Science.gov

Sample records for gas chromatographic separation

  1. Fast gas chromatographic separation of biodiesel.

    SciTech Connect

    Pauls, R. E.

    2011-05-01

    A high-speed gas chromatographic method has been developed to determine the FAME distribution of B100 biodiesel. The capillary column used in this work has dimensions of 20 m x 0.100 mm and is coated with a polyethylene glycol film. Analysis times are typically on the order of 4-5 min depending upon the composition of the B100. The application of this method to a variety of vegetable and animal derived B100 is demonstrated. Quantitative results obtained with this method were in close agreement with those obtained by a more conventional approach on a 100 m column. The method, coupled with solid-phase extraction, was also found suitable to determine the B100 content of biodiesel-diesel blends.

  2. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    SciTech Connect

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  3. Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation.

    PubMed

    Dong, Jinqiao; Liu, Yan; Cui, Yong

    2014-12-11

    Three chiral robust diene-based porous organic frameworks (POFs) are prepared. POF- is shown to be an efficient heterogeneous catalyst after metallation for asymmetric conjugation addition with up to 93% ee, and it can also function as a new chiral stationary phase for gas chromatographic separation of racemates.

  4. Gas Chromatograph.

    DTIC Science & Technology

    Patents, * Gas chromotography , *Hydrocarbons, *Carbon monoxide, *Carbon dioxide, *Water, Field equipment, Portable equipment, Sensitivity, Halogenated hydrocarbons, Test methods, Gases, Liquids, Purity

  5. Microminiature gas chromatograph

    DOEpatents

    Yu, Conrad M.

    1996-01-01

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  6. Microminiature gas chromatograph

    DOEpatents

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  7. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  8. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  9. Gas Chromatographic Separation of an Acetylene Vinyl Fluoride-Difluoroethane Mixture on Triethylene Glycol and Silicone Oil,

    DTIC Science & Technology

    The purpose of the research was to study gas-chromatographic separation of impurities of acetylene and difluoroethane in vinyl fluoride obtained by...and difluoroethane . All the components are separated, and the criteria of separation of acetylene-vinyl fluoride and vinyl fluoride- difluoroethane

  10. Cucurbit[n]urils as a new class of stationary phases for gas chromatographic separations.

    PubMed

    Zhang, Pu; Qin, Shijia; Qi, Meiling; Fu, Ruonong

    2014-03-21

    Cucurbit[n]urils (CBs) possess unique structures and physicochemical properties as well as excellent thermal stability. These characteristics concur to make them good candidates for stationary phases in capillary gas chromatographic (GC) separations. Herein, CB7 and CB8 in neat (CB7, CB8) and binary (CB7-CB8) forms were investigated for this purpose. After they were statically coated onto fused silica capillary columns, the CB columns were evaluated in terms of chromatographic parameters, separation performance, thermal stability and column repeatability. The columns had efficiencies ranging from 1060 to 2200 plates per meter determined by n-dodecane at 100°C and exhibited nonpolar to weakly polar nature. These CBs columns showed good separation performance for a wide range of analytes such as n-alkanes, aromatic hydrocarbons, esters, aldehydes, ketones, alcohols and the Grob mixture, and exhibited nice peak shapes for analytes that are liable to peak-tailing in GC analysis. The results also proved the good column repeatability and thermal stability of the CB columns. No noticeable decreases in both retention times and resolution or appreciable baseline drift were observed after the columns were conditioned up to 250°C (CB8 and CB7-CB8 columns) or 280°C (CB7 column). This work demonstrates the promising future of CBs as a new class of GC stationary phase. To the best of our knowledge, this is the first report on using CB stationary phases in capillary GC separations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Graphitic carbon nitride nanofibers in seaweed-like architecture for gas chromatographic separations.

    PubMed

    Zheng, Yunzhong; Han, Qing; Qi, Meiling; Qu, Liangti

    2017-05-05

    Seaweed-like graphitic carbon nitride (g-C3N4) has a unique porous architecture composed of interlocking g-C3N4 nanofibers (NF-C3N4) with much higher surface area than bulk g-C3N4 and shows good potential in separation science. This work investigated the separation performance of NF-C3N4 as stationary phase for capillary gas chromatographic (GC) separations. The NF-C3N4 column exhibits weak polarity and high column efficiency of 4728 plates/m for n-dodecane. Importantly, it displays good separation performance for a wide range of analytes and shows different retention behaviors from the bulk g-C3N4 column and commercial HP-5MS column with 5% phenylpolysiloxane. Particularly, it shows high resolving capability for both aliphatic and aromatic isomers. In addition, NF-C3N4 column has high thermal stability up to 280°C and good separation repeatability with relative standard deviation (RSD) values in the range of 0.29-0.61% for intra-day, 0.56-1.1% for inter-day and 2.0-4.9% for between-column, respectively. Moreover, it was applied for the determination of isomer impurities in real samples, showing good potential in GC applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of micromachined preconcentrators and gas chromatographic separation columns by an electroless gold plating technology

    NASA Astrophysics Data System (ADS)

    Kuo, C.-Y.; Chen, P.-S.; Chen, H.-T.; Lu, C.-J.; Tian, W.-C.

