrumentation, Ladar/Lidar, quantum cryptography, night vision and other military, defence and aerospace applications.

  4. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  5. A compact gas-filled avalanche counter for DANCE

    SciTech Connect

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  6. A compact gas-filled avalanche counter for DANCE

    DOE PAGES

    Wu, C. Y.; Chyzh, A.; Kwan, E.; ...

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  7. Measurement of electrical avalanches and optical radiation near solid insulators in high pressure (up to 0. 3 MPa) nitrogen gas

    SciTech Connect

    Mahajan, S.M. ); Sudarshan, T.S. )

    1991-03-01

    Electron and ion avalanches have been recorded near a variety of insulators (plexiglas, teflon, high-density polyethylene, low-density polyethylene, polypropylene, delrin, polyvinyl chloride, and nylon) in nitrogen gas at pressures of 0.1, 0.2, and 0.3 MPa. With the exception of nylon, suppression of avalanches has been observed in the presence of insulators. In addition to electron and ion avalanches, simultaneous measurement of optical radiation associated with an electron avalanche was successfully carried out. Qualitative explanations have been provided for the suppression of avalanches near most insulators and an anomalous growth of avalanches near nylon insulators. Photoemission from nylon surfaces appears to be responsible for the enhanced growth of avalanches near nylon insulators. More precise measurements of optical radiation are needed to better understand the electron-photon interactions near a solid insulator in a gaseous dielectric medium.

  8. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  9. Silicon photomultiplier-based optoelectronic mixing

    NASA Astrophysics Data System (ADS)

    Yishuo, Song; Xiaoping, Du; Zhaoyang, Zeng; Shengjun, Wang

    2013-09-01

    Silicon photomultiplier (SiPM)-based optoelectronic mixing (OEM) is studied for the first time. The validity of SiPM-based OEM is experimentally verified. Compared with the avalanche photodiodes-based OEM, the SiPM-based OEM is less noisy and easy to realize for its low voltage operation and high responsivity.

  10. Moisture proof columnar Cesium Iodide (CsI) layers for gas avalanche microdetectors

    SciTech Connect

    Park, I.J.; Cho, H.S.; Hong, W.S.; Perez-Mendez, V.; Kadyk, J.

    1999-05-05

    Cesium iodide columnar layers having a diameter of 3 {micro}m, and wall spacing of {approx} 1 {micro}m act as secondary electron emitters and can be used for detection of radiation: charged particles, X-rays and gamma rays. With a large enough electric field across the columnar layers, {approx} 400 {micro}m in thickness, gas avalanche gain is evident when placed in a suitable gas, such as P10 or argon-ethane mixtures. The cesium iodide columns are damaged by ambient moisture. This damage can be prevented by evaporating protective layers of insoluble, low boiling point inorganic materials, such as mercuric iodide. Columnar layers with 20 nm coatings of mercuric iodide yield more than 30,000 electrons on average when traversed by electrons from a {sup 90}Sr beta source.

  11. Development in the design and performance of gas avalanche microdetectors (MSGC, MGC, and MDOT)

    SciTech Connect

    Cho, Hyo-Sung

    1997-12-01

    There has been continuing development of generic classes of microstrip gas chambers (MSGCs), microgap gas chambers (MGCs) and microdot gas chambers (MDOTs) at Lawrence Berkeley National Laboratory (LBNL) over the past few years, to improve such detectors beyond their present capabilities, to produce detectors suitable for use in current or upcoming experiments, and to allow a basis for new R&D developments which may incorporate these detectors as part of the system. All of these new detectors are collectively referred to as "gas avalanche microdetectors". The MSGC, which was motivated by the pioneering work of A. Oed, has many attractive features, especially excellent spatial resolution (~30 μm rms at normal incidence) and high rate capability (~106 mm-2∙s-1). Moreover, the MGC seems to have certain advantages over the MSGC in speed, stability and simplicity, and the MDOT has larger gain (>104) and the intrinsic advantages of two-dimensional readout. Because of these attractive properties, they have received a great deal of attention for nuclear and high energy physics experiments, medical X-ray imaging and many other fields requiring radiation detection and measurement.

  12. Computational and experimental progress on laser-activated gas avalanche switches for broadband, high-power electromagnetic pulse generation

    SciTech Connect

    Mayhall, D.J.; Yee, J.H. ); Villa, F. )

    1990-09-01

    The gas avalanche switch, a high-voltage, picosecond-speed switch, has been proposed. The basic switch consists of pulse-charged electrodes, immersed in a high-pressure (7--800 atm) gas. An avalanche discharge is induced in the gas between the electrodes by ionization from a picosecond-scale laser pulse. The avalanching electrons move toward the anode, causing the applied voltage to collapse in picoseconds. This voltage collapse, if rapid enough, generates electromagnetic waves. A two-dimensional (2D), finite difference computer code solves Maxwell's equations for transverse magnetic modes for rectilinear electrodes between parallel plate conductors, along with electron conservation equations for continuity, momentum, and energy. Collision frequencies for ionization and momentum and energy transfer to neutral molecules are assumed to scale linearly with neutral pressure. Electrode charging and laser-driven electron deposition are assumed to be instantaneous. Code calculations are done for a pulse generator geometry, consisting of an 0.7 mm wide by 0.8 mm high, beveled, rectangular center electrode between grounded parallel plates at 2 mm spacing in air. 17 refs., 12 figs., 2 tabs.

  13. A cooled avalanche photodiode with high photon detection probability

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Metscher, B. D.

    1986-01-01

    An avalanche photodiode has been operated as a photon-counting detector with 2 to 3 times the sensitivity of currently-available photomultiplier tubes. APD (avalanche photodiodes) detection probabilities that exceed 27% and approach 50% have been measured at an optimum operating temperature which minimizes noise. The sources of noise and their dependence on operating temperature and bias voltage are discussed.

  14. Effect of gas heating on the generation of an ultrashort avalanche electron beam in the pulse-periodic regime

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Tarasenko, V. F.

    2015-07-01

    The generation of an ultrashort avalanche electron beam (UAEB) in nitrogen in the pulse-periodic regime is investigated. The gas temperature in the discharge gap of the atmospheric-pressure nitrogen is measured from the intensity distribution of unresolved rotational transitions ( C 3Π u , v' = 0) → ( B 3Π g , v″ = 0) in the nitrogen molecule for an excitation pulse repetition rate of 2 kHz. It is shown that an increase in the UAEB current amplitude in the pulse-periodic regime is due to gas heating by a series of previous pulses, which leads to an increase in the reduced electric field strength as a result of a decrease in the gas density in the zone of the discharge formation. It is found that in the pulse-periodic regime and the formation of the diffuse discharge, the number of electrons in the beam increases by several times for a nitrogen pressure of 9 × 103 Pa. The dependences of the number of electrons in the UAEB on the time of operation of the generator are considered.

  15. Refrigeration for photomultipliers.

    PubMed

    Broadfoot, A L

    1966-08-01

    A closed-cycle mechanical refrigeration system has been adapted to cool photomultipliers automatically. Temperature is adjustable between +50 degrees and -55 degrees C and is stable to within +/-0.30 degrees C. An important feature of the design is the flexible connection to the cold box which allows extensive freedom of motion; this freedom is particularly important in astronomy where the cold box is mounted on the end of a telescope. Liquid Freon refrigerants have been used to cool photomultipliers for rocket flights. A brief description of two methods is given.

  16. Photomultiplier Tubes at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Saunders, Nathan

    2016-09-01

    Liquid noble gas scintillators are widely used in experiments searching for physics beyond the Standard Model. Photomultiplier Tubes (PMTs) working at cryogenic temperatures have been developed as the primary light readout device in those experiments. Three PMTs from Hamamatsu Photonics K.K. (R6041, R11065, and R8520) have been systematically characterized at liquid nitrogen temperature. The high voltage dividing circuits for two of the PMTs were custom-built to make sure there is similar performance at both room and liquid nitrogen temperatures. Their dark count rates at both temperatures were measured. Also measured were their single photoelectron responses at both temperatures using 300, 340, 370, and 420 nm LEDs. The intention is to couple these PMTs directly with inorganic scintillators at liquid nitrogen temperature to achieve high light yeilds for rare-event searches.

  17. Electrical Characterization of Silicon Photo-Multipliers

    NASA Astrophysics Data System (ADS)

    Mwathi, John; Woody, Craig; Stoll, Sean

    2014-09-01

    Silicon photo-multipliers (SiPM) also known as Multi-Pixel Photon Counters (MPPC) are single photon sensitive, semiconductor devices built from Avalanche Photo Diodes (APDs) working in the Geiger mode. The SiPM detectors provide an attractive solution for the detection of signals with low numbers of photons and are suitable candidates to replace Vacuum Photo-Multiplier Tubes (PMTs). They offer advantages over both PMTs and the APDs, including compactness, insensitivity to magnetic fields, high gain (105), ability to be operated at moderate bias voltage (normally lower than 100 volts), and excellent timing properties these characteristics make them suitable for applications in several fields of high energy physics and medical imaging. At Brookhaven National Laboratory, silicon photo-multipliers have been suggested as the readout device to be used in the upgraded sPHENIX in the area of high-energy physics calorimetry and future Positron Emission Tomography (PET) medical imaging systems. Despite all these advantages SiPMs have several drawbacks such as crosstalk, after pulse rate and dark-count rate, exposure to radiation damages the detector and greatly affects its efficiency. We characterized SiPMs of different pixel sizes from SensL and Hamamatsu to determine the SiPM's performance and which of these detectors would best be suited for application. We characterized these SiPM samples using lab instruments including a Picometer and a digital oscilloscope. A Lab view program controlling and reading out the Keithley Picometer via an IEEE-GPIB interface was developed to automate the dark current as a function of bias voltage measurement. Silicon photo-multipliers (SiPM) also known as Multi-Pixel Photon Counters (MPPC) are single photon sensitive, semiconductor devices built from Avalanche Photo Diodes (APDs) working in the Geiger mode. The SiPM detectors provide an attractive solution for the detection of signals with low numbers of photons and are suitable candidates

  18. Characterization of avalanche photodiodes for lidar atmospheric return signal detectors

    NASA Technical Reports Server (NTRS)

    Antill, C. W., Jr.; Holloway, R. M.

    1988-01-01

    Results are presented from tests to characterize noise, dark current, overload, and gain versus bias, relationships of ten avalanche photodiodes. The advantages of avalanche photodiodes over photomultiplier tubes for given laser wavelengths and return signal amplitudes are outlined. The relationship between responsivity and temperature and dark current and temperature are examined. Also, measurements of the noise equivalent power, the excess noise factor, and linearity are given. The advantages of using avalanche photodiodes in the Lidar Atmospheric Sensing Experiment and the Lidar In-Space Technology Experiment are discussed.

  19. Some studies of avalanche photodiode readout of fast scintillators

    SciTech Connect

    Holl, I.; Lorenz, E.; Natkaniez, S.; Renker, D.; Schmelz, C. |; Schwartz, B.

    1995-08-01

    Photomultipliers (PMs) are the classical readout element for scintillation detectors in high energy particle physics, nuclear physics, medical physics, industrial radiation monitors etc. Here, large area avalanche photodiodes with high performance, narrow operation tolerances and high reliability have recently become available. The authors report on some tests of their performance in the readout of fast scintillators.

  20. Ultraviolet avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    McClintock, Ryan; Razeghi, Manijeh

    2015-08-01

    The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields - typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts. In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE.

  1. Silicon photomultipliers and their bio-medical applications

    NASA Astrophysics Data System (ADS)

    Grigoriev, Eugene; Akindinov, Alexander; Breitenmoser, Marco; Buono, Stefano; Charbon, Edoardo; Niclass, Cristiano; Desforges, Iris; Rocca, Roberto

    2007-02-01

    Single Photon Avalanche Diodes (SPADs) have been used for photon counting since the 1960s, but only in the recent decade multi-pixel structures based on SPAD—arrays and silicon photomultipliers have been developed. These devices are finding more and more applications in many fields, where detection of light at the level of a single photon is needed. Due to their exclusive properties (fast response, low operating voltage, single photon sensitivity at room temperature, extremely high gain, stability, compactness, robustness and low price), such sensors are successfully replacing traditional vacuum photomultipliers in many devices. The paper briefly describes the state of the art and suggests some new applications in biology and medicine.

  2. PMT (Photomultiplier) Clinostat

    NASA Astrophysics Data System (ADS)

    Horn, Astrid; Ullrich, Oliver; Huber, Kathrin; Hemmersbach, Ruth

    2011-01-01

    In order to enable kinetic online measurements in cell cultures during exposure to altered gravitational stimulation a new device has been constructed. The analysis principle is based on photon counting with a photomultiplier tube (PMT). The system can work in a rotating mode (clinostat principle) as well as in 1 g conditions. Biological verification was successfully performed with a Luminol-based luminescence measurement of the immune reaction of mammal macrophages. An identical methodical approach is foreseen for an ISS experiment (TRIPLE LUX). Alteration of the rotation speed of the PMT clinostat (60 and 2 rotations per minute—rpm) resulted in a speed-dependent decrease of the luminescent signal, contributing to the current discussion whether and how fast rotation of a sample around one axis perpendicular to the direction of the g-vector provides the condition of functional weightlessness or omnilateral mechano-(gravi-) stimulation.

  3. [Avalanche accidents and treatment of avalanche victims].

    PubMed

    Skaiaa, Sven Christjar; Thomassen, Øyvind

    2016-03-15

    Avalanches may be provoked spontaneously or as a result of human activity, and they trigger the need for considerable rescue resources. Avalanche search and rescue operations are complex and characterised by physical and mental stress. The guidelines for resuscitation of avalanche victims may be perceived as complex and abstruse, which can lead to suboptimal treatment and an increased strain on rescue teams. The purpose of this article is to summarise the principles for medical treatment of avalanche victims.

  4. Photomultiplier tube development for the 1.06 micrometer wavelength

    NASA Technical Reports Server (NTRS)

    Enck, R. S., Jr.

    1976-01-01

    High speed, electrostatic photomultipliers were developed for use in 400 megabit laser communication systems operating at the 1.06 micron wavelength. A high performance, electrostatic III-V photocathode PMT was shown in communication system tests to perform competitively with solid state and avalanche photodiodes. Signal-induced noise and III-V cathode stability were identified as remaining technical problems while cathode quantum efficiencies of or = 5% at 1.06 micron and 320 picosecond rise and fall time pulse performance were achieved.

  5. Avalanche photodiodes for anticoincidence detectors

    NASA Astrophysics Data System (ADS)

    Cirignano, Leonard J.; Farrell, Richard; Redus, Robert H.; Squillante, Michael R.; Hunter, Stanley D.; Cuddapah, Rajani; Mukherjee, Reshmi

    1996-10-01

    Anticoincidence detectors are required for a variety of satellite instruments, including high energy gamma-ray telescopes, in order to differentiate ambient background radiation from signals of interest. Presently, most anticoincidence systems use scintillators coupled to photomultiplier tubes. We have demonstrated that it is now possible to use very high gain solid state avalanche photodiodes (APDs) as photodetectors for this application. A single APD coupled to a 30 cm multiplied by 30 cm multiplied by 0.95 cm plastic scintillator tile demonstrated 100% detection efficiency for minimum ionizing particles, with a low false positive rate. Multiple APDs enhance the signal to noise ratio in addition to providing redundancy. Relative to PMTs, APDs are compact, low power, and mechanically robust devices. Ground test data of APDs for anticoincidence shields is presented.

  6. Acicular photomultiplier photocathode structure

    DOEpatents

    Craig, Richard A.; Bliss, Mary

    2003-09-30

    A method and apparatus for increasing the quantum efficiency of a photomultiplier tube by providing a photocathode with an increased surface-to-volume ratio. The photocathode includes a transparent substrate, upon one major side of which is formed one or more large aspect-ratio structures, such as needles, cones, fibers, prisms, or pyramids. The large aspect-ratio structures are at least partially composed of a photoelectron emitting material, i.e., a material that emits a photoelectron upon absorption of an optical photon. The large aspect-ratio structures may be substantially composed of the photoelectron emitting material (i.e., formed as such upon the surface of a relatively flat substrate) or be only partially composed of a photoelectron emitting material (i.e., the photoelectron emitting material is coated over large aspect-ratio structures formed from the substrate material itself.) The large aspect-ratio nature of the photocathode surface allows for an effective increase in the thickness of the photocathode relative the absorption of optical photons, thereby increasing the absorption rate of incident photons, without substantially increasing the effective thickness of the photocathode relative the escape incidence of the photoelectrons.

  7. Photomultiplier tube gain regulating system

    DOEpatents

    Johnson, Wayne F.

    1976-01-01

    This invention relates to an improved system for regulating the gain of a photomultiplier tube, and was designed for use with the photomultiplier tubes of a GeMSAEC fast analyzers. It has the following advantages over the prior system: noise is virtually eliminated; sample analysis can begin after 3 to 4 revolutions of the rotor; fluorescent and light scattering solutions can be used as a reference; and the reference solution can be in any cuvette on the rotor.

  8. Enhanced Red and Near Infrared Detection in Flow Cytometry Using Avalanche Photodiodes

    PubMed Central

    Lawrence, William G.; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K.

    2008-01-01

    Background Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes, which have improved red sensitivity and a working fluorescence detection range beyond 1000 nm. Methods A comparison of the wavelength dependent performance of the avalanche photodiode and photomultiplier tube was carried out using pulsed light emitting diode sources, calibrated test beads and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of photomultiplier tubes and avalanche photodiode detectors. The avalanche photodiode used an additional amplifier stage to match the internal gain of the photomultiplier tube. Results The resolution of the avalanche photodiode and photomultiplier tube was compared for flow cytometry applications using a pulsed light emitting diode source over the 500 nm to 1060 nm spectral range. These measurements showed the relative changes in the signal to noise performance of the APD and PMT over a broad spectral range. Both the avalanche photodiode and photomultiplier tubes were used to measure the signal to noise response for a set of 6 peak calibration beads over the 530 to 800 nm wavelength range. CD4 positive cells labeled with antibody conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the avalanche photodiode and the photomultiplier tube. The ratios of the intensities of the CD4− and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the avalanche photodiode was able to separate these populations at wavelengths above 800 nm. Conclusions These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal

  9. Cooled avalanche photodiode used for photon detection

    NASA Technical Reports Server (NTRS)

    Robinson, Deborah L.; Metscher, Brian D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5 to 3 times more sensitive than presently-available photomultiplier tubes (PPMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than 25 percent were obtained with detector noise levels comparable to the noise of a PMT; higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  10. Photon detection with cooled avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Metscher, B. D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5-3 times more sensitive than presently available photomultiplier tubes (PMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than twice that of a PMT were obtained with detector noise levels below 100 counts per second. Higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  11. Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Crater wall dust avalanches in southern Arabia Terra.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 10.3, Longitude 24.5 East (335.5 West). 19 meter/pixel resolution.

  12. Solid state photomultiplier for astronomy, phase 2

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hays, K. M.; Laviolette, R. A.

    1989-01-01

    Epitaxial layers with varying donor concentration profiles were grown on silicon substrate wafers using chemical vapor deposition (CVD) techniques, and solid state photomultiplier (SSPM) devices were fabricated from the wafers. Representative detectors were tested in a low background photon flux, low temperature environment to determine the device characteristics for comparison to NASA goals for astronomical applications. The SSPM temperatures varied between 6 and 11 K with background fluxes in the range from less than 5 x 10 to the 6th power to 10 to the 13th power photons/square cm per second at wavelengths of 3.2 and 20 cm. Measured parameters included quantum efficiency, dark count rate and bias current. Temperature for optimal performance is 10 K, the highest ever obtained for SSPMs. The devices exhibit a combination of the lowest dark current and highest quantum efficiency yet achieved. Experimental data were reduced, analyzed and used to generate recommendations for future studies. The background and present status of the microscopic theory of SSPM operation were reviewed and summarized. Present emphasis is on modeling of the avalanche process which is the basis for SSPM operation. Approaches to the solution of the Boltzmann transport equation are described and the treatment of electron scattering mechanisms is presented. The microscopic single-electron transport theory is ready to be implemented for large-scale computations.

  13. Negative feedback avalanche diode

    NASA Technical Reports Server (NTRS)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  14. A micropixel avalanche phototransistor for time of flight measurements

    NASA Astrophysics Data System (ADS)

    Sadigov, A.; Suleymanov, S.; Ahmadov, F.; Ahmadov, G.; Abdullayev, K.; Akberov, R.; Heydarov, N.; Madatov, R.; Mukhtarov, R.; Nazarov, M.; Valiyev, R.

    2017-02-01

    This paper presents results of studies of the silicon based new micropixel avalanche phototransistor (MAPT). MAPT is a modification of well-known silicon photomultipliers (SiPMs) and differs since each photosensitive pixel of the MAPT operates in Geiger mode and comprises an individual micro-transistor operating in binary mode. This provides a high amplitude single photoelectron signal with significantly shorter rise time. The obtained results are compared with appropriate parameters of known SiPMs.

  15. Geiger-mode avalanche photodiodes, history, properties and problems

    NASA Astrophysics Data System (ADS)

    Renker, D.

    2006-11-01

    Geiger-mode avalanche photodiodes (G-APDs) have been developed during recent years and promise to be an alternative to photomultiplier tubes. They have many advantages like single photon response, high detection efficiency, high gain at low bias voltage and very good timing properties but some of their properties, the dark count rate for example, can be a problem. Several types of G-APDs are on the market and should be selected carefully for a given application.

  16. Calibration of a photomultiplier array spectrometer

    NASA Technical Reports Server (NTRS)

    Bailey, Steven A.; Wright, C. Wayne; Piazza, Charles R.

    1989-01-01

    A systematic approach to the calibration of a photomultiplier array spectrometer is presented. Through this approach, incident light radiance derivation is made by recognizing and tracing gain characteristics for each photomultiplier tube.

  17. Evaluation of Hamamatsu R1635 photomultiplier

    NASA Astrophysics Data System (ADS)

    Lo, C. C.; Leskovar, B.

    1984-07-01

    Characteristics of the Hamamatsu R1635 10-mm-diam photomultiplier have been measured. Some typical photomultiplier characteristics—such as gain, dark current, transit, and rise times—are compared with data provided by the manufacturer. Photomultiplier characteristics, generally not available from the manufacturer, such as the single photoelectron time spread and pulse response for full photocathode illumination were measured and are discussed.

  18. Evaluation of Hamamatsu R1635 photomultiplier

    NASA Astrophysics Data System (ADS)

    Lo, C. C.; Leskovar, B.

    1983-05-01

    Characteristics have been measured of the Hamamatsu R1635 10 mm-diameter photomultiplier. Some typical photomultiplier characteristics - such as gain, dark current, transit and rise times - are compared with data provided by the manufacturer. Photomultiplier characteristics, generally not available from the manufacturer, such as the single photoelectron and pulse response time spread for full photocathode illumination were measured and are discussed.

  19. Avalanche speed in thin avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Ong, D. S.; Rees, G. J.; David, J. P. R.

    2003-04-01

    The duration of the avalanche multiplication process in thin GaAs avalanche photodiodes is investigated using a full band Monte Carlo (FBMC) model. The results are compared with those of a simple random path length (RPL) model which makes the conventional assumptions of a displaced exponential for the ionization path length probability distribution function and that carriers always travel at their saturated drift velocities. We find that the avalanche duration calculated by the RPL model is almost twice of that predicted by the FBMC model, although the constant drift velocities used in the former model are estimated using the latter. The faster response predicted by FBMC model arises partly from the reduced dead space but mainly from the velocity overshoot of ionizing carriers. While the feedback multiplication processes forced by the effects of dead space extend the avalanche duration in short structures, the effects of velocity overshoot in the realistic model more than compensate, significantly improving multiplication bandwidth.

  20. HIGH CURRENT COAXIAL PHOTOMULTIPLIER TUBE

    DOEpatents

    Glass, N.W.

    1960-01-19

    A medium-gain photomultiplier tube having high current output, fast rise- time, and matched output impedance was developed. The photomultiplier tube comprises an elongated cylindrical envelope, a cylindrical anode supported at the axis of the envelope, a plurality of elongated spaced opaque areas on the envelope, and a plurality of light admitting windows. A photo-cathode is supported adjacent to each of the windows, and a plurality of secondary emissive dynodes are arranged in two types of radial arrays which are alternately positioned to fill the annular space between the anode and the envelope. The dynodes are in an array being radially staggered with respect to the dynodes in the adjacent array, the dynodes each having a portion arranged at an angle with respect to the electron path, such that electrons emitted by each cathode undergo multiplication upon impingement on a dynode and redirected flight to the next adjacent dynode.

  1. A study of timing properties of Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Avella, Paola; De Santo, Antonella; Lohstroh, Annika; Sajjad, Muhammad T.; Sellin, Paul J.

    2012-12-01

    Silicon Photomultipliers (SiPMs) are solid-state pixelated photodetectors. Lately these sensors have been investigated for Time of Flight Positron Emission Tomography (ToF-PET) applications, where very good coincidence time resolution of the order of hundreds of picoseconds imply spatial resolution of the order of cm in the image reconstruction. The very fast rise time typical of the avalanche discharge improves the time resolution, but can be limited by the readout electronics and the technology used to construct the device. In this work the parameters of the equivalent circuit of the device that directly affect the pulse shape, namely the quenching resistance and capacitance and the diode and parasitic capacitances, were calculated. The mean rise time obtained with different preamplifiers was also measured.

  2. Application of silicon photomultipliers to positron emission tomography.

    PubMed

    Roncali, Emilie; Cherry, Simon R

    2011-04-01

    Historically, positron emission tomography (PET) systems have been based on scintillation crystals coupled to photomultipliers tubes (PMTs). However, the limited quantum efficiency, bulkiness, and relatively high cost per unit surface area of PMTs, along with the growth of new applications for PET, offers opportunities for other photodetectors. Among these, small-animal scanners, hybrid PET/MRI systems, and incorporation of time-of-flight information are of particular interest and require low-cost, compact, fast, and magnetic field compatible photodetectors. With high quantum efficiency and compact structure, avalanche photodiodes (APDs) overcome several of the drawbacks of PMTs, but this is offset by degraded signal-to-noise and timing properties. Silicon photomultipliers (SiPMs) offer an alternative solution, combining many of the advantages of PMTs and APDs. They have high gain, excellent timing properties and are insensitive to magnetic fields. At the present time, SiPM technology is rapidly developing and therefore an investigation into optimal design and operating conditions is underway together with detailed characterization of SiPM-based PET detectors. Published data are extremely promising and show good energy and timing resolution, as well as the ability to decode small scintillator arrays. SiPMs clearly have the potential to be the photodetector of choice for some, or even perhaps most, PET systems.

  3. Gaussian Velocity Distributions in Avalanches

    NASA Astrophysics Data System (ADS)

    Shattuck, Mark

    2004-03-01

    Imagine a world where gravity is so strong that if an ice cube is tilted the shear forces melt the surface and water avalanches down. Further imagine that the ambient temperature is so low that the water re-freezes almost immediately. This is the world of granular flows. As a granular solid is tilted the surface undergoes a sublimation phase transition and a granular gas avalanches down the surface, but the inelastic collisions rapidly remove energy from the flow lowering the granular temperature (kinetic energy per particle) until the gas solidifies again. It is under these extreme conditions that we attempt to uncover continuum granular flow properties. Typical continuum theories like Navier-Stokes equation for fluids follow the space-time evolution of the first few moments of the velocity distribution. We study continuously avalanching flow in a rotating two-dimensional granular drum using high-speed video imaging and extract the position and velocities of the particles. We find a universal near Gaussian velocity distribution throughout the flowing regions, which are characterized by a liquid-like radial distribution function. In the remaining regions, in which the radial distribution function develops sharp crystalline peaks, the velocity distribution has a Gaussian peak but is much broader in the tails. In a companion experiment on a vibrated two-dimensional granular fluid under constant pressure, we find a clear gas-solid phase transition in which both the temperature and density change discontinuously. This suggests that a low temperature crystal and a high temperature gas can coexist in steady state. This coexistence could result in a narrower, cooler, Gaussian peak and a broader, warmer, Gaussian tail like the non-Gaussian behavior seen in the crystalline portions of the rotating drum.

  4. Are Comet Outbursts the Result of Avalanches?

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Melosh, H. Jay

    2016-10-01

    Recently, Rosetta became the first spacecraft to make high-resolution observations of a comet outburst (a rapid, ephemeral increase in dust production) emerging from the surface of a comet nucleus. These outbursts occurred near perihelion, lasted only a few minutes, and produced a highly collimated outburst plume without any corresponding increase in H2O or CO2 gas production (See abstract by Rinaldi et al.). These observations cannot be explained by proposed driving outburst mechanisms (such as crystallization of amorphous ice, cryovolcanic gas exsolution, or explosive outgasing of subsurface chambers), all of which are driven by gas, and would therefore lead to an increase in the gas production.We propose instead that the observed outbursts on Comet 67P/Churyumov-Gerasimenko (hereafter 67P) are the result of cometary avalanches. The surface of 67P contains many cliffs and scarps, with dusty surface layers blanketing the shallower slopes above and below these steep surfaces. The Rosetta spacecraft returned clear evidence of mass wasting, which form icy talus fields that are the source of much of 67P's cometary activity. Additionally, Rosetta observed morphological changes over time in the shallower, dusty surface layers above these steep slopes, which suggest that avalanches periodically release dusty materials onto these active talus fields.Here we present the results of a numerical simulation of dusty material avalanching into an active area (active talus field). These simulations show that such avalanches will generate a transient, highly collimated outburst plume that closely matches the observed morphology of the outbursts emanating from the surface of 67P. This mechanism predicts that cometary outbursting should not be directly associated with any increase in gas production, consistent with observations. Additionally, we show that regions of the nucleus that have sourced outburst plumes contain steep surfaces (above the angle of repose), which is required

  5. Electron avalanches in liquid argon mixtures

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  6. Scintillation probe with photomultiplier tube saturation indicator

    DOEpatents

    Ruch, Jeffrey F.; Urban, David J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

  7. Study on 3-inch Hamamatsu photomultipliers

    NASA Astrophysics Data System (ADS)

    Giordano, Valentina; Aiello, Sebastiano; Leonora, Emanuele

    2016-07-01

    Several kinds of photomultipliers are widely used in astroparticle physics detectors to measure Cherenkov light in media like water or ice. In neutrino telescopes the key element of the detector is the optical module, which consists of one or more photodetectors inside a transparent pressure-resistant glass sphere. It serves as mechanical protection while ensuring good light transmission. The KM3NeT collaboration has developed an innovative design of an optical module composed by 31 photomultipliers (PMTs) of 3-inch diameter housed in a 17-inch glass shpere. The performance of the telescope is largely dependent on the presence on noise pulses present on the anode of the photomultipliers. A study was conducted of noise pulses of Hamamatsu 3-inch diameter photomultipliers measuring time and charge distributions of dark pulses, pre-pulses, delayed pulses and after-pulses, focusing in particular on analysis on multiple afterpulses. Effects of the Earth's magnetic field on 3-inch PMTs were also studied.

  8. Characterization of gigahertz (GHz) bandwidth photomultipliers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Rowe, H. E.

    1977-01-01

    The average impulse response, root-mean-square times jitter as a function of signal level, single photoelectron distribution, and multiphotoelectron dark-count distribution have been measured for two static crossed-field and five electrostatic photomultipliers. The optical signal source for the first three of these tests was a 30 picosecond mode-locked laser pulse at 0.53 micron. The static crossed-field detectors had 2-photoelectron resolution, less than 200 ps rise times, and rms time jitters of 30 ps at the single photoelectron level. The electrostatic photomultipliers had rise times from 1 to 2.5 nanoseconds, and rms time jitters from 160 to 650 ps at the same signal level. The two static crossed-field photomultipliers had ion-feedback-generated dark pulses to the 50-photoelectron level, whereas one electrostatic photomultiplier had dark pulses to the 30-photoelectron level.

  9. Brachytherapy dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F. C.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40-50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25-100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  10. Avalanches in Wood Compression.

    PubMed

    Mäkinen, T; Miksic, A; Ovaska, M; Alava, Mikko J

    2015-07-31

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  11. Dune Avalanche Scars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  12. Avalanches in Wood Compression

    NASA Astrophysics Data System (ADS)

    Mäkinen, T.; Miksic, A.; Ovaska, M.; Alava, Mikko J.

    2015-07-01

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  13. Silicon Photomultipliers, A New Device For Low Light Level Photon Detection

    SciTech Connect

    Moser, Hans-Guenther

    2006-10-27

    Silicon Photomultipliers (SiPM) are novel detectors for low level light detection based on arrays of avalanche photodiodes operating in Geiger mode. Offering good characteristics (fast response, high gain, photon counting capability, insensitivity to magnetic fields, low voltage operation) they have the potential to replace classical photomultipliers (PMT) in many applications. Drawbacks are dark rate and optical cross talk. Though their quantum efficiency is already comparable or better than that of bialkali PMT it is still limited by the structures on the light sensitive front surface. A new concept, presently developed at the Max-Planck semiconductor laboratory, allows boosting the efficiency to almost 100%. Using a fully depleted substrate the light enters through the unstructured backside. A drift diode structure collects the electrons on a small 'point like' avalanche structure for multiplication. Engineering the thin entrance window at the backside using antireflective layers a high efficiency can be achieved in a wide wavelength range (300-1000nm). The paper will summarize the status of front illuminated SiPMs and report on the development of the backside illuminated devices.

  14. Reuyl Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren

  15. Avalanche Photodiode Statistics in Triggered-avalanche Detection Mode

    NASA Technical Reports Server (NTRS)

    Tan, H. H.

    1984-01-01

    The output of a triggered avalanche mode avalanche photodiode is modeled as Poisson distributed primary avalanche events plus conditionally Poisson distributed trapped carrier induced secondary events. The moment generating function as well as the mean and variance of the diode output statistics are derived. The dispersion of the output statistics is shown to always exceed that of the Poisson distribution. Several examples are considered in detail.

  16. Exclusion processes with avalanches.

    PubMed

    Bhat, Uttam; Krapivsky, P L

    2014-07-01

    In an exclusion process with avalanches, when a particle hops to a neighboring empty site which is adjacent to an island the particle on the other end of the island immediately hops, and if it joins another island this triggers another hop. There are no restrictions on the length of the islands and the duration of the avalanche. This process is well defined in the low-density region ρ < 1/2. We describe the nature of steady states (on a ring) and determine all correlation functions. For the asymmetric version of the process, we compute the steady state current, and we describe shock and rarefaction waves which arise in the evolution of the step-function initial profile. For the symmetric version, we determine the diffusion coefficient and examine the evolution of a tagged particle.

  17. Strain avalanches in plasticity

    NASA Astrophysics Data System (ADS)

    Argon, A. S.

    2013-09-01

    Plastic deformation at the mechanism level in all solids occurs in the form of discrete thermally activated individual stress relaxation events. While there are clear differences in mechanisms between dislocation mediated events in crystalline solids and by individual shear transformations in amorphous metals and semiconductors, such relaxation events interact strongly to form avalanches of strain bursts. In all cases the attendant distributions of released energy as amplitudes of acoustic emissions, or in serration amplitudes in flow stress, the levels of strain bursts are of fractal character with fractal exponents in the range from -1.5 to -2.0, having the character of phenomena of self-organized criticality, SOC. Here we examine strain avalanches in single crystals of ice, hcp metals, the jerky plastic deformations of nano-pillars of fcc and bcc metals deforming in compression, those in the plastic flow of bulk metallic glasses, all demonstrating the remarkable universality of character of plastic relaxation events.

  18. Laboratory singing sand avalanches.

    PubMed

    Dagois-Bohy, Simon; Ngo, Sandrine; du Pont, Sylvain Courrech; Douady, Stéphane

    2010-02-01

    Some desert sand dunes have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this phenomenon, known since early travelers (Darwin, Marco Polo, etc.), has been called the song of dunes. But only in late 19th century scientific observations were made, showing three important characteristics of singing dunes: first, not all dunes sing, but all the singing dunes are composed of dry and well-sorted sand; second, this sound occurs spontaneously during avalanches on a slip face; third this is not the only way to produce sound with this sand. More recent field observations have shown that during avalanches, the sound frequency does not depend on the dune size or shape, but on the grain diameter only, and scales as the square root of g/d--with g the gravity and d the diameter of the grains--explaining why all the singing dunes in the same vicinity sing at the same frequency. We have been able to reproduce these singing avalanches in laboratory on a hard plate, which made possible to study them more accurately than on the field. Signals of accelerometers at the flowing surface of the avalanche are compared to signals of microphones placed above, and it evidences a very strong vibration of the flowing layer at the same frequency as on the field, responsible for the emission of sound. Moreover, other characteristics of the booming dunes are reproduced and analyzed, such as a threshold under which no sound is produced, or beats in the sound that appears when the flow is too large. Finally, the size of the coherence zones emitting sound has been measured and discussed.

  19. Hebes Chasma Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in Hebes Chasma.

    Image information: VIS instrument. Latitude -1.4, Longitude 286.6 East (73.4 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. A novel Silicon Photomultiplier with bulk integrated quench resistors: utilization in optical detection and tracking applications for particle physics

    NASA Astrophysics Data System (ADS)

    Petrovics, Stefan; Andricek, Ladislav; Diehl, Inge; Hansen, Karsten; Jendrysik, Christian; Krueger, Katja; Lehmann, Raik; Ninkovic, Jelena; Reckleben, Christian; Richter, Rainer; Schaller, Gerhard; Schopper, Florian; Sefkow, Felix

    2017-02-01

    Silicon Photomultipliers (SiPMs) are a promising candidate for replacing conventional photomultiplier tubes (PMTs) in many applications, thanks to ongoing developments and advances in their technology. Conventional SiPMs are generally an array of avalanche photo diodes, operated in Geiger mode and read out in parallel, thus leading to the necessity of a high ohmic quenching resistor. This resistor enables passive quenching and is usually located on top of the array, limiting the fill factor of the device. In this paper, a novel detector concept with a bulk integrated quenching resistor will be recapped. In addition, due to other advantages of this novel detector design, a new concept, in which these devices will be utilized as tracking detectors for particle physics applications will be introduced, as well as first simulation studies and experimental measurements of this new approach.

  1. Afterpulse time-spectrum measurement of RCA 8850 photomultiplier

    NASA Astrophysics Data System (ADS)

    Lo, C. C.; Leskovar, B.

    1982-10-01

    The photomultiplier dark pulse height, signal induced pulse height, and afterpulse time spectra have been measured on three RCA 8850 52 mm diameter photomultipliers. The first dynode of this photomultiplier has a cesium activated, gallium phosphide secondary emitting surface. Measurement techniques and the measuring systems are described in detail.

  2. Tikhonravov Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located within a small crater inside Tikhonravov Crater.

    Image information: VIS instrument. Latitude 12.6, Longitude 37.1 East (322.9 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Lycus Sulci Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches occur on the slopes of Lycus Sulci near Olympus Mons.

    Image information: VIS instrument. Latitude 28.1, Longitude 220.4 East (139.6 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in a small canyon within a crater rim northeast of Naktong Vallis.

    Image information: VIS instrument. Latitude 7.1, Longitude 34.7 East (325.3 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    This region of dust avalanches is located in and around a crater to the west of yesterday's image.

    Image information: VIS instrument. Latitude 14.7, Longitude 32.7 East (327.3 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Integrated avalanche photodiode arrays

    DOEpatents

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  7. Silicon photomultiplier detector for atmospheric lidar applications.

    PubMed

    Riu, Jordi; Sicard, Michaël; Royo, Santiago; Comerón, Adolfo

    2012-04-01

    The viability and performance of using a silicon photomultiplier (SiPM) in atmospheric lidar applications is experimentally compared against the well-established use of photomultiplier tubes. By using a modified lidar setup for simultaneous data acquisition of both types of sensors, we demonstrate that a SiPM can offer appropriate qualities for this specific application where the detection of fast, extremely low light pulses and large dynamic range signals are essential capabilities. The experimental results show that the SiPM has an appropriate behaviour offering suitable capabilities for elastic, backscatter aerosol lidars. To the best of our knowledge, this is the first study showing SiPM for atmospheric lidar applications.

  8. Cherenkov TOF PET with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  9. Scintillator tiles read out with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Pooth, O.; Radermacher, T.; Weingarten, S.; Weinstock, L.

    2015-10-01

    A detector prototype based on a fast plastic scintillator read out with silicon photomultipliers is presented. All studies have been done with cosmic muons and focus on parameter optimization such as coupling the SiPM to the scintillator or wrapping the scintillator with reflective material. The prototype shows excellent results regarding the light-yield and offers a detection efficiency of 99.5% with a signal purity of 99.9% for cosmic muons.

  10. Gated photomultiplier response characterization for DIAL measurements

    NASA Technical Reports Server (NTRS)

    Lee, H. Sang; Schwemmer, Geary K.; Korb, C. Laurence; Dombrowski, Mark; Prasad, Coorg

    1990-01-01

    The characteristics of various detector responses are studied to understand the cause of various systematic biases and to minimize these undesirable effects in measurements of transient signals with large dynamic range. Signal-induced bias, gain variation, and the linearity of commonly used gated photomultipliers in the current integrating mode are quantitatively evaluated. Analysis of the results indicates that impurity ions inside the photomultiplier tubes (PMT) are the source of the signal induced bias and gain variation. Two different PMTs used in this study show significant differences in the magnitude and decay behavior of signal-induced bias. It was found that it can be minimized by using an external amplifier to reduce PMT gain, and by applying a low potential between the cathode and first dynode. The linearity of a PMT is also studied over a large dynamic range of input intensities employing a new technique which does not require an absolute calibration. The result of this study shows that the photomultiplier response is linear only for a limited input intensity range below a certain anode current.

  11. Study of the photo-detection efficiency of FBK High-Density silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Zappalà, G.; Acerbi, F.; Ferri, A.; Gola, A.; Paternoster, G.; Regazzoni, V.; Zorzi, N.; Piemonte, C.

    2016-11-01

    This work presents a study of the factors contributing to the Photo-Detection Efficiency of Silicon Photomultipliers (SiPMs): Quantum Efficiency, Triggering Probability and Fill Factor. Two different SiPM High-Density technologies are tested, NUV-HD, based on n-on-p junction, and RGB-HD, based on p-on-n junction, developed at FBK, Trento. The quantum efficiency was measured on photodiodes produced along with the SiPMs. The triggering probability, as a function of wavelength and bias voltage, was measured on circular Single Photon Avalanche Diodes (SPADs) with 100% fill factor. Square SPADs, having the same layout of single SiPM cells, were studied to measure the effective fill factor and compare it to the nominal value. The comparison of the circular and square SPADs allows to get the transition region size between the effective active area of the cell and the one defined by the layout.

  12. Method for passively compensating for temperature coefficient of gain in silicon photomultipliers and similar devices

    SciTech Connect

    McKisson, John E.; Barbosa, Fernando

    2015-09-01

    A method for designing a completely passive bias compensation circuit to stabilize the gain of multiple pixel avalanche photo detector devices. The method includes determining circuitry design and component values to achieve a desired precision of gain stability. The method can be used with any temperature sensitive device with a nominally linear coefficient of voltage dependent parameter that must be stabilized. The circuitry design includes a negative temperature coefficient resistor in thermal contact with the photomultiplier device to provide a varying resistance and a second fixed resistor to form a voltage divider that can be chosen to set the desired slope and intercept for the characteristic with a specific voltage source value. The addition of a third resistor to the divider network provides a solution set for a set of SiPM devices that requires only a single stabilized voltage source value.

  13. The solid state photomultiplier: Status of photon counting beyond the near-infrared

    NASA Technical Reports Server (NTRS)

    Hays, K. M.; Laviolette, R. A.; Stapelbroek, M. G.; Petroff, M. D.

    1989-01-01

    Rockwell International's Solid State Photomultiplier (SSPM) is an impurity-band avalanche device which can count individual photons with wavelengths between 0.4 and 28 micrometers. Its response to a photon is a pulse of between 10(exp 4) and 10(exp 5) conduction electrons, making it an important device for use in phenomenology. The characteristics of the SSPM make it a potentially important device for use in astronomical applications. Contract NAS2-12400 was initiated in June 1986 to conduct modeling and characterization studies of the SSPM to provide a basis for assessing its use in astronomical systems. Some SSPM models and results of measurements which characterize the group of SSPMs recently fabricated on this contract are discussed.

  14. Development and characterization of sub-100 ps photomultiplier tubes

    SciTech Connect

    Horsfield, C. J.; Rubery, M. S.; Mack, J. M.; Young, C. S.; Herrmann, H. W.; Caldwell, S. E.; Evans, S. C.; Sedilleo, T. J.; Kim, Y. H.; McEvoy, A.; Milnes, J. S.; Howorth, J.; Davis, B.; O'Gara, P. M.; Garza, I.; Miller, E. K.; Stoeffl, W.; Ali, Z.

    2010-10-15

    We describe the evaluation of a microchannel plate (MCP) photomultiplier tube (PMT), incorporating a 3 {mu}m pore MCP and constant voltage anode and cathode gaps. The use of the small pore size results in PMTs with response functions of the order of 85 ps full-width-half-maximum, while the constant electric field across the anode and cathode gaps produces a uniform response function over the entire operating range of the device. The PMT was characterized on a number of facilities and employed on gas Cherenkov detectors fielded on various deuterium tritium fuel (DT) implosions on the Omega Laser Facility at the University of Rochester. The Cherenkov detectors are part of diagnostic development to measure Gamma ray reaction history for DT implosions on the National Ignition Facility.

