Sample records for gas basis biomethane

  1. Alternative Fuels Data Center: Renewable Natural Gas (Biomethane)

    Science.gov Websites

    Production Renewable Natural Gas (Biomethane) Production to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Twitter Bookmark Alternative Fuels

  2. Comprehensive two-dimensional gas chromatography for biogas and biomethane analysis.

    PubMed

    Hilaire, F; Basset, E; Bayard, R; Gallardo, M; Thiebaut, D; Vial, J

    2017-11-17

    The gas industry is going to be revolutionized by being able to generate bioenergy from biomass. The production of biomethane - a green substitute of natural gas - is growing in Europe and the United-States of America. Biomethane can be injected into the gas grid or used as fuel for vehicles after compression. Due to various biomass inputs (e.g. agricultural wastes, sludges from sewage treatment plants, etc.), production processes (e.g. anaerobic digestion, municipal solid waste (MSW) landfills), seasonal effects and purification processes (e.g. gas scrubbers, pressure swing adsorption, membranes for biogas upgrading), the composition and quality of biogas and biomethane produced is difficult to assess. All previous publications dealing with biogas analysis reported that hundreds of chemicals from ten chemical families do exist in trace amounts in biogas. However, to the best of our knowledge, no study reported a detailed analysis or the implementation of comprehensive two-dimensional gas chromatography (GC×GC) for biogas matrices. This is the reason why the benefit of implementing two-dimensional gas chromatography for the characterization of biogas and biomethane samples was evaluated. In a first step, a standard mixture of 89 compounds belonging to 10 chemical families, representative of those likely to be found, was used to optimize the analytical method. A set consisting of a non-polar and a polar columns, respectively in the first and the second dimension, was used with a modulation period of six seconds. Applied to ten samples of raw biogas, treated biogas and biomethane collected on 4 industrial sites (two MSW landfills, one anaerobic digester on a wastewater treatment plant and one agricultural biogas plant), this analytical method provided a "fingerprint" of the gases composition at the molecular level in all biogas and biomethane samples. Estimated limits of detection (far below the μgNm -3 ) coupled with the resolution of GC×GC allowed the comparison

  3. Cascading biomethane energy systems for sustainable green gas production in a circular economy.

    PubMed

    Wall, David M; McDonagh, Shane; Murphy, Jerry D

    2017-11-01

    Biomethane is a flexible energy vector that can be used as a renewable fuel for both the heat and transport sectors. Recent EU legislation encourages the production and use of advanced, third generation biofuels with improved sustainability for future energy systems. The integration of technologies such as anaerobic digestion, gasification, and power to gas, along with advanced feedstocks such as algae will be at the forefront in meeting future sustainability criteria and achieving a green gas supply for the gas grid. This paper explores the relevant pathways in which an integrated biomethane industry could potentially materialise and identifies and discusses the latest biotechnological advances in the production of renewable gas. Three scenarios of cascading biomethane systems are developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    NASA Astrophysics Data System (ADS)

    Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.

    2013-03-01

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA

  5. Bio-methane from an-aerobic digestion using activated carbon adsorption.

    PubMed

    Farooq, Muhammad; Bell, Alexandra H; Almustapha, M N; Andresen, John M

    2017-08-01

    There is an increasing global demand for carbon-neutral bio-methane from an-aerobic digestion (AD) to be injected into national gas grids. Bio-gas, a methane -rich energy gas, is produced by microbial decomposition of organic matter through an-aerobic conditions where the presence of carbon dioxide and hydrogen sulphide affects its performance. Although the microbiological process in the AD can be tailored to enhance the bio-gas composition, physical treatment is needed to convert the bio-gas into bio-methane. Water washing is the most common method for upgrading bio-gas for bio-methane production, but its large use of water is challenging towards industrial scale-up. Hence, the present study focuses on scale-up comparison of water washing with activated-carbon adsorption using HYSYS and Aspen Process Economic Analyzer. The models show that for plants processing less than 500 m 3 /h water scrubbing was cost effective compared with activated carbon. However, against current fossil natural-gas cost of about 1 p/kWh in the UK both relied heavily on governmental subsidies to become economically feasible. For plants operating at 1000 m 3 /hr, the treatment costs were reduced to below 1.5 p/kWh for water scrubbing and 0.9 p/kWh for activated carbon where the main benefits of activated carbon were lower capital and operating costs and virtually no water losses. It is envisioned that this method can significantly aid the production of sustainable bio-methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Conceptual schematic for capture of biomethane released from hydroelectric power facilities.

    PubMed

    Kikuchi, R; Amaral, P Bingre do

    2008-09-01

    Though dam-related biomethane was identified in the 1960s, its capture has not been sufficiently discussed. Captured biomethane could be burned to produce energy, and the burning of biomethane turns the carbon in it into CO(2) that is far less potent as a greenhouse gas; this paper therefore aims to technically discuss the capture/use of dam-related biomethane. A great amount of bubbles would be formed by the rapid drop in water pressure (i.e. cavitation) after turbine passage, so it is proposed to capture methane-bearing bubbles by means of a flow tube for adjusting residence time and hydrophilic screens for trapping these bubbles. The results from the performed calculation show that biomethane can be trapped in a yield of 60%.

  7. H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Jalalzadeh, A.

    2010-12-01

    The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs, process electricity usage and costs,more » and pipeline delivery specifications.« less

  8. Modeling of microbial induced corrosion on metallic pipelines resulting from biomethane and the integrity impact of biomethane on non-metallic pipelines.

    DOT National Transportation Integrated Search

    2012-09-01

    The objective of this project is to understand key elements related to promoting the successful delivery of : biomethane into natural gas pipeline networks. This project focuses on two key areas of concern: : 1. The effect of microbial induced corros...

  9. Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process.

    PubMed

    Codignole Luz, Fábio; Volpe, Maurizio; Fiori, Luca; Manni, Alessandro; Cordiner, Stefano; Mulone, Vincenzo; Rocco, Vittorio

    2018-05-01

    This study reports the implications of using spent coffee hydrochar as substrate for anaerobic digestion (AD) processes. Three different spent coffee hydrochars produced at 180, 220 and 250 °C, 1 h residence time, were investigated for their biomethane potential in AD process inoculated with cow manure. Spent coffee hydrochars were characterized in terms of ultimate, proximate and higher heating value (HHV), and their theoretical bio-methane yield evaluated using Boyle-Buswell equation and compared to the experimental values. The results were then analyzed using the modified Gompertz equation to determine the main AD evolution parameters. Different hydrochar properties were related to AD process performances. AD of spent coffee hydrochars produced at 180 °C showed the highest biomethane production rate (46 mL CH 4 /gVS . d), a biomethane potential of 491 mL/gVS (AD lasting 25 days), and a biomethane gas daily composition of about 70%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Waste-to-biomethane Concept Application: A Case Study of Valmiera City in Latvia

    NASA Astrophysics Data System (ADS)

    Barisa, Aiga; Dzene, Ilze; Rosa, Marika; Dobraja, Kristine

    2015-12-01

    The current needs of sustainable urban development are rising. As the transport sector expands, emissions continue to rise. Due to their negative impact on human health and the environment, air quality requirements are becoming more and more stringent. At the same time, the amount of waste is increasing. Europe Union policies attempt to relieve the pressure that these two stressors place on urban systems as they themselves expand. Today different solutions are available to decrease greenhouse gas emissions, increase air quality and improve waste management systems. Among them, waste-to-biomethane for use in urban systems deserves more attention. The paper focuses on application of the concept of waste-to-biomethane and the case study of Valmiera is evaluated. The results show that the application of the waste-to-biomethane strategy can contribute to a complete substitution of diesel fuel in urban buses and gives savings of around 1,000 tCO2/year. The price of the biomethane was found to be the most sensitive input factor. It is suggested that it should not exceed 0.40 EUR/Nm3 for a fuel conversion project of a fleet of 10 vehicles. Such a price can be ensured, if dry fermentation technology is chosen for biogas production. However, from the sustainability perspective, wet fermentation is more preferable due to the introduction of a source-separated organic waste management system in the region and higher gas yields. Introduction of this alternative requires additional funds which is a question of policy-level decisions.

  11. Life cycle assessment of biomethane use in Argentina.

    PubMed

    Morero, Betzabet; Groppelli, Eduardo; Campanella, Enrique A

    2015-04-01

    Renewable substitutes for natural gas, such as biogas, require adequate treatment to remove impurities. This paper presents the life cycle and environmental impact of upgrading biogas using absorption-desorption process with three different solvents: water, diglycolamine and polyethylene glycol dimethyl ether. The results showed that water produces a minor impact in most of the considered categories, and an economic analysis showed that water is the most feasible solvent for obtaining the lowest payback period. This analysis includes three different sources for biogas production and two end uses for biomethane. The use of different wastes as sources results in different environmental impacts depending on the type of energy used in the anaerobic digestion. The same situation occurs when considering the use of biomethane as a domestic fuel or for power generation. Using energy from biogas to replace conventional energy sources in production and upgrading biogas significantly reduce the environmental impacts of processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Assessment of Novel Routes of Biomethane Utilization in a Life Cycle Perspective

    PubMed Central

    Moghaddam, Elham Ahmadi; Ahlgren, Serina; Nordberg, Åke

    2016-01-01

    Biomethane, as a replacement for natural gas, reduces the use of fossil-based sources and supports the intended change from fossil to bio-based industry. The study assessed different biomethane utilization routes for production of methanol, dimethyl ether (DME), and ammonia, as fuel or platform chemicals and combined heat and power (CHP). Energy efficiency and environmental impacts of the different pathways was studied in a life cycle perspective covering the technical system from biomass production to the end product. Among the routes studied, CHP had the highest energy balance and least environmental impact. DME and methanol performed competently in energy balance and environmental impacts in comparison with the ammonia route. DME had the highest total energy output, as fuel, heat, and steam, among the different routes studied. Substituting the bio-based routes for fossil-based alternatives would give a considerable reduction in environmental impacts such as global warming potential and acidification potential for all routes studied, especially CHP, DME, and methanol. Eutrophication potential was mainly a result of biomass and biomethane production, with marginal differences between the different routes. PMID:28066762

  13. Biomethanation under psychrophilic conditions.

    PubMed

    Dhaked, Ram Kumar; Singh, Padma; Singh, Lokendra

    2010-12-01

    The biomethanation of organic matter represents a long-standing, well-established technology. Although at mesophilic and thermophilic temperatures the process is well understood, current knowledge on psychrophilic biomethanation is somewhat scarce. Methanogenesis is particularly sensitive to temperature, which not only affects the activity and structure of the microbial community, but also results in a change in the degradation pathway of organic matter. There is evidence of psychrophilic methanogenesis in natural environments, and a number of methanogenic archaea have been isolated with optimum growth temperatures of 15-25 °C. At psychrophilic temperatures, large amounts of heat are needed to operate reactors, thus resulting in a marginal or negative overall energy yield. Biomethanation at ambient temperature can alleviate this requirement, but for stable biogas production, a microbial consortium adapted to low temperatures or a psychrophilic consortium is required. Single-step or two-step high rate anaerobic reactors [expanded granular sludge bed (EGSB) and up flow anaerobic sludge bed (UASB)] have been used for the treatment of low strength wastewater. Simplified versions of these reactors, such as anaerobic sequencing batch reactors (ASBR) and anaerobic migrating blanket reactor (AMBR) have also been developed with the aim of reducing volume and cost. This technology has been further simplified and extended for the disposal of night soil in high altitude, low temperature areas of the Himalayas, where the hilly terrain, non-availability of conventional energy, harsh climate and space constraints limit the application of complicated reactors. Biomethanation at psychrophilic temperatures and the contribution made to night-soil degradation in the Himalayas are reviewed in this article. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Characterisation and cleaning of biogas from sewage sludge for biomethane production.

    PubMed

    Paolini, Valerio; Petracchini, Francesco; Carnevale, Monica; Gallucci, Francesco; Perilli, Mattia; Esposito, Giulio; Segreto, Marco; Occulti, Leandro Galanti; Scaglione, Davide; Ianniello, Antonietta; Frattoni, Massimiliano

    2018-07-01

    This study investigates the conversion of sewage sludge from wastewater treatment plants (WWTP) into biomethane for automotive fuel or grid injection. A prototype plant was monitored in Northern Italy, based on vacuum swing adsorption (VSA) on synthetic zeolite 13×: this biogas upgrading method is similar to pressure swing adsorption (PSA) and commonly used for other kinds of biomass. Measurements of biogas inlet, biomethane outlet and off-gas were performed including CH 4 , CO 2 , CO, H 2 , O 2 , N 2 , HCl, HF, NH 3 , H 2 S and volatile organic compounds (VOCs). Critical levels were observed in the biogas for of H 2 S and HCl, whose concentrations were 1570 and 26.8 mg m -3 , respectively. On the other hand, the concentration of halogenated VOCs (including tetrachloroethylene and traces of perfluoroalkilated substances, PFAS) and mercaptans were relatively low. A simultaneous and reversible adsorption on 13× zeolite was achieved for H 2 S and CO 2 , and carbon filters played a minor role in desulfurisation. The presence of HCl is due to clarifying agents, and its removal is necessary in order to meet the required biomethane characteristics: an additional carbon-supported basic adsorbent was successfully used to remove this contaminant. This study also highlights the interference of CO 2 towards HCl if sampling is performed in compliance with the new EU standard for biomethane. High total volatile silicon (TVS) was confirmed in sewage sludge biogas, with a major contribution of siloxane D5: the suitability of this compound as an indicator of total siloxanes is discussed. Results demonstrate that volatile methyl siloxanes (VMS) do not represent a critical issue for the VSA upgrading methodology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Potential development of compressed bio-methane gas production from pig farms and elephant grass silage for transportation in Thailand.

    PubMed

    Dussadee, Natthawud; Reansuwan, Kamoldara; Ramaraj, Rameshprabu

    2014-03-01

    This research project evaluated biogas production using anaerobic co-digestion of pig manure and elephant grass silage in large scale to delivered transportation directly for cars. Anaerobic co-digestion was estimated in three full-scale continuously stirred tank reactors (CSTRs) at 40°C. In the form of compressed bio-methane gas (CBG) production was 14,400m(3)/day (CH4 60-70%) amount of CBG was 9600m(3)/day. The procedure was enhanced by using molecular sieve, activated carbon for removal of moisture and CO2 membrane H2S and CO2 respectively. The results were demonstrated the amount of CO2, H2S gas was reduced along with CH4 was improved up to 90% by volume and compressed to 250bar tank pressure gauge to the fuel for cars. The CBG production, methane gas improvement and performance were evaluated before entering the delivered systems according to the energy standards. The production of CBG is advantageous to strengthen the Thailand biogas market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading.

    PubMed

    Wang, Wen; Xie, Li; Luo, Gang; Zhou, Qi; Angelidaki, Irini

    2013-10-01

    A new method for simultaneous coke oven gas (COG) biomethanation and in situ biogas upgrading in anaerobic reactor was developed in this study. The simulated coke oven gas (SCOG) (92% H2 and 8% CO) was injected directly into the anaerobic reactor treating sewage sludge through hollow fiber membrane (HFM). With pH control at 8.0, the added H2 and CO were fully consumed and no negative effects on the anaerobic degradation of sewage sludge were observed. The maximum CH4 content in the biogas was 99%. The addition of SCOG resulted in enrichment and dominance of homoacetogenetic genus Treponema and hydrogenotrophic genus Methanoculleus in the liquid, which indicated that H2 were converted to methane by both direct (hydrogenotrophic methanogenesis) and indirect (homoacetogenesis+aceticlastic methanogenesis) pathways in the liquid. However, the aceticlasitic genus Methanosaeta was dominant for archaea in the biofilm on the HFM, which indicated indirect (homoacetogenesis+aceticlastic methanogenesis) H2 conversion pathway on the biofilm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes.

    PubMed

    Díaz, I; Pérez, C; Alfaro, N; Fdz-Polanco, F

    2015-06-01

    In this study, the potential of a pilot hollow-fiber membrane bioreactor for the conversion of H2 and CO2 to CH4 was evaluated. The system transformed 95% of H2 and CO2 fed at a maximum loading rate of 40.2 [Formula: see text] and produced 0.22m(3) of CH4 per m(3) of H2 fed at thermophilic conditions. H2 mass transfer to the liquid phase was identified as the limiting step for the conversion, and kLa values of 430h(-1) were reached in the bioreactor by sparging gas through the membrane module. A simulation showed that the bioreactor could upgrade biogas at a rate of 25m(3)/mR(3)d, increasing the CH4 concentration from 60 to 95%v. This proof-of-concept study verified that gas sparging through a membrane module can efficiently transfer H2 from gas to liquid phase and that the conversion of H2 and CO2 to biomethane is feasible on a pilot scale at noteworthy load rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester.

    PubMed

    Browne, James D; Allen, Eoin; Murphy, Jerry D

    2013-01-01

    This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS(-1) for pig slurry to as high as 787 L CH4 kg VS(-1) for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 m(n)(3) t(-1)) followed by cheese waste (38 m(n)(3) t(-1)) and abattoir waste (36 m(n)(3) t(-1)). It was suggested that waste water sludge (16 m(n)(3) t(-1)) and pig slurry (4 m(n)(3) t(-1)) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.

  19. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.

    PubMed

    O'Shea, R; Wall, D; Murphy, J D

    2016-09-01

    Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Thermo-Acidic Pretreatment of Beach Macroalgae from Rügen to Optimize Biomethane Production—Double Benefit with Simultaneous Bioenergy Production and Improvement of Local Beach and Waste Management

    PubMed Central

    Barbot, Yann Nicolas; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    Eutrophication is a phenomenon which can rapidly generate masses of marine macroalgae, particularly in areas with high nutrient pollution. Washed ashore, this biomass impairs coastal tourism and negatively affects the coastal ecosystem. The present study evaluates the biochemical methane potential (BMP) of a macroalgae mix (Rügen-Mix, RM (RM = Rügen-Mix)) originating from Rügen, Germany. To improve biomethane recovery, thermo-acidic pretreatment was applied to the biomass prior to biomethanation to disintegrate the biomass macrostructure. Acid hydrolysis was successfully triggered with 0.2 M industry-grade HCl at 80 °C for a 2 h period, increasing biomethane recovery by +39%, with a maximum BMP of 121 mL·g−1 volatile solids (VS). To reduce the necessity for input material, HCl was replaced by the acidic waste product flue gas condensate (FGC). Improved performance was achieved by showing an increase in biomethane recovery of +24% and a maximum BMP of 108 mL·g−1 VS. Continuous anaerobic digestion trials of RM were conducted for three hydraulic retention times, showing the feasibility of monodigestion. The biomethane recovery was 60 mL and 65 mL·g−1 VS·d−1 for thermophilic and mesophilic operation, respectively. The quality of biomethanation performance aligned to the composition of the source material which exhibited a low carbon/nitrogen ratio and an increased concentration of sulfur compounds. PMID:26404327

  1. Thermo-Acidic Pretreatment of Beach Macroalgae from Rügen to Optimize Biomethane Production--Double Benefit with Simultaneous Bioenergy Production and Improvement of Local Beach and Waste Management.

    PubMed

    Barbot, Yann Nicolas; Thomsen, Laurenz; Benz, Roland

    2015-09-03

    Eutrophication is a phenomenon which can rapidly generate masses of marine macroalgae, particularly in areas with high nutrient pollution. Washed ashore, this biomass impairs coastal tourism and negatively affects the coastal ecosystem. The present study evaluates the biochemical methane potential (BMP) of a macroalgae mix (Rügen-Mix, RM (RM = Rügen-Mix)) originating from Rügen, Germany. To improve biomethane recovery, thermo-acidic pretreatment was applied to the biomass prior to biomethanation to disintegrate the biomass macrostructure. Acid hydrolysis was successfully triggered with 0.2 M industry-grade HCl at 80 °C for a 2 h period, increasing biomethane recovery by +39%, with a maximum BMP of 121 mL·g(-1) volatile solids (VS). To reduce the necessity for input material, HCl was replaced by the acidic waste product flue gas condensate (FGC). Improved performance was achieved by showing an increase in biomethane recovery of +24% and a maximum BMP of 108 mL·g(-1) VS. Continuous anaerobic digestion trials of RM were conducted for three hydraulic retention times, showing the feasibility of monodigestion. The biomethane recovery was 60 mL and 65 mL·g(-1) VS·d(-1) for thermophilic and mesophilic operation, respectively. The quality of biomethanation performance aligned to the composition of the source material which exhibited a low carbon/nitrogen ratio and an increased concentration of sulfur compounds.

  2. Biomethane potential of the POME generated in the palm oil industry in Ghana from 2002 to 2009.

    PubMed

    Arthur, Richard; Glover, Kwasi

    2012-05-01

    The palm oil industry experienced significant improvement in its production level from 2002 to 2009 from the established companies, medium scale mills (MSM), small scale and other private holdings (SS and OPH) groups. However, the same cannot be said for treatment of the palm oil mill effluent (POME) produced. The quantity of crude palm oil (CPO) produced in Ghana from 2002 to 2009 and IPCC guidelines for National Greenhouse Gas Inventories, specifically on industrial wastewater were used in this study. During this period about 10 million cubic metres of POME was produced translating into biomethane potential of 38.5 million m(3) with equivalent of 388.29 GW h of energy. A linear growth model developed to predict the equivalent carbon dioxide (CO(2)) emissions indicates that if the biomethane is not harnessed then by 2015 the untreated POME could produce 0.58 million tCO(2)-eq and is expected to increase to 0.70 million tCO(2)-eq by 2020. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Science.gov Websites

    -derived natural gas, renewable natural gas-which is produced from decaying organic materials-must be on organic materials. Alternatively, renewable natural gas (RNG), also known as biomethane, is produced from organic materials-such as waste from landfills and livestock-through anaerobic digestion. RNG

  4. Biomethane production system: Energetic analysis of various scenarios.

    PubMed

    Wu, Bin; Zhang, Xiangping; Bao, Di; Xu, Yajing; Zhang, Suojiang; Deng, Liyuan

    2016-04-01

    The energy consumption models of biomethane production system were established, which are more rigorous and universal than the empirical data reported by previous biomethane system energetic assessment work. The energy efficiencies of different scenarios considering factors such as two digestion modes, two heating modes of digester, with or without heat exchange between slurry and feedstock, and four crude biogas upgrading technologies were evaluated. Results showed the scenario employing thermophilic digestion and high pressure water scrubbing technology, with heat exchange between feedstock and slurry, and heat demand of digester supplied by the energy source outside the system has the highest energy efficiency (46.5%) and lowest energy consumption (13.46 MJth/Nm(3) CH4), while scenario employing mesophilic digestion and pressure swing adsorption technology, without heat exchange and heat demand of digester supplied by combusting the biogas produced inside the system has the lowest energy efficiency (15.8%) and highest energy consumption (34.90 MJth/Nm(3) CH4). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Alkaline Pretreatment of Sugarcane Bagasse and Filter Mud Codigested to Improve Biomethane Production

    PubMed Central

    Mehryar, Esmaeil; Bi, Jinhua

    2016-01-01

    To enhance the codigestion of degradation and improve biomethane production potential, sugarcane bagasse and filter mud were pretreated by sodium hydroxide NaOH 1 N at 100°C for 15, 30, and 45 minutes, respectively. Biomethane generation from 1-liter batch reactor was studied at mesophilic temperature (37 ± 1)°C, solid concentrations of 6%, and five levels of mixing proportion with and without pretreatment. The results demonstrate that codigestion of filter mud with bagasse produces more biomethane than fermentation of filter mud as single substrate; even codigested substrate composition presented a better balance of nutrients (C/N ratio of 24.70) when codigestion ratio between filter mud and bagasse was 25 : 75 in comparison to filter mud as single substrate (C/N ratio 9.68). All the pretreatments tested led to solubilization of the organic matter, with a maximum lignin reduction of 86.27% and cumulative yield of biomethane (195.8 mL·gVS−1, digestion of pretreated bagasse as single substrate) obtained after 45 minutes of cooking by NaOH 1 N at 100°C. Under this pretreatment condition, significant increase in cumulative methane yield was observed (126.2 mL·gVS−1) at codigestion ratio of 25 : 75 between filter mud and bagasse by increase of 81.20% from untreated composition. PMID:27738635

  6. Alkaline Pretreatment of Sugarcane Bagasse and Filter Mud Codigested to Improve Biomethane Production.

    PubMed

    Talha, Zahir; Ding, Weimin; Mehryar, Esmaeil; Hassan, Muhammad; Bi, Jinhua

    2016-01-01

    To enhance the codigestion of degradation and improve biomethane production potential, sugarcane bagasse and filter mud were pretreated by sodium hydroxide NaOH 1 N at 100°C for 15, 30, and 45 minutes, respectively. Biomethane generation from 1-liter batch reactor was studied at mesophilic temperature (37 ± 1)°C, solid concentrations of 6%, and five levels of mixing proportion with and without pretreatment. The results demonstrate that codigestion of filter mud with bagasse produces more biomethane than fermentation of filter mud as single substrate; even codigested substrate composition presented a better balance of nutrients (C/N ratio of 24.70) when codigestion ratio between filter mud and bagasse was 25 : 75 in comparison to filter mud as single substrate (C/N ratio 9.68). All the pretreatments tested led to solubilization of the organic matter, with a maximum lignin reduction of 86.27% and cumulative yield of biomethane (195.8 mL·gVS -1 , digestion of pretreated bagasse as single substrate) obtained after 45 minutes of cooking by NaOH 1 N at 100°C. Under this pretreatment condition, significant increase in cumulative methane yield was observed (126.2 mL·gVS -1 ) at codigestion ratio of 25 : 75 between filter mud and bagasse by increase of 81.20% from untreated composition.

  7. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    PubMed

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Potential of fecal waste for the production of biomethane, bioethanol and biodiesel.

    PubMed

    Gomaa, Mohamed A; Abed, Raeid M M

    2017-07-10

    Fecal waste is an environmental burden that requires proper disposal, which ultimately becomes also an economic burden. Because fecal waste is nutrient-rich and contains a diverse methanogenic community, it has been utilized to produce biomethane via anaerobic digestion. Carbohydrates and lipids in fecal waste could reach up to 50% of the dry weight, which also suggests a potential as a feedstock for bioethanol and biodiesel production. We measured biomethane production from fecal waste of cows, chickens, goats and humans and compared the microbial community composition before and after anaerobic digestion. We also compared the fecal waste for cellulase production, saccharification and fermentation to produce bioethanol and for lipid content and fatty acid profiles to produce biodiesel. All fecal waste produced biomethane, with the highest yield of 433.4±77.1ml CH 4 /g VS from cow fecal waste. Production of bioethanol was achieved from all samples, with chicken fecal waste yielding as high as 1.6±0.25g/l. Sludge samples exhibited the highest extractable portion of lipids (20.9±0.08wt%) and conversion to fatty acid methyl esters (11.94wt%). Utilization of fecal waste for the production of biofuels is environmentally and economically beneficial. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biomethane Production as an Alternative Bioenergy Source from Codigesters Treating Municipal Sludge and Organic Fraction of Municipal Solid Wastes

    PubMed Central

    Ersahin, M. Evren; Yangin Gomec, Cigdem; Dereli, R. Kaan; Arikan, Osman; Ozturk, Izzet

    2011-01-01

    Energy recovery potential of a mesophilic co-digester treating OFMSW and primary sludge at an integrated biomethanization plant was investigated based on feasibility study results. Since landfilling is still the main solid waste disposal method in Turkey, land scarcity will become one of the most important obstacles. Restrictions for biodegradable waste disposal to sanitary landfills in EU Landfill Directive and uncontrolled long-term contamination with gas emissions and leachate necessitate alternative management strategies due to rapid increase in MSW production. Moreover, since energy contribution from renewable resources will be required more in the future with increasing oil prices and dwindling supplies of conventional energy sources, the significance of biogas as a renewable fuel has been increased in the last decade. Results indicated that almost 93% of annual total cost can be recovered if 100% renewable energy subsidy is implemented. Besides, considering the potential revenue when replacing transport fuels, about 26 heavy good vehicles or 549 cars may be powered per year by the biogas produced from the proposed biomethanization plant (PE = 100,000; XPS = 61 g TS/PE·day; XSS-OFMSW = 50 g TS/PE·day). PMID:21274432

  10. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the needmore » for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.« less

  11. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology.

    PubMed

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-09-17

    Syngas is produced by thermal gasification of both nonrenewable and renewable sources including biomass and coal, and it consists mainly of CO, CO2, and H2. In this paper we aim to bioconvert CO in the syngas to CH4. A novel technology for simultaneous sewage sludge treatment and CO biomethanation in an anaerobic reactor was presented. Batch experiments showed that CO was inhibitory to methanogens, but not to bacteria, at CO partial pressure between 0.25 and 1 atm under thermophilic conditions. During anaerobic digestion of sewage sludge supplemented with CO added through a hollow fiber membrane (HFM) module in continuous thermophilic reactors, CO did not inhibit the process even at a pressure as high as 1.58 atm inside the HFM, due to the low dissolved CO concentration in the liquid. Complete consumption of CO was achieved with CO gas retention time of 0.2 d. Results from high-throughput sequencing analysis showed clear differences of the microbial community structures between the samples from liquid and biofilm on the HFM in the reactor with CO addition. Species close to Methanosarcina barkeri and Methanothermobacter thermautotrophicus were the two main archaeal species involved in CO biomethanation. However, the two species were distributed differently in the liquid phase and in the biofilm. Although the carboxidotrophic activities test showed that CO was converted by both archaea and bacteria, the bacterial species responsible for CO conversion are unknown.

  12. A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems.

    PubMed

    Rittmann, Simon K-M R

    2015-01-01

    Microbiological biogas upgrading could become a promising technology for production of methane (CH(4)). This is, storage of irregular generated electricity results in a need to store electricity generated at peak times for use at non-peak times, which could be achieved in an intermediate step by electrolysis of water to molecular hydrogen (H(2)). Microbiological biogas upgrading can be performed by contacting carbon dioxide (CO(2)), H(2) and hydrogenotrophic methanogenic Archaea either in situ in an anaerobic digester, or ex situ in a separate bioreactor. In situ microbiological biogas upgrading is indicated to require thorough bioprocess development, because only low volumetric CH(4) production rates and low CH(4) fermentation offgas content have been achieved. Higher volumetric production rates are shown for the ex situ microbiological biogas upgrading compared to in situ microbiological biogas upgrading. However, the ex situ microbiological biogas upgrading currently suffers from H(2) gas liquid mass transfer limitation, which results in low volumetric CH(4) productivity compared to pure H(2)/CO(2) conversion to CH(4). If waste gas utilization from biological and industrial sources can be shown without reduction in volumetric CH(4) productivity, as well as if the aim of a single stage conversion to a CH(4) fermentation offgas content exceeding 95 vol% can be demonstrated, ex situ microbiological biogas upgrading with pure or enrichment cultures of methanogens could become a promising future technology for almost CO(2)-neutral biomethane production.

  13. Life cycle assessment of biohydrogen and biomethane production and utilisation as a vehicle fuel.

    PubMed

    Patterson, Tim; Esteves, Sandra; Dinsdale, Richard; Guwy, Alan; Maddy, Jon

    2013-03-01

    Environmental burdens for the production and utilisation of biomethane vehicle fuel or a biohydrogen/biomethane blend produced from food waste or wheat feed, based on data from two different laboratory experiments, have been compared. For food waste treated by batch processes the two stage system gave high hydrogen yields (84.2l H2kg(-1) VS added) but a lower overall energy output than the single stage system. Reduction in environmental burdens compared with diesel was achieved, supported by the diversion of waste from landfill. For wheat feed, the semi continuously fed two stage process gave low hydrogen yields (7.5l H2kg(-1) VS added) but higher overall energy output. The process delivers reduction in fossil fuel burdens, and improvements in process efficiencies will lead to reduction in CO2 burdens compared with diesel. The study highlights the importance of understanding and optimising biofuel production parameters according to the feedstock utilised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Characteristics of adapted hydrogenotrophic community during biomethanation.

    PubMed

    Rachbauer, Lydia; Beyer, Reinhard; Bochmann, Günther; Fuchs, Werner

    2017-10-01

    The results presented in this study were carried out as concomitant experiments during the start-up and operation of a biomethanation unit to evaluate the effect of process parameters on carbon conversion, product formation (methane and acetate) and community composition. For that, two different samples were withdrawn from a trickle-bed reactor with immobilized enrichment culture of hydrogenotrophic methanogens adapted from sewage sludge. One sample was taken from the recirculation liquid during start-up phase while the other was withdrawn directly from the carrier material in the reactor. Elevated acid levels especially during start-up were shown to affect the overall carbon conversion. This effect was also seen during the acid tolerance testing reported here. Final acid concentrations of 1.6±0.3g/L resulted in a reduced conversion ratio of only 46%. Without acid addition complete conversion of CO 2 in the headspace was achieved. However, maximum methane production of 0.55±0.02mmol after 4days of incubation was monitored at moderate initial acetate concentration of 0.4g/L. In both analyzed inoculation materials Methanobacterium species were by far the most dominant Archaea with 21.8% in the recirculation liquid during start-up and 84.8% in the enrichment culture immobilized on the carrier material. The microbial composition of the two analyzed samples is in accordance with the results obtained for the carbon conversion and product formation. With approximately 50% of Bacteroidetes and Firmicutes present during reactor start-up the acetic acid production significantly contributed to the overall carbon conversion. In contrast, methane was produced almost exclusively in trials representing continuous operation where acetogenic bacteria accounted only up to 17.5%. In summary, the acid accumulation monitored during reactor start-up of a biomethanation unit is most likely to result from the microbial composition present. Nevertheless, complete adaptation to

  15. Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance.

    PubMed

    Kavitha, S; Yukesh Kannah, R; Rajesh Banu, J; Kaliappan, S; Johnson, M

    2017-11-01

    The present study investigates the synergistic effect of combined bacterial disintegration on mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal biomass lysis, enhanced biodegradability, and methane generation were used as indices to assess efficiency of the disintegration. A maximal dissolvable organics release and algal biomass lysis rate of about 1100, 950 and 800mg/L and 26, 23 and 18% was achieved in PA+C (protease, amylase+cellulase secreting bacteria), C (cellulase alone) and PA (protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater production of volatile fatty acids (1000mg/L) was noted in PA+C bacterial disintegration of microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal biomass to biomethanation process with higher biodegradability of about 0.27gCOD/gCOD, respectively. The energy balance analysis of this combined bacterial disintegration of microalgal biomass provides surplus positive net energy (1.14GJ/d) by compensating the input energy requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    PubMed

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Biomethane production and physicochemical characterization of anaerobically digested teff (Eragrostis tef) straw pretreated by sodium hydroxide.

    PubMed

    Chufo, Akiber; Yuan, Hairong; Zou, Dexun; Pang, Yunzhi; Li, Xiujin

    2015-04-01

    The biogas production potential and biomethane content of teff straw through pretreatment by NaOH was investigated. Different NaOH concentrations (1%, 2%, 4% and 6%) were used for each four solid loadings (50, 65, 80 and 95 g/L). The effects of NaOH as pretreatment factor on the biodegradability of teff straw, changes in main compositions and enhancement of anaerobic digestion were analyzed. The result showed that, using 4% NaOH for pretreatment in 80 g/L solid loading produced 40.0% higher total biogas production and 48.1% higher biomethane content than the untreated sample of teff straw. Investigation of changes in chemical compositions and physical microstructure indicated that there was 4.3-22.1% total lignocellulosic compositions removal after three days pretreatment with NaOH. The results further revealed that NaOH pretreatment changed the structural compositions and lignin network, and improved biogas production from teff straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Improved volatile fatty acid and biomethane production from lipid removed microalgal residue (LRμAR) through pretreatment.

    PubMed

    Suresh, Arumuganainar; Seo, Charles; Chang, Ho Nam; Kim, Yeu-Chun

    2013-12-01

    Renewable energy from lipid removed microalgal residues (LRμARs) serves as a promising tool for sustainable development of the microalgal biodiesel industry. Hence, in this study, LRμAR from Ettlia sp. was characterized for its physico-biochemical parameters, and applied to various pretreatment to increase the biodegradability and used in batch experiments for the production of volatile fatty acids (VFA) and biomethane. After various pretreatments, the soluble organic matters were increased at a maximum of 82% in total organic matters in alkali-autoclaved sample. In addition, VFA and methane production was enhanced by 30% and 40% in alkali-sonicated and alkali-autoclaved samples, respectively. Methane heating value was recovered at maximum of 6.6 MJ kg(-1)VS in alkali-autoclaved conditions with comparison to non-pretreated samples. The pretreatment remarkably improved LRμAR solubilization and enhanced VFA and biomethane production, which holds immense potential to eventually reduce the cost of algal biodiesel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    PubMed Central

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469

  20. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors.

    PubMed

    Toledo-Cervantes, Alma; Madrid-Chirinos, Cindy; Cantera, Sara; Lebrero, Raquel; Muñoz, Raúl

    2017-02-01

    The potential of an algal-bacterial system consisting of a high rate algal pond (HRAP) interconnected to an absorption column (AC) via recirculation of the cultivation broth for the upgrading of biogas and digestate was investigated. The influence of the gas-liquid flow configuration in the AC on the photosynthetic biogas upgrading process was assessed. AC operation in a co-current configuration enabled to maintain a biomass productivity of 15gm -2 d -1 , while during counter-current operation biomass productivity decreased to 8.7±0.5gm -2 d -1 as a result of trace metal limitation. A bio-methane composition complying with most international regulatory limits for injection into natural gas grids was obtained regardless of the gas-liquid flow configuration. Furthermore, the influence of the recycling liquid to biogas flowrate (L/G) ratio on bio-methane quality was assessed under both operational configurations obtaining the best composition at an L/G ratio of 0.5 and co-current flow operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Upgraded biogas from municipal solid waste for natural gas substitution and CO{sub 2} reduction – A case study of Austria, Italy, and Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starr, Katherine; Villalba, Gara, E-mail: gara.villalba@uab.es; Sostenipra, Institute de Ciencia i Technologia Ambientals

    2015-04-15

    Highlights: • Biogas can be upgraded to create biomethane, a substitute to natural gas. • Biogas upgrading was applied to landfills and anaerobic digestors in 3 countries. • Up to 0.6% of a country’s consumption of natural gas could be replaced by biomethane. • Italy could save 46% of the national CO{sub 2} emissions attributed to the waste sector. • Scenarios were created to increase biomethane production. - Abstract: Biogas is rich in methane and can be further purified through biogas upgrading technologies, presenting a viable alternative to natural gas. Landfills and anaerobic digestors treating municipal solid waste are amore » large source of such biogas. They therefore offer an attractive opportunity to tap into this potential source of natural gas while at the same time minimizing the global warming impact resulting from methane emissions in waste management schemes (WMS) and fossil fuel consumption reduction. This study looks at the current municipal solid waste flows of Spain, Italy, and Austria over one year (2009), in order to determine how much biogas is generated. Then it examines how much natural gas could be substituted by using four different biogas upgrading technologies. Based on current waste generation rates, exploratory but realistic WMS were created for each country in order to maximize biogas production and potential for natural gas substitution. It was found that the potential substitution of natural gas by biogas resulting from the current WMS seems rather insignificant: 0.2% for Austria, 0.6% for Italy and 0.3% for Spain. However, if the WMS is redesigned to maximize biogas production, these figures can increase to 0.7% for Austria, 1% for Italy and 2% for Spain. Furthermore, the potential CO{sub 2} reduction as a consequence of capturing the biogas and replacing fossil fuel can result in up to a 93% reduction of the annual national waste greenhouse gas emissions of Spain and Italy.« less

  2. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system.more » One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup −1}) was evaluated. k ranged from 0.436 to 0.308 year{sup −1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible

  3. Wet air oxidation pretreatment of biomethanated distillery effluent: mapping pretreatment efficiency in terms color, toxicity reduction and biogas generation.