    2017-03-01

    In this study, a simple process for fabricating a novel micromachined preconcentrator (μPCT) and a gas chromatographic separation column (μSC) for use in a micro gas chromatograph (μGC) using one photomask is described. By electroless gold plating, a high-surface-area gold layer was deposited on the surface of channels inside the μPCT and μSC. For this process, (3-aminopropyl) trimethoxysilane (APTMS) was used as a promoter for attaching gold nanoparticles on a silicon substrate to create a seed layer. For this purpose, a gold sodium sulfite solution was used as reagent for depositing gold to form heating structures. The microchannels of the μPCT and μSC were coated with the adsorbent and stationary phase, Tenax-TA and polydimethylsiloxane (DB-1), respectively. μPCTs were heated at temperatures greater than 280 °C under an applied electrical power of 24 W and a heating rate of 75 °C s-1. Repeatable thermal heating responses for μPCTs were achieved; good linearity (R 2  >  0.9997) was attained at three heating rates for the temperature programme for the μSC (0.2, 0.5 and 1 °C s-1). The volatile organic compounds (VOCs) toluene and m-xylene were concentrated over the μPCT by rapid thermal desorption (peak width of half height (PWHH)  <1.5 s) preconcentration factors for both VOCs are  >7900. The VOCs acetone, benzene, toluene, m-xylene and 1,3,5-trimethylbenzene were also separated on the μSC as evidenced by their different retention times (47-184 s).

  13. Graphitic carbon nitride as high-resolution stationary phase for gas chromatographic separations.

    PubMed

    Zheng, Yunzhong; Qi, Meiling; Fu, Ruonong

    2016-07-08

    This work presents the first example of utilization of graphitic carbon nitride (g-C3N4) as stationary phase for capillary gas chromatographic (GC) separations. The statically coated g-C3N4 column showed the column efficiencies of 3760 plates/m and weak polarity. Its resolving capability and retention behaviours were investigated by using the Grob test mixture, and mixtures of diverse types of analytes, and structural and positional isomers. The results showed superior separation performance of the g-C3N4 stationary phase for some critical analytes and preferential retention for aromatic analytes. Specifically, it exhibited high-resolution capability for aromatic and aliphatic isomers such as methylnaphthalenes and dimethylnaphthalenes, phenanthrene and anthracene and alkane isomers. In addition, g-C3N4 column showed excellent thermal stability up to 280°C and good repeatability with relative standard deviation (RSD) values less than 0.09% for intra-day, below 0.23% for inter-day and in the range of 1.9-8.4% for between-column, respectively. The advantageous separation performance shows the potential of g-C3N4 and related materials as stationary phase in GC and other separation technologies.

  14. Inlet backflushing device for the improvement of comprehensive two dimensional gas chromatographic separations.

    PubMed

    Edwards, Matthew; Górecki, Tadeusz

    2015-07-10

    Comprehensive two-dimensional gas chromatography (GC×GC) is recognised as a powerful tool for the separation of complex mixtures of volatile and semi-volatile compounds. In the analysis of challenging samples containing highly concentrated, active analytes or those with complicated matrices, it is often the case that less than ideal chromatography is produced. GC×GC chromatograms of such samples typically contain broad, tailing analyte bands. This results in difficulties with quantitation and poor utilisation of the separation space. In this study we investigated the inlet and the modulator as the potential sources of these tailing bands. A simple inlet backflushing device was developed to isolate the inlet from the primary column after the injection, and a similar setup was used to isolate the modulator from the primary column. The device allowed us to divert carrier gas flow back through the inlet at a specified time after the injection, while allowing analytes to pass through the column for separation. Analytes retained within the inlet were prevented from entering the column, and were subsequently removed via the carrier gas split line. The study revealed that the inlet plays a significant role in the development of tailing chromatographic bands, while the modulator simply modulates the already elongated band. Inlet backflushing is a cheap, simple and effective tool that can be used to improve the chromatography of problematic GC×GC analyses of samples consisting of concentrated and active analytes, those derived from natural products and containing complicated matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Anion exchange chromatographic separation of inositol phosphates and their quantification by gas chromatography.

    PubMed

    Heathers, G P; Juehne, T; Rubin, L J; Corr, P B; Evers, A S

    1989-01-01

    The direct measurement of mass of inositol trisphosphate from biologic samples is described. Separation of inositol monophosphate, bisphosphate, trisphosphate, and inositol tetrakisphosphate was achieved using anion exchange chromatography with a sodium sulfate gradient. In addition, separation of the isomers of each inositol phosphate was performed using HPLC procedures. The individual inositol phosphate fractions were subsequently dephosphorylated and desalted. The myo-inositol from each fraction was then derivatized to the hexatrimethylsilyl derivative and the myo-inositol derivatives were quantified by a novel gas chromatographic analysis using the hexatrimethylsilyl derivative of chiro-inositol as an internal concentration reference. This method is a reproducible and relatively rapid procedure for the direct quantification of inositol phosphate mass which overcomes many of the problems associated with the use of radiolabeled precursors. The method is a significant improvement over existing procedures for the quantitative determination of the mass of inositol phosphate by virtue of improved recovery, sensitivity, and technical simplicity. The applicability of this method is illustrated by the quantitative determination of inositol trisphosphate in response to norepinephrine stimulation of adult canine myocytes and cerebral cortical brain slices and by measurement of the isomers of inositol trisphosphate in isolated myocytes.