  15. In-depth study of single photon time resolution for the Philips digital silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gundacker, S.; Pizzichemi, M.; Ghezzi, A.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-06-01

    The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.

  16. AlInAsSb/GaSb staircase avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Ren, Min; Maddox, Scott; Chen, Yaojia; Woodson, Madison; Campbell, Joe C.; Bank, Seth

    2016-02-01

    Over 30 years ago, Capasso and co-workers [IEEE Trans. Electron Devices 30, 381 (1982)] proposed the staircase avalanche photodetector (APD) as a solid-state analog of the photomultiplier tube. In this structure, electron multiplication occurs deterministically at steps in the conduction band profile, which function as the dynodes of a photomultiplier tube, leading to low excess multiplication noise. Unlike traditional APDs, the origin of staircase gain is band engineering rather than large applied electric fields. Unfortunately, the materials available at the time, principally AlxGa1-xAs/GaAs, did not offer sufficiently large conduction band offsets and energy separations between the direct and indirect valleys to realize the full potential of the staircase gain mechanism. Here, we report a true staircase APD operation using alloys of a rather underexplored material, AlxIn1-xAsySb1-y, lattice-matched to GaSb. Single step "staircase" devices exhibited a constant gain of ˜2×, over a broad range of applied bias, operating temperature, and excitation wavelengths/intensities, consistent with Monte Carlo calculations.

  17. Fracture mechanics of snow avalanches

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Timonen, J.

    2001-07-01

    Dense snow avalanches are analyzed by modeling the snow slab as an elastic and brittle plate, attached by static friction to the underlying ground. The grade of heterogeneity in the local fracture (slip) thresholds, and the ratio of the average substrate slip threshold to the average slab fracture threshold, are the decisive parameters for avalanche dynamics. For a strong pack of snow there appears a stable precursor of local slips when the frictional contacts are weakened (equivalent to rising temperature), which eventually trigger a catastrophic crack growth that suddenly releases the entire slab. In the opposite limit of very high slip thresholds, the slab simply melts when the temperature is increased. In the intermediate regime, and for a homogeneous slab, the model display features typical of real snow avalanches. The model also suggests an explanation to why avalanches are impossible to forecast reliably based on precursor observations. This explanation may as well be applicable to other catastrophic rupture phenomena such as earthquakes.

  18. Statistics of electron avalanches and bursts in low pressure gases below the breakdown voltage

    SciTech Connect

    Donko, Z.

    1995-12-31

    Avalanches in different types of dynamical systems have been subject of recent interest. Avalanches building up in gases play an important role in radiation detectors and in the breakdown process of gas discharges. We have used computer simulation to study statistical properties of electron avalanches and bursts (sequences of avalanches) in a gas subjected to a homogeneous electric field. Helium was used as buffer gas, but we believe that our results are more general. The bursts were initiated by injecting low energy electrons into the gas. We applied Monte Carlo procedure to trace the trajectories of electrons. The elementary processes considered in the model were anisotropic elastic scattering of electrons from He atoms, electron impact excitation and ionization of He atoms. The electrons were traced until the are reached the perfectly absorbing anode.

  19. Further studies of electron avalanche gain in liquid argon

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Jackson, K.H.; Peskov, V.; Wenzel, W.A.; Joo, K.S.

    2003-03-07

    Previously we showed how small admixtures of xenon (Xe) stabilize electron avalanches in liquid Argon (LAr). In the present work, we have measured the positive charge carrier mobility in LAr with small admixtures of Xe to be 6.4 x 10{sup -3} cm{sup 2}/Vsec, in approximate agreement with the mobility measured in pure LAr, and consistent with holes as charge carriers. We have measured the concentration of Xe actually dissolved in the liquid and compared the results with expectations based on the amount of Xe gas added to the LAr. We also have tested LAr doped with krypton to investigate the mechanism of avalanche stabilization.

  20. Evaluation of the new-generation RCA 8854 photomultiplier

    NASA Astrophysics Data System (ADS)

    Lo, C. C.; Leskovar, B.

    1981-10-01

    Characteristics were measured for a 114 mm diameter photomultiplier. The first dynode of this photomultiplier has a cesium activated, gallium phosphide secondary emitting surface. Some typical photomultiplier characteristics - such as gain, dark current and risetime - are compared with data provided by the manufacturer. Photomultiplier characteristics also measured include pulse height spectrum and time spectrum of afterpulses. In addition, measurements were made of the collection and quantum efficiency uniformity and of the single photoelectron time spread for the full photocathode illumination. Measurement techniques and description of measuring systems are given.

  1. XeCl Avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, Robert C.

    1981-01-01

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  2. XeCl avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, R.C.

    1979-10-10

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  3. Neuronal avalanches and coherence potentials

    NASA Astrophysics Data System (ADS)

    Plenz, D.

    2012-05-01

    The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.

  4. Fiber optic dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2014-08-01

    A small dimension, real-time readout dosimeter is desirable for specific applications in medical physics as for example, dose measurement in prostate brachytherapy. This particular radiotherapy procedure consists in the permanent deposition of low energy, low-dose and low-dose rate small sized radioactive seeds. We developed a scintillating fiber optic based dosimeter suitable for in-vivo, real-time low dose and low dose rate measurements. Due to the low scintillation light produced in the scintillating fiber, a high sensitive and high gain light detector is required. The Silicon Photomultipliers are an interesting option that allowed us to obtain good results in our studies.

  5. Avalanche effects near nanojunctions

    NASA Astrophysics Data System (ADS)

    Nandigana, Vishal V. R.; Aluru, N. R.

    2016-07-01

    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1 /f "-type dynamics for the voltage chaos and "1 /f2 "-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.

  6. EEG, temporal correlations, and avalanches.

    PubMed

    Benayoun, Marc; Kohrman, Michael; Cowan, Jack; van Drongelen, Wim

    2010-12-01

    Epileptiform activity in the EEG is frequently characterized by rhythmic, correlated patterns or synchronized bursts. Long-range temporal correlations (LRTC) are described by power law scaling of the autocorrelation function and have been observed in scalp and intracranial EEG recordings. Synchronous large-amplitude bursts (also called neuronal avalanches) have been observed in local field potentials both in vitro and in vivo. This article explores the presence of neuronal avalanches in scalp and intracranial EEG in the context of LRTC. Results indicate that both scalp and intracranial EEG show LRTC, with larger scaling exponents in scalp recordings than intracranial. A subset of analyzed recordings also show avalanche behavior, indicating that avalanches may be associated with LRTC. Artificial test signals reveal a linear relationship between the scaling exponent measured by detrended fluctuation analysis and the exponent of the avalanche size distribution. Analysis and evaluation of simulated data reveal that preprocessing of EEG (squaring the signal or applying a filter) affect the ability of detrended fluctuation analysis to reliably measure LRTC.

  7. Spatiotemporal recurrences of sandpile avalanches

    NASA Astrophysics Data System (ADS)

    Tarun, Anjali B.; Paguirigan, Antonino A.; Batac, Rene C.

    2015-10-01

    We study the space and time properties of avalanches in a continuous sandpile model by constructing a temporally directed network linking together the recurrent avalanche events based on their spatial separation. We use two different criteria for network construction: a later event is connected to a previous one if it is either nearest or farthest from it among all the later events. With this, we observe scale-free regimes emerge as characterized by the following power-law exponents: (a) α = 1.7 for the avalanche size distributions; (b) βF = 2.1 in the in-degree distribution of farthest recurrences; (c) δ = 1 for the separation distances; and (d) γ = 1 for the temporal separations of recurrences. Our results agree with earlier observations that describe the sandpile avalanches as repulsive events, i.e. the next avalanche is more likely to be physically separated from an earlier one. These observations, which are not captured by usual interoccurrence statistics and by random connection mechanisms, suggest an underlying spatiotemporal organization in the sandpile that makes it useful for modeling real-world systems.

  8. Back-side readout semiconductor photomultiplier

    DOEpatents

    Choong, Woon-Seng; Holland, Stephen E

    2014-05-20

    This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.

  9. Evaluation of a near-infrared photomultiplier

    NASA Technical Reports Server (NTRS)

    Evans, W. E.

    1978-01-01

    A high performance near infrared sensitive photomultiplier tube was procured and evaluated with emphasis on those characteristics affecting its use over the very large amplitude range of signals encountered by an airborne lidar intended for mapping the distribution of stratospheric aerosols. A cathode quantum efficiency of 4.3 percent at 1.06 micrometer wavelength and a background count of less than 10,000 per second were realized. It is recommended that the tube be stored and operated at a temperature near -20 C, or cooler. Performance was found acceptable for the application in both pulse counting and analog modes, but careful design, probably including dynamic gain control, will be required to effectively utilize both modes on the same lidar shot.

  10. Tests of timing properties of silicon photomultipliers

    SciTech Connect

    Ronzhin, A.; Albrow, M.; Byrum, K.; Demarteau, M.; Los, S.; May, E.; Ramberg, A.; Va'vra, J.; Zatserklyaniy, A.; /Puerto Rico U., Mayaguez

    2010-03-01

    Timing measurements of Silicon Photomultipliers (SiPM) [1] and [2] at the picosecond level were performed at Fermilab. The core timing resolution of the electronic measurement technique is approximately 2 ps. The single photoelectron time resolution (SPTR) was measured for the signals coming from the SiPM's. A SPTR of about one hundred picoseconds was obtained for SiPM's illuminated by laser pulses. The dependence of the SPTR on applied bias voltage and on the wavelength of the light was measured. A simple model is proposed to explain the difference in the SPTR for blue and red light. A time of flight system based on the SiPM's, with quartz Cherenkov radiators, was tested in a proton beam at Fermilab. The time resolution obtained is 35 ps per SiPM. Finally, requirements for the SiPM's temperature and bias voltage stability to maintain the time resolution are discussed.

  11. First Sentinel-1 detections of avalanche debris

    NASA Astrophysics Data System (ADS)

    Malnes, E.; Eckerstorfer, M.; Vickers, H.

    2015-03-01

    Snow avalanches are natural hazards, occurring in snow covered mountain terrain worldwide. Present avalanche research and forecasting relies on complete avalanche activity records in a given area over an entire winter season, which cannot be provided with traditional, mainly field based methods. Remote sensing, using weather, and light independent SAR satellites has the potential of filling these data gaps, however, to date their use was limited by high acquisition costs, long repeat cycles, and small ground swath. Sentinel-1A (S1A), on the other hand, operational since October 2014 provides free-of-charge, 20 m spatial resolution, 250 km × 150 km ground swath images every 12 days. In this paper, we present for the first time, that it is possible to detect avalanche debris using S1A images. We successfully apply a change detection method that enhances avalanche debris zones, by comparing repeat pass images before and after the avalanche occurred. Due to the increase in backscatter from avalanche debris, manual detection is possible. With this first proof-of-concept, we show the detection of 489 avalanche debris zones in a S1A image from 6 January 2015, covering the counties Troms and parts of Nordland in Northern Norway. We validate our avalanche detection using very high resolution Radarsat-2 Ultrafine images, as well as extensive field reconnaissance. Our results give us confidence, that S1A detection of avalanches is a critical step towards operational use of SAR avalanche detection in avalanche forecasting.

  12. The silicon photomultiplier as a metasystem with designed electronics as metadevice for a new receiver-emitter in visible light communications

    NASA Astrophysics Data System (ADS)

    Gutierrez, R. M.; Hernandez, A. I.; Castañeda, L. F.; Castaño, J. F.

    2015-09-01

    A Silicon Photomultiplier, SiPM, is a metasystem of Avalanche Photodiodes, APDs, which embedded in a specific purpose electronic, becomes a metadevice with unique and useful advanced functionalities to capture, transmit and analyze information with increased efficiency and security. The SiPM is a very small state of the art photo-detector with very high efficiency and sensitivity, with good response to controlled light pulses in the presence of background light without saturation. New results profit of such metadevice to propose a new receiver-emitter system useful for Visible Light Communication, VLC.

  13. UV photodetectors, focal plane arrays, and avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    McClintock, Ryan

    2007-12-01

    improve the performance of these devices to the point where they can effectively compete with photo-multiplier tube technology, it is necessary to develop devices with internal gain. To this end GaN and AlGaN based avalanche photodiodes have been studied, and we report the first realization of a solar-blind back-illuminated avalanche photodiode. The next logical step is to continue this work and realize Geiger mode avalanche photodiodes capable of single photon detection.

  14. A branching process model for sand avalanches

    SciTech Connect

    Garcia-Pelayo, R.; Salazar, I.; Schieve, W.C. )

    1993-07-01

    An analytically solvable model for sand avalanches of noninteracting grains of sand, based on the Chapman-Kolmogorov equations, is presented. For a single avalanche, distributions of lifetimes, sizes of overflows and avalanches, and correlation functions are calculated. Some of these are exponentials, some are power laws. Spatially homogeneous distributions of avalanches are also studied. Computer simulations of avalanches of interacting grains of sand are compared to the solutions to the Chapman-Kolmogorov equations. It is found that within the range of parameters explored in the simulation, the approximation of noninteracting grains of sand is a good one. 20 refs., 4 figs.

  15. Lumped transmission line avalanche pulser

    DOEpatents

    Booth, R.

    1995-07-18

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse. 8 figs.

  16. Lumped transmission line avalanche pulser

    DOEpatents

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  17. Preliminary results for the design, fabrication, and performance of a backside-illuminated avalanche drift detector

    NASA Astrophysics Data System (ADS)

    Qiao, Yun; Liang, Kun; Chen, Wen-Fei; Han, De-Jun

    2013-10-01

    The detection of low-level light is a key technology in various experimental scientific studies. As a photon detector, the silicon photomultiplier (SiPM) has gradually become an alternative to the photomultiplier tube (PMT) in many applications in high-energy physics, astroparticle physics, and medical imaging because of its high photon detection efficiency (PDE), good resolution for single-photon detection, insensitivity to magnetic field, low operating voltage, compactness, and low cost. However, primarily because of the geometric fill factor, the PDE of most SiPMs is not very high; in particular, for those SiPMs with a high density of micro cells, the effective area is small, and the bandwidth of the light response is narrow. As a building block of the SiPM, the concept of the backside-illuminated avalanche drift detector (ADD) was first proposed by the Max Planck Institute of Germany eight years ago; the ADD is promising to have high PDE over the full energy range of optical photons, even ultraviolet light and X-ray light, and because the avalanche multiplication region is very small, the ADD is beneficial for the fabrication of large-area SiPMs. However, because of difficulties in design and fabrication, no significant progress had been made, and the concept had not yet been verified. In this paper, preliminary results in the design, fabrication, and performance of a backside-illuminated ADD are reported; the difficulties in and limitations to the backside-illuminated ADD are analyzed.

  18. Back-Side Readout Silicon Photomultiplier.

    PubMed

    Choong, Woon-Seng; Holland, Stephen E

    2012-07-19

    We present a novel structure for the back-side readout silicon photomultipler (SiPM). Current SiPMs are front-illuminated structures with front-side readout, which have relatively small geometric fill factor leading to degradation in their photon detection efficiency (PDE). Back-side readout devices will provide an advantageous solution to achieve high PDE. We designed and investigated a novel structure that would allow back-side readout while creating a region of high electric field optimized for avalanche breakdown. In addition, this structure has relatively high fill factor and also allow direct coupling of individual micro-cell of the SiPM to application-specific integrated circuits. We will discuss the performance that can be attained with this structure through device simulation and the process flow that can be used to fabricate this structure through process simulation.

  19. Avalanche dynamics on a rough inclined plane.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  20. Silicon Photomultipliers and front-end electronics performance for Cherenkov Telescope Array camera development

    NASA Astrophysics Data System (ADS)

    Ambrosi, G.; Bissaldi, E.; Giglietto, N.; Giordano, F.; Ionica, M.; Paoletti, R.; Rando, R.; Simone, D.; Vagelli, V.

    2017-02-01

    In the last few years a number of efforts have been undertaken to develop new technology related to Silicon Photomultipliers (SiPMs). These photosensors consist of an array of identical Avalanche Photodiodes operating in Geiger mode and connected in parallel to a single output. The Italian Institute of Nuclear Physics (INFN) is involved in the R&D program Progetto Premiale Telescopi CHErenkov made in Italy (TECHE.it) to develop photosensors for a SiPM based camera that will be part of the Cherenkov Telescope Array (CTA) observatory. In this framework tests are ongoing on innovative devices suitable to detect Cherenkov light in the blue and near-UV wavelength region, the so-called Near Ultra-Violet Silicon Photomultipliers (NUV SiPMs). The tests on photosensors produced by Fondazione Bruno Kessler (FBK) are revealing promising performance: low operating voltage, capability to detect very low intensity light down to a single photon and high Photo Detection Efficiency (PDE) in the range 390-410 nm. In particular the developed device is a High Density NUV-SiPM (NUV-HD SiPM) based on a micro-cell of 30 μm×30 μm and 6 mm×6 mm area. Tests on this detector in single-cell configuration and in a matrix arrangement have been done. At the same time front-end electronics based on the waveform sampling technique optimized for the new NUV-HD SIPMs is under study and development.

  1. Qubit readout with the Josephson Photomultiplier

    NASA Astrophysics Data System (ADS)

    Ribeill, Guilhem

    Recent demonstrations of error correction in many qubit circuits, as well as efforts to build a logical qubit, have shown the need for a simple and scalable superconducting quantum bit (qubit) readout. Current solutions based on heterodyne detection and cryogenic amplification of microwave readout tones may prove difficult to scale, while photon counting presents an attractive alternative. However, the development of counters operating at these frequencies has proved technically challenging. In this thesis, we describe the development of the Josephson Photomultiplier (JPM), a microwave photon counting circuit. We discuss the JPM theoretically, and describe the fabrication of the JPM using standard thin film lithography techniques. We measure its properties as a microwave photon counter using a qubit as an in-situ calibrated source of photons. We measure a JPM quantum efficiency at the few percent level. We then use the JPM to perform readout of a transmon qubit in both the dispersive and bright regimes. We observe raw measurement fidelities of 35% and 62% respectively. We discuss how the JPM and measurement protocol could be further optimized to achieve fidelities in excess of 90%.

  2. Time estimation with multichannel digital silicon photomultipliers.

    PubMed

    Venialgo, Esteban; Mandai, Shingo; Gong, Tim; Schaart, Dennis R; Charbon, Edoardo

    2015-03-21

    Accuracy in timemark estimation is crucial for time-of-flight positron emission tomography, in order to ensure high quality images after reconstruction. Since the introduction of multichannel digital silicon photomultipliers, it is possible to acquire several photoelectron timestamps for each individual gamma event. We study several timemark estimators based on multiple photoelectron timestamps by means of a comprehensive statistical model. In addition, we calculate the MSE of the estimators in comparison to the Cramér-Rao lower bound as a function of the system design parameters. We investigate the effect of skipping some of the photoelectron timestamps, which is a direct consequence of the limited number of time-to-digital converters and we propose a technique to compensate for this effect. In addition, we carry out an extensive analysis to evaluate the influence of dark counts on the detector timing performance. Moreover, we investigate the improvement of the timing performance that can be obtained with dark count filtering and we propose an appropriate filtering method based on measuring the time difference between sorted timestamps. Finally, we perform a full Monte Carlo simulation to compare different timemark estimators by exploring several system design parameters. It is demonstrated that a simple weighted-average estimator can achieve a comparable performance as the more complex maximum likelihood estimator.

  3. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  4. Quantitative Scaling of Magnetic Avalanches

    NASA Astrophysics Data System (ADS)

    Durin, G.; Bohn, F.; Corrêa, M. A.; Sommer, R. L.; Le Doussal, P.; Wiese, K. J.

    2016-08-01

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples—which are characterized by long-range and short-range elasticity, respectively—both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.

  5. Quantitative Scaling of Magnetic Avalanches.

    PubMed

    Durin, G; Bohn, F; Corrêa, M A; Sommer, R L; Le Doussal, P; Wiese, K J

    2016-08-19

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples-which are characterized by long-range and short-range elasticity, respectively-both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.

  6. Simulating Silicon Photomultiplier Response to Scintillation Light.

    PubMed

    Jha, Abhinav K; van Dam, Herman T; Kupinski, Matthew A; Clarkson, Eric

    2013-02-01

    The response of a Silicon Photomultiplier (SiPM) to optical signals is affected by many factors including photon-detection efficiency, recovery time, gain, optical crosstalk, afterpulsing, dark count, and detector dead time. Many of these parameters vary with overvoltage and temperature. When used to detect scintillation light, there is a complicated non-linear relationship between the incident light and the response of the SiPM. In this paper, we propose a combined discrete-time discrete-event Monte Carlo (MC) model to simulate SiPM response to scintillation light pulses. Our MC model accounts for all relevant aspects of the SiPM response, some of which were not accounted for in the previous models. We also derive and validate analytic expressions for the single-photoelectron response of the SiPM and the voltage drop across the quenching resistance in the SiPM microcell. These analytic expressions consider the effect of all the circuit elements in the SiPM and accurately simulate the time-variation in overvoltage across the microcells of the SiPM. Consequently, our MC model is able to incorporate the variation of the different SiPM parameters with varying overvoltage. The MC model is compared with measurements on SiPM-based scintillation detectors and with some cases for which the response is known a priori. The model is also used to study the variation in SiPM behavior with SiPM-circuit parameter variations and to predict the response of a SiPM-based detector to various scintillators.

  7. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  8. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Caplan-Auerbach, Jacqueline; Waythomas, Christopher F.; Wessels, Rick L.

    2007-11-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 × 10 6 m 3 to 3 × 10 7 m 3 with recent return periods of 2-4 years. We have reconstructed an avalanche event record for the past 45 years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613 K assuming heat source areas of 1000 to 25 m 2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45 years

  9. The prehospital management of avalanche victims.

    PubMed

    Kornhall, Daniel K; Martens-Nielsen, Julie

    2016-12-01

    Avalanche accidents are frequently lethal events with an overall mortality of 23%. Mortality increases dramatically to 50% in instances of complete burial. With modern day dense networks of ambulance services and rescue helicopters, health workers often become involved during the early stages of avalanche rescue. Historically, some of the most devastating avalanche accidents have involved military personnel. Armed forces are frequently deployed to mountain regions in order to train for mountain warfare or as part of ongoing conflicts. Furthermore, military units are frequently called to assist civilian organised rescue in avalanche rescue operations. It is therefore important that clinicians associated with units operating in mountain regions have an understanding of, the medical management of avalanche victims, and of the preceding rescue phase. The ensuing review of the available literature aims to describe the pathophysiology particular to avalanche victims and to outline a structured approach to the search, rescue and prehospital medical management.

  10. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode

    SciTech Connect

    Suzuki, Shingo; Namekata, Naoto Inoue, Shuichiro; Tsujino, Kenji

    2014-01-27

    We report on visible light single photon detection using a sinusoidally-gated silicon avalanche photodiode. Detection efficiency of 70.6% was achieved at a wavelength of 520 nm when an electrically cooled silicon avalanche photodiode with a quantum efficiency of 72.4% was used, which implies that a photo-excited single charge carrier in a silicon avalanche photodiode can trigger a detectable avalanche (charge) signal with a probability of 97.6%.

  11. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  12. Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media.

    PubMed

    Mu, Ying; Valim, Niksa; Niedre, Mark

    2013-06-15

    We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.

  13. A probabilistic model for snow avalanche occurrence

    NASA Astrophysics Data System (ADS)

    Perona, P.; Miescher, A.; Porporato, A.

    2009-04-01

    Avalanche hazard forecasting is an important issue in relation to the protection of urbanized environments, ski resorts and of ski-touring alpinists. A critical point is to predict the conditions that trigger the snow mass instability determining the onset and the size of avalanches. On steep terrains the risk of avalanches is known to be related to preceding consistent snowfall events and to subsequent changes in the local climatic conditions. Regression analysis has shown that avalanche occurrence indeed correlates to the amount of snow fallen in consecutive three snowing days and to the state of the settled snow at the ground. Moreover, since different type of avalanches may occur as a result of the interactions of different factors, the process of snow avalanche formation is inherently complex and with some degree of unpredictability. For this reason, although several models assess the risk of avalanche by accounting for all the involved processes with a great detail, a high margin of uncertainty invariably remains. In this work, we explicitly describe such an unpredictable behaviour with an intrinsic noise affecting the processes leading snow instability. Eventually, this sets the basis for a minimalist stochastic model, which allows us to investigate the avalanche dynamics and its statistical properties. We employ a continuous time process with stochastic jumps (snowfalls), deterministic decay (snowmelt and compaction) and state dependent avalanche occurrence (renewals) as a minimalist model for the determination of avalanche size and related intertime occurrence. The physics leading to avalanches is simplified to the extent where only meteorological data and terrain data are necessary to estimate avalanche danger. We explore the analytical formulation of the process and the properties of the probability density function of the avalanche process variables. We also discuss what is the probabilistic link between avalanche size and preceding snowfall event and

  14. [Avalanche emergencies. Review of the current situation].

    PubMed

    Paal, P; Beikircher, W; Brugger, H

    2006-03-01

    In North America and Europe around 140 persons die every year due to avalanches, approximately 35 in North America, 100 in the European Alps, and 5 in other parts of Europe. Most of the victims are skiers and snowboarders. This article outlines the specific pathophysiology of avalanche burials, such as hypoxia, hypercapnia, and hypothermia and also other factors which influence survival. Strategies to minimize the mortality due to avalanches and the on-site treatment of buried persons are discussed. Finally, possibilities to reduce the number of avalanche deaths are pointed out.

  15. Time Directed Avalanches in Invasion Models

    SciTech Connect

    Maslov, S. Department of Physics, SUNY at Stony Brook, Stony Brook, New York 11794 )

    1995-01-23

    We define forward and backward time-directed avalanches for a broad class of self-organized critical models including invasion percolation, interface depinning, and a simple model of evolution. Although the geometrical properties of the avalanches do not change under time reversal, their stationary state statistical distribution does. The overall distribution of forward avalanches [ital P]([ital s])[similar to][ital s][sup [minus]2] is superuniversal in this class of models. The power-law exponent [pi] for the distribution of distances between subsequent active sites is derived from the properties of backward avalanches.

  16. Shocks generate crossover behavior in lattice avalanches.

    PubMed

    Burridge, James

    2013-11-22

    A spatial avalanche model is introduced, in which avalanches increase stability in the regions where they occur. Instability is driven globally by a driving process that contains shocks. The system is typically subcritical, but the shocks occasionally lift it into a near- or supercritical state from which it rapidly retreats due to large avalanches. These shocks leave behind a signature-a distinct power-law crossover in the avalanche size distribution. The model is inspired by landslide field data, but the principles may be applied to any system that experiences stabilizing failures, possesses a critical point, and is subject to an ongoing process of destabilization that includes occasional dramatic destabilizing events.

  17. Silicon photomultipliers as readout elements for a Compton effect polarimeter: the COMPASS project

    NASA Astrophysics Data System (ADS)

    Del Monte, E.; Rubini, A.; Brandonisio, A.; Muleri, F.; Soffitta, P.; Costa, E.; Di Persio, G.; Di Cosimo, S.; Massaro, E.; Morbidini, A.; Morelli, E.; Pacciani, L.; Fabiani, S.; Michilli, D.; Giarrusso, S.; Catalano, O.; Impiombato, D.; Mineo, T.; Sottile, G.; Billotta, S.

    2016-08-01

    COMpton Polarimeter with Avalanche Silicon readout (COMPASS) is a research and development project that aims to measure the polarization of X-ray photons through Compton Scattering. The measurement is obtained by using a set of small rods of fast scintillation materials with both low-Z (as active scatterer) and high-Z (as absorber), all read-out with Silicon Photomultipliers. By this method we can operate scattering and absorbing elements in coincidence, in order to reduce the background. In the laboratory we are characterising the SiPMs using different types of scintillators and we are optimising the performances in terms of energy resolution, energy threshold and photon tagging efficiency. We aim to study the design of two types of satellite-borne instruments: a focal plane polarimeter to be coupled with multilayer optics for hard X-rays and a large area and wide field of view polarimeter for transients and Gamma Ray Bursts. In this paper we describe the status of the COMPASS project, we report about the laboratory measurements and we describe our future perspectives.

  18. Design and development of hard x-ray imaging detector using scintillator and Si photomultiplier

    NASA Astrophysics Data System (ADS)

    Goyal, S. K.; Naik, Amisha P.; Mithun, N. P. S.; Vadawale, S. V.; Acharya, Y. B.; Patel, A. R.; Ladiya, T.; Devashrayee, Niranjan M.

    2016-07-01

    There are various astrophysical phenomena which are of great importance and interest such as stellar explosions, Gamma ray bursts etc. There is also a growing interest in exploring the celestial sources in hard X-rays. High sensitive instruments are essential to perform the detailed studies of these cosmic accelerators and explosions. Hard X-ray imaging detectors having high absorption efficiency and mm spatial resolution are the key requirements to locate the generation of these astrophysical phenomenon. We hereby present a detector module which consists of a single CsI scintillation detector of size 15 x 15 x 3 mm3. The photon readout is done using an array of Silicon Photomultipliers (SiPMs). SiPM is a new development in the field of photon detection and can be described as 2D array of small (hundreds of μm2) avalanche photodiodes. We have achieved a spatial resolution of 0.5 mm with our initial setup. By using the array of these detector modules, we can build the detector with a large sensitive area with a very high spatial resolution. This paper presents the experimental details for single detector module using CsI (Tl) scintillator and SiPM and also presents the preliminary results of energy and position measurement. The GEANT4 simulation has also been carried out for the same geometry.

  19. Real-time fluorescence lifetime actuation for cell sorting using a CMOS SPAD silicon photomultiplier.

    PubMed

    Rocca, Francescopaolo Mattioli Della; Nedbal, Jakub; Tyndall, David; Krstajić, Nikola; Li, David Day-Uei; Ameer-Beg, Simon M; Henderson, Robert K

    2016-02-15

    Time-correlated single photon counting (TCSPC) is a fundamental fluorescence lifetime measurement technique offering high signal to noise ratio (SNR). However, its requirement for complex software algorithms for histogram processing restricts throughput in flow cytometers and prevents on-the-fly sorting of cells. We present a single-point digital silicon photomultiplier (SiPM) detector accomplishing real-time fluorescence lifetime-activated actuation targeting cell sorting applications in flow cytometry. The sensor also achieves burst-integrated fluorescence lifetime (BIFL) detection by TCSPC. The SiPM is a single-chip complementary metal-oxide-semiconductor (CMOS) sensor employing a 32×32 single-photon avalanche diode (SPAD) array and eight pairs of time-interleaved time to digital converters (TI-TDCs) with a 50 ps minimum timing resolution. The sensor's pile-up resistant embedded center of mass method (CMM) processor accomplishes low-latency measurement and thresholding of fluorescence lifetime. A digital control signal is generated with a 16.6 μs latency for cell sorter actuation allowing a maximum cell throughput of 60,000 cells per second and an error rate of 0.6%.

  20. Remote detection of artificially triggered avalanches below a fixed avalanche control installation

    NASA Astrophysics Data System (ADS)

    van Herwijnen, Alec; Simioni, Stephan; Schweizer, Juerg

    2014-05-01

    Avalanche control by explosives is widely used as a temporary preventive measure to reduce avalanche hazard. The goal is to artificially trigger smaller less destructive avalanches, by detonating charges either above or on the snow surface. Hand charges are most often used, whereby the explosives are deployed by manually hand tossing or lowering onto the snow slope. Given the inherent dangers and limitations of this type of avalanche control, fixed avalanche control installations are increasingly used. These consist of strategically placed remote controlled installations that generate an explosion above the snow pack in an avalanche starting zone. While fixed installations can be used at any time and minimize the risk to avalanche control personnel, visual confirmation is still required to verify if an avalanche released. In order to remotely detect artificially triggered avalanches, we therefore developed a low-cost seismic monitoring system. We deployed the monitoring system in a ski area above the town of Davos , in the eastern Swiss Alps, below a Gazex installation, a remote controlled installation that generates an air blast by detonating a fuel-air explosive above the snow pack. The monitoring system consists of three vertical component geophones inserted in the ground at approximately 14, 27 and 46 meters from the Gazex installation. Our results show that, despite the relatively low precision of the monitoring equipment, both the detonation and the resulting avalanches can clearly be identified in the seismic data. Specifically, detonations are characterized by short, high amplitude broadband signals, while avalanches generate much longer, low frequency signals. Furthermore, information on the size of the artificially triggered avalanches is also obtained as it directly relates to the duration of the generated seismic signal. The overall goal is to assess the effectiveness of the fixed avalanche control installation with regards to yield (i.e. number of

  1. Recent advances in very large area avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Christian, James; Entine, Gerald; Farrell, Richard; Karger, Arieh M.; McClish, Mickel; Myers, Richard; Shah, Kanai S.; Taylor, David; Vanderpuye, Kofi; Waer, Peter; Woodring, Mitchell

    2003-09-01

    The Avalanche Photodiode (APD) is a unique device that combines the advantages of solid state photodetectors with those of high gain devices such as photomultiplier tubes (PMTs). APDs have internal gain that provides a high signal-to-noise ratio. APDs have high quantum efficiency, are fast, compact, and rugged. These properties make them suitable detectors for important applications such as LADAR, detection and identification toxic chemicals and bio-warfare agents, LIDAR fluorescence detection, stand-off laser induced breakdown spectroscopy (LIBS), and nuclear detectors and imagers. Recently there have been significant technical breakthroughs in fabricating very large APDs, APD arrays, and position sensitive APD arrays (PSAPD). Signal gain of over 10,000 has been achieved, single element APDs have been fabricated with active area greater than 40 cm2, monolithic pixelated arrays with up to 28 x 28 elements have been fabricated, and position sensitive APDs have been developed and tested. Additionally, significant progress has been made in improving the fabrication process to provide better uniformity and high yield, permitting cost effective manufacturing of APDs for reduced cost.

  2. On the temporal organization of neuronal avalanches

    PubMed Central

    Lombardi, Fabrizio; Herrmann, Hans J.; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1–2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ − β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified. PMID:25389393

  3. On the temporal organization of neuronal avalanches.

    PubMed

    Lombardi, Fabrizio; Herrmann, Hans J; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1-2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ - β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified.

  4. Equilibrium avalanches in spin glasses

    NASA Astrophysics Data System (ADS)

    Le Doussal, Pierre; Müller, Markus; Wiese, Kay Jörg

    2012-06-01

    We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero temperature upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick (SK) model, we present a detailed derivation of the density ρ(ΔM) of the magnetization jumps ΔM. It is obtained by introducing a multicomponent generalization of the Parisi-Duplantier equation, which allows us to compute all cumulants of the magnetization. We find that ρ(ΔM)˜ΔM-τ with an avalanche exponent τ=1 for the SK model, originating from the marginal stability (criticality) of the model. It holds for jumps of size 1≪ΔMavalanche is ρ(q)˜1/(1-q). These results show interesting similarities with numerical simulations for the out-of-equilibrium dynamics of the SK model. For finite-range models, using droplet arguments, we obtain the prediction τ=(df+θ)/dm where df,dm, and θ are the fractal dimension, magnetization exponent, and energy exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered systems, such as the random-field model and pinned interfaces. We make suggestions for further numerical investigations, as well as experimental studies of the Barkhausen noise in spin glasses.

  5. Triaging multiple victims in an avalanche setting: the Avalanche Survival Optimizing Rescue Triage algorithmic approach.

    PubMed

    Bogle, Lee B; Boyd, Jeff J; McLaughlin, Kyle A

    2010-03-01

    As winter backcountry activity increases, so does exposure to avalanche danger. A complicated situation arises when multiple victims are caught in an avalanche and where medical and other rescue demands overwhelm resources in the field. These mass casualty incidents carry a high risk of morbidity and mortality, and there is no recommended approach to patient care specific to this setting other than basic first aid principles. The literature is limited with regard to triaging systems applicable to avalanche incidents. In conjunction with the development of an electronic avalanche rescue training module by the Canadian Avalanche Association, we have designed the Avalanche Survival Optimizing Rescue Triage algorithm to address the triaging of multiple avalanche victims to optimize survival and disposition decisions.

  6. Avalanche!--Teachable Moments in Outdoor Education

    ERIC Educational Resources Information Center

    Galloway, Shayne

    2005-01-01

    Rarely do outdoor educators get the opportunity to safely incorporate an avalanche while the topic of the day is actually avalanche awareness and forecasting. Many similar possibilities exist in the expeditionary context, but even brief excursions may result in incredible learning experiences. These "teachable moments" occur regularly in the…

  7. Systems for measuring response statistics of gigahertz bandwidth photomultipliers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Rowe, H. E.

    1977-01-01

    New systems have been developed for measuring the average impulse response, the pulse-height spectrum, the transit-time statistics as a function of signal level, and the dark-count spectrum of gigahertz bandwidth photomultipliers. Measurements showed that the 0.53 microns pulse used as an optical test source had a 30 picoseconds and less than 70 ps pulse width. Calibration data showed the system resolution to be less than 20 ps for root mean square transit-time measurements. Test data for a static crossed-field photomultiplier showed 2-photoelectron resolution and less than 30-ps time jitter over the 1- to 100-photoelectron range.

  8. Performance comparison of high speed microchannel plate photomultiplier tubes

    NASA Technical Reports Server (NTRS)

    Varghese, Thomas; Selden, Michael; Oldham, Thomas

    1993-01-01

    The transit time spread characteristics of high speed microchannel photomultipliers has improved since the upgrade of the NASA CDSLR network to MCP-PMT's in the mid-1980's. The improvement comes from the incorporation of 6 micron (pore size) microchannels and offers significant improvement to the satellite ranging precision. To examine the impact on ranging precision, two microchannel plate photomultiplier tubes (MCP-PMT) were evaluated for output pulse characteristics and temporal jitter. These were a Hamamatsu R 2566 U-7 MCP-PMT (6 micron) and an ITT 4129f MCP-PMT (12 micron).

  9. Avalanche in Adhesion at Metal Interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Good, Brian S.

    1994-01-01

    Simulations have shown that as two metal surfaces approach each other, the surface layers can avalanche together when the rigid interfacial spacing falls below a critical distance. This is accompanied by a discontinuous decrease in the adhesive energy. Here we present an examination of this phenomenon for the body centered cubic (BCC) metals Fe and W using the Equivalent Crystal Theory. In order to identify the circumstances under which avalanche might be inhibited, the effect of loss of registry between the two surfaces is investigated in detail. The avalanche is inhibited when the two surfaces are sufficiently far out of registry and when only a few layers near the surface are allowed to relax. As the relaxing slabs get thicker a sharp avalanche reappears. However, as the loss of registry increases the energy released in the avalanche decreases.

  10. Hummock alignment in Japanese volcanic debris avalanches controlled by pre-avalanche slope of depositional area

    NASA Astrophysics Data System (ADS)

    Yoshida, Hidetsugu

    2014-10-01

    This paper investigates the relationship of hummock orientation to the flow dynamics of volcanic debris avalanches. There are opposing views on whether hummocks are systematically aligned along debris avalanche paths, or not. To investigate this geomorphologically fundamental question, I investigated hummock orientation for six Japanese debris avalanches of two simple styles: four "freely spreading" debris avalanches, and two "valley-filling" debris avalanches. Quantitative GIS-based data analysis revealed that hummock orientation along the avalanche flow path alternated between dominantly parallel to and dominantly perpendicular to the flow direction. These changes of alignment reflect dynamic changes of the local stress field within the avalanche, alternating between extensional and compressional in response to changes of the slope of the pre-avalanche ground surface. Changes of hummock alignment from perpendicular to parallel indicate that the local stress regime has changed from compressional to extensional. Conversely, changes of hummock alignment from parallel to perpendicular indicate that the local stress regime has changed from extensional to compressional. Thus, this research demonstrated a clear relationship between hummock orientation and dynamic changes of stress regime within avalanches that are related to changes of the slope of the pre-avalanche ground surface.

  11. Color-coded area sensitivity maps of photomultipliers

    NASA Technical Reports Server (NTRS)

    Youngbluth, O., Jr.

    1975-01-01

    Technique was devised specifically for testing photomultipliers and other photodetectors, but it could also be used to color code any type of mapping data, such as weather or topographical maps, thermal or pressure distributions on reentry surfaces, or any other three-dimensional data to be displayed in two-dimensional form.

  12. SUPPRESSION OF AFTERPULSING IN PHOTOMULTIPLIERS BY GATING THE PHOTOCATHODE

    EPA Science Inventory

    A number of gating schemes to minimize the long-term afterpulse signal in photomultipliers have been evaluated. Blocking the excitation pulse by gating the photocathode was found to reduce the gate-on afterpulse background by a factor of 230 over that for nongated operation. Thi...

  13. Time Resolution of Fast Photomultipliers for Time of Flight PET

    SciTech Connect

    Szczesniak, Tomasz; Iwanowska, Joanna

    2010-01-05

    Time resolution study of 1 inch Photonis XP1020 photomultiplier is reported. The number of photoelectrons, time jitter and time resolution with 4x4x20 mm{sup 3} LSO crystal were measured. All the mentioned PMT properties were measured at five positions on the photocathode.

  14. Computer-aided simulation study of photomultiplier tubes

    NASA Technical Reports Server (NTRS)

    Zaghloul, Mona E.; Rhee, Do Jun

    1989-01-01

    A computer model that simulates the response of photomultiplier tubes (PMTs) and the associated voltage divider circuit is developed. An equivalent circuit that approximates the operation of the device is derived and then used to develop a computer simulation of the PMT. Simulation results are presented and discussed.

  15. A novel technique for the measurement of the avalanche fluctuation of gaseous detectors

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Ogawa, T.; Kawaguchi, T.; Fujii, K.; Fusayasu, T.; Ikematsu, K.; Kato, Y.; Kawada, S.; Matsuda, T.; Settles, R. D.; Sugiyama, A.; Takahashi, T.; Tian, J.; Watanabe, T.; Yonamine, R.

    2017-02-01

    We have developed a novel technique for the measurement of the avalanche fluctuation of gaseous detectors using a UV laser. The technique is simple and requires a short data-taking time of about ten minutes. Furthermore, it is applicable for relatively low gas gains. Our experimental setup as well as the measurement principle, and the results obtained with a stack of Gas Electron Multipliers (GEMs) operated in several gas mixtures are presented.

  16. Preliminary Study on Rock Avalanche in Taiwan

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Wen, Y.; Hsieh, M.

    2012-12-01

    Rock avalanche is a kind of rapid (average >100 km/h) granule flow caused by crushing and pulverization of rock materials during catastrophic rock slide. Literature researches show that rock avalanches typically occur on steep, high-relief slopes underlain by hard rocks, and have volumes >10,000,000 m3. Rock avalanches also are characterized by long runout distances, which are 5 to 10 times the total fall heights. Some cases can run up the opposing valley wall. Rock avalanches generally occurred in active mountains (e.g., New Zealand) and were triggered by earthquakes or rainfall (snowmelt), but with exceptions. There were few rock avalanches in historical time in Taiwan. This could reflect: (1) intrinsic instability of hillslopes due to weak rock, frequent earthquakes/heavy rains, which resulted in landslides of high frequency/low magnitude; (2) limited runout space along deeply incised river-valley systems, which increased the likelihood of rock-slope failures to transform to debris flows. However, there are ancient rock-avalanche records, found at Shou-shan coast (SW Taiwan) and Shin-she, Chang-pin, Tu-lan along Hua-tung coast (E Taiwan), which is likely to have undergone coseismic uplift. These places, with steep slopes, underlain by hard rock, and free for materials to run, are most prone to rock avalanches in the future.

  17. Temporal correlations in neuronal avalanche occurrence

    PubMed Central

    Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.

    2016-01-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity. PMID:27094323

  18. Temporal correlations in neuronal avalanche occurrence.

    PubMed

    Lombardi, F; Herrmann, H J; Plenz, D; de Arcangelis, L

    2016-04-20

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  19. Gallium-based avalanche photodiode optical crosstalk

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Prochazka, Ivan; Hamal, Karel; Sopko, Bruno; Chren, Dominik

    2006-11-01

    Solid-state single photon detectors based on avalanche photodiode are getting more attention in various areas of applied physics: optical sensors, quantum key distribution, optical ranging and Lidar, time-resolved spectroscopy, X-ray laser diagnostics, and turbid media imaging. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP, and InGaP/InGaAs at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Trends in demand are focused on detection array construction recently. Even extremely small arrays containing a few cells are of great importance for users. Electrical crosstalk between individual gating and quenching circuits and optical crosstalk between individual detecting cells are serious limitation for array design and performance. Optical crosstalk is caused by the parasitic light emission of the avalanche which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon- and gallium-based photodiodes. The timing properties and spectral distribution of the emitted light have been measured for different operating conditions to quantify optical crosstalk. We conclude that optical crosstalk is an inherent property of avalanche photodiode operated in Geiger mode. The only way to minimize optical crosstalk in avalanche photodiode array is to build active quenching circuit with minimum response time.