    PubMed

    Sarat Chandra, T; Malik, S N; Suvidha, G; Padmere, M L; Shanmugam, P; Mudliar, S N

    2014-04-01

    The effluents from molasses-based distilleries after biomethanation are beset with problems of intensified dark brown color, high residual COD, low biodegradability index (BOD/COD ratio <0.2) and toxicity issues for possible land application as a potential fertilizer. Wet air oxidation (WAO) pretreatment of biomethanated distillery effluent resulted in substantial enhancement in the biodegradability index (BI) (up to 0.8). WAO pretreated effluent on anaerobic digestion indicated favorable biogas generation with methane content up to 64% along with concomitant COD reduction up to 54.75%. The HPLC analysis indicated that the pretreatment facilitated degradation of major color containing compounds-namely melanoidins, up to 97.8%. The pretreated effluent with enhanced biodegradability along with substantially reduced color also indicated positive effect on seed germination (up to 100%), implying toxicity reduction of the effluent post WAO pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of dilution and ash supplement on the bio-methane potential of palm oil mill effluent (POME)

    NASA Astrophysics Data System (ADS)

    Jijai, Sunwanee; Muleng, Saina; Siripatana, Chairat

    2017-08-01

    This study aimed to evaluate the bio-methane potential of POME at different dilutions (100, 80, 60, 40, and 20 percent of initial POME) and different pH dues to different levels of ash supplement. Five different amounts of ash were added to digesters (0, 2, 4, 6, and 8 grams of ash were added to 170 ml of POME respectively). The digesters were operated in batch anaerobic digestion systems at room temperature (28-30 °C) and the experiments were performed in duplicate manner. The results showed that POME without dilution gave highest cumulative biogas (950 ml). However, 80% dilution from original POME gave the highest methane yield (45.83 mL CH4/ gCODadded or 103.13 mL CH4/ gCODremoved). Finally, the results of experiment 2, this adding ash into POME increased pH as well as enhanced the biogas production. It was found that adding ash at the ash:POME ratio of 2 g: 170 ml gave the highest both the cumulative biogas and methane yield (1,520 mL and 218.79 mL CH4/ gCODremoved respectively). The addition of ash in the raw waste of POME gave the pH in the range of criteria and highest bio-methane potential. The modified Gompertz equation, Schnute as well as Monod kinetic models were used to compare the data from the experiments. It was found that the factors that affected included, the bio-methane production and the kinetic parameters (the maximum specific methane production rates (Rm ml/day) and the methane production potential (P, mL)), initial COD, nutrients, levels of dilution, and initial pH (by adding different level of ash). However, λ (lag phase period) was not affected by initial COD and other factors. While Monod kinetics provides valuable insight in explaining what could happen behind the systematic trends.

  5. Anaerobic digestion of palm oil mill effluent (POME) using bio-methane potential (BMP) test

    NASA Astrophysics Data System (ADS)

    Aziz, Nur Izzah Hamna A.; Hanafiah, Marlia M.

    2018-04-01

    Biogas is a promising sustainable and renewable energy alternative to reduce the dependence on fossil fuel. In Malaysia, the conversion of palm oil mill effluent (POME) to bioenergy has recently been expanded due to its high potential in generating energy. However, without a proper treatment and management, POME could be harmful to environment because it emits greenhouse gas emissions into the atmosphere and could also pollutes the watercourses if discharge directly due to the high acidity and chemical oxygen demand (COD) content. Many initiatives have been taken by the government towards sustainable development. Therefore, more efforts need to be practiced to improve and upscale the technology for a better waste management. In this study, the anaerobic digestion of POME was carried out using Bio-methane potential (BMP) test in batch and laboratory scales. Physicochemical characteristics and the biogas production of POME were measured. The BMP test under mesophilic condition was conducted for 23 consecutive days to measure the biogas production. The POME produced 721.3 cm3 of biogas by using anaerobic sludge as inoculum. The results also found that the methane (CH4) and carbon dioxide (CO2) gases produced with 360.65 cm3 and 288.52 cm3, respectively.

  6. Towards a standardization of biomethane potential tests.

    PubMed

    Holliger, Christof; Alves, Madalena; Andrade, Diana; Angelidaki, Irini; Astals, Sergi; Baier, Urs; Bougrier, Claire; Buffière, Pierre; Carballa, Marta; de Wilde, Vinnie; Ebertseder, Florian; Fernández, Belén; Ficara, Elena; Fotidis, Ioannis; Frigon, Jean-Claude; de Laclos, Hélène Fruteau; Ghasimi, Dara S M; Hack, Gabrielle; Hartel, Mathias; Heerenklage, Joern; Horvath, Ilona Sarvari; Jenicek, Pavel; Koch, Konrad; Krautwald, Judith; Lizasoain, Javier; Liu, Jing; Mosberger, Lona; Nistor, Mihaela; Oechsner, Hans; Oliveira, João Vítor; Paterson, Mark; Pauss, André; Pommier, Sébastien; Porqueddu, Isabella; Raposo, Francisco; Ribeiro, Thierry; Rüsch Pfund, Florian; Strömberg, Sten; Torrijos, Michel; van Eekert, Miriam; van Lier, Jules; Wedwitschka, Harald; Wierinck, Isabella

    2016-12-01

    Production of biogas from different organic materials is a most interesting source of renewable energy. The biomethane potential (BMP) of these materials has to be determined to get insight in design parameters for anaerobic digesters. Although several norms and guidelines for BMP tests exist, inter-laboratory tests regularly show high variability of BMPs for the same substrate. A workshop was held in June 2015, in Leysin, Switzerland, with over 40 attendees from 30 laboratories around the world, to agree on common solutions to the conundrum of inconsistent BMP test results. This paper presents the consensus of the intense roundtable discussions and cross-comparison of methodologies used in respective laboratories. Compulsory elements for the validation of BMP results were defined. They include the minimal number of replicates, the request to carry out blank and positive control assays, a criterion for the test duration, details on BMP calculation, and last but not least criteria for rejection of the BMP tests. Finally, recommendations on items that strongly influence the outcome of BMP tests such as inoculum characteristics, substrate preparation, test setup, and data analysis are presented to increase the probability of obtaining validated and reproducible results.

  7. Production of Renewable Natural Gas from Waste Biomass

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Suresh, S.; Arisutha, S.

    2013-03-01

    Biomass energy is expected to make a major contribution to the replacement of fossil fuels. Methane produced from biomass is referred to as bio-methane, green gas, bio-substitute natural gas or renewable natural gas (RNG) when it is used as a transport fuel. Research on upgrading of the cleaned producer gas to RNG is still ongoing. The present study deals with the conversion of woody biomass into fuels, RNG using gasifier. The various effects of parameters like temperature, pressure, and tar formation on conversion were also studied. The complete carbon conversion was observed at 480 °C and tar yield was significantly less. When biomass was gasified with and without catalyst at about 28 s residence time, ~75 % (w/w) and 88 % (w/w) carbon conversion for without and with catalyst was observed. The interest in RNG is growing; several initiatives to demonstrate the thermal-chemical conversion of biomass into methane and/or RNG are under development.

  8. Sodium thiosulphate induced immobilized bacterial disintegration of sludge: An energy efficient and cost effective platform for sludge management and biomethanation.

    PubMed

    Ushani, U; Kavitha, S; Yukesh Kannah, R; Gunasekaran, M; Kumar, Gopalakrishnan; Nguyen, Dinh Duc; Chang, Soon Woong; Rajesh Banu, J

    2018-07-01

    The present study aimed to gain better insights into profitable biomethanation through sodium thiosulphate induced immobilized protease secreting bacterial disintegration (STS-IPBD) of sludge. STS disperse the flocs at 0.08 g/g SS of dosage and assists the subsequent bacterial disintegration. Immobilization of bacteria increases the hydrolytic activity of cells towards effective liquefaction of sludge. A higher liquefaction of 22% was accomplished for STS-IPBD when compared to immobilized protease secreting bacterial disintegration (IPBD alone). The kinetic parameters of Line Weaver Burk plot analysis revealed a maximal specific growth rate (µmax) of 0.320 h -1 for immobilized cells when compared to suspended free cells showing the benefit of immobilization. Floc dispersion and immobilization of bacteria imparts a major role in biomethanation as the methane generation (0.32 gCOD/g COD) was higher in STS-IPBD sample. The cost analysis showed that STS - IPBD was a feasible process with net profit of 2.6 USD/Ton of sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Flammable gas technical basis document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-03-22

    This document qualitatively evaluates the frequency and consequences of DST and SST representative flammable gas accidents and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant SSCs and/or TSRs were required to prevent or mitigate flammable gas accidents. Controls were selected and the accidents re-evaluated taking credit for the controls.

  10. Flammable Gas Technical Basis Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-07-30

    This document qualitatively evaluates the frequency and consequences of DST and SST representative flammable gas accidents and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant SSCs and/or TSRs were required to prevent or mitigate flammable gas accidents. Controls were selected and the accidents re-evaluated taking credit for the controls. Revision 1 incorporates comments received from ORP.

  11. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.

    PubMed

    Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M

    2013-06-01

    The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.

  12. The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture.

    PubMed

    Hagen, Live Heldal; Vivekanand, Vivekanand; Pope, Phillip B; Eijsink, Vincent G H; Horn, Svein J

    2015-07-01

    A new biogas process is initiated by adding a microbial community, typically in the form of a sample collected from a functional biogas plant. This inoculum has considerable impact on the initial performance of a biogas reactor, affecting parameters such as stability, biogas production yields and the overall efficiency of the anaerobic digestion process. In this study, we have analyzed changes in the microbial composition and performance of an inoculum during storage using barcoded pyrosequencing of bacterial and archaeal 16S ribosomal RNA (rRNA) genes, and determination of the biomethane potential, respectively. The inoculum was stored at room temperature, 4 and -20 °C for up to 11 months and cellulose was used as a standard substrate to test the biomethane potential. Storage up to 1 month resulted in similar final methane yields, but the rate of methane production was reduced by storage at -20 °C. Longer storage times resulted in reduced methane yields and slower production kinetics for all storage conditions, with room temperature and frozen samples consistently giving the best and worst performance, respectively. Both storage time and temperature affected the microbial community composition and methanogenic activity. In particular, fluctuations in the relative abundance of Bacteroidetes were observed. Interestingly, a shift from hydrogenotrophic methanogens to methanogens with the capacity to perform acetoclastic methanogensis was observed upon prolonged storage. In conclusion, this study suggests that biogas inocula may be stored up to 1 month with low loss of methanogenic activity, and identifies bacterial and archaeal species that are affected by the storage.

  13. A Review on the Valorization of Macroalgal Wastes for Biomethane Production

    PubMed Central

    Barbot, Yann Nicolas; Al-Ghaili, Hashem; Benz, Roland

    2016-01-01

    The increased use of terrestrial crops for biofuel production and the associated environmental, social and ethical issues have led to a search for alternative biomass materials. Terrestrial crops offer excellent biogas recovery, but compete directly with food production, requiring farmland, fresh water and fertilizers. Using marine macroalgae for the production of biogas circumvents these problems. Their potential lies in their chemical composition, their global abundance and knowledge of their growth requirements and occurrence patterns. Such a biomass industry should focus on the use of residual and waste biomass to avoid competition with the biomass requirements of the seaweed food industry, which has occurred in the case of terrestrial biomass. Overabundant seaweeds represent unutilized biomass in shallow water, beach and coastal areas. These eutrophication processes damage marine ecosystems and impair local tourism; this biomass could serve as biogas feedstock material. Residues from biomass processing in the seaweed industry are also of interest. This is a rapidly growing industry with algae now used in the comestible, pharmaceutical and cosmetic sectors. The simultaneous production of combustible biomethane and disposal of undesirable biomass in a synergistic waste management system is a concept with environmental and resource-conserving advantages. PMID:27338422

  14. A Review on the Valorization of Macroalgal Wastes for Biomethane Production.

    PubMed

    Barbot, Yann Nicolas; Al-Ghaili, Hashem; Benz, Roland

    2016-06-21

    The increased use of terrestrial crops for biofuel production and the associated environmental, social and ethical issues have led to a search for alternative biomass materials. Terrestrial crops offer excellent biogas recovery, but compete directly with food production, requiring farmland, fresh water and fertilizers. Using marine macroalgae for the production of biogas circumvents these problems. Their potential lies in their chemical composition, their global abundance and knowledge of their growth requirements and occurrence patterns. Such a biomass industry should focus on the use of residual and waste biomass to avoid competition with the biomass requirements of the seaweed food industry, which has occurred in the case of terrestrial biomass. Overabundant seaweeds represent unutilized biomass in shallow water, beach and coastal areas. These eutrophication processes damage marine ecosystems and impair local tourism; this biomass could serve as biogas feedstock material. Residues from biomass processing in the seaweed industry are also of interest. This is a rapidly growing industry with algae now used in the comestible, pharmaceutical and cosmetic sectors. The simultaneous production of combustible biomethane and disposal of undesirable biomass in a synergistic waste management system is a concept with environmental and resource-conserving advantages.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment themore » high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.« less

  16. Implementation of an adaptive controller for the startup and steady-state running of a biomethanation process operated in the CSTR mode.

    PubMed

    Renard, P; Van Breusegem, V; Nguyen, M T; Naveau, H; Nyns, E J

    1991-10-20

    An adaptive control algorithm has been implemented on a biomethanation process to maintain propionate concentration, a stable variable, at a given low value, by steering the dilution rate. It was thereby expected to ensure the stability of the process during the startup and during steady-state running with an acceptable performance. The methane pilot reactor was operated in the completely mixed, once-through mode and computer-controlled during 161 days. The results yielded the real-life validation of the adaptive control algorithm, and documented the stability and acceptable performance expected.

  17. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    NASA Astrophysics Data System (ADS)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  18. New Strategy for a Suitable Fast Stabilization of the Biomethanization Performance

    PubMed Central

    Fernández-Güelfo, L. A.; Álvarez-Gallego, C. J.; Sales Márquez, D.; Romero García, L. I.

    2012-01-01

    The start-up strategies for thermophilic anaerobic reactors usually consist of an initial mesophilic stage (35°C), with an approximate duration of 185 days, and a subsequent thermophilic stage (55°C), which normally requires around 60 days to achieve the system stabilizatio. During the first 8–10 days of the mesophilic stage, the reactor is not fed so that the inoculum, which is generally a mesophilic anaerobic sludge, may be adapted to the organic solid waste. Between mesophilic and thermophilic conditions the reactor is still not fed in an effort to prevent possible imbalances in the proces. As a consequence, the start-up and stabilization of the biomethanization performance described in the literature require, at least, around 245 days. In this sense, a new strategy for the start-up and stabilization phases is presented in this study. This approach allows an important reduction in the overall time necessary for these stages in an anaerobic continuous stirred tank reactor (CSTR) operated at thermophilic-dry conditions for treating the organic fraction of the municipal solid waste (OFMSW): 60 days versus 245 days of conventional strategies. The new strategy uses modified SEBAC technology to adapt an inoculum to the OFMSW and the operational conditions prior to seeding the CSTR. PMID:23193374

  19. Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action.

    PubMed

    Ogle, Stephen M; Olander, Lydia; Wollenberg, Lini; Rosenstock, Todd; Tubiello, Francesco; Paustian, Keith; Buendia, Leandro; Nihart, Alison; Smith, Pete

    2014-01-01

    Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries. © 2013 John Wiley & Sons Ltd.

  20. Biomethanation potential for co-digestion of municipal solid waste and rice straw: A batch study.

    PubMed

    Negi, Suraj; Dhar, Hiya; Hussain, Athar; Kumar, Sunil

    2018-04-01

    Rice straw (RS) contains a high amount of lignocellulosic materials which are difficult to degrade without thermal pretreatment. In the present study, co-digestion of municipal solid waste (MSW) and RS was carried out in three different ratios i.e., 1:1, 2:1, and 3:1 to get the maximum biomethanation potential and methane generation rate constant (k). The biogas and methane (CH 4 ) potential increased by 60% and 57%, respectively for MSW and RS in the ratio 2:1 as compared to other combination. The values of k, biochemical methane potential (µ b ) and sludge activity were measured as 0.1 d -1 , 0.99 CH 4 -COD/COD fed and 0.50 g CH 4 -COD/g VSS, respectively. The sludge activity was found to be 100% for 2:1 ratio. Co-digestion of RS with MSW can also optimize the C/N ratio which is an essential parameter in the anaerobic digestion process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery.

    PubMed

    Di Maria, Francesco; Sordi, Alessio; Micale, Caterina

    2013-11-01

    The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R(2)), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year(-1)) was evaluated. k ranged from 0.436 to 0.308year(-1) and the bio-methane potential from 37 to 12Nm(3)/tonne, respectively, for the MSOF with 0 and 16weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90kWh per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4weeks showed rather negligible variation in the global impact of system emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Enhanced biomethane production rate and yield from lignocellulosic ensiled forage ley by in situ anaerobic digestion treatment with endogenous cellulolytic enzymes.

    PubMed

    Speda, Jutta; Johansson, Mikaela A; Odnell, Anna; Karlsson, Martin

    2017-01-01

    Enzymatic treatment of lignocellulosic material for increased biogas production has so far focused on pretreatment methods. However, often combinations of enzymes and different physicochemical treatments are necessary to achieve a desired effect. This need for additional energy and chemicals compromises the rationale of using enzymes for low energy treatment to promote biogas production. Therefore, simpler and less energy intensive in situ anaerobic digester treatment with enzymes is desirable. However, investigations in which exogenous enzymes are added to treat the material in situ have shown mixed success, possibly because the enzymes used originated from organisms not evolutionarily adapted to the environment of anaerobic digesters. In this study, to examine the effect of enzymes endogenous to methanogenic microbial communities, cellulolytic enzymes were instead overproduced and collected from a dedicated methanogenic microbial community. By this approach, a solution with very high endogenous microbial cellulolytic activity was produced and tested for the effect on biogas production from lignocellulose by in situ anaerobic digester treatment. Addition of enzymes, endogenous to the environment of a mixed methanogenic microbial community, to the anaerobic digestion of ensiled forage ley resulted in significantly increased rate and yield of biomethane production. The enzyme solution had an instant effect on more readily available cellulosic material. More importantly, the induced enzyme solution also affected the biogas production rate from less accessible cellulosic material in a second slower phase of lignocellulose digestion. Notably, this effect was maintained throughout the experiment to completely digested lignocellulosic substrate. The induced enzyme solution collected from a microbial methanogenic community contained enzymes that were apparently active and stable in the environment of anaerobic digestion. The enzymatic activity had a profound effect on the

  3. An optimizing start-up strategy for a bio-methanator.

    PubMed

    Sbarciog, Mihaela; Loccufier, Mia; Vande Wouwer, Alain

    2012-05-01

    This paper presents an optimizing start-up strategy for a bio-methanator. The goal of the control strategy is to maximize the outflow rate of methane in anaerobic digestion processes, which can be described by a two-population model. The methodology relies on a thorough analysis of the system dynamics and involves the solution of two optimization problems: steady-state optimization for determining the optimal operating point and transient optimization. The latter is a classical optimal control problem, which can be solved using the maximum principle of Pontryagin. The proposed control law is of the bang-bang type. The process is driven from an initial state to a small neighborhood of the optimal steady state by switching the manipulated variable (dilution rate) from the minimum to the maximum value at a certain time instant. Then the dilution rate is set to the optimal value and the system settles down in the optimal steady state. This control law ensures the convergence of the system to the optimal steady state and substantially increases its stability region. The region of attraction of the steady state corresponding to maximum production of methane is considerably enlarged. In some cases, which are related to the possibility of selecting the minimum dilution rate below a certain level, the stability region of the optimal steady state equals the interior of the state space. Aside its efficiency, which is evaluated not only in terms of biogas production but also from the perspective of treatment of the organic load, the strategy is also characterized by simplicity, being thus appropriate for implementation in real-life systems. Another important advantage is its generality: this technique may be applied to any anaerobic digestion process, for which the acidogenesis and methanogenesis are, respectively, characterized by Monod and Haldane kinetics.

  4. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.

    PubMed

    Ye, Yulin; Zamalloa, Carlos; Lin, Hongjian; Yan, Mi; Schmidt, David; Hu, Bo

    2015-01-01

    The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.

  5. Identification of seismic anomalies caused by gas saturation on the basis of theoretical P and PS wavefield in the Carpathian Foredeep, SE Poland

    NASA Astrophysics Data System (ADS)

    Pietsch, Kaja; Marzec, Paweł; Kobylarski, Marcin; Danek, Tomasz; Leśniak, Andrzej; Tatarata, Artur; Gruszczyk, Edward

    2007-06-01

    The thin-layer build of the Carpathian Foredeep Miocene formations and large petrophysical parameter variation cause seismic images of gas-saturated zones to be ambiguous, and the location of prospection wells on the basis of anomalous seismic record is risky. A method that assists reservoir interpretation of standard recorded seismic profiles (P waves) can be a converted wave recording (PS waves). This paper presents the results of application of a multicomponent seismic survey for the reservoir interpretation over the Chałupki Dębniańskie gas deposit, carried out for the first time in Poland by Geofizyka Kraków Ltd. for the Polish Oil and Gas Company. Seismic modeling was applied as the basic research tool, using the SeisMod program based on the finite-difference solution of the acoustic wave equation and equations of motion. Seismogeological models for P waves were developed using Acoustic Logs; S-wave model (records only from part of the well) was developed on the basis of theoretical curves calculated by means of the Estymacja program calibrated with average S-velocities, calculated by correlation of recorded P and PS wavefields with 1D modeling. The conformity between theoretical and recorded wavefields makes it possible to apply the criteria established on the basis of modeling for reservoir interpretation. Direct hydrocarbon indicators (bright spots, phase change, time sag) unambiguously identify gas-prone layers within the ChD-2 prospect. A partial range of the indicators observed in the SW part of the studied profile (bright spot that covers a single, anticlinally bent seismic horizon) points to saturation of the horizon. The proposed location is confirmed by criteria determined for converted waves (continuous seismic horizons with constant, high amplitude) despite poorer agreement between theoretical and recorded wavefields.

  6. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants

    NASA Astrophysics Data System (ADS)

    Awais Salman, Chaudhary; Schwede, Sebastian; Thorin, Eva; Yan, Jinyue

    2017-11-01

    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  7. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    PubMed

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-18

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded.

  8. Effect of cobalt supplementation and fractionation on the biological response in the biomethanization of Olive Mill Solid Waste.

    PubMed

    Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G

    2016-07-01

    Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The effect of seasonal variation on biomethane production from seaweed and on application as a gaseous transport biofuel.

    PubMed

    Tabassum, Muhammad Rizwan; Xia, Ao; Murphy, Jerry D

    2016-06-01

    Biomethane produced from seaweed may be used as a transport biofuel. Seasonal variation will have an effect on this industry. Laminaria digitata, a typical Irish brown seaweed species, shows significant seasonal variation both in proximate, ultimate and biochemical composition. The characteristics in August were optimal with the lowest level of ash (20% of volatile solids), a C:N ratio of 32 and the highest specific methane yield measured at 327LCH4kgVS(-1), which was 72% of theoretical yield. The highest yield per mass collected of 53m(3)CH4t(-1) was achieved in August, which is 4.5 times higher than the lowest value, obtained in December. A seaweed cultivation area of 11,800ha would be required to satisfy the 2020 target for advanced biofuels in Ireland, of 1.25% renewable energy supply in transport (RES-T) based on the optimal gross energy yield obtained in August (200GJha(-1)yr(-1)). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    PubMed Central

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  11. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.

    PubMed

    Ding, Lingkan; Cheng, Jun; Xia, Ao; Jacob, Amita; Voelklein, Markus; Murphy, Jerry D

    2016-10-01

    Aquatic micro-algae can be used as feedstocks for gaseous biofuel production via biological fermentation. However, micro-algae usually have low C/N ratios, which are not advantageous for fermentation. In this study, carbon-rich macro-algae (Laminaria digitata) mixed with nitrogen-rich micro-algae (Chlorella pyrenoidosa and Nannochloropsis oceanica) were used to maintain a suitable C/N ratio of 20 for a two-stage process combining hydrogen and methane fermentation. Co-fermentation of L. digitata and micro-algae facilitated hydrolysis and acidogenesis, resulting in hydrogen yields of 94.5-97.0mL/gVS; these values were 15.5-18.5% higher than mono-fermentation using L. digitata. Through the second stage of methane co-fermentation, a large portion of energy remaining in the hydrogenogenic effluents was recovered in the form of biomethane. The two-stage batch co-fermentation markedly increased the energy conversion efficiencies (ECEs) from 4.6-6.6% during the hydrogen fermentation to 57.0-70.9% in the combined hydrogen and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of surfactant assisted sonic pretreatment on liquefaction of fruits and vegetable residue: Characterization, acidogenesis, biomethane yield and energy ratio.

    PubMed

    Shanthi, M; Rajesh Banu, J; Sivashanmugam, P

    2018-05-15

    The present study explored the disintegration potential of fruits and vegetable residue through sodium dodecyl sulphate (SDS) assisted sonic pretreatment (SSP). In SSP method, initially the biomass barrier (lignin) was removed using SDS at different dosage, subsequently it was sonically disintegrated. The effect of SSP were assessed based on dissolved organic release (DOR) of fruits and vegetable waste and specific energy input. SSP method achieved higher DOR rate and suspended solids reduction (26% and 16%) at optimum SDS dosage of 0.035 g/g SS with least specific energy input of 5400 kJ/kg TS compared to ultrasonic pretreatment (UP) (16% and 10%). The impact of fermentation and biomethane potential assay revealed highest production of volatile fatty acid and methane yield in SSP (1950 mg/L, 0.6 g/g COD) than UP. The energy ratio obtained was 0.9 for SSP, indicating proposed method is energetically efficient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Hybrid solid anaerobic digestion batch: biomethane production and mass recovery from the organic fraction of solid waste.

    PubMed

    Di Maria, Francesco; Gigliotti, Giovanni; Sordi, Alessio; Micale, Caterina; Zadra, Claudia; Massaccesi, Luisa

    2013-08-01

    An experimental apparatus was constructed to perform hybrid solid anaerobic digestion batch processing of the organic fraction of municipal solid waste. The preliminary process was carried out with a high total solids concentration of about 33% w w(-1) and with an initial organic load of about 340 kg VS kg(-1). The fresh organic fraction to inoculum ratio used to enhance the anaerobic process start-up was 0.910 kg VS kg VS(-1). The process was conducted by spreading the percolate on top of the mixture. The percolate was stored in a separate section of the apparatus with a mean hydraulic retention time of about 1 day. During the process, acetate, butyrate and propionate in the percolate reached concentrations ranging from 3000 to 11 000 mg L(-1). In spite of these high concentrations, the biomethane produced from both the solid and the percolate was quite high, at about 210 NL kg VS(-1). The digestate obtained at the end of the run showed rather good features for being classified as an organic fertilizer according to Italian law. However, a residual phytotoxicity level was detected by a standardized test showing a germination index of about 50%.

  14. Suitability of different containers for the sampling and storage of biogas and biomethane for the determination of the trace-level impurities--A review.

    PubMed

    Arrhenius, Karine; Brown, Andrew S; van der Veen, Adriaan M H

    2016-01-01

    The traceable and accurate measurement of biogas impurities is essential in order to robustly assess compliance with the specifications for biomethane being developed by CEN/TC408. An essential part of any procedure aiming to determinate the content of impurities is the sampling and the transfer of the sample to the laboratory. Key issues are the suitability of the sample container and minimising the losses of impurities during the sampling and analysis process. In this paper, we review the state-of-the-art in biogas sampling with the focus on trace impurities. Most of the vessel suitability studies reviewed focused on raw biogas. Many parameters need to be studied when assessing the suitability of vessels for sampling and storage, among them, permeation through the walls, leaks through the valves or physical leaks, sorption losses and adsorption effects to the vessel walls, chemical reactions and the expected initial concentration level. The majority of these studies looked at siloxanes, for which sampling bags, canisters, impingers and sorbents have been reported to be fit-for-purpose in most cases, albeit with some limitations. We conclude that the optimum method requires a combination of different vessels to cover the wide range of impurities commonly found in biogas, which have a wide range of boiling points, polarities, water solubilities, and reactivities. The effects from all the parts of the sampling line must be considered and precautions must be undertaken to minimize these effects. More practical suitability tests, preferably using traceable reference gas mixtures, are needed to understand the influence of the containers and the sampling line on sample properties and to reduce the uncertainty of the measurement. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Biomethanation of vegetable market waste in an anaerobic baffled reactor: Effect of effluent recirculation and carbon mass balance analysis.

    PubMed

    Gulhane, Madhuri; Khardenavis, Anshuman A; Karia, Sneha; Pandit, Prabhakar; Kanade, Gajanan S; Lokhande, Satish; Vaidya, Atul N; Purohit, Hemant J

    2016-09-01

    In the present study, feasibility of biomethanation of vegetable market waste in a 4-chambered anaerobic baffled reactor (ABR) was investigated at 30d hydraulic retention time and organic loading rate of 0.5gVS/L/d for one year. Indicators of process stability viz., butyrate/acetate and propionate/acetate ratios were consistent with phase separation in the different chambers, which remained unaltered even during recirculation of effluent. Chemical oxygen demand (COD) and volatile solids (VS) removal efficiencies were observed to be consistently high (above 90%). Corresponding biogas and methane yields of 0.7-0.8L/g VS added/d and 0.42-52L/g VS added/d respectively were among the highest reported in case of AD of vegetable waste in an ABR. Process efficiency of the ABR for vegetable waste methanation, which is indicated by carbon recovery factor showed that, nearly 96.7% of the input carbon considered for mass balance was accounted for in the product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. H2O2 induced cost effective microwave disintegration of dairy waste activated sludge in acidic environment for efficient biomethane generation.

    PubMed

    Eswari, A Parvathy; Kavitha, S; Banu, J Rajesh; Karthikeyan, O Parthiba; Yeom, Ick-Tae

    2017-11-01

    This study aimed to improve the biomethane potential of dairy waste activated sludge (WAS) by H 2 O 2 -acidic pH induced microwave disintegration (HAMW-D) pretreatment approach. The results of HAMW-D compared with the microwave disintegration (MW-D) alone for energy and economic factors. In the two phase disintegration process, the H 2 O 2 concentration of about 0.5mg/g SS under acid pH of 5 was found to be optimum for effective dissociation of Extracellular Polymeric Substances (EPS) matrix. A higher liquefaction of about 46.6% was achieved in HAMW-D when compared to that of MW-D (30%). It subsequently improved the methane yield of about 250mL/g VS in HAMW-D, which was 9.6% higher than MW-D. A net profit of about 49€/ton was achieved for HAMW-D, therefore it is highly recommended for WAS pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. CONTINUOUS GAS ANALYZER

    DOEpatents

    Katz, S.; Weber, C.W.

    1960-02-16

    A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

  18. Fermentation Enhancement of Methanogenic Archaea Consortia from an Illinois Basin Coalbed via DOL Emulsion Nutrition

    PubMed Central

    Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan

    2015-01-01

    Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate. PMID:25884952

  19. Radon soil gas measurements in a geological versatile region as basis to improve the prediction of areas with a high radon potential.

    PubMed

    Kabrt, Franz; Seidel, Claudia; Baumgartner, Andreas; Friedmann, Harry; Rechberger, Fabian; Schuff, Michael; Maringer, Franz Josef

    2014-07-01

    With the aim to predict the radon potential by geological data, radon soil gas measurements were made in a selected region in Styria, Austria. This region is characterised by mean indoor radon potentials of 130-280 Bq m(-3) and a high geological diversity. The distribution of the individual measuring sites was selected on the basis of geological aspects and the distribution of area settlements. In this work, the radon soil gas activity concentration and the soil permeability were measured at 100 sites, each with three single measurements. Furthermore, the local dose rate was determined and soil samples were taken at each site to determine the activity concentration of natural radionuclides. During two investigation periods, long-term soil gas radon measurements were made to study the time dependency of the radon activity concentration. All the results will be compared and investigated for correlation among each other to improve the prediction of areas with high radon potential. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Production of biomethane from palm oil mill effluent (POME) with fed batch system in beam-shaped digester

    NASA Astrophysics Data System (ADS)

    Aznury, Martha; Amin, Jaksen M.; Hasan, Abu; Himmatuliza, Astinesia

    2017-05-01

    Palm oil mill effluent (POME) is the biggest liquid waste which is produced from palm oil production. POME are containing organic matter, high levels of biological oxygen demand (BOD) and chemical oxygen demand (COD) were 28000 mg/L and 48000 mg/L. To reduce the levels of pollution caused by POME, is necessary to do stages of processing using a biological process that involves aerobic and anaerobic bacteria so that it can be utilized as a new product that has economic value, one is biogas. The processing into biogas in anaerobic performed by fed batch system. In the ratio between POME and activated microorganismes are 70:30%. The process of anaerobic fermentation in fed batch is done by time variation of the addition of the substrate. The mixture of POME and activated microorganismes were fermented for a month and then after one month substrates were added gradually as much as 1 liter into the digester with a variety of additional time are 1, 2, and 5 days. The interval of addition of the substrate give effect to the pH and the quantity of biogas produced. The highest increasing of the quantity of biomethane was 25.14 mol% at the time the addition of substrate every fifth day.

  1. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  2. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  3. Biomethane potential of industrial paper wastes and investigation of the methanogenic communities involved.

    PubMed

    Walter, Andreas; Silberberger, Sandra; Juárez, Marina Fernández-Delgado; Insam, Heribert; Franke-Whittle, Ingrid H

    2016-01-01

    Cellulose-containing waste products from the agricultural or industrial sector are potentially one of the largest sources of renewable energy on earth. In this study, the biomethane potential (BMP) of two types of industrial paper wastes, wood and pulp residues (WR and PR, respectively), were evaluated under both mesophilic and thermophilic conditions, and various pretreatment methods were applied in the attempt to increase the methane potential during anaerobic digestion. The methanogenic community composition was investigated with denaturing gradient gel electrophoresis (DGGE) and the ANAEROCHIP microarray, and dominant methanogens were quantitated using quantitative PCR. All pretreatments investigated in this study with the exception of the alkaline pretreatment of PR were found to increase the BMP of two paper industry wastes. However, the low recalcitrance level of the PR resulted in the pretreatments being less effective in increasing BMP when compared with those for WR. These results were supported by the physico-chemical data. A combined application of ultrasound and enzymatic pretreatment was found to be the best strategy for increasing methane yields. The retention time of substrates in the reactors strongly influenced the BMP of wastes subjected to the different pretreatments. In sludges from both paper wastes subjected to the various pretreatments, mixotrophic Methanosarcina species were found to dominate the community, accompanied by a consortium of hydrogenotrophic genera. Pretreating industrial paper wastes could be a potentially viable option for increasing the overall degradation efficiency and decreasing reactor retention time for the digestion of complex organic matter such as lignocellulose or hemicellulose. This would help reduce the environmental burden generated from paper production. Although there were minor differences in the methanogenic communities depending on the temperature of anaerobic digestion, there was little effect of substrate

  4. Interpreting the corneal response to oxygen: Is there a basis for re-evaluating data from gas-goggle studies?

    PubMed

    Papas, Eric B; Sweeney, Deborah F

    2016-10-01

    When anoxia (0% oxygen) is created within a gas-tight goggle, ocular physiological responses, including corneal swelling, limbal hyperaemia and pH change, are known to vary, depending on the presence or absence of a low, oxygen transmissibility contact lens. A new theory is proposed to account for this discrepancy based on the concept of lid derived oxygen, whereby oxygen originating from the vascular plexus of the palpebral conjunctiva supplements that available to the ocular surface in an open, normally blinking eye, even when the surrounding gaseous atmosphere is anoxic. The effect of a lid derived contribution to corneal oxygenation was assessed by using existing experimental data to model open-eye, corneal swelling behavior as a function of atmospheric oxygen content, both with and without the presence of a contact lens. These models predict that under atmospheric anoxia, contact lens wear results in 13.2% corneal swelling compared with only 5.4% when the lens was absent. Lid derived oxygen acts to provide the ocular surface in the non-contact lens wearing, normally blinking, open-eye with up to 4.7% equivalent oxygen concentration, even within the anoxic environment of a nitrogen filled goggle. Correcting for lid derived oxygen eliminates previously observed discrepancies in corneal swelling behavior and harmonizes the models for the contact lens wearing and gas-goggle cases. On this basis it is proposed that true anoxia at the ocular surface cannot be achieved by atmospheric manipulation (i.e. a gas-goggle) alone but requires an additional presence, e.g. a low, oxygen transmissibility contact lens, to prevent access to oxygen from the eyelids. Data from previously conducted experiments in which the gas-goggle paradigm was used, may have been founded on underestimates of the real oxygen concentration acting on the ocular surface at the time and if so, will require re-interpretation. Future work in this area should consider if a correction for lid derived

  5. Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods

    NASA Astrophysics Data System (ADS)

    Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.

    2017-08-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  6. Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production

    DOE PAGES

    Shen, Yanwen; Forrester, Sara; Koval, Jason; ...

    2017-05-29

    This study aimed to scale up an integrated waste-to-energy system for producing pipelinequality biomethane from shake flasks experiments to two-stage digester systems with semicontinuous operation. The yearlong operation was successfully conducted to compare the performance of thermophilic anaerobic digestion (AD) of sewage sludge amended with corn stover biochar (CSBC) and pine biochar (PBC) to the control under various conditions. Both CSBC and PBC promoted the substrate utilization, methane productivity, and process stability of AD, while CSBC showed superior potential. CSBC enhanced methane content in biogas (CH 4%) and methane production rate (P CHmore » $$_4$$) by up to 25% and 37% respectively in comparison to the control, with maximum CH 4% of 95% and CH 4 yield of 0.34 L/g volatile solid (VS)-added being achieved at steady state. The biochar supplementation also led to a substantial increase of the macro- and micro-nutrients (P, K, Ca, Mg, Fe) by up to 33 times in the digestate, increasing its fertilizer value. Finally, microbial community structure and dynamics were also investigated and compared, and in particular, CSBC promoted the abundance of Clostridia and Methanosarcina. Collectively, this study proves that pyro-biochar as an effective additive material enhances AD performance with continuous operation and that CSBC shows greater potential.« less

  7. Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yanwen; Forrester, Sara; Koval, Jason

    This study aimed to scale up an integrated waste-to-energy system for producing pipelinequality biomethane from shake flasks experiments to two-stage digester systems with semicontinuous operation. The yearlong operation was successfully conducted to compare the performance of thermophilic anaerobic digestion (AD) of sewage sludge amended with corn stover biochar (CSBC) and pine biochar (PBC) to the control under various conditions. Both CSBC and PBC promoted the substrate utilization, methane productivity, and process stability of AD, while CSBC showed superior potential. CSBC enhanced methane content in biogas (CH 4%) and methane production rate (P CHmore » $$_4$$) by up to 25% and 37% respectively in comparison to the control, with maximum CH 4% of 95% and CH 4 yield of 0.34 L/g volatile solid (VS)-added being achieved at steady state. The biochar supplementation also led to a substantial increase of the macro- and micro-nutrients (P, K, Ca, Mg, Fe) by up to 33 times in the digestate, increasing its fertilizer value. Finally, microbial community structure and dynamics were also investigated and compared, and in particular, CSBC promoted the abundance of Clostridia and Methanosarcina. Collectively, this study proves that pyro-biochar as an effective additive material enhances AD performance with continuous operation and that CSBC shows greater potential.« less

  8. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  9. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  10. The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water.

    PubMed

    Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E

    2017-11-01

    The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quantum gas-liquid condensation in an attractive Bose gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, Shun-ichiro

    Gas-liquid condensation (GLC) in an attractive Bose gas is studied on the basis of statistical mechanics. Using some results in combinatorial mathematics, the following are derived. (1) With decreasing temperature, the Bose-statistical coherence grows in the many-body wave function, which gives rise to the divergence of the grand partition function prior to Bose-Einstein condensation. It is a quantum-mechanical analogue to the GLC in a classical gas (quantum GLC). (2) This GLC is triggered by the bosons with zero momentum. Compared with the classical GLC, an incomparably weaker attractive force creates it. For the system showing the quantum GLC, we discussmore » a cold helium 4 gas at sufficiently low pressure.« less

  12. Biogenic Methane Generation Potential in the Eastern Nankai Trough, Japan: Effect of Reaction Temperature and Total Organic Carbon

    NASA Astrophysics Data System (ADS)

    Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.

    2017-12-01

    Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost

  13. Structural Basis for the Inhibition of Gas Hydrates by α-Helical Antifreeze Proteins

    PubMed Central

    Sun, Tianjun; Davies, Peter L.; Walker, Virginia K.

    2015-01-01

    Kinetic hydrate inhibitors (KHIs) are used commercially to inhibit gas hydrate formation and growth in pipelines. However, improvement of these polymers has been constrained by the lack of verified molecular models. Since antifreeze proteins (AFPs) act as KHIs, we have used their solved x-ray crystallographic structures in molecular modeling to explore gas hydrate inhibition. The internal clathrate water network of the fish AFP Maxi, which extends to the protein’s outer surface, is remarkably similar to the {100} planes of structure type II (sII) gas hydrate. The crystal structure of this water web has facilitated the construction of in silico models for Maxi and type I AFP binding to sII hydrates. Here, we have substantiated our models with experimental evidence of Maxi binding to the tetrahydrofuran sII model hydrate. Both in silico and experimental evidence support the absorbance-inhibition mechanism proposed for KHI binding to gas hydrates. Based on the Maxi crystal structure we suggest that the inhibitor adsorbs to the gas hydrate lattice through the same anchored clathrate water mechanism used to bind ice. These results will facilitate the rational design of a next generation of effective green KHIs for the petroleum industry to ensure safe and efficient hydrocarbon flow. PMID:26488661

  14. Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion.