  16. Comprehensive two-dimensional gas chromatographic separations with a microfabricated thermal modulator.

    PubMed

    Serrano, Gustavo; Paul, Dibyadeep; Kim, Sung-Jin; Kurabayashi, Katsuo; Zellers, Edward T

    2012-08-21

    Rapid, comprehensive two-dimensional gas chromatographic (GC × GC) separations by use of a microfabricated midpoint thermal modulator (μTM) are demonstrated, and the effects of various μTM design and operating parameters on performance are characterized. The two-stage μTM chip consists of two interconnected spiral etched-Si microchannels (4.2 and 2.8 cm long) with a cross section of 250 × 140 μm(2), an anodically bonded Pyrex cap, and a cross-linked wall coating of poly(dimethylsiloxane) (PDMS). Integrated heaters provide rapid, sequential heating of each μTM stage, while a proximate, underlying thermoelectric cooler provides continual cooling. The first-dimension column used for GC × GC separations was a 6 m long, 250 μm i.d. capillary with a PDMS stationary phase, and the second-dimension column was a 0.5 m long, 100 μm i.d. capillary with a poly(ethylene glycol) phase. Using sets of five to seven volatile test compounds (boiling point ≤174 °C), the effects of the minimum (T(min)) and maximum (T(max)) modulation temperature, stage heating lag/offset (O(s)), modulation period (P(M)), and volumetric flow rate (F) on the quality of the separations were evaluated with respect to several performance metrics. Best results were obtained with a T(min) = -20 °C, T(max) = 210 °C, O(s) = 600 ms, P(M) = 6 s, and F = 0.9 mL/min. Replicate modulated peak areas and retention times were reproducible to <5%. A structured nine-component GC × GC chromatogram was produced, and a 21 component separation was achieved in <3 min. The potential for creating portable μGC × μGC systems is discussed.

  17. Optimisation of temperature-programmed gas chromatographic separation of organochloride pesticides by response surface methodology.

    PubMed

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Marinelli, Cristina; Ruggieri, Fabrizio; Stecca, Fabrizio

    2015-12-04

    A response surface methodology (RSM) approach is applied to optimise the temperature-programme gas-chromatographic separation of 16 organochloride pesticides, including 12 compounds identified as highly toxic chemicals by the Stockholm Convention on Persistent Organic Pollutants. A three-parameter relationship describing both linear and curve temperature programmes is derived adapting a model previously used in literature to describe concentration gradients in liquid chromatography with binary eluents. To investigate the influence of the three temperature profile descriptors (the starting temperature, the gradient duration and a shape parameter), a three-level full-factorial design of experiments is used to identify suitable combinations of the above variables spanning over a useful domain. Resolutions of adjacent peaks are the responses modelled by RSM using two alternative methods: a multi-layer artificial network (ANN) and usual polynomial regression. The proposed ANN-based approach permits to model simultaneously the resolutions of all the consecutive analyte pairs as a function of the temperature profile descriptors. Four critical pairs giving partially overlapped peaks are identified and multiresponse optimisation is carried out by analysing the surface plot of a global resolution defined as the average of the resolutions of the critical pairs. Descriptive/predictive performance and applicability of the ANN and polynomial RSM methods are compared and discussed.

  18. Deconvolution of gas chromatographic data

    NASA Technical Reports Server (NTRS)

    Howard, S.; Rayborn, G. H.

    1980-01-01

    The use of deconvolution methods on gas chromatographic data to obtain an accurate determination of the relative amounts of each material present by mathematically separating the merged peaks is discussed. Data were obtained on a gas chromatograph with a flame ionization detector. Chromatograms of five xylenes with differing degrees of separation were generated by varying the column temperature at selected rates. The merged peaks were then successfully separated by deconvolution. The concept of function continuation in the frequency domain was introduced in striving to reach the theoretical limit of accuracy, but proved to be only partially successful.

  19. Stable hydrogen isotopic analysis of nanomolar molecular hydrogen by automatic multi-step gas chromatographic separation.