  20. Statistical properties of avalanches in networks.

    PubMed

    Larremore, Daniel B; Carpenter, Marshall Y; Ott, Edward; Restrepo, Juan G

    2012-06-01

    We characterize the distributions of size and duration of avalanches propagating in complex networks. By an avalanche we mean the sequence of events initiated by the externally stimulated excitation of a network node, which may, with some probability, then stimulate subsequent excitations of the nodes to which it is connected, resulting in a cascade of excitations. This type of process is relevant to a wide variety of situations, including neuroscience, cascading failures on electrical power grids, and epidemiology. We find that the statistics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an appropriate adjacency matrix that encodes the structure of the network. By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of network structure on the distribution of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in the network. These findings might find application in the analysis of branching processes in networks, such as cascading power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches) are robust to complex underlying network topologies.

  1. Predictions of silicon avalanche photodiode detector performance in water vapor differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Kenimer, R. L.

    1988-01-01

    Performance analyses are presented which establish that over most of the range of signals expected for a down-looking differential absorption lidar (DIAL) operated at 16 km the silicon avalanche photodiode (APD) is the preferred detector for DIAL measurements of atmospheric water vapor in the 730 nm spectral region. The higher quantum efficiency of the APD's, (0.8-0.9) compared to a photomultiplier's (0.04-0.18) more than offsets the higher noise of an APD receiver. In addition to offering lower noise and hence lower random error the APD's excellent linearity and impulse recovery minimize DIAL systematic errors attributable to the detector. Estimates of the effect of detector system parameters on overall random and systematic DIAL errors are presented, and performance predictions are supported by laboratory characterization data for an APD receiver system.

  2. InGaAs single photon avalanche detector with ultralow excess noise

    SciTech Connect

    Zhao Kai; Zhang, Arthur; Lo, Yu-hwa; Farr, William

    2007-08-20

    An InGaAs single photon avalanche detector capable of sub-Geiger mode (Photomultiplier-tube-like) operation is reported. The device achieves a stable gain at around 10{sup 6}. The gain fluctuation is greatly suppressed through a self-quenching effect, thus an equivalent excess noise factor as low as 1.001 is achieved. In the photon counting experiment, the device is operated in the nongated mode under a dc bias. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. The device shows a single photon response of around 30 ns and a self-recovery time of about 300 ns.

  3. Continuum description of avalanches in granular media.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.

    2000-12-05

    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  4. Initiation of immersed granular avalanches

    NASA Astrophysics Data System (ADS)

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  5. Initiation of immersed granular avalanches.

    PubMed

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃ 0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  6. Comparison of the timing properties of the new Philips components (Amperex) XP2020/UR photomultiplier and the XP2020 photomultiplier

    NASA Technical Reports Server (NTRS)

    Kuhlen, M.; Stroynowski, R.; Wicklund, E.; Milliken, B.

    1991-01-01

    Timing characteristics are measured for the Philips Components (Amperex) XP2020/UR photomultiplier. The transit time jitter is significantly better than that of previously available XP2020 tubes. In a study of the transit time jitter, a single photoelectron resolution of 286 +/-3 ps was obtained for the XP2020 and 190 +/-2 ps for the XP2020/UR.

  7. Helium Background in the D0 Detector Related to the Photomultiplier Tubes

    SciTech Connect

    Rucinski, R.; /Fermilab

    1998-04-09

    Helium is present in the earth's atmosphere at about 5 parts per million. (ref. Technology of liquid helium, NBS monograph 111). The D-Zero detector uses helium for the cryogenic cooling of its superconducting magnet and visible light photon counter (VLPC) electronics chips. In addition, the tevatron accelerator has superconducting magnets that use helium Due to the possibility of leaks or releases of helium from these helium lines and components, the background helium level in the collision hall may exceed the natural level of 5 ppm. This engineering note will quantify the probability and level of helium background in the D-Zero detector. The photomultiplier tubes used in the D-Zero detector are sensitive to an elevated helium atmosphere. This is due to the permeation rate of helium gas through the glass tube, into the vacuum space inside. It is very important for the helium atmosphere surrounding the photomultiplier tubes is known and controlled. If the level of helium in the vacuum tube reaches a level above 5 ppm, then the photomuliplier tube may no longer work as designed. The process is an irreversible one.

  8. Monitoring and modelling snow avalanches in Svalbard

    NASA Astrophysics Data System (ADS)

    Humlum, O.; Christiansen, H.; Neumann, U.; Eckerstorfer, M.; Sjöblom, A.; Stalsberg, K.; Rubensdotter, L.

    2009-04-01

    Monitoring and modelling snow avalanches in Svalbard Ole Humlum 1,3, Hanne H. Christiansen 1, Ulrich Neumann 1, Markus Eckerstorfer 1, Anna Sjöblom 1, Knut Stalsberg 2 and Lena Rubensdotter 2. 1: The University Centre in Svalbard (UNIS). 2: Geological Survey of Norway (NGU) 3: University of Oslo Ground based transportation in Svalbard landscape all takes place across mountainous terrain affected by different geomorphological slope processes. Traffic in and around the Svalbard settlements is increasing, and at the same time global climate models project substantial increases in temperature and precipitation in northern high latitudes for coming century. Therefore improved knowledge on the effect of climatic changes on slope processes in such high arctic landscapes is becoming increasingly important. Motivated by this, the CRYOSLOPE Svalbard research project since 2007 has carried out field observations on snow avalanche frequency and associated meteorological conditions. Snow avalanches are important geomorphic agents of erosion and deposition, and have long been a source of natural disasters in many mid-latitude mountain areas. Avalanches as a natural hazard has thereby been familiar to inhabitants of the Alps and Scandinavia for centuries, while it is a more recent experience in high arctic Svalbard. In addition, overall climate, topography and especially high winter wind speeds makes it difficult to apply snow avalanche models (numerical or empirical) developed for use at lower latitudes, e.g. in central Europe. In the presentation we examplify results from the ongoing (since winter 2006-07) monitoring of snow avalanches in Svalbard along a 70 km long observational route in the mountains. In addition, we present observations on the geomorphological impact of avalanches, with special reference to the formation of rock glaciers. Finally, we also present some initial results from numerical attempts of snow avalanche risk modelling within the study area.

  9. Laboratory study of avalanches in magnetized plasmas.

    PubMed

    Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D

    2015-03-01

    It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented.

  10. A multiple parallel-plate avalanche counter for fission-fragment detection

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Henderson, R. A.; Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; Bucher, B.; Chyzh, A.; Devlin, M.; Fotiades, N.; Kwan, E.; O'Donnell, J. M.; Perdue, B. A.; Ullmann, J. L.

    2015-09-01

    A new low-mass multiple gas-filled parallel-plate avalanche counter for the fission-fragment detection has been developed to mark the fission occurrence in measurements of the prompt fission neutron energy spectrum as a function of incident neutron energy. It was used successfully for the neutron-induced fission of 235U and 239Pu with a total mass near 100 mg each and the spontaneous fission of 252Cf. Both the incident neutron energy and the prompt fission neutron energy are measured by using the time-of-flight method. The design and performance of this avalanche counter are described.

  11. Mechanisms of large rock avalanche propagation

    NASA Astrophysics Data System (ADS)

    Bowman, Elisabeth

    2014-05-01

    Large rock avalanches present a serious mountain hazard to lifelines, infrastructure and lives. They are one of a class of low frequency, high impact events for which there is a still considerable debate over the transport mechanism. The behaviour of large rock avalanches, sometimes referred to as sturzstrom or "stream flow" after Heim, is characterised by a volumetric dependence, so that very large rock avalanches tend to travel with a greater spreading "efficiency" than smaller ones. In this work we propose a mechanism for the volumetric dependence of rock avalanche spread (or runout) in light of the ubiquitous dynamic fragmentation behaviour of brittle solids, Terzaghi's principle of effective stress as used most commonly in soil mechanics, and concepts of momentum transfer. The proposed conceptual model is based on both observations of field scale events, such as made at Elm in Switzerland, Huascaran in Peru and Falling Mountain in New Zealand, and small scale physical model experiments using analogue rock materials which have been conducted at elevated g-level so as to increase stress levels within the experiments. In particular the model aims to explain how momentum transfer between elements within a fragmenting rock avalanche mass may lead to the greater mobility or spreading efficiency that is observed at large scale and may provide insight as to the conditions needed for rock avalanche propagation and arrest.

  12. Avalanche grainflow on a simulated aeolian dune

    NASA Astrophysics Data System (ADS)

    Sutton, S. L. F.; McKenna Neuman, C.; Nickling, W.

    2013-09-01

    Avalanches maintain the slipface of aeolian dunes, which alters their airflow characteristics and sediment dynamics, and results in the development of grainflow cross-bedding. We report on a series of experiments in which avalanches were observed on a 1:1 replica of a small (1.2 m brink height) transverse dune in the Dune Simulation Wind Tunnel under wind velocities of 8-11 m s-1. Changes in slipface topography were observed photographically and measured utilizing a 3-D laser scanner with 1 mm2 spatial resolution. Avalanches in noncohesive sands were observed to progress through scarp recession from the point of initiation and continue until the slope angle is reduced. Changes in local slope confirm that the steep, pre-avalanche mean slope relaxes to a uniform value equal to the angle of repose of the test sand (32°) over all involved portions of the slipface. Avalanche volumes are measured, and demonstrate that avalanche magnitude is independent of wind speed over the range of velocities observed. This independence provides the potential to significantly simplify the modeling of grainflow as a function of only the total cross brink sediment transport.

  13. Martian dust devil electron avalanche process and associated electrochemistry

    NASA Astrophysics Data System (ADS)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-05-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work, these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  14. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    NASA Technical Reports Server (NTRS)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  15. The 1.06 optical receiver. [avalanche photodiodes for laser range finders

    NASA Technical Reports Server (NTRS)

    Tomasetta, L. R.; Law, H. D.; Nakano, K.; Scholl, F. W.; Harris, J. S., Jr.

    1978-01-01

    High performance 1.06 micron m avalanche photodetectors (APDs), fabricated in the GaAlSb system, have high quantum efficiency (90 percent), high speed (risetime less than 60 ps) and low leakage currents (less than 50 na). The dark current represents more than an order of magnitude reduction compared to previously reported results. The high speed avalanche gain of these devices is between 20 and 50. The area uniformity is better than + or - 10 percent. GaAlAs APDs at 0.53 micron m have even faster speed, lower dark currents, and high speed gains of 100 to 200. Optical rangefinders based on measured APD performance parameters have far superior performance when compared to even ideal photomultiplier tubes in either a one color or two color rangefinder system. For a one color system, f factor of two lower time jitter can be achieved with identical transmitted power. The superiority of the APD based two color receiver is significant and exists in the entire range of desired time jitters (less than 100 ps) and received power levels.

  16. Evolution of the average avalanche shape with the universality class.

    PubMed

    Laurson, Lasse; Illa, Xavier; Santucci, Stéphane; Tore Tallakstad, Ken; Måløy, Knut Jørgen; Alava, Mikko J

    2013-01-01

    A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics.

  17. Evolution of the average avalanche shape with the universality class

    PubMed Central

    Laurson, Lasse; Illa, Xavier; Santucci, Stéphane; Tore Tallakstad, Ken; Måløy, Knut Jørgen; Alava, Mikko J

    2013-01-01

    A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics. PMID:24352571

  18. Silicon Photomultiplier Characterization for sPHENIX Calorimeters

    NASA Astrophysics Data System (ADS)

    Tanner, Meghan; Skoby, Michael; Aidala, Christine; Sphenix Collaboration

    2016-09-01

    Silicon photomultipliers (SiPMs) are preferable to photomultiplier tubes due to their small size, insensitivity to magnetic fields, low operating voltage, and capability of detecting single photons. The sPHENIX collaboration at RHIC will use SiPMs in their proposed electromagnetic and hadronic calorimeters. The University of Michigan is assembling and implementing a test stand to characterize the dark count rate, temperature dependence, gain, and photon detection efficiency of SiPMs. To more accurately determine the dark count rate, we have constructed a light tight box to isolate the SiPM, which surrounds an electronics enclosure that protects the SiPM circuitry, and installed software to record the output signals. With this system, we will begin to collect data and optimize the system to test arrays of SiPMs instead of single devices as the proposed calorimeters will require testing approximately 115,000 SiPMs.

  19. A superconducting supercollider calorimeter photomultiplier tube preamplifier circuit

    NASA Astrophysics Data System (ADS)

    Panescu, Dorin; Lackey, Joe; Robl, Phil; Smith, Wesley H.

    1992-07-01

    This study presents the design of the front end amplifier for a scintillator calorimeter with photomultiplier tube (PMT) readout. The design is based on analytical computations and SPICE simulations, and is checked against tests performed on a prototyped circuit. We were looking to achieve 1) a very low droop within the 4 ns after the integration of the photomultiplier tube (PMT) signal was completed, 2) a very low noise figure for the whole amplifier in a 100 MHz bandwidth, 3) an input impedance optimized for the PMT which is actually used, 4) baseline restoration as quick as possible at the output of the clip amps. 5) no loss of information due to the saturation at intermediary stages (e.g. integrator), and 6) an output driving 100 Ω twisted pair cables, or 50 Ω coaxial cables, in order to transmit the signal to switched capacitor arrays for analog storage.

  20. Fluorescence and phosphorescence of photomultiplier window materials under electron irradiation

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Bredekamp, J. H.

    1974-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation were investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV grade, optical grade, and electron-irradiated samples of MGF2 and LiF, CaF2, BaF2, sapphire, fused silica, and UV transmitting glasses were obtained over the spectral range of 200 nm to 650 nm. Fluorescence yields, expressed as the number of counts in a solid angle of 2 pi steradian per 1MeV of incident electron energy deposited, were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively.

  1. Position sensitive solid-state photomultipliers, systems and methods

    SciTech Connect

    Shah, Kanai S; Christian, James; Stapels, Christopher; Dokhale, Purushottam; McClish, Mickel

    2014-11-11

    An integrated silicon solid state photomultiplier (SSPM) device includes a pixel unit including an array of more than 2.times.2 p-n photodiodes on a common substrate, a signal division network electrically connected to each photodiode, where the signal division network includes four output connections, a signal output measurement unit, a processing unit configured to identify the photodiode generating a signal or a center of mass of photodiodes generating a signal, and a global receiving unit.

  2. Preliminary evaluation of RCA C83036E prototype photomultiplier

    NASA Astrophysics Data System (ADS)

    Lo, C. C.; Leskovar, B.

    Characteristics of the prototype RCA C83036E 52 mm diameter photomultiplier were measured. The results of the measurements of the gain, dark current, photocathode quantum efficiency, peak output current, electron transit time, and output pulse rise time as a function of voltage between anode and cathode are given. Single photoelectron time spread, multiphotoelectron time resolution, pulse height spectrum and afterpulse time spectrum are discussed.

  3. Low Power Photomultiplier Tube Circuit And Method Thereor

    SciTech Connect

    Bochenski, Edwin B.; Skinner, Jack L.; Dentinger, Paul M.; Lindblom, Scott C.

    2006-04-18

    An electrical circuit for a photomultiplier tube (PMT) is disclosed that reduces power consumption to a point where the PMT may be powered for extended periods with a battery. More specifically, the invention concerns a PMT circuit comprising a low leakage switch and a high voltage capacitor positioned between a resistive divider and each of the PMT dynodes, and a low power control scheme for recharging the capacitors.

  4. Electron transit time measurements of 5-in photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Richards, T.; Peatross, J.; Ware, M.; Rees, L.

    2016-08-01

    We investigated the uniformity of electron transit times for two 5-in photomultiplier tubes: the Hamamatsu R1250 and the Adit B133D01S. We focused a highly attenuated short-pulse laser on the tubes while they were mounted on a programmable stage. The stage translated the tubes relative to the incident beam so that measurements could be made with light focused at points along a grid covering the entire photocathodes. A portion of the incident light was split from the incident beam and measured and recorded by a fast photodiode. Electron transit times were measured by computing the time delay between the recorded photodiode signal and photomultiplier signal using software constant-fraction discrimination. The Hamamatsu tube exhibited a uniform timing response that varied by no more than 1.7 ns. The Adit tube was much less uniform, with transit times that varied by as much as 57 ns. The Adit response also exhibited a spatially varying double-peak structure in its response. The technique described in this paper could be usefully employed by photomultiplier tube manufacturers to characterize the performance of their products.

  5. Computing granular avalanches and landslides

    NASA Astrophysics Data System (ADS)

    Pitman, E. Bruce; Nichita, C. Camil; Patra, Abani; Bauer, Andy; Sheridan, Michael; Bursik, Marcus

    2003-12-01

    Geophysical mass flows—debris flows, volcanic avalanches, landslides—are often initiated by volcanic activity. These flows can contain O(106-107) m3 or more of material, typically soil and rock fragments that might range from centimeters to meters in size, are typically O(10 m) deep, and can run out over distances of tens of kilometers. This vast range of scales, the rheology of the geological material under consideration, and the presence of interstitial fluid in the moving mass, all make for a complicated modeling and computing problem. Although we lack a full understanding of how mass flows are initiated, there is a growing body of computational and modeling research whose goal is to understand the flow processes, once the motion of a geologic mass of material is initiated. This paper describes one effort to develop a tool set for simulations of geophysical mass flows. We present a computing environment that incorporates topographical data in order to generate a numerical grid on which a parallel, adaptive mesh Godunov solver can simulate model systems of equations that contain no interstitial fluid. The computational solver is flexible, and can be changed to allow for more complex material models, as warranted.

  6. Dynamics of glide avalanches and snow gliding

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Bain, Vincent

    2015-09-01

    In recent years, due to warmer snow cover, there has been a significant increase in the number of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures designed to carry heavy loads? This paper reviews the current state of knowledge about the formation of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of the theoretical and phenomenological analyses were presented in technical reports that date back to the earliest developments of avalanche science in the 1930s. Returning to these primary sources and attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly. The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light of the most recent findings about related topics, including the physics of granular and plastic flows, and from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper shows that if snow depth and density are known, then certain approaches can indeed predict the forces exerted on simple obstacles in the event of glide avalanches or gliding snow cover.

  7. Deterministically Driven Avalanche Models of Solar Flares

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine; Charbonneau, Paul; Joseph, Richard; Pirot, Dorian

    2014-08-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick-slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy-loading process. The model design leads to a systematic deficit of small-scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.

  8. Singing-sand avalanches without dunes

    NASA Astrophysics Data System (ADS)

    Dagois-Bohy, S.; Courrech du Pont, S.; Douady, S.

    2012-10-01

    Singing-sand dunes have attracted curiosity for centuries and are now the subject of controversy. We address here two aspects of this controversy: first the possible link between the frequency heard and the shear rate (for a gravity avalanche on a dune slip-face, scaling as 0.4g/d, with d the ‘mean’ grain diameter), and second, the assumed necessity of a layered dune structure under the avalanche that acts as a resonator. Field recordings of singing dunes over the world reveal that they can present very different spectral characteristics: a dune with polydisperse grains produces a very broad and noisy spectrum, while a dune with sorted grains produces a well-defined frequency. Performing laboratory avalanches on a hard plate with singing-dune sand shows that there is no need for a dune below the sand avalanche to produce the singing sound, and a fortiori neither for the dune's layered structure nor for its particular sound transmission. By sieving the polydisperse grains, the same well-defined frequency is obtained to that of the dune with sorted grains, with the same diameter-frequency relation. The various frequencies heard in the field avalanches match the shear rates not calculated from the average size, but from the various peaks of the grain size distributions.

  9. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  10. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, J. N.; Vriend, N. M.; Sovilla, B.; Keylock, C. J.; Brennan, P.; Ash, M.

    2012-12-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallée de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  11. 6-Li enriched Cs2LiYCl6:Ce based thermal neutron detector coupled with CMOS solid-state photomultipliers for a portable detector unit

    NASA Astrophysics Data System (ADS)

    Whitney, Chad; Stapels, Christopher; Johnson, Erik; Chapman, Eric; Alberghini, Guy; Glodo, Jarek; Shah, Kanai; Christian, James

    2011-03-01

    For detecting neutrons, 3-He tubes provide sensitivity and a unique capability for detecting and discriminating neutron signals from background gamma-ray signals. A solid-state scintillation-based detector provides an alternative to 3-He for neutron detection. A real-time, portable, and low cost thermal neutron detector has been constructed from a 6Li-enriched Cs2LiYCl6:Ce (CLYC) scintillator crystal coupled with a CMOS solid-state photomultiplier (SSPM). These components are fully integrated with a miniaturized multi-channel analyzer (MCA) unit for calculation and readout of the counts and count rates. CLYC crystals and several other elpasolites including Cs2LiLaCl6:Ce (CLLC) and Cs2LiLaBr6:Ce (CLLB) have been considered for their unique properties in detecting neutrons and discriminating gamma ray events along with providing excellent energy resolution comparable to NaI(Tl) scintillators. CLYC's slower rise and decay time for neutrons (70ns and 900ns respectively) relative to a faster rise and decay time for gamma ray events (6ns and 55ns respectively) allows for pulse shape discrimination in mixed radiation fields. Light emissions from CLYC crystals are detected using an array of avalanche photodiodes referred to as solid-state photomultipliers. SSPMs are binary photon counting devices where the number of pixels activated is directly proportional to the light output of the CLYC scintillator which is proportional to the energy deposited from the radiation field. SSPMs can be fabricated using standard CMOS processes and inherently contain the low noise performance associated with ordinary photomultiplier tubes (PMT) while providing a light and compact solution for portable neutron detectors.

  12. The application of Landsat data to mapping avalanche hazards

    NASA Technical Reports Server (NTRS)

    Waterman, S.

    1979-01-01

    Two test areas, representing a variety of avalanche hazards, were selected in the San Juan Mountains of Colorado. Midwinter Landsat digital data were analyzed using a clustering technique, and the results compared to 1:24,000 scale maps of avalanche hazards derived from air photo interpretation and field surveys. Confined avalanches were readily identified because of the high contrast between the snow covered avalanche track and the adjacent forested slopes. Unconfined avalanches could not be identified without supplementary topographic data. Spatial characteristics were of primary importance in delineating avalanche tracks. Spatial resolution was the limiting factor in avalanche detection. Landsat data should prove useful for rapid reconnaissance mapping of avalanche hazards, particularly in the absence of other data sources.

  13. Relating rock avalanche morphology to emplacement processes

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  14. Adjoint method and runaway electron avalanche

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Brennan, Dylan P.; Boozer, Allen H.; Bhattacharjee, Amitava

    2017-02-01

    The adjoint method for the study of runaway electron dynamics in momentum space Liu et al (2016 Phys. Plasmas 23 010702) is rederived using the Green’s function method, for both the runaway probability function (RPF) and the expected loss time (ELT). The RPF and ELT obtained using the adjoint method are presented, both with and without the synchrotron radiation reaction force. The adjoint method is then applied to study the runaway electron avalanche. Both the critical electric field and the growth rate for the avalanche are calculated using this fast and novel approach.

  15. Avalanches, Barkhausen noise, and plain old criticality

    SciTech Connect

    Perkovic, O.; Dahmen, K.; Sethna, J.P.

    1995-12-01

    We explain Barkhausen noise in magnetic systems in terms of avalanches of domains near a plain old critical point in the hysteretic zero-temperature random-field Ising model. The avalanche size distribution has a universal scaling function, making nontrivial predictions of the shape of the distribution up to 50{percent} above the critical point, where two decades of scaling are still observed. We simulate systems with up to 1000{sup 3} domains, extract critical exponents in 2, 3, 4, and 5 dimensions, compare with our 2D and 6{minus}{epsilon} predictions, and compare to a variety of experiments. {copyright} {ital 1995 The American Physical Society.}

  16. Bulk metallic glasses deform via slip avalanches.

    PubMed

    Antonaglia, James; Wright, Wendelin J; Gu, Xiaojun; Byer, Rachel R; Hufnagel, Todd C; LeBlanc, Michael; Uhl, Jonathan T; Dahmen, Karin A

    2014-04-18

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  17. Phase avalanches in near-adiabatic evolutions

    SciTech Connect

    Vertesi, T.; Englman, R.

    2006-02-15

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.

  18. Bulk Metallic Glasses Deform via Slip Avalanches

    NASA Astrophysics Data System (ADS)

    Antonaglia, James; Wright, Wendelin J.; Gu, Xiaojun; Byer, Rachel R.; Hufnagel, Todd C.; LeBlanc, Michael; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-04-01

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  19. Probe-hosted silicon photomultipliers for time-domain functional near-infrared spectroscopy: phantom and in vivo tests.

    PubMed

    Re, Rebecca; Martinenghi, Edoardo; Mora, Alberto Dalla; Contini, Davide; Pifferi, Antonio; Torricelli, Alessandro

    2016-10-01

    We report the development of a compact probe for time-domain (TD) functional near-infrared spectroscopy (fNIRS) based on a fast silicon photomultiplier (SiPM) that can be put directly in contact with the sample without the need of optical fibers for light collection. We directly integrated an avalanche signal amplification stage close to the SiPM, thus reducing the size of the detection channel and optimizing the signal immunity to electromagnetic interferences. The whole detection electronics was placed in a plastic screw holder compatible with the electroencephalography standard cap for measurement on brain or with custom probe holders. The SiPM is inserted into a transparent and insulating resin to avoid the direct contact of the scalp with the 100-V bias voltage. The probe was integrated in an instrument for TD fNIRS spectroscopy. The system was characterized on tissue phantoms in terms of temporal resolution, responsivity, linearity, and capability to detect deep absorption changes. Preliminary in vivo tests on adult volunteers were performed to monitor hemodynamic changes in the arm during a cuff occlusion and in the brain cortex during a motor task.

  20. A position sensitive microchannel photomultiplier for ultraviolet space astronomy

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Siegmund, O. H. W.; Bixler, J.; Bowyer, S.

    1986-01-01

    The 25-mm microchannel-plate, position-sensitive UV astronomy photomultiplier tube presented is intended for the EOM-1 Spacelab Mission's FAUST payload and conducts wide-field imaging surveys in the VUV over the 1400-1800-A range. The sealed detector encompasses a CsI photocathode deposited on the inner surface of a MgF2 window, a stack of microchannel plates, and a wedge-and-strip two-dimensional position-sensing anode. Since the wedge-and-strip principle requires only three anode signals, flight electronics can be reduced to three charge amplifiers and three analog-to-digital converters.

  1. Detectors based on silicon photomultiplier arrays for medical imaging applications

    SciTech Connect

    Llosa, G.; Barrio, J.; Cabello, J.; Lacasta, C.; Oliver, J. F.; Stankova, V.; Solaz, C.

    2011-07-01

    Silicon photomultipliers (SiPMs) have experienced a fast development and are now employed in different research fields. The availability of 2D arrays that provide information of the interaction position in the detector has had a high interest for medical imaging. Continuous crystals combined with segmented photodetectors can provide higher efficiency than pixellated crystals and very high spatial resolution. The IRIS group at IFIC is working on the development of detector heads based on continuous crystals coupled to SiPM arrays for different applications, including a small animal PET scanner in collaboration with the Univ. of Pisa and INFN Pisa, and a Compton telescope for dose monitoring in hadron therapy. (authors)

  2. Silicon photomultiplier characterization for the GlueX barrel calorimeter

    SciTech Connect

    F. Barbosa, J.E. McKisson, J. McKisson, Y. Qiang, E. Smith, C. Zorn

    2012-12-01

    GlueX is a new detector being constructed at Jefferson Laboratory to study gluonic excitations and confinement via the detection of exotic meson states. The hermetic detector includes a barrel calorimeter where the photodetectors must operate in a high magnetic field exceeding 0.5 T. After extensive tests with a variety of sensors, the chosen photodetector will be a custom silicon photomultiplier (SiPM) array manufactured by Hamamatsu Corporation. This paper will focus on the characterization of the first 80 production samples of these SiPMs, including dark rate, photodetection efficiency (PDE), crosstalk, response uniformity and radiation tolerance.

  3. Gating characteristics of photomultiplier tubes for Lidar applications

    NASA Technical Reports Server (NTRS)

    Barrick, J. D. W.

    1986-01-01

    A detector test facility was developed and applied in the evaluation and characterization of lidar detectors in support of the multipurpose airborne differential absorption lidar (DIAL) system based at the Langley Research Center (LaRC). A performance data base of various detector configurations available to the DIAL system was obtained for optimum lidar detector selection. Photomultiplier tubes (PMT's) with multialkaline and bialkaline photocathodes were evaluated in voltage-divider networks (bases) by using either the focusing electrode or dynodes as a gating mechanism. Characteristics used for detector evaluation included gain stability, signal rise time, and the ability to block unwanted high light levels.

  4. Development of a radiation-hard photomultiplier tube

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.; Bunker, R. L.; Roderick, J.; Stephenson, K.

    1984-01-01

    In a radiation-hard photomultiplier tube (PMT) such as has been developed for stabilization of the Galileo spacecraft as it goes through the Jovian high energy radiation belts, the primary effects of high energy electron and proton radiation that must be resisted are the production of fluorescence and Cerenkov emission. The present PMT envelope is ceramic rather than glass, and employs a special, electron-focusing design which will collect, accelerate and amplify electrons only from desired photocathode areas. Tests in a Co-60 radiation facility have shown that the radiation-hard PMT produces less than 2.5 percent of the radiation noise of a standard PMT.

  5. Supershort avalanche electron beam in SF6 and krypton

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao

    2016-03-01

    Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  6. Active microrheology in active matter systems: Mobility, intermittency, and avalanches.

    PubMed

    Reichhardt, C; Reichhardt, C J Olson

    2015-03-01

    We examine the mobility and velocity fluctuations of a driven particle moving through an active matter bath of self-mobile disks for varied density or area coverage and varied activity. We show that the driven particle mobility can exhibit nonmonotonic behavior that is correlated with distinct changes in the spatiotemporal structures that arise in the active media. We demonstrate that the probe particle velocity distributions exhibit specific features in the different dynamic regimes and identify an activity-induced uniform crystallization that occurs for moderate activity levels and is distinct from the previously observed higher activity cluster phase. The velocity distribution in the cluster phase has telegraph noise characteristics produced when the probe particle moves alternately through high-mobility areas that are in the gas state and low-mobility areas that are in the dense phase. For higher densities and large activities, the system enters what we characterize as an active jamming regime. Here the probe particle moves in intermittent jumps or avalanches that have power-law-distributed sizes that are similar to the avalanche distributions observed for nonactive disk systems near the jamming transition.

  7. Assessing the importance of terrain parameters on glide avalanche release

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  8. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of intrinsic avalanche noise

    SciTech Connect

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-12-15

    The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers--veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comes with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as

  9. Indirect flat-panel detector with avalanche gain: design and operation of the avalanche photoconductor

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Li, Dan; Reznik, Alla; Lui, Brian; Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2005-04-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP. The final electronic image can be read out using either an array of thin film transistors (TFT) or field emitters (FE). The advantage of the proposed detector is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. This paper investigates the important design considerations for HARP such as avalanche gain, which depends on both the thickness dSe and the applied electric field ESe. To determine the optimal design parameter and operational conditions for HARP, we measured the ESe dependence of both avalanche gain and optical quantum efficiency of an 8 μm HARP layer. The results were applied to a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and non-avalanche modes as a function of ESe: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; and (4) gain non-uniformity resulting from thickness non-uniformity. Our results showed that a HARP layer thickness of 8 μm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  10. Nano-multiplication region avalanche photodiodes and arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  11. The role of thermal coupling on avalanches in manganites.

    PubMed

    Macià, F; Abril, G; Hernandez, J M; Tejada, J

    2009-10-07

    We report here a study on the environmental dependence of the occurrence, at low temperature, of ultra-sharp field induced avalanches in phase separated manganites. Despite the high reproducibility of avalanches, it has already been observed that the critical fields shift with the magnetic field sweep rate and that different sample sizes lead to different ignition fields for the avalanches. Critical growing rates have been suggested to describe the avalanche ignition though the role of thermal coupling has hardly been considered. We qualitatively analyze here a set of experimental data on avalanches in manganites and discuss the role of thermal coupling as a key parameter of the instability in a dynamical system.

  12. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  13. Rock avalanches caused by earthquakes: source characteristics.

    PubMed

    Keefer, D K

    1984-03-23

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed of intensely fractured rock, and exhibited at least one other indicator of low strength or potential instability.

  14. Vortex avalanches in a type II superconductor

    SciTech Connect

    Behnia, K.; Capan, C.; Mailly, D.; Etienne, B.

    1999-12-01

    The authors report on a study of the spatiotemporal variation of magnetic induction in a superconducting niobium sample during a slow sweep of external magnetic field. A sizable fraction of the increase in the local vortex population occurs in abrupt jumps. They compare the size distribution of these avalanches with the predictions of self-organized-criticality models for vortex dynamics.

  15. Forecasting runout of rock and debris avalanches

    USGS Publications Warehouse

    Iverson, Richard M.; Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L.

    2006-01-01

    Physically based mathematical models and statistically based empirical equations each may provide useful means of forecasting runout of rock and debris avalanches. This paper compares the foundations, strengths, and limitations of a physically based model and a statistically based forecasting method, both of which were developed to predict runout across three-dimensional topography. The chief advantage of the physically based model results from its ties to physical conservation laws and well-tested axioms of soil and rock mechanics, such as the Coulomb friction rule and effective-stress principle. The output of this model provides detailed information about the dynamics of avalanche runout, at the expense of high demands for accurate input data, numerical computation, and experimental testing. In comparison, the statistical method requires relatively modest computation and no input data except identification of prospective avalanche source areas and a range of postulated avalanche volumes. Like the physically based model, the statistical method yields maps of predicted runout, but it provides no information on runout dynamics. Although the two methods differ significantly in their structure and objectives, insights gained from one method can aid refinement of the other.

  16. Fractal avalanche ruptures in biological membranes

    NASA Astrophysics Data System (ADS)

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe

    2010-11-01

    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  17. Characterization of three high efficiency and blue sensitive silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Otte, Adam Nepomuk; Garcia, Distefano; Nguyen, Thanh; Purushotham, Dhruv

    2017-02-01

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/°C, dark rates of ∼50 kHz/mm2 at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A standardized parameterization of SiPMs would enable users to find the optimal SiPM for their application and the operating point of SiPMs without having to perform measurements thus significantly reducing design and development cycles.

  18. Silicon photomultipliers for next generation high-energy space telescopes

    NASA Astrophysics Data System (ADS)

    Lacombe, K.; Knödlseder, J.; Delaigue, S.; Galliano, M.; Houret, B.; Ramon, P.; Rouaix, G.; Virmontois, C.

    2015-08-01

    Photon detection is a central element of any high-energy astronomy instrumentation. One classical setup that has proven successful in many missions is the combination of photomultiplier tubes (PMTs) with scintillators, converting incoming high-energy photons into visible light, which in turn is converted in an electrical impulse. Although being extremely sensitive and rapid, PMTs have the drawback of being bulky, fragile, and are requiring a high-voltage power supply of up to several thousand volts. Recent technological advances in the development of silicon photomultipliers (SiPM) make them a promising alternative to PMTs in essentially all their applications. We have started an R and D program to assess the possibility of using SiPMs for space-based applications in the domain of high-energy astronomy. We have setup a test bench using a vacuum vessel to reproduce a space-representative environment in our lab. We will present our test bench as well as first results of a characterization campaign of SiPM detectors from 3 different suppliers. We have planned to select after the characterization campaign one baseline detector for which we will design a dedicated front-end electronics and mechanical system. Furthermore, we plan to develop a specific low noise voltage power supply that ensures the stability of the SiPMs. Our ultimate goal is to qualify the system for a Technical Readiness Level of 5.

  19. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  20. Photomultiplier window materials under electron irradiation - Fluorescence and phosphorescence

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Pieper, G. F.; Bredekamp, J. H.

    1975-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation have been investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV-grade, optical-grade, and electron-irradiated samples of MgF2 and LiF, and of CaF2, BaF2, sapphire, fused silica, and UV-transmitting glasses were obtained over the 200-650-nm spectral range. Fluorescence yields were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively. Optical-grade MgF2 and LiF, as well as electron-irradiated UV-grade samples of these two materials, show enhanced fluorescence due to color-center formation and associated emission bands in the blue and red wavelength regions. Large variations in fluorescence intensities were found in UV-grade sapphire samples of different origins, particularly in the red end of the spectrum, presumably due to various amounts of chromium-ion content. Phosphorescence decay with time is best described by a sum of exponential terms, with time constants ranging from a few minutes to several days.

  1. Radiation effects on the runaway electron avalanche

    NASA Astrophysics Data System (ADS)

    Liu, Chang

    2016-10-01

    Runaway electrons are a critical area of research into tokamak disruptions. A thermal quench on ITER can result in avalanche production of a large amount of runaway electrons and a transfer of the plasma current to be carried by runaway electrons. The potential damage caused by the highly energetic electron beam poses a significant challenge for ITER to achieve its mission. It is therefore extremely important to have a quantitative understanding of the avalanche process, including (1) the critical energy for an electron to run away to relativistic energy and (2) the avalanche growth rate dependence on electric field, which is related to the poloidal flux change required for an e-fold in current. It is found that the radiative energy loss of runaway electrons plays an important role in determining these two quantities. In this talk we discuss three kinds of radiation from runaway electrons, synchrotron radiation, Cerenkov radiation, and electron cyclotron emission (ECE) radiation. Synchrotron radiation, which mainly comes from the cyclotron motion of highly relativistic runaway electrons, dominates the energy loss of runaway electrons in the high-energy regime. The Cerenkov radiation from runaway electrons gives an additional correction to the Coulomb logarithm in the collision operator, which changes the avalanche growth rate. The ECE emission mainly comes from electrons in the energy range 1.2 < γ < 3 , and gives an important approach to diagnose the runaway electron distribution in momentum and pitch angle. To study the runaway electron dynamics in momentum space including all the radiation and scattering effects, we use a novel tool, the adjoint method to obtain both the runaway probability and the expected slowing-down time. The method is then combined with kinetic simulations to calculate the avalanche threshold and growth rate. This work is supported by US Department of Energy under Grant No. DE-AC02-09CH-11466.

  2. A system for measuring the pulse height distribution of ultrafast photomultipliers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1977-01-01

    A system for measuring the pulse height distribution of gigahertz bandwidth photomultipliers was developed. This system uses a sampling oscilloscope as a sample-hold circuit and has a bandwidth of 12 gigahertz. Test results are given for a static crossed-filed photomultiplier tested with a demonstration system. Calculations on system amplitude resolution capabilities are included for currently available system components.

  3. Performance study of Philips digital silicon photomultiplier coupled to scintillating crystals

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Pizzichemi, M.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-01-01

    Silicon photomultipliers (SiPMs) and scintillators are often arranged in the shape of arrays in Positron Emission Tomography (PET) systems. Digital SiPMs provide signal readout in single photon avalanche diode (SPAD) level. From the photon count rate measurement of each SPAD cell of digital SiPM, we found that the output scintillating photons distribute in an area larger than the scintillator physical coupling area. Taking advantage of the possibility to enable/disable individual cells of the digital SiPM, a group of Lutetium-yttrium oxyorthosilicate (LYSO) crystals with different dimensions coupled to a digital SiPM was used to study the influence of using different SiPM active area on the number of photons detected, energy resolution and coincidence time resolution (CTR). For the same crystal coupled to the digital SiPM, the larger the active area of digital SiPM, the higher the number of photons detected. The larger active area of the digital SiPM also results in a better energy resolution after saturation correction. The best energy resolution full width half maximum (FWHM) obtained for the 2 × 2 × 5 mm3, 2 × 2 × 10 mm3, 2 × 2 × 15 mm3, 2 × 2 × 20 mm3 LYSO crystals was 10.7%, 11.6%, 12.1%, 12.5%, respectively. For crystals with different cross sections coupled to the digital SiPM, we found that the larger the cross section of coupling area, the more photons were detected and thus a better energy resolution was obtained. The CTR of crystals fully wrapped with Teflon or without wrapping was measured by positioning two identical crystals facing each other. A larger area of digital SiPM improves the CTR and the CTR reaches the plateau when the active area is larger than 2.2 × 2.2 mm2 with both two configurations of wrapping. The best CTR value for the 2 × 2 × 5 mm3, 2 × 2 × 10 mm3, 2 × 2 × 15 mm3, 2 × 2 × 20 mm3 LYSO crystals was 128.9 ps, 148.4 ps, 171.6 ps, 177.9 ps, respectively. The measurements performed lead us to conclude that optimising the

  4. Eruption-triggered avalanche, flood, and lahar at mount st. Helens--effects of winter snowpack.

    PubMed

    Waitt, R B; Pierson, T C; Macleod, N S; Janda, R J; Voight, B; Holcomb, R T

    1983-09-30

    An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River.

  5. Eruption-triggered avalanche, flood, and lahar at Mount St. Helens - Effects of winter snowpack

    USGS Publications Warehouse

    Waitt, R.B.; Pierson, T.C.; MacLeod, N.S.; Janda, R.J.; Voight, B.; Holcomb, R.T.

    1983-01-01

    An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River.

  6. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of depth dependent avalanche noise

    SciTech Connect

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-03-15

    The past decade has seen the swift development of the flat-panel detector (FPD), also known as the active matrix flat-panel imager, for digital radiography. This new technology is applicable to other modalities, such as fluoroscopy, which require the acquisition of multiple images, but could benefit from some improvements. In such applications where more than one image is acquired less radiation is available to form each image and amplifier noise becomes a serious problem. Avalanche multiplication in amorphous selenium (a-Se) can provide the necessary amplification prior to read out so as to reduce the effect of electronic noise of the FPD. However, in direct conversion detectors avalanche multiplication can lead to a new source of gain fluctuation noise called depth dependent avalanche noise. A theoretical model was developed to understand depth dependent avalanche noise. Experiments were performed on a direct imaging system implementing avalanche multiplication in a layer of a-Se to validate the theory. For parameters appropriate for a diagnostic imaging FPD for fluoroscopy the detective quantum efficiency (DQE) was found to drop by as much as 50% with increasing electric field, as predicted by the theoretical model. This drop in DQE can be eliminated by separating the collection and avalanche regions. For example by having a region of low electric field where x rays are absorbed and converted into charge that then drifts into a region of high electric field where the x-ray generated charge undergoes avalanche multiplication. This means quantum noise limited direct conversion FPD for low exposure imaging techniques are a possibility.

  7. The Marocche rock avalanches (Trentino, Italy)

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, Susan; Martin, Silvana; Campedel, Paolo; Viganò, Alfio; Alberti, Silvio; Rigo, Manuel; Vockenhuber, Christof

    2015-04-01

    The floors of the Adige and Sarca River valleys are punctuated by numerous rock avalanche deposits of undetermined age. With a view to understanding predisposition and triggering factors, thus ultimately paleoseismicity in the region, we are studying the geomorphology and timing of the largest rock avalanches of the River Sarca-Lake Garda area (e.g., Marocche, Monte Spinale, Lago di Tovel, Lago di Molveno, San Giovanni and Torbole). Among the most extensive of these deposits, with an area of 13 km2 and a volume of about 109 m3, are the Marocche. Marocche deposits cover the lower Sarca valley north of Lake Garda for a length of more than 8 km with 200 m of debris. Both collapse and bedding parallel sliding are a consequence of dip slopes and the extreme relief on the right side of the valley of nearly 2000 m from the bedrock below the valley floor to the peaks combined with the zones of structural weakness. The rock avalanches developed within carbonate rocks of Mesozoic age, mainly limestones of the Jurassic Calcari Grigi Group. The main scarps are located on the western side of the lower Sarca Valley, along the steep faces of Mt. Brento and Mt. Casale. The presence of these scarps is strictly related to the Southern Giudicarie and the Ballino fault systems. The former is here constituted by regular NNE-directed ESE-vergent thrust faults. The latter has been reactivated as normal faults. These complicated structural relationships favored complex failure mechanisms, including rock slide and massive collapse. At the Marocche itself, based on field relationships and analysis of lidar imagery, we differentiated two large rock avalanches: the Marocca di Kas in the south which overlies and in part buries the Marocche (s.s.) in the northern sector. Previous mapping had suggested up to five rock avalanches in the area where we differentiate two. In spite of hypotheses suggesting failure of the rock avalanches onto stagnating late Pleistocene glaciers, preliminary 36Cl

  8. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Strobbe, N.

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  9. Use of Silicon Photomultiplier in LBL Cosmic Tay Detector

    NASA Astrophysics Data System (ADS)

    Osornio, Leo

    2012-10-01

    During a summer internship program at Hartnell Community College our team successfully constructed two complementary cosmic ray experiments. The first employed NIM electronic modules the second constructed as per specifications of a circuit board designed by the Berkeley Lab Cosmic Ray Telescope Project (http://cosmic.lbl.gov/). During the following summer at Lawrence Berkeley National Laboratory, we worked on optimizing the performance of a group of Berkeley Lab Detector and developed tools to measure its performance. The next phase was exploring whether Silicon Photomultiplier (SiPM) can be used to replace the phototube of the Berkeley Detector. Data will be presented from both summers including the dependence of the cosmic ray flux on the separation and polar angle of scintillator paddles, as well as the results from our SiPM tests. Finally, I will include prospects for curriculum development using the cosmic ray experiments.