    PubMed

    Budde, Jörn; Prochnow, Annette; Plöchl, Matthias; Suárez Quiñones, Teresa; Heiermann, Monika

    2016-03-01

    In this study modeled full scale application of thermobarical hydrolysis of less degradable feedstock for biomethanation was assessed in terms of energy balance, greenhouse gas emissions, and economy. Data were provided whether the substitution of maize silage as feedstock for biogas production by pretreated cattle wastes is beneficial in full-scale application or not. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and/or solid cattle waste (feces, litter, and feed residues from animal husbandry of high-performance dairy cattle, dry cows, and heifers). The integration of thermobarical pretreatment is beneficial for raw material with high contents of organic dry matter and ligno-cellulose: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    PubMed

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    the inverse cascade. Finally, biohydrogen, biomethane and bioelectricity could contribute to significant improvements for solid organic waste management in agricultural regions, as well as in urban areas.

  16. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  17. On the Superficial Gas Velocity in Deep Gas-Solid Fluidized Beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Grace, John; Shadle, Lawrence

    2011-11-15

    The superficial gas velocity is one of the key parameters used to determine the flow hydrodynamics in gas–solids fluidized beds. However, the superficial velocity varies with height in practice, and there is no consistent basis for its specification. Different approaches to determine the superficial gas velocity in a deep gas–solids system are shown to cause difficulties in developing models and in comparing predictions with experimental results. In addition, the reference conditions for superficial gas velocity are important in modeling of deep gas–solids systems where there is a considerable pressure drop.

  18. Demonstration of landfill gas enhancement techniques in landfill simulators

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Vogt, W. G.

    1982-02-01

    Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.

  19. Natural gas imports and exports, fourth quarter report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis tomore » Canada and Mexico.« less

  20. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  1. Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas

    NASA Astrophysics Data System (ADS)

    Zhu, Ding Yu; Shen, Jian Qi

    2016-03-01

    The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.

  2. Insights into biomethane production and microbial community succession during semi-continuous anaerobic digestion of waste cooking oil under different organic loading rates.

    PubMed

    He, Jing; Wang, Xing; Yin, Xiao-Bo; Li, Qiang; Li, Xia; Zhang, Yun-Fei; Deng, Yu

    2018-06-01

    High content of lipids in food waste could restrict digestion rate and give rise to the accumulation of long chain fatty acids in anaerobic digester. In the present study, using waste cooking oil skimmed from food waste as the sole carbon source, the effect of organic loading rate (OLR) on the methane production and microbial community dynamics were well investigated. Results showed that stable biomethane production was obtained at an organic loading rate of 0.5-1.5 g VS L -1  days -1 . The specific biogas/methane yield values at OLR of 1.0 were 1.44 ± 0.15 and 0.98 ± 0.11 L g VS -1 , respectively. The amplicon pyrosequencing revealed the distinct microbial succession in waste cooking oil AD reactors. Acetoclastic methanogens belonging to the genus Methanosaeta were the most dominant archaea, while the genera Syntrophomona, Anaerovibrio and Synergistaceae were the most common bacteria during AD process. Furthermore, redundancy analysis indicated that OLR showed more significant effect on the bacterial communities than that of archaeal communities. Additionally, whether the OLR of lipids increased had slight influence on the acetate fermentation pathway.

  3. Preliminary report on the commercial viability of gas production from natural gas hydrates

    USGS Publications Warehouse

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  4. Gastrointestinal gas.

    PubMed Central

    Fardy, J; Sullivan, S

    1988-01-01

    Complaints related to gastrointestinal gas are commonly encountered in clinical practice. Various therapies have been proposed, yet none has appeared to be extremely effective. A review of the literature revealed little hard evidence to support the use of simethicone, pancreatic enzymes, anticholinergic agents or antibiotics. Evidence supporting the use of prokinetic agents has been the strongest, and there may be a pathophysiologic basis for the use of these agents if the complaints are related to abnormal intestinal motility. The use of activated charcoal for adsorbing intestinal gas has been effective in healthy subjects but has not been properly investigated in patients with gas complaints. Dietary modification may be beneficial in certain cases. Additional controlled trials are necessary to clarify the issues in the treatment of this common problem. PMID:3058280

  5. Midbond basis functions for weakly bound complexes

    NASA Astrophysics Data System (ADS)

    Shaw, Robert A.; Hill, J. Grant

    2018-06-01

    Weakly bound systems present a difficult problem for conventional atom-centred basis sets due to large separations, necessitating the use of large, computationally expensive bases. This can be remedied by placing a small number of functions in the region between molecules in the complex. We present compact sets of optimised midbond functions for a range of complexes involving noble gases, alkali metals and small molecules for use in high accuracy coupled -cluster calculations, along with a more robust procedure for their optimisation. It is shown that excellent results are possible with double-zeta quality orbital basis sets when a few midbond functions are added, improving both the interaction energy and the equilibrium bond lengths of a series of noble gas dimers by 47% and 8%, respectively. When used in conjunction with explicitly correlated methods, near complete basis set limit accuracy is readily achievable at a fraction of the cost that using a large basis would entail. General purpose auxiliary sets are developed to allow explicitly correlated midbond function studies to be carried out, making it feasible to perform very high accuracy calculations on weakly bound complexes.

  6. Integration of Power to Methane in a waste water treatment plant - A feasibility study.

    PubMed

    Patterson, Tim; Savvas, Savvas; Chong, Alex; Law, Ian; Dinsdale, Richard; Esteves, Sandra

    2017-12-01

    The integration of a biomethanation system within a wastewater treatment plant for conversion of CO 2 and H 2 to CH 4 has been studied. Results indicate that the CO 2 could be utilised to produce an additional 13,420m 3 /day of CH 4 , equivalent to approximately 133,826kWh of energy. The whole conversion process including electrolysis was found to have an energetic efficiency of 66.2%. The currently un-optimised biomethanation element of the process had a parasitic load of 19.9% of produced energy and strategies to reduce this to <5% are identified. The system could provide strategic benefits such as integrated management of electricity and gas networks, energy storage and maximising the deployment and efficiency of renewable energy assets. However, no policy or financial frameworks exist to attribute value to these increasingly important functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exploitation of rapid acidification phenomena of food waste in reducing the hydraulic retention time (HRT) of high rate anaerobic digester without conceding on biogas yield.

    PubMed

    Kuruti, Kranti; Begum, Sameena; Ahuja, Shruti; Anupoju, Gangagni Rao; Juntupally, Sudharshan; Gandu, Bharath; Ahuja, Devender Kumar

    2017-02-01

    The aim of the present work was to study and infer a full scale experience on co-digestion of 1000kg of FW (400kg cooked food waste and 600kg uncooked food waste) and 2000L of rice gruel (RG) on daily basis based on a high rate biomethanation technology called "Anaerobic gas lift reactor" (AGR). The pH of raw substrate was low (5.2-5.5) that resulted in rapid acidification phenomena with in 12h in the feed preparation tank that facilitated to obtain a lower hydraulic residence time (HRT) of 10days. At full load, AGR was fed with 245kg of total solids, 205kg of volatile solids (167kg of organic matter in terms of chemical oxygen demand) which resulted in the generation of biogas and bio manure of 140m 3 /day and 110kg/day respectively. The produced biogas replaced 60-70kg of LPG per day. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The effect of trace element addition to mono-digestion of grass silage at high organic loading rates.

    PubMed

    Wall, David M; Allen, Eoin; Straccialini, Barbara; O'Kiely, Padraig; Murphy, Jerry D

    2014-11-01

    This study investigated the effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Two continuous reactors were compared. The first mono-digested grass silage whilst the second operated in co-digestion, 80% grass silage with 20% dairy slurry (VS basis). The reactors were run for 65weeks with a further 5weeks taken for trace element supplementation for the mono-digestion of grass silage. The co-digestion reactor reported a higher biomethane efficiency (1.01) than mono-digestion (0.90) at an OLR of 4.0kgVSm(-3)d(-1) prior to addition of trace elements. Addition of cobalt, iron and nickel, led to an increase in the SMY in mono-digestion of grass silage by 12% to 404LCH4kg(-1)VS and attained a biomethane efficiency of 1.01. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Solar-gas systems impact analysis study

    NASA Astrophysics Data System (ADS)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  10. Effect of protective release coatings on the basis of superdispersersed zirconium oxide powder on the formation of gas defects in bronze casting

    NASA Astrophysics Data System (ADS)

    Martyushev, Nikita V.; Risto, Nikolay A.

    2014-10-01

    This paper investigates the use of nanopowders in the composition of foundry coatings when casting leaded tin bronzes. Influence of the composition of the applied protective coating on surface finish is studied. The effects of the coatings of the following compositions are compared: non-stick coating (a mixture of low-dispersed chromium oxide powder and heat-treated vegetable oil); non-stick lubricant ASPF-2/RgU on the basis of low- dispersed graphite powder and heat-treated vegetable oil; patent #2297300 (a mixture of superdispersed zirconium dioxide powder with industrial oil). It is demonstrated that application of foundry coatings containing superdispersed metal oxide powders with low thermal conductivity makes it possible to significantly reduce irregularities and eliminate gas porosity on the surface of tin-leaded bronze castings.

  11. Restructuring Energy Industries: Lessons from Natural Gas

    EIA Publications

    1997-01-01

    For the past 20 years, the natural gas industry has been undergoing a restructuring similar to the transition now confronting the electric power industry. This article presents a summary of some of these gas industry experiences to provide a basis for some insights into energy industry restructuring.

  12. Natural gas imports and exports. Fourth quarter report, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the fourth quarter of 1998 (October through December). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during themore » past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.« less

  13. Natural gas imports and exports. Third quarter report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This quarterly report, prepared by The Office of Natural Gas and Petroleum Import and Export Activities, summarizes the data provided by companies authorized to import or export natural gas. Numerical data are presented in four attachments, each of which is comprised of a series of tables. Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent calendar quarters. Volumes and prices of gas purchased by long-term importers and exporters during the past year are given in Attachment B. Attachment Cmore » shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D lists gas exported on a short-term or spot market basis to Canada and Mexico. Highlights of the report are very briefly summarized.« less

  14. Natural gas imports and exports. First quarter report, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the first quarter of 1998 (January through March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during themore » past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.« less

  15. Performance of sorghum cultivars for biomass quality and biomethane yield grown in semi-arid area of Pakistan.

    PubMed

    Hassan, Muhammad Umair; Chattha, Muhammad Umer; Mahmood, Athar; Sahi, Shahbaz Talib

    2018-05-01

    Biomass is a promising renewable energy source and its significance is escalating in the context of climate change and depletion of fossil foils. This study was conducted for two consecutive years 2016 and 2017, using five sorghum cultivars, i.e., JS-263, Jawar-2011, Hagari, JS-2002, and YS-2016, in order to determine the best cultivars in terms of dry matter yield, chemical composition, and biomethane yield grown under semi-arid conditions in Pakistan. The results revealed that sorghum cultivars responded differently in terms of growth, biomass yield, chemical composition, and methane yield. Cultivars Jawar-2011 produced maximum leaf area index, leaf area duration, crop growth rate, plant height, and leaves per plant, however, they were comparable with Sorghum-2016, whereas cultivar JS-2002 performed poorly among the tested cultivars. Similarly, cultivar Jawar-2011 produced maximum dry matter yield (16.37 t ha -1 ) similar to that of YS-2016, further cultivar JS-2002 performed poorly and gave lower dry matter yield (12.87 t ha -1 ). The maximum protein concentration (10.95), neutral detergent fibers (61.20), and lignin contents (5.55) found in Jawar-2011 were comparable with those in YS-2016, while the lowest neutral detergent fiber and lignin contents were found in JS-2002. Although JS-2002 produced the highest specific methane yield per kilogram of volatile solids, it was overcompensated by Jawar-2011 owing to higher dry matter yield per hectare. These results suggested that cultivar Jawar-2011 can be grown successfully in semi-arid conditions of Pakistan in order to get good biomass yield along with higher methane yield.

  16. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.

    PubMed

    Fabbri, Daniele; Torri, Cristian

    2016-04-01

    Biogas is a mixture of CO2 and CH4 produced by a consortia of Bacteria and Archeae operating in anaerobic digestion (AD) plants. Biogas can be burnt as such in engines to produce electricity and heat or upgraded into biomethane. Biomethane is a drop-in fuel that can be injected in the natural gas grid or utilised as a transport fuel. While a wide array of biomass feedstock can be degraded into biogas, unconverted lignin, hemicellulose and cellulose end up in the co-product digestate leaving a large portion of chemical energy unutilised. Pyrolysis (Py) transforms in a single step and without chemical reagents the lignocellulose matrix into gaseous (syngas), liquid (bio-oil, pyrolysis oil) and solid (biochar) fractions for the development of renewable fuels and materials. The Py route applied downstream to AD is actively investigated in order to valorise the solid digestate presently destined only for soil applications. Coupling Py upstream to AD is an emerging field of research aimed at expanding the feedstock towards biologically recalcitrant substrates (wood, paper, sludge). The biomethanation potential was demonstrated for gaseous (H2/CO) and water soluble pyrolysis products, while the influence of insoluble pyrolytic lignin remains fairly unexplored. Biochar can promote the production of biomethane by acting as a support for microorganism colonisation, conductor for direct interspecies electron transfer, sorbent for hydrophobic inhibitors, and reactant for in situ biogas upgrading. Enhancing the advantages (carbon source) over the side effects (toxicity) of Py fractions represents the main challenge of Py-AD. This can be addressed by increasing the selectivity of the thermochemical process or improving the ecological flexibility of mixed bacterial consortia towards chemically complex environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ulva biomass as a co-substrate for stable anaerobic digestion of spent coffee grounds in continuous mode.

    PubMed

    Kim, Jaai; Kim, Hakchan; Lee, Changsoo

    2017-10-01

    Ulva biomass was evaluated as a co-substrate for anaerobic digestion of spent coffee grounds at varying organic loads (0.7-1.6g chemical oxygen demand (COD)/Ld) and substrate compositions. Co-digestion with Ulva (25%, COD basis) proved beneficial for SCG biomethanation in both terms of process performance and stability. The beneficial effect is much more pronounced at higher organic and hydraulic loads, with the highest COD removal and methane yield being 51.8% and 0.19L/g COD fed, respectively. The reactor microbial community structure changed dynamically during the experiment, and a dominance shift from hydrogenotrophic to aceticlastic methanogens occurred with increase in organic loading rate. Network analysis provides a comprehensive view of the microbial interactions involved in the system and confirms a direct positive correlation between Ulva input and methane productivity. A group of populations, including Methanobacterium- and Methanoculleus-related methanogens, was identified as a possible indicator for monitoring the biomethanation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fatigue life analysis of cracked gas receiver of emergency cut-off system in gas gathering station

    NASA Astrophysics Data System (ADS)

    Hu, Junzhi; Zhou, Jiyong; Li, Siyuan

    2017-06-01

    Small-scale air compressor and gas receiver are used as the driving gas of the emergency cut-off system in gas gathering station. Operation of block valve is ensured by starting and stopping compressor automatically. The frequent start-stop of compressor and the pressure fluctuation pose a threat to the service life of gas receiver, and then affect normal operation of the emergency cut-off system and security of gas gathering station. In this paper, the fatigue life of a pressure vessel with axial semi-elliptical surface crack in the inner wall is analyzed under the varying pressure by means of the theory of fracture mechanics. The influences of the amplitude of pressure fluctuation and the initial crack size on the residual life of gas receiver are discussed. It provides a basis for setting the working parameters of gas receiver of emergency cut-off system and determining the maintenance cycle.

  19. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.

    PubMed

    Terblanche, John S; Clusella-Trullas, Susana; Chown, Steven L

    2010-09-01

    Investigation of gas exchange patterns and modulation of metabolism provide insight into metabolic control systems and evolution in diverse terrestrial environments. Variation in metabolic rate in response to environmental conditions has been explained largely in the context of two contrasting hypotheses, namely metabolic depression in response to stressful or resource-(e.g. water) limited conditions, or elevation of metabolism at low temperatures to sustain life in extreme conditions. To deconstruct the basis for metabolic rate changes in response to temperature variation, here we undertake a full factorial study investigating the longer- and short-term effects of temperature exposure on gas exchange patterns. We examined responses of traits of gas exchange [standard metabolic rate (SMR); discontinuous gas exchange (DGE) cycle frequency; cuticular, respiratory and total water loss rate (WLR)] to elucidate the magnitude and form of plastic responses in the dung beetle, Scarabaeus spretus. Results showed that short- and longer-term temperature variation generally have significant effects on SMR and WLR. Overall, acclimation to increased temperature led to a decline in SMR (from 0.071+/-0.004 ml CO(2) h(-1) in 15 degrees C-acclimated beetles to 0.039+/-0.004 ml CO(2) h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) modulated by reduced DGE frequency (15 degrees C acclimation: 0.554+/-0.027 mHz, 20 degrees C acclimation: 0.257+/-0.030 mHz, 25 degrees C acclimation: 0.208+/-0.027 mHz recorded at 20 degrees C), reduced cuticular WLRs (from 1.058+/-0.537 mg h(-1) in 15 degrees C-acclimated beetles to 0.900+/-0.400 mg h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) and reduced total WLR (from 4.2+/-0.5 mg h(-1) in 15 degrees C-acclimated beetles to 3.1+/-0.5 mg h(-1) in 25 degrees C-acclimated beetles measured at 25 degrees C). Respiratory WLR was reduced from 2.25+/-0.40 mg h(-1) in 15 degrees C-acclimated beetles to 1.60+/-0.40 mg h

  20. Fundamentals and applications of gas hydrates.

    PubMed

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.

  1. A physical-based gas-surface interaction model for rarefied gas flow simulation

    NASA Astrophysics Data System (ADS)

    Liang, Tengfei; Li, Qi; Ye, Wenjing

    2018-01-01

    Empirical gas-surface interaction models, such as the Maxwell model and the Cercignani-Lampis model, are widely used as the boundary condition in rarefied gas flow simulations. The accuracy of these models in the prediction of macroscopic behavior of rarefied gas flows is less satisfactory in some cases especially the highly non-equilibrium ones. Molecular dynamics simulation can accurately resolve the gas-surface interaction process at atomic scale, and hence can predict accurate macroscopic behavior. They are however too computationally expensive to be applied in real problems. In this work, a statistical physical-based gas-surface interaction model, which complies with the basic relations of boundary condition, is developed based on the framework of the washboard model. In virtue of its physical basis, this new model is capable of capturing some important relations/trends for which the classic empirical models fail to model correctly. As such, the new model is much more accurate than the classic models, and in the meantime is more efficient than MD simulations. Therefore, it can serve as a more accurate and efficient boundary condition for rarefied gas flow simulations.

  2. Determination of gas volume trapped in a closed fluid system

    NASA Technical Reports Server (NTRS)

    Hunter, W. F.; Jolley, J. E.

    1971-01-01

    Technique involves extracting known volume of fluid and measuring system before and after extraction, volume of entrapped gas is then computed. Formula derived from ideal gas laws is basis of this method. Technique is applicable to thermodynamic cycles and hydraulic systems.

  3. Aerophagia and Intestinal Gas.

    PubMed

    Quigley, Eamonn M. M.

    2002-08-01

    Aerophagia refers to a rather rare disorder that may occur in both children and adults that features repetitive air swallowing and belching and that may result in abdominal distention. There are few, if any, controlled studies to guide therapy, which remains largely supportive but may include behavioral therapy and psychotherapy. Bloating, distention, and other gas-related symptoms are common in functional gastrointestinal disorders, including the irritable bowel syndrome; their pathophysiology remains, for the most part, poorly understood. Two separate phenomena need to be distinguished in these disorders: gas production and gas perception. Thus, whereas gas production, which relates most closely to flatus emissions, is probably within the normal range in most patients with irritable bowel syndrome, gas transport or transit through the gut may be impaired and may lead to the retention of gas within segments of the gut. Visceral hypersensitivity, a common phenomenon in all functional disorders, may exacerbate the sensation of distention and contribute to other "gas-related" symptoms. Few controlled studies have addressed any of these issues. Although, on an empiric basis, dietary therapy may be partially effective in some situations, there is at present no data to support the use of any form of pharmacologic, endoscopic, or surgical therapy for any of these symptoms.

  4. A new method for noninvasive measurement of pulmonary gas exchange using expired gas.

    PubMed

    West, John B; Prisk, G Kim

    2018-01-01

    Measurement of the gas exchange efficiency of the lung is often required in the practice of pulmonary medicine and in other settings. The traditional standard is the values of the PO2, PCO2, and pH of arterial blood. However arterial puncture requires technical expertise, is invasive, uncomfortable for the patient, and expensive. Here we describe how the composition of expired gas can be used in conjunction with pulse oximetry to obtain useful measures of gas exchange efficiency. The new procedure is noninvasive, well tolerated by the patient, and takes only a few minutes. It could be particularly useful when repeated measurements of pulmonary gas exchange are required. One product of the procedure is the difference between the PO2 of end-tidal alveolar gas and the calculated PO2 of arterial blood. This measurement is related to the classical alveolar-arterial PO2 difference based on ideal alveolar gas. However that traditional index is heavily influenced by lung units with low ventilation-perfusion ratios, whereas the new index has a broader physiological basis because it includes contributions from the whole lung. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Perfect gas effects in compressible rapid distortion theory

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Myers, M. R.

    1987-01-01

    The governing equations presented for small amplitude unsteady disturbances imposed on steady, compressible mean flows that are two-dimensional and nearly uniform have their basis in the perfect gas equations of state, and therefore generalize previous results based on tangent gas theory. While these equations are more complex, this complexity is required for adequate treatment of high frequency disturbances, especially when the base flow Mach number is large; under such circumstances, the simplifying assumptions of tangent gas theory are not applicable.

  6. Optimization of gas condensate Field A development on the basis of "reservoir - gathering facilities system" integrated model

    NASA Astrophysics Data System (ADS)

    Demidova, E. A.; Maksyutina, O. V.

    2015-02-01

    It is known that many gas condensate fields are challenged with liquid loading and condensate banking problems. Therefore, gas production is declining with time. In this paper hydraulic fracturing treatment was considered as a method to improve the productivity of wells and consequently to exclude the factors that lead to production decline. This paper presents the analysis of gas condensate Field A development optimization with the purpose of maintaining constant gas production at the 2013 level for 8 years taking into account mentioned factors . To optimize the development of the filed, an integrated model was created. The integrated model of the field implies constructing the uniform model of the field consisting of the coupling models of the reservoir, wells and surface facilities. This model allowed optimizing each of the elements of the model separately and also taking into account the mutual influence of these elements. Using the integrated model, five development scenarios were analyzed and an optimal scenario was chosen. The NPV of this scenario equals 7,277 mln RUR, cumulative gas production - 12,160.6 mln m3, cumulative condensate production - 1.8 mln tons.

  7. System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts

    NASA Astrophysics Data System (ADS)

    Blumberga, Andra; Timma, Lelde; Blumberga, Dagnija

    2015-12-01

    When the renewable energy is used, the challenge is match the supply of intermittent energy with the demand for energy therefore the energy storage solutions should be used. This paper is dedicated to hydrogen accumulation from wind sources. The case study investigates the conceptual system that uses intermitted renewable energy resources to produce hydrogen (power-to-gas concept) and fuel (power-to-liquid concept). For this specific case study hydrogen is produced from surplus electricity generated by wind power plant trough electrolysis process and fuel is obtained by upgrading biogas to biomethane using hydrogen. System dynamic model is created for this conceptual system. The developed system dynamics model has been used to simulate 2 different scenarios. The results show that in both scenarios the point at which the all electricity needs of Latvia are covered is obtained. Moreover, the methodology of system dynamics used in this paper is white-box model that allows to apply the developed model to other case studies and/or to modify model based on the newest data. The developed model can be used for both scientific research and policy makers to better understand the dynamic relation within the system and the response of system to changes in both internal and external factors.

  8. DEVELOPMENT OF A MATHEMATICAL BASIS FOR RELATING SLUDGE PROPERTIES TO FGD-SCRUBBER OPERATING VARIABLES

    EPA Science Inventory

    The report gives results of research to investigate prospects for increasing the size of calcium sulfite sludge particles in flue gas desulfurization systems. The approach included four work packages: a literature survey and development of a mathematical basis for predicting calc...

  9. Inferential determination of various properties of a gas mixture

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2007-03-27

    Methods for inferentially determining various properties of a gas mixture, when the speed of sound in the gas is known at an arbitrary temperature and pressure. The method can be applied to natural gas mixtures, where the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for heating value calculations. The method may also be applied to inferentially determine density and molecular weight for gas mixtures other than natural gases.

  10. Quantitative basis for component factors of gas flow proportional counting efficiencies

    NASA Astrophysics Data System (ADS)

    Nichols, Michael C.

    This dissertation investigates the counting efficiency calibration of a gas flow proportional counter with beta-particle emitters in order to (1) determine by measurements and simulation the values of the component factors of beta-particle counting efficiency for a proportional counter, (2) compare the simulation results and measured counting efficiencies, and (3) determine the uncertainty of the simulation and measurements. Monte Carlo simulation results by the MCNP5 code were compared with measured counting efficiencies as a function of sample thickness for 14C, 89Sr, 90Sr, and 90Y. The Monte Carlo model simulated strontium carbonate with areal thicknesses from 0.1 to 35 mg cm-2. The samples were precipitated as strontium carbonate with areal thicknesses from 3 to 33 mg cm-2 , mounted on membrane filters, and counted on a low background gas flow proportional counter. The estimated fractional standard deviation was 2--4% (except 6% for 14C) for efficiency measurements of the radionuclides. The Monte Carlo simulations have uncertainties estimated to be 5 to 6 percent for carbon-14 and 2.4 percent for strontium-89, strontium-90, and yttrium-90. The curves of simulated counting efficiency vs. sample areal thickness agreed within 3% of the curves of best fit drawn through the 25--49 measured points for each of the four radionuclides. Contributions from this research include development of uncertainty budgets for the analytical processes; evaluation of alternative methods for determining chemical yield critical to the measurement process; correcting a bias found in the MCNP normalization of beta spectra histogram; clarifying the interpretation of the commonly used ICRU beta-particle spectra for use by MCNP; and evaluation of instrument parameters as applied to the simulation model to obtain estimates of the counting efficiency from simulated pulse height tallies.

  11. Performance evaluation of restaurant food waste and biowaste to biogas pilot projects in China and implications for national policy.

    PubMed

    De Clercq, Djavan; Wen, Zongguo; Fan, Fei

    2017-03-15

    The objective of this research was to conduct a performance evaluation of three food waste/biowaste-to-biogas pilot projects across 7 scenarios in China based on multi-criteria decision analysis (MCDA) methodology. The projects ranked included a food waste-biogas project in Beijing, a food waste-biogas project in Suzhou and a co-digestion project producing biomethane in Hainan. The projects were ranked from best to worst based on technical, economic and environmental criteria under the MCDA framework. The results demonstrated that some projects are encountering operational problems. Based on these findings, six national policy recommendations were provided: (1) shift away from capital investment subsidies to performance-based subsidies; (2) re-design feed in tariffs; (3) promote bio-methane and project clustering; (4) improve collection efficiency by incentivizing FW producers to direct waste to biogas projects; (5) incentivize biogas projects to produce multiple outputs; (6) incentivize food waste-based projects to co-digest food waste with other substrates for higher gas output. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Biohythane system using two steps of POME fermentation process for supplying electrical energi : economic evaluation

    NASA Astrophysics Data System (ADS)

    Zuldian, P.; Hastuti, Z. D.; Murti, S. D. S.; Adiarso

    2018-03-01

    Indonesia as the largest producer of palm oil in the world has the prospective to generate additional benefits such as electricity by utilizing Palm Oil Mill Effluent (POME). The high Chemical Oxygen Demand (COD) content of 35,000 ppm POME is a great potential for conversion to hydrogen and methane through a fermentation process. In this study, two stages of fermentation using a microbial consortium have been performed in the 1 m3 BioHythane reactor system to produce biohydrogen and biomethane. After two-stage fermentation process for 24 hours in this system, the microbial consortium succeeds in producing biohydrogen and biomethane of 32 and 60 vol. %, respectively. This gas product after the purification process could be converted to electricity to be 0.02 and 0.75 kWe, respectively. Furthermore, as result of economic calculation analysis, this biohythane system showed up the value of Capital Expenditures (CAPEX) of US 26,39540 and Operating Expenses (OPEX) of US 14,712 per year, and resulted total generated electricity cost of US 2.478 / kWh.

  13. Countercurrent extraction of soluble sugars from almond hulls and assessment of the bioenergy potential.

    PubMed

    Holtman, Kevin M; Offeman, Richard D; Franqui-Villanueva, Diana; Bayati, Andre K; Orts, William J

    2015-03-11

    Almond hulls contain considerable proportions (37% by dry weight) of water-soluble, fermentable sugars (sucrose, glucose, and fructose), which can be extracted for industrial purposes. The maximum optimal solids loading was determined to be 20% for sugar extraction, and the addition of 0.5% (w/v) pectinase aided in maintaining a sufficient free water volume for sugar recovery. A laboratory countercurrent extraction experiment utilizing a 1 h steep followed by three extraction (wash) stages produced a high-concentration (131 g/L fermentable sugar) syrup. Overall, sugar recovery efficiency was 88%. The inner stage washing efficiencies were compatible with solution equilibrium calculations, indicating that efficiency was high. The concentrated sugar syrup was fermented to ethanol at high efficiency (86% conversion), and ethanol concentrations in the broth were 7.4% (v/v). Thin stillage contained 233 g SCOD/L, which was converted to biomethane at an efficiency of 90% with a biomethane potential of 297 mL/g SCODdestroyed. Overall, results suggested that a minima of 49 gal (185 L) ethanol and 75 m(3) methane/t hulls (dry whole hull basis) are achievable.

  14. Radon in unconventional natural gas from gulf coast geopressured-geothermal reservoirs

    USGS Publications Warehouse

    Kraemer, T.F.

    1986-01-01

    Radon-222 has been measured in natural gas produced from experimental geopressured-geothermal test wells. Comparison with published data suggests that while radon activity of this unconventional natural gas resource is higher than conventional gas produced in the gulf coast, it is within the range found for conventional gas produced throughout the U.S. A method of predicting the likely radon activity of this unconventional gas is described on the basis of the data presented, methane solubility, and known or assumed reservoir conditions of temperature, fluid pressure, and formation water salinity.

  15. Detection of Greenhouse-Gas-Induced Climatic Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  16. Bioaugmentation of the anaerobic digestion of food waste by dungs of herbivore, carnivore, and omnivore zoo animals.

    PubMed

    Ariunbaatar, Javkhlan; Ozcan, Onur; Bair, Robert; Esposito, Giovanni; Ball, Ray; Lens, Piet N L; Yeh, Daniel H

    2018-02-01

    The potential improvement of biomethanation of food waste (FW) by adding dung of herbivore (giraffe, llama, koala), carnivore (tiger), and omnivore (sloth bear) animals to anaerobic sludge (AnS) was investigated. Adding 30% giraffe, sloth bear or koala dung to the AnS inoculum yielded, respectively, a 11.17 (±4.51), 10.10 (±1.23), and 1.41 (±0.56)% higher biomethane production, as compared to the control (FW with solely AnS). The highest biomethane production of 564.00 (±3.88) ml CH 4 /gVS added obtained with 30% giraffe dung and 70% AnS was attributed to a higher solubilization of proteins (6.96 ± 2.76%) and recalcitrant carbohydrates (344.85 ± 54.31 mg/L as compared to zero). The biomethanation process could have been stimulated by the microorganisms or enzymes newly introduced, and/or the trace elements (Ni, Zn, and Co) present in the giraffe dung. These results indicate that bioaugmentation with zoo animals dung is worthy of further investigation as a strategy for improving the biomethane recovery from organic wastes.

  17. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  18. Natural gas imports and exports, first quarter report 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent reporting quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basismore » to Canada and Mexico.« less

  19. Biomethane

    Science.gov Websites

    ; wastewater treatment; and industrial, institutional, and commercial organic waste (IIC). The purpose of this used in any advertising or publicity to endorse or promote any product or commercial entity using or FIPS ESRI OWCH4t Methane generation potential from industrial, institutional, and commercial organic

  20. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    NASA Astrophysics Data System (ADS)

    Spackman, Peter R.; Karton, Amir

    2015-05-01

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol-1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol-1.

  1. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/ormore » second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.« less

  2. Biomethanation of a mixture of salty cheese whey and poultry waste or cattle dung - a study of effect of temperature and retention time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, C.; Madamwar, D.

    1996-08-01

    This paper describes the results of a study aimed at improving the efficiency of anaerobic digestion of salty cheese whey in combination with poultry waste or cattle dung. Best results were obtained when salty cheese whey was mixed with poultry waste in the ratio of 7:3, or cattle dung in the ratio of 1:1, both on dry weight basis giving maximum gas production of 1.2 L/L of digester/d with enriched methane content of 64% and 1.3 L/L of digester/d having methane content of 63% respectively. Various conditions such as temperature and retention time have been optimized for maximum process performance.more » 16 refs., 3 figs.« less

  3. Biomass Data | Geospatial Data Science | NREL

    Science.gov Websites

    Biomass Data Biomass Data These datasets detail the biomass resources available in the United Coverage File Last Updated Metadata Biomethane Zip 72.2 MB 10/30/2014 Biomethane.xml Solid Biomass Zip 69.5

  4. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  5. Prediction of gas chromatographic retention indices by the use of radial basis function neural networks.

    PubMed

    Yao, Xiaojun; Zhang, Xiaoyun; Zhang, Ruisheng; Liu, Mancang; Hu, Zhide; Fan, Botao

    2002-05-16

    A new method for the prediction of retention indices for a diverse set of compounds from their physicochemical parameters has been proposed. The two used input parameters for representing molecular properties are boiling point and molar volume. Models relating relationships between physicochemical parameters and retention indices of compounds are constructed by means of radial basis function neural networks. To get the best prediction results, some strategies are also employed to optimize the topology and learning parameters of the RBFNNs. For the test set, a predictive correlation coefficient R=0.9910 and root mean squared error of 14.1 are obtained. Results show that radial basis function networks can give satisfactory prediction ability and its optimization is less-time consuming and easy to implement.

  6. Natural gas imports and exports. First quarter report 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    The Office of Fuels Programs Prepares quarterly reports Summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This report is for the first quarter of 1994 (January--March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past twelve months. Attachment Cmore » shows volume and price information for gas imported on a short-term basis. Attachment D shows the gas exported on a short-term basis to Canada and Mexico. During the first three months of 1994, data indicates that gas imports grew by about 14 percent over the level of the first quarter of 1993 (668 vs. 586 Bcf), with Canadian and Algerian imports increasing by 12 and 53 percent, respectively. During the same time period, exports declined by 15 percent (41 vs. 48 Bcf). Exports to Canada increased by 10 percent from the 1993 level (22 vs. 20 Bcf) and exports to Mexico decreased by 64 percent (5 vs. 14 Bcf).« less

  7. A Gas Lubricant Combined Support-sealing Node

    NASA Astrophysics Data System (ADS)

    Falaleev, S. V.; Nadjari, H.; Vinogradov, A. S.

    2018-01-01

    The purpose of the research provided in this article is to develop a gas-dynamic device capable of performing the functions of support sealing, unloading devices for axial thrust bearings and damping of axial vibrations of the rotor. Some kinds of seals applied in supports of aircraft engines are known. A face gas-dynamic seal is one of the most effective and standard technology solution for compressors. As the basic element of the developed device, a face gas-dynamic seal with spiral grooves is considered. It also includes the fundamental mathematical calculation of such devices and the experimental research outcomes that form the basis of which such devices can be produced and adapted for use.

  8. Evaluation of gas cooling for pressurized phosphoric acid fuel cell stacks

    NASA Technical Reports Server (NTRS)

    Farooque, M.; Skok, A. J.; Maru, H. C.; Kothmann, R. E.; Harry, R. W.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas cooling has already been demonstrated in atmospheric pressure stacks. This paper presents theoretical and experimental investigation of gas cooling for pressurized PAFC. Two approaches to gas cooling, Distributed Gas Cooling (DIGAS) and Separated Gas Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  9. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. L. Sharp; R. T. McCracken

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzedmore » in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR

  10. Prospecting for marine gas hydrate resources

    USGS Publications Warehouse

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  11. Measurement of gas viscosity using photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Gao, R.-K.; Sheehe, S. L.; Kurtz, J.; O'Byrne, S.

    2016-11-01

    A new measurement technique for gas viscosity coefficient is designed and demonstrated using the technique of tunable diode laser absorption spectroscopy (TDLAS). Gas flow is driven by a pressure gradient between two gas cells, through a photonic crystal fiber (PCF) surrounded by a furnace for temperature adjustment. PCF with 20-micron diameter affords physical space for gas-light interaction and provides a basis for gas viscosity measurement by determining the time for flow to exit a capillary tube under the influence of a pressure gradient. Infrared radiation from a diode laser is coupled into the fiber to be guided through the gas, and the light attenuation due to absorption from the molecular absorbing species is measured by a photo detector placed at the exit of the fiber. A numerical model from Sharipov and Graur describing local number density distribution in a unsteady state is applied for the determination of gas viscosity, based on the number density of gas measured by the absorption of the laser light, using the Beer-Lambert law. The measurement system is confirmed by measuring the viscosity of CO2 as a reference gas.

  12. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    PubMed

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-05

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.

  13. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation

    PubMed Central

    Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan

    2014-01-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  14. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent - Magnetic separation and recycling of magnetite.

    PubMed

    Baek, Gahyun; Jung, Heejung; Kim, Jaai; Lee, Changsoo

    2017-10-01

    Promotion of direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and electron-utilizing methanogens has recently been discussed as a new method for enhanced biomethanation. This study evaluated the effect of magnetite-promoted DIET in continuous anaerobic digestion of dairy effluent and tested the magnetic separation and recycling of magnetite to avoid continuous magnetite addition. The applied magnetite recycling method effectively supported enhanced DIET activity and biomethanation performance over a long period (>250days) without adding extra magnetite. DIET via magnetite particles as electrical conduits was likely the main mechanism for the enhanced biomethanation. Magnetite formed complex aggregate structures with microbes, and magnetite recycling also helped retain more biomass in the process. Methanosaeta was likely the major methanogen group responsible for DIET-based methanogenesis, in association with Proteobacteria and Chloroflexi populations as syntrophic partners. The recycling approach proved robust and effective, highlighting the potential of magnetite recycling for high-rate biomethanation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    PubMed

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. Copyright © 2014. Published by Elsevier Ltd.

  16. Use of certain alternative fuels in road transport in Poland

    NASA Astrophysics Data System (ADS)

    Gis, W.; Pielecha, J.; Waśkiewicz, J.; Gis, M.; Menes, M.

    2016-09-01

    The development of biomethane and hydrogen technology in the road transport in the EU countries is recommended, among the others, in the Directive of the European Parliament and of the Council 2014/94/EU of 22 October 2014. Under the provisions of the said Directive, it is recommended to EU countries to use biomethane and progressively ensure accessibility to hydrogen cars on their territories, and above all to ensure the possibility of driving hydrogen vehicles between the member States. The territorial accessibility for biomethane vehicles is determined by the availability of biomethane refuelling infrastructure in the first place in cities and then on the road network distances recommended in this directive. The territorial accessibility for hydrogen vehicles is determined by the availability of hydrogen refuelling infrastructure, in the first place along the TEN-T network. The article presents the possibilities of using these alternative fuels in Poland, presenting some of the results of research and analysis in this area.

  17. Prospective gas turbine and combined-cycle units for power engineering (a Review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2013-02-01

    The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.

  18. Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste.