    PubMed

    Komatsu, Daisuke D; Tsunogai, Urumu; Kamimura, Kanae; Konno, Uta; Ishimura, Toyoho; Nakagawa, Fumiko

    2011-11-15

    We have developed a new automated analytical system that employs a continuous flow isotope ratio mass spectrometer to determine the stable hydrogen isotopic composition (δD) of nanomolar quantities of molecular hydrogen (H(2)) in an air sample. This method improves previous methods to attain simpler and lower-cost analyses, especially by avoiding the use of expensive or special devices, such as a Toepler pump, a cryogenic refrigerator, and a special evacuation system to keep the temperature of a coolant under reduced pressure. Instead, the system allows H(2) purification from the air matrix via automatic multi-step gas chromatographic separation using the coolants of both liquid nitrogen (77 K) and liquid nitrogen + ethanol (158 K) under 1 atm pressure. The analytical precision of the δD determination using the developed method was better than 4‰ for >5 nmol injections (250 mL STP for 500 ppbv air sample) and better than 15‰ for 1 nmol injections, regardless of the δD value, within 1 h for one sample analysis. Using the developed system, the δD values of H(2) can be quantified for atmospheric samples as well as samples of representative sources and sinks including those containing small quantities of H(2) , such as H(2) in soil pores or aqueous environments, for which there is currently little δD data available. As an example of such trace H(2) analyses, we report here the isotope fractionations during H(2) uptake by soils in a static chamber. The δD values of H(2) in these H(2)-depleted environments can be useful in constraining the budgets of atmospheric H(2) by applying an isotope mass balance model.

  20. Modulation-induced error in comprehensive two-dimensional gas chromatographic separations.

    PubMed

    Harynuk, J J; Kwong, A H; Marriott, P J

    2008-07-18

    There is a fundamental difference between data collected in comprehensive two-dimensional gas chromatographic (GCxGC) separations and data collected by one-dimensional GC techniques (or heart-cut GC techniques). This difference can be ascribed to the fact that GCxGC generates multiple sub-peaks for each analyte, as opposed to other GC techniques that generate only a single chromatographic peak for each analyte. In order to calculate the total signal for the analyte, the most commonly used approach is to consider the cumulative area that results from the integration of each sub-peak. Alternately, the data may be considered using higher order techniques such as the generalized rank annihilation method (GRAM). Regardless of the approach, the potential errors are expected to be greater for trace analytes where the sub-peaks are close to the limit of detection (LOD). This error is also expected to be compounded with phase-induced error, a phenomenon foreign to the measurement of single peaks. Here these sources of error are investigated for the first time using both the traditional integration-based approach and GRAM analysis. The use of simulated data permits the sources of error to be controlled and independently evaluated in a manner not possible with real data. The results of this study show that the error introduced by the modulation process is at worst 1% for analyte signals with a base peak height of 10xLOD and either approach to quantitation is used. Errors due to phase shifting are shown to be of greater concern, especially for trace analytes with only one or two visible sub-peaks. In this case, the error could be as great as 6.4% for symmetrical peaks when a conventional integration approach is used. This is contrasted by GRAM which provides a much more precise result, at worst 1.8% and 0.6% when the modulation ratio (MR) is 1.5 or 3.0, respectively for symmetrical peaks. The data show that for analyses demanding high precision, a MR of 3 should be targeted as

  1. Gas chromatographic separation of diastereomeric isoprenoids as molecular markers of oil pollution.

    PubMed

    Berthou, F; Friovourt, M P

    1981-12-18

    By means of high-performance glass capillary gas chromatography (GC), diastereomeric isoprenoids were resolved into double peaks. The retention indices on three liquid phases and the mass spectra of the diastereoisomers were almost similar. The leading GC peaks represent the isoprenoids of fossil origin, while the rear peaks correspond to those of recent origin. Computerized gas chromatography-mass spectrometry was used for fingerprinting isoprenoids in different samples. The mass fragmentation patterns were characteristic of the branched alkanes. Hydrocarbon mixtures from four crude oil spills in the sea and from polluted and oil-free oyster tissues were investigated. The relative ratios of n-alkanes/pristane or phytane were shown to be strongly dependent on the chromatographic resolution of the isoprenoid peaks. It is suggested that the double GC peaks in the isoprenoid series are an unmistakable sign of oil pollution.

  2. Gas chromatograph injection system

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Henderson, M. E.; Donaldson, R. W., Jr. (Inventor)

    1975-01-01

    An injection system for a gas chromatograph is described which uses a small injector chamber (available in various configurations). The sample is placed in the chamber while the chamber is not under pressure and is not heated, and there is no chance of leakage caused by either pressure or heat. It is injected into the apparatus by changing the position of a valve and heating the chamber, and is volatilized and swept by a carrier gas into the analysis apparatus.

  3. Cyclotriveratrylene as a new-type stationary phase for gas chromatographic separations of halogenated compounds and isomers.

    PubMed

    Lv, Qing; Zhang, Qing; Qi, Meiling; Bai, Hua; Ma, Qiang; Meng, Xianshuang; Fu, Ruonong

    2015-07-24

    Cyclotriveratrylene (CTV) is reported here for the first time as stationary phase for capillary gas chromatographic (GC) separations. CTV stationary phase showed weak polarity comparable to the conventional 5% phenyl polysiloxane stationary phase but exhibited different retention behaviours and higher resolution for some of the indicated analytes. Most importantly, CTV stationary phase exhibited preferential selectivity for halogenated compounds, positional and geometrical isomers. Effect of column temperature on retention and thermal stability of CTV column were also investigated. Moreover, CTV capillary column showed good repeatability in terms of run-to-run, day-to-day and column-to-column. The unique physicochemical features and efficient separation ability for analytes of close properties show the potential of CTV as a new-type stationary phase in GC as well as separation science.