  10. Gated Microchannel Plate Photomultiplier For Longitudinal BeamDiagnostics

    SciTech Connect

    Byrd, John M.; De Santis, Stefano; Thurman-Keup, Randy

    2006-05-03

    A gated microchannel plate photomultiplier can be used as aneffective tool for measuring the longitudinal distribution of particlesaround most electron and high-energy proton rings. The broad availablewavelength range,low noise, and high sensitivity allow using such adevice for measuring the emitted synchrotron radiation and to extract thebeam intensity. The fast gate rise time can be used to reject strongsignals coming from filled RF buckets and avoid saturation of thephotocathode so that it is possible to monitor, with a high degree ofresolution, gaps in the machine fill and growth of parasitic bunches. Therugged characteristics of the device and its simplicity of use make itideal for all those applications where more complex and expensiveinstrumentation is not absolutely necessary. We present the experimentalresults obtained at the Advanced Light Source and on the Tevatron usingan Hamamatsu R5916U-50 series model.

  11. Characterization of Silicon Photomultipliers for the nEXO experiment

    NASA Astrophysics Data System (ADS)

    Doria, Luca

    2016-09-01

    The search for the neutrinoless double beta decay represents a test of the MAJORANA nature of neutrinos and at the same time a test of lepton number conservation. Building on the experience gained with the EXO-200 experiment, nEXO is a next generation detector designed for searching neutrinoless double beta decay events with a 5 tonne liquid Xenon time projection chamber (TPC). The detection of this decay requires a very low background experimental setup and excellent energy resolution. In a TPC, both scintillation and ionization signals are detected. For detecting scintillation light from Xenon, silicon photomultipliers (SiPM) represent the currently considered technology. For identifying the appropriate device meeting the nEXO requirements, different state of the art SiPMs are presently characterized using the TRIUMF setup. We will present results on SiPM characterizations regarding their main characteristics: dark noise, afterpulsing and photodetection efficiency in different experimental conditions.

  12. Timing optimization utilizing order statistics and multichannel digital silicon photomultipliers.

    PubMed

    Mandai, Shingo; Venialgo, Esteban; Charbon, Edoardo

    2014-02-01

    We present an optimization technique utilizing order statistics with a multichannel digital silicon photomultiplier (MD-SiPM) for timing measurements. Accurate timing measurements are required by 3D rangefinding and time-of-flight positron emission tomography, to name a few applications. We have demonstrated the ability of the MD-SiPM to detect multiple photons, and we verified the advantage of detecting multiple photons assuming incoming photons follow a Gaussian distribution. We have also shown the advantage of utilizing multiple timestamps for estimating time-of-arrivals more accurately. This estimation technique can be widely available in various applications, which have a certain probability density function of incoming photons, such as a scintillator or a laser source.

  13. Characterization of Silicon PhotoMultipliers at LNS-INFN

    SciTech Connect

    Cosentino, L.; Finocchiaro, P.; Pappalardo, A.

    2011-12-13

    The Silicon PhotoMultipliers (SiPMs) are a new generation of photodetectors having high sensitivity, excellent time resolution, compactness, low power supply, and insensitivity to magnetic fields. Their properties make them a valid alternative to the PMTs in several fields, such as particle physics, medicine, and space technology. At Laboratori Nazionali del Sud (LNS), a complete characterization of samples developed by different companies (Hamamatsu, STM, SensL) has been performed in order to measure the most significant properties, consisting of the dark noise, cross talk probability, photon detection efficiency, and charge and timing resolutions. Measurements have also been performed coupling the SiPMs with scintillating fibres and small size LYSO scintillators in order to investigate possible applications in Positron Emission Tomography (PET) diagnostics and in the monitoring of nuclear waste sites.

  14. Characterization of Silicon PhotoMultipliers at LNS-INFN

    NASA Astrophysics Data System (ADS)

    Cosentino, L.; Finocchiaro, P.; Pappalardo, A.

    2011-12-01

    The Silicon PhotoMultipliers (SiPMs) are a new generation of photodetectors having high sensitivity, excellent time resolution, compactness, low power supply, and insensitivity to magnetic fields. Their properties make them a valid alternative to the PMTs in several fields, such as particle physics, medicine, and space technology. At Laboratori Nazionali del Sud (LNS), a complete characterization of samples developed by different companies (Hamamatsu, STM, SensL) has been performed in order to measure the most significant properties, consisting of the dark noise, cross talk probability, photon detection efficiency, and charge and timing resolutions. Measurements have also been performed coupling the SiPMs with scintillating fibres and small size LYSO scintillators in order to investigate possible applications in Positron Emission Tomography (PET) diagnostics and in the monitoring of nuclear waste sites.

  15. Teaching Natural Hazards: The Use of Snow Avalanches in Demonstrating and Addressing Geographic Topics and Principles.

    ERIC Educational Resources Information Center

    Butler, David R.

    1988-01-01

    Illustrates the importance of studying the snow avalanche as a natural hazard. Describes the various kinds of snow avalanches, the types of triggering mechanisms that produce them, the typical avalanche terrain, and the geomorphic and the vegetative evidence for snow avalanching. Depicts methods of human adjustment to the avalanche hazard.…

  16. Methods of similitude in granular avalanche flows

    NASA Astrophysics Data System (ADS)

    Tai, Yih-Chin; Wang, Yongqi; Gray, J. M. N. T.; Hutter, Kolumban

    Snow avalanches are relatively dry and dense granular flows for which the Savage-Hutter (SH) equations have been demonstrated to be an adequate mathematical model. We review these equations and point out for which cases the equations have been tested against laboratory experiments. Since the equations are scale invariant and because agreement with experiments is good, laboratory experiments can be used to test realistic flows. This is detailed in this paper. We demonstrate how shocks are formed when dilatational flow states merge into compacting states and show that shock formation is an essential mechanism in flows against obstructions. We finally apply the theory of similitude to the design of a projected avalanche protection structure of the Schneefernerhaus at the Zugspitze.

  17. Mean-field avalanches in jammed spheres

    NASA Astrophysics Data System (ADS)

    Franz, S.; Spigler, S.

    2017-02-01

    Disordered systems are characterized by the existence of many sample-dependent local-energy minima that cause a step-wise response when the system is perturbed. In this article we use an approach based on elementary probabilistic methods to compute the complete probability distribution of the jumps (static avalanches) in the response of mean-field systems described by replica symmetry breaking; we find a precise condition for having a power-law behavior in the distribution of avalanches caused by small perturbations, and we show that our predictions are in remarkable agreement both with previous results and with what is found in simulations of three-dimensional systems of soft spheres, either at jamming or at slightly higher densities.

  18. Hierarchical networks, power laws, and neuronal avalanches.

    PubMed

    Friedman, Eric J; Landsberg, Adam S

    2013-03-01

    We show that in networks with a hierarchical architecture, critical dynamical behaviors can emerge even when the underlying dynamical processes are not critical. This finding provides explicit insight into current studies of the brain's neuronal network showing power-law avalanches in neural recordings, and provides a theoretical justification of recent numerical findings. Our analysis shows how the hierarchical organization of a network can itself lead to power-law distributions of avalanche sizes and durations, scaling laws between anomalous exponents, and universal functions-even in the absence of self-organized criticality or critical points. This hierarchy-induced phenomenon is independent of, though can potentially operate in conjunction with, standard dynamical mechanisms for generating power laws.

  19. Stochastic simulation of electron avalanches on supercomputers

    SciTech Connect

    Rogasinsky, S. V.; Marchenko, M. A.

    2014-12-09

    In the paper, we present a three-dimensional parallel Monte Carlo algorithm named ELSHOW which is developed for simulation of electron avalanches in gases. Parallel implementation of the ELSHOW was made on supercomputers with different architectures (massive parallel and hybrid ones). Using the ELSHOW, calculations of such integral characteristics as the number of particles in an avalanche, the coefficient of impact ionization, the drift velocity, and the others were made. Also, special precise computations were made to select an appropriate size of the time step using the technique of dependent statistical tests. Particularly, the algorithm consists of special methods of distribution modeling, a lexicographic implementation scheme for “branching” of trajectories, justified estimation of functionals. A comparison of the obtained results for nitrogen with previously published theoretical and experimental data was made.

  20. Mean-field avalanches in jammed spheres.

    PubMed

    Franz, S; Spigler, S

    2017-02-01

    Disordered systems are characterized by the existence of many sample-dependent local-energy minima that cause a step-wise response when the system is perturbed. In this article we use an approach based on elementary probabilistic methods to compute the complete probability distribution of the jumps (static avalanches) in the response of mean-field systems described by replica symmetry breaking; we find a precise condition for having a power-law behavior in the distribution of avalanches caused by small perturbations, and we show that our predictions are in remarkable agreement both with previous results and with what is found in simulations of three-dimensional systems of soft spheres, either at jamming or at slightly higher densities.

  1. Communicators' perspective on snow avalanche risk communication

    NASA Astrophysics Data System (ADS)

    Charriere, M. K. M.; Bogaard, T.; Mostert, E.

    2014-12-01

    Among all the natural hazards, snow avalanches are the only ones for which a public danger scale is globally used. It consists of 5 levels of danger displayed with a given number and colour and for each of them, behavioural advices are provided. Even though this is standardized in most of the countries affected by this natural hazard, the tools (usually websites or smartphone applications) with which the information is disseminated to the general pubic differs, particularly in terms of target audience and level of details. This study aims at gathering the perspectives of several communicators that are responsible for these communication practices. The survey was created to assess how and why choices were made in the design process of the communication tools and to determine how their effectiveness is evaluated. Along with a review of existing avalanche risk communication tools, this study provides guidelines for communication and the evaluation of its effectiveness.

  2. Monte Carlo simulations within avalanche rescue

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg

    2016-04-01

    Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.

  3. Thermal avalanches near a Mott transition.

    PubMed

    Lashley, J C; Gofryk, K; Mihaila, B; Smith, J L; Salje, E K H

    2014-01-22

    We probe the volume collapse transition (ΔV/Vo ∼ 15%) between the isostructural γ and α phases (T ∼ 100 K) of Ce0.9Th0.1 using the Hall effect, three-terminal capacitive dilatometry, and electrical resistivity measurements. Hall effect measurements confirm the itinerant ground state as the carrier concentration increases by a factor of 7 in the α phase, γ phase (nH = 5.28 × 10(26) m(-3)), and the α phase (nH = 3.76 × 10(27) m(-3)). We were able to detect a noise spectrum consisting of avalanches while slowly varying the temperature through the hysteretic region. We surmise that the avalanches originate from intergranular stresses at the interfaces between partially transformed high-volume and low-volume phases. The statistical distribution of avalanches obey power laws with energy exponent ϵ ≃ 1.5. Hall effect measurements, combined with universal critical exponents, point to short electron mean-free percolation pathways and carrier localization at phase interfaces. Carrier localization was predicted many years ago for elemental cerium by Johansson (1974 Phil. Mag. 30 469).

  4. Neuronal avalanches in spontaneous activity in vivo.

    PubMed

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N; Yu, Shan; Singer, Wolf; Plenz, Dietmar; Nikolic, Danko

    2010-12-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.

  5. A PMT-like high gain avalanche photodiode based on GaN/AlN periodically stacked structure

    NASA Astrophysics Data System (ADS)

    Zheng, Jiyuan; Wang, Lai; Wu, Xingzhao; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yanjun; Wang, Jian; Li, Hongtao; Brault, Julien; Matta, Samuel; Khalfioui, Mohamed Al; Yan, Jianchang; Wei, Tongbo; Zhang, Yun; Wang, Junxi

    2016-12-01

    Avalanche photodiode (APD) has been intensively investigated as a promising candidate to replace the bulky and fragile photomultiplier tube (PMT) for weak light detection. However, the performance of most available APDs is barely satisfactory compared to that of the PMTs because of inter-valley scattering. Here, we demonstrate a PMT-like APD based on GaN/AlN periodically stacked-structure (PSS), in which the electrons encounter a much less inter-valley scattering during transport than holes. Uni-directional avalanche takes place with a high efficiency. According to our simulations based on a PSS with GaN (10 nm)/AlN (10 nm) in each period, the probability for electrons to trigger ionization in each cycle can reach as high as 80%, while that for holes is only 4%. A record high and stable gain (104) with a low ionization coefficient ratio of 0.05 is demonstrated under a constant bias in a prototype device.

  6. Mechanisms of evolution of avalanches in regular graphs.

    PubMed

    Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2013-06-01

    A mapping of avalanches occurring in the zero-temperature random-field Ising model to life periods of a population experiencing immigration is established. Such a mapping allows the microscopic criteria for the occurrence of an infinite avalanche in a q-regular graph to be determined. A key factor for an avalanche of spin flips to become infinite is that it interacts in an optimal way with previously flipped spins. Based on these criteria, we explain why an infinite avalanche can occur in q-regular graphs only for q>3 and suggest that this criterion might be relevant for other systems. The generating function techniques developed for branching processes are applied to obtain analytical expressions for the durations, pulse shapes, and power spectra of the avalanches. The results show that only very long avalanches exhibit a significant degree of universality.

  7. Edge effect on the power law distribution of granular avalanches.

    PubMed

    Lorincz, Kinga A; Wijngaarden, Rinke J

    2007-10-01

    Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such power-law-distributed avalanche sizes to quasiperiodic system-spanning avalanches. Conversely, by removing ledges the incidence of system-spanning avalanches is significantly reduced. This may offer a perspective on new avalanche prevention schemes. In addition, our findings may help to explain why the archetype of SOC, the sandpile, was found to have power-law-distributed avalanches in some experiments, while in other experiments quasiperiodic system-spanning avalanches were found.

  8. Preventive maintenance system for the photomultiplier detector blocks of PET scanners

    DOEpatents

    Levy, A.V.; Warner, D.

    1995-01-24

    A system including a method and apparatus for preventive maintenance of PET scanner photomultiplier detector blocks is disclosed. The qualitative comparisons used in the method of the present invention to provide an indication in the form of a display or printout advising the user that the photomultiplier block is stable, intermittently unstable, or drifting unstable, and also advising of the expected date of failure of a photomultiplier block in the PET scanner. The system alerts the user to replace the defective photomultiplier block prior to catastrophic failure in a scheduled preventative maintenance program, thus eliminating expensive and unscheduled downtime of the PET scanner due to photomultiplier failure. The apparatus for carrying out the method of the present invention preferably resides in the host computer controlling a PET scanner. It includes a memory adapted for storing a record of a number of iterative adjustments that are necessary to calibrate the gain of a photomultiplier detector block i at a time t[sub 0], a time t[sub 1] and a time T, where T>t[sub 1]>t[sub 0], which is designated as Histo(i,j(t)). The apparatus also includes a processor configured by a software program or a combination of programmed RAM and ROM devices to perform a number of calculations and operations on these values, and also includes a counter for analyzing each photomultiplier detector block i=1 through I of a PET scanner. 40 figures.

  9. Preventive maintenance system for the photomultiplier detector blocks of pet scanners

    DOEpatents

    Levy, Alejandro V.; Warner, Donald

    1995-01-24

    A system including a method and apparatus for preventive maintenance of PET scanner photomultiplier detector blocks is disclosed. The quantitive comparisons used in the method of the present invention to provide an indication in the form of a display or printout advising the user that the photomultiplier block is stable, intermittently unstable, or drifting unstable, and also advising of the expected date of failure of a photomultiplier block in the PET scanner. The system alerts the user to replace the defective photomultiplier block prior to catastrophic failure in a scheduled preventative maintenance program, thus eliminating expensive and unscheduled downtime of the PET scanner due to photomultiplier failure. The apparatus for carrying out the method of the present invention preferably resides in the host computer controlling a PET scanner. It includes a memory adapted for storing a record of a number of iterative adjustments that are necessary to calibrate the gain of a photomultiplier detector block i at a time t.sub.0, a time t.sub.1 and a time T, where T>t.sub.1 >t.sub.0, which is designated as Histo(i,j(t)). The apparatus also includes a processor configured by a software program or a combination of programmed RAM and ROM devices to perform a number of calculations and operations on these values, and also includes a counter for analyzing each photomultiplier detector block i=1 through I of a PET scanner.

  10. Avalanche in adhesion. [interfacial separation between two Ni crystals

    NASA Technical Reports Server (NTRS)

    Smith, John R.; Bozzolo, Guillermo; Banerjea, Amitava; Ferrante, John

    1989-01-01

    Consider surfaces being brought into contact. It is proposed that atomic layers can collapse or avalanche together when the interfacial spacing falls below a critical distance. This causes a discontinuous drop in the adhesive binding energy. Avalanche can occur regardless of the stiffness of external supports. A simple understanding of the origin of this phenomenon is provided. A numerical calculation has been carried out for adhesion in Ni. A new wear mechanism due to avalanche is suggested.

  11. Two scenarios for avalanche dynamics in inclined granular layers.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2005-05-27

    We report experimental measurements of avalanche behavior of thin granular layers on an inclined plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and qualitatively different for smooth glass beads compared to irregular granular materials such as sand. Two scenarios for granular avalanches on an incline are identified, and a theoretical explanation for these different scenarios is developed based on a depth-averaged approach that takes into account the differing rheologies of the granular materials.

  12. Modelling rock avalanche propagation onto glaciers

    NASA Astrophysics Data System (ADS)

    Sosio, Rosanna; Crosta, Giovanni B.; Chen, Joanna H.; Hungr, Oldrich

    2012-07-01

    Ice-rock avalanches which occur in glacial environments are controlled by the presence of snow and ice in the moving material and by possible propagation onto icy basal surfaces. All these factors contribute to enhancing the flow mobility. Mixing with ice and snow hampers block collisions and favours dense flow behaviour. Ice melting reduces granular friction by saturation of the basal material and fluidization effects. Propagating onto glaciers offers a smooth surface with low shear resistance. This work is a review of the best documented ice-rock avalanches and focuses on evaluating their mobility for hazard analysis purposes by providing a set of calibrated cases. The rock avalanches have volumes ranging from 5*106 m3 to 25*106 m3. We replicate these events by using SPH and FEM numerical methods, assuming frictional and Voellmy basal rheologies. The Voellmy rheology best performs at replicating the landslide propagation. Among the back analyzed cases, the frictional coefficient ranges in the interval 0.03-0.1, the turbulent coefficient within 1000 m s-2-2000 m s-2. The bulk basal friction angle ranges within 2.75° and 14° with values inversely related to event volumes. Forward selection of the basal friction angle based on event volume, allows the replication of the Mount Cook ice-rock avalanche predicting a maximum runout which is less than 4% larger than observed. In the perspective of forward modelling, large uncertainty is related to the reconstruction of the post-event topographies, particularly for the sliding surface. Mixing with ice and snow reduces basal friction proportionally to ice and snow content. Pure ice has a basal friction which is reduced by about 75% than basal friction of pure rock. Melting of ice during rock avalanche propagation has been evaluated for the Sherman event. The frictional heat generated at the glacier surface results in the melting of 86.2 ± 5.9 kg m-2, which could have contributed to a minimum 20-35% (±10%) reduction of

  13. New advances for modelling the debris avalanches

    NASA Astrophysics Data System (ADS)

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio

    2013-04-01

    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the

  14. The effect of secondary processes in a photomultiplier tube on the characteristics of the photodetector

    NASA Astrophysics Data System (ADS)

    Vygon, V. G.; Iaroshenko, I. F.

    1983-10-01

    Expressions are derived for the mean value of the anodic current and the signal-to-noise ratio at the output of a photomultiplier tube, taking into account the formation of afterpulses. These expressions are used for the numerical calculation of the threshold sensitivity of a photomultiplier tube and the characteristics of the receiving system of a lidar. It is shown that the main factor determining this sensitivity is exoelectron emission from the dynodes. For spray-deposited emitters, having a high exoemission yield, the exoemission from the dynodes leads to a 5-10-fold deterioration in the threshold of the photomultiplier tube.

  15. Procedures and results of the measurements on large area photomultipliers for the NEMO project

    NASA Astrophysics Data System (ADS)

    Aiello, S.; Leonora, E.; Aloisio, A.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bazzotti, M.; Bellotti, R.; Bersani, A.; Beverini, N.; Biagi, S.; Bonori, M.; Bouhdaef, B.; Cacopardo, G.; Calı, C.; Capone, A.; Caponetto, L.; Carminati, G.; Cassano, B.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; D'Amico, A.; DeBonis, G.; DeRosa, G.; DeRuvo, G.; DeVita, R.; Distefano, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Giovanetti, G.; Grimaldi, A.; Grmek, A.; Habel, R.; Imbesi, M.; Lonardo, A.; LoPresti, D.; Lucarelli, F.; Margiotta, A.; Marinelli, A.; Martini, A.; Masullo, R.; Maugeri, F.; Migneco, E.; Minutoli, S.; Mongelli, M.; Morganti, M.; Musico, P.; Musumeci, M.; Orlando, A.; Osipenko, M.; Papaleo, R.; Pappalardo, V.; Piattelli, P.; Piombo, D.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sedita, M.; Shirokov, E.; Simeone, F.; Sciliberto, D.; Sipala, V.; Sollima, C.; Spurio, M.; Stefani, F.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Vecchi, M.; Vicini, P.; Wischnewski, R.

    2010-03-01

    The selection of the photomultiplier plays a crucial role in the R&D activity related to a large-scale underwater neutrino telescope. This paper illustrates the main procedures and facilities used to characterize the performances of 72 large area photomultipliers, Hamamatsu model R7081 sel. The voltage to achieve a gain of 5×10 7, dark count rate and single photoelectron time and charge properties of the overall response were measured with a properly attenuated 410 nm pulsed laser. A dedicated study of the spurious pulses was also performed. The results prove that the photomultipliers comply with the general requirements imposed by the project.

  16. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    SciTech Connect

    Wu, Yue; Zhang, Zhili; Jiang, Naibo; Roy, Sukesh; Gord, James R.

    2014-10-14

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to show relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.

  17. Monte Carlo simulations of compact gamma cameras based on avalanche photodiodes.

    PubMed

    Després, Philippe; Funk, Tobias; Shah, Kanai S; Hasegawa, Bruce H

    2007-06-07

    Avalanche photodiodes (APDs), and in particular position-sensitive avalanche photodiodes (PSAPDs), are an attractive alternative to photomultiplier tubes (PMTs) for reading out scintillators for PET and SPECT. These solid-state devices offer high gain and quantum efficiency, and can potentially lead to more compact and robust imaging systems with improved spatial and energy resolution. In order to evaluate this performance improvement, we have conducted Monte Carlo simulations of gamma cameras based on avalanche photodiodes. Specifically, we investigated the relative merit of discrete and PSAPDs in a simple continuous crystal gamma camera. The simulated camera was composed of either a 4 x 4 array of four channels 8 x 8 mm2 PSAPDs or an 8 x 8 array of 4 x 4 mm2 discrete APDs. These configurations, requiring 64 channels readout each, were used to read the scintillation light from a 6 mm thick continuous CsI:Tl crystal covering the entire 3.6 x 3.6 cm2 photodiode array. The simulations, conducted with GEANT4, accounted for the optical properties of the materials, the noise characteristics of the photodiodes and the nonlinear charge division in PSAPDs. The performance of the simulated camera was evaluated in terms of spatial resolution, energy resolution and spatial uniformity at 99mTc (140 keV) and 125I ( approximately 30 keV) energies. Intrinsic spatial resolutions of 1.0 and 0.9 mm were obtained for the APD- and PSAPD-based cameras respectively for 99mTc, and corresponding values of 1.2 and 1.3 mm FWHM for 125I. The simulations yielded maximal energy resolutions of 7% and 23% for 99mTc and 125I, respectively. PSAPDs also provided better spatial uniformity than APDs in the simple system studied. These results suggest that APDs constitute an attractive technology especially suitable to build compact, small field of view gamma cameras dedicated, for example, to small animal or organ imaging.

  18. Measurements of electron avalanche formation time in W-band microwave air breakdown

    SciTech Connect

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-15

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are {approx}0.1-2 {mu}s over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  19. Measurements of electron avalanche formation time in W-band microwave air breakdown

    NASA Astrophysics Data System (ADS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  20. Photon counting performance measurements of transfer electron InGaAsP photocathode hybrid photomultiplier tubes at 1064 nm wavelength

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Krainak, Michael A.; Hasselbrack, William B.; La Rue, Ross A.

    2007-05-01

    We report the test results of a hybrid photomultiplier tube (HPMT) with a transfer electron (TE) InGaAsP photocathode and GaAs Schottky avalanche photodiode (APD) anode. Unlike Geiger mode InGaAsP APDs, these HPMTs (also known as intensified photodiode (IPD), vacuum APD, or hybrid photodetector) operate in linear mode without the need for quenching and gating. Their greatest advantages are wide dynamic range, high speed, large photosensitive area, and potential for photon counting and analog detection dual mode operation. The photon detection efficiency we measured was 25% at 1064 nm wavelength with a dark count rate of 60,000/s at -22 degrees Celsius. The output pulse width in response to a single photon detection is about 0.9 ns. The maximum count rate was 90 Mcts/s and was limited solely by the speed of the discriminator used in the measurement (10 ns dead time). The spectral response of these devices extended from 900 to 1300 nm. We also measured the HPMT response to 60 ps laser pulses. The average output pulse amplitude increased monotonically with the input pulse energy, which suggested that we can resolve photon number in an incident pulse. The jitter of the HPMT output was found to be about 0.5 ns standard deviation and depended on bias voltage applied to the TE photocathode. To our knowledge, these HPMTs are the most sensitive non gating photon detectors at 1064 nm wavelength, and they will have many applications in laser altimeters, atmospheric lidars, and free space laser communication systems.

  1. X-ray spectroscopy with silicon pin and avalanche photo diodes

    NASA Technical Reports Server (NTRS)

    Desai, U. D.

    1992-01-01

    Results of an evaluation of silicon P-Intrinsic-N (PIN) photodiodes and Avalanche Photodiodes (APD) for the direct detection of soft x rays from 1 to 20 keV and for the detection of scintillation light output from CsI(TI) for higher x ray energies (30 to 1000 keV) are presented. About one keV resolution was achieved at room temperature for both the PIN and APD detectors for soft x rays (1 to 20 keV). Commercially available, low power (18 mV), low noise, hybrid preamplifiers, were used. These photodiodes were also coupled to CsI(TI) scintillator and obtained about 6 resolution at 662 keV. The photodiode frequency response matches well with the emission spectrum of the CsI(TI) scintillator providing good spectral resolution and a higher signal than NaI(TI) when viewed by conventional photomultipliers. A PIN-CsI(TI) combination provides a low energy threshold of around 60 keV while for the APD-CsI(TI) it is 15 keV.

  2. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems.

    PubMed

    Martinenghi, E; Di Sieno, L; Contini, D; Sanzaro, M; Pifferi, A; Dalla Mora, A

    2016-07-01

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm(2) together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  3. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    NASA Astrophysics Data System (ADS)

    Martinenghi, E.; Di Sieno, L.; Contini, D.; Sanzaro, M.; Pifferi, A.; Dalla Mora, A.

    2016-07-01

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm2 together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  4. Assessment and mapping of snow avalanche risk in Russia

    NASA Astrophysics Data System (ADS)

    Seliverstov, Yuri; Glazovskaya, Tatiana; Shnyparkov, Alexander; Vilchek, Yana; Sergeeva, Ksenia; Martynov, Alexei

    The term 'risk' can be defined as the probability of unfavourable consequences or negative effects. Risk can be expressed by means of various indices, such as collective or social risk (possible number of dead), individual risk (probability of a person's death within a certain territory during 1 year), probability of losses, etc. This paper is a case study of the small-scale assessment and mapping of individual avalanche risk focused on the two regions of Russia with the highest levels of avalanche activity: the northern Caucasus and the mountainous parts of Sakhalin island. The basic indices applied for individual avalanche risk estimation are: recurrence interval of avalanches (avalanche frequency), percentage of the whole investigated territory that is occupied by avalanche-prone areas, duration of avalanche danger period, probability of a person's stay in an avalanche-prone area during 1 day (24 hours) and during 1 year, total population of the area and its density. The results of individual avalanche risk assessment, undertaken for the territory of Russia as a whole, show that its values generally do not exceed the admissible level (from 1 × 10-6 to 1 × 10-4). However, some areas of the northern Caucasus, including famous alpine skiing resorts (Krasnaya Poliana, Dombai, the Mount Elbrus region, etc.), and of Sakhalin, including the environs of towns (Kholmsk, Nevel'sk) and other smaller human settlements, are characterized by an unacceptable level of risk. In the aggregate, areas with an unacceptable (>1 × 10-4) level of individual avalanche risk comprise about 7% of the whole avalanche-prone territory of the northern Caucasus, those with an admissible level comprise 52% and those with an acceptable level (<1 × 10-6) 41%. The corresponding values for Sakhalin are 0.1%, 14.8% and 85.1%.

  5. A method to stabilise the performance of negatively fed KM3NeT photomultipliers

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Ageron, M.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Martí, J.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherubini, S.; Chiarella, V.; Chiarelli, L.; Chiarusi, T.; Circella, M.; Classen, L.; Cobas, D.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; D'Onofrio, A.; De Bonis, G.; De Sio, C.; Di Capua, F.; Di Palma, I.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Favaro, M.; Fermani, P.; Ferrara, G.; Frascadore, G.; Furini, M.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giacomini, F.; Gialanella, L.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Grmek, A.; Guerzoni, M.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijer, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Leisos, A.; Leonora, E.; Clark, M. Lindsey; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Manzali, M.; Margiotta, A.; Margotti, A.; Marinelli, A.; Mariš, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Orzelli, A.; Pancaldi, G.; Paolucci, A.; Papaikonomou, A.; Papaleo, R.; Păvălaš, G. E.; Peek, H.; Pellegrini, G.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Terrasi, F.; Tézier, D.; Theraube, S.; Timmer, P.; Töonnis, C.; Trasatti, L.; Travaglini, R.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zani, S.; Zornoza, J. D.; Zúñiga, J.

    2016-12-01

    The KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier tubes that will have to be operated in a stable and reliable fashion. In this context, the stability of the dark counts has been investigated for photomultiplier tubes with negative high voltage on the photocathode and held in insulating support structures made of 3D printed nylon material. Small gaps between the rigid support structure and the photomultiplier tubes in the presence of electric fields can lead to discharges that produce dark count rates that are highly variable. A solution was found by applying the same insulating varnish as used for the high voltage bases directly to the outside of the photomultiplier tubes. This transparent conformal coating provides a convenient and inexpensive method of insulation.

  6. Demonstration and comparison of photomultiplier tubes at liquid Argon temperature

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Antonello, M.; Boffelli, F.; Cambiaghi, M.; Canci, N.; Cavanna, F.; Cocco, A. G.; Deniskina, N.; Di Pompeo, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Kryczynski, P.; Meng, G.; Montanari, C.; Palamara, O.; Pandola, L.; Perfetto, F.; Piano Mortari, G. B.; Pietropaolo, F.; Raselli, G. L.; Rubbia, C.; Segreto, E.; Szelc, A. M.; Triossi, A.; Ventura, S.; Vignoli, C.; Zani, A.

    2012-01-01

    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photomultiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics K.K. Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these tests the Hamamatsu PMTs showed excellent performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments.

  7. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    DOE PAGES

    Chambliss, K.; Diwan, M.; Simos, N.; ...

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less

  8. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    SciTech Connect

    Chambliss, K.; Diwan, M.; Simos, N.; Sundaram, S. K.

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for all measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.

  9. Breakthrough in the lifetime of microchannel plate photomultipliers

    NASA Astrophysics Data System (ADS)

    Uhlig, F.; Britting, A.; Eyrich, W.; Lehmann, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Kumawat, H.; Lehmann, D.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Dodokhov, V. Kh.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.

    2015-07-01

    Cherenkov detectors using the DIRC (Detection of Internally Reflected Cherenkov Light) principle are foreseen for particle identification in the P bar ANDA experiment at FAIR. Promising sensors for the detection of the Cherenkov light are the so-called micro-channel plate (MCP) photomultipliers (PMT). They have an excellent time resolution, can be operated at high gain for single photon detection and have a high resistivity against magnetic fields. The disadvantage of these devices was their limited lifetime, due to damage by feedback ions on the photocathode. The lifetime of various types of MCP-PMTs from different manufactures has been tested under conditions similar to that in the P bar ANDA experiment. The sensors are assembled in one setup, to ensure the same illumination conditions. The measurement procedure requires permanent monitoring of the illumination and interruptions after about 2-3 weeks to measure dark count rate, gain and spectral quantum efficiency of all sensors. Furthermore surface scans of the whole photocathode are done every 2-4 months to determine faster aging areas. The latest results show very good lifetime performance for MCP-PMTs, where the MCPs have been treated with the atomic layer deposition (ALD) technique.

  10. Influence of the Earth's magnetic field on large area photomultipliers

    SciTech Connect

    Leonora, E.; Aiello, S.; Leotta, G.

    2011-07-01

    The influence of the Earth's magnetic field on large area photomultipliers proposed for a future deep sea neutrino telescope was studied under the EU-funded KM3NeT design study. The aims were to evaluate variations in PMT performance in the Earth's magnetic field and to decide whether the use of magnetic shielding is necessary. Measurements were performed on three Hamamatsu PMTs: two 8-inch R5912 types, one of these with super-bi-alkali photocathode, and a 10-inch R7081 type with a standard bi-alkali photocathode. The various characteristics of the PMTs were measured while varying the PMT orientations with respect to the Earth's magnetic field, both with and without a mu-metal cage as magnetic shield. In the 8-inch PMTs the impact of the magnetic field was found to be smaller than that on the 10-inch PMT. The increased quantum efficiency in the 8 super-bi-alkali PMT almost compensated its smaller detection surface compared to the 10' PMT. No significant effects were measured upon transit time and the fraction of spurious pulses. (authors)

  11. A new instrument for high statistics measurement of photomultiplier characteristics

    NASA Astrophysics Data System (ADS)

    Mollo, C. M.; Bozza, C.; Chiarusi, T.; Costa, M.; Di Capua, F.; Kulikovskiy, V.; Mele, R.; Migliozzi, P.; Pellegrino, C.; Riccobene, G.; Vivolo, D.

    2016-08-01

    Since the early days of experimental particle physics photomultipliers (PMTs) have played an important role in the detector design. Thanks to their capability of fast photon counting, PMTs are extensively used in the new-generation of astroparticle physics experiments, such as air, ice and water Cherenkov detectors. Small size PMTs (<= 3 inches diameter) show little sensitivity to the Earth magnetic field, small transit time, stable transit time spread; the price per photocathode area is less comparing to the one for the large area PMTs, typically used so far in such applications. Together with developments and reduced price of multichannel electronics, the use of PMTs of 3-inches or smaller diameter is a promising option even for nowadays large volume detectors. In this paper we report on the design and performance of a new instrument for mass characterisation of PMTs (from 1 inch to 3 inches size), capable to calibrate hundreds of PMTs per day and provide measurements of dark counts, signal amplitude, late-, delayed-, pre- and after-pulses, transit time and transit time spread.

  12. An instrument for measuring scintillators efficiently based on silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Yang, M. J.; Zhang, Z. M.; Wang, Y. J.; Li, D. W.; Zhou, W.; Tang, H. H.; Liu, Y. T.; Chai, P.; Shuai, L.; Huang, X. C.; Liu, S. Q.; Zhu, M. L.; Jiang, X. P.; Zhang, Y. W.; Li, T.; Ma, B.; Sun, S. F.; Sun, L. Y.; Wang, Q.; Lu, Z. R.; Zhang, T.; Wei, L.

    2016-11-01

    An instrument used for measuring multiple scintillators' light output and energy resolution was developed. The instrument consisted of a light sensor array which was composed of 64 discrete SiPMs (Silicon Photomultipliers), a corresponding individual channel readout electronics system, and a data processing algorithm. A Teflon grid and a large interval between adjacent SiPMs were employed to eliminate the optical cross talk among scintillators. The scintillators' light output was obtained by comparing with a reference sample with known light output. Given the SiPM temperature dependency and the difference among each SiPM, a temperature offset correction algorithm and a non-uniformity correction algorithm were added to the instrument. A positioning algorithm, based on nine points, was designed to evaluate the performance of a scintillator array. Tests were performed to evaluate the instrument's performance. The uniformity of 64 channels for light output measurement was better than 98%, the stability was better than 98% when temperature varied from 15 °C to 40 °C, and the nonlinearity under 511 keV was better than 2%. This instrument was capable of selecting scintillators and evaluating the packaging technology of scintillator arrays with high efficiency and accuracy.

  13. Multi-qubit measurements with a Josephson Photomultiplier

    NASA Astrophysics Data System (ADS)

    Howington, Caleb; Hutchings, M.; Ribeill, Guilhem; Pechenezhskiy, Ivan; Vavilov, Maxim G.; Wilhelm, Frank K.; McDermott, R.; Plourde, Blt

    The ability to measure multi-qubit parity is critical for the realization of a fault-tolerant quantum information processor. For a system of transmon qubits coupled to a superconducting cavity, a threshold photon detector can provide an efficient path towards the digital readout of qubit parity after the parity information is mapped onto the cavity photon occupation. We will describe progress towards the implementation of such a scheme for measuring the parity of two transmon qubits. On-chip flux bias lines allow us to tune the dispersive cavity shifts related to the state of the two qubits and an appropriately shaped pulse driven to the cavity results in a bright state for one parity but not the other. A Josephson Photomultiplier then serves as a phase-insensitive digital detector of the microwave photons that leak out of the cavity. Future improvements and various technical difficulties will be discussed. We acknowledge support from ARO under Contract W911NF-14-1-0080.

  14. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  15. An instrument for measuring scintillators efficiently based on silicon photomultipliers.

    PubMed

    Yang, M J; Zhang, Z M; Wang, Y J; Li, D W; Zhou, W; Tang, H H; Liu, Y T; Chai, P; Shuai, L; Huang, X C; Liu, S Q; Zhu, M L; Jiang, X P; Zhang, Y W; Li, T; Ma, B; Sun, S F; Sun, L Y; Wang, Q; Lu, Z R; Zhang, T; Wei, L

    2016-11-01

    An instrument used for measuring multiple scintillators' light output and energy resolution was developed. The instrument consisted of a light sensor array which was composed of 64 discrete SiPMs (Silicon Photomultipliers), a corresponding individual channel readout electronics system, and a data processing algorithm. A Teflon grid and a large interval between adjacent SiPMs were employed to eliminate the optical cross talk among scintillators. The scintillators' light output was obtained by comparing with a reference sample with known light output. Given the SiPM temperature dependency and the difference among each SiPM, a temperature offset correction algorithm and a non-uniformity correction algorithm were added to the instrument. A positioning algorithm, based on nine points, was designed to evaluate the performance of a scintillator array. Tests were performed to evaluate the instrument's performance. The uniformity of 64 channels for light output measurement was better than 98%, the stability was better than 98% when temperature varied from 15 °C to 40 °C, and the nonlinearity under 511 keV was better than 2%. This instrument was capable of selecting scintillators and evaluating the packaging technology of scintillator arrays with high efficiency and accuracy.

  16. Testing of Photomultiplier Tubes in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Waldron, Zachary; A1 Collaboration

    2016-09-01

    The A1 collaboration at MAMI in Mainz, Germany has designed a neutron detector that can be used in experiments to measure the electric form factor of the neutron. They will measure elastic scattering from the neutron, using the polarized electron beam from MAMI at A1's experimental hall. The detector will be composed of two walls of staggered scintillator bars which will be read out by photomultiplier tubes (PMT), connected to both ends of each scintillator via light guides. The experiment requires a magnetic field with strength of 1 Tesla, 2m away from the first scintillator wall. The resulting fringe field is sufficient to disrupt the PMTs, despite the addition of Mu Metal shielding. The effects of the fringe field on these PMTs was tested to optimize the amplification of the PMTs. A Helmholtz Coil was designed to generate a controlled magnetic field with equivalent strength to the field that the PMTs will encounter. The PMTs were read out using a multi-channel analyzer, were tested at various angles relative to the magnetic field in order to determine the optimal orientation to minimize signal disruption. Tests were also performed to determine: the neutron detector response to cosmic radiation; and the best method for measuring a magnetic field's strength in two dimensions. National Science Foundation Grant No. IIA-1358175.

  17. Solid-State Photomultiplier Development for Radiation Detection

    SciTech Connect

    Baker, Stuart; Brown, Kristina; Curtis, Alden; Young, Jason; Guise, Ronald

    2012-06-12

    We are pursuing the sensitivity of back-thinned silicon (BT Si) with the gain of an SSPM (Baker 2011). Working in collaboration with Radiation Monitoring Devices, Inc., we are designing and fabricating prototype devices. Our original idea spurred from hybrid designs of advanced image sensors that use the sensitivity of BT Si that is then bump bonded to a CMOS readout device. As shown in the graph below (right), the BT Si has a far superior quantum efficiency (QE) than the standard photocathode response available in photomultiplier tubes (PMTs). Collecting as many scintillation photons as possible is the first objective. There has been major concern that the prototype could not deliver the ~105 electronic gain of a PMT. However, recently developed SSPMs do provide the electronic gain needed. We are now pursuing the design of a BTSSPM. With a smaller footprint, the SSPM can potentially lead to a simple, compact deployment package. Because the SSPM can be pixelated and tiled, we foresee developing an imaging detector. Pinhole imaging of radiation sources is a well-exercised technology. Our implementation of the coded aperture (Marks 2010) imager provides a high throughput pinhole imager. We intend to apply miniature coded apertures to minimal pixel count SSPMs to evaluate image quality.

  18. Avalanche-like behavior in ciliary import

    PubMed Central

    Ludington, William B.; Wemmer, Kimberly A.; Lechtreck, Karl F.; Witman, George B.; Marshall, Wallace F.

    2013-01-01

    Cilia and flagella are microtubule-based organelles that protrude from the cell body. Ciliary assembly requires intraflagellar transport (IFT), a motile system that delivers cargo from the cell body to the flagellar tip for assembly. The process controlling injections of IFT proteins into the flagellar compartment is, therefore, crucial to ciliogenesis. Extensive biochemical and genetic analyses have determined the molecular machinery of IFT, but these studies do not explain what regulates IFT injection rate. Here, we provide evidence that IFT injections result from avalanche-like releases of accumulated IFT material at the flagellar base and that the key regulated feature of length control is the recruitment of IFT material to the flagellar base. We used total internal reflection fluorescence microscopy of IFT proteins in live cells to quantify the size and frequency of injections over time. The injection dynamics reveal a power-law tailed distribution of injection event sizes and a negative correlation between injection size and frequency, as well as rich behaviors such as quasiperiodicity, bursting, and long-memory effects tied to the size of the localized load of IFT material awaiting injection at the flagellar base, collectively indicating that IFT injection dynamics result from avalanche-like behavior. Computational models based on avalanching recapitulate observed IFT dynamics, and we further show that the flagellar Ras-related nuclear protein (Ran) guanosine 5'-triphosphate (GTP) gradient can in theory act as a flagellar length sensor to regulate this localized accumulation of IFT. These results demonstrate that a self-organizing, physical mechanism can control a biochemically complex intracellular transport pathway. PMID:23431147

  19. towards a continuum theory of avalanches

    NASA Astrophysics Data System (ADS)

    Champeaux, Stephanie

    2001-10-01

    Recently there has been increased interest in avalanches and other structures and their role in turbulent transport in confined plasmas. Experimental and computational investigations [1] have provided evidence of avalanche phenomena at work in transport dynamics. Numerical simulations of familiar turbulence models exhibit anisotropic radially extended structures clearly related to mesoscale transport events or bursts [2]. Such structures, also called streamers, may be viewed as radially extended cells of nonlinear nature (as indicated by mounting evidence). Modulational instabilities are explored as a mechanism for avalanche type formation in drift-ITG turbulence. Radially extended streamer cell formation and self-regulation are investigated within both random phase approximation and coherent envelope approaches [3]. The dual roles of the modulated Reynolds stress and nonlinear pressure advection are elucidated. While convection cells are a time-honored topic, a major new theme of this work is the study of the cell saturation mechanisms, which regulate the transport. Both poloidal shearing on the underlying ITG turbulence, Kelvin-Helmholtz type instability and curvature-drift resonant damping are explored as a saturation mechanism. Saturation levels for streamer and underlying turbulence are estimated. Implications for scalings of enhancement factors are discussed. Aspect of streamer structure and dynamics are used to estimate the variance of the drift-wave induced heat flux, which is shown to be proportional to the streamer intensity level. Streamer growth then results in a significant enhancement of the heat flux variance to order unity. [1] B.A. Carreras et al Phys Rev Lett 83 (1999) 3653; P.A. Politzer Phys Rev Lett 84 (2000) 1192 [2] P. Beyer et al Phys Rev Lett 85 (2000) 4892 [3] P.H. Diamond, S. Champeaux et al Nuclear Fusion in press; S. Champeaux & P.H. Diamond Phys Lett A in press

  20. Study the performance of LYSO and CeBr3 crystals using Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Kryemadhi, Abaz

    2016-03-01

    The Silicon Photomultipliers (SiPMs) are novel photon-detectors which have been progressively found their use in particle physics. Their small size, good single photon resolution, simple readout, and immunity to magnetic fields offers advantages compared to traditional photomultipliers. LYSO and CeBr3 crystals are relatively new scintillators with high light yield and fast decay time. The response of these detectors to low energy gamma rays and cosmic ray muons will be presented. Messiah College Workload Reallocation Program.

  1. Application of ultrashort laser pulses for timing characterization of silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Popova, E. V.; Buzhan, P. Zh; Stifutkin, A. A.; Ilyin, A. L.; Mavritskii, O. B.; Egorov, A. N.; Nastulyavichius, A. A.