    PubMed

    Morero, Betzabet; Vicentin, Rocio; Campanella, Enrique A

    2017-03-01

    In Argentina, there is an important potential to utilize organic waste to generate bioenergy. This work analyzes the environmental impacts and the energetic and economic requirements of the biogas produced by digesting the sewage sludge (SS) produced in a wastewater treatment plant in a medium city in Argentina. The SS is co-digested with the organic fraction of municipal solid waste (OFMSW), and the basis of this study is the life cycle assessment (LCA). The LCA is performed according to ISO 14040-44 using the SimaPro simulator. First, the transport of the raw materials to the biogas plant was defined. Then, the co-digestion and the biogas treatment for final use were evaluated. The co-digestion was improved with glycerol, and the generation of biogas was estimated using the GPS-X software. Two alternatives for the end use of biogas were considered: combined heat and power (CHP) and biomethane generation. For the first, H 2 S and water vapor were removed from the raw biogas stream, and for the second, also CO 2 was removed. The H 2 S removal process was simulated in the SuperPro software by anaerobic biofiltration. The same software was used to simulate the removal of CO 2 absorption-desorption with water as solvent. Finally, the environmental impacts related to the end use of biogas (CHP and biomethane) were evaluated. The environmental, energetic and economic analyses showed that the co-digestion of SS and OFMSW has great potential for reducing the environmental impacts and increasing the economic and energetic value of the substances via the production of biomethane, electricity and, potentially, fertilizer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A life cycle assessment of distributed energy production from organic waste: Two case studies in Europe.

    PubMed

    Evangelisti, Sara; Clift, Roland; Tagliaferri, Carla; Lettieri, Paola

    2017-06-01

    By means of the life cycle assessment methodology, the purpose of this study is to assess the environmental impact when biomethane from organic waste produced at residential level is used to supply energy to a group of dwellings in the distributed generation paradigm. Three different Combined Heat and Power systems, such as fuel cells, Stirling engine and micro gas turbine, installed at household level are assessed in two different settings: one in Northern Europe (UK) and one in Southern Europe (Italy). Different operating strategies are investigated for each technology. Moreover, marginal electricity production technologies are analysed to assess their influence on the results. This study has demonstrated that the type of bio-methane fed micro-CHP technology employed has a significantly different environmental impact: fuel cells are the most environmentally friendly solution in every category analysed; Stirling engines, although can supply heat to the largest number of dwellings are the least environmentally friendly technology. However, key factors investigated in the model presented in this paper influence the decision making on the type of technology adopted and the operating strategy to be implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biogas cleaning and upgrading with natural zeolites from tuffs.

    PubMed

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-01-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 <2 g m(-3), i.e. 0.1%; H2S <1.5 mg m(-3)), suitable for injection in national grids or as vehicle fuel. The loading capacity was found to be 45 g kg(-1) and 40 mg kg(-1), for CO2 and H2S, respectively. Synthetic gas mixtures and real biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process.

  1. Tear gas: an epidemiological and mechanistic reassessment

    PubMed Central

    Rothenberg, Craig; Achanta, Satyanarayana; Svendsen, Erik R.

    2016-01-01

    Deployments of tear gas and pepper spray have rapidly increased worldwide. Large amounts of tear gas have been used in densely populated cities, including Cairo, Istanbul, Rio de Janeiro, Manama (Bahrain), and Hong Kong. In the United States, tear gas was used extensively during recent riots in Ferguson, Missouri. Whereas tear gas deployment systems have rapidly improved—with aerial drone systems tested and requested by law enforcement—epidemiological and mechanistic research have lagged behind and have received little attention. Case studies and recent epidemiological studies revealed that tear gas agents can cause lung, cutaneous, and ocular injuries, with individuals affected by chronic morbidities at high risk for complications. Mechanistic studies identified the ion channels TRPV1 and TRPA1 as targets of capsaicin in pepper spray, and of the tear gas agents chloroacetophenone, CS, and CR. TRPV1 and TRPA1 localize to pain‐sensing peripheral sensory neurons and have been linked to acute and chronic pain, cough, asthma, lung injury, dermatitis, itch, and neurodegeneration. In animal models, transient receptor potential inhibitors show promising effects as potential countermeasures against tear gas injuries. On the basis of the available data, a reassessment of the health risks of tear gas exposures in the civilian population is advised, and development of new countermeasures is proposed. PMID:27391380

  2. A component prediction method for flue gas of natural gas combustion based on nonlinear partial least squares method.

    PubMed

    Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun

    2014-01-01

    Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.

  3. 78 FR 68161 - Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... measurements corrected for temperature and non-ideal gas behavior). For gases with low volume consumption for... effect of that abatement system when using either the emission factors and calculation methods in 40 CFR...) basis. To develop the preliminary estimate, the reporter must use the gas consumption in the tools...

  4. Reducing greenhouse gas emissions in grassland ecosystems of the Central Lithuania: multi-criteria evaluation on a basis of the ARAS method.

    PubMed

    Balezentiene, Ligita; Kusta, Albinas

    2012-01-01

    N(2)O, CH(4), and CO(2) are potential greenhouse gas (GHG) contributing to climate change; therefore, solutions have to be sought to reduce their emission from agriculture. This work evaluates GHG emission from grasslands submitted to different mineral fertilizers during vegetation period (June-September) in two experimental sites, namely, seminatural grassland (8 treatments of mineral fertilizers) and cultural pasture (intensively managed) in the Training Farm of the Lithuanian University of Agriculture. Chamber method was applied for evaluation of GHG emissions on the field scale. As a result, soil chemical composition, compactness, temperature, and gravimetric moisture as well as biomass yield of fresh and dry biomass and botanical composition, were assessed during the research. Furthermore, a simulation of multi-criteria assessment of sustainable fertilizers management was carried out on a basis of ARAS method. The multicriteria analysis of different fertilizing regimes was based on a system of environmental and productivity indices. Consequently, agroecosystems of cultural pasture (N(180)P(120)K(150)) and seminatural grassland fertilizing rates N(180)P(120)K(150) and N(60)P(40)K(50) were evaluated as the most sustainable alternatives leading to reduction of emissions between biosphere-atmosphere and human-induced biogenic pollution in grassland ecosystems, thus contributing to improvement of countryside environment.

  5. Reducing Greenhouse Gas Emissions in Grassland Ecosystems of the Central Lithuania: Multi-Criteria Evaluation on a Basis of the ARAS Method

    PubMed Central

    Balezentiene, Ligita; Kusta, Albinas

    2012-01-01

    N2O, CH4, and CO2 are potential greenhouse gas (GHG) contributing to climate change; therefore, solutions have to be sought to reduce their emission from agriculture. This work evaluates GHG emission from grasslands submitted to different mineral fertilizers during vegetation period (June–September) in two experimental sites, namely, seminatural grassland (8 treatments of mineral fertilizers) and cultural pasture (intensively managed) in the Training Farm of the Lithuanian University of Agriculture. Chamber method was applied for evaluation of GHG emissions on the field scale. As a result, soil chemical composition, compactness, temperature, and gravimetric moisture as well as biomass yield of fresh and dry biomass and botanical composition, were assessed during the research. Furthermore, a simulation of multi-criteria assessment of sustainable fertilizers management was carried out on a basis of ARAS method. The multicriteria analysis of different fertilizing regimes was based on a system of environmental and productivity indices. Consequently, agroecosystems of cultural pasture (N180P120K150) and seminatural grassland fertilizing rates N180P120K150 and N60P40K50 were evaluated as the most sustainable alternatives leading to reduction of emissions between biosphere-atmosphere and human-induced biogenic pollution in grassland ecosystems, thus contributing to improvement of countryside environment. PMID:22645463

  6. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.

    PubMed

    Tilche, Andrea; Galatola, Michele

    2008-01-01

    Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was "born" as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a

  7. Analysis of digester design concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashare, E.; Wilson, E. H.

    1979-01-29

    Engineering economic analyses were performed on various digester design concepts to determine the relative performance for various biomass feedstocks. A comprehensive literature survey describing the state-of-the-art of the various digestion designs is included. The digester designs included in the analyses are CSTR, plug flow, batch, CSTR in series, multi-stage digestion and biomethanation. Other process options investigated included pretreatment processes such as shredding, degritting, and chemical pretreatment, and post-digestion processes, such as dewatering and gas purification. The biomass sources considered include feedlot manure, rice straw, and bagasse. The results of the analysis indicate that the most economical (on a unit gasmore » cost basis) digester design concept is the plug flow reactor. This conclusion results from this system providing a high gas production rate combined with a low capital hole-in-the-ground digester design concept. The costs determined in this analysis do not include any credits or penalties for feedstock or by-products, but present the costs only for conversion of biomass to methane. The batch land-fill type digester design was shown to have a unit gas cost comparable to that for a conventional stirred tank digester, with the potential of reducing the cost if a land-fill site were available for a lower cost per unit volume. The use of chemical pretreatment resulted in a higher unit gas cost, primarily due to the cost of pretreatment chemical. A sensitivity analysis indicated that the use of chemical pretreatment could improve the economics provided a process could be developed which utilized either less pretreatment chemical or a less costly chemical. The use of other process options resulted in higher unit gas costs. These options should only be used when necessary for proper process performance, or to result in production of a valuable by-product.« less

  8. Centrifugal Gas Compression Cycle

    NASA Astrophysics Data System (ADS)

    Fultun, Roy

    2002-11-01

    A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.

  9. The methodology of the gas turbine efficiency calculation

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Job, Marcin; Brzęczek, Mateusz; Nawrat, Krzysztof; Mędrych, Janusz

    2016-12-01

    In the paper a calculation methodology of isentropic efficiency of a compressor and turbine in a gas turbine installation on the basis of polytropic efficiency characteristics is presented. A gas turbine model is developed into software for power plant simulation. There are shown the calculation algorithms based on iterative model for isentropic efficiency of the compressor and for isentropic efficiency of the turbine based on the turbine inlet temperature. The isentropic efficiency characteristics of the compressor and the turbine are developed by means of the above mentioned algorithms. The gas turbine development for the high compressor ratios was the main driving force for this analysis. The obtained gas turbine electric efficiency characteristics show that an increase of pressure ratio above 50 is not justified due to the slight increase in the efficiency with a significant increase of turbine inlet combustor outlet and temperature.

  10. A novel ethanol gas sensor-ZnS/ cyclohexylamine hybrid nanowires.

    PubMed

    Xu, Lin; Song, Hongwei; Zhang, Tong; Fan, Huitao; Fan, Libo; Wang, Yu; Dong, Biao; Bai, Xue

    2011-03-01

    We fabricated a novel ethanol gas sensor based on organic-inorganic ZnS/cyclohexylamine (CHA) nanowires via a solvothermal route. The sensor exhibited significantly better performance with response time of approximately 0.6 s and recovery time of approximately 10 s even under a low ethanol concentration and the high surface area, small nanofiber diameter, and hybrid nature made the ZnS/CHA nanowire gas sensor have high sensitivity to ethanol gas at a lower operating current of 160 mA. Moreover, the gas sensing mechanism was proposed on the basis of the two simultaneous steps to explain the adsorbing process due to the hybrid nature. This work indicates that the ZnS/CHA hybrid can be a novel candidate for the ethanol gas sensor with high performance.

  11. Magnetic Tracking of Gas Hydrate Deposits.

    NASA Astrophysics Data System (ADS)

    Lowe, C.; Enkin, R. J.; Judith, B.; Dallimore, S. R.

    2005-12-01

    Analysis of recovered core from the Mallik gas hydrate field in the Mackenzie Delta, Northwest Territories, Canada demonstrates that the magnetic properties of hydrate-bearing strata differ significantly from those strata lacking gas hydrate. The recovered core, which extends from just above (885 m) to just below (1152 m) observed gas hydrate occurrences (891-1107 m), comprises a series of six stratigraphic units that are either sand or silt dominated. Gas hydrate is preferentially concentrated in the higher porosity, sand-dominated units. Although the sediment source region for the Mackenzie Delta is sufficiently large that silts and sands have similar primary mineralogy, their magnetic properties are distinct. Magnetite, apparent in silt units with porosities too low to accommodate significant gas hydrate deposits, is reduced to iron sulphide in the gas hydrate-bearing sand horizons. The degree of the observed magnetic reduction increases with increasing gas hydrate concentration. Furthermore, silts retain their primary magnetism, whereas sands are remagnetized. Two independent investigations of marine gas hydrate occurrences (Blake Ridge, offshore eastern USA and Cascadia, offshore western Canada) demonstrate similar magnetic reduction within known gas hydrate fields, and an even larger depletion of magnetic minerals in vent zones where methane is actively fluxing to surface. Collectively, the findings from these three regions indicate that porosity and structure are fundamental controls on methane pathways. Investigations are presently underway to determine the precise triggers and chemical pathways of the observed magnetic reductions. However, findings to date indicate that magnetic studies of host sediments in gas hydrate systems provide a powerful lithologic correlation tool, a window into the processes associated with gas hydrate formation, and form the basis of quantitative analysis of magnetic surveys over gas hydrate deposits.

  12. Light-induced phenomena in one-component gas: The transport phenomena

    NASA Astrophysics Data System (ADS)

    Chermyaninov, I. V.; Chernyak, V. G.

    2016-09-01

    The article presents the theory of transport processes in a one-component gas located in the capillary under the action of resonant laser radiation and the temperature and pressure gradients. The expressions for the kinetic coefficients determining heat and mass transport in the gas are obtained on the basis of the modified Boltzmann equations for the excited and unexcited particles. The Onsager reciprocal relations for cross kinetic coefficients are proven for all Knudsen numbers and for any law interaction of gas particles with each other and boundary surface. Light-induced phenomena associated with the possible non-equilibrium stationary states of system are analyzed.

  13. Dry Volume Fracturing Simulation of Shale Gas Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, Guixi; Wang, Shuzhong; Luo, Xiangrong; Jing, Zefeng

    2017-11-01

    Application of CO2 dry fracturing technology to shale gas reservoir development in China has advantages of no water consumption, little reservoir damage and promoting CH4 desorption. This paper uses Meyer simulation to study complex fracture network extension and the distribution characteristics of shale gas reservoirs in the CO2 dry volume fracturing process. The simulation results prove the validity of the modified CO2 dry fracturing fluid used in shale volume fracturing and provides a theoretical basis for the following study on interval optimization of the shale reservoir dry volume fracturing.

  14. On the effects of basis set truncation and electron correlation in conformers of 2-hydroxy-acetamide

    NASA Astrophysics Data System (ADS)

    Szarecka, A.; Day, G.; Grout, P. J.; Wilson, S.

    Ab initio quantum chemical calculations have been used to study the differences in energy between two gas phase conformers of the 2-hydroxy-acetamide molecule that possess intramolecular hydrogen bonding. In particular, rotation around the central C-C bond has been considered as a factor determining the structure of the hydrogen bond and stabilization of the conformer. Energy calculations include full geometiy optimization using both the restricted matrix Hartree-Fock model and second-order many-body perturbation theory with a number of commonly used basis sets. The basis sets employed ranged from the minimal STO-3G set to [`]split-valence' sets up to 6-31 G. The effects of polarization functions were also studied. The results display a strong basis set dependence.

  15. Gas hydrate prospecting using well cuttings and mud-gas geochemistry from 35 wells, North Slope, Alaska

    USGS Publications Warehouse

    Lorenson, T.D.; Collett, Timothy S.

    2011-01-01

    Gas hydrate deposits are common on the North Slope of Alaska around Prudhoe Bay; however, the extent of these deposits is unknown outside of this area. As part of a U.S. Geological Survey (USGS) and Bureau of Land Management gas hydrate research collaboration, well-cutting and mud-gas samples have been collected and analyzed from mainly industry-drilled wells on the North Slope for the purpose of prospecting for gas hydrate deposits. On the Alaska North Slope, gas hydrates are now recognized as an element within a petroleum systems approach or "total petroleum system." Since 1979, 35 wells have been sampled from as far west as Wainwright to Prudhoe Bay in the east. Regionally, the USGS has assessed the gas hydrate resources of the North Slope and determined that there is about 85.4 trillion cubic feet of technically recoverable hydrate-bound gas within three assessment units. The assessment units are defined mainly by three separate stratigraphic sections and constrained by the physical temperatures and pressures where gas hydrate can form. Geochemical studies of known gas hydrate occurrences on the North Slope have shown a link between gas hydrate and more deeply buried conventional oil and gas deposits. The link is established when hydrocarbon gases migrate from depth and charge the reservoir rock within the gas hydrate stability zone. It is likely gases migrated into conventional traps as free gas and were later converted to gas hydrate in response to climate cooling concurrent with permafrost formation. Results from this study indicate that some thermogenic gas is present in 31 of the wells, with limited evidence of thermogenic gas in four other wells and only one well with no thermogenic gas. Gas hydrate is known to occur in one of the sampled wells, likely present in 22 others on the basis of gas geochemistry, and inferred by equivocal gas geochemistry in 11 wells, and one well was without gas hydrate. Gas migration routes are common in the North Slope and

  16. Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes.

    PubMed

    Kumar, Sumit; Sharma, Anshu; Tripathi, Balram; Srivastava, Subodh; Agrawal, Shweta; Singh, M; Awasthi, Kamlendra; Vijay, Y K

    2010-10-01

    The multi-walled carbon nanotube (MWCNT) dispersed polymethylmethacrylate (PMMA) composite membranes have been prepared for hydrogen gas permeation application. Composite membranes are characterized by Raman spectroscopy, optical microscopy, X-ray diffraction, electrical measurements and gas permeability measurements. The effect of electric field alignment of MWCNT in PMMA matrix on gas permeation has been studied for hydrogen gas. The permeability measurements indicated that the electrically aligned MWCNT in PMMA has shown almost 2 times higher permeability for hydrogen gas as compare to randomly dispersed MWCNT in PMMA. The enhancement in permeability is explained on the basis of well aligned easy channel provided by MWCNT in electrically aligned sample. The effect of thickness of membrane on the gas permeability also studied and thickness of about 30microm found to be optimum thickness for fast hydrogen gas permeates.

  17. Use of a microwave diagnostics technique to measure the temperature of an axisymmetric ionized gas flow

    NASA Astrophysics Data System (ADS)

    Tsel'Sov, Iu. G.; Kondrat'ev, A. S.

    1990-12-01

    A method is developed for determining the temperature of an ionized gas on the basis of electron-density sounding. This technique is used to measure the cross-sectional temperature distribution of an axisymmetric ionized gas flow using microwave diagnostics.

  18. Klinkenberg effect in hydrodynamics of gas flow through anisotropic porous materials

    NASA Astrophysics Data System (ADS)

    Wałowski, Grzegorz; Filipczak, Gabriel

    2017-10-01

    This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics, both natural origin (rocky, pumice) and process materials (char and coke). The study was conducted for a variety of hydrodynamic conditions, using air, as well as for nitrogen and carbon dioxide. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally - as a result of their anisotropic internal structure - to a significant effect of the flow direction on the value of gas stream.

  19. Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Lodge, Jeffrey S; Williamson, Anahita A; Trabold, Thomas A

    2016-06-01

    Anaerobic digestion of commercial food waste is a promising alternative to landfilling commercial food waste. This study characterized 11 types of commercial food wastes and 12 co-digestion blends. Bio-methane potential, biodegradable fraction, and apparent first-order hydrolysis rate coefficients were reported based upon biochemical methane potential (BMP) assays. Food waste bio-methane potentials ranged from 165 to 496 mL CH4/g VS. Substrates high in lipids or readily degradable carbohydrates showed the highest methane production. Average bio-methane potential observed for co-digested substrates was -5% to +20% that of the bio-methane potential of the individual substrates weighted by VS content. Apparent hydrolysis rate coefficients ranged from 0.19d(-1) to 0.65d(-1). Co-digested substrates showed an accelerated apparent hydrolysis rate relative to the weighted average of individual substrate rates. These results provide a database of key bio-digestion parameters to advance modeling and utilization of commercial food waste in anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Implications of low natural gas prices on life cycle greenhouse gas emissions in the U.S. electricity sector

    NASA Astrophysics Data System (ADS)

    Jaramillo, P.; Venkatesh, A.; Griffin, M.; Matthews, S.

    2012-12-01

    Increased production of unconventional natural gas resources in the U.S. has drastically reduced the price of natural gas. While in 2005 prices went above 10/MMBtu, since 2011 they have been below 3/MMBtu. These low prices have encouraged the increase of natural gas utilization in the United States electricity sector. Natural gas can offset coal for power generation, reducing emissions such as greenhouse gases, sulfur and nitrogen oxides. In quantifying the benefit of offsetting coal by using natural gas, life cycle assessment (LCA) studies have shown up to 50% reductions in life cycle greenhouse gas (GHG) emissions can be expected. However, these studies predominantly use limited system boundaries that contain single individual coal and natural gas power plants. They do not consider (regional) fleets of power plants that are dispatched on the basis of their short-run marginal costs. In this study, simplified economic dispatch models (representing existing power plants in a given region) are developed for three U.S. regions - ERCOT, MISO and PJM. These models, along with historical load data are used to determine how natural gas utilization will increase in the short-term due to changes in natural gas price. The associated changes in fuel mix and life cycle GHG emissions are estimated. Results indicate that life cycle GHG emissions may, at best, decrease by 5-15% as a result of low natural gas prices, compared to almost 50% reductions estimated by previous LCAs. This study thus provides more reasonable estimates of potential reductions in GHG emissions from using natural gas instead of coal in the electricity sector in the short-term.

  1. High quality fuel gas from biomass pyrolysis with calcium oxide.

    PubMed

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  3. 26 CFR 1.611-2 - Rules applicable to mines, oil and gas wells, and other natural deposits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 7 2013-04-01 2013-04-01 false Rules applicable to mines, oil and gas wells....611-2 Rules applicable to mines, oil and gas wells, and other natural deposits. (a) Computation of cost depletion of mines, oil and gas wells, and other natural deposits. (1) The basis upon which cost...

  4. 26 CFR 1.611-2 - Rules applicable to mines, oil and gas wells, and other natural deposits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 7 2012-04-01 2012-04-01 false Rules applicable to mines, oil and gas wells....611-2 Rules applicable to mines, oil and gas wells, and other natural deposits. (a) Computation of cost depletion of mines, oil and gas wells, and other natural deposits. (1) The basis upon which cost...

  5. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    PubMed

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities. Study design and data collection II. Location of study herds relative to the oil and gas industry in Western Canada.

    PubMed

    Waldner, Cheryl L

    2008-01-01

    During the late part of 2000 and early months of 2001, project veterinarians recruited 205 beef herds to participate in a study of the effects of emissions from the upstream oil and gas industry on cattle reproduction and health. Researchers developed herd-selection criteria to optimize the range of exposure to facilities, including oil and gas wells, battery sites, and gas-gathering and gas-processing facilities across the major cattle-producing areas of Western Canada. Herds were initially selected on the basis of a ranking system of exposure potential on the basis of herd-owner reports of the locations of their operations in relation to oil and gas industry facilities. At the end of the study, researchers summarized data obtained from provincial regulatory agencies on facility location and reported flaring and venting volumes for each herd and compared these data to the original rankings of herd-exposure potential. Through this selection process, the researchers were successful in obtaining statistically significant differences in exposure to various types of oil and gas facility types and reported emissions among herds recruited for the study.

  7. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    EPA Science Inventory

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  8. Interdependency Assessment of Coupled Natural Gas and Power Systems in Energy Market

    NASA Astrophysics Data System (ADS)

    Yang, Hongzhao; Qiu, Jing; Zhang, Sanhua; Lai, Mingyong; Dong, Zhao Yang

    2015-12-01

    Owing to the technological development of natural gas exploration and the increasing penetration of gas-fired power generation, gas and power systems inevitably interact with each other from both physical and economic points of view. In order to effectively assess the two systems' interdependency, this paper proposes a systematic modeling framework and constructs simulation platforms for coupled gas and power systems in an energy market environment. By applying the proposed approach to the Australian national electricity market (NEM) and gas market, the impacts of six types of market and system factors are quantitatively analyzed, including power transmission limits, gas pipeline contingencies, gas pipeline flow constraints, carbon emission constraints, power load variations, and non-electric gas load variations. The important interdependency and infrastructure weakness for the two systems are well studied and identified. Our work provides a quantitative basis for grid operators and policy makers to support and guide operation and investment decisions for electric power and natural gas industries.

  9. Solar-assisted gas-energy water-heating feasibility for apartments

    NASA Technical Reports Server (NTRS)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  10. 26 CFR 1.1014-4 - Uniformity of basis; adjustment to basis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) INCOME TAX (CONTINUED) INCOME TAXES Basis Rules of General Application § 1.1014-4 Uniformity of basis... to property acquired by bequest, devise, or inheritance relate back to the death of the decedent... prescribing a general uniform basis rule for property acquired from a decedent is, on the one hand, to tax the...

  11. The Basis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, P.F.

    1989-05-16

    This paper discusses the basis system. Basis is a program development system for scientific programs. It has been developed over the last five years at Lawrence Livermore National Laboratory (LLNL), where it is now used in about twenty major programming efforts. The Basis System includes two major components, a program development system and a run-time package. The run-time package provides the Basis Language interpreter, through which the user does input, output, plotting, and control of the program's subroutines and functions. Variables in the scientific packages are known to this interpreter, so that the user may arbitrarily print, plot, and calculatemore » with, any major program variables. Also provided are facilities for dynamic memory management, terminal logs, error recovery, text-file i/o, and the attachment of non-Basis-developed packages.« less

  12. 30 CFR 206.152 - Valuation standards-unprocessed gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Use the same value for volumes that exceed the over-delivery tolerances even if those volumes are... the value to be determined on the basis of a percentage of the purchaser's proceeds resulting from... section. (2) The value of production, for royalty purposes, of gas subject to this subpart shall be the...

  13. Evaluation of coalbed gas potential of the Seelyville Coal Member, Indiana, USA

    USGS Publications Warehouse

    Drobniak, A.; Mastalerz, Maria; Rupp, J.; Eaton, N.

    2004-01-01

    The Seelyville Coal Member of the Linton Formation in Indiana potentially contains 0.03 trillion m3 (1.1 TCF) of coalbed gas. The gas content determined by canister desorption technique ranges from 0.5 to 5.7 cm3/g on dry ash free basis (15.4 to 182.2 scf/ton). The controls on gas content distribution are complex, and cannot be explained by the coal rank alone. Ash content and the lithology of the overlying strata, among other factors, may influence this distribution. ?? 2004 Elsevier B.V. All rights reserved.

  14. Analysis of the gas phase reactivity of chlorosilanes.

    PubMed

    Ravasio, Stefano; Masi, Maurizio; Cavallotti, Carlo

    2013-06-27

    Trichlorosilane is the most used precursor to deposit silicon for photovoltaic applications. Despite of this, its gas phase and surface kinetics have not yet been completely understood. In the present work, it is reported a systematic investigation aimed at determining what is the dominant gas phase chemistry active during the chemical vapor deposition of Si from trichlorosilane. The gas phase mechanism was developed calculating the rate constant of each reaction using conventional transition state theory in the rigid rotor-harmonic oscillator approximation. Torsional vibrations were described using a hindered rotor model. Structures and vibrational frequencies of reactants and transition states were determined at the B3LYP/6-31+G(d,p) level, while potential energy surfaces and activation energies were computed at the CCSD(T) level using aug-cc-pVDZ and aug-cc-pVTZ basis sets extrapolating to the complete basis set limit. As gas phase and surface reactivities are mutually interlinked, simulations were performed using a microkinetic surface mechanism. It was found that the gas phase reactivity follows two different routes. The disilane mechanism, in which the formation of disilanes as reaction intermediates favors the conversion between the most stable monosilane species, and the radical pathway, initiated by the decomposition of Si2HCl5 and followed by a series of fast propagation reactions. Though both mechanisms are active during deposition, the simulations revealed that above a certain temperature and conversion threshold the radical mechanism provides a faster route for the conversion of SiHCl3 into SiCl4, a reaction that favors the overall Si deposition process as it is associated with the consumption of HCl, a fast etchant of Si. Also, this study shows that the formation of disilanes as reactant intermediates promotes significantly the gas phase reactivity, as they contribute both to the initiation of radical chain mechanisms and provide a catalytic route for

  15. Evaluation of Gas-Cooled Pressurized Phosphoric Acid Fuel Cells for Electric Utility Power Generation

    NASA Technical Reports Server (NTRS)

    Faroque, M.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas-cooling was already demonstrated in atmospheric pressure stacks. Theoretical and experimental investigations of gas-cooling for pressurized PAFC are presented. Two approaches to gas cooling, Distributed Gas-Cooling (DIGAS) and Separated Gas-Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  16. Seismic- and well-log-inferred gas hydrate accumulations on Richards Island

    USGS Publications Warehouse

    Collett, T.S.

    1999-01-01

    The gas hydrate stability zone is areally extensive beneath most of the Mackenzie Delta-Beaufort Sea region, with the base of the gas hydrate stability zone more than 1000 m deep on Richards Island. In this study, gas hydrate has been inferred to occur in nine Richards Island exploratory wells on the basis of well-log responses calibrated to the response of the logs within the cored gas-hydrate-bearing intervals of the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The integration of the available well-log data with more than 240 km of industry-acquired reflection seismic data have allowed us to map the occurrence of four significant gas hydrate and associated free-gas accumulations in the Ivik-Mallik-Taglu area on Richards Island. The occurrence of gas hydrate on Richards Island is mostly restricted to the crest of large anticlinal features that cut across the base of the gas hydrate stability zone. Combined seismic and well-log data analysis indicate that the known and inferred gas hydrate accumulations on Richards Island may contain as much as 187 178106 m3 of gas.

  17. The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method

    NASA Astrophysics Data System (ADS)

    Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao

    2018-01-01

    Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.

  18. Diurnal leaf gas exchange survey, Feb2016-May2016, PA-SLZ, PA-PNM: Panama

    DOE Data Explorer

    Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Ely, Kim [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean

    2017-01-01

    Diurnal leaf gas exchange survey measured on sunlit canopy trees on a monthly basis from Feb to May 2016 at SLZ and PNM. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, LMA, leaf spectra, other gas exchange and leaf chemistry.

  19. Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity.

    PubMed

    Di Maria, Francesco; Sordi, Alessio; Cirulli, Giuseppe; Gigliotti, Giovanni; Massaccesi, Luisa; Cucina, Mirko

    2014-09-01

    The co-digestion of a variable amount of fruit and vegetable waste in a waste mixed sludge digester was investigated using a pilot scale apparatus. The organic loading rate (OLR) was increased from 1.46 kg VS/m(3) day to 2.8 kg VS/m(3) day. The hydraulic retention time was reduced from 14 days to about 10 days. Specific bio-methane production increased from about 90 NL/kg VS to the maximum value of about 430 NL/kg VS when OLR was increased from 1.46 kg VS/m(3) day to 2.1 kg VS/m(3) day. A higher OLR caused an excessive reduction in the hydraulic retention time, enhancing microorganism wash out. Process stability evaluated by the total volatile fatty acids concentration (mg/l) to the alkalinity buffer capacity (eq. mg/l CaCO3) ratio (i.e. FOS/TAC) criterion was <0.1 indicating high stability for OLR <2.46 kg VS/m(3 )day. For higher OLR, FOS/TAC increased rapidly. Residual phytotoxicty of the digestate evaluated by the germination index (GI) (%) was quite constant for OLR<2.46 kg VS/m(3)day, which is lower than the 60% limit, indicating an acceptable toxicity level for crops. For OLR>2.46 kg VS/m(3) day, GI decreased rapidly. This corresponding trend between FOS/TAC and GI was further investigated by the definition of the GI ratio (GIR) parameter. Comparison between GIR and FOS/TAC suggests that GI could be a suitable criterion for evaluating process stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The coal-fired gas turbine locomotive - A new look

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  1. SEASAT demonstration experiments with the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.; Balon, J. E.

    1979-01-01

    Despite its failure, SEASAT-1 acquired a reasonable volume of data that can be used by industrial participants on a non-real-time basis to prove the concept of microwave sensing of the world's oceans from a satellite platform. The amended version of 8 experimental plans are presented, along with a description of the satellite, its instruments, and the data available. Case studies are summarized for the following experiments: (1) Beaufort Sea oil, gas, and Arctic operations; (2) Labrador Sea oil, gas, and sea ice; (3) Gulf of Mexico pipelines; (4) U.S. East Coast offshore oil and gas; (5) worldwide offshore drilling and production operations; (6) Equatorial East Pacific Ocean mining; (7) Bering Sea ice project; and (8) North Sea oil and gas.

  2. Leachate from market refuse and biomethanation study.

    PubMed

    Mukherjee, S N; Kumar, Sunil

    2007-12-01

    The market place is considered to be an important centre of daily life of campus community. In India, as in Europe and the USA, other forms of shopping have emerged significantly and now predominate, for instance department stores and supermarkets. Though, it is suffered from poor waste management, but the place could be a potential source for obtaining non-conventional energy. The present study examined the quality of market waste management of the Indian Institute of Technology Campus along with the feasibility of biogas production from leachate generated in the waste. Solid wastes from different storage locations of the market place were collected and analyzed. The characteristics of solid wastes were found to be degradable in nature. The wastes, composed of 85% of vegetable origin, were placed in a container and water was added to to generate leachate. The self-purification efficiency of leachate was also studied in the Indian environment and compared with research findings in the USA under an identical moisture application rate. Leachate characterization was investigated both under saturated and submerged conditions. The treatability of leachate was studied in a laboratory-scale up-flow anaerobic filter with hollow burnt clay rings as packing media. It was observed that 4,000-6,000 mg/l would be the optimum range of inlet chemical oxygen demand (COD) concentration for leachate treatment because of the inhibitory effect of ammonia, sulphide, volatile fatty acids and toxic metals in high concentrations at higher strengths of leachate. The gas production rate was found to be at a maximum at 38 degrees C and containing 70-75% methane. From experimental data, it was revealed that 83% COD was removed with input COD concentration of 5,475 mg/l at 2 days hydraulic retention time with biogas yield coefficients of 0.61. The present study also investigated the removal efficiency of chloride, ammonia, sulphide and nitrate.

  3. BaSi2 formation mechanism in thermally evaporated films and its application to reducing oxygen impurity concentration

    NASA Astrophysics Data System (ADS)

    Hara, Kosuke O.; Yamamoto, Chiaya; Yamanaka, Junji; Arimoto, Keisuke; Nakagawa, Kiyokazu; Usami, Noritaka

    2018-04-01

    Thermal evaporation is a simple and rapid method to fabricate semiconducting BaSi2 films. In this study, to elucidate the BaSi2 formation mechanism, the microstructure of a BaSi2 epitaxial film fabricated by thermal evaporation has been investigated by transmission electron microscopy. The BaSi2 film is found to consist of three layers with different microstructural characteristics, which is well explained by assuming two stages of film deposition. In the first stage, BaSi2 forms through the diffusion of Ba atoms from the deposited Ba-rich film to the Si substrate while in the second stage, the mutual diffusion of Ba and Si atoms in the film leads to BaSi2 formation. On the basis of the BaSi2 formation mechanism, two issues are addressed. One is the as-yet unclarified reason for epitaxial growth. It is found important to quickly form BaSi2 in the first stage for the epitaxial growth of upper layers. The other issue is the high oxygen concentration in BaSi2 films around the BaSi2-Si interface. Two routes of oxygen incorporation, i.e., oxidation of the Si substrate surface and initially deposited Ba-rich layer by the residual gas, are identified. On the basis of this knowledge, oxygen concentration is decreased by reducing the holding time of the substrate at high temperatures and by premelting of the source. In addition, X-ray diffraction results show that the decrease in oxygen concentration can lead to an increased proportion of a-axis-oriented grains.

  4. PARFUME Theory and Model basis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darrell L. Knudson; Gregory K Miller; G.K. Miller

    2009-09-01

    The success of gas reactors depends upon the safety and quality of the coated particle fuel. The fuel performance modeling code PARFUME simulates the mechanical, thermal and physico-chemical behavior of fuel particles during irradiation. This report documents the theory and material properties behind vari¬ous capabilities of the code, which include: 1) various options for calculating CO production and fission product gas release, 2) an analytical solution for stresses in the coating layers that accounts for irradiation-induced creep and swelling of the pyrocarbon layers, 3) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or amore » prismatic block core, as well as through the layers of each analyzed particle, 4) simulation of multi-dimensional particle behavior associated with cracking in the IPyC layer, partial debonding of the IPyC from the SiC, particle asphericity, and kernel migration (or amoeba effect), 5) two independent methods for determining particle failure probabilities, 6) a model for calculating release-to-birth (R/B) ratios of gaseous fission products that accounts for particle failures and uranium contamination in the fuel matrix, and 7) the evaluation of an accident condition, where a particle experiences a sudden change in temperature following a period of normal irradiation. The accident condi¬tion entails diffusion of fission products through the particle coating layers and through the fuel matrix to the coolant boundary. This document represents the initial version of the PARFUME Theory and Model Basis Report. More detailed descriptions will be provided in future revisions.« less

  5. High temperature corrosion-resistant protective coatings in stationary gas turbines

    NASA Technical Reports Server (NTRS)

    Gruenling, H. W.

    1977-01-01

    Methods currently used to deposit protective coatings in gas turbines are reviewed, and the structure of the respective coatings is examined. The corrosion behavior of such coatings is discussed on the basis of experimental data. General trends in the preparation of protective coatings are noted.

  6. Device For Determining Therophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2005-02-01

    A computer product for determining thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

  7. Utilization requirements. A southern California Gas Company project SAGE report: Utilization requirements

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Schoen, R.; Hirshberg, A. S.

    1978-01-01

    Utilization requirements are given and comparisons made of two phase III SAGE (solar assisted gas energy) installations in California: (1) a retrofit installation in an existing apartment building in El Toro, and (2) an installation in a new apartment building in Upland. Such testing in the field revealed the requirements to be met if SAGE-type installations are to become commercially practical on a widespread basis in electric and gas energy usage.

  8. Detection of circumstellar gas associated with GG Tauri

    NASA Technical Reports Server (NTRS)

    Skrutskie, M. F.; Snell, R. L.; Strom, K. M.; Strom, S. E.; Edwards, S.; Fukui, Y.; Mizuno, A.; Hayashi, M.; Ohashi, N.

    1993-01-01

    Double-peaked (C-12)O (1-0) emission centered on the young T Tauri star GG Tau possesses a line profile which may be modeled on the assumption that CO emission arises in an extended circumstellar disk. While bounds on the observed gas mass can be estimated on this basis, it is suggested that a large amount of mass could lie within a small and optically thick region, escaping detection due to beam-dilution effects. In addition, CO may no longer accurately trace the gas mass due to its dissociation, or freezing into grains, or due to the locking-up of carbon into more complex molecules.

  9. Observations of extended and counterrotating disks of ionized gas in S0 galaxies

    NASA Technical Reports Server (NTRS)

    Dettmar, Ralf-Juergen; Jullien-Dettmar, Marlies; Barteldrees, Andreas

    1990-01-01

    While many E/S0 galaxies have been found to show emission line spectra in their nuclear regions, the question of the presence and nature of extended disks of ionized gas in these galaxies has been addressed only in recent years. Typically the ionized gas is detected in the inner region on a scale of approx. 1 kpc (e.g., Phillips et al. 1986, Caldwell 1984). Here researchers present evidence that the disks of ionized gas of at least some S0 galaxies are much more extended than previously believed. In addition, with the detection of the counterrotation of gas and stars in NGC 7007 they strengthen the basis for arguments that the source of gas in S0 galaxies is external

  10. Forecasting and Evaluation of Gas Pipelines Geometric Forms Breach Hazard

    NASA Astrophysics Data System (ADS)

    Voronin, K. S.

    2016-10-01

    Main gas pipelines during operation are under the influence of the permanent pressure drops which leads to their lengthening and as a result, to instability of their position in space. In dynamic systems that have feedback, phenomena, preceding emergencies, should be observed. The article discusses the forced vibrations of the gas pipeline cylindrical surface under the influence of dynamic loads caused by pressure surges, and the process of its geometric shape deformation. Frequency of vibrations, arising in the pipeline at the stage preceding its bending, is being determined. Identification of this frequency can be the basis for the development of a method of monitoring the technical condition of the gas pipeline, and forecasting possible emergency situations allows planning and carrying out in due time reconstruction works on sections of gas pipeline with a possible deviation from the design position.

  11. Development of a Random Field Model for Gas Plume Detection in Multiple LWIR Images.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heasler, Patrick G.

    This report develops a random field model that describes gas plumes in LWIR remote sensing images. The random field model serves as a prior distribution that can be combined with LWIR data to produce a posterior that determines the probability that a gas plume exists in the scene and also maps the most probable location of any plume. The random field model is intended to work with a single pixel regression estimator--a regression model that estimates gas concentration on an individual pixel basis.

  12. Advanced gas turbine systems program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of themore » utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.« less

  13. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part I: Equations of State.