  4. Theory and use of the pseudophase model in gas-liquid chromatographic enantiomeric separations.

    PubMed

    Pino, Verónica; Lantz, Andrew W; Anderson, Jared L; Berthod, Alain; Armstrong, Daniel W

    2006-01-01

    The theory and use of the "three-phase" model in enantioselective gas-liquid chromatography utilizing a methylated cyclodextrin/polysiloxane stationary phase is presented for the first time. Equations are derived that account for all three partition equilibria in the system, including partitioning between the gas mobile phase and both stationary-phase components and the analyte equilibrium between the polysiloxane and cyclodextrin pseudophase. The separation of the retention contributions from the achiral and chiral parts of the stationary phase can be easily accomplished. Also, it allows the direct examination of the two contributions to enantioselctivity, i.e., that which occurs completely in the liquid stationary phase versus the direct transfer of the chiral analyte in the gas phase to the dissolved chiral selector. Six compounds were studied to verify the model: 1-phenylethanol, alpha-ionone, 3-methyl-1-indanone, o-(chloromethyl)phenyl sulfoxide, o-(bromomethyl)phenyl sulfoxide, and ethyl p-tolylsulfonate. Generally, the cyclodextrin component of the stationary phase contributes to retention more than the bulk liquid polysiloxane. This may be an important requirement for effective GC chiral stationary phases. In addition, the roles of enthalpy and entropy toward enantiorecognition by this stationary phase were examined. While enantiomeric differences in both enthalpy and entropy provide chiral discrimination, the contribution of entropy appears to be more significant in this regard. The three-phase model may be applied to any gas-liquid chromatography stationary phase involving a pseudophase.

  5. Characterization of low-temperature cofired ceramic tiles as platforms for gas chromatographic separations.

    PubMed

    Darko, Ernest; Thurbide, Kevin B; Gerhardt, Geoff C; Michienzi, Joseph

    2013-06-04

    A gas chromatography (GC) column is fabricated within a low-temperature cofired ceramic (LTCC) tile, and its analytical properties are characterized. By using a dual-spiral design, a 100 μm wide square channel up to 15 m in length is produced within an 11 cm × 5.5 cm LTCC tile. The channel is dynamically coated with an OV-101 stationary phase that is cross-linked with dicumyl peroxide. While the uncoated LTCC tiles were able to separate a mixture of n-alkanes, the peak shapes were broad (base width of ~2 min) and tailing. In contrast to this, the coated LTCC tiles produced sharp (base width of ~8-10 s), symmetrical, well-resolved peaks for the same analytes. By using a 7.5 m long channel, about 15,000 plates were obtained for a dodecane test analyte. Further, the coated LTCC tiles were found to produce plate heights that were about 3-fold smaller than those obtained from a conventional capillary GC column of similar length, dimension, and coating operated under the same conditions. As a result, test analyte separations were slightly improved in the LTCC tiles, and their overall performance fared well. In terms of temperature programming, it was found that a series of n-alkanes separated on the LTCC tile provided a cumulative peak capacity of around 54 peaks when using C₈ to C₁₃ as analyte markers. Results indicate that LTCC tiles provide a viable and useful alternative platform for performing good quality GC separations.

  6. Single-walled carbon nanotubes as stationary phase in gas chromatographic separation and determination of argon, carbon dioxide and hydrogen.

    PubMed

    Safavi, Afsaneh; Maleki, Norooz; Doroodmand, Mohammad Mahdi

    2010-08-24

    A chromatographic technique is introduced based on single-walled carbon nanotubes (SWCNTs) as stationary phase for separation of Ar, CO(2) and H(2) at parts per million (ppm) levels. The efficiency of SWCNTs was compared with solid materials such as molecular sieve, charcoal, multi-walled carbon nanotubes and carbon nanofibers. The morphology of SWCNTs was optimized for maximum adsorption of H(2), CO(2) and Ar and minimum adsorption of gases such as N(2), O(2), CO and H(2)O vapour. To control temperature of the gas chromatography column, peltier cooler was used. Mixtures of Ar, CO(2) and H(2) were separated according to column temperature program. Relative standard deviation for nine replicate analyses of 0.2 mL H(2) containing 10 microL of each Ar or CO(2) was 2.5% for Ar, 2.8% for CO(2) and 3.6% for H(2). The interfering effects of CO, and O(2) were investigated. Working ranges were evaluated as 40-600 ppm for Ar, 30-850 ppm for CO(2) and 10-1200 ppm for H(2). Significant sensitivity, small relative standard deviation (RSD) and acceptable limit of detection (LOD) were obtained for each analyte, showing capability of SWCNTs for gas separation and determination processes. Finally, the method was used to evaluate the contents of CO(2) in air sample.