    2016-08-01

    The application of femtosecond laser irradiation for the investigation of Geiger discharge process in silicon photomultiplier (SiPM) is discussed. It is shown experimentally that sub-picosecond pulses of laser beam focused to micron spot sizes allow studying the dynamics of Geiger discharge process in single cell of silicon photomultiplier. These studies are aimed at identifying the factors limiting the timing resolution of this class of devices.

  2. TCAD simulation of Low Gain Avalanche Detectors

    NASA Astrophysics Data System (ADS)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti

    2016-11-01

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  3. Avalanche behavior in yield stress fluids.

    PubMed

    Coussot, Philippe; Nguyen, Q D; Huynh, H T; Bonn, Daniel

    2002-04-29

    We show that, above a critical stress, typical yield stress fluids (gels and clay suspensions) and soft glassy materials (colloidal glasses) start flowing abruptly and subsequently accelerate, leading to avalanches that are remarkably similar to those of granular materials. Rheometrical tests reveal that this is associated with a bifurcation in rheological behavior: for small stresses, the viscosity increases in time; the material eventually stops flowing. For slightly larger stresses the viscosity decreases continuously in time; the flow accelerates. Thus the viscosity jumps discontinuously to infinity at the critical stress. We propose a simple physical model capable of reproducing these effects.

  4. Bilayer avalanche spin-diode logic

    SciTech Connect

    Friedman, Joseph S. Querlioz, Damien; Fadel, Eric R.; Wessels, Bruce W.; Sahakian, Alan V.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  5. Avalanche Photodiode Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.

    2001-01-01

    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  6. Direct observation of Barkhausen avalanche in Co thin films.

    PubMed

    Kim, Dong-Hyun; Choe, Sug-Bong; Shin, Sung-Chul

    2003-02-28

    We report direct full-field magneto-optical observations of Barkhausen avalanches in Co polycrystalline thin films at criticality. We provide experimental evidence for the validity of a phenomenological model of the Barkhausen avalanche originally proposed by Cizeau, Zapperi, Durin, and Stanley [Phys. Rev. Lett. 79, 4669 (1997)

  7. Design and characterization of single photon avalanche diodes arrays

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2010-05-01

    During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2

  8. Avalanches mediate crystallization in a hard-sphere glass.

    PubMed

    Sanz, Eduardo; Valeriani, Chantal; Zaccarelli, Emanuela; Poon, Wilson C K; Cates, Michael E; Pusey, Peter N

    2014-01-07

    By molecular-dynamics simulations, we have studied the devitrification (or crystallization) of aged hard-sphere glasses. First, we find that the dynamics of the particles are intermittent: Quiescent periods, when the particles simply "rattle" in their nearest-neighbor cages, are interrupted by abrupt "avalanches," where a subset of particles undergo large rearrangements. Second, we find that crystallization is associated with these avalanches but that the connection is not straightforward. The amount of crystal in the system increases during an avalanche, but most of the particles that become crystalline are different from those involved in the avalanche. Third, the occurrence of the avalanches is a largely stochastic process. Randomizing the velocities of the particles at any time during the simulation leads to a different subsequent series of avalanches. The spatial distribution of avalanching particles appears random, although correlations are found among avalanche initiation events. By contrast, we find that crystallization tends to take place in regions that already show incipient local order.

  9. Avalanche prediction in a self-organized pile of beads.

    PubMed

    Ramos, O; Altshuler, E; Måløy, K J

    2009-02-20

    It is a common belief that power-law distributed avalanches are inherently unpredictable. This idea affects phenomena as diverse as evolution, earthquakes, superconducting vortices, stock markets, etc., from atomic to social scales. It mainly comes from the concept of "self-organized criticality" (SOC), where criticality is interpreted in the way that, at any moment, any small avalanche can eventually cascade into a large event. Nevertheless, this work demonstrates experimentally the possibility of avalanche prediction in the classical paradigm of SOC: a pile of grains. By knowing the position of every grain in a two-dimensional pile, avalanches of moving grains follow a distinct power-law distribution. Large avalanches, although uncorrelated, are on average preceded by continuous, detectable variations in the internal structure of the pile that are monitored in order to achieve prediction.

  10. Avalanche Prediction in a Self-Organized Pile of Beads

    NASA Astrophysics Data System (ADS)

    Ramos, O.; Altshuler, E.; Måløy, K. J.

    2009-02-01

    It is a common belief that power-law distributed avalanches are inherently unpredictable. This idea affects phenomena as diverse as evolution, earthquakes, superconducting vortices, stock markets, etc., from atomic to social scales. It mainly comes from the concept of “self-organized criticality” (SOC), where criticality is interpreted in the way that, at any moment, any small avalanche can eventually cascade into a large event. Nevertheless, this work demonstrates experimentally the possibility of avalanche prediction in the classical paradigm of SOC: a pile of grains. By knowing the position of every grain in a two-dimensional pile, avalanches of moving grains follow a distinct power-law distribution. Large avalanches, although uncorrelated, are on average preceded by continuous, detectable variations in the internal structure of the pile that are monitored in order to achieve prediction.

  11. Age of Palos Verdes submarine debris avalanche, southern California

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.

    2004-01-01

    The Palos Verdes debris avalanche is the largest, by volume, late Quaternary mass-wasted deposit recognized from the inner California Borderland basins. Early workers speculated that the sediment failure giving rise to the deposit is young, taking place well after sea level reached its present position. A newly acquired, closely-spaced grid of high-resolution, deep-tow boomer profiles of the debris avalanche shows that the Palos Verdes debris avalanche fills a turbidite leveed channel that extends seaward from San Pedro Sea Valley, with the bulk of the avalanche deposit appearing to result from a single failure on the adjacent slope. Radiocarbon dates from piston-cored sediment samples acquired near the distal edge of the avalanche deposit indicate that the main failure took place about 7500 yr BP. ?? 2003 Elsevier B.V. All rights reserved.

  12. Angle sensitive single photon avalanche diode

    NASA Astrophysics Data System (ADS)

    Lee, Changhyuk; Johnson, Ben; Molnar, Alyosha

    2015-06-01

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  13. Avalanches of Singing Sand in the Laboratory

    NASA Astrophysics Data System (ADS)

    Dagois-Bohy, Simon; Courrech Du Pont, Sylvain; Douady, Stéphane

    2011-03-01

    The song of dunes is a natural phenomenon that has arisen travellers' curiosity for a long time, from Marco Polo to R.A. Bagnold. Scientific observations in the XXth century have shown that the sound is emitted during a shear flow of these particular grains, the free surface of the flow having coherent vibrations like a loud speaker. The sound emission is also submitted to a threshold effect with many parameters like humidity, flow speed, surface of the grains. The sound has been reproduced in laboratory avalanche experiments close to the natural phenomenon on field, but set in a channel with a hard bottom and a few centimeters of sand flowing, which contradicts explanations of the sound that involve a sand dune under the avalanche flow. Flow rates measurements also show the presence of a plug region in the flow above the sheared band, with the same characteristic length as the coherence zones of the sound. Finally we show experimentally that the Froude number, once modified to take into account the height of this plug band, is the parameter that sets the amplitude of the sound, and produces a threshold that depends on the grain type.

  14. Angle sensitive single photon avalanche diode

    SciTech Connect

    Lee, Changhyuk Johnson, Ben Molnar, Alyosha

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  15. Avalanches and the distribution of solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.

    1991-01-01

    The solar coronal magnetic field is proposed to be in a self-organized critical state, thus explaining the observed power-law dependence of solar-flare-occurrence rate on flare size which extends over more than five orders of magnitude in peak flux. The physical picture that arises is that solar flares are avalanches of many small reconnection events, analogous to avalanches of sand in the models published by Bak and colleagues in 1987 and 1988. Flares of all sizes are manifestations of the same physical processes, where the size of a given flare is determined by the number of elementary reconnection events. The relation between small-scale processes and the statistics of global-flare properties which follows from the self-organized magnetic-field configuration provides a way to learn about the physics of the unobservable small-scale reconnection processes. A simple lattice-reconnection model is presented which is consistent with the observed flare statistics. The implications for coronal heating are discussed and some observational tests of this picture are given.

  16. Reducing financial avalanches by random investments

    NASA Astrophysics Data System (ADS)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  17. Avalanches and scaling in plastic deformation

    SciTech Connect

    Koslowski, M.

    2004-01-01

    Plastic deformation of crystalline materials is a complex non-homogeneous process characterized by avalanches in the motion of dislocations. We study the evolution of dislocations loops using an analytically solvable phase-field model of dislocations for ductile single crystals during monotonic loading. We present simulations of dislocations under slow external loading that generate scale-free avalanches and power-law behavior that are characteristics of self organized criticality. The distribution of dislocation loop sizes is given by P(A) {approx} A{sup -{sigma}}, with {sigma} = 1.8 {+-} 0.1. The power law exponent is in agreement with those found in acoustic emission measurements on stressed ice single crystals. In addition to the jerky character of dislocation motion, this model also predicts a range of macroscopic behaviors in agreement with observation, including hardening and dislocation multiplication with monotonic loading and a maximum in the acoustic emission signal at the onset of yielding. At sufficient large stress, the hardening rate drops and the stress-strain curve saturates. At the same time the acoustic emission as well as the dislocation production decreases in agreement with experimental observation.

  18. Reducing financial avalanches by random investments.

    PubMed

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  19. Performance evaluation of neuro-PET using silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Jung, Jiwoong; Choi, Yong; Jung, Jin Ho; Kim, Sangsu; Im, Ki Chun

    2016-05-01

    Recently, we have developed the second prototype Silicon photomultiplier (SiPM) based positron emission tomography (PET) scanner for human brain imaging. The PET system was comprised of detector block which consisted of 4×4 SiPMs and 4×4 Lutetium Yttrium Orthosilicate arrays, charge signal transmission method, high density position decoder circuit and FPGA-embedded ADC boards. The purpose of this study was to evaluate the performance of the newly developed neuro-PET system. The energy resolution, timing resolution, spatial resolution, sensitivity, stability of the photo-peak position and count rate performance were measured. Tomographic image of 3D Hoffman brain phantom was also acquired to evaluate imaging capability of the neuro-PET. The average energy and timing resolutions measured for 511 keV gamma rays were 17±0.1% and 3±0.3 ns, respectively. Spatial resolution and sensitivity at the center of field of view (FOV) were 3.1 mm and 0.8%, respectively. The average scatter fraction was 0.4 with an energy window of 350-650 keV. The maximum true count rate and maximum NECR were measured as 43.3 kcps and 6.5 kcps at an activity concentration of 16.7 kBq/ml and 5.5 kBq/ml, respectively. Long-term stability results show that there was no significant change in the photo-peak position, energy resolution and count rate for 60 days. Phantom imaging studies were performed and they demonstrated the feasibility for high quality brain imaging. The performance tests and imaging results indicate that the newly developed PET is useful for brain imaging studies, if the axial FOV is extended to improve the system sensitivity.

  20. Optimizing timing performance of silicon photomultiplier-based scintillation detectors

    PubMed Central

    Yeom, Jung Yeol; Vinke, Ruud

    2013-01-01

    Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362–33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm3 and with 3 × 3 × 20 mm3 LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm3 LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15°C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals. PMID:23369872

  1. Efficient readout electronics for multi-anode photomultiplier

    NASA Astrophysics Data System (ADS)

    Lerche, Christoph W.; Herrero-Bosch, Vicente; Ferrando-Jodar, Nestor; Gadea-Girones, Rafa; Sanchez-Martinez, Filomeno; Mora-Más, Francisco J.

    2010-08-01

    We present a novel active and analog readout and preprocessing topology for position sensitive photodetectors (PSPD) that allows to readout a large variety of PSPD devices with different pixel numbers. Additionally, the topology was designed to allow for a significant reduction of analog-to-digital conversion channels. The circuit topology replaces the common passive charge divider and consists of N input stages, N × M weighting stages and M analog adder stages, where N is the number of the input channels, i.e. the number of photodetector pixels and M is the number of outputs. The circuit performs the multiplication of a matrix (the weights) with a vector (signals). For this, the input stage makes M copies of each of the N input signals, the weighting stage multiplies these signal copies with N × M different weights and the output stage adds all weighted copies with the same copy index. For high flexibility, the weights are programmable and the topology allows to interconnect several identical circuits for larger N. Measurements with a first prototype ASIC show that the achieved energy and centroid resolutions equal the resolutions from detectors with passive charge division circuits. However, the presented topology presents important advantages such as scalability. As a first application, we used the prototype ASIC to correct the sensitivity inhomogeneity of position sensitive photomultiplier tubes. As a second application for the circuit, we present a Neural Network based positioning scheme for γ-ray imaging detectors with thick, monolithic scintillation crystals. This allows to correct the strong border artifacts of the center of gravity positioning scheme in monolithic scintillation crystals and thus enhances the spatial resolution of the γ-ray imaging detector.

  2. A large area, silicon photomultiplier-based PET detector module.

    PubMed

    Raylman, Rr; Stolin, A; Majewski, S; Proffitt, J

    2014-01-21

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm(2) LYSO elements (spanning 41 × 91mm(2)) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner.

  3. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  4. Topographic Avalanche Risk: DEM Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Nazarkulova, Ainura; Strobl, Josef

    2015-04-01

    GIS-based models are frequently used to assess the risk and trigger probabilities of (snow) avalanche releases, based on parameters and geomorphometric derivatives like elevation, exposure, slope, proximity to ridges and local relief energy. Numerous models, and model-based specific applications and project results have been published based on a variety of approaches and parametrizations as well as calibrations. Digital Elevation Models (DEM) come with many different resolution (scale) and quality (accuracy) properties, some of these resulting from sensor characteristics and DEM generation algorithms, others from different DEM processing workflows and analysis strategies. This paper explores the impact of using different types and characteristics of DEMs for avalanche risk modeling approaches, and aims at establishing a framework for assessing the uncertainty of results. The research question is derived from simply demonstrating the differences in release risk areas and intensities by applying identical models to DEMs with different properties, and then extending this into a broader sensitivity analysis. For the quantification and calibration of uncertainty parameters different metrics are established, based on simple value ranges, probabilities, as well as fuzzy expressions and fractal metrics. As a specific approach the work on DEM resolution-dependent 'slope spectra' is being considered and linked with the specific application of geomorphometry-base risk assessment. For the purpose of this study focusing on DEM characteristics, factors like land cover, meteorological recordings and snowpack structure and transformation are kept constant, i.e. not considered explicitly. Key aims of the research presented here are the development of a multi-resolution and multi-scale framework supporting the consistent combination of large area basic risk assessment with local mitigation-oriented studies, and the transferability of the latter into areas without availability of

  5. Study of seismic signals generated by explosions triggering avalanches.

    NASA Astrophysics Data System (ADS)

    Surinach, Emma; Pérez-Guillén, Cristina; Tapia, Mar; Hiller, Martin; Dufour, François

    2014-05-01

    Our group is dedicated to the study of the seismic signals generated by avalanches. Through several years deploying seismic stations at the Vallée de la Sionne (VDLS) test site in Switzerland (operated by SLF) it has gathered a large amount of seismic signals forming a database. The database consists mainly on signals generated by snow avalanches descending the VDLS test site. However, signals corresponding to the explosions that triggered the avalanches and even earthquakes are also included in the database. Depending on the snowpack stability, some of the explosions, despite being of the same charge, are unable to trigger an avalanche. The explosion signals are recorded in 3-component seismometers placed at two or three sites separated a maximum distance of 2.5 km approx. from the release area of the avalanches. The seismic signals corresponding to the explosions recorded at different sites are analyzed and their characteristics compared. Amplitude and frequency content of the displacement, velocity and acceleration of the generated waves traveling into the ground and those of the blast (air) are calculated. These values are compared with those of the waves generated by avalanches and other seismic sources (earthquakes, helicopters, airplanes). These analyses allow us to quantify and evaluate parameters related to the possible triggering of secondary snow avalanches caused by the generated vibrations in air and ground. The results are related to the weather and snowpack conditions, when it is possible.

  6. Disordered artificial spin ices: Avalanches and criticality (invited)

    SciTech Connect

    Reichhardt, Cynthia J. Olson Chern, Gia-Wei; Reichhardt, Charles; Libál, Andras

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  7. Record-breaking avalanches in driven threshold systems.

    PubMed

    Shcherbakov, Robert; Davidsen, Jörn; Tiampo, Kristy F

    2013-05-01

    Record-breaking avalanches generated by the dynamics of several driven nonlinear threshold models are studied. Such systems are characterized by intermittent behavior, where a slow buildup of energy is punctuated by an abrupt release of energy through avalanche events, which usually follow scale-invariant statistics. From the simulations of these systems it is possible to extract sequences of record-breaking avalanches, where each subsequent record-breaking event is larger in magnitude than all previous events. In the present work, several cellular automata are analyzed, among them the sandpile model, the Manna model, the Olami-Feder-Christensen (OFC) model, and the forest-fire model to investigate the record-breaking statistics of model avalanches that exhibit temporal and spatial correlations. Several statistical measures of record-breaking events are derived analytically and confirmed through numerical simulations. The statistics of record-breaking avalanches for the four models are compared to those of record-breaking events extracted from the sequences of independent and identically distributed (i.i.d.) random variables. It is found that the statistics of record-breaking avalanches for the above cellular automata exhibit behavior different from that observed for i.i.d. random variables, which in turn can be used to characterize complex spatiotemporal dynamics. The most pronounced deviations are observed in the case of the OFC model with a strong dependence on the conservation parameter of the model. This indicates that avalanches in the OFC model are not independent and exhibit spatiotemporal correlations.

  8. Avalanche situation in Turkey and back calculation of selected events

    NASA Astrophysics Data System (ADS)

    Aydin, A.; Bühler, Y.; Christen, M.; Gürer, I.

    2014-05-01

    In Turkey, an average of 24 people die in snow avalanches every year, mainly in the eastern part of Anatolia and in the eastern Black Sea region, where high-mountain ranges are close to the sea. The proportion of people killed in buildings is very high (87%), especially in comparison to other European countries and North America. In this paper we discuss avalanche occurrence, the climatic situation and historical avalanche events in Turkey; in addition, we identify bottlenecks and suggest solutions to tackle avalanche problems. Furthermore, we have applied the numerical avalanche simulation software RAMMS (rapid mass movements simulation) combined with a (digital elevation model) DEM-based potential release zone identification algorithm to analyze the catastrophic avalanche events in the villages of Üzengili (Bayburt province) in 1993 and Yaylaönü (Trabzon province) in 1981. The results demonstrate the value of such an approach for regions with poor avalanche databases, enabling the calculation of different scenarios and the estimation of run-out distances, impact pressure and flow height.

  9. Patterns of death among avalanche fatalities: a 21-year review

    PubMed Central

    Boyd, Jeff; Haegeli, Pascal; Abu-Laban, Riyad B.; Shuster, Michael; Butt, John C.

    2009-01-01

    Background Avalanches are a significant cause of winter recreational fatalities in mountain regions. The purpose of this study was to determine the relative contributions of trauma and asphyxia to avalanche deaths. Methods We reviewed all avalanche fatalities between 1984 and 2005 that had been investigated by the offices of the British Columbia Coroners Service and the Chief Medical Examiner of Alberta. In addition, we searched the database of the Canadian Avalanche Centre for fatal avalanche details. We calculated injury severity scores for all victims who underwent autopsy. Results There were 204 avalanche fatalities with mortality information over the 21-year study period. Of these, 117 victims underwent autopsy, and 87 underwent forensic external examination. Asphyxia caused 154 (75%) deaths. Trauma caused 48 (24%) deaths, with the rate of death from trauma ranging from 9% (4/44) for snowmobilers to 42% (5/12) for ice climbers. In addition, 13% (12/92) of the asphyxia victims who underwent autopsy had major trauma, defined as an injury severity score of greater than 15. Only 48% (23/48) of victims for whom trauma was the primary cause of death had been completely buried. Interpretation Asphyxia and severe trauma caused most avalanche fatalities in western Canada. The relative rates differed between snowmobilers and those engaged in other mountain activities. Our findings should guide recommendations for safety devices, safety measures and resuscitation. PMID:19213801

  10. IFKIS a basis for organizational measures in avalanche risk management

    NASA Astrophysics Data System (ADS)

    Bründl, M.; Etter, H.-J.; Klingler, Ch.; Steiniger, M.; Rhyner, J.; Ammann, W.

    2003-04-01

    The avalanche winter 1999 in Switzerland showed that the combination of protection measures like avalanche barriers, hazard zone mapping, artificial avalanche release and organisational measures (closure of roads, evacuation etc.) proved to perform well. However, education as well as information and communication between the involved organizations proved to be a weak link in the crisis management. In the first part of the project IFKIS we developed a modular education and training course program for security responsibles of settlements and roads. In the second part an information system was developed which improves on the one hand the information fluxes between the national center for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local forecasters. On the other hand the communication between the avalanche security services in the communities can be enhanced. During the last two years an information system based on Internet technology has been developed for this purpose. This system allows the transmission of measured data and observations to a central database at SLF and visualization of the data for different users. It also provides the possibility to exchange information on organizational measures like closure of roads, artificial avalanche release etc. on a local and regional scale. This improves the information fluxes and the coordination of safety-measures because all users, although at different places, are on the same information level. Inconsistent safety-measures can be avoided and information and communication concerning avalanche safety becomes much more transparent for all persons involved in hazard management. The training program as well the concept for the information-system are important basics for an efficient avalanche risk management but also for other natural processes and catastrophes.

  11. Statistical analyses support power law distributions found in neuronal avalanches.

    PubMed

    Klaus, Andreas; Yu, Shan; Plenz, Dietmar

    2011-01-01

    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  12. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  13. ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN

    SciTech Connect

    Lauer, E J

    2007-02-21

    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  14. Characterization of 750 Large Area Photomultipliers for the KM3NeT-Italia towers

    SciTech Connect

    Leonora, Emanuele; Aiello, S.; Giordano, V.

    2015-07-01

    The KM3NeT European experiment aims to construct a large volume underwater neutrino telescope, in the depths of the Mediterranean Sea. Thanks to a dedicated funding by the Italian Ministry of Education, University and Research, in its first phase named KM3NeT-Italia, an 8-towers detector is under construction, equipped with 672 optical sensors. The detection element of the telescope, the 'optical module', is composed by a 13-inch high-pressure glass-vessel that contains a single 10-inch photomultiplier. As the key sensor, all the characteristics of the photomultiplier have a severe impact on the performance of the whole detector. The selected photomultiplier was the 10-inch R7081 PMT produced by Hamamatsu. In the frame of the optical modules mass production, performed in the INFN-LNS site of Catania, 750 photomultipliers have been tested by means of a dedicated test bench. The paper deals with the main results obtained from the massive photomultipliers measurements, which exhibited that such kind of devices comply with the general requirements imposed by the project. (authors)

  15. Simulations of electron avalanches in an ultra-low-background proportional counter

    SciTech Connect

    Robinson, John W.; Aalseth, Craig; Dion, Michael P.; Overman, Cory; Seifert, Allen; VanDevender, Brent

    2016-02-01

    New classes have been added to the simulation package Garfield++ to import the potential and electric field solutions generated by ANSYS R MaxwellTM v.16. Using these tools we report results on the simulation of electron avalanches and induced signal waveforms in comparison to experimental data of the ultra-lowbackground gas proportional counters being developed at Pacific Northwest National Laboratory. Furthermore, an improved mesh search algorithm based on Delaunay triangulation was implemented and provided at least a three order of magnitude time savings when compared to the built-in point-location search class of Garfield++.

  16. A study of the avalanche-to-streamer transition in arbitrary gases by particle simulation

    NASA Astrophysics Data System (ADS)

    Rabie, M.; Franck, C. M.

    2016-05-01

    We systematically investigate the avalanche-to-streamer transition (AST) over a wide range of pressures and homogenous background electric fields and for a comprehensive list of gases, namely pure nitrogen, carbon dioxide, oxygen, argon, sulfur hexafluoride and synthetic air. The discharge starts from an initial seed electron and is temporally followed from the avalanche regime, through the first significant distortion of the background field and the subsequent increasing deviation from the Gaussian electron density profile, up to the occurrence of runaway electrons accompanied by the sudden and dramatic increase of electron energy and electron number multiplication. We detect weak influence of the background electric field value and the gas composition, but strong influence of the gas density on the electron number at which the transition occurs. The simulations are performed by means of a fully-interacting particle simulation program that combines a particle-in-cell/Monte Carlo collision model (PIC/MCC) with a three-dimensional Poisson solver in order to account for the space charge generated by the electrons and ions. The freely-available program is based on the METHES code and is universally applicable to arbitrary gas mixtures with complete cross section sets.

  17. Application of the silicon photomultipliers for detectors in the GlueX experiment

    SciTech Connect

    Somov, Sergey V.; Tolstukhin, Ivan; Somov, Alexander S.

    2015-11-01

    The GlueX detector in Hall D at Jefferson Lab is instrumented with about 5000 Silicon Photomultipliers (SiPM) manufactured by Hamamatsu Corporation [2]. These photo sensors have properties similar to conventional photomultipliers but can be operated at high magnetic fields. Silicon photomultipliers with a sensitive area of 3x3 mm2 are used to detect light from the following GlueX scintillator detectors: the tagger microscope, pair spectrometer, and start counter. Arrays of 4x4 SiPMs sensors were chosen for the instrumentation of the barrel electromagnetic calorimeter. The tagger microscope must operate at high rates (up to 2.5 MHz) and provide time measurements with a resolution better than 0.3 ns. The paper will describe some results of the characterization of SiPMs for various GlueX sub-detectors.

  18. Application of the Silicon Photomultipliers for Detectors in the GlueX Experiment

    NASA Astrophysics Data System (ADS)

    Somov, S. V.; Tolstukhin, I. A.; Somov, A. S.

    The GlueX detector in Hall D at Jefferson Lab [1]is instrumented with about 5000 Silicon Photomultipliers (SiPM) manufactured by Hamamatsu Corporation [2]. These photo sensors have properties similar to conventional photomultipliers but can be operated at high magnetic fields. Silicon photomultipliers with a sensitive area of 3x3 mm2 are used to detect light from the following GlueX scintillator detectors: the tagger microscope, pair spectrometer, and start counter. Arrays of 4x4 SiPMs sensors were chosen for the instrumentation of the barrel electromagnetic calorimeter. The tagger microscope must operate at high rates (up to 2.5 MHz) and provide time measurements with a resolution better than 0.3 ns. The paper will describe some results of the characterization of SiPMs for various GlueX sub-detectors.

  19. Avalanche statistics from data with low time resolution

    NASA Astrophysics Data System (ADS)

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.; Gu, Xiaojun; Uhl, J. T.; Dahmen, Karin A.

    2016-11-01

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  20. Avalanche statistics from data with low time resolution.

    PubMed

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J; Gu, Xiaojun; Uhl, J T; Dahmen, Karin A

    2016-11-01

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  1. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    NASA Technical Reports Server (NTRS)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  2. Avalanches and clusters in planar crack front propagation.

    PubMed

    Laurson, Lasse; Santucci, Stephane; Zapperi, Stefano

    2010-04-01

    We study avalanches in a model for a planar crack propagating in a disordered medium. Due to long-range interactions, avalanches are formed by a set of spatially disconnected local clusters, the sizes of which are distributed according to a power law with an exponent tau{a}=1.5. We derive a scaling relation tau{a}=2tau-1 between the local cluster exponent tau{a} and the global avalanche exponent tau . For length scales longer than a crossover length proportional to the Larkin length, the aspect ratio of the local clusters scales with the roughness exponent of the line model. Our analysis provides an explanation for experimental results on planar crack avalanches in Plexiglas plates, but the results are applicable also to other systems with long-range interactions.

  3. Dynamic intermittency in discrete erodible-bed avalanches

    NASA Astrophysics Data System (ADS)

    Arran, Matthew; Vriend, Nathalie

    2016-11-01

    The coexistence of fluid-like and solid-like behaviour in granular matter allows avalanches of grains to flow on the surface of a static but erodible bed. For sufficiently slow inflow, these avalanches are discrete, with previous experimentalists reporting that avalanche fronts pass a given point quasi-periodically. We report instead observations of dynamic intermittency between two regimes, one in which avalanches occur quasi-periodically and another in which the intervals between them are irregular. Finding the first regime consistent with existing models, we introduce a model for the second regime within the framework of Self-Organised Criticality, and describe the transition between the regimes with reference to the state of the erodible bed.

  4. New Method For Classification of Avalanche Paths With Risks

    NASA Astrophysics Data System (ADS)

    Rapin, François

    After the Chamonix-Montroc avalanche event in February 1999, the French Ministry of the environment wanted to engage a new examination of the "sensitive avalanche paths", i.e. sites with stakes (in particular habitat) whose operation cannot be apprehended in a simple way. The ordered objective consisted in establishing a tool, a method, making it possible to identify them and to treat on a hierarchical basis them according to the risk which they generate, in order to later on as well as possible distribute the efforts of public policy. The proposed tool is based only on objective and quantifiable criteria, a priori of relatively fast access. These criteria are gathered in 4 groups : vulnerability concerned, the morphology of the site, known avalanche history, snow-climatology. Each criterion selected is affected by a " weight ", according to the group to which it belongs and relatively compared to the others. Thus this tool makes it possible to classify the sites subjected at one avalanche risk in a three dangerousness levels grid, which are: - low sensitivity: a priori the site does not deserve a particular avalanche study; - doubtful sensitivity: the site can deserve a study specifying the avalanche risk; - strong sensitivity: the site deserves a thorough study of the avalanche risk. According to conclusions' of these studies, existing measurements of prevention and risk management (zoning, protection, alert, help) will be examined and supplemented as a need. The result obtained by the application of the method by no means imposes the renewal of a thorough study of the avalanche risk which would exist beforehand. A priori less than one ten percent of the paths will be in a strong sensitivity. The present method is thus a new tool of decision-making aid for the first phase of identification and classification of the avalanche sites according to the risk which they generate. To be recognized and used under good conditions, this tool was worked out by the search for

  5. Optimum Receiver Structure for PPM Signals with Avalanche Photodiode Statistics

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    1998-01-01

    The maximum likelihood decision statistic for detection of pulse-position modulated signals with an avalanche photodiode is derived, using the more accurate Webb density rather than Poisson or Gaussian approximations for the distribution of avalanche photodiode output electrons. It is shown that for Webb-distributed output electtrons, the maximum likelihood rule is to choose the PPM word corresponding to the slot with the maximum electron count.

  6. Why do some ice avalanches give warning prior to failure?

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.

    2006-12-01

    Ice avalanches on Iliamna volcano Alaska, Mt. Baker, Washington, and Mt. Steller in the Chugach range of Alaska, exhibit up to several hours of precursory seismicity prior to failure. The precursory sequence includes a series of repeating earthquakes that become progressively more frequent, eventually degrading into continuous ground shaking. The amplitude of ground shaking typically grows until the avalanche suddenly fails. Avalanche propagation is represented by a broadband, spindle-shaped seismic signal. This sequence is interpreted as resulting from slip at the base of a glacier, or within a weak rocky layer beneath the ice. Avalanches with precursory seismicity also share certain physical characteristics, including exposure of the underlying rock surface and evidence of nearby liquid water. In contrast, many other mass-wasting events fail without any kind of seismic warning. These events, however, appear to have initiated in rock or due to glacial calving, rather than at an ice-rock interface. Precursory seismicity may be a characteristic common to glacial ramp failures, in which slip is promoted by a decrease in basal drag. Precursory activity was also not identified in association with avalanches such as the 2002 Kolka or 2005 Monte Rosa events, although this may be due to the large distance between these avalanches and regional seismic stations. The frequent identification of such events on volcanoes may therefore be a consequence of seismic network density, allowing identification of small precursory seismic events. In the case of Iliamna and Mt. Baker volcanoes, avalanches recur in fairly predictable locations at short (1-5 year) intervals. Such frequent failure, as well as the presence of active fumaroles near the failure site, indicates that these events are promoted by geothermal melting. However, the Mt. Steller event confirms that precursory seismicity is not unique to volcanic ice avalanches. Since temperate slab fractures do not fail at predictable

  7. A silicon photomultiplier readout for time of flight neutron spectroscopy with {gamma}-ray detectors

    SciTech Connect

    Pietropaolo, A.; Gorini, G.; Festa, G.; Andreani, C.; De Pascale, M. P.; Reali, E.; Grazzi, F.; Schooneveld, E. M.

    2009-09-15

    The silicon photomultiplier (SiPM) is a recently developed photosensor used in particle physics, e.g., for detection of minimum ionizing particles and/or Cherenkov radiation. Its performance is comparable to that of photomultiplier tubes, but with advantages in terms of reduced volume and magnetic field insensitivity. In the present study, the performance of a gamma ray detector made of an yttrium aluminum perovskite scintillation crystal and a SiPM-based readout is assessed for use in time of flight neutron spectroscopy. Measurements performed at the ISIS pulsed neutron source demonstrate the feasibility of {gamma}-detection based on the new device.

  8. A silicon photomultiplier readout for time of flight neutron spectroscopy with gamma-ray detectors.

    PubMed

    Pietropaolo, A; Gorini, G; Festa, G; Andreani, C; De Pascale, M P; Reali, E; Grazzi, F; Schooneveld, E M

    2009-09-01

    The silicon photomultiplier (SiPM) is a recently developed photosensor used in particle physics, e.g., for detection of minimum ionizing particles and/or Cherenkov radiation. Its performance is comparable to that of photomultiplier tubes, but with advantages in terms of reduced volume and magnetic field insensitivity. In the present study, the performance of a gamma ray detector made of an yttrium aluminum perovskite scintillation crystal and a SiPM-based readout is assessed for use in time of flight neutron spectroscopy. Measurements performed at the ISIS pulsed neutron source demonstrate the feasibility of gamma-detection based on the new device.

  9. Performance studies of high gain photomultiplier having Z-configuration of microchannel plates

    NASA Astrophysics Data System (ADS)

    Lo, C. C.; Leskovar, B.

    1980-11-01

    The characteristics of a high gain type ITT F4129 photomultiplier having three microchannel plates in cascade for electron multiplications were investigated. These plates are in the Z-configuration. Measurements are given of the gain dark current, cathode quantum efficiency, anode pulse linearity, electron transit time, single and multiphoton time spreads, fatigue, and pulse height resolution. The gain as a function of transverse magnetic field was measured and discussed. Photomultiplier characteristics as a function of the input pulse repetition frequency were also investigated and discussed.

  10. Photomultiplier gain monitoring at the one percent level with a blue light pulser

    NASA Astrophysics Data System (ADS)

    Berger, J.; Bermond, M.; Besson, P.; Favier, J.; Pessard, H.; Poulet, M.

    1989-07-01

    We describe a method and an experimental layout allowing the monitoring of photomultiplier gain. We use artificial blue light (spark gap with filter: 436 ± 20 nm) and three reference detectors. Short term and long term measurements are presented. The results indicate a precision better than 0.5% for the short term and 1.4% for the long term determinations. This gain monitoring system has been developed for a new neutrino oscillation reactor experiment (600 photomultipliers) starting at the Bugey nuclear plant.

  11. Characterization of the ETEL D784UKFLB 11 in. photomultiplier tube

    NASA Astrophysics Data System (ADS)

    Barros, N.; Kaptanoglu, T.; Kimelman, B.; Klein, J. R.; Moore, E.; Nguyen, J.; Stavreva, K.; Svoboda, R.

    2017-04-01

    Water Cherenkov and scintillator detectors are a critical tool for neutrino physics. Their large size, low threshold, and low operational cost make them excellent detectors for long baseline neutrino oscillations, proton decay, supernova and solar neutrinos, double beta decay, and ultra-high energy astrophysical neutrinos. Proposals for a new generation of large detectors rely on the availability of large format, fast, cost-effective photomultiplier tubes. The Electron Tubes Enterprises, Ltd (ETEL) D784KFLB 11 in. Photomultiplier Tube has been developed for large neutrino detectors. We have measured the timing characteristics, relative efficiency, and magnetic field sensitivity of the first fifteen prototypes.

  12. Avalanches and hysteresis in frustrated superconductors and XY spin glasses

    NASA Astrophysics Data System (ADS)

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T =0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  13. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty

    PubMed Central

    Ribeiro, Tiago L.; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation. PMID:27047341

  14. Improving detection of avalanches on a conical bead pile

    NASA Astrophysics Data System (ADS)

    Vajpeyi, Avi; Lehman, Susan; Dahmen, Karin; Leblanc, Michael; Uhl, Jonathan

    A conical bead pile subject to slow driving and an external magnetic field is used as a simple system to investigate the variations in the avalanche size probability distribution function. Steel beads are dropped onto the pile from different heights and at different strengths of applied magnetic field. Avalanches are recorded by the change in mass as beads fall off the pile. Experimentally we observe an increasing deviation from power law behavior as the field and thus cohesion between the beads increases. We compare our experimental results for the probability distribution function to the results of an analytic theory from a mean-field model of slip avalanches [Dahmen, Nat Phys 7, 554 (2011)]. The model also makes predictions for avalanche duration, which is not measurable with the existing system. To more fully characterize the avalanching behavior of the pile over time, a high-speed camera has been added to the system to record the largest avalanches and allow more detailed analysis. The conical pile geometry presents a challenge for observation and particle tracking over the full pile. Our implementation scheme and preliminary results from the video analysis are presented. Research supported by NSF CBET 1336116 and 1336634.

  15. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    PubMed

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  16. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  17. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    PubMed

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  18. Large-rock avalanche deposits, eastern Basin and Range, Utah: Emplacement, diagenesis, and economic potential

    SciTech Connect

    Morris, T.H.; Hebertson, G.F.

    1996-07-01

    Large-rock avalanche deposits are a common component of the basin fill within the extensional tectonic terrain of the Basin and Range; these deposits recently have been interpreted to host oil and gas within the Railroad Valley area of eastern Nevada. Large blocks of brecciated bedrock are a primary component of these avalanche deposits and are potentially excellent oil and gas reservoirs. Our work provides further insight into the emplacement and economic potential of these deposits. Exposed large-rock avalanche deposits of the Miocene Oak City Formation on the western margin of the Canyon Range, Utah, contain coherent breccia blocks up to 3.5 km long, 1 km wide, and 200 m thick. These deposits were derived from the near-vertical dipping bed rock of the adjacent Canyon Range and now are exposed as much as 5.5 km from the range front within the Sevier Desert basin. Emplacement was relatively rapid, as indicated by three well-developed breccia facies within the carbonate breccia blocks. Stratigraphically, from the base the facies include (1) matrix-rich breccia, (2) jigsaw breccia, and (3) crackle breccia. The deposits were cut and segmented by a series of syn-depositional normal faults that developed during late Miocene and post-Miocene extension. Primary porosity was reduced by cement soon after burial. Cathodoluminescence cement patterns indicate that initially the basinward breccia blocks were more deeply buried relative to the water table than the breccia blocks proximal to the Canyon Range. After initial cementation, the basinward blocks were uplifted relative to the water table. Secondary porosity approaches 8% in the carbonate blocks and is greater than 14% within the jigsaw breccia. The size and porosity of these breccia blocks indicate their potential as reservoir targets.

  19. A sensitive image intensifier which uses inert gas

    NASA Technical Reports Server (NTRS)

    Kerns, Q. A.; Miller, H. M.

    1972-01-01

    High gain optical image intensifier utilizes inert gas cavity with copper electrodes to form electron avalanches without excessive pulse voltages. Estimated optical gain for device is two times 10 to the power of seven.

  20. Investigation of a clinical PET detector module design that employs large-area avalanche photodetectors

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Olcott, Peter D.; Spanoudaki, Virginia; Levin, Craig S.

    2011-06-01

    We investigated the feasibility of designing an Anger-logic PET detector module using large-area high-gain avalanche photodiodes (APDs) for a brain-dedicated PET/MRI system. Using Monte Carlo simulations, we systematically optimized the detector design with regard to the scintillation crystal, optical diffuser, surface treatment, layout of large-area APDs, and signal-to-noise ratio (SNR, defined as the 511 keV photopeak position divided by the standard deviation of noise floor in an energy spectrum) of the APD devices. A detector prototype was built comprising an 8 × 8 array of 2.75 × 3.00 × 20.0 mm3 LYSO (lutetium-yttrium-oxyorthosilicate) crystals and a 22.0 × 24.0 × 9.0 mm3 optical diffuser. From the four designs of the optical diffuser tested, two designs employing a slotted diffuser are able to resolve all 64 crystals within the block with good uniformity and peak-to-valley ratio. Good agreement was found between the simulation and experimental results. For the detector employing a slotted optical diffuser, the energy resolution of the global energy spectrum after normalization is 13.4 ± 0.4%. The energy resolution of individual crystals varies between 11.3 ± 0.3% and 17.3 ± 0.4%. The time resolution varies between 4.85 ± 0.04 (center crystal), 5.17 ± 0.06 (edge crystal), and 5.18 ± 0.07 ns (corner crystal). The generalized framework proposed in this work helps to guide the design of detector modules for selected PET system configurations, including scaling the design down to a preclinical PET system, scaling up to a whole-body clinical scanner, as well as replacing APDs with other novel photodetectors that have higher gain or SNR such as silicon photomultipliers.

  1. Skier triggering of backcountry avalanches with skilled route selection

    NASA Astrophysics Data System (ADS)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for

  2. III-nitride-based avalanche photo detectors

    NASA Astrophysics Data System (ADS)

    McClintock, Ryan; Cicek, Erdem; Vashaei, Zahra; Bayram, Can; Razeghi, Manijeh; Ulmer, Melville P.

    2010-08-01

    Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized-GaN APDs operating in Geiger mode can achieve gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects.

  3. Dead Time of Single Photon Avalanche Diodes

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Musumeci, F.; Scordino, A.; Fallica, G.; Mazzillo, M.; Zimbone, M.

    2011-06-01

    Single Photon Avalanche Diode (SPAD) is the new generation of Geiger-Muller counter device developed in semiconductor technology [S. Privitera et al. Sensors Journal, vol 8 Iss. 8 (2008) 4636; S. Tudisco et al. IEEE Sensors Journal vol 8 ISS 7-8 (2008) 1324; S. Cova et al. Applied Optics 35 (1996) 1956]. Physical dead time model and noise production process has been analyzed and their corrections have been performed [S.H. Lee, R.P. Gardner, M. Jae, Nucl. Instr. and Meth. in Phys. Res. B 263 (2007) 46]. We have been able to extract the real amount of incident photon rate up to 10 7cps using a device with 0.97μs total deadtime. We also developed the equation of the noise count rate vs incoming photon rate, supported by Montecarlo simulation and experimental data. We marked the difference between dark rate and noise count rate, and introduced the noise rate inside the hybrid deadtime equation used for SPAD device.

  4. The structure of powder snow avalanches

    NASA Astrophysics Data System (ADS)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.

    2015-01-01

    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  5. Granular avalanches down inclined and vibrated planes.

    PubMed

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  6. Granular avalanches down inclined and vibrated planes

    NASA Astrophysics Data System (ADS)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  7. Avalanche outbreaks emerging in cooperative contagions

    NASA Astrophysics Data System (ADS)

    Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter

    2015-11-01

    The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.

  8. Noise and spurious pulses for Cherenkov light detection with 10-inch and 3-inch photomultipliers

    SciTech Connect

    Giordano, V.; Aiello, S.; Leonora, E. E-mail: Valentina.Giordano@ct.infn.it; Collaboration: KM3NeT Collaboration

    2014-11-18

    A large number of large photocathode area photomultipliers are widely used in astroparticle physics detectors to measure Cherenkov light in media like water or ice. In neutrino telescopes the key element of the detector is the optical module, which consists of one or more photodetectors inside a transparent pressure-resistant glass sphere. The glass sphere serves as mechanical protection while ensuring good light transmission. The performance of the telescope is largely dependent on the presence of noise pulses present on the anode of the photomultipliers. A study was conducted of noise pulses of Hamamatsu 10-inch and 3-inch diameter photomultipliers measuring time and charge distributions of dark pulses, pre-pulses, delayed pulses, and after-pulses. In particular, an analysis on multiple after-pulses was performed on both photomultiplier models. A digital oscilloscope was used to acquire all the pulses after the main pulse during a time window of 16μs for an off-line analysis to determine the charge and time spectra and a correlation between the arrival times and the charge of each after-pulse.

  9. Model Independent Approach to the Single Photoelectron Calibration of Photomultiplier Tubes

    SciTech Connect

    Saldanha, R.; Grandi, L.; Guardincerri, Y.; Wester, T.

    2016-02-09

    The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in which it is necessary to know the absolute number of detected photons or precisely determine the resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier response to a low intensity light source with analytical approximations to the single photoelectron distribution, often leading to biased estimates due to the inability to accurately model the full distribution, especially at low charge values. In this paper we present a simple statistical method to extract the relevant single photoelectron calibration parameters without making any assumptions about the underlying single photoelectron distribution. We illustrate the use of this method through the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision of the method using Monte Carlo simulations. The method is found to have significantly reduced bias compared to conventional methods and works under a wide range of light intensities, making it suitable for simultaneously calibrating large arrays of photomultiplier tubes.

  10. Readout architecture based on the use of Silicon PhotoMultiplier (SiPM, or MMPC)

    NASA Astrophysics Data System (ADS)

    Marteau, J.; Carlus, B.; Gardien, S.; Girerd, C.; Ianigro, J.-C.; Montorio, J.-L.; Gibert, D.; Nicollin, F.