    ERIC Educational Resources Information Center

    Smith, Brent

    2002-01-01

    Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…

  14. Concurrence of aqueous and gas phase contamination of groundwater in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Son, Ji-Hee; Carlson, Kenneth H

    2016-01-01

    The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Predicting emissions from oil and gas operations in the Uinta Basin, Utah.

    PubMed

    Wilkey, Jonathan; Kelly, Kerry; Jaramillo, Isabel Cristina; Spinti, Jennifer; Ring, Terry; Hogue, Michael; Pasqualini, Donatella

    2016-05-01

    In this study, emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin are predicted (with uncertainty estimates) from 2015-2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010-2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010-2015 time period was 44.2E+06 (mean) ± 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015-2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 ± 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards. This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well.

  16. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  17. Modeling of liquid and gas flows in the horizontal layer with evaporation

    NASA Astrophysics Data System (ADS)

    Lyulin, Yuri; Rezanova, Ekaterina

    2017-10-01

    Mathematical modeling of two-layer flows in the "ethanol-nitrogen" system on the basis of the exact solutions of a special type is carried out. The influence of the gas flow, temperature and Soret effect on the flow patterns and evaporating processes at the interface is investigated. The results of comparison of the experimental and theoretical data are presented; the dependence of the evaporation intensity at interface of the gas flow rate and temperature is studied.

  18. Maps showing gas-hydrate distribution off the east coast of the United States

    USGS Publications Warehouse

    Dillon, William P.; Fehlhaber, Kristen L.; Coleman, Dwight F.; Lee, Myung W.; Hutchinson, Deborah R.

    1995-01-01

    These maps present the inferred distribution of natural-gas hydrate within the sediments of the eastern United States continental margin (Exclusive Economic Zone) in the offshore region from Georgia to New Jersey (fig. 1). The maps, which were created on the basis of seismic interpretations, represent the first attempt to map volume estimates for gas hydrate. Gas hydrate forms a large reservoir for methane in oceanic sediments. Therefore it potentially may represent a future source of energy and it may influence climate change because methane is a very effective greenhouse gas. Hydrate breakdown probably is a controlling factor for sea-floor landslides, and its presence has significant effect on the acoustic velocity of sea-floor sediments.

  19. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    NASA Astrophysics Data System (ADS)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  20. USGS National Assessment of Oil and Gas Online (NOGA Online)

    USGS Publications Warehouse

    Biewick, L.H.

    2003-01-01

    The Central Energy Resources Team (CERT) of the U.S. Geological Survey is providing results of the USGS National Assessment of Oil and Gas online (NOGA Online). In addition to providing resource estimates and geologic reports, NOGA Online includes an internet map application that allows interactive viewing and analysis of assessment data and results. CERT is in the process of reassessing domestic oil and natural gas resources in a series of priority basins in the United States using a Total Petroleum System (TPS) approach where the assessment unit is the basic appraisal unit (rather than the oil and gas play used in the 1995 study). Assessments of undiscovered oil and gas resources in five such priority provinces were recently completed to meet the requirements of the Energy Policy and Conservation Act of 2000 (EPCA 2000). New assessment results are made available at this site on an ongoing basis.

  1. National Assessment of Oil and Gas Project: geologic assessment of undiscovered gas hydrate resources on the North Slope, Alaska

    USGS Publications Warehouse

    USGS AK Gas Hydrate Assessment Team: Collett, Timothy S.; Agena, Warren F.; Lee, Myung Woong; Lewis, Kristen A.; Zyrianova, Margarita V.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy A.; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.

    2014-01-01

    Scientists with the U.S. Geological Survey have completed the first assessment of the undiscovered, technically recoverable gas hydrate resources beneath the North Slope of Alaska. This assessment indicates the existence of technically recoverable gas hydrate resources—that is, resources that can be discovered, developed, and produced using current technology. The approach used in this assessment followed standard geology-based USGS methodologies developed to assess conventional oil and gas resources. In order to use the USGS conventional assessment approach on gas hydrate resources, three-dimensional industry-acquired seismic data were analyzed. The analyses indicated that the gas hydrates on the North Slope occupy limited, discrete volumes of rock bounded by faults and downdip water contacts. This assessment approach also assumes that the resource can be produced by existing conventional technology, on the basis of limited field testing and numerical production models of gas hydrate-bearing reservoirs. The area assessed in northern Alaska extends from the National Petroleum Reserve in Alaska on the west through the Arctic National Wildlife Refuge on the east and from the Brooks Range northward to the State-Federal offshore boundary (located 3 miles north of the coastline). This area consists mostly of Federal, State, and Native lands covering 55,894 square miles. Using the standard geology-based assessment methodology, the USGS estimated that the total undiscovered technically recoverable natural-gas resources in gas hydrates in northern Alaska range between 25.2 and 157.8 trillion cubic feet, representing 95 percent and 5 percent probabilities of greater than these amounts, respectively, with a mean estimate of 85.4 trillion cubic feet.

  2. Petroleum systems of the San Joaquin Basin Province -- geochemical characteristics of gas types: Chapter 10 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Lillis, Paul G.; Warden, Augusta; Claypool, George E.; Magoon, Leslie B.

    2008-01-01

    The San Joaquin Basin Province is a petroliferous basin filled with predominantly Late Cretaceous to Pliocene-aged sediments, with organic-rich marine rocks of Late Cretaceous, Eocene, and Miocene age providing the source of most of the oil and gas. Previous geochemical studies have focused on the origin of the oil in the province, but the origin of the natural gas has received little attention. To identify and characterize natural gas types in the San Joaquin Basin, 66 gas samples were analyzed and combined with analyses of 15 gas samples from previous studies. For the purpose of this resource assessment, each gas type was assigned to the most likely petroleum system. Three general gas types are identified on the basis of bulk and stable carbon isotopic composition—thermogenic dry (TD), thermogenic wet (TW) and biogenic (B). The thermogenic gas types are further subdivided on the basis of the δ13C values of methane and ethane and nitrogen content into TD-1, TD-2, TD-Mixed, TW-1, TW-2, and TW-Mixed. Gas types TD-1 and TD-Mixed, a mixture of biogenic and TD-1 gases, are produced from gas fields in the northern San Joaquin Basin. Type TD-1 gas most likely originated from the Late Cretaceous to Paleocene Moreno Formation, a gas-prone source rock. The biogenic component of the TD-Mixed gas existed in the trap prior to the influx of thermogenic gas. For the assessment, these gas types were assigned to the Winters- Domengine Total Petroleum System, but subsequent to the assessment were reclassified as part of the Moreno-Nortonville gas system. Dry thermogenic gas produced from oil fields in the southern San Joaquin Basin (TD-2 gas) most likely originated from the oil-prone source rock of Miocene age. These samples have low wetness values due to migration fractionation or biodegradation. The thermogenic wet gas types (TW-1, TW-2, TW-Mixed) are predominantly associated gas produced from oil fields in the southern and central San Joaquin Basin. Type TW-1 gas most likely

  3. 26 CFR 1.611-2 - Rules applicable to mines, oil and gas wells, and other natural deposits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Rules applicable to mines, oil and gas wells, and other natural deposits. (a) Computation of cost depletion of mines, oil and gas wells, and other natural deposits. (1) The basis upon which cost depletion... for the taxable year, the cost depletion for that year shall be computed by dividing such amount by...

  4. Construction Norms Straightened. Part II. Section D. Gas Supply External Networks and Constructions of the Norm of Planning. Chapter 13,

    DTIC Science & Technology

    1980-05-16

    packsd ir scil . In the tarritoriss ci industrial and ccuzunal general enterprises one should aFply the iredcmirantly abcve-grcund packing of gas pipes...gas j~pes can he reduced to 0.6 a. 4.35. Gas pipes, bbihac txamsicrt humid gas, must be laid lower than zcne of freezing cf scil vita draft/gradient...soils sbculd be Frcvided for device under gas Eipe of basis/kase of sandy scil (Dot containing crushed store and ctker large/coarse hard spcts) in

  5. 75 FR 64071 - Basis Reporting by Securities Brokers and Basis Determination for Stock

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Determination--Average Basis Method a. Definition of Dividend Reinvestment Plan i. Acquisition of Stock... this provision and allow all UITs that elect to be treated as RICs to use the average basis method. The... served to limit the average basis method to stock in a DRP, the final regulations provide that, for...

  6. Multiscale model reduction for shale gas transport in poroelastic fractured media

    NASA Astrophysics Data System (ADS)

    Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe

    2018-01-01

    Inherently coupled flow and geomechanics processes in fractured shale media have implications for shale gas production. The system involves highly complex geo-textures comprised of a heterogeneous anisotropic fracture network spatially embedded in an ultra-tight matrix. In addition, nonlinearities due to viscous flow, diffusion, and desorption in the matrix and high velocity gas flow in the fractures complicates the transport. In this paper, we develop a multiscale model reduction approach to couple gas flow and geomechanics in fractured shale media. A Discrete Fracture Model (DFM) is used to treat the complex network of fractures on a fine grid. The coupled flow and geomechanics equations are solved using a fixed stress-splitting scheme by solving the pressure equation using a continuous Galerkin method and the displacement equation using an interior penalty discontinuous Galerkin method. We develop a coarse grid approximation and coupling using the Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM constructs the multiscale basis functions in a systematic way to capture the fracture networks and their interactions with the shale matrix. Numerical results and an error analysis is provided showing that the proposed approach accurately captures the coupled process using a few multiscale basis functions, i.e. a small fraction of the degrees of freedom of the fine-scale problem.

  7. Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp

    The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculatingmore » the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.« less

  8. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less

  9. A Mathematical Model of Gas-Turbine Pump Complex

    NASA Astrophysics Data System (ADS)

    Shpilevoy, V. A.; Chekardovsky, S. M.; Zakirazkov, A. G.

    2016-10-01

    The articles analyzes the state of an extensive network of main oil pipelines of Tyumen region on the basis of statistical data, and also suggest ways of improving the efficiency of energy-saving policy on the main transport oil. Various types of main oil pipelines pump drives were examined. It was determined that now there is no strict analytical dependence between main operating properties of the power turbine of gas turbine engine. At the same time it is necessary to determine the operating parameters using a turbine at GTPU, interconnection between power and speed frequency, as well as the feasibility of using a particular mode. Analysis of foreign experience, the state of domestic enterprises supplying the country with gas turbines, features of the further development of transport of hydrocarbon resources allows us to conclude the feasibility of supplying the oil transportation industry of our country with pumping units based on gas turbine drive.

  10. Variable generalized Chaplygin gas in a 5D cosmology

    NASA Astrophysics Data System (ADS)

    Salti, Mustafa; Aydogdu, Oktay; Yanar, Hilmi; Sogut, Kenan

    2018-03-01

    We construct the variable generalized Chaplygin gas (VGCG) defining a unified dark matter-energy scenario and investigate its essential cosmological properties in a universe governed by the Kaluza-Klein (KK) theory. A possible theoretical basis for the VGCG in the KK cosmology is argued. Also, we check the validity of thermodynamical laws and reimplement dynamics of tachyons in the KK universe.

  11. Tests of Halon 1301 test gas simulants

    NASA Astrophysics Data System (ADS)

    Carhart, H. W.; Leonard, J. T.; Dinenno, P. J.; Starchville, M. D.; Forssell, E. W.; Wong, J. T.

    1989-02-01

    All new and retrofit installations of Halon 1301 (CBrF3) total flooding fire protection systems in shipboard machinery spaces require full acceptance discharge test. It is desirable to use a suitable simulant test gas in these tests in view of current and future regulation of Halon 1301. Sulfur hexafluoride, SF6, and chlorodifluromethane R-22, were identified as candidate simulants on the basis of their similarity in physical properties to Halon 1301. These two candidates were then evaluated on the basis of leakage from an enclosure. SF6 was determined to be an excellent simulant for Halon 1301 when considering leakage from an enclosure. Further testing of SF6 and R-22 is planned for other important aspects of Halon 1301 systems, i.e., flow hydraulics, initial mixing.

  12. Steam thermolysis of tire shreds: modernization in afterburning of accompanying gas with waste steam

    NASA Astrophysics Data System (ADS)

    Kalitko, V. A.

    2010-03-01

    On the basis of experience in the commercial operation of tire-shred steam thermolysis in EnresTec Inc. (Taiwan) producing high-grade commercial carbon, liquid pyrolysis fuel, and accompanying fuel gas by this method, we have proposed a number of engineering solutions and calculated-analytical substantiations for modernization and intensification of the process by afterburning the accompanying gas with waste steam condensable in the scrubber of water gas cleaning of afterburning products. The condensate is completely freed of the organic pyrolysis impurities and the necessity of separating it from the liquid fuel, as is the case with the active process, is excluded.

  13. Unitary Fermi gas in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Chang, S. Y.; Bertsch, G. F.

    2007-08-01

    We present an ab initio calculation of small numbers of trapped, strongly interacting fermions using the Green’s function Monte Carlo method. The ground-state energy, density profile, and pairing gap are calculated for particle numbers N=2 22 using the parameter-free “unitary” interaction. Trial wave functions are taken in the form of correlated pairs in a harmonic oscillator basis. We find that the lowest energies are obtained with a minimum explicit pair correlation beyond that needed to exploit the degeneracy of oscillator states. We find that the energies can be well fitted by the expression aTFETF+Δmod(N,2) where ETF is the Thomas-Fermi energy of a noninteracting gas in the trap and Δ is the pairing gap. There is no evidence of a shell correction energy in the systematics, but the density distributions show pronounced shell effects. We find the value Δ=0.7±0.2ω for the pairing gap. This is smaller than the value found for the uniform gas at a density corresponding to the central density of the trapped gas.

  14. Regional ozone impacts of increased natural gas use in the Texas power sector and development in the Eagle Ford shale.

    PubMed

    Pacsi, Adam P; Kimura, Yosuke; McGaughey, Gary; McDonald-Buller, Elena C; Allen, David T

    2015-03-17

    The combined emissions and air quality impacts of electricity generation in the Texas grid and natural gas production in the Eagle Ford shale were estimated at various natural gas price points for the power sector. The increased use of natural gas in the power sector, in place of coal-fired power generation, drove reductions in average daily maximum 8 h ozone concentration of 0.6-1.3 ppb in northeastern Texas for a high ozone episode used in air quality planning. The associated increase in Eagle Ford upstream oil and gas production nitrogen oxide (NOx) emissions caused an estimated local increase, in south Texas, of 0.3-0.7 ppb in the same ozone metric. In addition, the potential ozone impacts of Eagle Ford emissions on nearby urban areas were estimated. On the basis of evidence from this work and a previous study on the Barnett shale, the combined ozone impact of increased natural gas development and use in the power sector is likely to vary regionally and must be analyzed on a case by case basis.

  15. Research on technology of online gas chromatograph for SF6 decomposition products

    NASA Astrophysics Data System (ADS)

    Li, L.; Fan, X. P.; Zhou, Y. Y.; Tang, N.; Zou, Z. L.; Liu, M. Z.; Huang, G. J.

    2017-12-01

    Sulfur hexafluoride (SF6) decomposition products were qualitatively and quantitatively analyzed by several gas chromatographs in the laboratory. Test conditions and methods were selected and optimized to minimize and eliminate the SF6’ influences on detection of other trace components. The effective separation and detection of selected characteristic gases were achieved. And by comparison among different types of gas chromatograph, it was found that GPTR-S101 can effectively separate and detect SF6 decomposition products and has best the best detection limit and sensitivity. On the basis of GPTR-S101, online gas chromatograph for SF6decomposition products (GPTR-S201) was developed. It lays the foundation for further online monitoring and diagnosis of SF6.

  16. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.

    PubMed

    Styles, David; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-08-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551-755Gg CO2e excluding ILUC, or 238-755Gg CO2e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9-10.8PJe, but eutrophication and acidification burdens were increased by 1.8-3.4Gg PO4e and 8.1-14.6Gg SO2e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering digestate stores could largely mitigate

  17. Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry

    NASA Astrophysics Data System (ADS)

    Aiuppa, A.; Robidoux, P.; Tamburello, G.; Conde, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J. M.; Martínez, M.; Muñóz, A.

    2014-12-01

    Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Poás (0.30±0.06, mean ± SD), Rincón de la Vieja (27.0±15.3), and Turrialba (2.2±0.8) in Costa Rica, and at Telica (3.0±0.9) and San Cristóbal (4.2±1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5±11.0 tons/day at Poás) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835±1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/ST (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (∼3) relative to Costa Rica (∼0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from

  18. Factors Affecting the Relationship between Crude Oil and Natural Gas Prices (released in AEO2010)

    EIA Publications

    2010-01-01

    Over the 1995-2005 period, crude oil prices and U.S. natural gas prices tended to move together, which supported the conclusion that the markets for the two commodities were connected. Figure 26 illustrates the fairly stable ratio over that period between the price of low-sulfur light crude oil at Cushing, Oklahoma, and the price of natural gas at the Henry Hub on an energy-equivalent basis.

  19. A System And Method To Determine Thermophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure

    DOEpatents

    Morrow, Thomas E.; Behring, II, Kendricks A.

    2004-03-09

    A method to determine thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

  20. Basis Selection for Wavelet Regression

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Lau, Sonie (Technical Monitor)

    1998-01-01

    A wavelet basis selection procedure is presented for wavelet regression. Both the basis and the threshold are selected using cross-validation. The method includes the capability of incorporating prior knowledge on the smoothness (or shape of the basis functions) into the basis selection procedure. The results of the method are demonstrated on sampled functions widely used in the wavelet regression literature. The results of the method are contrasted with other published methods.

  1. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Griffin, Timothy P.; Adams, Frederick W.; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Follistein, Duke W.

    2004-01-01

    The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response times and detection limits. A Table lists common gases monitored for aerospace applications. The first five gases, hydrogen, helium, nitrogen, oxygen, and argon are historically the focus of the HGDL.

  2. [Prospects for Application of Gases and Gas Hydrates to Cryopreservation].

    PubMed

    Shishova, N V; Fesenko, E E

    2015-01-01

    In the present review, we tried to evaluate the known properties of gas hydrates and gases participating in the formation of gas hydrates from the point of view of the mechanisms of cryoinjury and cryoprotection, to consider the papers on freezing biological materials in the presence of inert gases, and to analyze the perspectives for the development of this direction. For the purpose, we searched for the information on the physical properties of gases and gas hydrates, compared processes occured during the formation of gas hydrates and water ice, analyzed the influence of the formation and growth of gas hydrates on the structure of biological objects. We prepared a short review on the biological effects of xenon, krypton, argon, carbon dioxide, hydrogen sulfide, and carbon monoxide especially on hypothermal conditions and probable application of these properties in cryopreservation technologies. The description of the existing experiments on cryopreservation of biological objects with the use of gases was analyzed. On the basis of the information we found, the most perspective directions of work in the field of cryopreservation of biological objects with the use of gases were outlined. An attempt was made to forecast the potential problems in this field.

  3. Climate Change: The Physical Basis and Latest Results

    ScienceCinema

    Stocker, Thomas

    2018-05-18

    The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the global climate change challenge.

  4. NPR design basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Locke, G.L.

    1958-09-08

    The design basis is composed of requirements and conditions for the design of the reactor plant (composed of the reactor and heat dissipation system). Its intent is to insure that the final product meets the economic, safety, and technical objectives of the project. The design basis is dependent on the ground rules, objectives, technical criteria, and practical design considerations. This document is being issued with the understanding that these items are not yet firmly established in all respects, and therefore, the numbers put down here are subject to change. Consideration of the spectrum of probable changes that might be mademore » leads to the conclusion that the numbers here are close to the final ones and are satisfactory as a basis for the initial stages of design. Some numbers are omitted because of insufficient data at this time.« less

  5. Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

    PubMed Central

    Pham, C. H.; Triolo, J. M.; Cu, T. T. T.; Pedersen, L.; Sommer, S. G.

    2013-01-01

    In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane (CH4) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) (CH4 NL kg−1 VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC. PMID:25049861

  6. Numerical modeling of underground storage system for natural gas

    NASA Astrophysics Data System (ADS)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  7. Programmable calculator uses equation to figure steady-state gas-pipeline flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmberg, E.

    Because it is accurate and consistent over a wide range of variables, the Colebrook-White (C-W) formula serves as the basis for many methods of calculating turbulent flow in gas pipelines. Oilconsult reveals a simple way to adapt the C-W formula to calculate steady-state pipeline flow using the TI-59 programmable calculator.

  8. Methods for gas detection using stationary hyperspectral imaging sensors

    DOEpatents

    Conger, James L [San Ramon, CA; Henderson, John R [Castro Valley, CA

    2012-04-24

    According to one embodiment, a method comprises producing a first hyperspectral imaging (HSI) data cube of a location at a first time using data from a HSI sensor; producing a second HSI data cube of the same location at a second time using data from the HSI sensor; subtracting on a pixel-by-pixel basis the second HSI data cube from the first HSI data cube to produce a raw difference cube; calibrating the raw difference cube to produce a calibrated raw difference cube; selecting at least one desired spectral band based on a gas of interest; producing a detection image based on the at least one selected spectral band and the calibrated raw difference cube; examining the detection image to determine presence of the gas of interest; and outputting a result of the examination. Other methods, systems, and computer program products for detecting the presence of a gas are also described.

  9. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation.

    PubMed

    Boutilier, Michael S H; Sun, Chengzhen; O'Hern, Sean C; Au, Harold; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2014-01-28

    Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially decreases flow through defects. On the basis of experimental results, we develop a gas transport model that elucidates the separate contributions of tears and intrinsic defects on gas leakage through these membranes. The model shows that the pore size of the porous support and its permeance critically affect the separation behavior, and reveals the parameter space where gas separation can be achieved regardless of the presence of nonselective defects, even for single-layer membranes. The results provide a framework for understanding gas transport in graphene membranes and guide the design of practical, selectively permeable graphene membranes for gas separation.

  10. Gas-film coefficients for streams

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1983-01-01

    Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.

  11. Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A

    USGS Publications Warehouse

    Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.

    2008-01-01

    New coal-gas exploration and production in northern Louisiana and south-central Mississippi, Gulf of Mexico Basin, is focused on the Wilcox Group (Paleocene–Eocene), where the depth to targeted subbituminous C to high volatile C bituminous coal beds ranges from 300 to 1680 m, and individual coal beds have a maximum thickness of about 6 m. Total gas content (generally excluding residual gas) of the coal beds ranges from less than 0.37 cm3/g (as-analyzed or raw basis; 1.2 cm3/g, dry, ash free basis, daf) at depths less than 400 m, to greater than 7.3 cm3/g (as-analyzed basis; 8.76 cm3/g, daf) in deeper (> 1,500 m) parts of the basin. About 20 Wilcox coal-gas wells in northern Louisiana produce from 200 to 6485 m3 of gas/day and cumulative gas production from these wells is approximately 25 million m3 (as of December, 2006). U.S. Geological Survey assessment of undiscovered, technically recoverable gas resources in the Gulf of Mexico Coastal Plain, including northern and south-central Mississippi, indicates that coal beds of the Wilcox Group contain an estimated mean total 109.3 million m3 (3.86 trillion ft3) of producible natural gas.To determine the origin of the Wilcox Group coal gases in northern Louisiana, samples of gas, water, and oil were collected from Wilcox coal and sandstone reservoirs and from under- and overlying Late Cretaceous and Eocene carbonate and sandstone reservoirs. Isotopic data from Wilcox coal-gas samples have an average δ13CCH4 value of − 62.6‰ VPDB (relative to Vienna Peedee Belemnite) and an average δDCH4 value of − 199.9‰ VSMOW (relative to Vienna Standard Mean Ocean Water). Values of δ13CCO2 range from − 25.4 to 3.42‰ VPDB. Produced Wilcox saline water collected from oil, conventional gas, and coalbed gas wells have δDH2O values that range from − 27.3 to − 18.0‰ VSMOW. These data suggest that the coal gases primarily are generated in saline formation water by bacterial reduction of CO2

  12. Development of a coolant channel helium and nitrogen gas ratio sensor for a high temperature gas reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadell, S. R.; Woods, B. G.

    2012-07-01

    To measure the changing gas composition of the coolant during a postulated High Temperature Gas Reactor (HTGR) accident, an instrument is needed. This instrument must be compact enough to measure the ratio of the coolant versus the break gas in an individual coolant channel. This instrument must minimally impact the fluid flow and provide for non-direct signal routing to allow minimal disturbance to adjacent channels. The instrument must have a flexible geometry to allow for the measurement of larger volumes such as in the upper or lower plenum of a HTGR. The instrument must be capable of accurately functioning throughmore » the full operating temperature and pressure of a HTGR. This instrument is not commercially available, but a literature survey has shown that building off of the present work on Capacitance Sensors and Cross-Capacitors will provide a basis for the development of the desired instrument. One difficulty in developing and instrument to operate at HTGR temperatures is acquiring an electrical conductor that will not melt at 1600 deg. C. This requirement limits the material selection to high temperature ceramics, graphite, and exotic metals. An additional concern for the instrument is properly accounting for the thermal expansion of both the sensing components and the gas being measured. This work covers the basic instrument overview with a thorough discussion of the associated uncertainty in making these measurements. (authors)« less

  13. The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid

    NASA Astrophysics Data System (ADS)

    Pavlenko, Alexander

    2011-06-01

    The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.

  14. Smart single-chip gas sensor microsystem

    NASA Astrophysics Data System (ADS)

    Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H.

    2001-11-01

    Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis. Simultaneous use of various transduction platforms has been demonstrated, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors and sensors based on three-dimensional microelectromechanical systems. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides and acoustic-wave-based sensor devices. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.

  15. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate.

    PubMed

    Bassani, Ilaria; Kougias, Panagiotis G; Angelidaki, Irini

    2016-12-01

    Biological biogas upgrading coupling CO 2 with external H 2 to form biomethane opens new avenues for sustainable biofuel production. For developing this technology, efficient H 2 to liquid transfer is fundamental. This study proposes an innovative setup for in-situ biogas upgrading converting the CO 2 in the biogas into CH 4 , via hydrogenotrophic methanogenesis. The setup consisted of a granular reactor connected to a separate chamber, where H 2 was injected. Different packing materials (rashig rings and alumina ceramic sponge) were tested to increase gas-liquid mass transfer. This aspect was optimized by liquid and gas recirculation and chamber configuration. It was shown that by distributing H 2 through a metallic diffuser followed by ceramic sponge in a separate chamber, having a volume of 25% of the reactor, and by applying a mild gas recirculation, CO 2 content in the biogas dropped from 42 to 10% and the final biogas was upgraded from 58 to 82% CH 4 content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong

    2009-05-01

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  17. Surface Coatings for Gas Detection via Porous Silicon

    NASA Astrophysics Data System (ADS)

    Ozdemir, Serdar; Li, Ji-Guang; Gole, James

    2009-03-01

    Nanopore covered microporous silicon interfaces have been formed via an electrochemical etch for gas sensor applications. Rapid reversible and sensitive gas sensors have been fabricated. The fabricated porous silicon (PS) gas sensors display the advantages of operation at room temperature as well as at a single, readily accessible temperature with an insensitivity to temperature drift; operation in a heat-sunk configuration, ease of coating with gas-selective materials; low cost of fabrication and operation, and the ability to rapidly assess false positives by operating the sensor in a pulsed mode. The PS surface has been modified with unique coatings on the basis of a general theory in order to achieve maximum sensitivity and selectivity. Sensing of NH3, NOx and PH3 at or below the ppm level have been observed. A typical PS nanostructure coated microstructured hybrid configuration when coated with tin oxide (NOx, CO) and gold nanostructures (NH3) provides a greatly increased sensitivity to the indicated gases. Al2O3 coating of the porous silicon using atomic layer deposition and its effect on PH3 sensing has been investigated. 20-100 nm TiO2 nanoparticles have been produced using sol-gel methods to coat PS surfaces and the effects on the selectivity and the sensitivity have been studied.

  18. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    NASA Technical Reports Server (NTRS)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  19. Entanglement classification in the noninteracting Fermi gas

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Eghbalifam, F.; Nami, S.; Yahyavi, M.

    In this paper, entanglement classification shared among the spins of localized fermions in the noninteracting Fermi gas is studied. It is proven that the Fermi gas density matrix is block diagonal on the basis of the projection operators to the irreducible representations of symmetric group Sn. Every block of density matrix is in the form of the direct product of a matrix and identity matrix. Then it is useful to study entanglement in every block of density matrix separately. The basis of corresponding Hilbert space are identified from the Schur-Weyl duality theorem. Also, it can be shown that the symmetric part of the density matrix is fully separable. Then it has been shown that the entanglement measure which is introduced in Eltschka et al. [New J. Phys. 10, 043104 (2008)] and Guhne et al. [New J. Phys. 7, 229 (2005)], is zero for the even n qubit Fermi gas density matrix. Then by focusing on three spin reduced density matrix, the entanglement classes have been investigated. In three qubit states there is an entanglement measure which is called 3-tangle. It can be shown that 3-tangle is zero for three qubit density matrix, but the density matrix is not biseparable for all possible values of its parameters and its eigenvectors are in the form of W-states. Then an entanglement witness for detecting non-separable state and an entanglement witness for detecting nonbiseparable states, have been introduced for three qubit density matrix by using convex optimization problem. Finally, the four spin reduced density matrix has been investigated by restricting the density matrix to the irreducible representations of Sn. The restricted density matrix to the subspaces of the irreducible representations: Ssym, S3,1 and S2,2 are denoted by ρsym, ρ3,1 and ρ2,2, respectively. It has been shown that some highly entangled classes (by using the results of Miyake [Phys. Rev. A 67, 012108 (2003)] for entanglement classification) do not exist in the blocks of density matrix ρ3

  20. A case of nontraumatic gas gangrene in a common marmoset (Callithrix jacchus).

    PubMed

    Yasuda, Masahiko; Inoue, Takashi; Ueno, Masami; Morita, Hanako; Hayashimoto, Nobuhito; Kawai, Kenji; Itoh, Toshio

    2016-01-01

    The common marmoset is widely used in neuroscience and regenerative medicine research. However, information concerning common marmoset disorders, particularly infectious diseases, is scarce. Here, we report a case of a female common marmoset that died suddenly due to gas gangrene. The animal presented with gaseous abdominal distention at postmortem, and Clostridium perfringens type A was isolated from several tissues. Vacuoles, a Gram-positive bacteremia and intravascular hemolysis were observed microscopically in the muscles, liver and lungs. On the basis of these findings, we diagnosed nontraumatic gas gangrene caused by Clostridium perfringens type A in this common marmoset.

  1. A case of nontraumatic gas gangrene in a common marmoset (Callithrix jacchus)

    PubMed Central

    YASUDA, Masahiko; INOUE, Takashi; UENO, Masami; MORITA, Hanako; HAYASHIMOTO, Nobuhito; KAWAI, Kenji; ITOH, Toshio

    2015-01-01

    The common marmoset is widely used in neuroscience and regenerative medicine research. However, information concerning common marmoset disorders, particularly infectious diseases, is scarce. Here, we report a case of a female common marmoset that died suddenly due to gas gangrene. The animal presented with gaseous abdominal distention at postmortem, and Clostridium perfringens type A was isolated from several tissues. Vacuoles, a Gram-positive bacteremia and intravascular hemolysis were observed microscopically in the muscles, liver and lungs. On the basis of these findings, we diagnosed nontraumatic gas gangrene caused by Clostridium perfringens type A in this common marmoset. PMID:26156080

  2. Cooling molten salt reactors using "gas-lift"

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav; Klimko, Marek

    2014-08-01

    This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a "Two-phase flow demonstrator" (TFD) used for experimental study of the "gas-lift" system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for "gas-lift" (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

  3. Shock-wave structure for a polyatomic gas with large bulk viscosity

    NASA Astrophysics Data System (ADS)

    Kosuge, Shingo; Aoki, Kazuo

    2018-02-01

    The structure of a standing plane shock wave in a polyatomic gas is investigated on the basis of kinetic theory, with special interest in gases with large bulk viscosities, such as CO2 gas. The ellipsoidal statistical model for a polyatomic gas is employed. First, the shock structure is computed numerically for various upstream Mach numbers and for various (large) values of the ratio of the bulk viscosity to the shear viscosity, and different types of profiles, such as the double-layer structure consisting of a thin upstream layer with a steep change and a much thicker downstream layer with a mild change, are obtained. Then, an asymptotic analysis for large values of the ratio is carried out, and an analytical solution that describes the different types of profiles obtained by the numerical analysis, such as the double-layer structure, correctly is obtained.

  4. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  5. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  6. Evolution of gas saturation and relative permeability during gas production from hydrate-bearing sediments: Gas invasion vs. gas nucleation

    NASA Astrophysics Data System (ADS)

    Jang, Jaewon; Santamarina, J. Carlos

    2014-01-01

    Capillarity and both gas and water permeabilities change as a function of gas saturation. Typical trends established in the discipline of unsaturated soil behavior are used when simulating gas production from hydrate-bearing sediments. However, the evolution of gas saturation and water drainage in gas invasion (i.e., classical soil behavior) and gas nucleation (i.e., gas production) is inherently different: micromodel experimental results show that gas invasion forms a continuous flow path while gas nucleation forms isolated gas clusters. Complementary simulations conducted using tube networks explore the implications of the two different desaturation processes. In spite of their distinct morphological differences in fluid displacement, numerical results show that the computed capillarity-saturation curves are very similar in gas invasion and nucleation (the gas-water interface confronts similar pore throat size distribution in both cases); the relative water permeability trends are similar (the mean free path for water flow is not affected by the topology of the gas phase); and the relative gas permeability is slightly lower in nucleation (delayed percolation of initially isolated gas-filled pores that do not contribute to gas conductivity). Models developed for unsaturated sediments can be used for reservoir simulation in the context of gas production from hydrate-bearing sediments, with minor adjustments to accommodate a lower gas invasion pressure Po and a higher gas percolation threshold.

  7. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most ofmore » which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas

  8. Forecasting of natural gas consumption with neural network and neuro fuzzy system

    NASA Astrophysics Data System (ADS)

    Kaynar, Oguz; Yilmaz, Isik; Demirkoparan, Ferhan

    2010-05-01

    The prediction of natural gas consumption is crucial for Turkey which follows foreign-dependent policy in point of providing natural gas and whose stock capacity is only 5% of internal total consumption. Prediction accuracy of demand is one of the elements which has an influence on sectored investments and agreements about obtaining natural gas, so on development of sector. In recent years, new techniques, such as artificial neural networks and fuzzy inference systems, have been widely used in natural gas consumption prediction in addition to classical time series analysis. In this study, weekly natural gas consumption of Turkey has been predicted by means of three different approaches. The first one is Autoregressive Integrated Moving Average (ARIMA), which is classical time series analysis method. The second approach is the Artificial Neural Network. Two different ANN models, which are Multi Layer Perceptron (MLP) and Radial Basis Function Network (RBFN), are employed to predict natural gas consumption. The last is Adaptive Neuro Fuzzy Inference System (ANFIS), which combines ANN and Fuzzy Inference System. Different prediction models have been constructed and one model, which has the best forecasting performance, is determined for each method. Then predictions are made by using these models and results are compared. Keywords: ANN, ANFIS, ARIMA, Natural Gas, Forecasting

  9. BIOMETHANE FOR TRANSPORTATION

    EPA Science Inventory

    During phase I of this project we designed and built two different small-scale biogas refineries. The first design used a caustic absorption system. Our initial results showed an increase in CH4 (methane) content from 60.50 Mol% in the raw biogas to 93.62 Mol% in th...

  10. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  11. Noble gas cluster ions

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Kalkan, Yalçin; Veenhof, Rob

    2018-02-01

    In this work, a reaction mechanism of formation of noble gas (Ng) cluster ions has been theoretically investigated in detail. The kinetic studies of formation of Xe+Xe cluster in Xe, Ar+Ar cluster ions in Ar, and Ne+Ne cluster ions in Ne have been made as theoretically. The optimized structures in the ground state were calculated using the density functional theory (DFT) by the B3LYP method combined with the Stuttgart/Dresden effective core potential basis set (SDD). In addition, we calculated the rate constants of all cluster formations. The results are 1.15 × 10-31, 3.58 × 10-31, 0.23 × 10-31cm6/s, respectively for Neon, Argon, Xenon cluster ions.

  12. Plasma Radiation Source on the Basis of the Gas Puff with Outer Plasma Shell in the Circuit of a Mega-Ampere Load Current Doubler

    NASA Astrophysics Data System (ADS)

    Kokshenev, V. A.; Labetsky, A. Yu.; Shishlov, A. V.; Kurmaev, N. E.; Fursov, F. I.; Cherdizov, R. K.

    2017-12-01

    Characteristics of Z-pinch plasma radiation in the form of a double shell neon gas puff with outer plasma shell are investigated in the microsecond implosion mode. Experiments are performed using a GIT-12 mega-joule generator with load current doubler having a ferromagnetic core at implosion currents up to 5 MA. Conditions for matching of the nonlinear load with the mega-ampere current multiplier circuit are determined. The load parameters (plasma shell characteristics and mass and geometry of gas puff shells) are optimized on the energy supplied to the gas puff and n energy characteristics of radiation. It is established that the best modes of K-shell radiation in neon are realized for such radial distribution of the gas-puff material at which the compression velocity of the shell is close to a constant and amounts to 27-30 cm/μs. In these modes, up to 40% of energy supplied to the gas puff is converted into K-shell radiation. The reasons limiting the efficiency of the radiation source with increasing implosion current are analyzed. A modernized version of the energy supply from the current doubler to the Z-pinch is proposed.

  13. Energy Factor Analysis for Gas Heat Pump Water Heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basismore » energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.« less

  14. High temperature surface protection. [10 gas turbines

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1978-01-01

    Alloys of the MCrAlX type are the basis for high temperature surface protection systems in gas turbines. M can be one or more of Ni, Co, or Fe and X denotes a reactive metal added to enhance oxide scale adherence. The selection and formation as well as the oxidation, hot corrosion and thermal fatigue performance of MCrAlX coatings are discussed. Coatings covered range from simple aluminides formed by pack cementation to the more advanced physical vapor deposition overlay coatings and developmental plasma spray deposited thermal barrier coatings.

  15. A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools

    NASA Astrophysics Data System (ADS)

    Pizzocri, D.; Pastore, G.; Barani, T.; Magni, A.; Luzzi, L.; Van Uffelen, P.; Pitts, S. A.; Alfonsi, A.; Hales, J. D.

    2018-04-01

    The description of intra-granular fission gas behaviour is a fundamental part of any model for the prediction of fission gas release and swelling in nuclear fuel. In this work we present a model describing the evolution of intra-granular fission gas bubbles in terms of bubble number density and average size, coupled to gas release to grain boundaries. The model considers the fundamental processes of single gas atom diffusion, gas bubble nucleation, re-solution and gas atom trapping at bubbles. The model is derived from a detailed cluster dynamics formulation, yet it consists of only three differential equations in its final form; hence, it can be efficiently applied in engineering fuel performance codes while retaining a physical basis. We discuss improvements relative to previous single-size models for intra-granular bubble evolution. We validate the model against experimental data, both in terms of bubble number density and average bubble radius. Lastly, we perform an uncertainty and sensitivity analysis by propagating the uncertainties in the parameters to model results.

  16. [Evaluation indices of greenhouse gas mitigation technologies in cropland ecosystem].

    PubMed

    Li, Jian-zheng; Wang, Ying-chun; Wang, Li-gang; Li, Hu; Qiu, Jian-jun; Wang, Dao-long

    2015-01-01

    In spite of the increasing studies on greenhouse gas (GHG) emissions mitigation technologies, there is still a lack of systematic indices for evaluation of their overall impacts in croplands. In this study, we collected all the indices relating to greenhouse gas emissions and analyzed each index following the principles of representativeness, objectivity, completeness, dominance and operability. Finally, we proposed evaluation indices for mitigation technologies based on the current situation of China. Crop yield per unit area was proposed as a constrained index, and greenhouse gas emissions intensity, defined as GHG emissions per unit of produced yield, was proposed as comprehensive index to evaluate the greenhouse effect of various croplands mitigation technologies. Calculation of GHG emissions intensity involved yield, change of soil organic carbon, direct N2O emissions, paddy CH4 emissions and direct and indirect emissions from inputs into croplands. By following these evaluation indices, the greenhouse effect of the technologies could be well evaluated, which could provide scientific basis for their further adoption.