  7. π-Extended triptycene-based material for capillary gas chromatographic separations.

    PubMed

    Yang, Yinhui; Wang, Qinsi; Qi, Meiling; Huang, Xuebin

    2017-10-02

    Triptycene-based materials feature favorable physicochemical properties and unique molecular recognition ability that offer good potential as stationary phases for capillary gas chromatography (GC). Herein, we report the investigation of utilizing a π-extended triptycene material (denoted as TQPP) for GC separations. As a result, the TQPP capillary column exhibited high column efficiency of 4030 plates m(-1) and high-resolution performance for a wide range of analytes, especially structural and positional isomers. Interestingly, the TQPP stationary phase showed unique shape selectivity for alkanes isomers and preferential retention for analytes with halogen atoms and H-bonding nature mainly through their halogen-bonding and H-bonding interactions. In addition, the TQPP column had good repeatability and reproducibility with the RSD values of 0.02-0.34% for run-to-run, 0.09-0.80% for day-to-day and 1.4-5.2% for column-to-column, respectively, and favorable thermal stability up to 280 °C. This work demonstrates the promising future of triptycene-based materials as a new class of stationary phases for GC separations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Calix[4]pyrroles: highly selective stationary phases for gas chromatographic separations.

    PubMed

    Fan, Jing; Wang, Zhenzhong; Li, Qian; Qi, Meiling; Shao, Shijun; Fu, Ruonong

    2014-10-03

    Calix[4]pyrroles offer a great potential as stationary phases for gas chromatography (GC) due to their unique structures and physicochemical properties. Herein we present the first report of using two calix[4]pyrroles, namely meso-tetra-cyclohexylcalix[4]pyrrole (THCP) and meso-octamethylcalix[4]pyrrole (OMCP). These stationary phases were statically coated onto capillary columns and investigated in terms of column efficiency, polarity, separation performance, thermal stability and repeatability. The columns achieved column efficiencies of 2200-3000plates/m and exhibited nonpolar nature with an average polarity of 67 for THCP and 64 for OMCP, respectively. THCP stationary phase shows high selectivity for analytes of different polarity and exhibits nice peak shapes, especially for aldehydes, alcohols and anilines that are prone to severe peak tailing in GC analysis. Interestingly, THCP stationary phase possesses superior resolving ability for aniline and benzenediol positional isomers while OMCP shows preferential selectivity for nonpolar analytes such as hexane isomers. Moreover, calix[4]pyrrole columns also have good thermal stability up to 260°C and repeatability with a relative standard deviation (RSD%) of less than 0.10% for run-to-run and less than 5.2% for column-to-column. This work demonstrates the unique separation performance of calix[4]pyrroles and their promising future as a new class of GC stationary phases. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comprehensive two-dimensional gas chromatographic separations with a temperature programmed microfabricated thermal modulator.

    PubMed

    Collin, William R; Nuñovero, Nicolas; Paul, Dibyadeep; Kurabayashi, Katsuo; Zellers, Edward T

    2016-04-29

    Comprehensive two-dimensional gas chromatography (GC×GC) with a temperature-programmed microfabricated thermal modulator (μTM) is demonstrated. The 0.78 cm(2), 2-stage μTM chip with integrated heaters and a PDMS coated microchannel was placed in thermal contact with a solid-state thermoelectric cooler and mounted on top of a bench scale GC. It was fluidically coupled through heated interconnects to an upstream first-dimension ((1)D) PDMS-coated capillary column and a downstream uncoated capillary or second-dimension ((2)D) PEG-coated capillary. A mixture of n-alkanes C6-C10 was separated isothermally and the full-width-at-half-maximum (fwhm) values of the modulated peaks were assessed as a function of the computer-controlled minimum and maximum stage temperatures of μTM, Tmin and Tmax, respectively. With Tmin and Tmax fixed at -25 and 100°C, respectively, modulated peaks of C6 and C7 had fwhm values<53 ms while the modulated peaks of C10 had a fwhm value of 1.3s, due to inefficient re-mobilization. With Tmin and Tmax fixed at 0 and 210°C, respectively, the fwhm value for the modulated C10 peaks decreased to 67 ms, but C6 and C7 exhibited massive breakthrough. By programming Tmin from -25 to 0°C and Tmax from 100 to 220°C, the C6 and C7 peaks had fwhm values≤50 ms, and the fwhm for C10 peaks remained<95 ms. Using the latter conditions for the GC×GC separation of a sample of unleaded gasoline yielded resolution similar to that reported with a commercial thermal modulator. Replacing the PDMS phase in the μTM with a trigonal-tricationic room temperature ionic liquid eliminated the bleed observed with the PDMS, but also reduced the capacity for several test compounds. Regardless, the demonstrated capability to independently temperature program this low resource μTM enhances its versatility and its promise for use in bench-scale GC×GC systems.