    2012-04-01

    The DIAPHANE project is pluri-disciplinary collaboration between particle physicists and geophysicists to perform the tomography of large geological structure mainly devoted to the study of active volcanoes. The detector used for this tomography, hereafter referred to as telescope, uses a standard, robust, cost-effective and well-known technology based on solid plastic scintillator readout by photomultiplier(s). The first generation of those telescopes, presently running in the Mont-Terri underground laboratory (St-Ursanne, Switzerland) and on the active volcano of La Soufrière (Guadeloupe, Lesser Antilles, France), uses Hamamatsu H8804-200mod photomultipliers. We present an upgrade of the readout architecture based on the use of Silicon PhotoMultiplier (SiPM, or MMPC) which allows to simplify the optical connections w.r.t. the present design and to benefit from the high photo-dectection efficiency of the SiPM. To ensure an effective increase in the muon detection efficiency one has to optimize the first trigger level and find the best compromise between photostatistics and the tails of the dark noise contributions. Several readout architectures, based or not on dedicated ASICs, are discussed and compared in this article.

  11. Development of a thermal neutron detector based on scintillating fibers and silicon photomultipliers

    SciTech Connect

    Barbagallo, Massimo; Greco, Giuseppe; Scire, Carlotta; Scire, Sergio; Cosentino, Luigi; Pappalardo, Alfio; Finocchiaro, Paolo; Montereali, Rosa Maria; Vincenti, Maria Aurora

    2010-09-15

    We propose a technique for thermal neutron detection, based on a {sup 6}Li converter placed in front of scintillating fibers readout by means of silicon photomultipliers. Such a technique allows building cheap and compact detectors and dosimeters, thus possibly opening new perspectives in terms of granular monitoring of neutron fluxes as well as space-resolved neutron detection.

  12. Avalanches in a stochastic model of spiking neurons.

    PubMed

    Benayoun, Marc; Cowan, Jack D; van Drongelen, Wim; Wallace, Edward

    2010-07-08

    Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  13. Laser-enhanced ionization of mercury atoms in an inert atmosphere with avalanche amplification of the signal.

    PubMed

    Clevenger, W L; Matveev, O I; Cabredo, S; Omenetto, N; Smith, B W; Winefordner, J D

    1997-07-01

    A new method for laser-enhanced ionization detection of mercury atoms in an inert gas atmosphere is described. The method, which is based on the avalanche amplification of the signal resulting from the ionization from a selected Rydberg level reached by a three-step laser excitation of mercury vapor in a simple quartz cell, can be applied to the determination of this element in various matrices by the use of conventional cold atomization techniques. The overall (collisional + photo) ionization efficiency is investigated at different temperatures, and the avalanche amplification effect is reported for Ar and P-10 gases at atmospheric pressure. It is shown that the amplified signal is related to the number of charges produced in the laser-irradiated volume. Under amplifier noise-limited conditions, a detection limit of ∼15 Hg atoms/laser pulse in the interaction region is estimated.

  14. Friction and dynamics of rock avalanches travelling on glaciers

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio Vittorio

    2014-05-01

    Rock avalanches travelling on glaciers often exhibit effective friction coefficient lower than those on a rocky terrain. After briefly considering some data of rock avalanches on glaciers, the physics of sliding of solid objects on icy surfaces is reviewed, and a model is put forward for the mechanics of rock avalanche sliding on ice accounting for the formation of a natural lubricating layer. It is suggested that at the beginning of the flow of a rock avalanche, friction results from rocky blocks ploughing on ice. As the erosion continues, a gouge of ice particles results, which clogs the interstices between blocks and may partially melt as a consequence of the production of frictional heat. This conceptual model is numerically investigated for a slab travelling on ice. The results show an increase in mobility as a function of slab thickness, travelled length, and the gravity field, in agreement with case studies. The results are useful to interpret the peculiar features of rock avalanches travelling on icy surfaces such as digitations, out-runner blocks, and longitudinal furrows. The lubrication theory for landslides on ice proposed here may provide a framework for understanding landslides on Earth and for future modelling; in addition, it may help elucidate the presence of similar landslide deposits on the surface of Mars.

  15. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  16. Avalanche multiplication and impact ionization in amorphous selenium photoconductive target

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-03-01

    The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.

  17. Debris avalanche deposits: emplacement dynamics, morphology and hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Davies, T. R.; Dufresne, A.

    2013-12-01

    Debris avalanches from volcanoes form some of the largest subaerial and submarine landslide deposits on Earth, covering vast areas (10s to 100s km2) and displaying typically hummocky surface topography. Numerical models have been developed that can identify the area threatened by an event of known volume from a known volcano, if the runout mechanics can be understood. Better understanding the hazards from these enormous events requires realistic parameterization of models, which must be able to explain debris avalanche deposit geometries under water, in air, on Mars and in vacuo on the Moon. We have shown that the complex deposit geometry of the 25 km3 Socompa deposit in Chile can be explained by the effects of basal debris fragmenting during runout. The hummocky surface morphology of many debris avalanche deposits again indicates that the emplacement process involved a very mobile basal layer, above which the travelling mass passively extends, leading to lateral and longitudinal disaggregation of the mass into discrete blocks whose dimension reflects the mass depth. Submarine debris avalanches can also be modelled on this basis, because the presence of ambient water does not fundamentally alter the fragmentation process; to assess the additional hazards of debris avalanches entering into water, models are available to simulate the tsunami generated by such events.

  18. Snow avalanche friction relation based on extended kinetic theory

    NASA Astrophysics Data System (ADS)

    Rauter, Matthias; Fischer, Jan-Thomas; Fellin, Wolfgang; Kofler, Andreas

    2016-11-01

    Rheological models for granular materials play an important role in the numerical simulation of dry dense snow avalanches. This article describes the application of a physically based model from the field of kinetic theory to snow avalanche simulations. The fundamental structure of the so-called extended kinetic theory is outlined and the decisive model behavior for avalanches is identified. A simplified relation, covering the basic features of the extended kinetic theory, is developed and implemented into an operational avalanche simulation software. To test the obtained friction relation, simulation results are compared to velocity and runout observations of avalanches, recorded from different field tests. As reference we utilize a classic phenomenological friction relation, which is commonly applied for hazard estimation. The quantitative comparison is based on the combination of normalized residuals of different observation variables in order to take into account the quality of the simulations in various regards. It is demonstrated that the extended kinetic theory provides a physically based explanation for the structure of phenomenological friction relations. The friction relation derived with the help of the extended kinetic theory shows advantages to the classic phenomenological friction, in particular when different events and various observation variables are investigated.

  19. Linking snow avalanche path characteristics and simulation parameters

    NASA Astrophysics Data System (ADS)

    Kofler, Andreas; Fischer, Jan-Thomas; Tollinger, Christian; Granig, Matthias; Fellin, Wolfgang

    2015-04-01

    In this work an objective optimization algorithm is utilized to determine adjusted parameter distributions for avalanche simulation in 3d terrain. Multiple documented extreme avalanche events are investigated to emphasize similarities and differences between adjusted parameter distributions and the corresponding event. A probabilistic simulation setup, using a depth averaged flow model with a simple entrainment and the Voellmy friction law implemented in the SamosAT simulation software, is used to randomly vary the two friction (Coulomb friction, turbulent drag) and one entrainment parameter in their entire physically relevant range. The simulation results (peak pressures and flow depths) are analyzed in 3d terrain, performing a transformation in an avalanche path dependent coordinate system. The model parameters for entrainment and the Voellmy friction relation are systematically optimized, back calculating each documented event by introducing different optimization variables (runout, matched and exceeded affected area, maximum velocity, mass growth, etc.) and maximizing the degree of simulation-observation correspondence. This trial and error approach leads to distributions representing the optimal parameter settings. Different avalanche paths are characterized, distinguishing between avalanche size, total fall height, path shape and others. Statistical dependencies between those path characteristics and the optimal parameters are highlighted. We show that investigating dependencies between optimal parameter distributions and path characteristics is indispensable, when a systematic framework for simulation optimization is applied.

  20. The effectiveness of mean-field theory for avalanche distributions

    NASA Astrophysics Data System (ADS)

    Lee, Edward; Raju, Archishman; Sethna, James

    We explore the mean-field theory of the pseudogap found in avalanche systems with long-range anisotropic interactions using analytical and numerical tools. The pseudogap in the density of low-stability states emerges from the competition between stabilizing interactions between spins in an avalanche and the destabilizing random movement towards the threshold caused by anisotropic couplings. Pazmandi et al. have shown that for the Sherrington-Kirkpatrick model, the pseudogap scales linearly and produces a distribution of avalanche sizes with exponent t=1 in contrast with that predicted from RFIM t=3/2. Lin et al. have argued that the scaling exponent ? of the pseudogap depends on the tail of the distribution of couplings and on non-universal values like the strain rate and the magnitude of the coupling strength. Yet others have argued that the relationship between the pseudogap scaling and the distribution of avalanche sizes is dependent on dynamical details. Despite the theoretical arguments, the class of RFIM mean-field models is surprisingly good at predicting the distribution of avalanche sizes in a variety of different magnetic systems. We investigate these differences with a combination of theory and simulation.

  1. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  2. Nanosecond discharge in sulfur hexafluoride and the generation of an ultrashort avalanche electron beam

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Lomaev, M. I.; Rybka, D. V.; Sorokin, D. A.; Tarasenko, V. F.

    2008-06-01

    A discharge in the presence of a nonuniform electric field and the generation of an ultrashort avalanche electron beam (UAEB) are studied in the insulating gas SF6 at the pressures 0.01 2.50 atm. High-voltage nanosecond pulses (about 150 and 250 kV) and the voltage pulses with an amplitude of 25 kV and a duration of tens of nanoseconds are applied across the gap. An electron beam is obtained behind the AlBe foil with a thickness of 45 μm at a sulfur hexafluoride pressure in a gas-filled diode of up to 2 atm. It is demonstrated that, at relatively high pressures (greater than 1 atm) and in the presence of high-voltage nanosecond pulses across the gap, the UAEB pulse FWHM increases. The spectra of the diffuse and contracted discharges in sulfur hexafluoride are measured.

  3. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  4. Segregation induced fingering instabilities in granular avalanches

    NASA Astrophysics Data System (ADS)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that

  5. Activity-Dependent Model for Neuronal Avalanches

    NASA Astrophysics Data System (ADS)

    de Arcangelis, L.

    Networks of living neurons represent one of the most fascinating systems of modern biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behavior of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behavior is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. This fundamental problem in neurobiology has recently shown a number of features in common to other complex systems. These features mainly concern the morphology of the network, namely the spatial organization of the established connections, and a novel kind of neuronal activity. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. Both features have been found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behavior. In this contribution, we apply a statistical mechanical model to describe the complex activity in a neuronal network. The network is chosen to have a number of connections in long range, as found for neurons in vitro. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. The numerical power spectra for electrical activity reproduces also the power law behavior measured in an EEG of man resting with the eyes closed.

  6. Mobility of large rock avalanches: evidence from Valles Marineris, Mars

    USGS Publications Warehouse

    McEwen, A.S.

    1989-01-01

    Measurements of H/L (height of drop/length of runout) vs. volume for landslides in Valles Marineris on Mars show a trend of decreasing H/L with increasing volume. This trend, which is linear on a log-log plot, is parallel to but lies above the trend for terrestrial dry rock avalanches. This result and estimates of 104 to 105 Pa yield strength suggest that the landslides were not water saturated, as suggested by previous workers. The offset between the H/L vs. volume trends shows that a typical Martian avalanche must be nearly two orders of magnitude more voluminous than a typical terrestrial avalance in order to achieve the same mobility. This offset might be explained by the effects of gravity on flows with high yield strengths. These results should prove useful to future efforts to resolve the controversy over the mechanics of long-runout avalanches. -Author

  7. Solutions to heavy ion induced avalanche burnout in power devices

    SciTech Connect

    Wrobel, T.F.; Beutler, D.E.

    1991-01-01

    Silicon power devices fall into two broad categories, bipolar and field effect. Transistors using both of these technologies are often used in satellite applications for power conversion. The present trend is toward integrating power transistors and control electronics on the same chip. In this case, it is the power portion of the chip that is most susceptible to burnout failures, because of it's high voltage operation. Hence, it is important to understand the operational limitations of power transistors when exposed to intense heavy ion and/or dose-rate environments. Reviews of normal breakdown and current induced avalanche breakdown mechanisms in silicon power transistors are presented. We show the applicability of the current induced avalanche model to heavy ion induced burnouts and present solutions to current induced avalanche in silicon power semiconductors. 9 refs., 5 figs.

  8. [Death by avalanche in the minor mountain range].

    PubMed

    Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Pollak, Stefan

    2015-01-01

    On 30 Jan 2015, two avalanche accidents happened in the Black Forest (at the foot of the 1493 m high Feldberg and the Herzogenhorn situated next to it), in which experienced ski tourers--a 58-year-old woman and a 20-year-old man--were completely buried by snow masses. Both victims were recovered dead after nearly 2 hours under the snow. The avalanches were promoted by strong snowfalls, snowdrift by the wind and steep downwind slopes. One of the victims, the 20-year-old man, underwent a forensic autopsy. The findings suggested death by protracted asphyxiation with agonal hypothermia. A mechanical traumatization with internal injuries suspected by the emergency doctor at the scene could not be confirmed at autopsy. The possible causes of death in the avalanche are discussed using the reported case as an example and in reference to the relevant literature.

  9. Controlling avalanche criticality in 2D nano arrays

    PubMed Central

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments. PMID:23677142

  10. Catastrophic debris avalanche from ancestral Mount Shasta volcano, California

    NASA Astrophysics Data System (ADS)

    Crandell, D. R.; Miller, C. D.; Glicken, H. X.; Christiansen, R. L.; Newhall, C. G.

    1984-03-01

    A debris-avalanche deposit extends 43 km northwestward from the base of Mount Shasta across the floor of Shasta Valley, California, where it covers an area of at least 450 km2. The surface of the deposit is dotted with hundreds of mounds, hills, and ridges, all formed of blocks of pyroxene andesite and unconsolidated volcaniclastic deposits derived from an ancestral Mount Shasta. Individual hills are separated by flat-topped laharlike deposits that also form the matrix of the debris avalanche and slope northwestward about 5 m/km. Radiometric ages of rocks in the deposit and of a postavalanche basalt flow indicate that the avalanche occurred between about 300,000 and 360,000 yr ago. An inferred average thickness of the deposit, plus a computed volume of about 4 km3 for the hills and ridges, indicate an estimated volume of about 26 km3, making it the largest known Quaternary landslide on Earth.

  11. Distribution of maximum velocities in avalanches near the depinning transition.

    PubMed

    LeBlanc, Michael; Angheluta, Luiza; Dahmen, Karin; Goldenfeld, Nigel

    2012-09-07

    We report exact predictions for universal scaling exponents and scaling functions associated with the distribution of the maximum collective avalanche propagation velocities v(m) in the mean field theory of the interface depinning transition. We derive the extreme value distribution P(v(m)|T) for the maximum velocities in avalanches of fixed duration T and verify the results by numerical simulation near the critical point. We find that the tail of the distribution of maximum velocity for an arbitrary avalanche duration, v(m), scales as P(v(m))~v(m)(-2) for large v(m). These results account for the observed power-law distribution of the maximum amplitudes in acoustic emission experiments of crystal plasticity and are also broadly applicable to other systems in the mean-field interface depinning universality class, ranging from magnets to earthquakes.

  12. Controlling avalanche criticality in 2D nano arrays.

    PubMed

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  13. Erosive granular avalanches : a cross confrontation between theory and experiment.

    SciTech Connect

    Clement, E.; Malloggi, F.; Andreotti, B.; Aranson, I. S.; Materials Science Division; ESPCI-Univ. Paris; Univ. of Twente

    2007-01-01

    Results on two laboratory scale avalanches experiments taking place both in the air and under-water, are presented. In both cases a family of solitary erosion/deposition waves are observed. At higher inclination angles, we show the existence of a long wavelength transverse instability followed by a coarsening and the onset of a fingering pattern. While the experiments strongly differ by the spatial and time scales, the agreement between the stability diagram, the wavelengths selection and the avalanche morphology suggest a common erosion/deposition scenario. These experiments are studied theoretically in the framework of the 'partial fluidization' model of dense granular flows. This model identifies a family of propagating solitary waves displaying a behavior similar to the experimental observation. A primary cause for the transverse instability is related to the dependence of avalanche velocity on the granular mass trapped by the flow.

  14. Communicators' perspective on snow avalanche risk communication using smartphone applications

    NASA Astrophysics Data System (ADS)

    Charrière, Marie; Bogaard, Thom; Junier, Sandra; Mostert, Erik

    2015-04-01

    Among all the natural hazards, snow avalanches are the only ones for which a public danger scale is used globally. It consists of 5 levels of danger displayed with a given number and colour, and for each of them behavioural advices are provided. Even though this is standardized in most of the countries affected by this natural hazard, the smartphone applications with which the information is disseminated to the general public differ, particularly in terms of target audience and level of details. This study aims to gather the perspectives of several persons that are responsible for these avalanche risk communication practices. The survey was created to assess how and why choices were made in the design process of the applications and to determine how their effectiveness is evaluated. Along with a review of existing avalanche risk communication smartphone applications, this study provides guidelines for communication and the evaluation of its effectiveness.

  15. Avalanche Dynamics of Crackle Sound in the Lung

    SciTech Connect

    Alencar, Adriano M.; Buldyrev, Sergey V.; Majumdar, Arnab; Stanley, H. Eugene; Suki, Bela

    2001-08-20

    We analyze a sequence of short transient sound waves, called 'crackles,' which are associated with explosive openings of airways during lung inflation. The distribution of time intervals between consecutive crackles {Delta}t shows two regimes of power law behavior. We develop an avalanche model which fits the data over five decades of {Delta}t. We find that the regime for large {Delta}t is related to the dynamics of distinct avalanches in a Cayley tree, and the regime for small {Delta}t is determined by the dynamics of crackle propagation within a single avalanche. We also obtain a mean-field solution of the model which provides information about lung inflation.

  16. Sheet Flows, Avalanches, and Dune Evolution on Earth and Mars

    NASA Technical Reports Server (NTRS)

    2003-01-01

    unimportant, numerical solutions were obtained for the velocity distribution function and the resulting fields of concentration, particle and gas mean velocity, and particle shear stress for the steady two-dimensional saltation of spherical sand particles driven by a turbulent wind over a bed characterized by a simple relationship (the splash function) between the properties of incoming particles and those of the rebounding particles and other particles ejected fiom the bed. At the University of Rennes 1, experiments devoted to the characterization of the splash function for beds consisting of either random or ordered arrays of spheres in two- dimensions were completed. These indicated the role played by the packing geometry in the rebound and ejection of grains. Preliminary experiments on response of a three- dimensional collision bed to a collision with a single particle were performed. Data was taken with a single camera focused on the plane of collision. Here, for example, the decrease of the effective coefficient of restitution of the bed with an increase of the angle of incidence of the incoming particle has been measured. Other experiments on avalanches at Rennes studied the properties of the flows of particles that are responsible for the motion of the leeward side of a dune. In these, the dependence of the initiation of avalanches on the packing and depth of the particles was measured. Particle migration was studied in inclined flows of a binary mixture of disks and the mechanisms of diffision and segregation were isolated and characterized. The influence of side wall on dense, rapid inclined flows was measured and shown to be the reason why the angle of the free surface in such flows can exceed the static angle of repose. Future research will be devoted to a better understanding the transition between saltating (collisionless) and collisional flows as the wind speed the increases. This will involve the understanding of the evolution of the splash function as

  17. Avalanche Dynamics and Stability in Wet Granular Media

    NASA Astrophysics Data System (ADS)

    Schiffer, Peter; Tegzes, Pal; Vicsek, Tamas

    2002-11-01

    In our previous work, we identified three fundamental regimes for the repose angle of wet granular materials as a function of the liquid content. The granular regime at very low liquid contents is dominated by the motion of individual grains; in the correlated regime corresponding to intermediate liquid contents, a rough surface is formed by the flow of separated clumps; and the repose angle of very wet samples results from cohesive flow with viscoplastic properties. Here we report investigations of the avalanche dynamics and flow properties of wet granular materials, employing a rotating drum apparatus (a cylindrical chamber partly filled with a granular medium and rotated around a horizontal axis). At low rotation rates, the medium remains at rest relative to the drum while its surface angle is slowly increased by rotation, up to a critical angle thetamax where an avalanche occurs, thus decreasing the surface angle to the repose angle thetar The flow becomes continuous at high rotation rates, but the transition between avalanching and continuous flow is hysteretic in rotation rate in dry media. Previous studies of cohesive granular media in a rotating drum have focused on the surface angles of the medium before and after avalanches. In our measurements, we focus instead on characterizing the dynamics of cohesive flow. We quantitatively investigate the flow dynamics during avalanches at different liquid contents by analyzing the time evolution of the averaged surface profile obtained from hundreds of avalanche events, and we also measure surface velocities during continuous flow. In particular, we explore the nature of the viscoplastic flow, (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at high rotation rates and novel robust pattern formation in the granular surface. Additional information is included in the

  18. Parallel adaptive discontinuous Galerkin approximation for thin layer avalanche modeling

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Nichita, C. C.; Bauer, A. C.; Pitman, E. B.; Bursik, M.; Sheridan, M. F.

    2006-08-01

    This paper describes the development of highly accurate adaptive discontinuous Galerkin schemes for the solution of the equations arising from a thin layer type model of debris flows. Such flows have wide applicability in the analysis of avalanches induced by many natural calamities, e.g. volcanoes, earthquakes, etc. These schemes are coupled with special parallel solution methodologies to produce a simulation tool capable of very high-order numerical accuracy. The methodology successfully replicates cold rock avalanches at Mount Rainier, Washington and hot volcanic particulate flows at Colima Volcano, Mexico.

  19. Magnetar Outbursts from Avalanches of Hall Waves and Crustal Failures

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Levin, Yuri; Beloborodov, Andrei M.

    2016-12-01

    We explore the interaction between Hall waves and mechanical failures inside a magnetar crust, using detailed one-dimensional models that consider temperature-sensitive plastic flow, heat transport, and cooling by neutrino emission, as well as the coupling of the crustal motion to the magnetosphere. We find that the dynamics is enriched and accelerated by the fast, short-wavelength Hall waves that are emitted by each failure. The waves propagate and cause failures elsewhere, triggering avalanches. We argue that these avalanches are the likely sources of outbursts in transient magnetars.

  20. Effect of volume fraction on granular avalanche dynamics.

    PubMed

    Gravish, Nick; Goldman, Daniel I

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)<0, slopes experienced short, rapid, precursor compaction events prior to the onset of a sustained avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)<0 precursor flow extending deeper into the granular bed and occurring more rapidly than precursor flow at ϕ(0)-ϕ(c)>0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.

  1. Microwave diagnostics of laser-induced avalanche ionization in air

    SciTech Connect

    Zhang Zhili; Shneider, Mikhail N.; Miles, Richard B.

    2006-10-01

    This work presents a simplified model of microwave scattering during the avalanche ionization stage of laser breakdown and corresponding experimental results of microwave scattering from laser breakdown in room air. The model assumes and measurements confirm that the breakdown regime can be viewed as a point dipole scatterer of the microwave radiation and thus directly related to the time evolving number of electrons. The delay between the laser pulse and the rise of the microwave scattering signal is a direct measure of the avalanche ionization process.

  2. Assessing risk based on uncertain avalanche activity patterns

    NASA Astrophysics Data System (ADS)

    Zeidler, Antonia; Fromm, Reinhard

    2015-04-01

    Avalanches may affect critical infrastructure and may cause great economic losses. The planning horizon of infrastructures, e.g. hydropower generation facilities, reaches well into the future. Based on the results of previous studies on the effect of changing meteorological parameters (precipitation, temperature) and the effect on avalanche activity we assume that there will be a change of the risk pattern in future. The decision makers need to understand what the future might bring to best formulate their mitigation strategies. Therefore, we explore a commercial risk software to calculate risk for the coming years that might help in decision processes. The software @risk, is known to many larger companies, and therefore we explore its capabilities to include avalanche risk simulations in order to guarantee a comparability of different risks. In a first step, we develop a model for a hydropower generation facility that reflects the problem of changing avalanche activity patterns in future by selecting relevant input parameters and assigning likely probability distributions. The uncertain input variables include the probability of avalanches affecting an object, the vulnerability of an object, the expected costs for repairing the object and the expected cost due to interruption. The crux is to find the distribution that best represents the input variables under changing meteorological conditions. Our focus is on including the uncertain probability of avalanches based on the analysis of past avalanche data and expert knowledge. In order to explore different likely outcomes we base the analysis on three different climate scenarios (likely, worst case, baseline). For some variables, it is possible to fit a distribution to historical data, whereas in cases where the past dataset is insufficient or not available the software allows to select from over 30 different distribution types. The Monte Carlo simulation uses the probability distribution of uncertain variables

  3. High gain multigap avalanche detectors for Cerenkov ring imaging

    SciTech Connect

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  4. Avalanches in strained amorphous solids: does inertia destroy critical behavior?

    PubMed

    Salerno, K Michael; Maloney, Craig E; Robbins, Mark O

    2012-09-07

    Simulations are used to determine the effect of inertia on athermal shear of amorphous two-dimensional solids. In the quasistatic limit, shear occurs through a series of rapid avalanches. The distribution of avalanches is analyzed using finite-size scaling with thousands to millions of disks. Inertia takes the system to a new underdamped universality class rather than driving the system away from criticality as previously thought. Scaling exponents are determined for the underdamped and overdamped limits and a critical damping that separates the two regimes. Systems are in the overdamped universality class even when most vibrational modes are underdamped.

  5. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  6. Meteorological variables associated with deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2014-01-01

    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  7. Safety on the Hills in Winter: Avalanche Risk--Snow Formation.

    ERIC Educational Resources Information Center

    Grant, Frank

    2003-01-01

    This compact training session on avalanche risk reviews snow crystal formations and common generalities about avalanches. Two types of avalanches--loose and slab--are described, and the characteristics of each are given along with danger signs that accompany each one. Three books are highly recommended for further information. (TD)

  8. First results of a large-area cryogenic gaseous photomultiplier coupled to a dual-phase liquid xenon TPC

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Coimbra, A. E. C.; Erdal, E.; Israelashvili, I.; Rappaport, M. L.; Shchemelinin, S.; Vartsky, D.; dos Santos, J. M. F.; Breskin, A.

    2015-10-01

    We discuss recent advances in the development of cryogenic gaseous photomultipliers (GPM), for possible use in dark matter and other rare-event searches using noble-liquid targets. We present results from a 10 cm diameter GPM coupled to a dual-phase liquid xenon (LXe) TPC, demonstrating—for the first time—the feasibility of recording both primary (``S1'') and secondary (``S2'') scintillation signals. The detector comprised a triple Thick Gas Electron Multiplier (THGEM) structure with cesium iodide photocathode on the first element; it was shown to operate stably at 180 K with gains above 105, providing high single-photon detection efficiency even in the presence of large α particle-induced S2 signals comprising thousands of photoelectrons. S1 scintillation signals were recorded with a time resolution of 1.2 ns (RMS). The energy resolution (σ/E) for S2 electroluminescence of 5.5 MeV α particles was ~ 9%, which is comparable to that obtained in the XENON100 TPC with PMTs. The results are discussed within the context of potential GPM deployment in future multi-ton noble-liquid detectors.

  9. Development of Silicon Photomultipliers and their Applications to GlueX Calorimetry

    SciTech Connect

    Smith, Elton S.

    2016-07-01

    The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 x1.2 cm2) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.

  10. A New Method for Reduction of Photomultiplier Signal-Induced Noise

    NASA Technical Reports Server (NTRS)

    Koble, Andrea; DeYoung, Russell

    2000-01-01

    For lidar measurements of ozone, photomultiplier tube (PMT) detector signal-induced noise represents a fundamental problem that complicates the extraction of information from lidar data. A new method is developed to significantly reduce signal-induced noise in lidar receiver PMT detectors. The electron optics of the lidar photomultiplier detector is modified to filter the source of signal-induced noise. A mesh electrode external to the PMT is utilized to control photoemission and disorient electron trajectories from the photocathode to the first dynode. Experiments were taken both with simulated and actual lidar return signals at Langley Research Center. Results show at least 40 percent more accurate ozone number density values with a mesh voltage of 60 V applied than with no voltage applied.

  11. Development of silicon photomultipliers and their applications to GlueX calorimetry

    NASA Astrophysics Data System (ADS)

    Smith, Elton S.

    2016-07-01

    The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 × 1.2 cm2) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.

  12. Gaseous photomultipliers with solid photocathodes for the detection of sparks, flames and dangerous gases

    NASA Astrophysics Data System (ADS)

    Carlson, P.; Francke, T.; Lund-Jensen, B.; Peskov, V.

    2003-06-01

    In many applications, it is necessary to detect sparks or flames in daylight conditions or in illuminated areas. Most flames emit strongly in the ultraviolet spectrum (180-280 nm), and this property can be used for reliable identification of flames. We have developed new spark and flame detectors based on gaseous photomultipliers with CsI, CuI or CsTe photocathodes. A modified version of the detector can also detect smoke and dangerous vapors. These detectors are able to perform complex monitoring and detection functions. Some of their advantages are: low cost, high sensitivity, large output signal and operation under battery power. Gaseous photomultipliers can be position sensitive and, if necessary, be used in combination with various optical systems, for example for monitoring flames from space.

  13. Evaluation of the amperex 56 TVP photomultiplier. [characteristics: photoelectron time spread, anode pulse amplitude and photocathode sensing area

    NASA Technical Reports Server (NTRS)

    Lo, C. C.; Leskovar, B.

    1976-01-01

    Characteristics were measured for the Amperex 56 TVP 42 mm-diameter photomultiplier. Some typical photomultiplier characteristics-such as gain, dark current, transit and rise times-are compared with data provided. Photomultiplier characteristics generally not available such as the single photoelectron time spread, the relative collection efficiency, the relative anode pulse amplitude as a function of the voltage between the photocathode and focusing electrode, and the position of the photocathode sensing area were measured and are discussed for two 56 TVP's. The single photoelectron time spread, the relative collection efficiency, and the transit time difference as a function of the voltage between photocathode and focusing electrode were also measured and are discussed, particularly with respect to the optimization of photomultiplier operating conditions for timing applications.

  14. A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout

    NASA Astrophysics Data System (ADS)

    Popov, Vladimir; Majewski, Stan; Welch, Benjamin L.

    2006-11-01

    We have developed a new analog readout concept for multianode photomultiplier tubes with a pad matrix anode layout. This new readout technique is the result of a modification of a technique previously developed at the Detector Group of Jefferson Lab, (V. Popov, US patent No: 6,747,263 B1) [V. Popov, S. Majewski, A.G. Weisenberger, Readout Electronics for Multianode Photomultiplier Tubes with Pad Matrix Anode Layout, Thomas Jefferson National Accelerator Facility, IEEE 2003 Medical Imaging Conference Record, November 2003]. The new analog readout circuit provides the same analog conversion of matrix 2-D output into X and Y projective output with a significant reduction of analog outputs. The old readout network consists of resistors' matrix and current collecting amplifiers, and it provides decoupling of each anode output into two directions (one to X and one to Y coordinates), but a decoupling function that is carried out independent of photomultiplier tube gains nonuniformity. A newly developed readout network (US patent pending) also consists of resistors' matrix and current collecting amplifiers, but the new matrix includes an additional dumping resistor that provides an excess current from anode pad grounding. As a result, we subtract an extra current of high-gain pads in order to move the pads gain to an absolute minimum value for a given photomultiplier tube. This gain equalization procedure reduces image distortion related to gain nonuniformity. The new readout technique was used in several new radiation imaging detectors designed in the Detector Group of Jefferson Lab. It shows a visible readout uniformity and linearity improvement. The test results of an initial evaluation of this readout that is applied for data readout of four H8500 Hamamtsu PSPMT are presented.

  15. New photomultiplier active base for Hall C Jefferson Lab lead tungstate calorimeter

    SciTech Connect

    Popov, Vladimir E.; Mkrtchyan, Hamlet G.

    2012-11-01

    A new photomultiplier tube active base was designed and tested. The base combines active voltage division circuit and fast amplifier, powered by the current flowing through voltage divider. This base is developed to upgrade older photomultiplier bases of Jefferson Lab lead-tungsten calorimeter (about ˜1200 crystals of PbWO{sub 4} from the PrimEx experimental setup). This is needed for the extension of detectors' rate capability to meet requirements of new Hall C proposal PR12-11-102 of measurements of the L/T separated cross sections and their ratio R = πL/πT in neutral-pion p(e,e'π0)p deep exclusive and p(p(e,e'π{sup 0})p)X semi-inclusive scattering regions. New active base is direct replacement of older passive base circuit without adding of additional power or signal lines. However, it extends detectors rate capability with factor over 20. Moreover, transistorized voltage divider improves detector's amplitude resolution due to reduction of photomultiplier gain dependence from tube anode current. The PMT active base is the invention disclosed in V. Popov's U.S. Patent No. 6,791,269, which successfully works over ten years in several Jefferson Lab Cherenkov detectors. The following design is a new revised and improved electronic circuit with better gain stability and linearity in challenge to meet requirements of new Hall C experimental setup. New active base performance was tested using fast LED light source and Pr:LuAG scintillator and gamma sources. Electronics radiation hardness was tested on JLab accelerator. Results of testing R4125 Hamamatsu photomultiplier tube in new active base are presented.

  16. Improvement of sensitivity in continuous wave near infra-red spectroscopy systems by using silicon photomultipliers

    PubMed Central

    Pagano, Roberto; Libertino, Sebania; Sanfilippo, Delfo; Fallica, Giorgio; Lombardo, Salvatore

    2016-01-01

    We experimentally analyze the signal-to-noise ratio of continuous wave (CW) near infrared spectroscopy (NIRS) reflectance systems based on light emitting diodes and silicon photomultipliers for high performance low cost NIRS biomedical systems. We show that under suitable experimental conditions such systems exhibit a high SNR, which allows an SDS of 7 cm, to our knowledge the largest ever demonstrated in a CW-NIRs system. PMID:27486551

  17. Stability and lifetime testing of photomultiplier detectors for the Earth observing system SOLSTICE program

    NASA Astrophysics Data System (ADS)

    Hadler, Joshua A.; van de Kop, Toni; Drake, Virginia A.; McClintock, William E.; Murphy, John; Rodgers, Paul

    1998-10-01

    The primary objective of the Earth Observing System (EOS) Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the absolute value of the solar UV irradiance at the top of the earth's atmosphere for a minimum mission lifetime of 5 years. To meet this objective, SOLSTICE employs a unique design to determine changes in instrument performance by routinely observing a series of early-type stars and comparing the irradiances directly with the solar value. Although the comparison techniques allows us to track instrument performance, the success of the SOLSTICE experiment depends upon photomultiplier detectors which have graceful degradation properties. Therefore, we have established a laboratory program to evaluate the characteristics of photomultiplier tubes which are exposed to long term fluxes similar to those we expected to encounter in flight. Three types of Hamamatsu photomultiplier tubes were tested as candidates for use in the EOS-SOLSTICE project. The results of these studies: pulse height distribution; quantum efficiency; surface maps,; and lifetime analysis are presented in this paper.

  18. Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    SciTech Connect

    Sótér, A.; Todoroki, K.; Kobayashi, T.; Barna, D.; Horváth, D.; Hori, M.

    2014-02-15

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 × 1 mm{sup 2}. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ≈ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen at high annihilation rates of the antiprotons.

  19. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  20. Hybrid phase transition into an absorbing state: Percolation and avalanches

    NASA Astrophysics Data System (ADS)

    Lee, Deokjae; Choi, S.; Stippinger, M.; Kertész, J.; Kahng, B.

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent βm of the order parameter is 1 /2 under general conditions, while the value of the exponent γm characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, βa and γa. These two critical behaviors are coupled by a scaling law: 1 -βm=γa .

  1. Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.

    PubMed

    Petermann, Thomas; Thiagarajan, Tara C; Lebedev, Mikhail A; Nicolelis, Miguel A L; Chialvo, Dante R; Plenz, Dietmar

    2009-09-15

    Spontaneous neuronal activity is an important property of the cerebral cortex but its spatiotemporal organization and dynamical framework remain poorly understood. Studies in reduced systems--tissue cultures, acute slices, and anesthetized rats--show that spontaneous activity forms characteristic clusters in space and time, called neuronal avalanches. Modeling studies suggest that networks with this property are poised at a critical state that optimizes input processing, information storage, and transfer, but the relevance of avalanches for fully functional cerebral systems has been controversial. Here we show that ongoing cortical synchronization in awake rhesus monkeys carries the signature of neuronal avalanches. Negative LFP deflections (nLFPs) correlate with neuronal spiking and increase in amplitude with increases in local population spike rate and synchrony. These nLFPs form neuronal avalanches that are scale-invariant in space and time and with respect to the threshold of nLFP detection. This dimension, threshold invariance, describes a fractal organization: smaller nLFPs are embedded in clusters of larger ones without destroying the spatial and temporal scale-invariance of the dynamics. These findings suggest an organization of ongoing cortical synchronization that is scale-invariant in its three fundamental dimensions--time, space, and local neuronal group size. Such scale-invariance has ontogenetic and phylogenetic implications because it allows large increases in network capacity without a fundamental reorganization of the system.

  2. Avalanches in dry and saturated disordered media at fracture.

    PubMed

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances.

  3. Group Dynamics and Decision Making: Backcountry Recreationists in Avalanche Terrain

    ERIC Educational Resources Information Center

    Bright, Leslie Shay

    2010-01-01

    The purpose of this study was to describe and determine the prevalence of decision-making characteristics of recreational backcountry groups when making a decision of where to travel and ride in avalanche terrain from the perspective of individuals. Decision-making characteristics encompassed communication, decision-making processes, leadership,…

  4. Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.

    ERIC Educational Resources Information Center

    Watters, Ron

    This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…

  5. Reducing the Odds: Backcountry Powder Skiing in Avalanche Terrain.

    ERIC Educational Resources Information Center

    Daffern, Tony

    This paper provides information and strategies to reduce the risk of encountering an avalanche when skiing or climbing on steep slopes. Skiers must recognize that the risk exists, be aware of their own tolerance for risk, and not allow companions to pressure them into taking more risk than they can tolerate. Ideally, one should ski with a small…

  6. Hybrid phase transition into an absorbing state: Percolation and avalanches.

    PubMed

    Lee, Deokjae; Choi, S; Stippinger, M; Kertész, J; Kahng, B

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent β_{m} of the order parameter is 1/2 under general conditions, while the value of the exponent γ_{m} characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, β_{a} and γ_{a}. These two critical behaviors are coupled by a scaling law: 1-β_{m}=γ_{a}.

  7. Gridded snow maps supporting avalanche forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Müller, K.; Humstad, T.; Engeset, R. V.; Andersen, J.

    2012-04-01

    We present gridded maps indicating key parameters for avalanche forecasting with a 1 km x 1 km resolution. Based on the HBV hydrology model, snow parameters are modeled based on observed and interpolated precipitation and temperature data. Modeled parameters include for example new snow accumulated the last 24 and 72 hours, snow-water equivalent, and snow-water content. In addition we use meteorological parameters from the UK weather prediction model "Unified Model" such as wind and radiation to model snow-pack properties. Additional loading in lee-slopes by wind-transport is modeled based on prevailing wind conditions, snow-water content and snow age. A depth hoar index accounts for days with considerable negative temperature gradients in the snow pack. A surface hoar index based on radiation and humidity is currently under development. The maps are tested against field reports from avalanche observers throughout Norway. All data is available via a web-platform that combines maps for geo-hazards such as floods, landslides and avalanches. The maps are used by the Norwegian avalanche forecasting service, which is currently in a test phase. The service will be operational by winter 2012/2013.

  8. Ripples Versus Giant Dunes in a Saltation-Avalanche Model

    NASA Astrophysics Data System (ADS)

    Vandewalle, Nicolas; Galam, Serge

    A simple stochastic cellular automaton model is proposed for ripples and dunes formation. Saltation and avalanches are the unique ingredients of the model. The dynamics of ripple formation is found to be logarithmic in time while the ripple merging as well as the dune growth is faster and occurs by bursts. The ripple state turns out to be metastable.

  9. Single and few photon avalanche photodiode detection process study

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Prochazka, Ivan

    2009-07-01

    We are presenting the results of the study of the Single Photon Avalanche Diode (SPAD) pulse response risetime and its dependence on several key parameters. We were investigating the unique properties of K14 type SPAD with its high delay uniformity of 200 μm active area and the correlation between the avalanche buildup time and the photon number involved in the avalanche trigger. The detection chip was operated in a passive quenching circuit with active gating. This setup enabled us to monitor the diode reverse current using an electrometer, a fast digitizing oscilloscope, and using a custom design comparator circuit. The electrometer reading enabled to estimate the photon number per detection event, independently on avalanche process. The avalanche build up was recorded on the oscilloscope and processed by custom designed waveform analysis package. The correlation of avalanche build up to the photon number, bias above break, photon absorption location, optical pulse length and photon energy was investigated in detail. The experimental results are presented. The existing solid state photon counting detectors have been dedicated for picosecond resolution and timing stability of single photon events. However, the high timing stability is maintained for individual single photons detection, only. If more than one photon is absorbed within the detector time resolution, the detection delay will be significantly affected. This fact is restricting the application of the solid state photon counters to cases where single photons may be guaranteed, only. For laser ranging purposes it is highly desirable to have a detector, which detects both single photon and multi photon signals with picoseconds stability. The SPAD based photon counter works in a purely digital mode: a uniform output signal is generated once the photon is detected. If the input signal consists of several photons, the first absorbed one triggers the avalanche. Obviously, for multiple photon signals, the

  10. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    USGS Publications Warehouse

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances < 656 km from the rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional

  11. Dealing with the white death: avalanche risk management for traffic routes.

    PubMed

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob

    2009-01-01

    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.

  12. Use of a magnetic field to modify and detect avalanche behavior on a conical bead pile

    NASA Astrophysics Data System (ADS)

    Johnson, Nathan; Lehman, Susan

    2015-03-01

    A conical bead pile subject to slow driving and an external magnetic field is used to test the effects of drop height and cohesion on avalanche statistics. Magnetically susceptible beads were dropped onto a pile from different heights and into different strengths of magnetic field. Avalanches were recorded by the change in mass as beads fall off the pile. For beads dropped from a low drop height with no cohesion, the avalanche size distribution follows a power law. As cohesion increases, we observe an increase in the probability of very large avalanches and decreases in the mid-size avalanches. The resulting bump in the avalanche distribution moves to larger avalanche size as the cohesion in the system is increased, matching the prediction by an analytic theory from a mean-field model of slip avalanches. The model also makes predictions for avalanche duration, which is not measurable with our current system. Since the steel beads are magnetized while in the applied magnetic field, their motion during an avalanche creates a change in magnetic flux. To detect this motion, we have placed a large-diameter pick-up coil around the pile. Results of the testing and calibration of this coil to measure avalanche duration are presented.

  13. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2015-01-01

    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  14. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    NASA Astrophysics Data System (ADS)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances <656 km) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  15. A multi path, weather independent avalanche monitoring tool using distributed acoustic fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Prokop, Alexander; Wirbel, Anna

    2013-04-01

    Information on avalanche activity is a paramount parameter in avalanche forecasting. When avalanches are released spontaneously, the risk of avalanches is very high. Triggering avalanches by artificial means, such as explosives launched from helicopter or avalanche towers, can also give information on the stability of the snow pack. Hence, monitoring of avalanches released naturally or artificially, is an important quantity in avalanche forecasting. This information is also needed when deciding whether to close or not endangered ski runs, roads or railway lines. So far monitoring systems lack certain benefits. Either they monitor only large avalanches, can only be used for single avalanche tracks or are weather/sight dependant. Therefore a new tool for avalanche- monitoring, a distributed fiber optic system, is for the first time installed and adapted for the purpose of monitoring snow avalanche activity. The method is based on an optical time domain reflectometer (OTDR) system, which dates back to the 1970`s and detects seismic vibrations and acoustic signals on a fiber optic cable that can have a length of up to 30 km. An appropriate test slope for this configuration has been found in the ski area of "Lech am Arlberg". In this work a detailed description of the theoretical background, the system implementation, the field installation, realization of tests and an investigation of the recorded data is presented. We conducted 100 tests and triggered 41 avalanches so far with a runout distances ranging from a few meters to approximately 250 meters, all of which were detected by the system, as well as the 59 not successful attempts of artificial triggering. Moreover we measured properly if critical infrastructure (in our case a ski run) was reached by the avalanches or not. The spatial distributed sensing approach allowed us to relate the amplitude and spectral content of the signals to avalanche size, avalanche speed and snow properties of the avalanches. In

  16. Application of statistical and dynamics models for snow avalanche hazard assessment in mountain regions of Russia

    NASA Astrophysics Data System (ADS)

    Turchaninova, A.