  17. Extended Thomas-Fermi density functional for the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Salasnich, Luca; Toigo, Flavio

    2008-11-01

    We determine the energy density ξ(3/5)nɛF and the gradient correction λℏ2(∇n)2/(8mn) of the extended Thomas-Fermi (ETF) density functional, where n is the number density and ɛF is the Fermi energy, for a trapped two-component Fermi gas with infinite scattering length (unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC) calculations [Phys. Rev. Lett. 99, 233201 (2007)]. In particular we find that ξ=0.455 and λ=0.13 give the best fit of the DMC data with an even number N of particles. We also study the odd-even splitting γN1/9ℏω of the ground-state energy for the unitary gas in a harmonic trap of frequency ω determining the constant γ . Finally we investigate the effect of the gradient term in the time-dependent ETF model by introducing generalized Galilei-invariant hydrodynamics equations.

  18. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  19. What is being done about the natural gas shortage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampson, H.M.

    1970-01-01

    A natural gas shortage has definitely been established. Experts agree that demand has, and will continue to out-strip supply. The Federal Power Commission has overcompensated in trying to protect the ultimate consumer from the standpoint of price--with the result that they have failed to protect him on supply. This myopia must now give way to some reasonable basis of reflecting fair market value, which will not be subject to future change. Industry must be encouraged to solve its own problem. Gas from Canada, Alaska, synthetic fuels, and liquid from foreign sources and nuclear stimulation offer a possible supplemental source ofmore » supply. Fortunately, the Federal Power Commission and its staff now fully recognize this serious problem that confronts the industry and are now planning some possible solutions.« less

  20. Coupling loss reducing for fiber Raman gas detection technology

    NASA Astrophysics Data System (ADS)

    Hu, Jialin; Jiang, Shubo; Zhang, Xiumei

    2017-01-01

    During the design of the photonic crystal fiber Raman gas detection device and taking the cost and practicability in to consideration, we choose to use a stainless steel tube as a connector for the connecting of the HCPCF and SMF to replace the fiber fusing splice. Basis on the measurement to reduce coupling loss, we calculated the optimum fiber gap for maximum light coupling and to reduce Fresnel loss. Using the stainless steel tube not only result in low loss but also benefit input of the sample gas and recycling of the fiber which is very expensive. By adjusting the central alignment of the stainless steel tube we can easily control the fiber deviation loss for specific type of SMF and HCPCF. The mode mismatch is also demonstrated.

  1. Production of Substitute Natural Gas from Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon frommore » the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.« less

  2. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Treesearch

    Steven C. Amstrup; Eric T. DeWeaver; David C. Douglas; Bruce G. Marcot; George M. Durner; Cecilia M. Bitz; David A. Bailey

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible...

  3. Decay of a linear pendulum in a collisional gas: spatially one-dimensional case.

    PubMed

    Tsuji, Tetsuro; Aoki, Kazuo

    2014-05-01

    An infinitely wide plate, subject to an external force in its normal direction obeying Hooke's law, is placed in an infinite expanse of a rarefied gas. When the plate is displaced from its equilibrium position and released, it starts in general an oscillatory motion in its normal direction. This is the one-dimensional setting of a linear pendulum considered previously for a collisionless gas and a special Lorentz gas by the present authors [T. Tsuji and K. Aoki, J. Stat. Phys. 146, 620 (2012)]. The motion decays as time proceeds because of the drag force on the plate exerted by the surrounding gas. The long-time behavior of the unsteady motion of the gas caused by the motion of the plate is investigated numerically on the basis of the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation with special interest in the rate of the decay of the oscillatory motion of the plate. The result provides numerical evidence that the displacement of the plate decays in proportion to an inverse power of time for large time.

  4. Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark; Wiser, Ryan

    2003-12-18

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation frommore » 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in

  5. CO2 response (ACi) gas exchange, calculated Vcmax & Jmax parameters, Feb2016-May2016, PA-SLZ, PA-PNM: Panama

    DOE Data Explorer

    Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Ely, Kim [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean

    2017-01-01

    CO2 response (ACi) gas exchange measured on leaves collected from sunlit canopy trees on a monthly basis from Feb to May 2016 at SLZ and PNM. Dataset includes calculated Vcmax and Jmax parameters. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, LMA, leaf spectra, other gas exchange and leaf chemistry.

  6. Free cooling of the one-dimensional wet granular gas.

    PubMed

    Zaburdaev, V Yu; Brinkmann, M; Herminghaus, S

    2006-07-07

    The free cooling behavior of a wet granular gas is studied in one dimension. We employ a particularly simple model system in which the interaction of wet grains is characterized by a fixed energy loss assigned to each collision. Macroscopic laws of energy dissipation and cluster formation are studied on the basis of numerical simulations and mean-field analytical calculations. We find a number of remarkable scaling properties which may shed light on earlier unexplained results for related systems.

  7. The physical basis for absorption of light. [effects on wave functions of gas molecules and atoms

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1979-01-01

    The effects of light absorption on the wave functions of gas-phase molecules and atoms are investigated by high resolution spectral measurements of radiation emerging from a sample. A Stark-modulated sample of methyl fluoride was irradiated at the 102 GHz rotational transition and the emergent radiation was resolved by means of a spectrum analyzer. For signal oscillator frequencies below or above the molecular resonance by one modulation frequency, the amplitudes of the upper and lower modulation sidebands are found to be of nonuniform intensity, which is inconsistent with amplitude modulation. Emission due to polarization is, however, calculated to be consistent with the results observed, indicating that light absorption should be considered as a subtractive stimulated emission.

  8. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  9. Research on the analytical method about influence of gas leakage and explosion on subway

    NASA Astrophysics Data System (ADS)

    Ji, Wendong; Yang, Ligong; Chen, Lin

    2018-05-01

    With the construction and development of city subway, the cross impact of underground rail transit and gas pipe network is becoming more and more serious, but there is no analytical method for the impact of gas explosions on the subway. According to this paper, the gas leakage is equivalent to the TNT explosion equivalent, based on which, the calculation of the explosive impact load is carried out. On the basis of the concrete manifestation of gas explosion, it is more convenient to carry out the subsequent calculation by equivalently treating the explosive impact load as a uniform load within a certain range. The overlying soil of the subway station has played a protective role for the subway, making the displacement of the subway structure in the explosion process significantly reduced. The analysis on the actual case shows that this method can be successfully applied to the quantitative analysis of such accidents.

  10. Natural gas price uncertainty and the cost-effectiveness of hedging against low hydropower revenues caused by drought

    NASA Astrophysics Data System (ADS)

    Kern, Jordan D.; Characklis, Gregory W.; Foster, Benjamin T.

    2015-04-01

    Prolonged periods of low reservoir inflows (droughts) significantly reduce a hydropower producer's ability to generate both electricity and revenues. Given the capital intensive nature of the electric power industry, this can impact hydropower producers' ability to pay down outstanding debt, leading to credit rating downgrades, higher interests rates on new debt, and ultimately, greater infrastructure costs. One potential tool for reducing the financial exposure of hydropower producers to drought is hydrologic index insurance, in particular, contracts structured to payout when streamflows drop below a specified level. An ongoing challenge in developing this type of insurance, however, is minimizing contracts' "basis risk," that is, the degree to which contract payouts deviate in timing and/or amount from actual damages experienced by policyholders. In this paper, we show that consideration of year-to-year changes in the value of hydropower (i.e., the cost of replacing it with an alternative energy source during droughts) is critical to reducing contract basis risk. In particular, we find that volatility in the price of natural gas, a key driver of peak electricity prices, can significantly degrade the performance of index insurance unless contracts are designed to explicitly consider natural gas prices when determining payouts. Results show that a combined index whose value is derived from both seasonal streamflows and the spot price of natural gas yields contracts that exhibit both lower basis risk and greater effectiveness in terms of reducing financial exposure.

  11. Enhanced atomic gas fractions in recently merged galaxies: quenching is not a result of post-merger gas exhaustion.

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Catinella, Barbara; Cortese, Luca

    2018-05-01

    We present a detailed assessment of the global atomic hydrogen gas fraction (fgas=log[MHI/M⋆]) in a sample of post-merger galaxies identified in the Sloan Digital Sky Survey (SDSS). Archival H I measurements of 47 targets are combined with new Arecibo observations of a further 51 galaxies. The stellar mass range of the post-merger sample, our observing strategy, detection thresholds and data analysis procedures replicate those of the extended GALEX Arecibo SDSS Survey (xGASS) which can therefore be used as a control sample. Our principal results are: 1) The post-merger sample shows a ˜ 50 per cent higher H I detection fraction compared with xGASS; 2) Accounting for non-detections, the median atomic gas fraction of the post-merger sample is larger than the control sample by 0.3 - 0.6 dex; 3) The median atomic gas fraction enhancement (Δfgas), computed on a galaxy-by-galaxy basis at fixed stellar mass, is 0.51 dex. Our results demonstrate that recently merged galaxies are typically a factor of ˜ 3 more H I rich than control galaxies of the same M⋆. If the control sample is additionally matched in star formation rate, the median H I excess is reduced to Δfgas = 0.2 dex, showing that the enhanced atomic gas fractions in post-mergers are not purely a reflection of changes in star formation activity. We conclude that merger-induced starbursts and outflows do not lead to prompt quenching via exhaustion/expulsion of the galactic gas reservoirs. Instead, we propose that if star formation ceases after a merger, it is more likely due to an enhanced turbulence which renders the galaxy unable to effectively form new stars.

  12. Biomass energy: Sustainable solution for greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    sustainable carbon sink will be developed. Clean energy production from biomass (such as ethanol, biodiesel, producer gas, bio-methane) could be viable option to reduce fossil fuel consumption. Electricity generation from biomass is increasing throughout the world. Co-firing of biomass with coal and biomass combustion in power plant and CHP would be a viable option for clean energy development. Biomass can produce less emission in the range of 14% to 90% compared to emission from fossil for electricity generation. Therefore, biomass could play a vital role for generation of clean energy by reducing fossil energy to reduce greenhouse gas emissions. The main barriers to expansion of power generation from biomass are cost, low conversion efficiency and availability of feedstock. Internationalization of external cost in power generation and effective policies to improve energy security and carbon dioxide reduction is important to boost up the bio-power. In the long run, bio-power will depend on technological development and on competition for feedstock with food production and arable land use.

  13. Analyzer for measuring gas contained in the pore space of rocks

    NASA Astrophysics Data System (ADS)

    Kudasik, Mateusz; Skoczylas, Norbert

    2017-10-01

    In the present paper, the authors discussed the functioning of their own analyzer for measuring gas contained in the pore space of high strength rocks. A sample is placed inside a hermetic measuring chamber, and then undergoes impact milling as a result of colliding with the vibrating blade of a knife which is rotationally driven by a high-speed brushless electric motor. The measuring chamber is equipped with all the necessary sensors, i.e. gas, pressure, and temperature sensors. Trial tests involving the comminution of dolomite and anhydrite samples demonstrated that the constructed device is able to break up rocks into grains so fine that they are measured in single microns, and the sensors used in the construction ensure balancing of the released gas. The tests of the analyzer showed that the metrological concept behind it, together with the way it was built, make it fit for measurements of the content and composition of selected gases from the rock pore space. On the basis of the conducted tests of balancing the gases contained in the two samples, it was stated that the gas content of Sample no. 1 was (0.055  ±  0.002) cm3 g-1, and Sample no. 2 contained gas at atmospheric pressure, composed mostly of air.

  14. Sensing the gas metal arc welding process

    NASA Technical Reports Server (NTRS)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  15. Sensing the gas metal arc welding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, N.M.; Johnson, J.A.; Smartt, H.B.

    1992-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  16. Sensing the gas metal arc welding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, N.M.; Johnson, J.A.; Smartt, H.B.

    1992-10-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  17. Novel approach for tomographic reconstruction of gas concentration distributions in air: Use of smooth basis functions and simulated annealing

    NASA Astrophysics Data System (ADS)

    Drescher, A. C.; Gadgil, A. J.; Price, P. N.; Nazaroff, W. W.

    Optical remote sensing and iterative computed tomography (CT) can be applied to measure the spatial distribution of gaseous pollutant concentrations. We conducted chamber experiments to test this combination of techniques using an open path Fourier transform infrared spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). Although ART converged to solutions that showed excellent agreement with the measured ray-integral concentrations, the solutions were inconsistent with simultaneously gathered point-sample concentration measurements. A new CT method was developed that combines (1) the superposition of bivariate Gaussians to represent the concentration distribution and (2) a simulated annealing minimization routine to find the parameters of the Gaussian basis functions that result in the best fit to the ray-integral concentration data. This method, named smooth basis function minimization (SBFM), generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present an analysis of two sets of experimental data that compares the performance of ART and SBFM. We conclude that SBFM is a superior CT reconstruction method for practical indoor and outdoor air monitoring applications.

  18. Development of Diesel Engine Operated Forklift Truck for Explosive Gas Atmospheres

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Rajendra Kumar; Singh, Arvind Kumar; Ahirwal, Bhagirath; Sinha, Amalendu

    2018-02-01

    For the present study, a prototype diesel engine operated Forklift truck of 2 t capacity is developed for explosive gas atmosphere. The parts of the Forklift truck are assessed against risk of ignition of the explosive gases, vapors or mist grouped in Gr. IIA and having ignition temperature more than 200°C. Identification of possible sources of ignition and their control or prevention is the main objective of this work. The design transformation of a standard Forklift truck into a special Forklift truck is made on prototype basis. The safety parameters of the improved Forklift truck are discussed in this paper. The specially designed Forklift truck is useful in industries where explosive atmospheres may present during normal working conditions and risk of explosion is a concern during handling or transportation of materials. This indigenous diesel engine based Forklift truck for explosive gas atmosphere classified as Zone 1 and Zone 2 area and gas group IIA is developed first time in India in association with the Industry.

  19. Biogas upgrading and utilization: Current status and perspectives.

    PubMed

    Angelidaki, Irini; Treu, Laura; Tsapekos, Panagiotis; Luo, Gang; Campanaro, Stefano; Wenzel, Henrik; Kougias, Panagiotis G

    Biogas production is an established sustainable process for simultaneous generation of renewable energy and treatment of organic wastes. The increasing interest of utilizing biogas as substitute to natural gas or its exploitation as transport fuel opened new avenues in the development of biogas upgrading techniques. The present work is a critical review that summarizes state-of-the-art technologies for biogas upgrading and enhancement with particular attention to the emerging biological methanation processes. The review includes comprehensive description of the main principles of various biogas upgrading methodologies, scientific and technical outcomes related to their biomethanation efficiency, challenges that have to be addressed for further development and incentives and feasibility of the upgrading concepts. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. 47 CFR 13.1 - Basis and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Basis and purpose. 13.1 Section 13.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL RADIO OPERATORS General § 13.1 Basis and purpose. (a) Basis. The basis for the rules contained in this part is the Communications Act of 1934, as...

  1. Numerical solution of fractured horizontal wells in shale gas reservoirs considering multiple transport mechanisms

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-long; Tang, Xu-chuan; Zhang, Lie-hui; Tang, Hong-ming; Tao, Zheng-Wu

    2018-06-01

    The multiscale pore size and specific gas storage mechanism in organic-rich shale gas reservoirs make gas transport in such reservoirs complicated. Therefore, a model that fully incorporates all transport mechanisms and employs an accurate numerical method is urgently needed to simulate the gas production process. In this paper, a unified model of apparent permeability was first developed, which took into account multiple influential factors including slip flow, Knudsen diffusion (KD), surface diffusion, effects of the adsorbed layer, permeability stress sensitivity, and ad-/desorption phenomena. Subsequently, a comprehensive mathematical model, which included the model of apparent permeability, was derived to describe gas production behaviors. Thereafter, on the basis of unstructured perpendicular bisection grids and finite volume method, a fully implicit numerical simulator was developed using Matlab software. The validation and application of the new model were confirmed using a field case reported in the literature. Finally, the impacts of related influencing factors on gas production were analyzed. The results showed that KD resulted in a negligible impact on gas production in the proposed model. The smaller the pore size was, the more obvious the effects of the adsorbed layer on the well production rate would be. Permeability stress sensitivity had a slight effect on well cumulative production in shale gas reservoirs. Adsorbed gas made a major contribution to the later flow period of the well; the greater the adsorbed gas content, the greater the well production rate would be. This paper can improve the understanding of gas production in shale gas reservoirs for petroleum engineers.

  2. Rational Design of Glycomimetic Compounds Targeting the Saccharomyces cerevisiae Transglycosylase Gas2.

    PubMed

    Delso, Ignacio; Valero-González, Jessika; Marca, Eduardo; Tejero, Tomás; Hurtado-Guerrero, Ramón; Merino, Pedro

    2016-02-01

    The transglycosylase Saccharomyces cerevisiae Gas2 (ScGas2) belongs to a large family of enzymes that are key players in yeast cell wall remodeling. Despite its biologic importance, no studies on the synthesis of substrate-based compounds as potential inhibitors have been reported. We have synthesized a series of docking-guided glycomimetics that were evaluated by fluorescence spectroscopy and saturation-transfer difference (STD) NMR experiments, revealing that a minimum of three glucose units linked via a β-(1,3) linkage are required for achieving molecular recognition at the binding donor site. The binding mode of our compounds is further supported by STD-NMR experiments using the active site-mutants Y107Q and Y244Q. Our results are important for both understanding of ScGas2-substrate interactions and setting up the basis for future design of glycomimetics as new antifungal agents. © 2015 John Wiley & Sons A/S.

  3. Infrared Matrix-Isolation Study of New Noble-Gas Compounds

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2016-06-01

    We identify new noble-gas compounds in solid matrices using IR spectroscopy. The compounds under study belong to two types: HNgY and YNgY' where Ng is a noble-gas atom and Y and Y' are electronegative fragments. The experimental assignments are supported by ab initio calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. We have prepared and characterized two new HNgY compounds (noble-gas hydrides): HKrCCCl in a Kr matrix and HXeCCCl in a Xe matrix.I The synthesis of these compounds includes two steps: UV photolysis of HCCCl in a noble-gas matrix to form the H + CCCl fragments and annealing of the matrix to mobilize H atoms and to promote the H + Ng + CCCl = HNgCCCl reaction. An interesting observation in the experiments on HXeCCCl in a Xe matrix is the temperature-induced transformation of the three H-Xe stretching bands. This observation is explained by temperature-induced changes of local matrix morphology around the embedded HXeCCCl molecule. In these experiments, we have also obtained the IR spectrum of the CCCl radical, which is produced by photodecomposition of HCCCl. We have identified three new YNgY' compounds (fluorinated noble-gas cyanides): FKrCN in a Kr matrix and FXeCN and FXeNC in a Xe matrix.II These molecule are formed by photolysis of FCN in a noble-gas matrix due to locality of this process. The amount of these molecules increases upon thermal mobilization of the F atoms in the photolyzed matrix featuring the F + Ng + CN reaction.

  4. A temperature correlation for the radiation resistance of a thick-walled circular duct exhausting a hot gas

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Cline, J. G.; Jones, J. D.

    1984-01-01

    It is often useful to know the radiation impedance of an unflanged but thick-walled circular duct exhausting a hot gas into relatively cold surroundings. The reactive component is shown to be insensitive to temperature, but the resistive component is shown to be temperature dependent. A temperature correlation is developed permitting prediction of the radiation resistance from a knowledge of the temperature difference between the ambient air and the gas flowing from the duct, and a physical basis for this correlation is presented.

  5. A natural-gas fuel processor for a residential fuel cell system

    NASA Astrophysics Data System (ADS)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  6. Experimental study of influence characteristics of flue gas fly ash on acid dew point

    NASA Astrophysics Data System (ADS)

    Song, Jinhui; Li, Jiahu; Wang, Shuai; Yuan, Hui; Ren, Zhongqiang

    2017-12-01

    The long-term operation experience of a large number of utility boilers shows that the measured value of acid dew point is generally lower than estimated value. This is because the influence of CaO and MgO on acid dew point in flue gas fly ash is not considered in the estimation formula of acid dew point. On the basis of previous studies, the experimental device for acid dew point measurement was designed and constructed, and the acid dew point under different smoke conditions was measured. The results show that the CaO and MgO in the flue gas fly ash have an obvious influence on the acid dew point, and the content of the fly ash is negatively correlated with the temperature of acid dew point At the same time, the concentration of H2SO4 in flue gas is different, and the acid dew point of flue gas is different, and positively correlated with the acid dew point.

  7. Effective empirical corrections for basis set superposition error in the def2-SVPD basis: gCP and DFT-C

    NASA Astrophysics Data System (ADS)

    Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin

    2017-06-01

    With the aim of mitigating the basis set error in density functional theory (DFT) calculations employing local basis sets, we herein develop two empirical corrections for basis set superposition error (BSSE) in the def2-SVPD basis, a basis which—when stripped of BSSE—is capable of providing near-complete-basis DFT results for non-covalent interactions. Specifically, we adapt the existing pairwise geometrical counterpoise (gCP) approach to the def2-SVPD basis, and we develop a beyond-pairwise approach, DFT-C, which we parameterize across a small set of intermolecular interactions. Both gCP and DFT-C are evaluated against the traditional Boys-Bernardi counterpoise correction across a set of 3402 non-covalent binding energies and isomerization energies. We find that the DFT-C method represents a significant improvement over gCP, particularly for non-covalently-interacting molecular clusters. Moreover, DFT-C is transferable among density functionals and can be combined with existing functionals—such as B97M-V—to recover large-basis results at a fraction of the cost.

  8. 47 CFR 10.1 - Basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Basis. 10.1 Section 10.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM General Information § 10.1 Basis... 109-347, Titles I through III of the Communications Act of 1934, as amended, and Executive Order 13407...

  9. 47 CFR 10.1 - Basis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Basis. 10.1 Section 10.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM General Information § 10.1 Basis... Response Network Act, Title VI of the Security and Accountability for Every Port Act of 2006, Public Law...

  10. 42 CFR 440.300 - Basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Basis. 440.300 Section 440.300 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL....300 Basis. This subpart implements section 1937 of the Act, which authorizes States to provide for...

  11. Decay of a linear pendulum in a collisional gas: Spatially one-dimensional case

    NASA Astrophysics Data System (ADS)

    Tsuji, Tetsuro; Aoki, Kazuo

    2014-05-01

    An infinitely wide plate, subject to an external force in its normal direction obeying Hooke's law, is placed in an infinite expanse of a rarefied gas. When the plate is displaced from its equilibrium position and released, it starts in general an oscillatory motion in its normal direction. This is the one-dimensional setting of a linear pendulum considered previously for a collisionless gas and a special Lorentz gas by the present authors [T. Tsuji and K. Aoki, J. Stat. Phys. 146, 620 (2012), 10.1007/s10955-011-0412-7]. The motion decays as time proceeds because of the drag force on the plate exerted by the surrounding gas. The long-time behavior of the unsteady motion of the gas caused by the motion of the plate is investigated numerically on the basis of the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation with special interest in the rate of the decay of the oscillatory motion of the plate. The result provides numerical evidence that the displacement of the plate decays in proportion to an inverse power of time for large time.

  12. Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.

    PubMed

    Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew

    2015-11-12

    In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems.

  13. Deliverability on the interstate natural gas pipeline system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall systemmore » design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.« less

  14. Chlorine Dioxide Gas Sterilization under Square-Wave Conditions

    PubMed Central

    Jeng, David K.; Woodworth, Archie G.

    1990-01-01

    Experiments were designed to study chlorine dioxide (CD) gas sterilization under square-wave conditions. By using controlled humidity, gas concentration, and temperature at atmospheric pressure, standard biological indicators (BIs) and spore disks of environmental isolates were exposed to CD gas. The sporicidal activity of CD gas was found to be concentration dependent. Prehumidification enhanced the CD activity. The D values (time required for 90% inactivation) of Bacillus subtilis subsp. niger ATCC 9372 BIs were estimated to be 1.5, 2.5, and 4.2 min when exposed to CD concentrations of 30, 15, and 7 mg/liter, respectively, at 23°C and ambient (20 to 40%) relative humidity (RH). Survivor tailings were observed. Prehumidification of BIs to 70 to 75% RH in an environmental chamber for 30 min resulted in a D value of 1.6 min after exposure to a concentration of 6 to 7 mg of CD per liter at 23°C and eliminated survivor tailing. Prolonging prehumidification at 70 to 75% RH for up to 16 h did not further improve the inactivation rate. Prehumidification by ultrasonic nebulization was found to be more effective than prehumidification in the environmental chamber, improving the D value to 0.55 min at a CD concentration of 6 to 7 mg/liter. Based on the current observations, CD gas is estimated, on a molar concentration basis, to be 1,075 times more potent than ethylene oxide as a sterilant at 30°C. A comparative study showed B. subtilis var. niger BIs were more resistant than other types of BIs and most of the tested bacterial spores of environmental isolates. PMID:16348127

  15. Moving boundary problems for a rarefied gas: Spatially one-dimensional case

    NASA Astrophysics Data System (ADS)

    Tsuji, Tetsuro; Aoki, Kazuo

    2013-10-01

    Unsteady flows of a rarefied gas in a full space caused by an oscillation of an infinitely wide plate in its normal direction are investigated numerically on the basis of the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation. The paper aims at showing properties and difficulties inherent to moving boundary problems in kinetic theory of gases using a simple one-dimensional setting. More specifically, the following two problems are considered: (Problem I) the plate starts a forced harmonic oscillation (forced motion); (Problem II) the plate, which is subject to an external restoring force obeying Hooke’s law, is displaced from its equilibrium position and released (free motion). The physical interest in Problem I lies in the propagation of nonlinear acoustic waves in a rarefied gas, whereas that in Problem II in the decay rate of the oscillation of the plate. An accurate numerical method, which is capable of describing singularities caused by the oscillating plate, is developed on the basis of the method of characteristics and is applied to the two problems mentioned above. As a result, the unsteady behavior of the solution, such as the propagation of discontinuities and some weaker singularities in the molecular velocity distribution function, are clarified. Some results are also compared with those based on the existing method.

  16. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, Federico

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  17. 42 CFR 460.2 - Basis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Basis. 460.2 Section 460.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Basis, Scope...

  18. 42 CFR 460.2 - Basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Basis. 460.2 Section 460.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Basis, Scope...

  19. 47 CFR 10.1 - Basis.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Network Act, Title VI of the Security and Accountability for Every Port Act of 2006, Public Law 109-347... 47 Telecommunication 1 2013-10-01 2013-10-01 false Basis. 10.1 Section 10.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS General Information § 10.1 Basis. The...

  20. 47 CFR 10.1 - Basis.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Network Act, Title VI of the Security and Accountability for Every Port Act of 2006, Public Law 109-347... 47 Telecommunication 1 2014-10-01 2014-10-01 false Basis. 10.1 Section 10.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS General Information § 10.1 Basis. The...

  1. Model for economic evaluation of high energy gas fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engi, D.

    1984-05-01

    The HEGF/NPV model has been developed and adapted for interactive microcomputer calculations of the economic consequences of reservoir stimulation by high energy gas fracturing (HEGF) in naturally fractured formations. This model makes use of three individual models: a model of the stimulated reservoir, a model of the gas flow in this reservoir, and a model of the discounted expected net cash flow (net present value, or NPV) associated with the enhanced gas production. Nominal values of the input parameters, based on observed data and reasonable estimates, are used to calculate the initial expected increase in the average daily rate ofmore » production resulting from the Meigs County HEGF stimulation experiment. Agreement with the observed initial increase in rate is good. On the basis of this calculation, production from the Meigs County Well is not expected to be profitable, but the HEGF/NPV model probably provides conservative results. Furthermore, analyses of the sensitivity of the expected NPV to variations in the values of certain reservoir parameters suggest that the use of HEGF stimulation in somewhat more favorable formations is potentially profitable. 6 references, 4 figures, 3 tables.« less

  2. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  3. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  4. Life-cycle analysis of shale gas and natural gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.E.; Han, J.; Burnham, A.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results showmore » that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.« less

  5. Accouting for Greenhouse Gas Emissions from Reservoirs

    NASA Astrophysics Data System (ADS)

    Beaulieu, J. J.; Deemer, B. R.; Harrison, J. A.; Nietch, C. T.; Waldo, S.

    2016-12-01

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a `basis for future methodological development' due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions linked to the National Lakes Assessment.

  6. Accounting For Greenhouse Gas Emissions From Flooded ...

    EPA Pesticide Factsheets

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. The research approaches include 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions. To inform th

  7. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    EPA Pesticide Factsheets

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  8. 42 CFR 433.300 - Basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Basis. 433.300 Section 433.300 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Providers § 433.300 Basis. This subpart implements— (a) Section 1903(d)(2)(A) of the Act, which directs that...

  9. 42 CFR 433.300 - Basis.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Basis. 433.300 Section 433.300 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Providers § 433.300 Basis. This subpart implements— (a) Section 1903(d)(2)(A) of the Act, which directs that...

  10. 42 CFR 405.2400 - Basis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Basis. 405.2400 Section 405.2400 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM FEDERAL... Services § 405.2400 Basis. Subpart X is based on the provisions of the following sections of the Act...

  11. 20 CFR 900.1 - Basis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Basis. 900.1 Section 900.1 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES STATEMENT OF ORGANIZATION § 900.1 Basis. This statement is issued by the Joint Board for the Enrollment of Actuaries (the Joint Board) pursuant to the...

  12. 20 CFR 900.1 - Basis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Basis. 900.1 Section 900.1 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES STATEMENT OF ORGANIZATION § 900.1 Basis. This statement is issued by the Joint Board for the Enrollment of Actuaries (the Joint Board) pursuant to the...

  13. 20 CFR 900.1 - Basis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Basis. 900.1 Section 900.1 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES STATEMENT OF ORGANIZATION § 900.1 Basis. This statement is issued by the Joint Board for the Enrollment of Actuaries (the Joint Board) pursuant to the...

  14. 20 CFR 900.1 - Basis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Basis. 900.1 Section 900.1 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES STATEMENT OF ORGANIZATION § 900.1 Basis. This statement is issued by the Joint Board for the Enrollment of Actuaries (the Joint Board) pursuant to the...

  15. 20 CFR 900.1 - Basis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Basis. 900.1 Section 900.1 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES STATEMENT OF ORGANIZATION § 900.1 Basis. This statement is issued by the Joint Board for the Enrollment of Actuaries (the Joint Board) pursuant to the...

  16. Comparison of detailed and reduced kinetics mechanisms of silane oxidation in the basis of detonation wave structure problem

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Tropin, D. A.; Fomin, P. A.

    2018-03-01

    The paper deals with the problem of the structure of detonation waves in the silane-air mixture within the framework of mathematical model of a nonequilibrium gas dynamics. Detailed kinetic scheme of silane oxidation as well as the newly developed reduced kinetic model of detonation combustion of silane are used. On its basis the detonation wave (DW) structure in stoichiometric silane - air mixture and dependences of Chapman-Jouguet parameters of mixture on stoichiometric ratio between the fuel (silane) and an oxidizer (air) were obtained.

  17. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  18. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  19. Assessing Gas-Hydrate Prospects on the North Slope of Alaska - Theoretical Considerations

    USGS Publications Warehouse

    Lee, Myung W.; Collett, Timothy S.; Agena, Warren F.

    2008-01-01

    Gas-hydrate resource assessment on the Alaska North Slope using 3-D and 2-D seismic data involved six important steps: (1) determining the top and base of the gas-hydrate stability zone, (2) 'tying' well log information to seismic data through synthetic seismograms, (3) differentiating ice from gas hydrate in the permafrost interval, (4) developing an acoustic model for the reservoir and seal, (5) developing a method to estimate gas-hydrate saturation and thickness from seismic attributes, and (6) assessing the potential gas-hydrate prospects from seismic data based on potential migration pathways, source, reservoir quality, and other relevant geological information. This report describes the first five steps in detail using well logs and provides theoretical backgrounds for resource assessments carried out by the U.S. Geological Survey. Measured and predicted P-wave velocities enabled us to tie synthetic seismograms to the seismic data. The calculated gas-hydrate stability zone from subsurface wellbore temperature data enabled us to focus our effort on the most promising depth intervals in the seismic data. A typical reservoir in this area is characterized by the P-wave velocity of 1.88 km/s, porosity of 42 percent, and clay volume content of 5 percent, whereas seal sediments encasing the reservoir are characterized by the P-wave velocity of 2.2 km/s, porosity of 32 percent, and clay volume content of 20 percent. Because the impedance of a reservoir without gas hydrate is less than that of the seal, a complex amplitude variation with respect to gas-hydrate saturation is predicted, namely polarity change, amplitude blanking, and high seismic amplitude (a bright spot). This amplitude variation with gas-hydrate saturation is the physical basis for the method used to quantify the resource potential of gas hydrates in this assessment.

  20. Chapter 9: Oil and gas resource potential north of the Arctic Circle

    USGS Publications Warehouse

    Gautier, D.L.; Bird, K.J.; Charpentier, R.R.; Grantz, A.; Houseknecht, D.W.; Klett, T.R.; Moore, Thomas E.; Pitman, Janet K.; Schenk, C.J.; Schuenemeyer, J.H.; Sorensen, K.; Tennyson, Marilyn E.; Valin, Z.C.; Wandrey, C.J.

    2011-01-01

    The US Geological Survey recently assessed the potential for undiscovered conventional petroleumin the Arctic. Using a new map compilation of sedimentary elements, the area north of the Arctic Circle was subdivided into 70 assessment units, 48 of which were quantitatively assessed. The Circum-Arctic Resource Appraisal (CARA) was a geologically based, probabilistic study that relied mainly on burial history analysis and analogue modelling to estimate sizes and numbers of undiscovered oil and gas accumulations. The results of the CARA suggest the Arctic is gas-prone with an estimated 770-2990 trillion cubic feet of undiscovered conventional natural gas, most of which is in Russian territory. On an energy-equivalent basis, the quantity of natural gas ismore than three times the quantity of oil and the largest undiscovered gas eld is expected to be about 10 times the size of the largest undiscovered oil eld. In addition to gas, the gas accumulationsmay contain an estimated 39 billion barrels of liquids. The South Kara Sea is themost prospective gas assessment unit, but giant gas elds containingmore than 6 trillion cubic feet of recoverable gas are possible at a 50%chance in 10 assessment units. Sixty per cent of the estimated undiscovered oil resource is in just six assessment units, of which the Alaska Platform, with 31%of the resource, is the most prospective. Overall, the Arctic is estimated to contain between 44 and 157 billion barrels of recoverable oil. Billion barrel oil elds are possible at a 50%chance in seven assessment units.Undiscovered oil resources could be signicant to the Arctic nations, but are probably not sufcient to shift the world oil balance away from the Middle East. ?? 2011 The Geological Society of London.

  1. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbingmore » liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  2. 42 CFR 436.2 - Basis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Basis. 436.2 Section 436.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS ELIGIBILITY IN GUAM, PUERTO RICO, AND THE VIRGIN ISLANDS General Provisions and Definitions § 436.2 Basis. This part implements the...

  3. 42 CFR 436.2 - Basis.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Basis. 436.2 Section 436.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS ELIGIBILITY IN GUAM, PUERTO RICO, AND THE VIRGIN ISLANDS General Provisions and Definitions § 436.2 Basis. This part implements the...

  4. 42 CFR 436.2 - Basis.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Basis. 436.2 Section 436.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS ELIGIBILITY IN GUAM, PUERTO RICO, AND THE VIRGIN ISLANDS General Provisions and Definitions § 436.2 Basis. This part implements the...

  5. 42 CFR 436.2 - Basis.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Basis. 436.2 Section 436.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS ELIGIBILITY IN GUAM, PUERTO RICO, AND THE VIRGIN ISLANDS General Provisions and Definitions § 436.2 Basis. This part implements the...

  6. 42 CFR 436.2 - Basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Basis. 436.2 Section 436.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS ELIGIBILITY IN GUAM, PUERTO RICO, AND THE VIRGIN ISLANDS General Provisions and Definitions § 436.2 Basis. This part implements the...

  7. Low-temperature gas from marine shales: wet gas to dry gas over experimental time.

    PubMed

    Mango, Frank D; Jarvie, Daniel M

    2009-11-09

    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 degrees below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100 degrees C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  8. Photochemical gas lasers and hybrid (solid/gas) blue-green femtosecond systems

    NASA Astrophysics Data System (ADS)

    Mikheev, L. D.; Tcheremiskine, V. I.; Uteza, O. P.; Sentis, M. L.

    2012-01-01

    The review summarizes milestones and major breakthrough results obtained in the course of the development of a photochemical method applied to optical excitation of gas lasers on electronic molecular transitions by radiation from such unconventional pump sources as high-temperature electrical discharges and strong shock waves in gas. It also describes principles and techniques applied in hybrid (solid/gas) high-intensity laser systems emitting in the blue-green spectral region, and discusses wavelength scaling of laser-matter interaction by the example of laser wake-field acceleration (LWFA), high-order harmonic generation (HHG) and “water window” soft X-ray lasers. One of the most significant results of the photochemical method development consists in emerging broad bandwidth lasers (XeF(C-A), Xe2Cl, and Kr2F) operating in the blue-green spectral range, which have potential for amplification of ultra-short (down to 10 fs) optical pulses towards the Petawatt peak power level. The main goal of this review is to argue that the active media of these lasers may provide a basis for the development of fs systems generating super-intense ultrashort laser pulses in the visible spectral range. Some specific hybrid schemes, comprising solid state front-ends and photodissociation XeF(C-A) power boosting amplifiers, are described. They are now under development at the Lasers Plasmas and Photonic Processes (LP3) Laboratory (Marseille, France), the P.N. Lebedev Physical Institute (Moscow, Russia) and the Institute of High-Current Electronics (Tomsk, Russia) with the aim of conducting proof-of-principle experiments. Some consequences of the visible-wavelength laser field interaction with matter are also surveyed to demonstrate advantages of short driver wavelength in the considered examples. One of the most important consequences is the possibility of coherent soft X-ray generation within the “water window” spectral range with the use of short wavelength driver pulses to

  9. Basis set construction for molecular electronic structure theory: natural orbital and Gauss-Slater basis for smooth pseudopotentials.

    PubMed

    Petruzielo, F R; Toulouse, Julien; Umrigar, C J

    2011-02-14

    A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.

  10. "Fee Contracting": Marketing Adult Education Program Offerings on a Cost-Recovery Basis. Cost-Recovery Basis.

    ERIC Educational Resources Information Center

    Creighton, John P.

    This workshop presents a Maryland model of delivering public adult education services to business, industry, and public agencies on a cost-recovery basis. A rationale is discussed for the role of public adult education in provision of services on this basis. Ten ways to get started without a marketing specialist are listed. Good leads to…

  11. Assessment of Undiscovered Oil and Gas Resources of the West Greenland-East Canada Province, 2008

    USGS Publications Warehouse

    Schenk, Christopher J.; Bird, Kenneth J.; Brown, Philip J.; Charpentier, Ronald R.; Gautier, Donald L.; Houseknecht, David W.; Klett, Timothy R.; Pawlewicz, Mark J.; Shah, Anjana; Tennyson, Marilyn E.

    2008-01-01

    The U.S. Geological Survey (USGS) recently assessed the undiscovered oil and gas potential of the West Greenland?East Canada Province as part of the USGS Circum-Arctic Oil and Gas Resource Appraisal effort. The West Greenland?East Canada Province is essentially the offshore area between west Greenland and east Canada and includes Baffin Bay, Davis Strait, Lancaster Sound, and Nares Strait west of and including Kane Basin. The tectonic evolution of the West Greenland?East Canada Province led to the formation of several major structural domains that are the geologic basis for the five assessment units (AU) defined in this study. The five AUs encompass the entire province. Each AU was assessed in its entirety for undiscovered, technically recoverable (assuming absence of sea ice) oil and gas resources, but the assessment results reported here are only for those portions of each AU that are north of the Arctic Circle, as that latitude defines the area of the Circum-Arctic oil and gas assessment.

  12. Synthesis of porous SnO2 nanocubes via selective leaching and enhanced gas-sensing properties

    NASA Astrophysics Data System (ADS)

    Li, Yining; Wei, Qi; Song, Peng; Wang, Qi

    2016-01-01

    Porous micro-/nanostructures are of great interest in many current and emerging areas of technology. In this paper, porous SnO2 nanocubes have been successfully fabricated via a selective leaching strategy using CoSn(OH)6 as precursor. The structure and morphology of as-prepared samples were investigated by several techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential scanning calorimeter analysis (TG⿿DSC), transmission electron microscopy (TEM) and N2 adsorption⿿desorption analyses. On the basis of those characterizations, the mechanism for the formation of porous SnO2 nanocubes has been proposed. Owing to the well-defined and uniform porous structures, porous SnO2 nanocubes possessing more adsorbent amount of analytic gas and accelerate the transmission speed so as to enhance the gas-sensing properties. Gas sensing investigation showed that the sensor based on porous SnO2 nanocubes exhibited high response, short response⿿recovery times and good selectivity to ethanol gas.