  10. A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph.

    SciTech Connect

    Sacks, Richard D. (University of Michigan, Ann Arbor, MI); Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Lambertus, Gordon R. (University of Michigan, Ann Arbor, MI); Potkay, Joseph A. (University of Michigan, Ann Arbor, MI); Wise, Kensall D. (University of Michigan, Ann Arbor, MI)

    2006-10-01

    This thesis presents the theory, design, fabrication and testing of the microvalves and columns necessary in a pressure- and temperature-programmed micro gas chromatograph ({micro}GC). Two microcolumn designs are investigated: a bonded Si-glass column having a rectangular cross section and a vapor-deposited silicon oxynitride (Sion) column having a roughly circular cross section. Both microcolumns contain integrated heaters and sensors for rapid, controlled heating. The 3.2 cm x 3.2 cm, 3 m-long silicon-glass column, coated with a non-polar polydimethylsiloxane (PDMS) stationary phase, separates 30 volatile organic compounds (VOCs) in less than 6 min. This is the most efficient micromachined column reported to date, producing greater than 4000 plates/m. The 2.7 mm x 1.4 mm Sion column eliminates the glass sealing plate and silicon substrate using deposited dielectrics and is the lowest power and fastest GC column reported to date; it requires only 11 mW to raise the column temperature by 100 C and has a response time of 11s and natural temperature ramp rate of 580 C/min. A 1 m-long PDMS-coated Sion microcolumn separates 10 VOCs in 52s. A system-based design approach was used for both columns.

  11. A Small-Scale Low-Cost Gas Chromatograph

    ERIC Educational Resources Information Center

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  12. A Small-Scale Low-Cost Gas Chromatograph

    ERIC Educational Resources Information Center

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  13. Gas chromatographic separation of fatty acid esters of cholesterol and phytosterols on an ionic liquid capillary column.

    PubMed

    Hammann, Simon; Vetter, Walter

    2015-12-15

    Steryl esters are high molecular weight compounds (600-700g/mol) regularly present as a minor lipid class in animal and plant lipids. Different sterol backbones (e.g., cholesterol, β-sitosterol and brassicasterol) which can be esterified with various fatty acids can result in highly complex steryl ester patterns in food samples. The gas chromatographic (GC) analysis of intact steryl esters is challenging, since high elution temperatures are required for their elution. On nonpolar GC phases, steryl esters with fatty acids with differing degree of unsaturation (e.g., oleate and linoleate) cannot be separated and there are only few polar columns available with sufficient temperature stability. In this study, we used gas chromatography with mass spectrometry (GC/MS) and analyzed intact steryl esters on a commercial room temperature ionic liquid (RTIL) column which was shortened to a length of 12m. The column separated the steryl esters both by total carbon number and by degree of unsaturation of the fatty acid. For instance, cholesteryl esters with stearic acid (18:0), oleic acid (18:1n-9), linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) could be resolved (R≥1.3) from each other. By analysis of synthesized standard substances, the elution orders for different steryl backbones and different fatty acids on a given sterol backbone could be determined. Analysis of spreads and plant oils allowed to determine retention times for 37 steryl esters, although a few co-elutions were observed. The ionic liquid column proved to be well-suited for the analysis of intact steryl esters. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Microfabricated packed gas chromatographic column

    DOEpatents

    Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.

    2003-12-16

    A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.

  15. Performance of graphene sheets as stationary phase for capillary gas chromatographic separations.

    PubMed

    Fan, Jing; Qi, Meiling; Fu, Ruonong; Qu, Liangti

    2015-06-19

    This work presents the investigation of graphene as a new type of stationary phase for capillary GC separations. Graphene capillary column (0.25 mm, i.d.) achieved column efficiency of 3100 plates/m determined by n-dodecane at 120 °C. The obtained McReynolds constants suggested the weakly polar nature of graphene sheets as GC stationary phase. As evidenced, graphene stationary phase differs from the conventional phase (5% phenyl polysiloxane) in its resolving ability and retention behaviors, and achieved better separation for the Grob and other mixtures. The advantages of graphene stationary phase may mainly originate from its specific π-π stacking interaction as well as H-bonding interaction. Furthermore, graphene column exhibited good repeatability with relative standard deviation (RSD%) in the range of 0.01-0.07% for run-to-run and 2.5-6.7% for column-to-column, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. High performance liquid chromatographic separations of gas oil samples and their hydrotreated products using commercial normal phases.

    PubMed

    Oro, Nicole E; Lucy, Charles A

    2011-10-28

    Three commercially available high performance liquid chromatography columns are used in normal phase or quasi-normal phase mode for the separation of gas oil samples. The columns are tested with 20 analytical standards to determine their suitability for separations of petroleum samples and their ability to separate the nitrogen group-types (pyrrole and pyridine) found in petroleum. The columns studied are polymeric hypercrosslinked polystyrene (HGN), a biphenyl phase, and a Chromegabond "DNAP" column from ES Industries. The HGN column separates gas oils based on both ring structure and heteroatom, while the biphenyl phase has low retention of most compounds studied in quasi-normal phase mode. The "DNAP" column is selective for nitrogen-containing compounds, separating them from PAHs as well as oxygen and sulphur compounds. Retention data of standards on all three columns is shown, along with chromatograms of gas oil samples on the HGN and "DNAP" columns. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Hand-held multiple system gas chromatograph

    DOEpatents

    Yu, Conrad M.