    2012-04-01

    The estimation of extreme avalanche runout distances, flow velocities, impact pressures and volumes is an essential part of snow engineering in mountain regions of Russia. It implies the avalanche hazard assessment and mapping. Russian guidelines accept the application of different avalanche models as well as approaches for the estimation of model input parameters. Consequently different teams of engineers in Russia apply various dynamics and statistical models for engineering practice. However it gives more freedom to avalanche practitioners and experts but causes lots of uncertainties in case of serious limitations of avalanche models. We discuss these problems by presenting the application results of different well known and widely used statistical (developed in Russia) and avalanche dynamics models for several avalanche test sites in the Khibini Mountains (The Kola Peninsula) and the Caucasus. The most accurate and well-documented data from different powder and wet, big rare and small frequent snow avalanche events is collected from 1960th till today in the Khibini Mountains by the Avalanche Safety Center of "Apatit". This data was digitized and is available for use and analysis. Then the detailed digital avalanche database (GIS) was created for the first time. It contains contours of observed avalanches (ESRI shapes, more than 50 years of observations), DEMs, remote sensing data, description of snow pits, photos etc. Thus, the Russian avalanche data is a unique source of information for understanding of an avalanche flow rheology and the future development and calibration of the avalanche dynamics models. GIS database was used to analyze model input parameters and to calibrate and verify avalanche models. Regarding extreme dynamic parameters the outputs using different models can differ significantly. This is unacceptable for the engineering purposes in case of the absence of the well-defined guidelines in Russia. The frequency curves for the runout distance

  17. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate for homogeneity

    SciTech Connect

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E.

    1997-02-01

    The requirements on preionization for the formation of spatially homogeneous pulsed avalanche discharges are examined. The authors derive two formulas which apply in the case of a slowly rising electric field, one which gives the required preionization density at breakdown, and one which gives the required preionization rate. These quantities are expressed as functions of the electrochemical properties of the gas, the neutral density, and the electric field rise time. They also treat the statistical effect that the electrons tend to form groups, in contrast to being randomly distributed in space, during the prebreakdown phase. This process is found to increase the required preionization rate significantly, typically by a factor of five for a discharge at atmospheric pressure. Homogeneous high-pressure discharges have been used for laser excitation, and have also been proposed for chemical plasma processing (ozone production) because of their good scaling properties and high efficiency.

  18. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. H.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.

    2008-10-01

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ~ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  19. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. I. THE ROLE OF ELECTRON AVALANCHE

    SciTech Connect

    Helling, Ch.; Jardine, M.; Witte, S.; Diver, D. A.

    2011-01-20

    Brown dwarf and extrasolar planet atmospheres form clouds which strongly influence the local chemistry and physics. These clouds are globally neutral obeying dust-gas charge equilibrium which is, on short timescales, inconsistent with the observation of stochastic ionization events of the solar system planets. We argue that a significant volume of the clouds in brown dwarfs and extrasolar planets is susceptible to local discharge events. These are electron avalanches triggered by charged dust grains. Such intra-cloud discharges occur on timescales shorter than the time needed to neutralize the dust grains by collisional processes. An ensemble of discharges is likely to produce enough free charges to suggest a partial and stochastic coupling of the atmosphere to a large-scale magnetic field.

  20. Amplitude-temporal characteristics of a supershort avalanche electron beam generated during subnanosecond breakdown in air and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Beloplotov, D. V.; Burachenko, A. G.; Lomaev, M. I.

    2016-04-01

    The amplitude-temporal characteristics of a supershort avalanche electron beam (SAEB) with an amplitude of up to 100 A, as well as of the breakdown voltage and discharge current, are studied experimentally with a picosecond time resolution. The waveforms of discharge and SAEB currents are synchronized with those of the voltage pulses. It is shown that the amplitude-temporal characteristics of the SAEB depend on the gap length and the designs of the gas diode and cathode. The mechanism for the generation of runaway electron beams in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  1. Maximum speeds and alpha angles of flowing avalanches

    NASA Astrophysics Data System (ADS)

    McClung, David; Gauer, Peter

    2016-04-01

    A flowing avalanche is one which initiates as a slab and, if consisting of dry snow, will be enveloped in a turbulent snow dust cloud once the speed reaches about 10 m/s. A flowing avalanche has a dense core of flowing material which dominates the dynamics by serving as the driving force for downslope motion. The flow thickness typically on the order of 1 -10 m which is on the order of about 1% of the length of the flowing mass. We have collected estimates of maximum frontal speed um (m/s) from 118 avalanche events. The analysis is given here with the aim of using the maximum speed scaled with some measure of the terrain scale over which the avalanches ran. We have chosen two measures for scaling, from McClung (1990), McClung and Schaerer (2006) and Gauer (2012). The two measures are the √H0-;√S0-- (total vertical drop; total path length traversed). Our data consist of 118 avalanches with H0 (m)estimated and 106 with S0 (m)estimated. Of these, we have 29 values with H0 (m),S0 (m)and um (m/s)estimated accurately with the avalanche speeds measured all or nearly all along the path. The remainder of the data set includes approximate estimates of um (m/s)from timing the avalanche motion over a known section of the path where approximate maximum speed is expected and with either H0or S0or both estimated. Our analysis consists of fitting the values of um/√H0--; um/√S0- to probability density functions (pdf) to estimate the exceedance probability for the scaled ratios. In general, we found the best fits for the larger data sets to fit a beta pdf and for the subset of 29, we found a shifted log-logistic (s l-l) pdf was best. Our determinations were as a result of fitting the values to 60 different pdfs considering five goodness-of-fit criteria: three goodness-of-fit statistics :K-S (Kolmogorov-Smirnov); A-D (Anderson-Darling) and C-S (Chi-squared) plus probability plots (P-P) and quantile plots (Q-Q). For less than 10% probability of exceedance the results show that

  2. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET.

    PubMed

    Pichler, B J; Swann, B K; Rochelle, J; Nutt, R E; Cherry, S R; Siegel, S B

    2004-09-21

    Avalanche photodiodes (APDs) have proven to be useful as light detectors for high resolution positron emission tomography (PET). Their compactness makes these devices excellent candidates for replacing bulky photomultiplier tubes (PMTs) in PET systems where space limitations are an issue. The readout of densely packed, 10 x 10 lutetium oxyorthosilicate (LSO) block detectors (crystal size 2.0 x 2.0 x 12 mm3) with custom-built monolithic 3 x 3 APD arrays was investigated. The APDs had a 5 x 5 mm2 active surface and were arranged on a 6.25 mm pitch. The dead space on the edges of the array was 1.25 mm. The APDs were operated at a bias voltage of approximately 380 V for a gain of 100 and a dark current of 10 nA per APD. The standard deviation in gain between the APDs in the array ranged from 1.8 to 6.5% as the gain was varied from 50 to 108. A fast, low-noise, multi-channel charge sensitive preamplifier application-specific integrated circuit (ASIC) was developed for the APD readout. The amplifier had a rise time of 8 ns, a noise floor of 515 e- rms and a 9 e- pF(-1) noise slope. An acquired flood image showed that all 100 crystals from the block detector could be resolved. Timing measurements with single-channel LSO-APD detectors, as well as with the array, against a plastic scintillator and PMT assembly showed a time resolution of 1.2 ns and 2.5 ns, respectively. The energy resolution measured with a single 4.0 x 4.0 x 10 mm3 LSO crystal, wrapped in four-layer polytetrafluoroethylene (PTFE) tape and coupled with optical grease on a single APD of the array, yielded 15% (full width at half maximum, FWHM) at 511 keV. Stability tests over 9 months of operation showed that the APD arrays do not degrade appreciably. These results demonstrate the ability to decode densely packed LSO scintillation blocks with compact APD arrays. The good timing and energy resolution makes these detectors suitable for high resolution PET.

  3. Hummocks: how they form and evolve in debris avalanches (Invited)

    NASA Astrophysics Data System (ADS)

    Paguican, E. R.; van Wyk de Vries, B.; Lagmay, A.

    2013-12-01

    Hummocks are topographic features of large landslides and rockslide-debris avalanches common in volcanic settings. We use scaled analog models to study hummock formation and explore their importance in understanding landslide kinematics and dynamics. The models are designed to replicate large-scale volcanic collapses but are relevant also to non-volcanic settings. We characterize hummocks in terms of their evolution, spatial distribution, and internal structure from slide initiation to final arrest. Hummocks initially form by extensional faulting as a landslide begins to move. During motion, individual large blocks develop and spread, creating an initial distribution, with small hummocks at the landslide front and larger ones at the back. As the mass spreads, hummocks remain as discrete entities. They can get wider but may decrease in height, break up, or merge to form bigger and long anticlinal hummocks when confined. In areas of transverse movement within a landslide, elongate hummocks develop between strike-slip flower structures. Absence of hummocks and fault-like features in the deposit may imply a more fluidal flow of emplacement or very low cohesion of lithologies. Hummock size depends on their position in the initial mass, modified by subsequent breakup or coalescence. Hummock size, shape and spatial distribution vary between and within deposits. Such a universal structure with clear connection to the deformation process should provide a framework with which to study avalanche emplacement dynamics and conditions. We study well-preserved and well-sectioned hummocks in the Mt Iriga rockslide-debris avalanches (Philippines), to characterise the internal structure and relate hummocks to the landslide-avalanche behaviour. All the model structures are consistent with field observations and suggest a general brittle-slide emplacement for most landslide avalanches. The upper and outer hummock surface is destabilised by minor slumps and scree formation forming a

  4. A new web-based system to improve the monitoring of snow avalanche hazard in France

    NASA Astrophysics Data System (ADS)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael

    2016-05-01

    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  5. Rescue missions for totally buried avalanche victims: conclusions from 12 years of experience.

    PubMed

    Hohlrieder, Matthias; Thaler, Stephanie; Wuertl, Walter; Voelckel, Wolfgang; Ulmer, Hanno; Brugger, Hermann; Mair, Peter

    2008-01-01

    The planning and execution of avalanche rescue missions to search for totally buried avalanche victims are mostly based on personal experience and preference, as evidence-based information from literature is almost completely missing. Hence, the aim of this study was to identify major factors determining the survival probability of totally buried victims during avalanche rescue missions carried out by organized rescue teams (Austrian Mountain Rescue Service, Tyrol). During the 12-year period studied, 109 totally buried persons (56 off-piste, 53 backcountry), were rescued or recovered; 18.3% survived to hospital discharge. Median depth of burial was 1.25 m; median duration of burial was 85 min. The majority (61.6%) of the rescue missions were conducted under considerably dangerous avalanche conditions. The probability of survival was highest when located visually and lowest for those located by avalanche transceiver; survival did not significantly differ between those found by rescue dogs and those located with avalanche probes. Multivariate analysis revealed short duration of burial and off-piste terrain to be the two independent predictors of survival. Whenever companion rescue fails, snow burial in an avalanche is associated with extraordinarily high mortality. Searching the avalanche debris with probe lines seems to be equally effective as compared to searching with rescue dogs. The potential hazard for rescuers during avalanche rescue missions comes mainly from self-triggered avalanches, hence thorough mission planning and critical risk-benefit assessment are of utmost importance for risk reduction.

  6. Application of LANDSAT data to delimitation of avalanche hazards in Montane Colorado

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Many avalanche hazard zones can be identified on LANDSAT imagery, but not consistently over a large region. Therefore, regional avalanche hazard mapping, using LANDSAT imagery, must draw on additional sources of information. A method was devised that depicts three levels of avalanche hazards according to three corresponding levels of certainty that active avalanches occur. The lowest level, potential avalanche hazards, was defined by delineating slopes steep enough to support avalanches at elevations where snowfall was likely to be sufficient to produce a thick snowpack. The intermediate level of avalanche hazard was interpreted as avalanche hazard zones. These zones have direct and indirect indicators of active avalanche activity and were interpreted from LANDSAT imagery. The highest level of known or active avalanche hazards was compiled from existing maps. Some landslides in Colorado were identified and, to a degree, delimited on LANDSAT imagery, but the conditions of their identification were highly variable. Because of local topographic, geologic, structural, and vegetational variations, there was no unique landslide spectral appearance.

  7. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    NASA Astrophysics Data System (ADS)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  8. Origin of the Avalanche-Like Photoluminescence from Metallic Nanowires

    PubMed Central

    Ma, Zongwei; Yu, Ying; Shen, Shaoxin; Dai, Hongwei; Yao, Linhua; Han, Yibo; Wang, Xia; Han, Jun-Bo; Li, Liang

    2016-01-01

    Surface plasmonic systems provide extremely efficient ways to modulate light-matter interaction in photon emission, light harvesting, energy conversion and transferring, etc. Various surface plasmon enhanced luminescent behaviors have been observed and investigated in these systems. But the origin of an avalanche-like photoluminescence, which was firstly reported in 2007 from Au and subsequently from Ag nanowire arrays/monomers, is still not clear. Here we show, based on systematic investigations including the excitation power/time related photoluminescent measurements as well as calculations, that this avalanche-like photoluminescence is in fact a result of surface plasmon assisted thermal radiation. Nearly all of the related observations could be perfectly interpreted with this concept. Our finding is crucial for understanding the surface plasmon mediated thermal and photoemission behaviors in plasmonic structures, which is of great importance in designing functional plasmonic devices. PMID:26728439

  9. Magnetic avalanches in granular ferromagnets: thermal activated collective behavior

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei

    2017-02-01

    We present a numerical study on the thermal activated avalanche dynamics in granular materials composed of ferromagnetic clusters embedded in a non-magnetic matrix. A microscopic dynamical simulation based on the reaction-diffusion process is developed to model the magnetization process of such systems. The large-scale simulations presented here explicitly demonstrate inter-granular collective behavior induced by thermal activation of spin tunneling. In particular, we observe an intriguing criticality controlled by the rate of energy dissipation. We show that thermal activated avalanches can be understood in the framework of continuum percolation and the emergent dissipation induced criticality is in the universality class of 3D percolation transition. Implications of these results to the phase-separated states of colossal magnetoresistance materials and other artificial granular magnetic systems are also discussed.

  10. Weathering processes implied from analysis of small Martian avalanche chutes

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1992-01-01

    It has been proposed that the smaller features of martian spur and gully slope morphology, located along the upper walls of Valles Marineris, are avalanche chutes. A three-dimensional stability back-analysis technique was developed and applied to these small avalanche chutes, yielding average values of cohesion and angle of internal friction for the mobile layer materials on these slopes at the time of each slope failure. Generally, the analysis showed that at the time of each slope failure material strengths had been reduced to those of moderately cohesive debris down through depths of tens of meters. These results have implications and possible constraints for the nature and rate of martian weathering processes.

  11. Controllable morphology of flux avalanches in microstructured superconductors

    NASA Astrophysics Data System (ADS)

    Motta, M.; Colauto, F.; Vestgârden, J. I.; Fritzsche, J.; Timmermans, M.; Cuppens, J.; Attanasio, C.; Cirillo, C.; Moshchalkov, V. V.; Van de Vondel, J.; Johansen, T. H.; Ortiz, W. A.; Silhanek, A. V.

    2014-04-01

    The morphology of abrupt bursts of magnetic flux into superconducting films with engineered periodic pinning centers (antidots) has been investigated. Guided flux avalanches of thermomagnetic origin develop a treelike structure, with the main trunk perpendicular to the borders of the sample, while secondary branches follow well-defined directions determined by the geometrical details of the underlying periodic pinning landscape. Strikingly, we demonstrate that in a superconductor with relatively weak random pinning the morphology of such flux avalanches can be fully controlled by proper combinations of lattice symmetry and antidot geometry. Moreover, the resulting flux patterns can be reproduced, to the finest details, by simulations based on a phenomenological thermomagnetic model. In turn, this model can be used to predict such complex structures and to estimate physical variables of more difficult experimental access, such as the local values of temperature and electric field.

  12. Magnetic avalanches in granular ferromagnets: thermal activated collective behavior.

    PubMed

    Chern, Gia-Wei

    2017-02-01

    We present a numerical study on the thermal activated avalanche dynamics in granular materials composed of ferromagnetic clusters embedded in a non-magnetic matrix. A microscopic dynamical simulation based on the reaction-diffusion process is developed to model the magnetization process of such systems. The large-scale simulations presented here explicitly demonstrate inter-granular collective behavior induced by thermal activation of spin tunneling. In particular, we observe an intriguing criticality controlled by the rate of energy dissipation. We show that thermal activated avalanches can be understood in the framework of continuum percolation and the emergent dissipation induced criticality is in the universality class of 3D percolation transition. Implications of these results to the phase-separated states of colossal magnetoresistance materials and other artificial granular magnetic systems are also discussed.

  13. Macroscopic control parameter for avalanche models for bursty transport

    SciTech Connect

    Chapman, S. C.; Rowlands, G.; Watkins, N. W.

    2009-01-15

    Similarity analysis is used to identify the control parameter R{sub A} for the subset of avalanching systems that can exhibit self-organized criticality (SOC). This parameter expresses the ratio of driving to dissipation. The transition to SOC, when the number of excited degrees of freedom is maximal, is found to occur when R{sub A}{yields}0. This is in the opposite sense to (Kolmogorov) turbulence, thus identifying a deep distinction between turbulence and SOC and suggesting an observable property that could distinguish them. A corollary of this similarity analysis is that SOC phenomenology, that is, power law scaling of avalanches, can persist for finite R{sub A} with the same R{sub A}{yields}0 exponent if the system supports a sufficiently large range of lengthscales, necessary for SOC to be a candidate for physical (R{sub A} finite) systems.

  14. Stability of the discretization of the electron avalanche phenomenon

    SciTech Connect

    Villa, Andrea; Barbieri, Luca; Gondola, Marco; Leon-Garzon, Andres R.; Malgesini, Roberto

    2015-09-01

    The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied to this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.

  15. Ray optics behavior of flux avalanche propagation in superconducting films

    NASA Astrophysics Data System (ADS)

    Mikheenko, P.; Johansen, T. H.; Chaudhuri, S.; Maasilta, I. J.; Galperin, Y. M.

    2015-02-01

    Experimental evidence of wave properties of dendritic flux avalanches in superconducting films is reported. Using magneto-optical imaging the propagation of dendrites across boundaries between a bare NbN film and areas coated by a Cu layer was visualized, and it was found that the propagation is refracted in full quantitative agreement with Snell's law. For the studied film of 170 nm thickness and a 0.9 μ m thick metal layer, the refractive index was close to n =1.4 . The origin of the refraction is believed to be caused by the dendrites propagating as an electromagnetic shock wave, similar to damped modes considered previously for normal metals. The analogy is justified by the large dissipation during the avalanches raising the local temperature significantly. Additional time-resolved measurements of voltage pulses generated by segments of the dendrites traversing an electrode confirm the consistency of the adopted physical picture.

  16. Robust Quantum Random Number Generator Based on Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Xiang; Wang, Chao; Chen, Wei; Wang, Shuang; Lv, Fu-Sheng; He, De-Yong; Yin, Zhen-Qiang; Li, Hong-Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-08-01

    We propose and demonstrate a scheme to realize a high-efficiency truly quantum random number generator (RNG) at room temperature (RT). Using an effective extractor with simple time bin encoding method, the avalanche pulses of avalanche photodiode (APD) are converted into high-quality random numbers (RNs) that are robust to slow varying noise such as fluctuations of pulse intensity and temperature. A light source is compatible but not necessary in this scheme. Therefor the robustness of the system is effective enhanced. The random bits generation rate of this proof-of-principle system is 0.69 Mbps with double APDs and 0.34 Mbps with single APD. The results indicate that a high-speed RNG chip based on the scheme is potentially available with an integrable APD array.

  17. Electro-thermal simulation of superconducting nanowire avalanche photodetectors

    SciTech Connect

    Marsili, F.; Najafi, F.; Herder, C.; Berggren, K. K.

    2011-01-01

    We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  18. Receiver characteristics of laser altimeters with avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.; Boutsikaris, Leo; Abshire, James B.

    1992-01-01

    The receiver characteristics of a laser altimeter system containing an avalanche photodiode photodetector are analyzed using the Gaussian approximation, the saddle-point approximation, and a nearly exact analysis. The last two methods are shown to yield very similar results except when the background noise is extremely low and the probability of false alarm is high. However, the Gaussian approximation method is shown to cause significant errors even under relatively high levels of background noise and received signal energy.

  19. Flux avalanches in superconducting films with periodic arrays of holes.

    SciTech Connect

    Vlasko-Vlasov, V.; Welp, U.; Metlushko, V.; Crabtree, G. W.; Materials Science Division; Inst. of Solid State Physics RAS

    2000-01-01

    The magnetic flux dynamics in Nb films with periodic hole arrays is studied magneto-optically. Flux motion in the shape of microavalanches along {l_brace}100{r_brace} and {l_brace}110{r_brace} directions of the hole lattice is observed. At lower temperatures anisotropic large scale thermo-magnetic avalanches dominate flux entry and exit. At T-T{sub c} critical-state-like field patterns periodically appear at fractions of the matching field.

  20. Investigation of avalanche photodiodes radiation hardness for baryonic matter studies

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Ladygin, V. P.; Kugler, A.; Kushpil, S.; Svoboda, O.; Tlustý, P.

    2016-01-01

    Modern avalanche photodiodes (APDs) with high gain are good device candidates for light readout from detectors applied in relativistic heavy ion collisions experiments. The results of the investigations of the APDs properties from Zecotek, Ketek and Hamamatsu manufacturers after irradiation using secondary neutrons from cyclotron facility U120M at NPI of ASCR in Řež are presented. The results of the investigations can be used for the design of the detectors for the experiments at NICA and FAIR.

  1. Building a Test Stand for Silicon Photomultiplies for sPHENIX Calorimeter Readout

    NASA Astrophysics Data System (ADS)

    Zhou, Geyang; Sphenix Collaboration

    2016-09-01

    The sPHENIX detector is a second-generation heavy ion collision experiment planned to be built at Brookhaven National Laboratory's (BNL) Relativistic Heavy Ion Collider (RHIC). The read-out of the electromagnetic and hadronic calorimeters will be via silicon photomultipliers (SiPMs). In preparation for characterizing the approximately 125,000 SiPMs that will be used in the detector, a test stand has been built at Augustana University. In this poster we give the details of the test stand and example tests that have and can be done. National Science Foundation.

  2. Report on the lunar ranging at McDonald Observatory. [spark gap configuration and photomultiplier system

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.

    1977-01-01

    Range measurements to an accuracy of 5 cm were achieved following improvements in the laser oscillator configuration and the photomultiplier system. Modifications to the laser include a redesigned pockel cell mount to eliminate stressing of the cell crystal; an improved electrically triggered spark gap for sharpening the electrical pulse; the use of a brewster plate in the cavity to eliminate pre-pulsing; improved alignment for the oscillator system; and increased cavity lifetime through thin film polarizer technology. Laser calibration data are presented along with the lunar laser operations log for June to October 1977.

  3. Test of scintillator bars coupled to Silicon Photomultipliers for a charged particle tracking device

    NASA Astrophysics Data System (ADS)

    Cecchini, S.; D'Antone, I.; Esposti, L. Degli; Lax, I.; Mandrioli, G.; Mauri, N.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Sirri, G.; Tenti, M.

    2017-02-01

    This work is the first step in the implementation of a tracking detector for instrumenting a light spectrometer to study O(1 GeV) νμ CC interactions. A spatial resolution of O(1 mm) is required for the precise determination of momentum and charge of muons produced in such interactions. A tracking system prototype composed of planes of scintillator bars coupled to Silicon Photomultipliers in analog mode readout has been developed. The devised system provides a spatial resolution of better than 2 mm in reconstructing muon tracks. Results obtained in laboratory tests and with cosmic ray muons are discussed.

  4. Future use of silicon photomultipliers for K AOS at MAMI and P¯ANDA at FAIR

    NASA Astrophysics Data System (ADS)

    Achenbach, P.; Lorente, A. Sanchez; Majos, S. Sánchez; Pochodzalla, J.

    2009-10-01

    A characterization of scintillating fibres with silicon photomultiplier read-out was performed in view of their possible application in fibre tracking detector systems. Such a concept is being considered for the K AOS spectrometer at the Mainz Microtron MAMI and as a time-of-flight start detector for the hypernuclear physics programme at the P¯ANDA experiment of the FAIR project. Results on particle detection efficiency and time resolution are discussed. In summary, the silicon devices are very suitable for the detection of the low light yield from scintillating fibres insofar a trigger scheme is found to cope with the noise rate characteristics.

  5. Characterization of the KM3NeT photomultipliers in the Hellenic Open University

    SciTech Connect

    Bourlis, G.; Avgitas, T.; Tsirigotis, A.; Tzamarias, S.; Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT neutrino research infrastructure will be a deep sea multidisciplinary observatory in the Mediterranean Sea hosting a neutrino telescope. The Physics Laboratory of the Hellenic Open University is involved in the characterization of the KM3NeT neutrino detector. The present work describes measurement techniques for the functional characteristics of the candidate KM3NeT photomultipliers. These characteristics include dark current, transit time spread, gain slope and single photoelectron characteristics, as well as delayed and after pulses.

  6. Ultra-high speed photomultiplier tubes with nanosecond gating for fusion diagnostics

    SciTech Connect

    Milnes, J. S.; Horsfield, C. J.; Rubery, M. S.; Glebov, V. Yu.; Herrmann, H. W.

    2012-10-15

    Fusion diagnostics can involve the measurement of ultra-fast optical pulses, often in close temporal proximity. We present a solution for the diagnostics of gamma reaction history and neutron time of flight by using microchannel plate based photomultiplier tubes (PMTs). The time response of the PMTs can be as fast as 100 ps FWHM and with a gain of up to 10{sup 7}. To observe small events in close temporal proximity to much larger signals such as the down-scattered fraction, the response of MCP-PMTs can be gated with an on/off ratio of up to 10{sup 13} in just 2 ns.

  7. Remote radiation sensing module based on a silicon photomultiplier for industrial applications.

    PubMed

    Park, Hye Min; Joo, Koan Sik

    2016-09-01

    We have designed a silicon-photomultiplier-based remote radiation-sensing module consisting of a master port (displaying radiation information) and a slave port (detects radiation, transmits to master). The master port merges radiation and dose values and displays them. Counting detection efficiency and radiation response simulated using MCNPX were used to calibrate the module. We performed radioactive source tests ((137)Cs, (22)Na, (60)Co, (55)Fe) and compared experimental and simulation results. Remote detection capability was demonstrated and the detection accuracy was determined. Applications abound in the radioactivity industry.

  8. Performance of the 8-in. R5912 photomultiplier tube with super bialkali photocathode

    NASA Astrophysics Data System (ADS)

    Wang, W.; Qian, S.; Xia, J.; Ning, Z.; Cheng, Y.; Qi, M.; Heng, Y.; Wang, Z.; Li, X.; Liu, S.; Lei, X.

    2015-08-01

    An enhanced R5912 family photomultiplier (8-inch.) model with super bialkali photocathode was developed by Hamamatsu. The spectral responses of the standard and enhanced photocathode were compared and a relative increase of 39% at 400 nm was found for the enhanced one. Additional measurements on the relative detection efficiency at a gain of 1E7 showed a consistent improvement of the quantum efficiency. Good uniformity was observed on the super bialkali photocathode. Additional tests proved that both the charge resolution and time properties were not affected by the new cathode technology. Dark count rate and dark current values were found larger in the super bialkali model compared to the standard one.

  9. Gain control of photomultiplier tubes used in detecting differential absorption lidar returns

    NASA Technical Reports Server (NTRS)

    Allen, Robert J. (Inventor)

    1989-01-01

    A technique for controlling the gain of a photomultiplier tube (PMT) 20. A voltage divider (resistors 45-49 in FIG. 1 and zener diodes 60-65 in FIG. 3) is used to control the potentials on dynodes 5, 7, and 9 of PMT 20. Transistor switches 53 and 58 provide the control of the voltage divider in FIG. 1 and photodiodes 66, 67 and 70 provide the control in FIG. 3. The gain control of PMT 20 is in the range from 100% to less than 0.001% (100,000 to 1).

  10. Debris Avalanche Formation at Kick'em Jenny Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S. N.; Wilson, D.

    2005-12-01

    Kick'em Jenny submarine volcano near Grenada is the most active volcanic center in the Lesser Antilles arc. Multibeam surveys of the volcano by NOAA in 2002 revealed an arcuate fault scarp east of the active cone, suggesting flank collapse. More extensive NOAA surveys in 2003 demonstrated the presence of an associated debris avalanche deposit, judging from their surface morphologic expression on the sea floor, extending at least 15 km and possibly as much as 30 km from the volcano, into the Grenada Basin to the west. Seismic air-gun profiles of the region show that these are lobate deposits, that range in thickness from tens to hundreds of meters. The debris avalanche deposit is contained within two marginal levees, that extend symmetrically from the volcano to the west. A conservative estimate of the volume of the smaller debris avalanche deposit is about 10 km3. Age dating of the deposits and the flank failure events is in progress, by analysis of gravity cores collected during the 2003 survey. Reconstruction of the pre-collapse volcanic edifice suggests that the ancestral Kick'em Jenny volcano might have been at or above sea level. Kick'em Jenny is dominantly supplied by basalt to basaltic andesite magmas, that are extruded now as submarine pillow lavas and domes or ejected as tephra in relatively minor phreatomagmatic explosions. Geochemical evolution of this volcano has not, however, reached the stage of generation of volatile-rich silicic magmas that might form highly explosive eruptions.

  11. Solar flares and avalanches in driven dissipative systems

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.; Mctiernan, J. M.; Bromund, Kenneth R.

    1993-01-01

    The contention of Lu and Hamilton (1991) that the energy release process in solar flares can be understood as avalanches of many small reconnection events is further developed. The dynamics of the complex magnetized plasma of solar active regions is modeled with a simple driven dissipative system, consisting of a vector field with local instabilities that cause rapid diffusion of the field. It is argued that the avalanches in this model are analogous to solar flares. The distributions of avalanches in this model are compared with the solar flare frequency distributions obtained from ISEE 3/ICE satellite observations. Quantitative agreement is found with the energy, peak luminosity, and duration distributions over four orders of magnitude in flare energy, from the largest flares down to the completeness limit of the observations. It is predicted that the power-law solar flare frequency distributions will be found to continue downward with the same logarithmic slopes to an energy of about 3 x 10 exp 25 ergs and duration of about 0.3 s, with deviations from power-law behavior below these values.

  12. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    SciTech Connect

    Hood, A. W.; Cargill, P. J.; Tam, K. V.; Browning, P. K.

    2016-01-20

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.

  13. Particle-size segregation in dense granular avalanches

    NASA Astrophysics Data System (ADS)

    Gray, John Mark Nicholas Timm; Gajjar, Parmesh; Kokelaar, Peter

    2015-01-01

    Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid-fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

  14. High-Gain Avalanche Rushing amorphous Photoconductor (HARP) detector

    NASA Astrophysics Data System (ADS)

    Tanioka, K.

    2009-09-01

    We have been studying a very sensitive image sensor since the early 1980s. In 1985, the author found for the first time that an experimental pickup tube with an amorphous selenium photoconductive target exhibits high sensitivity with excellent picture quality because of a continuous and stable avalanche multiplication phenomenon. We named the pickup tube with an amorphous photoconductive layer operating in the avalanche-mode "HARP": High-gain Avalanche Rushing amorphous Photoconductor. A color camera equipped with the HARP pickup tubes has a maximum sensitivity of 11 lx at F8. This means that the HARP camera is about 100 times as sensitive as that of CCD camera for broadcasting. This ultrahigh-sensitivity HARP pickup tube is a powerful tool for reporting breaking news at night and other low-light conditions, the production of scientific programs, and numerous other applications, including medical diagnoses, biotech research, and nighttime surveillance. In addition, since the HARP target can convert X-rays into electrons directly, it should be possible to exploit this capability to produce X-ray imaging devices with unparalleled levels of resolution and sensitivity.

  15. The transitional behaviour of avalanches in cohesive granular materials

    NASA Astrophysics Data System (ADS)

    Quintanilla, M. A. S.; Valverde, J. M.; Castellanos, A.

    2006-07-01

    We present a statistical analysis of avalanches of granular materials that partially fill a slowly rotated horizontal drum. For large sized noncohesive grains the classical coherent oscillation is reproduced, consisting of a quasi-periodic succession of regularly sized avalanches. As the powder cohesiveness is increased by decreasing the particle size, we observe a gradual crossover to a complex dynamics that resembles the transitional behaviour observed in fusion plasmas. For particle size below ~50 µm, avalanches lose a characteristic size, retain a short term memory and turn gradually decorrelated in the long term as described by a Markov process. In contrast, large grains made cohesive by coating them with adhesive microparticles display a distinct phenomenology, characterized by a quasi-regular succession of well defined small precursors and large relaxation events. The transition from a one-peaked distribution (noncohesive large beads) to a flattened distribution (fine cohesive beads) passing through the two-peaked distribution of cohesive large beads had already been predicted using a coupled-map lattice model, as the relaxation mechanism of grain reorganization becomes dominant to the detriment of inertia.

  16. Modeling and Scaling of the Distribution of Trade Avalanches in a STOCK Market

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    We study the trading activity in the Korea Stock Exchange by considering trade avalanches. A series of successive trading with small trade time interval is regarded as a trade avalanche of which the size s is defined as the number of trade in a series of successive trades. We measure the distribution of trade avalanches sizes P(s) and find that it follows the power-law behavior P(s) ~ s-α with the exponent α ≈ 2 for two stocks with the largest number of trades. A simple stochastic model which describes the power-law behavior of the distribution of trade avalanche size is introduced. In the model it is assumed that the some trades induce the accompanying trades, which results in the trade avalanches and we find that the distribution of the trade avalanche size also follows power-law behavior with the exponent α ≈ 2.

  17. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Lato, M. J.; Frauenfelder, R.; Bühler, Y.

    2012-09-01

    Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors), personal property (homes) and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR) optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object-oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers) are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.

  18. Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches

    PubMed Central

    Shaukat, Aleena; Thivierge, Jean-Philippe

    2016-01-01

    Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX), which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems. PMID:27092071

  19. Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches.

    PubMed

    Shaukat, Aleena; Thivierge, Jean-Philippe

    2016-01-01

    Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX), which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems.

  20. Analysis of scale-invariant slab avalanche size distributions

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Louchet, F.; Grasso, J.-R.; Daudon, D.

    2003-04-01

    Scale invariance of snow avalanche sizes was reported for the first time in 2001 by Louchet et al. at the EGS conference, using both acoustic emission duration, and the surface of the crown step left at the top of the starting zone, where the former parameter characterises the size of the total avalanche flow, and the latter that of the starting zone. The present paper focuses on parameters of the second type, that are more directly related to precise release mechanisms, vz. the crown crack length L, the crown crack or slab depth H, the crown step surface HxL, the volume HxL^2 of the snow involved in the starting zone, and LxH^2 which is a measure of the stress concentration at the basal crack tip at failure. The analysis is performed on two data sets, from la Grande Plagne (GP) and Tignes (T) ski resorts. For both catalogs, cumulative distributions of L, H, HxL, HxL^2 and LxH^2 are shown to be roughly linear in a log-log plot. i.e. consistent with so-called scale invariant (or power law) distributions for both triggered and natural avalanches. Plateaus are observed at small sizes, and roll-offs at large sizes. The power law exponents for each of these quantities are roughly independent of the ski resort (GP or T) they come from. In contrast, exponents for natural events are significantly smaller than those for artificial ones. We analyse the possible reasons for the scale invariance of these quantities, for the possible "universality" of the exponents corresponding to a given triggering mode, and for the difference in exponents between triggered and natural events. The physical meaning of the observed roll-offs and plateaus is also discussed. The power law distributions analysed here provide the occurrence probability of an avalanche of a given (starting) volume in a given time period on a given area. A possible use of this type of distributions for snow avalanche hazard assessment is contemplated, as it is for earthquakes or rockfalls.

  1. The Tancitaro Debris Avalanche: Characterization, propagation and modeling

    NASA Astrophysics Data System (ADS)

    Morelli, Stefano; Monroy, Victor Hugo Garduño; Gigli, Giovanni; Falorni, Giacomo; Rocha, Eleazar Arreygue; Casagli, Nicola

    2010-06-01

    The Tancitaro volcano (3860 m) is an andesitic-dacitic stratovolcano located in the western portion of the Trans-Mexican Volcanic Belt within the state of Michoacán (Mexico). The tectonic activity of this area has likely contributed to a large sector collapse of the volcano. The first findings of a multidisciplinary investigation into this debris avalanche are presented here. Geomorphological analyses, based on the interpretation of orthophotos, satellite imagery and on GIS elaborations, had the objective of determining the main morphometric features of the landslide. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), while the deposit forms a large fan that is 66 km long, covers an area of approximately 1155 km 2 and has an estimated volume of 18 km 3. Event volume was established by reconstructing the paleo-edifice in a GIS and taking into account volumetric expansion. Cross sections measured in the field were also used for this purpose. Field investigations also highlighted the presence of two texturally distinct units, which are referred to as the "block facies" and the "matrix facies", respectively. The first is responsible for the typical hummock morphologies found in the proximal area. A transitional zone contains a "mixed block and matrix facies" while in the distal portion blocks and megablocks, some of which have a jigsaw puzzle texture, gradually decrease in size until they disappear entirely. A number of matrix samples were collected to conduct direct shear tests, granulometric analyses and classification of the materials. The data and analyses described above were used to discuss the mechanism controlling the long runout of the avalanche. Based on the comparison between the Tancitaro debris avalanche and similar events we propose that mechanical fluidization was the mechanism responsible for the remarkable mobility of the landslide. The predisposing factors leading to the collapse were also considered. Field

  2. Influence of weak layer heterogeneity on slab avalanche release. Application to the evaluation of avalanche release depths.

    NASA Astrophysics Data System (ADS)

    Gaume, J.; Chambon, G.; Eckert, N.; Naaim, M.

    2012-04-01

    Slab avalanches are generally caused by the collapse of a weak layer underlying a cohesive slab. The two key ingredients for the mechanical description of such slab avalanche releases are the heterogeneity of the weak layer and the redistribution of stresses via the elasticity of the slab. The finite element code Cast3M is used to build a complete full-scale mechanical model of the slab-weak layer system including inertial effects. The weak layer is modeled as a cohesive Mohr-Coulomb interface with cohesion softening which accounts for shear-induced collapse. The overlying slab is represented by an elastic layer. The system is loaded by increasing the slope angle until rupture. We first study the influence of a single weak spot in the weak layer in order to validate the model against analytical solutions. The interaction between two weak spots is also analyzed. The case of heterogeneous weak layers represented through Gaussian stochastic distributions of the cohesion with a spherical spatial covariance is then studied. Several simulations for different realizations of the heterogeneity of the weak layer are carried out and the influence of slab depth and heterogeneity correlation length on avalanche release angle distributions is examined. In particular a heterogeneity smoothing effect caused by slab elasticity and characterized by a typical length scale of the system is evidenced. Finally the model is coupled with extreme snowfall distributions belonging to the GEV class, which allows to recover with very good accuracy release depth distributions obtained from field data.

  3. Theory of suppressing avalanche process of carrier in short pulse laser irradiated dielectrics

    SciTech Connect

    Deng, H. X. E-mail: xtzu@uestc.edu.cn Zu, X. T. E-mail: xtzu@uestc.edu.cn Xiang, X.; Zheng, W. G.; Yuan, X. D.; Sun, K. E-mail: xtzu@uestc.edu.cn; Gao, F.

    2014-05-28

    A theory for controlling avalanche process of carrier during short pulse laser irradiation is proposed. We show that avalanche process of conduction band electrons (CBEs) is determined by the occupation number of phonons in dielectrics. The theory provides a way to suppress avalanche process and a direct judgment for the contribution of avalanche process and photon ionization process to the generation of CBEs. The obtained temperature dependent rate equation shows that the laser induced damage threshold of dielectrics, e.g., fused silica, increase nonlinearly with the decreases of temperature. Present theory predicts a new approach to improve the laser induced damage threshold of dielectrics.

  4. Snow Avalanche Disturbance Ecology: Examples From the San Juan Mountains, Colorado.

    NASA Astrophysics Data System (ADS)

    Simonson, S.; Fassnacht, S. R.

    2008-12-01

    We evaluated landscape ecology approaches to characterize snow avalanche paths based on patterns of plant species composition and evidence of disturbance. Historical records of avalanche incidents, patterns in the annual growth layers of woody plants, and distributions of plant species can be used to quantify and map the frequency and magnitude of snow slide events. Near Silverton, Colorado, a series of snow storms in January of 2005 resulted in many avalanche paths running full track at 30 and 100 year return frequency. Many avalanches cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking mature trees. Powerful avalanches deposited massive piles of snow, rocks, and woody debris in their runout zones. We used cross-section discs and cores of representative downed trees to detect dendro-ecological signals of past snow avalanche disturbance. Avalanche signals included impact scars from the moving snow and associated wind blast, relative width of annual growth rings, and development of reaction wood in response to tilting. Initial measurements of plant diversity and disturbance along the elevation gradient of an avalanche path near Silverton indicate that avalanche activity influences patterns of forest cover, contributes to the high local plant species diversity, and provides opportunities for new seedling establishment.

  5. Avalanche dynamics of magnetic flux in a two-dimensional discrete superconductor

    SciTech Connect

    Ginzburg, S. L.; Nakin, A. V.; Savitskaya, N. E.

    2006-11-15

    The critical state of a two-dimensional discrete superconductor in an external magnetic field is studied. This state is found to be self-organized in the generalized sense, i.e., is a set of metastable states that transform to each other by means of avalanches. An avalanche is characterized by the penetration of a magnetic flux to the system. The sizes of the occurring avalanches, i.e., changes in the magnetic flux, exhibit the power-law distribution. It is also shown that the size of the avalanche occurring in the critical state and the external magnetic field causing its change are statistically independent quantities.

  6. Information processing occurs via critical avalanches in a model of the primary visual cortex

    NASA Astrophysics Data System (ADS)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit.

  7. Silicon photomultipliers detectors for next generation high-energy space telescopes

    NASA Astrophysics Data System (ADS)

    Lacombe, K.; Knödlseder, J.; Delaigue, S.; Gimenez, T.; Houret, B.; Mourey, V.; Ramon, P.; Virmontois, C.

    2016-09-01

    Photon detection is a central element of any high-energy astronomy instrumentation. One classical setup that has proven successful in many missions is the combination of photomultiplier tubes (PMTs) with scintillators, converting incoming high-energy photons into visible light, which in turn is converted in an electrical impulse. Although being extremely sensitive and rapid, PMTs have the drawback of being bulky, fragile, and require a high-voltage power supply of up to several thousand volts. Recent technological advances in the development of silicon photomultipliers (SiPM) make them a promising alternative to PMTs in essentially all their applications. We have started a RD program to assess the possibility of using SiPMs for space-based applications in the domain of high-energy astronomy. We will present results of our characterization studies of SiPMs from 3 manufacturers. Each SiPM detector has been tested inside a dedicated vacuum chamber and at low temperature to assess its performance in a representative space environment. Irradiation tests are scheduled to understand the susceptibility of SiPM to radiation damage. After comparison, we will select a baseline detector and design a specific front-end electronics and mechanical system. Furthermore, we plan to develop a low noise voltage power supply that ensures the stability of the SiPMs and to study their coupling to scintillators. Finally, our ultimate goal is to qualify the system for a space Technical Readiness Level of 5.

  8. Positron emission tomography within a magnetic field using photomultiplier tubes and lightguides.

    PubMed

    Christensen, N L; Hammer, B E; Heil, B G; Fetterly, K

    1995-04-01

    The spatial resolution of positron emission tomography (PET) improves when positron annihilation takes place in a strong magnetic field. In a magnetic field, the Lorentz force restricts positron range perpendicular to the field. Since positron annihilation occurs closer to its point of origin, the positron annihilation point spread function decreases. This was verified experimentally by measuring the spread function of positron annihilation from a 500 mm 68Ge bead imbedded in tissue-equivalent wax. At 5 T the spread function full width at half maximum (FWHM) and the full width at tenth maximum (FWTM) decrease by a factor of 1.42 and 2.09, respectively. Two NaI(Tl) scintillation crystals that interface to a pair of photomultiplier tubes (PMTS) through long lightguides detect positron annihilation at zero field and 5.0 T. Photomultiplier tubes, inoperable in strong magnetic fields, are functional if lightguides bring the photons produced by scintillators within the field to a minimal magnetic field. These tests also demonstrate techniques necessary for combining magnetic resonance imaging (MRI) and PET into one scanner.

  9. Advances in CMOS Solid-state Photomultipliers for Scintillation Detector Applications

    PubMed Central

    Christian, James F.; Stapels, Christopher J.; Johnson, Erik B.; McClish, Mickel; Dokhale, Purushotthom; Shah, Kanai S.; Mukhopadhyay, Sharmistha; Chapman, Eric; Augustine, Frank L.

    2014-01-01

    Solid-state photomultipliers (SSPMs) are a compact, lightweight, potentially low-cost alternative to a photomultiplier tube for a variety of scintillation detector applications, including digital-dosimeter and medical-imaging applications. Manufacturing SSPMs with a commercial CMOS process provides the ability for rapid prototyping, and facilitates production to reduce the cost. RMD designs CMOS SSPM devices that are fabricated by commercial foundries. This work describes the characterization and performance of these devices for scintillation detector applications. This work also describes the terms contributing to device noise in terms of the excess noise of the SSPM, the binomial statistics governing the number of pixels triggered by a scintillation event, and the background, or thermal, count rate. The fluctuations associated with these terms limit the resolution of the signal pulse amplitude. We explore the use of pixel-level signal conditioning, and characterize the performance of a prototype SSPM device that preserves the digital nature of the signal. In addition, we explore designs of position-sensitive SSPM detectors for medical imaging applications, and characterize their performance. PMID:25540471

  10. Silicon Photo-Multiplier Readouts for Scintillators in High-Energy Astronomy

    NASA Technical Reports Server (NTRS)

    Bloser, Peter F.; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.