  13. Role of stranded gas in increasing global gas supplies

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This report synthesizes the findings of three regional studies in order to evaluate, at the global scale, the contribution that stranded gas resources can make to global natural gas supplies. Stranded gas, as defined for this study, is natural gas in discovered conventional gas and oil fields that is currently not commercially producible for either physical or economic reasons. The regional studies evaluated the cost of bringing the large volumes of undeveloped gas in stranded gas fields to selected markets. In particular, stranded gas fields of selected Atlantic Basin countries, north Africa, Russia, and central Asia are screened to determine whether the volumes are sufficient to meet Europe’s increasing demand for gas imports. Stranded gas fields in Russia, central Asia, Southeast Asia, and Australia are also screened to estimate development, production, and transport costs and corresponding gas volumes that could be supplied to Asian markets in China, India, Japan, and South Korea. The data and cost analysis presented here suggest that for the European market and the markets examined in Asia, the development of stranded gas provides a way to meet projected gas import demands for the 2020-to-2040 period. Although this is a reconnaissance-type appraisal, it is based on volumes of gas that are associated with individual identified fields. Individual field data were carefully examined. Some fields were not evaluated because current technology was insufficient or it appeared the gas was likely to be held off the export market. Most of the evaluated stranded gas can be produced and delivered to markets at costs comparable to historical prices. Moreover, the associated volumes of gas are sufficient to provide an interim supply while additional technologies are developed to unlock gas diffused in shale and hydrates or while countries transition to making a greater use of renewable energy sources.

  14. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    USGS Publications Warehouse

    Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  15. Estimation of potential distribution of gas hydrate in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Chunjuan; Du, Dewen; Zhu, Zhiwei; Liu, Yonggang; Yan, Shijuan; Yang, Gang

    2010-05-01

    Gas hydrate research has significant importance for securing world energy resources, and has the potential to produce considerable economic benefits. Previous studies have shown that the South China Sea is an area that harbors gas hydrates. However, there is a lack of systematic investigations and understanding on the distribution of gas hydrate throughout the region. In this paper, we applied mineral resource quantitative assessment techniques to forecast and estimate the potential distribution of gas hydrate resources in the northern South China Sea. However, current hydrate samples from the South China Sea are too few to produce models of occurrences. Thus, according to similarity and contrast principles of mineral outputs, we can use a similar hydrate-mining environment with sufficient gas hydrate data as a testing ground for modeling northern South China Sea gas hydrate conditions. We selected the Gulf of Mexico, which has extensively studied gas hydrates, to develop predictive models of gas hydrate distributions, and to test errors in the model. Then, we compared the existing northern South China Sea hydrate-mining data with the Gulf of Mexico characteristics, and collated the relevant data into the model. Subsequently, we applied the model to the northern South China Sea to obtain the potential gas hydrate distribution of the area, and to identify significant exploration targets. Finally, we evaluated the reliability of the predicted results. The south seabed area of Taiwan Bank is recommended as a priority exploration target. The Zhujiang Mouth, Southeast Hainan, and Southwest Taiwan Basins, including the South Bijia Basin, also are recommended as exploration target areas. In addition, the method in this paper can provide a useful predictive approach for gas hydrate resource assessment, which gives a scientific basis for construction and implementation of long-term planning for gas hydrate exploration and general exploitation of the seabed of China.

  16. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review

    NASA Astrophysics Data System (ADS)

    Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet

    2016-05-01

    It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.

  17. Identification of Abscisic Acid in Tulipa gesneriana L. by Gas-Liquid Chromatography with Electron Capture and Combined Gas-Liquid Chromatography and Mass Spectrometry

    PubMed Central

    Terry, Paul H.; Aung, Louis H.; De Hertogh, August A.

    1982-01-01

    A major growth inhibitory substance of tulip bulbs (Tulipa gesneriana L. cv Paul Richter) has been unequivocally shown to be abscisic acid (ABA). The ABA methyl ester of the free ether-soluble acid fractions of tulip organs had the identical retention time on gas-liquid chromatography with electron capture detector as authentic ABA methyl ester. In addition, the mass spectra were the same. On a unit dry matter basis, the basalplate and floral shoot contained 3.6 and 2.6 times more ABA than the fleshy scales, respectively. PMID:16662721

  18. Comparison of localized basis and plane-wave basis for density-functional calculations of organic molecules on metals

    NASA Astrophysics Data System (ADS)

    Lee, Kyuho; Yu, Jaejun; Morikawa, Yoshitada

    2007-01-01

    Localized pseudoatomic orbitals (PAOs) are mainly optimized and tested for the strong chemical bonds within molecules and solids with their proven accuracy and efficiency, but are prone to significant basis set superposition error (BSSE) for weakly interacting systems. Here we test the accuracy of PAO basis in comparison with the BSSE-free plane-wave basis for the physisorption of pentacene molecule on Au (001) by calculating the binding energy, adsorption height, and energy level alignment. We show that both the large cutoff radius for localized PAOs and the counter-poise correction for BSSE are necessary to obtain well-converged physical properties. Thereby obtained results are as accurate as the plane-wave basis results. The comparison with experiment is given as well.

  19. Design and Development of a Residential Gas-Fired Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac

    2017-01-01

    Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less

  20. The mechanisms underlying the production of discontinuous gas exchange cycles in insects.

    PubMed

    Matthews, Philip G D

    2018-03-01

    This review examines the control of gas exchange in insects, specifically examining what mechanisms could explain the emergence of discontinuous gas exchange cycles (DGCs). DGCs are gas exchange patterns consisting of alternating breath-hold periods and bouts of gas exchange. While all insects are capable of displaying a continuous pattern of gas exchange, this episodic pattern is known to occur within only some groups of insects and then only sporadically or during certain phases of their life cycle. Investigations into DGCs have tended to emphasise the role of chemosensory thresholds in triggering spiracle opening as critical for producing these gas exchange patterns. However, a chemosensory basis for episodic breathing also requires an as-of-yet unidentified hysteresis between internal respiratory stimuli, chemoreceptors, and the spiracles. What has been less appreciated is the role that the insect's central nervous system (CNS) might play in generating episodic patterns of ventilation. The active ventilation displayed by many insects during DGCs suggests that this pattern could be the product of directed control by the CNS rather than arising passively as a result of self-sustaining oscillations in internal oxygen and carbon dioxide levels. This paper attempts to summarise what is currently known about insect gas exchange regulation, examining the location and control of ventilatory pattern generators in the CNS, the influence of chemoreceptor feedback in the form of O 2 and CO 2 /pH fluctuations in the haemolymph, and the role of state-dependent changes in CNS activity on ventilatory control. This information is placed in the context of what is currently known regarding the production of discontinuous gas exchange patterns.

  1. Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed.

    PubMed

    Calicioglu, O; Brennan, R A

    2018-06-01

    The potential for improving bioenergy yields from duckweed, a fast-growing, simple, floating aquatic plant, was evaluated by subjecting the dried biomass directly to anaerobic digestion, or sequentially to ethanol fermentation and then anaerobic digestion, after evaporating ethanol from the fermentation broth. Bioethanol yields of 0.41 ± 0.03 g/g and 0.50 ± 0.01 g/g (glucose) were achieved for duckweed harvested from the Penn State Living-Filter (Lemna obscura) and Eco-Machine™ (Lemna minor/japonica and Wolffia columbiana), respectively. The highest biomethane yield, 390 ± 0.1 ml CH 4 /g volatile solids added, was achieved in a reactor containing fermented duckweed from the Living-Filter at a substrate-to-inoculum (S/I) ratio (i.e., duckweed to microorganism ratio) of 1.0. This value was 51.2% higher than the biomethane yield of a replicate reactor with raw (non-fermented) duckweed. The combined bioethanol-biomethane process yielded 70.4% more bioenergy from duckweed, than if anaerobic digestion had been run alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Methane production in an anaerobic osmotic membrane bioreactor using forward osmosis: Effect of reverse salt flux.

    PubMed

    Li, Sheng; Kim, Youngjin; Phuntsho, Sherub; Chekli, Laura; Shon, Ho Kyong; Leiknes, TorOve; Ghaffour, Noreddine

    2017-09-01

    This study investigated the impact of reverse salt flux (RSF) on microbe community and bio-methane production in a simulated fertilizer driven FO-AnMBR system using KCl, KNO 3 and KH 2 PO 4 as draw solutes. Results showed that KH 2 PO 4 exhibited the lowest RSF in terms of molar concentration 19.1mM/(m 2 .h), while for KCl and KNO 3 it was 32.2 and 120.8mM/(m 2 .h), respectively. Interestingly, bio-methane production displayed an opposite order with KH 2 PO 4 , followed by KCl and KNO 3 . Pyrosequencing results revealed the presence of different bacterial communities among the tested fertilizers. Bacterial community of sludge exposed to KH 2 PO 4 was very similar to that of DI-water and KCl. However, results with KNO 3 were different since the denitrifying bacteria were found to have a higher percentage than the sludge with other fertilizers. This study demonstrated that RSF has a negative effect on bio-methane production, probably by influencing the sludge bacterial community via environment modification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas

    PubMed Central

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J.; Lang, Walter

    2017-01-01

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system. PMID:28991173

  4. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas.

    PubMed

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J; Lang, Walter

    2017-10-07

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system.

  5. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    PubMed

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  6. Atmospheric hydrocarbon emissions and concentrations in the barnett shale natural gas production region.

    PubMed

    Zavala-Araiza, Daniel; Sullivan, David W; Allen, David T

    2014-05-06

    Hourly ambient hydrocarbon concentration data were collected, in the Barnett Shale Natural Gas Production Region, using automated gas chromatography (auto-GC), for the period from April 2010 to December 2011. Data for three sites were compared: a site in the geographical center of the natural gas production region (Eagle Mountain Lake (EML)); a rural/suburban site at the periphery of the production region (Flower Mound Shiloh), and an urban site (Hinton). The dominant hydrocarbon species observed in the Barnett Shale region were light alkanes. Analyses of daily, monthly, and hourly patterns showed little variation in relative composition. Observed concentrations were compared to concentrations predicted using a dispersion model (AERMOD) and a spatially resolved inventory of volatile organic compounds (VOC) emissions from natural gas production (Barnett Shale Special Emissions Inventory) prepared by the Texas Commission on Environmental Quality (TCEQ), and other emissions information. The predicted concentrations of VOC due to natural gas production were 0-40% lower than background corrected measurements, after accounting for potential under-estimation of certain emission categories. Hourly and daily variations in observed, background corrected concentrations were primarily explained by variability in meteorology, suggesting that episodic emission events had little impact on hourly averaged concentrations. Total emissions for VOC from natural gas production sources are estimated to be approximately 25,300 tons/yr, when accounting for potential under-estimation of certain emission categories. This region produced, in 2011, approximately 5 bcf/d of natural gas (100 Gg/d) for a VOC to natural gas production ratio (mass basis) of 0.0006.

  7. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Fraser-Smith, Antony

    1968-01-01

    A single culture of Chlorella pyrenoidosa (700 ml) was grown continuously under uniform environmental conditions for a period of 11 months. During this time, the culture remained uncontaminated and its oxygen production, carbon dioxide consumption, and photosynthetic quotient (PQ = CO2/O2) were monitored on a 24-hr basis. The gas exchange characteristics of the alga were found to be extremely reliable; the average oxygen production was 1.21 ± 0.03 ml per min, the carbon dioxide consumption was 1.09 ± 0.03 ml per min, and the PQ was 0.90 ± 0.01 when changes in both lamp intensity and instrument accuracy were taken into consideration. Such long-term dependability in the production of oxygen, consumption of carbon dioxide, and maintenance of a uniform PQ warrants the use of C. pyrenoidosa in a regenerative life support system for space travel. PMID:4385488

  8. Inert-gas thruster technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Trock, D. C.

    1981-01-01

    Attention is given to recent advances in component technology for inert-gas thrusters. It is noted that the maximum electron emission of a hollow cathode with Ar can be increased 60-70% by using an enclosed keeper configuration. Operation with Ar but without emissive oxide has also been attained. A 30-cm thruster operated with Ar at moderate discharge voltages is found to give double-ion measurements consistent with a double-ion correlation developed earlier on the basis of 15-cm thruster data. An attempt is made to reduce discharge losses by biasing anodes positive of the discharge plasma. The performance of a single-grid ion-optics configuration is assessed. The ion impingement on the single-grid accelerator is found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator is 2-3 times the aperture diameter.

  9. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  10. A Uranyl Peroxide Dimer in the Gas Phase

    DOE PAGES

    Dau, Phuong D.; Dau, Phuong V.; Rao, Linfeng; ...

    2017-03-14

    For this study, the gas-phase uranyl peroxide dimer, [(UO 2) 2(O2)(L) 2] 2+ where L = 2,2'-trifluoroethylazanediyl)bis(N,N'-dimethylacetamide), was synthesized by electrospray ionization of a solution of UO 2 2+ and L. Collision-induced dissociation of this dimer resulted in endothermic O atom elimination to give [(UO 2) 2(O)(L) 2] 2+, which was found to spontaneously react with water via exothermic hydrolytic chemisorption to yield [(UO 2) 2(OH) 2(L) 2] 2+. Density functional theory computations of the energies for the gas-phase reactions are in accord with observations. The structures of the observed uranyl dimer were computed, with that of the peroxide ofmore » particular interest, as a basis to evaluate the formation of condensed phase uranyl peroxides with bent structures. The computed dihedral angle in [(UO 2) 2(O 2)(L) 2] 2+ is 145°, indicating a substantial deviation from the planar structure with a dihedral angle of 180°. Energies needed to induce bending in the most elementary gas-phase uranyl peroxide complex, [(UO 2) 2(O 2)] 2+, were computed. It was found that bending from the lowest-energy planar structure to dihedral angles up to 140° required energies of <10 kJ/mol. The gas-phase results demonstrate the inherent stability of the uranyl peroxide moiety and support the notion that the uranyl-peroxide-uranyl structural unit is intrinsically planar, with only minor energy perturbations needed to form the bent structures found in studtite and uranyl peroxide nanostructures.« less

  11. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

  12. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring.

    PubMed

    Rahimpour, Mohammad Reaza; Jokar, Seyyed Mohammad

    2012-03-30

    A suggested method for controlling the level of hazardous materials in the atmosphere is prevention of combustion in flare. In this work, three methods are proposed to recover flare gas instead of conventional gas-burning in flare at the Farashband gas refinery. These methods aim to minimize environmental and economical disadvantages of burning flare gas. The proposed methods are: (1) gas to liquid (GTL) production, (2) electricity generation with a gas turbine and, (3) compression and injection into the refinery pipelines. To find the most suitable method, the refinery units that send gas to the flare as well as the required equipment for the three aforementioned methods are simulated. These simulations determine the amount of flare gas, the number of GTL barrels, the power generated by the gas turbine and the required compression horsepower. The results of simulation show that 563 barrels/day of valuable GTL products is produced by the first method. The second method provides 25 MW electricity and the third method provides a compressed natural gas with 129 bar pressure for injection to the refinery pipelines. In addition, the economics of flare gas recovery methods are studied and compared. The results show that for the 4.176MMSCFD of gas flared from the Farashband gas refinery, the electricity production gives the highest rate of return (ROR), the lowest payback period, the highest annual profit and mild capital investment. Therefore, the electricity production is the superior method economically. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Positive basis for surface skein algebras

    PubMed Central

    Thurston, Dylan Paul

    2014-01-01

    We show that the twisted SL2 skein algebra of a surface has a natural basis (the bracelets basis) that is positive, in the sense that the structure constants for multiplication are positive integers. PMID:24982193

  14. What do a foam film and a real gas have in common?

    PubMed

    Stubenrauch, Cosima

    2005-01-01

    The stability of well-drained quasistatic foam films (thickness <100 nm) is usually discussed in terms of surface forces, which create an excess pressure normal to the film interfaces, called the disjoining pressure pi The disjoining pressure is the sum of repulsive electrostatic (pi(elec)), attractive van der Waals (pi(vdW)), and repulsive steric (pi(sr)) forces on the assumption that structural forces can be neglected. On the basis of these forces two different types of thin foam films are distinguished, namely common black films (CBF), which are mainly stabilized by pi(elec), and Newton black films (NBF), the stability of which is determined by pi(sr),With a thin-film pressure balance (TFPB) the thickness h of a foam film can be measured as a function of the applied pressure from which the disjoining pressure pi can be calculated. A thorough analysis of the results published so far reveals that the pi-h curves of nonionic surfactants measured at different surfactant concentrations resemble p-V(m) isotherms of a real gas measured at different temperatures. On the basis of these observations the van der Waals description of a real gas can be applied to foam films and a phase diagram for a foam film was constructed using the Maxwell construction.

  15. Manufacturing Improvement Program for the Oil and Gas Industry Supply Chain and Marketing Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Robert

    This project supported upgrades for manufacturing companies in the oil and natural gas supply chain in Oklahoma. The goal is to provide assistance that will lead to the improved efficiency advancement of the manufacturing processes currently used by the existing manufacturing clients. The basis for the work is to improve the economic environment for the clients and the communities they serve.

  16. 47 CFR 13.1 - Basis and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL RADIO OPERATORS General § 13.1 Basis and purpose. (a) Basis. The basis for the rules contained in this part is the Communications Act of 1934, as... purpose of the rules in this part is to prescribe the manner and conditions under which commercial radio...

  17. 45 CFR 157.10 - Basis and scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Basis and scope. 157.10 Section 157.10 Public Welfare Department of Health and Human Services REQUIREMENTS RELATING TO HEALTH CARE ACCESS EMPLOYER INTERACTIONS WITH EXCHANGES AND SHOP PARTICIPATION General Provisions § 157.10 Basis and scope. (a) Basis. This...

  18. 45 CFR 157.10 - Basis and scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Basis and scope. 157.10 Section 157.10 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS EMPLOYER INTERACTIONS WITH EXCHANGES AND SHOP PARTICIPATION General Provisions § 157.10 Basis and scope. (a) Basis. This...

  19. 45 CFR 157.10 - Basis and scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Basis and scope. 157.10 Section 157.10 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS EMPLOYER INTERACTIONS WITH EXCHANGES AND SHOP PARTICIPATION General Provisions § 157.10 Basis and scope. (a) Basis. This...

  20. 7 CFR 810.1403 - Basis of determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Basis of determination. Each determination of broken kernels and foreign material is made on the basis of the grain when free from dockage. Each determination of class, damaged kernels, heat-damaged kernels, and stones is made on the basis of the grain when free from dockage and that portion of the...

  1. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.

    PubMed

    Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul

    2017-10-01

    Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.

  2. 42 CFR 485.900 - Basis and scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Community Mental Health Centers (CMHCs) § 485.900 Basis and scope. (a) Basis. This subpart is based on the... 42 Public Health 5 2014-10-01 2014-10-01 false Basis and scope. 485.900 Section 485.900 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  3. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... notice that on March 5, 2010, Northern Natural Gas Company (Northern Natural), 1111 South 103rd Street, Omaha, Nebraska 68124- 1000, filed on behalf of itself and other owners, Southern Natural Gas Company...

  4. Ultrasensitive Room-Temperature Operable Gas Sensors Using p-Type Na:ZnO Nanoflowers for Diabetes Detection.

    PubMed

    Jaisutti, Rawat; Lee, Minkyung; Kim, Jaeyoung; Choi, Seungbeom; Ha, Tae-Jun; Kim, Jaekyun; Kim, Hyoungsub; Park, Sung Kyu; Kim, Yong-Hoon

    2017-03-15

    Ultrasensitive room-temperature operable gas sensors utilizing the photocatalytic activity of Na-doped p-type ZnO (Na:ZnO) nanoflowers (NFs) are demonstrated as a promising candidate for diabetes detection. The flowerlike Na:ZnO nanoparticles possessing ultrathin hierarchical nanosheets were synthesized by a facile solution route at a low processing temperature of 40 °C. It was found that the Na element acting as a p-type dopant was successfully incorporated in the ZnO lattice. On the basis of the synthesized p-type Na:ZnO NFs, room-temperature operable chemiresistive-type gas sensors were realized, activated by ultraviolet (UV) illumination. The Na:ZnO NF gas sensors exhibited high gas response (S of 3.35) and fast response time (∼18 s) and recovery time (∼63 s) to acetone gas (100 ppm, UV intensity of 5 mW cm -2 ), and furthermore, subppm level (0.2 ppm) detection was achieved at room temperature, which enables the diagnosis of various diseases including diabetes from exhaled breath.

  5. Radial basis function network learns ceramic processing and predicts related strength and density

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y.; Vary, Alex; Tjia, Robert E.

    1993-01-01

    Radial basis function (RBF) neural networks were trained using the data from 273 Si3N4 modulus of rupture (MOR) bars which were tested at room temperature and 135 MOR bars which were tested at 1370 C. Milling time, sintering time, and sintering gas pressure were the processing parameters used as the input features. Flexural strength and density were the outputs by which the RBF networks were assessed. The 'nodes-at-data-points' method was used to set the hidden layer centers and output layer training used the gradient descent method. The RBF network predicted strength with an average error of less than 12 percent and density with an average error of less than 2 percent. Further, the RBF network demonstrated a potential for optimizing and accelerating the development and processing of ceramic materials.

  6. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the

  7. The economic impact of shale gas development on state and local economies: benefits, costs, and uncertainties.

    PubMed

    Barth, Jannette M

    2013-01-01

    It is often assumed that natural gas exploration and development in the Marcellus Shale will bring great economic prosperity to state and local economies. Policymakers need accurate economic information on which to base decisions regarding permitting and regulation of shale gas extraction. This paper provides a summary review of research findings on the economic impacts of extractive industries, with an emphasis on peer-reviewed studies. The conclusions from the studies are varied and imply that further research, on a case-by-case basis, is necessary before definitive conclusions can be made regarding both short- and long-term implications for state and local economies.

  8. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S. I.; Georgieva, V.; Yordanov, R.; Raicheva, Z.; Szilágyi, I. M.

    2016-11-01

    Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO2 was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO2 already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO2.

  9. Modeling condensation with a noncondensable gas for mixed convection flow

    NASA Astrophysics Data System (ADS)

    Liao, Yehong

    2007-05-01

    This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface

  10. 45 CFR 79.1 - Basis and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Basis and purpose. 79.1 Section 79.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROGRAM FRAUD CIVIL REMEDIES § 79.1 Basis and purpose. (a) Basis. This part implements the Program Fraud Civil Remedies Act of 1986, Pub. L...

  11. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary

  12. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway

  13. Parallel Algorithms for Groebner-Basis Reduction

    DTIC Science & Technology

    1987-09-25

    22209 ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) * PARALLEL ALGORITHMS FOR GROEBNER -BASIS REDUCTION 12. PERSONAL...All other editions are obsolete. Productivity Engineering in the UNIXt Environment p Parallel Algorithms for Groebner -Basis Reduction Technical Report

  14. Current and Future Greenhouse Gas Emissions from Global Crop Intensification and Expansion

    NASA Astrophysics Data System (ADS)

    Carlson, K. M.; Gerber, J. S.; Mueller, N. D.; O'Connell, C.; West, P. C.

    2014-12-01

    Food systems currently contribute up to one-third of total anthropogenic greenhouse gas emissions, and these emissions are expected to rise as demand for agricultural products increases. Thus, improving the greenhouse gas emissions efficiency of agriculture - the tons or kilocalories of production per ton of CO2 equivalent emissions - will be critical to support a resilient future global system. Here, we model and evaluate global, 2000-era, spatially explicit relationships between a suite of greenhouse gas emissions from various agronomic practices (i.e., fertilizer application, peatland draining, and rice cultivation) and crop yields. Then, we predict potential emissions from future crop production increases achieved through intensification and extensification, including CO2 emissions from croplands replacing non-urban land cover. We find that 2000-era yield-scaled agronomic emissions are highly heterogeneous across crops types, crop management practices, and regions. Rice agriculture produces more total CO2-equivalent emissions than any other crop. Moreover, inundated rice in just a few countries contributes the vast majority of these rice emissions. Crops such as sunflower and cotton have low efficiency on a caloric basis. Our results suggest that intensification tends to be a more efficient pathway to boost greenhouse gas emissions efficiency than expansion. We conclude by discussing potential crop- and region-specific agricultural development pathways that may boost the greenhouse gas emissions efficiency of agriculture.

  15. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranesmore » provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  16. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.« less

  17. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.« less

  18. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide muchmore » greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  19. Estimating the greenhouse gas benefits of forestry projects: A Costa Rican Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, Christopher; Sathaye, Jayant; Sanchez Azofeifa, G. Arturo

    If the Clean Development Mechanism proposed under the Kyoto Protocol is to serve as an effective means for combating global climate change, it will depend upon reliable estimates of greenhouse gas benefits. This paper sketches the theoretical basis for estimating the greenhouse gas benefits of forestry projects and suggests lessons learned based on a case study of Costa Rica's Protected Areas Project, which is a 500,000 hectare effort to reduce deforestation and enhance reforestation. The Protected Areas Project in many senses advances the state of the art for Clean Development Mechanism-type forestry projects, as does the third-party verification work ofmore » SGS International Certification Services on the project. Nonetheless, sensitivity analysis shows that carbon benefit estimates for the project vary widely based on the imputed deforestation rate in the baseline scenario, e.g. the deforestation rate expected if the project were not implemented. This, along with a newly available national dataset that confirms other research showing a slower rate of deforestation in Costa Rica, suggests that the use of the 1979--1992 forest cover data originally as the basis for estimating carbon savings should be reconsidered. When the newly available data is substituted, carbon savings amount to 8.9 Mt (million tones) of carbon, down from the original estimate of 15.7 Mt. The primary general conclusion is that project developers should give more attention to the forecasting land use and land cover change scenarios underlying estimates of greenhouse gas benefits.« less

  20. 10 CFR 13.1 - Basis and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Basis and purpose. 13.1 Section 13.1 Energy NUCLEAR REGULATORY COMMISSION PROGRAM FRAUD CIVIL REMEDIES § 13.1 Basis and purpose. (a) Basis. This part implements the Program Fraud Civil Remedies Act of 1986, Public Law No. 99-509, §§ 6101-6104, 100 Stat. 1874...

  1. 26 CFR 1.1016-10 - Substituted basis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 11 2011-04-01 2011-04-01 false Substituted basis. 1.1016-10 Section 1.1016-10...) INCOME TAXES (CONTINUED) Basis Rules of General Application § 1.1016-10 Substituted basis. (a) Whenever... in section 1016(b), the adjustments indicated in §§ 1.1016-1 to 1.1016-6, inclusive, shall be made...

  2. 26 CFR 1.1016-10 - Substituted basis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Substituted basis. 1.1016-10 Section 1.1016-10...) INCOME TAXES Basis Rules of General Application § 1.1016-10 Substituted basis. (a) Whenever it appears... 1016(b), the adjustments indicated in §§ 1.1016-1 to 1.1016-6, inclusive, shall be made after first...

  3. Policy suggestions to carry out the research on the standards of greenhouse gas emission allowances in key industries

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Liu, Mei; Zong, Jianfang; Guo, Huiting; Sun, Liang

    2018-05-01

    On the basis of summarizing and combing the functions and effects of the long-term implementation of the serial standards on the limitation of energy consumption per unit product in China, this paper focuses on the analysis of the practical demands of the green house gas emission allowances for key industrial enterprises, and puts forward the suggestions on the formulation of relevant standards. The differences and connections between the present standards of the energy consumption per unit product and future standards of greenhouse gas emission allowances in the key industries are discussed. The proposal is provided to the administrations with helpful guidelines and promotes enterprises to establish the clearer GHG emission reduction strategies and to reduce their greenhouse gas emissions. These suggestions will provide guarantee for realizing the target of reducing greenhouse gas emissions in China.

  4. Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing

    DOEpatents

    Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

    2014-06-03

    An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

  5. ECONOMICS AND APPRAISAL OF CONVENTIONAL OIL AND GAS IN THE WESTERN GULF OF MEXICO.

    USGS Publications Warehouse

    Attanasi, E.D.; Haynes, John L.

    1984-01-01

    The oil and gas industry frequently appraises undiscovered oil and gas resources on a regional basis to decide whether to start or continue exploration programs. The appraisals are of little value unless conditioned by estimates of the costs of finding and producing the resources. This paper presents an economic appraisal of undiscovered oil and gas resources in the western Gulf of Mexico. Also presented are a description of the model used to make the assessment, results of a sensitivity analysis, and a discussion of the implications of the results to the industry. The appraisal is shown to be relatively robust to changes in physical and engineering assumptions. Because the number of commercial discoveries was found to be quite sensitive to economic conditions, the analysis has important implications in terms of forecasting future industry drilling and other associated activities in the western Gulf of Mexico.

  6. Atmospheric reactions of ortho cresol: Gas phase and aerosol products

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel

    Photo-oxidation of ortho-cresol (0.5-1.1 ppm) and oxides of nitrogen (0.12-0.66 ppm) in air yielded the following gas-phase products: pyruvic acid, acetaldehyde, formaldehyde, peroxyacetylnitrate, nitrocresol and trace levels of nitric acid and methyl nitrate. particulate phase products included 2-hydroxy3-nitro toluene, 2-hydroxy-5-nitro toluene, 2-hydroxy-3,5-dinitrotoluene and, tentatively, several hydroxynitrocresol isomers. Yields of gas-phase products (0.8 % for pyruvic acid, 5-11 % for the sum of the aromatic ring fragmentation products) and of aerosol products (5-19% on a carbon basis, with particulate carbon formation rates of 30-80 μ g m -3 h -1) are discussed in terms of photochemical reaction pathways. From 60 to 89 % of the initial NO x was consumed in these reactions and a significant fraction of the reacted NO x could be accounted for as particulate nitro-aromatic products.

  7. Gas flow path for a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Matthew D.; Charron, Richard C.; Snyder, Gary D.

    A duct arrangement in a can annular gas turbine engine. The gas turbine engine has a gas delivery structure for delivering gases from a plurality of combustors to an annular chamber that extends circumferentially and is oriented concentric to a gas turbine engine longitudinal axis for delivering the gas flow to a first row of blades A gas flow path is formed by the duct arrangement between a respective combustor and the annular chamber for conveying gases from each combustor to the first row of turbine blades The duct arrangement includes at least one straight section having a centerline thatmore » is misaligned with a centerline of the combustor.« less

  8. 76 FR 72652 - Basis Reporting by Securities Brokers and Basis Determination for Debt Instruments and Options

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... when reporting the sale of securities to the IRS to include the customer's adjusted basis in the sold... sale of a covered security to include in the return the customer's adjusted basis in the security and.... Under the regulations, if a customer exercises a compensation-related option, a broker is permitted, but...

  9. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey

    NASA Technical Reports Server (NTRS)

    Cairelli, J.; Horvath, D.

    1981-01-01

    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  10. 30 CFR 203.60 - Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and...

  11. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2

    PubMed Central

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C.; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J.; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J.

    2017-01-01

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source. PMID:28233864

  12. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2.

    PubMed

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J

    2017-02-24

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se 2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu 2 ZnSnS 4 ) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.

  13. Development of Residual Gas Profile Monitors at GSI

    NASA Astrophysics Data System (ADS)

    Giacomini, T.; Barabin, S.; Forck, P.; Liakin, D.; Skachkov, V.

    2004-11-01

    Beam profile measurements at modern ion synchrotrons and storage rings require high timing performances on a turn-by-turn basis. High spatial resolutions are essential for cold beams and beamwidth measurings. The currently used RGM supported very interesting measurements and applications. Due to the readout technology the spatial and time resolution is limited. To meet the expanded demands a more comprehensive device is under development. It will be an all-purpose residual gas monitor to cover the wide range of beam currents and transversal particle distributions. Due to the fast profile detection it will operate on primary electrons after residual gas ionization. A magnetic field of 100 mT binds them to the ionization point inside 0.1-mm orbits. The high-resolution mode will be read out by a digital CCD camera with an upstream MCP-phosphor screen assembly. It is planned to read out the fast turn-by-turn mode by an array of 100 photodiodes with a resolution of 1 mm. Every photodiode is equipped with an amplifier-digitizer device providing a frame rate of ˜ 10 MSamples/s.

  14. Reduced Order Model Basis Vector Generation: Generates Basis Vectors fro ROMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrighi, Bill

    2016-03-03

    libROM is a library that implements order reduction via singular value decomposition (SVD) of sampled state vectors. It implements 2 parallel, incremental SVD algorithms and one serial, non-incremental algorithm. It also provides a mechanism for adaptive sampling of basis vectors.

  15. NREL Biomethane GIS Data

    DOE Data Explorer

    Milbrandt, Anelia

    2016-06-15

    This dataset contains information about the biomass resources generated by county in the United States. It includes the following feedstock categories: crop residues, forest residues, primary mill residues, secondary mill residues, and urban wood waste. The estimates are based on county-level statistics and/or point-source data gathered from the U.S. Department of Agriculture (USDA), USDA Forest Service, EPA and other organizations, which are further processed using relevant assumptions and conversions.

  16. A convenient basis for the Izergin-Korepin model

    NASA Astrophysics Data System (ADS)

    Qiao, Yi; Zhang, Xin; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie

    2018-05-01

    We propose a convenient orthogonal basis of the Hilbert space for the quantum spin chain associated with the A2(2) algebra (or the Izergin-Korepin model). It is shown that compared with the original basis the monodromy-matrix elements acting on this basis take relatively simple forms, which is quite similar as that for the quantum spin chain associated with An algebra in the so-called F-basis. As an application of our general results, we present the explicit recursive expressions of the Bethe states in this basis for the Izergin-Korepin model.

  17. Gas Hydrate Storage of Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed

  18. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Dong, Feng-Zhong; Ni, Zhi-Bo; Pang, Tao; Zeng, Zong-Yong; Wu, Bian; Zhang, Zhi-Rong

    2014-04-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.

  19. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOEpatents

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  20. Optimization of selected molecular orbitals in group basis sets.

    PubMed

    Ferenczy, György G; Adams, William H

    2009-04-07

    We derive a local basis equation which may be used to determine the orbitals of a group of electrons in a system when the orbitals of that group are represented by a group basis set, i.e., not the basis set one would normally use but a subset suited to a specific electronic group. The group orbitals determined by the local basis equation minimize the energy of a system when a group basis set is used and the orbitals of other groups are frozen. In contrast, under the constraint of a group basis set, the group orbitals satisfying the Huzinaga equation do not minimize the energy. In a test of the local basis equation on HCl, the group basis set included only 12 of the 21 functions in a basis set one might ordinarily use, but the calculated active orbital energies were within 0.001 hartree of the values obtained by solving the Hartree-Fock-Roothaan (HFR) equation using all 21 basis functions. The total energy found was just 0.003 hartree higher than the HFR value. The errors with the group basis set approximation to the Huzinaga equation were larger by over two orders of magnitude. Similar results were obtained for PCl(3) with the group basis approximation. Retaining more basis functions allows an even higher accuracy as shown by the perfect reproduction of the HFR energy of HCl with 16 out of 21 basis functions in the valence basis set. When the core basis set was also truncated then no additional error was introduced in the calculations performed for HCl with various basis sets. The same calculations with fixed core orbitals taken from isolated heavy atoms added a small error of about 10(-4) hartree. This offers a practical way to calculate wave functions with predetermined fixed core and reduced base valence orbitals at reduced computational costs. The local basis equation can also be used to combine the above approximations with the assignment of local basis sets to groups of localized valence molecular orbitals and to derive a priori localized orbitals. An

  1. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the lifemore » of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.« less

  2. Effects of Gas Rarefaction on Dynamic Characteristics of Micro Spiral-Grooved Thrust Bearing.

    PubMed

    Liu, Ren; Wang, Xiao-Li; Zhang, Xiao-Qing

    2012-04-01

    The effects of gas-rarefaction on dynamic characteristics of micro spiral-grooved-thrust-bearing are studied. The Reynolds equation is modified by the first order slip model, and the corresponding perturbation equations are then obtained on the basis of the linear small perturbation method. In the converted spiral-curve-coordinates system, the finite-volume-method (FVM) is employed to discrete the surface domain of micro bearing. The results show, compared with the continuum-flow model, that under the slip-flow regime, the decrease in the pressure and stiffness become obvious with the increasing of the compressibility number. Moreover, with the decrease of the relative gas-film-thickness, the deviations of dynamic coefficients between slip-flow-model and continuum-flow-model are increasing.

  3. 17 CFR 210.4-10 - Financial accounting and reporting for oil and gas producing activities pursuant to the Federal...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... assessments, have similar rock and fluid properties, reservoir conditions (depth, temperature, and pressure... (but not necessarily in pressure communication with the reservoir of interest); (ii) Same environment... measured at original temperature in the deposit and atmospheric pressure, on a gas free basis. In its...

  4. Seismic character of gas hydrates on the Southeastern U.S. continental margin

    USGS Publications Warehouse

    Lee, M.W.; Hutchinson, D.R.; Agena, W.F.; Dillon, William P.; Miller, J.J.; Swift, B.A.

    1994-01-01

    Gas hydrates are stable at relatively low temperature and high pressure conditions; thus large amounts of hydrates can exist in sediments within the upper several hundred meters below the sea floor. The existence of gas hydrates has been recognized and mapped mostly on the basis of high amplitude Bottom Simulating Reflections (BSRs) which indicate only that an acoustic contrast exists at the lower boundary of the region of gas hydrate stability. Other factors such as amplitude blanking and change in reflection characteristics in sediments where a BSR would be expected, which have not been investigated in detail, are also associated with hydrated sediments and potentially disclose more information about the nature of hydratecemented sediments and the amount of hydrate present. Our research effort has focused on a detailed analysis of multichannel seismic profiles in terms of reflection character, inferred distribution of free gas underneath the BSR, estimation of elastic parameters, and spatial variation of blanking. This study indicates that continuous-looking BSRs in seismic profiles are highly segmented in detail and that the free gas underneath the hydrated sediment probably occurs as patches of gas-filled sediment having variable thickness. We also present an elastic model for various types of sediments based on seismic inversion results. The BSR from sediments of high ratio of shear to compressional velocity, estimated as about 0.52, encased in sediments whose ratios are less than 0.35 is consistent with the interpretation of gasfilled sediments underneath hydrated sediments. This model contrasts with recent results in which the BSR is explained by increased concentrations of hydrate near the base of the hydrate stability field and no underlying free gas is required. 

  5. Slow approach to steady motion of a concave body in a free-molecular gas

    NASA Astrophysics Data System (ADS)

    Tsuji, Tetsuro; Arai, Junichi; Kawano, Satoyuki

    2015-07-01

    A body in a free-molecular gas accelerated by a constant external force is considered on the basis of kinetic theory. The body is an infinitely long rectangular hollow column with one face removed, and thus it has a squarish U -shaped cross section. The concave part of the body points toward the direction of motion, and thus the gas molecules may be trapped in the concavity. Gas molecules undergo diffuse reflection on a base part, whereas specular reflection on two lateral parts. It is numerically shown that the velocity of the body approaches a terminal velocity, for which a drag force exerted by the gas counterbalances the external force, in such a way that their difference decreases in proportion to the inverse square of time for a large time. This rate of approach is slower than the known rate proportional to the inverse cube of time in the case of a body without concavity [Aoki et al., Phys. Rev. E 80, 016309 (2009), 10.1103/PhysRevE.80.016309]. Based on the detailed investigation on the velocity distribution function of gas molecules impinging on the body, it is clarified that the concavity prevents some molecules from escaping to infinity. This trapping enhances the effect of recollision between the body and the gas molecules, which is the cause of the inverse power laws, and thus leads to the slower approach.

  6. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. A

  7. Maximal design basis accident of fusion neutron source DEMO-TIN

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2015-12-01

    When analyzing the safety of nuclear (including fusion) facilities, the maximal design basis accident at which the largest release of activity is expected must certainly be considered. Such an accident is usually the failure of cooling systems of the most thermally stressed components of a reactor (for a fusion facility, it is the divertor or the first wall). The analysis of safety of the ITER reactor and fusion power facilities (including hybrid fission-fusion facilities) shows that the initial event of such a design basis accident is a large-scale break of a pipe in the cooling system of divertor or the first wall outside the vacuum vessel of the facility. The greatest concern is caused by the possibility of hydrogen formation and the inrush of air into the vacuum chamber (VC) with the formation of a detonating mixture and a subsequent detonation explosion. To prevent such an explosion, the emergency forced termination of the fusion reaction, the mounting of shutoff valves in the cooling systems of the divertor and the first wall or blanket for reducing to a minimum the amount of water and air rushing into the VC, the injection of nitrogen or inert gas into the VC for decreasing the hydrogen and oxygen concentration, and other measures are recommended. Owing to a continuous feed-out of the molten-salt fuel mixture from the DEMO-TIN blanket with the removal period of 10 days, the radioactivity release at the accident will mainly be determined by tritium (up to 360 PBq). The activity of fission products in the facility will be up to 50 PBq.

  8. Maximal design basis accident of fusion neutron source DEMO-TIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolbasov, B. N., E-mail: Kolbasov-BN@nrcki.ru

    2015-12-15

    When analyzing the safety of nuclear (including fusion) facilities, the maximal design basis accident at which the largest release of activity is expected must certainly be considered. Such an accident is usually the failure of cooling systems of the most thermally stressed components of a reactor (for a fusion facility, it is the divertor or the first wall). The analysis of safety of the ITER reactor and fusion power facilities (including hybrid fission–fusion facilities) shows that the initial event of such a design basis accident is a large-scale break of a pipe in the cooling system of divertor or themore » first wall outside the vacuum vessel of the facility. The greatest concern is caused by the possibility of hydrogen formation and the inrush of air into the vacuum chamber (VC) with the formation of a detonating mixture and a subsequent detonation explosion. To prevent such an explosion, the emergency forced termination of the fusion reaction, the mounting of shutoff valves in the cooling systems of the divertor and the first wall or blanket for reducing to a minimum the amount of water and air rushing into the VC, the injection of nitrogen or inert gas into the VC for decreasing the hydrogen and oxygen concentration, and other measures are recommended. Owing to a continuous feed-out of the molten-salt fuel mixture from the DEMO-TIN blanket with the removal period of 10 days, the radioactivity release at the accident will mainly be determined by tritium (up to 360 PBq). The activity of fission products in the facility will be up to 50 PBq.« less

  9. Optimization problems in natural gas transportation systems. A state-of-the-art review

    DOE PAGES

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less

  10. A pilot study on using chlorine dioxide gas for disinfection of gastrointestinal endoscopes* #

    PubMed Central

    Yi, Ying; Hao, Li-mei; Ma, Shu-ren; Wu, Jin-hui; Wang, Tao; Lin, Song; Zhang, Zong-xing; Qi, Jian-cheng

    2016-01-01

    Objectives: This pilot study of employing chlorine dioxide (CD) gas to disinfect gastrointestinal endoscopes was conducted to meet the expectations of many endoscopy units in China for a high-efficiency and low-cost disinfectant. Methods: An experimental prototype with an active circulation mode was designed to use CD gas to disinfect gastrointestinal endoscopes. One type of testing device composed of polytetrafluoroethylene (PTFE) tubes (2 m long, inner diameter 1 mm) and bacterial carrier containers was used to simulate the channel of the endoscope. PTFE bacterial carriers inoculated with Bacillus atrophaeus with or without organic burden were used to evaluate the sporicidal activity of CD gas. Factors including exposure dosage, relative humidity (RH), and flow rate (FR) influencing the disinfection effect of CD gas were investigated. Moreover, an autoptic disinfecting test on eight real gastrointestinal endoscopes after clinical use was performed using the experimental prototype. Results: RH, exposure dosage, organic burden, and the FR through the channel significantly (P<0.05) affected the disinfection efficacy of CD gas for a long and narrow lumen. The log reduction increased as FR decreased. Treatment with 4 mg/L CD gas for 30 min at 0.8 L/min FR and 75% RH, resulted in complete inactivation of spores. Furthermore, all eight endoscopes with a maximum colony-forming unit of 915 were completely disinfected. The cost was only 3 CNY (0.46 USD) for each endoscope. Conclusions: The methods and results reported in this study could provide a basis for further studies on using CD gas for the disinfection of endoscopes. PMID:27381729

  11. Optimization problems in natural gas transportation systems. A state-of-the-art review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less

  12. 78 FR 11638 - Michigan Consolidated Gas Company, DTE Gas Company, DTE Gas Company; Notice of Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... corporate name change from MichCon to DTE Gas, and pursuant to section 284.123 of the Commissions... Gas Company (DTE Gas) filed to institute a name change to both itself from MichCon to DTE Gas and to...

  13. Uniform quantized electron gas

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Lomba, Enrique

    2016-10-01

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.

  14. Study on cyclic injection gas override in condensate gas reservoir

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu

    2018-02-01

    Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.

  15. 45 CFR 164.102 - Statutory basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Statutory basis. 164.102 Section 164.102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS SECURITY AND PRIVACY General Provisions § 164.102 Statutory basis. The provisions of this part are adopted...

  16. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  17. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  18. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  19. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  20. 45 CFR 164.102 - Statutory basis.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Statutory basis. 164.102 Section 164.102 Public Welfare Department of Health and Human Services ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS SECURITY AND PRIVACY General Provisions § 164.102 Statutory basis. The provisions of this part are adopted...

  1. 45 CFR 164.102 - Statutory basis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Statutory basis. 164.102 Section 164.102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS SECURITY AND PRIVACY General Provisions § 164.102 Statutory basis. The provisions of this part are adopted...

  2. Accurate van der Waals force field for gas adsorption in porous materials.

    PubMed

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Implementation of a dynamic data entry system for the PHENIX gas system

    NASA Astrophysics Data System (ADS)

    Hagiwara, Masako

    2003-10-01

    The PHENIX detector at the BNL RHIC facility uses multiple detector technologies that require a precise gas delivery system, including flammable gases that require additional monitoring. During operation of the detector, it is crucial to maintain stable and safe operating conditions by carefully monitoring flows, pressures, and various other gas properties. These systems are monitored during running periods on a continuous basis. For the most part, these records were kept by hand, filling out a paper logsheet every four hours. A dynamic data entry system was needed to replace the paper logsheets. The solution created was to use a PDA or laptop computer with a wireless connection to enter the data directly into a MySQL database. The system uses PHP to dynamically create and update the data entry pages. The data entered can be viewed in graphs as well as tables. As a result, the data recorded will be easily accessible during PHENIX's next running period. It also allows for long term archiving, making the data available during the analysis phase, providing knowledge of the operating conditions of the gas system.

  4. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells.

    PubMed

    Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M

    2015-08-04

    Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.

  5. The role of hydrodynamic transport in greenhouse gas fluxes at a wetland with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Gilson, E.; Knox, S. H.; Matthes, J. H.; Verfaillie, J. G.; Baldocchi, D. D.; Variano, E. A.

    2013-12-01

    In wetlands with emergent vegetation, the hydrodynamic transport of dissolved gases is often neglected because emergent plants transport gases directly and limit wind-driven air-water gas exchange by sheltering the water surface. Nevertheless, wetland hydrodynamics, and thermally-driven stirring in particular, have the potential to impact gas fluxes in these environments. We are evaluating the importance of hydrodynamic dissolved gas transport at a re-established marsh on Twitchell Island in the Sacramento-San Joaquin Delta (California, USA). At this marsh, the U.S. Geological Survey has previously observed rapid accumulation of organic material (carbon sequestration) as well as very high methane emissions. To assess the role of hydrodynamics in the marsh's greenhouse gas fluxes, we measured dissolved carbon dioxide and methane in the water column on a bi-weekly basis beginning in July 2012. We employed a model for air-water gas fluxes in wetlands with emergent vegetation that predicts gas transfer velocities from meteorological conditions. Modeled air-water gas fluxes were compared with net gas fluxes measured at the marsh via the eddy covariance technique. This comparison revealed that hydrodynamic transport due to thermal convection was responsible for approximately one third of net carbon dioxide and methane fluxes. The cooling at the water surface driving thermal convection occurred each night and was most pronounced during the warmest months of the year. These finding have implications for the prediction and management of greenhouse gas fluxes at re-established marshes in the Sacramento-San Joaquin Delta and other similar wetlands.

  6. Lightweight, Room-Temperature CO2 Gas Sensor Based on Rare-Earth Metal-Free Composites-An Impedance Study.

    PubMed

    Willa, Christoph; Schmid, Alexander; Briand, Danick; Yuan, Jiayin; Koziej, Dorota

    2017-08-02

    We report a light, flexible, and low-power poly(ionic liquid)/alumina composite CO 2 sensor. We monitor the direct-current resistance changes as a function of CO 2 concentration and relative humidity and demonstrate fast and reversible sensing kinetics. Moreover, on the basis of the alternating-current impedance measurements we propose a sensing mechanism related to proton conduction and gas diffusion. The findings presented herein will promote the development of organic/inorganic composite CO 2 gas sensors. In the future, such sensors will be useful for numerous practical applications ranging from indoor air quality control to the monitoring of manufacturing processes.

  7. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and...

  8. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    PubMed Central

    Zheng, Yangong; Li, Xiaogan; Dutta, Prabir K.

    2012-01-01

    The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors. PMID:22666081

  9. Greenhouse Gas Sensing Using Small Unmanned Aerial Systems - Field Experiment Results and Future Directions

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Christensen, L. E.; Brockers, R.; Thompson, D. R.

    2014-12-01

    Requirements for greenhouse gas point source detection and quantification often require high spatial resolution on the order of meters. These applications, which help close the gap in emissions estimate uncertainties, also demand sensing with high sensitivity and in a fashion that accounts for spatiotemporal variability on the order of seconds to minutes. Low-cost vertical takeoff and landing (VTOL) small unmanned aerial systems (sUAS) provide a means to detect and identify the location of point source gas emissions while offering ease of deployment and high maneuverability. Our current fielded gas sensing sUAS platforms are able to provide instantaneous in situ concentration measurements at locations within line of sight of the operator. Recent results from field experiments demonstrating methane detection and plume characterization will be discussed here, including performance assessment conducted via a controlled release experiment in 2013. The logical extension of sUAS gas concentration measurement is quantification of flux rate. We will discuss the preliminary strategy for quantitative flux determination, including intrinsic challenges and heritage from airborne science campaigns, associated with this point source flux quantification. This system approach forms the basis for intelligent autonomous quantitative characterization of gas plumes, which holds great value for applications in commercial, regulatory, and safety environments.

  10. 42 CFR 488.400 - Statutory basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Statutory basis. 488.400 Section 488.400 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Long-Term Care Facilities with Deficiencies § 488.400 Statutory basis. Sections 1819(h) and 1919(h) of...

  11. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOEpatents

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  12. Opportunities for Switzerland to Contribute to the Production of Algal Biofuels: the Hydrothermal Pathway to Bio-Methane.

    PubMed

    Bagnoud-Velásquez, Mariluz; Refardt, Dominik; Vuille, François; Ludwig, Christian

    2015-01-01

    Microalgae have a significant potential to be a sustainable source of fuel and thus are of interest in the transition to a sustainable energy system, in particular for resource-dependent countries such as Switzerland. Independence of fossil fuels, considerable reduction of CO(2) emissions, and abandoning nuclear energy may be possible with an integrated system approach including the sourcing of biofuels from different types of biomass. Today, a full carbon-to-fuel conversion is possible, and has been recently demonstrated with an advanced hydrothermal technology. The potential to develop algal biofuels is viewed as high thanks to the possibility they offer to uncouple bioenergy from food production. Nevertheless, technological breakthroughs must take place before commercial production becomes a reality, especially to meet the necessary cost savings and efficiency gains in the algae cultivation structure. In addition, an integrated management of waste resources to promote the nutrient recovery appears today as imperative to further improve the economic viability and the environmental sustainability of algal production. We provide here a review that includes the global technological status of both algae production and their conversion into biofuels in order to understand first the added value of algal energy in general before we focus on the potential of algae to contribute specifically to the Swiss energy system to the horizon 2050. In this respect, the hydrothermal conversion pathway of microalgal biomass into synthetic natural gas (SNG) is emphasized, as research into this technology has received considerable attention in Switzerland during the last decade. In addition, SNG is a particularly relevant fuel in the Swiss context due to the existing gas grid and to the opportunity it offers to cover a wide spectrum of energy applications, in particular cogeneration of heat and electricity or use as a transport fuel in the growing gas car fleet.

  13. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  14. Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope

    USGS Publications Warehouse

    Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.

    2011-01-01

    In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.

  15. 21 CFR 120.9 - Legal basis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Legal basis. 120.9 Section 120.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS General Provisions § 120.9 Legal basis...

  16. 21 CFR 120.9 - Legal basis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Legal basis. 120.9 Section 120.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS General Provisions § 120.9 Legal basis...

  17. 21 CFR 120.9 - Legal basis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Legal basis. 120.9 Section 120.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS General Provisions § 120.9 Legal basis...

  18. 21 CFR 120.9 - Legal basis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Legal basis. 120.9 Section 120.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS General Provisions § 120.9 Legal basis...

  19. 21 CFR 120.9 - Legal basis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Legal basis. 120.9 Section 120.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS General Provisions § 120.9 Legal basis...

  20. New Advancements in the Study of the Uniform Electron Gas with Full Configuration Interaction Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ruggeri, Michele; Luo, Hongjun; Alavi, Ali

    Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is able to give remarkably accurate results in the study of atoms and molecules. The study of the uniform electron gas (UEG) on the other hand has proven to be much harder, particularly in the low density regime. The source of this difficulty comes from the strong interparticle correlations that arise at low density, and essentially forbid the study of the electron gas in proximity of Wigner crystallization. We extend a previous study on the three dimensional electron gas computing the energy of a fully polarized gas for N=27 electrons at high and medium density (rS = 0 . 5 to 5 . 0). We show that even when dealing with a polarized UEG the computational cost of the study of systems with rS > 5 . 0 is prohibitive; in order to deal with correlations and to extend the density range that to be studied we introduce a basis of localized states and an effective transcorrelated Hamiltonian.

  1. Prevalence of Prostate Cancer Metastases after Intravenous Inoculation Provides Clues into the Molecular Basis of Dormancy in the Bone Marrow Microenvironment1

    PubMed Central

    Jung, Younghun; Shiozawa, Yusuke; Wang, Jingcheng; McGregor, Natalie; Dai, Jinlu; Park, Serk In; Berry, Janice E; Havens, Aaron M; Joseph, Jeena; Kim, Jin Koo; Patel, Lalit; Carmeliet, Peter; Daignault, Stephanie; Keller, Evan T; McCauley, Laurie K; Pienta, Kenneth J; Taichman, Russell S

    2012-01-01

    Bone is the preferred metastasis site of advanced prostate cancer (PCa). Using an in vivo murine model of human PCa cell metastasis to bone, we noted that the majority of animals that develop skeletal metastasis have either spinal lesions or lesions in the bones of the hindlimb. Much less frequently, lesions develop in the bones of the forelimb. We therefore speculated whether the environment of the forelimb bones is not permissive for the growth of PCa. Consequently, data on tumor prevalence were normalized to account for the number of PCa cells arriving after intravascular injection, marrow cellularity, and number of hematopoietic stem cell niches. None of these factors were able to account for the observed differences in tumor prevalence. An analysis of differential gene and protein levels identified that growth arrest specific-6 (GAS6) levels were significantly greater in the forelimb versus hindlimb bone marrow. When murine RM1 cells were implanted into subcutaneous spaces in immune competent animals, tumor growth in the GAS6-/- animals was greater than in GAS6+/+ wild-type animals. In an osseous environment, the human PC3 cell line grew significantly better in vertebral body transplants (vossicles) derived from GAS6-/- animals than in vossicles derived from GAS6+/+ animals. Together, these data suggest that the differences in tumor prevalence after intravascular inoculation are a useful model to study the molecular basis of tumor dormancy. Importantly, these data suggest that therapeutic manipulation of GAS6 levels may prove useful as a therapy for metastatic disease. PMID:22745589

  2. Mineral content prediction for unconventional oil and gas reservoirs based on logging data

    NASA Astrophysics Data System (ADS)

    Maojin, Tan; Youlong, Zou; Guoyue

    2012-09-01

    Coal bed methane and shale oil &gas are both important unconventional oil and gas resources, whose reservoirs are typical non-linear with complex and various mineral components, and the logging data interpretation model are difficult to establish for calculate the mineral contents, and the empirical formula cannot be constructed due to various mineral. The radial basis function (RBF) network analysis is a new method developed in recent years; the technique can generate smooth continuous function of several variables to approximate the unknown forward model. Firstly, the basic principles of the RBF is discussed including net construct and base function, and the network training is given in detail the adjacent clustering algorithm specific process. Multi-mineral content for coal bed methane and shale oil &gas, using the RBF interpolation method to achieve a number of well logging data to predict the mineral component contents; then, for coal-bed methane reservoir parameters prediction, the RBF method is used to realized some mineral contents calculation such as ash, volatile matter, carbon content, which achieves a mapping from various logging data to multimineral. To shale gas reservoirs, the RBF method can be used to predict the clay content, quartz content, feldspar content, carbonate content and pyrite content. Various tests in coalbed and gas shale show the method is effective and applicable for mineral component contents prediction

  3. Effects of flow rate and gas mixture on the welfare of weaned and neonate pigs during gas euthanasia.

    PubMed

    Sadler, L J; Hagen, C D; Wang, C; Widowski, T M; Johnson, A K; Millman, S T

    2014-02-01

    The objectives of this study were to assess efficacy and welfare implications of gas euthanasia when applied to weaned and neonate pigs. Parameters associated with welfare, which were measured before loss of consciousness, included open-mouth breathing, ataxia, righting response, and escape attempts. Two age groups (weaned and neonate) were assessed in 9 gas treatments arranged in a 2 × 4 factorial design, with 2 gas types (CO2 = 100% CO2 and 50:50 = 50:50 CO2:argon) and 4 flow rates (box volume exchange/min: slow = 20%; medium = 35%; fast = 50%; prefill = prefilled followed by 20%) and a control treatment in which ambient air was passed through the box. Pig pairs (10/treatment) were placed in a modified Euthanex AgPro system (Euthanex Corp., Palmer, PA). Behavioral and physiological responses were observed directly and from video recordings for latency, duration, prevalence (percent of pigs affected), and frequency (number of occurrences/pig). Data were analyzed as linear mixed models or with a Cox proportional hazard model as appropriate. Piglet pair was the experimental unit. For the weaned pig, welfare was superior with CO2 relative to 50:50 within 1 or more flow rates on the basis of reduced duration of open-mouth breathing, duration of ataxia, frequency of escape attempts, and duration and frequency of righting response (P < 0.05). No measured parameters indicated superior welfare with the use of 50:50, whereas latencies to loss of posture and last movement favored CO2 (P < 0.05). Faster flow rates were associated with reduced (P < 0.05) duration or frequency of open-mouth breathing, ataxia, and righting response, as well as superior (P < 0.05) indicators of efficacy, including latencies to loss of posture, gasping, and last movement, relative to slower flow rates. Weaned pigs were more likely to defecate (P < 0.01), display nasal discharge (P < 0.05), and display longer (P < 0.001) latencies to loss of posture and last movement than neonates. Duration of

  4. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    NASA Astrophysics Data System (ADS)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  5. Laboratory Development of A High Capacity Gas-Fired paper Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr; Sherrow, Lester

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. naturalmore » gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.« less

  6. Gas Generation Testing of Spherical Resorcinol-Formaldehyde (sRF) Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colburn, Heather A.; Bryan, Samuel A.; Camaioni, Donald M.

    This report describes gas generation testing of the spherical resorcinol-formaldehyde (sRF) resin that was conducted to support the technology maturation of the LAWPS facility. The current safety basis for the LAWPS facility is based primarily on two studies that had limited or inconclusive data sets. The two studies indicated a 40% increase in hydrogen generation rate of water (as predicted by the Hu model) with sRF resin over water alone. However, the previous studies did not test the range of conditions (process fluids and temperatures) that are expected in the LAWPS facility. Additionally, the previous studies did not obtain replicatemore » test results or comparable liquid-only control samples. All of the testing described in this report, conducted with water, 0.45M nitric acid, and waste simulants with and without sRF resin, returned hydrogen generation rates that are within the current safety basis for the facility of 1.4 times the Hu model output for water.« less

  7. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. Natural gas furnace performance can be measured in many ways. The annual fuel utilization efficiency (AFUE) rating provides a fixed value under specified conditions, akin to the EPA miles per gallon rating for new vehicles. The AFUE rating is providedmore » by the manufacturer to the consumer and is a way to choose between models tested on the same basis. This value is commonly used in energy modeling calculations. ASHRAE 103 is a consensus furnace testing standard developed by the engineering community. The procedure provided in the standard covers heat-up, cool down, condensate heat loss, and steady-state conditions and an imposed oversize factor. The procedure can be used to evaluate furnace performance with specified conditions or with some variation chosen by the tester. In this report the ASHRAE 103 test result will be referred to as Annualized Efficiency (AE) to avoid confusion, and any non-standard test conditions will be noted. Aside from these two laboratory tests, steady state or flue loss efficiency can be measured in the field under many conditions; typically as found or tuned to the manufacturers recommended settings. In this report, AE and steady-state efficiency will be used as measures of furnace performance.« less

  8. Birman—Wenzl—Murakami Algebra and Topological Basis

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng-Cheng; Xue, Kang; Wang, Gang-Cheng; Sun, Chun-Fang; Du, Gui-Jiao

    2012-02-01

    In this paper, we use entangled states to construct 9 × 9-matrix representations of Temperley—Lieb algebra (TLA), then a family of 9 × 9-matrix representations of Birman—Wenzl—Murakami algebra (BWMA) have been presented. Based on which, three topological basis states have been found. And we apply topological basis states to recast nine-dimensional BWMA into its three-dimensional counterpart. Finally, we find the topological basis states are spin singlet states in special case.

  9. Economic Impact of NMMO Pretreatment on Ethanol and Biogas Production from Pinewood

    PubMed Central

    Zilouei, Hamid; Taherzadeh, Mohammad J.

    2014-01-01

    Processes for ethanol and biogas (scenario 1) and biomethane (scenario 2) production from pinewood improved by N-methylmorpholine-N-oxide (NMMO) pretreatment were developed and simulated by Aspen plus. These processes were compared with two processes using steam explosion instead of NMMO pretreatment ethanol (scenario 3) and biomethane (scenario 4) production, and the economies of all processes were evaluated by Aspen Process Economic Analyzer. Gasoline equivalent prices of the products including 25% value added tax (VAT) and selling and distribution expenses for scenarios 1 to 4 were, respectively, 1.40, 1.20, 1.24, and 1.04 €/l, which are lower than gasoline price. The profitability indexes for scenarios 1 to 4 were 1.14, 0.93, 1.16, and 0.96, respectively. Despite the lower manufacturing costs of biomethane, the profitability indexes of these processes were lower than those of the bioethanol processes, because of higher capital requirements. The results showed that taxing rule is an effective parameter on the economy of the biofuels. The gasoline equivalent prices of the biofuels were 15–37% lower than gasoline; however, 37% of the gasoline price contributes to energy and carbon dioxide tax which are not included in the prices of biofuels based on the Swedish taxation rules. PMID:25276777

  10. Economic impact of NMMO pretreatment on ethanol and biogas production from pinewood.

    PubMed

    Shafiei, Marzieh; Karimi, Keikhosro; Zilouei, Hamid; Taherzadeh, Mohammad J

    2014-01-01

    Processes for ethanol and biogas (scenario 1) and biomethane (scenario 2) production from pinewood improved by N-methylmorpholine-N-oxide (NMMO) pretreatment were developed and simulated by Aspen plus. These processes were compared with two processes using steam explosion instead of NMMO pretreatment ethanol (scenario 3) and biomethane (scenario 4) production, and the economies of all processes were evaluated by Aspen Process Economic Analyzer. Gasoline equivalent prices of the products including 25% value added tax (VAT) and selling and distribution expenses for scenarios 1 to 4 were, respectively, 1.40, 1.20, 1.24, and 1.04 €/l, which are lower than gasoline price. The profitability indexes for scenarios 1 to 4 were 1.14, 0.93, 1.16, and 0.96, respectively. Despite the lower manufacturing costs of biomethane, the profitability indexes of these processes were lower than those of the bioethanol processes, because of higher capital requirements. The results showed that taxing rule is an effective parameter on the economy of the biofuels. The gasoline equivalent prices of the biofuels were 15-37% lower than gasoline; however, 37% of the gasoline price contributes to energy and carbon dioxide tax which are not included in the prices of biofuels based on the Swedish taxation rules.

  11. 42 CFR 413.330 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.330 Basis and scope. (a) Basis. This subpart implements section 1888(e) of the Act, which...

  12. 42 CFR 413.330 - Basis and scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.330 Basis and scope. (a) Basis. This subpart implements section 1888(e) of the Act, which...

  13. 42 CFR 413.330 - Basis and scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.330 Basis and scope. (a) Basis. This subpart implements section 1888(e) of the Act, which...

  14. 42 CFR 413.330 - Basis and scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.330 Basis and scope. (a) Basis. This subpart implements section 1888(e) of the Act, which...

  15. 42 CFR 413.330 - Basis and scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.330 Basis and scope. (a) Basis. This subpart implements section 1888(e) of the Act, which...

  16. Gas Lasers

    NASA Astrophysics Data System (ADS)

    Dixit, S. K.

    The field of gas lasers, started with the invention of He-Ne laser in 1961, has witnessed tremendous growth in terms of technology development, research into gaseous gain medium, resonator physics and application in widely diverse arenas. This was possible due to high versatility of gas lasers in terms of operating wavelengths, power, beam quality and mode of operation. In recent years, there is a definite trend to replace the gas lasers, wherever possible, by more efficient and compact solid-state lasers. However, for many industrial, medical and military applications, the gas lasers still rule the roost due to their high-power capabilities with good beam quality at specific wavelengths. This chapter presents a short review covering the operating principle, important technical details and application potential of all the important gas lasers such as He-Ne, CO2, argon ion, copper vapour, excimer and chemical lasers. These neutral atoms, ions and molecule gas lasers are discussed as per applicable electrical, chemical and optical excitation schemes. The optically pumped gas lasers, recently experiencing resurgence, are discussed in the context of far infrared THz molecular lasers, diode-pumped alkali lasers and optically pumped gas-filled hollow-core fibre lasers.

  17. Gas production strategy of underground coal gasification based on multiple gas sources.

    PubMed

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  18. Life cycle water consumption for shale gas and conventional natural gas.

    PubMed

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  19. NASA standard GAS Can satellite. [Get-Away Special canister for STS Orbiter

    NASA Technical Reports Server (NTRS)

    Cudmore, Patrick H.; Mcintosh, W.; Edison, M.; Nichols, S.; Mercier, E.

    1989-01-01

    The Get-Away Special canister (GAS Can) satellite is a small, (150 lb) low-cost satellite making it possible for commercial and scientific institutions to conduct experiments in space on an economical and short-term basis. The current model is called Xsat (Exceptional Satellite) and is designed to be launched from a GAS canister on the STS Orbiter; also provided is a low-cost automated PC-operated ground station for commercial, scientific, and government users. The Xsat structure is diagrammed, and details such as payload interface, weight restrictions, and structural loads are described in detail, pointing out that Xsat has a maximum payload weight of 50 lbs, and has a natural vibration frequency of around 45 Hz, with a minimum requiremet of 35 Hz. Thermal designs, power system, electronics, computer design and bus system, and satellite operations are all outlined.

  20. Behavior of ceramics at 1200 C in a simulated gas turbine environment

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Probst, H. B.

    1974-01-01

    This report summarizes programs at the NASA Lewis Research Center evaluating several classes of commercial ceramics, in a high gas velocity burner rig simulating a gas turbine engine environment. Testing of 23 ceramics in rod geometry identified SiC and Si3N4 as outstanding in resistance to oxidation and thermal stress and identified the failure modes of other ceramics. Further testing of a group of 15 types of SiC and Si3N4 in simulated vane shape geometry has identified a hot pressed SiC, a reaction sintered SiC, and hot pressed Si3N4 as the best of that group. SiC and Si3N4 test specimens were compared on the basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, and failure mode.

  1. Det Norske Veritas rule philosophy with regard to gas turbines for marine propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.

    1999-04-01

    This paper is mainly based on Det Norske Veritas (DNV) Rules of January 1996, Part 4, Chapter 2, Section 4 -- Gas Turbines, and is intended to at least open the dialogue between the gas turbine industry and DNV. There is a need for design approval and manufacturing inspection process systematic and testing procedures to match the standards of the industry. The role and expectations imposed by owners, the authorities, insurance agencies, etc. needs to be understood. These expectations often have technical implications that may go against the normal procedures and practices of the gas turbine industry, and could havemore » cost impacts. The question of DNV acceptance criteria has been asked many times, with respect to gas turbines. DNV relies a great deal on the manufacturer to provide the basis for the design criteria, manufacturing, and testing criteria of the gas turbine. However, DNV adds its knowledge and experience to this, and checks that the documentation presented by the manufacturer is technically acceptable. Generally, a high level of the state-of-the-art theoretical documentation is required to support the design of modern gas turbines. A proper understanding of the rule philosophy of DNV could prove to be useful in developing better gas turbines systems, which fulfill the rule requirements, and at the same time save resources such as money and time. It is important for gas turbine manufacturers to understand the intent of the rules since it is the intent that needs to be fulfilled. Further, the rules do have the principle of equivalence, which means that there is full freedom in how one fulfills the intent of the rules, as long as DNV accepts the solution.« less

  2. CO 2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE PAGES

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; ...

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO 2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO 2 emissions involves coupling CO 2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO 2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gasesmore » (CH 4 and CO 2) and associated economic consequences. Where enhanced condensation of CO 2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH 4. Volumetric changes to montmorillonites occur during exposure to CO 2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO 2 intercalation. Thus, experimental evidence suggests CH 4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH 4:CO 2 gas systems, where CH 4 concentrations prevail, indicate preferential CO 2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO 2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH 4/CO 2 exchange rates to obtain peak natural gas production.« less

  3. Sulfonated poly(ether ether ketone)/polypyrrole core-shell nanofibers: a novel polymeric adsorbent/conducting polymer nanostructures for ultrasensitive gas sensors.

    PubMed

    Wang, Wei; Li, Zhenyu; Jiang, Tingting; Zhao, Zhiwei; Li, Ye; Wang, Zhaojie; Wang, Ce

    2012-11-01

    Conducting polymers-based gas sensors have attracted increasing research attention these years. The introduction of inorganic sensitizers (noble metals or inorganic semiconductors) within the conducting polymers-based gas sensors has been regarded as the generally effective route for further enhanced sensors. Here we demonstrate a novel route for highly-efficient conducting polymers-based gas sensors by introduction of polymeric sensitizers (polymeric adsorbent) within the conducting polymeric nanostructures to form one-dimensional polymeric adsorbent/conducting polymer core-shell nanocomposites, via electrospinning and solution-phase polymerization. The adsorption effect of the SPEEK toward NH₃ can facilitate the mass diffusion of NH₃ through the PPy layers, resulting in the enhanced sensing signals. On the basis of the SPEEK/PPy nanofibers, the sensors exhibit large gas responses, even when exposed to very low concentration of NH₃ (20 ppb) at room temperature.

  4. Fugitive Emissions from Conventional and Hydraulically Fractured Natural Gas Developments in Western Canada

    NASA Astrophysics Data System (ADS)

    Atherton, E. E.; Risk, D. A.; Lavoie, M.; Marshall, A. D.; Baillie, J.; Williams, J. P.

    2015-12-01

    Presently, fugitive emissions released into the atmosphere during the completion and production of oil and gas wells are poorly regulated within Canada. Some possible upstream sources of these emissions include flowback during well completions, liquid unloading, chemical injection pumps, and equipment leaks. The environmental benefits of combusting natural gas compared to oil or coal are negated if methane leakages surpass 3.2% of total production, so it is important to have a thorough understanding of these fugitive emissions. This study compares atmospheric leakage pathways of methane and other fugitive gases in both conventional and unconventional oil and gas developments in Western Canada to help fill this knowledge gap. Over 5000 kilometers of mobile survey campaigns were completed in carefully selected developments in the Montney shale play in British Columbia, and in conventional oil fields in Alberta. These sites are developed by more than 25 different operators. High precision laser and UV fluorescence gas analyzers were used to gather geolocated trace gas concentrations at a frequency of 1 Hz while driving. These data were processed with an adaptive technique to compensate for fluctuations in background concentrations for each gas. The residual excess concentrations were compositionally fingerprinted on the basis of the expected gas ratios for potential emission sites in order to definitively attribute anomalies to infrastructural leak sources. Preliminary results from the mobile surveys of both conventional and unconventional oil and gas sites are presented here. Pathways of methane and other fugitive gases are mapped to their respective sources, identifying common causes of emissions leaks across the oil and gas industry. This is the first bottom-up study of fugitive emissions from Canadian energy developments to produce publicly available data. These findings are significant to operators interested in lowering emissions for economic benefit, as well as

  5. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    PubMed Central

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  6. 48 CFR 25.504-4 - Group award basis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...

  7. 48 CFR 25.504-4 - Group award basis.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...

  8. 48 CFR 25.504-4 - Group award basis.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American statute applies and the acquisition cannot be set aside for...

  9. 48 CFR 25.504-4 - Group award basis.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...

  10. 48 CFR 25.504-4 - Group award basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...

  11. Computational study of the electronic spectra of the rare gas fluorohydrides HRgF (Rg = Ar, Kr, Xe, Rn)

    NASA Astrophysics Data System (ADS)

    van Hoeve, Miriam D.; Klobukowski, Mariusz

    2018-03-01

    Simulation of the electronic spectra of HRgF (Rg = Ar, Kr, Xe, Rn) was carried out using the time-dependent density functional method, with the CAMB3LYP functional and several basis sets augmented with even-tempered diffuse functions. A full spectral assignment for the HRgF systems was done. The effect of the rare gas matrix on the HRgF (Rg = Ar and Kr) spectra was investigated and it was found that the matrix blue-shifted the spectra. Scalar relativistic effects on the spectra were also studied and it was found that while the excitation energies of HArF and HKrF were insignificantly affected by relativistic effects, most of the excitation energies of HXeF and HRnF were red-shifted. Spin-orbit coupling was found to significantly affect excitation energies in HRnF. Analysis of performance of the model core potential basis set relative to all-electron (AE) basis sets showed that the former basis set increased computational efficiency and gave results similar to those obtained with the AE basis set.

  12. Basis sets for the calculation of core-electron binding energies

    NASA Astrophysics Data System (ADS)

    Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.

    2018-05-01

    Core-electron binding energies (CEBEs) computed within a Δ self-consistent field approach require large basis sets to achieve convergence with respect to the basis set limit. It is shown that supplementing a basis set with basis functions from the corresponding basis set for the element with the next highest nuclear charge (Z + 1) provides basis sets that give CEBEs close to the basis set limit. This simple procedure provides relatively small basis sets that are well suited for calculations where the description of a core-ionised state is important, such as time-dependent density functional theory calculations of X-ray emission spectroscopy.

  13. Getting the gas out - developing gas networks in magmatic systems

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine; Rust, Alison; Oppenheimer, Julie; Belien, Isolde

    2015-04-01

    Volcanic eruption style, and explosive potential, are strongly controlled by the pre-eruptive history of the magmatic volatiles: specifically, the more efficient the gas loss prior to eruption, the lower the likelihood of primary (magmatic) explosive activity. Commonly considered gas loss mechanisms include separated flow, where individual bubbles (or bubble clouds) travel at a rate that is faster than the host magma, and permeable flow, where gas escapes through permeable (connected) pathways developed within a (relatively) static matrix. Importantly, gas loss via separated flow is episodic, while gas loss via permeable flow is likely to be continuous. Analogue experiments and numerical models on three phase (solid-liquid-gas) systems also suggest a third mechanism of gas loss that involves the opening and closing of 'pseudo fractures'. Pseudo fractures form at a critical crystallinity that is close to the maximum particle packing. Fractures form by local rearrangement of solid particles and liquid to form a through-going gas fracture; gas escape is episodic, and modulated by the available gas volume and the rate of return flow of interstitial liquid back into the fracture. In all of the gas escape scenarios described above, a fundamental control on gas behaviour is the melt viscosity, which affects the rate of individual bubble rise, the rate of bubble expansion, the rate of film thinning (required for bubble coalescence), and the rate of melt flow into gas-generated fractures. From the perspective of magma degassing, rates of gas expansion and film thinning are key to the formation of an interconnected (permeable) gas pathway. Experiments with both analogue and natural materials show that bubble coalescence is relatively slow, and, in particle-poor melts, does not necessarily create permeable gas networks. As a result, degassing efficiency is modulated by the time scales required either (1) to produce large individual bubbles or bubble clouds (in low viscosity

  14. 42 CFR 413.335 - Basis of payment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Facilities § 413.335 Basis of payment. (a) Method of payment. Under the prospective payment system, SNFs... and, during a transition period, on the basis of a blend of the Federal rate and the facility-specific...

  15. Gas, water, and oil production from Wattenberg field in the Denver Basin, Colorado

    USGS Publications Warehouse

    Nelson, Philip H.; Santus, Stephen L.

    2011-01-01

    Gas, oil, and water production data were compiled from selected wells in two tight gas reservoirs-the Codell-Niobrara interval, comprised of the Codell Sandstone Member of the Carlile Shale and the Niobrara Formation; and the Dakota J interval, comprised mostly of the Muddy (J) Sandstone of the Dakota Group; both intervals are of Cretaceous age-in the Wattenberg field in the Denver Basin of Colorado. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after production commenced, which generally was in the 1990s. For each producing interval, summary diagrams and tables of oil-versus-gas production and water-versus-gas production are shown with fluid-production rates, the change in production over five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams and tables permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The Dakota J interval produces gas on a per-well basis at roughly three times the rate of the Codell-Niobrara interval. After five years of production, gas data from the second samples show that both intervals produce gas, on average, at about one-half the rate as the first sample. Oil-gas ratios in the Codell-Niobrara interval are characteristic of a retrograde gas and are considerably higher than oil-gas ratios in the Dakota J interval, which are characteristic of a wet gas. Water production from both intervals is low, and records in many wells are discontinuous, particularly in the Codell-Niobrara interval. Water-gas ratios are broadly variable, with some of the variability possibly due to the difficulty of measuring small production rates. Most wells for which water is reported have water-gas ratios exceeding the amount that could exist dissolved in gas at reservoir

  16. Visualization of gas dissolution following upward gas migration in porous media: Technique and implications for stray gas

    NASA Astrophysics Data System (ADS)

    Van De Ven, C. J. C.; Mumford, Kevin G.

    2018-05-01

    The study of gas-water mass transfer in porous media is important in many applications, including unconventional resource extraction, carbon storage, deep geological waste storage, and remediation of contaminated groundwater, all of which rely on an understanding of the fate and transport of free and dissolved gas. The novel visual technique developed in this study provided both quantitative and qualitative observations of gas-water mass transfer. Findings included interaction between free gas architecture and dissolved plume migration, plume geometry and longevity. The technique was applied to the injection of CO2 in source patterns expected for stray gas originating from oil and gas operations to measure dissolved phase concentrations of CO2 at high spatial and temporal resolutions. The data set is the first of its kind to provide high resolution quantification of gas-water dissolution, and will facilitate an improved understanding of the fundamental processes of gas movement and fate in these complex systems.

  17. Study on systems based on coal and natural gas for producing dimethyl ether

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, L.; Hu, S.Y.; Chen, D.J.

    2009-04-15

    China is a coal-dependent country and will remain so for a long time. Dimethyl ether (DME), a potential substitute for liquid fuel, is a kind of clean diesel motor fuel. The production of DME from coal is meaningful and is studied in this article. Considering the C/H ratios of coal and natural gas (NG), the cofeed (coal and NG) system (CFS), which does not contain the water gas shift process, is studied. It can reduce CO{sub 2} emission and increase the conversion rate of carbon, producing more DME. The CFS is simulated and compared with the coal-based and NG-based systemsmore » with different recycling ratios. The part of the exhaust gas that is not recycled is burned, producing electricity. On the basis of the simulation results, the thermal efficiency, economic index, and CO{sub 2} emission ratio are calculated separately. The CFS with a 100% recycling ratio has the best comprehensive evaluation index, while the energy, economy, and environment were considered at the same time.« less

  18. Microminiature gas chromatograph

    DOEpatents

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  19. Microminiature gas chromatograph

    DOEpatents

    Yu, Conrad M.

    1996-01-01

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  20. Basis-neutral Hilbert-space analyzers

    PubMed Central

    Martin, Lane; Mardani, Davood; Kondakci, H. Esat; Larson, Walker D.; Shabahang, Soroush; Jahromi, Ali K.; Malhotra, Tanya; Vamivakas, A. Nick; Atia, George K.; Abouraddy, Ayman F.

    2017-01-01

    Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode multiplexing and quantum communication – basis-specific principles are invoked that are altogether distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis. PMID:28344331