    2008-01-01

    New scintillator materials have recently been shown to hold great potential for low-cost, reliable gamma-ray detectors in high-energy astronomy. New devices for the detection of scintillation light promise to make scintillator-based instruments even more attractive by reducing mass and power requirements,in particular, silicon photo-multipliers (SiPMs) are starting to become commercially available that offer gains and quantum efficiencies similar to those of photo-multiplier tubes (PMTs), but with greatly reduced mass, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. We have conducted laboratory tests of a sample of commercially available SiPMs coupled to LaBr3;Ce, a scintillator of relevance to to future high-energy astrophysics missions. We present results for gamma-ray spectroscopy. compare the SiPM performance to that of a PMT, and discuss the extent to which SiPMs offer significant advantages for scintillator-based space missions.

  11. Silicon photomultipliers for improved detection of low light levels in miniature near-infrared spectroscopy instruments

    PubMed Central

    Zimmermann, R.; Braun, F.; Achtnich, T.; Lambercy, O.; Gassert, R.; Wolf, M.

    2013-01-01

    Silicon photomultipliers are novel solid state photodetectors that recently became commercially available. The goal of this paper was to investigate their suitability for low light level detection in miniaturized functional near-infrared spectroscopy instruments. Two measurement modules with a footprint of 26×26 mm2 were built, and the signal-to-noise ratio was assessed for variable source-detector separations between 25 and 65 mm on phantoms with similar optical properties to those of a human head. These measurements revealed that the signal-to-noise ratio of the raw signal was superior to an empirically derived design requirement for source-detector separations up to 50 mm. An arterial arm occlusion was also performed on one of the authors in vivo, to induce reproducible hemodynamic changes which confirmed the validity of the measured signals. The proposed use of silicon photomultipliers in functional near-infrared spectroscopy bears large potential for future development of precise, yet compact and modular instruments, and affords improvements of the source-detector separation by 67% compared to the commonly used 30 mm. PMID:23667783

  12. Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors

    NASA Astrophysics Data System (ADS)

    Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.

  13. Development of a Modern Cosmic Ray Telescope based on Silicon Photomultipliers for use in High Schools

    NASA Astrophysics Data System (ADS)

    Ruiz Castruita, Daniel; Niduaza, Rommel; Hernandez, Victor; Knox, Adrian; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura

    2015-04-01

    Lately, a new light sensor technology based on the breakdown phenomenon in the reverse biased silicon diode has found many applications that span from particle physics to medical imaging science. The silicon photomultiplier (SiPM) has several notable advantages compared to conventional photomultiplier tubes which include: lower cost, lower operating voltage and the ability to measure very weak light signals at the single photon level. At this conference meeting, we describe our efforts to implement SiPMs as read out light detectors for plastic scintillators in a cosmic ray telescope for use in high schools. In particular, we describe our work in designing, testing and assembling the cosmic ray telescope. We include a high gain preamplifier, a custom coincidence circuit using fast comparators to discriminate the SiPM signal amplitudes and a monovibrator IC for lengthening the singles and coincidence logic pulses. An Arduino micro-controller and program sketches are used for processing and storing the singles and coincidence counts data. Results from our measurements would be illustrated and presented. US Department of Education Title V Grant Award PO31S090007.

  14. Progress towards a 256 channel multi-anode microchannel plate photomultiplier system with picosecond timing

    PubMed Central

    Lapington, J.S.; Ashton, T.J.R.; Ross, D.; Conneely, T.

    2012-01-01

    Despite the rapid advances in solid state technologies such as the silicon photomultiplier (SiPM), microchannel plate (MCP) photomultipliers still offer a proven and practical technological solution for high channel count pixellated photon-counting systems with very high time resolution. We describe progress towards a 256 channel optical photon-counting system using CERN-developed NINO and HTDC ASICs, and designed primarily for time resolved spectroscopy in life science applications. Having previously built and demonstrated a 18 mm diameter prototype tube with an 8×8 channel readout configuration and <43 ps rms single photon timing resolution, we are currently developing a 40 mm device with a 32×32 channel readout. Initially this will be populated with a 256 channel electronics system comprising four sets of modular 64 channel preamplifier/discriminator, and time-to-digital converter units, arranged in a compact three dimensional configuration. We describe the detector and electronics design and operation, and present performance measurements from the 256 channel development system. We discuss enhancements to the system including higher channel count and the use of application specific on-board signal processing capabilities. PMID:25843997

  15. Efficiency and timing resolution of scintillator tiles read out with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Pooth, O.; Weingarten, S.; Weinstock, L.

    2016-01-01

    Silicon photomultipliers (SiPM) are semiconductor photo sensors that have the potential to replace photomultiplier tubes (PMT) in various fields of application. We present detectors consisting of 30 × 30 × 0.5 cm3 fast plastic scintillator tiles read out with SiPMs. The detectors offer great electronic and mechanical advantages over the classical PMT-scintillator combination. SiPMs are very compact devices that run independent of magnetic fields at low voltages and no light guides between the scintillator and the SiPM are necessary in the presented layouts. Three prototypes, two of which with integrated wavelength shifting fibres, have been tested in a proton beam at the COSY accelerator at Forschungszentrum Jülich. The different layouts are compared in terms of most probable pulse height, detection efficiency and noise behaviour as well as timing resolution. The spatial distributions of these properties across the scintillator surface are presented. The best layout can be operated at a mean efficiency of bar epsilon=99.9 % while sustaining low noise rates in the order of 10 Hz with a timing resolution of less than 3 ns. Both efficiency and timing resolution show good spatial homogeneity.

  16. Performance of CATIROC: ASIC for smart readout of large photomultiplier arrays

    NASA Astrophysics Data System (ADS)

    Blin, S.; Callier, S.; Conforti Di Lorenzo, S.; Dulucq, F.; De La Taille, C.; Martin-Chassard, G.; Seguin-Moreau, N.

    2017-03-01

    CATIROC (Charge And Time Integrated Read Out Chip) is a complete read-out chip manufactured in AustriaMicroSystem (AMS) SiGe 0.35 μm technology, designed to read arrays of 16 photomultipliers (PMTs). It is an upgraded version of PARISROC2 [1] designed in 2010 in the context of the PMm2 (square meter PhotoMultiplier) project [2]. CATIROC is a SoC (System on Chip) that processes analog signals up to the digitization and sparsification to reduce the cost and cable number. The ASIC is composed of 16 independent channels that work in triggerless mode, auto-triggering on the single photo-electron. It provides a charge measurement up to 400 photoelectrons (70 pC) on two scales of 10 bits and a timing information with an accuracy of 200 ps rms. The ASIC was sent for fabrication in February 2015 and then received in September 2015. It is a good candidate for two Chinese projects (LHAASO and JUNO). The architecture and the measurements will be detailed in the paper.

  17. Qualification tests of the R11410-21 photomultiplier tubes for the XENON1T detector

    NASA Astrophysics Data System (ADS)

    Barrow, P.; Baudis, L.; Cichon, D.; Danisch, M.; Franco, D.; Kaether, F.; Kish, A.; Lindner, M.; Marrodán Undagoitia, T.; Mayani, D.; Rauch, L.; Wei, Y.; Wulf, J.

    2017-01-01

    The Hamamatsu R11410-21 photomultiplier tube is the photodetector of choice for the XENON1T dual-phase time projection chamber. The device has been optimized for a very low intrinsic radioactivity, a high quantum efficiency and a high sensitivity to single photon detection. A total of 248 tubes are currently operated in XENON1T, selected out of 321 tested units. In this article the procedures implemented to evaluate the large number of tubes prior to their installation in XENON1T are described. The parameter distributions for all tested tubes are shown, with an emphasis on those selected for XENON1T, of which the impact on the detector performance is discussed. All photomultipliers have been tested in a nitrogen atmosphere at cryogenic temperatures, with a subset of the tubes being tested in gaseous and liquid xenon, simulating their operating conditions in the dark matter detector. The performance and evaluation of the tubes in the different environments is reported and the criteria for rejection of PMTs are outlined and quantified.

  18. An indirect flat-panel detector with avalanche gain for low dose x-ray imaging: SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout)

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Li, Dan; Rowlands, J. A.; Egami, N.; Takiguchi, Y.; Nanba, M.; Honda, Y.; Ohkawa, Y.; Kubota, M.; Tanioka, K.; Suzuki, K.; Kawai, T.

    2008-03-01

    An indirect flat-imager with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose x-ray imaging with high resolution. It is made by optically coupling a structured x-ray scintillator CsI (Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The charge image created by HARP is read out by electron beams generated by the FEA. The proposed detector is called SAPHIRE (Scintillator Avalanche Photoconductor with HIgh Resolution Emitter readout). The avalanche gain of HARP depends on both a-Se thickness and applied electric field E Se. At E Se of > 80 V/μm, the avalanche gain can enhance the signal at low dose (e.g. fluoroscopy) and make the detector x-ray quantum noise limited down to a single x-ray photon. At high exposure (e.g. radiography), the avalanche gain can be turned off by decreasing E Se to < 70 V/μm. In this paper the imaging characteristics of the FEA readout method, including the spatial resolution and noise, were investigated experimentally using a prototype optical HARP-FEA image sensor. The potential x-ray imaging performance of SAPHIRE, especially the aspect of programmable gain to ensure wide dynamic range and x-ray quantum noise limited performance at the lowest exposure in fluoroscopy, was investigated.

  19. Domestic Development of Single-Photon Emission Computed Tomography (SPECT) Unit with Detector based on Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Grishakov, S.; Ryzhikova, O.; Sergienko, V.; Ansheles, A.; Novikov, S.

    2017-01-01

    The idea of creating a single-photon emission computed tomography unit with solid-state photomultipliers is not new [1], as the problems of analog-to-digital conversion with a lot of noise and a wide range of values of intrinsic spatial resolution of the detector in a center and relevant fields of view could not be solved by means of gamma-camera detector architectures based on vacuum photomultipliers. This paper offers a new SPECT imaging solution that is free from these problems.

  20. Effect of avalanche-type barrier discharge on a silver halide photographic material in the case of blocked ionic conductivity

    SciTech Connect

    Boychenko, A. P.

    2012-04-15

    Imaging of avalanche-type barrier gas discharge excited by single videopulses {approx}7 {mu}s long is studied via chemical activation of an ion subsystem of microcrystals of silver halide photographic emulsions by 1-phenyl-5-mercaptotetrazole. Using 'Retina' commercial X-ray film and specially fabricated photoemulsion microcrystals with effective surface and deep electron traps as an example, the selective gas-discharge sensitivity of photographic layers to applied-voltage polarity is detected. It is shown that their sensitivity to barrier discharge ignited by negative-polarity pulses (on the electrode with a photographic material) is higher than in the case of positive pulses, irrespective of the photographic material's position in the capacitor system.

  1. Subsampling effects in neuronal avalanche distributions recorded in vivo

    PubMed Central

    Priesemann, Viola; Munk, Matthias HJ; Wibral, Michael

    2009-01-01

    Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s) of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s), and sigma = 1, are hallmark features of self-organized critical (SOC) systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s) and sigma by imposing subsampling on three different SOC models. We then compared f(s) and sigma of the subsampled models with those of multielectrode local field potential (LFP) activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s). Both, f(s) and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s) and sigma similar to those calculated from LFP activity. Conclusion Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s) and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s) and sigma calculated from the physiological recordings may be

  2. Avalanche-diode oscillator circuit with tuning at multiple frequencies

    NASA Technical Reports Server (NTRS)

    Parker, D.; Ablow, C. M.; Lee, R. E.; Karp, A.; Chambers, D. R.

    1971-01-01

    Detailed theoretical analysis of three different modes or types of high efficiency oscillation in a PIN diode are presented. For the TRAPATT mode in a PIN diode, it is shown that a traveling avalanche zone is not necessary to generate a dense trapped plasma. An economical computer program for TRAPATT oscillations in a PIN diode is described. Typical results of diode power, dc-to-RF conversion efficiency, and required circuit impedances are presented for several different current waveforms. A semianalytical solution for a second type of high efficiency mode in a PIN diode is derived assuming a rectangular current waveform. A quasi-static approximation is employed to derive a semianalytical solution for the voltage across a PIN diode in a third mode, where avalanching occurs during a major portion of a half cycle. Calculations for this mode indicate that the power increases proportionally to the magnitude of the drive current with a small decrease in efficiency relative to the ordinary TRAPATT mode. An analytical solution is also given for a PIN diode, where it is assumed that the ionization coefficient is a step function. It is shown that the step-ionization approximation permits one to draw possible patterns of avalanche region in the depletion layer as a function of time. A rule governing admissible patterns is derived and an example solution given for one admissible pattern. Preliminary experimental results on the high-efficiency oscillations are presented and discussed. Two different experimental circuits, which used channel-dropping filters to provide independent harmonic tuning, are described. Simpler circuits used to produce high-efficiency oscillations are discussed. Results of experiments using inexpensive Fairchild FD300 diodes are given.

  3. Neuronal avalanches in the resting MEG of the human brain.

    PubMed

    Shriki, Oren; Alstott, Jeff; Carver, Frederick; Holroyd, Tom; Henson, Richard N A; Smith, Marie L; Coppola, Richard; Bullmore, Edward; Plenz, Dietmar

    2013-04-17

    What constitutes normal cortical dynamics in healthy human subjects is a major question in systems neuroscience. Numerous in vitro and in vivo animal studies have shown that ongoing or resting cortical dynamics are characterized by cascades of activity across many spatial scales, termed neuronal avalanches. In experiment and theory, avalanche dynamics are identified by two measures: (1) a power law in the size distribution of activity cascades with an exponent of -3/2 and (2) a branching parameter of the critical value of 1, reflecting balanced propagation of activity at the border of premature termination and potential blowup. Here we analyzed resting-state brain activity recorded using noninvasive magnetoencephalography (MEG) from 124 healthy human subjects and two different MEG facilities using different sensor technologies. We identified large deflections at single MEG sensors and combined them into spatiotemporal cascades on the sensor array using multiple timescales. Cascade size distributions obeyed power laws. For the timescale at which the branching parameter was close to 1, the power law exponent was -3/2. This relationship was robust to scaling and coarse graining of the sensor array. It was absent in phase-shuffled controls with the same power spectrum or empty scanner data. Our results demonstrate that normal cortical activity in healthy human subjects at rest organizes as neuronal avalanches and is well described by a critical branching process. Theory and experiment have shown that such critical, scale-free dynamics optimize information processing. Therefore, our findings imply that the human brain attains an optimal dynamical regime for information processing.

  4. Magnetic field modification to the relativistic runaway electron avalanche length

    NASA Astrophysics Data System (ADS)

    Cramer, E. S.; Dwyer, J. R.; Rassoul, H. K.

    2016-11-01

    This paper explores the impact of the geomagnetic field on the relativistic runaway electron avalanche length, λe-. Coleman and Dwyer (2006) developed an analytical fit to Monte Carlo simulations using the Runaway Electron Avalanche Model. In this work, we repeat this process but with the addition of the geomagnetic field in the range of [100,900]/n μT, where n is the ratio of the density of air at altitude to the sea level density. As the ambient electric field approaches the runaway threshold field (Eth≈284 kV/m sea level equivalent), it is shown that the magnetic field has an impact on the orientation of the resulting electron beam. The runaway electrons initially follow the vertically oriented electric field but then are deflected in the v × B direction, and as such, the electrons experience more dynamic friction due to the increase in path length. This will be shown to result in a difference in the avalanche length from the case where B = 0. It will also be shown that the average energy of the runaway electrons will decrease while the required electric field to produce runaway electrons increases. This study is also important in understanding the physics of terrestrial gamma ray flashes (TGFs). Not only will this work impact relativistic feedback rates determined from simulations, it may also be useful in studying spectroscopy of TGFs observed from balloon and aircraft measurements. These models may also be used in determining beaming properties of TGFs originating in the tropical regions seen from orbiting spacecraft.

  5. Analysis of spanning avalanches in the two-dimensional nonequilibrium zero-temperature random-field Ising model.

    PubMed

    Spasojević, Djordje; Janićević, Sanja; Knežević, Milan

    2014-01-01

    We present a numerical analysis of spanning avalanches in a two-dimensional (2D) nonequilibrium zero-temperature random field Ising model. Finite-size scaling analysis, performed for distribution of the average number of spanning avalanches per single run, spanning avalanche size distribution, average size of spanning avalanche, and contribution of spanning avalanches to magnetization jump, is augmented by analysis of spanning field (i.e., field triggering spanning avalanche), which enabled us to collapse averaged magnetization curves below critical disorder. Our study, based on extensive simulations of sufficiently large systems, reveals the dominant role of subcritical 2D-spanning avalanches in model behavior below and at the critical disorder. Other types of avalanches influence finite systems, but their contribution for large systems remains small or vanish.

  6. Numerical run-out modelling used for reassessment of existing permanent avalanche paths in the Krkonose Mts., Czechia

    NASA Astrophysics Data System (ADS)

    Blahut, Jan; Klimes, Jan; Balek, Jan; Taborik, Petr; Juras, Roman; Pavlasek, Jiri

    2015-04-01

    Run-out modelling of snow avalanches is being widely applied in high mountain areas worldwide. This study presents application of snow avalanche run-out calculation applied to mid-mountain ranges - the Krkonose, Jeseniky and Kralicky Sneznik Mountains. All mentioned mountain ranges lie in the northern part of Czechia, close to the border with Poland. Its highest peak reaches only 1602 m a.s.l. However, climatic conditions and regular snowpack presence are the reason why these mountain ranges experience considerable snow avalanche activity every year, sometimes resulting in injuries or even fatalities. Within the aim of an applied project dealing with snow avalanche hazard prediction a re-assessment of permanent snow avalanche paths has been performed based on extensive statistics covering period from 1961/62 till present. On each avalanche path different avalanches with different return periods were modelled using the RAMMS code. As a result, an up-to-date snow avalanche hazard map was prepared.

  7. Energy pumping in electrical circuits under avalanche noise

    NASA Astrophysics Data System (ADS)

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  8. Some exact solutions for debris and avalanche flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.

    2011-04-01

    Exact analytical solutions to simplified cases of nonlinear debris avalanche model equations are necessary to calibrate numerical simulations of flow depth and velocity profiles on inclined surfaces. These problem-specific solutions provide important insight into the full behavior of the system. In this paper, we present some new analytical solutions for debris and avalanche flows and then compare these solutions with experimental data to measure their performance and determine their relevance. First, by combining the mass and momentum balance equations with a Bagnold rheology, a new and special kinematic wave equation is constructed in which the flux and the wave celerity are complex nonlinear functions of the pressure gradient and the flow depth itself. The new model can explain the mechanisms of wave advection and distortion, and the quasiasymptotic front bore observed in many natural and laboratory debris and granular flows. Exact time-dependent solutions for debris flow fronts and associated velocity profiles are then constructed. We also present a novel semiexact two-dimensional plane velocity field through the flow depth. Second, starting with the force balance between gravity, the pressure gradient, and Bagnold's grain-inertia or macroviscous forces, we construct a simple and very special nonlinear ordinary differential equation to model the steady state debris front profile. An empirical pressure gradient enhancement factor is introduced to adequately stretch the flow front and properly model nonhydrostatic pressure in granular and debris avalanches. An exact solution in explicit form is constructed, and is expressed in terms of the Lambert-Euler omega function. Third, we consider rapid flows of frictional granular materials down a channel. The steady state mass and the momentum balance equations are combined together with the Coulomb friction law. The Chebyshev radicals are employed and the exact solutions are developed for the velocity profile and the

  9. Dielectric breakdown and avalanches at nonequilibrium metal-insulator transitions.

    PubMed

    Shekhawat, Ashivni; Papanikolaou, Stefanos; Zapperi, Stefano; Sethna, James P

    2011-12-30

    Motivated by recent experiments on the finite temperature Mott transition in VO(2) films, we propose a classical coarse-grained dielectric breakdown model where each degree of freedom represents a nanograin which transitions from insulator to metal with increasing temperature and voltage at random thresholds due to quenched disorder. We describe the properties of the resulting nonequilibrium metal-insulator transition and explain the universal characteristics of the resistance jump distribution. We predict that by tuning voltage, another critical point is approached, which separates a phase of boltlike avalanches from percolationlike ones.

  10. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  11. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  12. Barkhausen avalanches in anisotropic ferromagnets with 180 degrees domain walls

    PubMed

    Tadic; Nowak

    2000-04-01

    We show that Barkhausen noise in two-dimensional disordered ferromagnets with extended domain walls is characterized by the avalanche size exponent tau(s)=1.54 at low disorder. With increasing disorder the characteristic domain size is reduced relative to the system size due to nucleation of new domains and a dynamic phase transition occurs to the scaling behavior with tau(s)=1.30. The exponents decrease at finite driving rate. The results agree with recently observed behavior in amorphous Metglas and Fe-Co-B ribbons when the applied anisotropic stress is varied.

  13. Power-law statistics for avalanches in a martensitic transformation.

    PubMed

    Ahluwalia, R; Ananthakrishna, G

    2001-04-30

    We devise a two-dimensional model that mimics the recently observed power-law distributions for the amplitudes and durations of the acoustic emission signals observed during martensitic transformation [Vives et al., Phys. Rev. Lett. 72, 1694 (1994)]. We include a threshold mechanism, long-range interaction between the transformed domains, inertial effects, and dissipation arising due to the motion of the interface. The model exhibits thermal hysteresis and, more importantly, it shows that the energy is released in the form of avalanches with power-law distributions for their amplitudes and durations. Computer simulations also reveal morphological features similar to those observed in real systems.

  14. Energy pumping in electrical circuits under avalanche noise.

    PubMed

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  15. Operation of silicon single photon avalanche diodes at cryogenic temperature.

    PubMed

    Rech, Ivan; Labanca, Ivan; Armellini, Giacomo; Gulinatti, Angelo; Ghioni, Massimo; Cova, Sergio

    2007-06-01

    This article reports a complete characterization of single photon avalanche diodes (SPADs) at temperatures down to 120 K. We show that deep cooling of the device by means of a compact liquid-nitrogen Dewar brings several advantages, such as extremely low dark counting rates (down to 1 counts/s), better time resolution, and higher quantum efficiency in the visible range. By using a special current pick-off circuit, we achieved a time resolution of 20 ps full width at half maximum at 120 K for a 50 mum diameter SPAD. Afterpulsing effects are avoided by using a sufficiently long hold-off time (microseconds).

  16. Microslips to "Avalanches" in Confined, Molecular Layers of Ionic Liquids.

    PubMed

    Espinosa-Marzal, R M; Arcifa, A; Rossi, A; Spencer, N D

    2014-01-02

    We have measured forces between mica surfaces across two hydrophobic ionic liquids with a surface forces apparatus. Both surface-adsorbed water and alkyl-chain length on the imidazolium cation influence the structure of the nanoconfined film and the dynamics of film-thickness transitions. Friction shows accumulative microslips as precursors to collective "avalanches" that abruptly reduce friction momentarily. This behavior is interpreted as a consequence of interlayer ion correlations within the 1 to 2 nm thick film; we identify this to be analogous to the friction response of crackling noise systems over a broad range of sizes.

  17. Sixteen-year follow-up of childhood avalanche survivors

    PubMed Central

    Thordardottir, Edda Bjork; Valdimarsdottir, Unnur Anna; Hansdottir, Ingunn; Hauksdóttir, Arna; Dyregrov, Atle; Shipherd, Jillian C.; Elklit, Ask; Resnick, Heidi; Gudmundsdottir, Berglind

    2016-01-01

    Background Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD) can provide a gateway to recovery as well as enhancement of preventive measures. Objective Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES) and PTSD symptoms in adulthood. Methods Childhood survivors (aged 2–19 at the time of exposure) of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Results Response rate was 66% (108/163). Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, p<0.05). When adjusted for age and sex, PTSD symptoms were associated with lower education (F=7.62, p<0.001), poor financial status (F=12.21, p<0.001), and unemployment and/or disability (F=3.04, p<0.05). In a multivariable regression model, when adjusting for age and sex, lack of social support (t=4.22, p<0.001) and traumatic reactions of caregivers (t=2.49, p<0.05) in the aftermath of the disaster independently predicted PTSD 16 years post-trauma. Conclusions Lingering PTSD symptoms after childhood exposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms. Highlights of the article PTSD symptoms following avalanche exposure during childhood were associated with poorer socioeconomic

  18. A 1.06 micrometer avalanche photodiode receiver

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short pulse detection, is reported. This work entailed both the development of a new type of heterojunction III-V semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low noise preamp design making use of GaAs Schottky barrier-gate field effect transistors (GAASFET's) operating in in the negative-feedback transimpedance mode. The electrical characteristics of the device are described.

  19. Initial results from the Sherbrooke avalanche photodiode positron tomograph

    SciTech Connect

    Lecomte, R.; Cadorette, J.; Rodrigue, S.; Lapointe, D.; Rouleau, D.; Bentourkia, M.; Yao, R.; Msaki, P.

    1996-06-01

    The design features and engineering constraints of a PET system based on avalanche photodiode (APD) detectors have been described in a previous report. In this paper, the authors present the initial results obtained with the Sherbrooke APD-PET scanner, a very high spatial resolution device designed for dynamic imaging of small and medium-sized laboratory animals such as rats, cats, rabbits and small monkeys. Its physical performance has been evaluated in terms of resolution, sensitivity, count rate, random and scatter fractions, contrast and relative activity recovery as a function of object size. The capabilities of the scanner for biomedical research applications have been demonstrated using phantom and animal studies.

  20. Wilderness Medical Society Practice Guidelines for Prevention and Management of Avalanche and Nonavalanche Snow Burial Accidents.

    PubMed

    Van Tilburg, Christopher; Grissom, Colin K; Zafren, Ken; McIntosh, Scott; Radwin, Martin I; Paal, Peter; Haegeli, Pascal; Smith, William Will R; Wheeler, Albert R; Weber, David; Tremper, Bruce; Brugger, Hermann

    2017-03-01

    To provide guidance to clinicians and avalanche professionals about best practices, the Wilderness Medical Society convened an expert panel to develop evidence-based guidelines for the prevention, rescue, and medical management of avalanche and nonavalanche snow burial victims. Recommendations are graded on the basis of quality of supporting evidence according to the classification scheme of the American College of Chest Physicians.

  1. Analysis of inter-event times for avalanches on a conical bead pile with cohesion

    NASA Astrophysics Data System (ADS)

    Lehman, Susan; Johnson, Nathan; Tieman, Catherine; Wainwright, Elliot

    2015-03-01

    We investigate the critical behavior of a 3D conical bead pile built from uniform 3 mm steel spheres. Beads are added to the pile by dropping them onto the apex one at a time; avalanches are measured through changes in pile mass. We investigate the dynamic response of the pile by recording avalanches from the pile over tens of thousands of bead drops. We have previously shown that the avalanche size distribution follows a power law for beads dropped onto the pile apex from a low drop height. We are now tuning the critical behavior of the system by adding cohesion from a uniform magnetic field and find an increase in both size and number for very large avalanches and decreases in the mid-size avalanches. The resulting bump in the avalanche distribution moves to larger avalanche size as the cohesion in the system is increased. We compare the experimental inter-event time distribution to both the Brownian passage-time and Weibull distributions, and observe a shift from the Weibull to Brownian passage-time as we raise the threshold from measuring time between events of all sizes to time between only the largest system-spanning events. These results are both consistent with those from a mean-field model of slip avalanches in a shear system [Dahmen, Nat Phys 7, 554 (2011)].

  2. Tuning Parameters and Scaling For Avalanches On A Slowly-Driven Conical Bead Pile with Cohesion

    NASA Astrophysics Data System (ADS)

    Lehman, Susan; Jacobs, D. T.; Palchoudhuri, Paroma; Vajpeyi, Avi; Walker, Justine; Dahmen, Karin; Leblanc, Michael; Uhl, Jonathan

    Slip avalanches on a slowly driven pile are investigated experimentally using a 3D conical pile built from uniform 3 mm steel beads. Beads are added to the pile by dropping them onto the apex one at a time; avalanches are measured through changes in pile mass. We investigate the dynamic response of the pile by recording avalanches from the pile over the course of tens of thousands of bead drops. The statistical properties of the avalanches, including probability of particular avalanche sizes and the time between avalanches of given size, are well-characterized by universal power laws and scaling functions. By adding a uniform magnetic field, we may systematically vary the cohesion between the beads and tune the critical behavior of the system. As the cohesion increases we observe an increase in both size and number for very large avalanches and decreases in the mid-size avalanches, causing a deviation from the power law. A full study of the effect of cohesion on the size and time distributions is in process, combining the experimental results with predictions from an analytical mean-field model [Dahmen, Nat Phys 7, 554 (2011)]. Research supported by NSF CBET 1336116 and 1336634.

  3. Teaching Natural Hazards: The Use of Snow Avalanches in Demonstrating and Addressing Geographic Topics and Principles.

    ERIC Educational Resources Information Center

    Barber, David L.

    1988-01-01

    Because of increased recreational use of alpine environments in the western United States, this lesson plan integrates the themes of location, place, and human-environment interaction in order to teach avalanche hazard awareness. Presents classroom activities and research topics to enhance student awareness of snow avalanche hazards. Provides…

  4. A Methodology To Allow Avalanche Forecasting on an Information Retrieval System.

    ERIC Educational Resources Information Center

    Purves, R. S.; Sanderson, M.

    1998-01-01

    Presents adaptations and tests undertaken to allow an information retrieval system to forecast the likelihood of avalanches on a particular day; the forecasting process uses historical data of the weather and avalanche conditions for a large number of days. Describes a method for adapting these data into a form usable by a text-based IR system and…

  5. Avalanches and local force evolution in a granular stick-slip experiment

    NASA Astrophysics Data System (ADS)

    Abed Zadeh, Aghil; Bares, Jonathan; Behringer, Robert

    2016-11-01

    We perform a stick-slip experiment to characterize avalanches for granular materials. In our experiment, a constant speed stage pulls a slider which rests on a vertical bed of circular photoelastic particles in a 2D system. The stage is connected to the slider by a spring. We measure the force on the spring by a force sensor attached to the spring. We study the PDF of energy release and slip size, avalanche shape in time, and other seismicity laws during slip avalanches. We analyze the power spectrum of the force signal and probability distributions to understand the effect of the loading speed and of the spring stiffness on the statistical behavior of the system. From a more local point of view and by using a high speed camera and the photoelastic properties of our particles, we characterize the local stress change and flow of particles during avalanches. By image processing we detect the avalanches, as connected components in space and time, and the energy dissipation inside the granular medium and their PDFs. The PDFs of avalanches obey power laws both at global and local scales, but with different exponents. We try to understand the distribution and correlation of local avalanches in space and the way they coarse grain to the global avalanches. NSF-DMR-1206351, NASA Grant NNX15AD38G, William M. Keck Foundation.

  6. Photomultiplier circuit including means for rapidly reducing the sensitivity thereof. [and protection from radiation damage

    NASA Technical Reports Server (NTRS)

    Mcclenahan, J. O. (Inventor)

    1974-01-01

    A simple, reliable and inexpensive control circuit is described for rapidly reducing the bias voltage across one or more of the dynode stages of a photomultiplier, to substantially decrease its sensitivity to incoming light at those times where excess light intensity might damage the tube. The control circuit comprises a switching device, such as a silicon controlled rectifier (SCR), coupled between a pair of the electrodes in the tube, preferably the cathode and first dynode, or the first and second dynodes, the switching device operating in response to a trigger pulse applied to its gate to short circuit the two electrodes. To insure the desired reduction in sensitivity, two switching stages, the devices be employed between two of the electrode stages, the devices being operated simultaneously to short circuit both stages.

  7. Imaging photomultiplier array with integrated amplifiers and high-speed USB interfacea)

    NASA Astrophysics Data System (ADS)

    Blacksell, M.; Wach, J.; Anderson, D.; Howard, J.; Collis, S. M.; Blackwell, B. D.; Andruczyk, D.; James, B. W.

    2008-10-01

    Multianode photomultiplier tube (PMT) arrays are finding application as convenient high-speed light sensitive devices for plasma imaging. This paper describes the development of a USB-based "plug-n-play" 16-channel PMT camera with 16bits simultaneous acquisition of 16 signal channels at rates up to 2MS/s per channel. The preamplifiers and digital hardware are packaged in a compact housing which incorporates magnetic shielding, on-board generation of the high-voltage PMT bias, an optical filter mount and slits, and F-mount lens adaptor. Triggering, timing, and acquisition are handled by four field-programmable gate arrays (FPGAs) under instruction from a master FPGA controlled by a computer with a LABVIEW interface. We present technical design details and specifications and illustrate performance with high-speed images obtained on the H-1 heliac at the ANU.

  8. Studying Silicon Photomultipliers and Light Signal Acquisition for the SBND Experiment

    NASA Astrophysics Data System (ADS)

    Savard, Claire; SBND Collaboration

    2017-01-01

    The Short-Baseline Near Detector (SBND) is one of three Liquid Argon Time Projection Chamber (LArTPC) based detectors that will be used in the Short-Baseline Neutrino (SBN) program at Fermilab. SBN will study the neutrino-argon interaction and search for oscillations at short baseline. Light produced in neutrino interactions inside a LArTPC provides a precision measurement of the initial interaction time of the event, essential for differentiating non-beam-background from beam-based signal. I will discuss the light guide system for SBND, with an emphasis on the Silicon Photomultiplier (SiPM) readout and data acquisition. In particular, I will show results from testing and characterizing a candidate electronics board for reading out the SiPM signals.

  9. The upgrade of the CMS hadron calorimeter with silicon 5 photomultipliers

    SciTech Connect

    Strobbe, N.

    2016-09-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  10. The IMB photomultiplier test facility*

    NASA Astrophysics Data System (ADS)

    Wuest, C. R.; Bionta, R. M.; Blewitt, G.; Bratton, C. B.; Cortez, B. G.; Errede, S.; Foster, G. W.; Gajewski, W.; Goldhaber, M.; Greenberg, J.; Jones, T. W.; Kropp, W. R.; Learned, J. G.; Lehmann, E.; LoSecco, J. M.; Ramana Murthy, P. V.; Park, H. S.; Reines, F.; Schultz, J.; Shumard, E.; Sinclair, D.; Smith, D. W.; Sobel, H. W.; Stone, J. L.; Sulak, L. R.; Svoboda, R.; van der Velde, J. C.

    1985-09-01

    An automatic system for testing up to 32 photomultiplier tubes (PMs) simultaneously under single photon counting conditions has been used to measure characteristics of more than 2500 PMs for use in the Irvine-Michigan-Brookhaven (IMB) proton decay experiment, 2048 tubes (64 EMI 9834B 8″ diameter, and 1984 EMI 9870B 5″ diameter) were selected for use in the 8000 m 3 IMB water Cherenkov detector, now in operation for over a year. The PM test system is described and results of testing are presented along with PM performance in the IMB detector over the last year. In general, we find that the tube characteristics have smaller fluctuations than expected and that the tubes have proven to be reliable under rugged handling and operating conditions. On the basis of our experience, we make suggestions as to new industry standards for PMs to be used in particle counting.

  11. Characterization of large area photomultiplier ETL 9357FLB for liquid argon detector

    NASA Astrophysics Data System (ADS)

    Du, Ying-Shuai; Yue, Qian; Liu, Yi-Bao; Chen, Qing-Hao; Li, Jin; Cheng, Jian-Ping; Kang, Ke-Jun; Li, Yuan-Jing; Li, Yu-Lan; Ma, Hao; Xing, Hao-Yang; Yu, Xun-Zhen; Zeng, Zhi

    2014-07-01

    The China Dark Matter Experiment (CDEX) Collaboration will carry out a direct search for weakly interacting massive particles with germanium detectors. Liquid argon will be utilized as an anti-Compton and cooling material for the germanium detectors. A low-background and large-area photomultiplier tube (PMT) immersed in liquid argon will be used to read out the light signal from the argon. In this paper we have carried out a careful evaluation on the performance of the PMT operating at both room and cryogenic temperatures. Based on the single photoelectron response model, the absolute gain and resolution of the PMT were measured. This has laid a foundation for PMT selection, calibration and signal analysis in the forthcoming CDEX experiments.

  12. RICH counter for heavy-ion particle identification using multi-anode photomultipliers

    NASA Astrophysics Data System (ADS)

    Yamaoka, Shintaro; Fukuda, Mitsunori; Morita, Yusuke; Kanbe, Ryosuke; Matsuta, Kensaku; Mihara, Mototsugu; Ohno, Junichi; Kamisho, Yasuto; Tanaka, Masaomi; Nishimura, Daiki; Yoshinaga, Kenta; Ohtsubo, Takashi; Takechi, Maya; Nagashima, Masayuki; Izumikawa, Takuji; Kitagawa, Atsushi; Fukuda, Shigekazu; Sato, Shinji; Suzuki, Shinji; Suzuki, Takeshi; Yamaguchi, Takayuki; Himac H093 Collaboration

    2014-09-01

    In order to develop a new RICH counter (Ring Imaging CHerenkov counter) for heavy-ion particle identification, we have constructed a test system for measurement of a ring image of Cherenkov light using multi-anode photomultipliers that detect a photon incident position. For a test, a 58Ni(480 MeV/u) beam provided by the HIMAC heavy-ion synchrotron was used. As radiators, we have tested synthetic silica, polycarbonate, and BK7. We have selected a wavelength of Cherenkov light by using a band pass filter. As a result, the ring image of Cherenkov light was observed and the obtained resolution of velocity will be reported at the meeting.

  13. Silicon Photomultiplier characterization and radiation damage investigation for high energy particle physics applications

    NASA Astrophysics Data System (ADS)

    Garutti, E.; Klanner, R.; Laurien, S.; Parygin, P.; Popova, E.; Ramilli, M.; Xu, C.

    2014-03-01

    Within the framework of the CALICE collaboration, our group has characterized Silicon Photomultipliers (SiPMs) from various producers, in order to enhance the single cell performances of a highly granular analog hadron calorimeter, with particular emphasis on improving the linearity of the response, ensuring environmental stability, calibration portability and reducing the parameters spread among the different channels. As an outcome, new plastic scintillator tiles coupled to KETEK PM1125 SMD SiPM have been commissioned, characterized and mounted on calorimeter modules: details and results of the characterization procedure, together with the performances of the new tile and SiPM design will be discussed. The radiation tolerance to X-rays of KETEK PM1125 is also under investigation. The amount and type of damage caused by irradiation of the devices exposed to 3 kGy and 20 MGy doses will be presented.

  14. High energy particle tracking using scintillating fibers and solid state photomultipliers

    SciTech Connect

    Petroff, M.D.; Atac, M.

    1989-01-01

    The Solid State Photomultiplier (SSPM) recently developed at the Rockwell International Science Center, coupled with fast scintillating fibers can have a rate capacity of 10/sup 8/ tracks per second per cm/sup 2/ of fiber cross section in systems for tracking of high energy ionizing particles. Relative to other approaches the SSPM can provide substantial improvements in spatial and temporal tracking accuracy. Results of preliminary experiments with 0.225 /times/ 0.225 mm/sup 2/ cross section step-index-of-refraction fiber exposed to electrons from a beta source are presented. The experiments involved pulse height analysis of SSPM photon detection pulses induced by coincident scintillations in two adjacent fibers traversed by the same electron. The data for two different scintillating fibers tested indicate that meter long fibers of this type, optimally coupled to SSPMs, will be effective in detecting minimum ionizing particles. 4 refs., 3 figs., 1 tab.

  15. Development of an optical lens based alpha-particle imaging system using position sensitive photomultiplier tube

    NASA Astrophysics Data System (ADS)

    Ando, Koki; Oka, Miki; Yamamoto, Seiichi

    2017-02-01

    We developed an optical lens based alpha-particle imaging system using position sensitive photomultiplier tube (PSPMT). The alpha-particle imaging system consists of an optical lens, an extension tube and a 1 in. square high quantum efficiency (HQE) type PSPMT. After a ZnS(Ag) is attached to subject, the scintillation image of ZnS(Ag) is focused on the photocathode of the PSPMT by the use of the optical lens. With this configuration we could image the alpha particle distribution with energy information without contacting to the subject. The spatial resolution and energy resolution were 0.8 mm FWHM and 50% FWHM at 5 mm from the optical lens, respectively. We could successfully image the alpha particle distribution in uranium ore. The developed alpha-particle imaging system will be a new tool for imaging alpha emitters with energy information without contacting the subject.

  16. A pipelined multiranging integrator and encoder ASIC for fast digitization of photomultiplier tube signals

    SciTech Connect

    Yarema, R.J.; Foster, G.W.; Hoff, J.; Sarraj, M.; Zimmerman, T.

    1992-05-01

    A new full custom chip is being designed using the Orbit 2 micron BiCMOS'' process to provide a wide range fast digital readout of Photomultiplier Tubes. The goal is to obtain a digitized PMT signal with a 18--20 bit dynamic range and 8 bits of accuracy in a floating point number format every 16 ns. The chip is DC coupled to a PMT and uses a four-way gated integrator and encoder to form a 4 bit binary number which is the exponent of the floating point number. Simultaneous processing of the PMT signal on binary weighted scales provides a pipelined analog signal to a single FADC which generates the floating point number mantissa. The current state of development of this new chip and results from several test chips are presented in this paper. 3 refs.

  17. A pipelined multiranging integrator and encoder ASIC for fast digitization of photomultiplier tube signals

    SciTech Connect

    Yarema, R.J.; Foster, G.W.; Hoff, J.; Sarraj, M.; Zimmerman, T.

    1992-05-01

    A new full custom chip is being designed using the Orbit 2 micron ``BiCMOS`` process to provide a wide range fast digital readout of Photomultiplier Tubes. The goal is to obtain a digitized PMT signal with a 18--20 bit dynamic range and 8 bits of accuracy in a floating point number format every 16 ns. The chip is DC coupled to a PMT and uses a four-way gated integrator and encoder to form a 4 bit binary number which is the exponent of the floating point number. Simultaneous processing of the PMT signal on binary weighted scales provides a pipelined analog signal to a single FADC which generates the floating point number mantissa. The current state of development of this new chip and results from several test chips are presented in this paper. 3 refs.

  18. Characterization of photomultiplier tubes in a novel operation mode for Secondary Emission Ionization Calorimetry

    NASA Astrophysics Data System (ADS)

    Tiras, E.; Dilsiz, K.; Ogul, H.; Southwick, D.; Bilki, B.; Wetzel, J.; Nachtman, J.; Onel, Y.; Winn, D.

    2016-10-01

    Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier Tubes have been characterized for use in a Secondary Emission (SE) Ionization Calorimetry study. SE Ionization Calorimetry is a novel technique to measure electromagnetic shower particles in extreme radiation environments. The different operation modes used in these tests were developed by modifying the conventional PMT bias circuit. These modifications were simple changes to the arrangement of the voltage dividers of the baseboard circuits. The PMTs with modified bases, referred to as operating in SE mode, are used as an SE detector module in an SE calorimeter prototype, and placed between absorber materials (Fe, Cu, Pb, W, etc.). Here, the technical design of different operation modes, as well as the characterization measurements of both SE modes and the conventional PMT mode are reported.

  19. Imaging photomultiplier array with integrated amplifiers and high-speed USB interface.

    PubMed

    Blacksell, M; Wach, J; Anderson, D; Howard, J; Collis, S M; Blackwell, B D; Andruczyk, D; James, B W

    2008-10-01

    Multianode photomultiplier tube (PMT) arrays are finding application as convenient high-speed light sensitive devices for plasma imaging. This paper describes the development of a USB-based "plug-n-play" 16-channel PMT camera with 16 bits simultaneous acquisition of 16 signal channels at rates up to 2 MSs per channel. The preamplifiers and digital hardware are packaged in a compact housing which incorporates magnetic shielding, on-board generation of the high-voltage PMT bias, an optical filter mount and slits, and F-mount lens adaptor. Triggering, timing, and acquisition are handled by four field-programmable gate arrays (FPGAs) under instruction from a master FPGA controlled by a computer with a LABVIEW interface. We present technical design details and specifications and illustrate performance with high-speed images obtained on the H-1 heliac at the ANU.

  20. Improved time response for large area microchannel plate photomultiplier tubes in fusion diagnostics

    SciTech Connect

    Milnes, J. S. Conneely, T. M.; Howorth, J.; Horsfield, C. J.

    2014-11-15

    Fusion diagnostics that utilise high speed scintillators often need to capture a large area of light with a high degree of time accuracy. Microchannel plate (MCP) photomultiplier tubes (PMTs) are recognised as the leading device for capturing fast optical signals. However, when manufactured in their traditional proximity focused construction, the time response performance is reduced as the active area increases. This is due to two main factors: the capacitance of a large anode and the difficulty of obtaining small pore MCPs with a large area. Collaboration between Photek and AWE has produced prototype devices that combine the excellent time response of small area MCP-PMTs with a large active area by replacing the traditional proximity-gap front section with an electro-optically focused photocathode to MCP. We present results from both single and double MCP devices with a 40 mm diameter active area and show simulations for the 100 mm device being built this year.