    2001-01-01

    A multiple parallel hand-held gas chromatograph (GC) system which includes several independent GCs. Each independent GC has its own injector, separation column, detector and oven and the GCs are mounted in a light weight hand-held assembly. Each GC operates independently and simultaneously. Because of different coatings in different separation columns, different retention times for the same gas will be measured. Thus, for a GC system with multiple parallel GCs, the system can measure, in a short period, different retention times and provide a cross-reference in the determination of the measured gas and to become a two-dimensional system for direct field use.

  18. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, Don D.

    1985-01-01

    A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  19. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  20. Gas separating

    DOEpatents

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  1. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  2. Direct quantitative gas chromatographic separation of C2-C6 fatty acids, methanol, and ethyl alcohol in aqueous microbial fermentation media.

    PubMed

    Rogosa, M; Love, L L

    1968-02-01

    A method is described for the direct quantitative gas chromatographic separation of C(2)-C(6) lower fatty acid homologues, methanol, and ethyl alcohol in aqueous microbial fermentation media. A hydrogen flame detector and a single-phase solid column packing, comprising beads of a polyaromatic resin (polystyrene cross-linked with divinyl benzene), were employed. Direct injections of 1 to 10 muliters of aqueous culture supernatant fluids were made. Quantitative recoveries of C(2)-C(6) acids added to culture supernatant fluids were obtained.

  3. Direct Quantitative Gas Chromatographic Separation of C2-C6 Fatty Acids, Methanol, and Ethyl Alcohol in Aqueous Microbial Fermentation Media

    PubMed Central

    Rogosa, M.; Love, L. L.

    1968-01-01

    A method is described for the direct quantitative gas chromatographic separation of C2-C6 lower fatty acid homologues, methanol, and ethyl alcohol in aqueous microbial fermentation media. A hydrogen flame detector and a single-phase solid column packing, comprising beads of a polyaromatic resin (polystyrene cross-linked with divinyl benzene), were employed. Direct injections of 1 to 10 μliters of aqueous culture supernatant fluids were made. Quantitative recoveries of C2-C6 acids added to culture supernatant fluids were obtained. PMID:5645415

  4. Gas chromatographic separation of nitrogen, oxygen, argon, and carbon monoxide using custom-made porous polymers from high purity divinylbenzene

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Ohara, D.; Hollis, O. L.

    1984-01-01

    Existing porous polymers were surveyed for their ability to separate the subject gases. Certain products that showed more promise than others were synthesized and the existing synthetic procedures studied and modified to produce new polymers with enhanced ability to separate the subject gases. Evaluation of the porous polymers was carried out practically by gas chromatography at ambient temperature. The modified synthetic procedures were somewhat simpler than the originals. The new porous polymers made with high purity divinylbenzene enabled use of shorter columns to obtain the separations desired.

  5. Gas chromatographic separation of nitrogen, oxygen, argon, and carbon monoxide using custom-made porous polymers from high purity divinylbenzene

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Ohara, D.; Hollis, O. L.

    1984-01-01

    Existing porous polymers were surveyed for their ability to separate the subject gases. Certain products that showed more promise than others were synthesized and the existing synthetic procedures studied and modified to produce new polymers with enhanced ability to separate the subject gases. Evaluation of the porous polymers was carried out practically by gas chromatography at ambient temperature. The modified synthetic procedures were somewhat simpler than the originals. The new porous polymers made with high purity divinylbenzene enabled use of shorter columns to obtain the separations desired.

  6. Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2015-08-07

    A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications.

  7. Chromatographic Separation of Glucose and Fructose

    NASA Astrophysics Data System (ADS)

    Kuptsevich, Yu E.; Larionov, Oleg G.; Stal'naya, I. D.; Nakhapetyan, L. A.; Pronin, A. Ya

    1987-03-01

    The structures, mutarotation, and the physicochemical properties of glucose and fructose as well as methods for their separation are examined. Their chromatographic separation on cation exchangers in the calcium-form is discussed in detail. A theory of the formation of complexes of carbohydrates with metal cations is described and the mechanism of the separation of glucose and fructose on cation exchangers in the calcium-form is discussed in detail. Factors influencing the chromatographic separation of glucose and fructose on sulphonic acid cation-exchange resins are also considered. The bibliography includes 138 references.

  8. Gas chromatographic separation of stereoisomers of non-protein amino acids on modified γ-cyclodextrin stationary phase.

    PubMed

    Fox, Stefan; Strasdeit, Henry; Haasmann, Stephan; Brückner, Hans

    2015-09-11

    Stereoisomers (enantiomers and diastereoisomers) of synthetic, non-protein amino acids comprising α-, β-, and γ-amino acids, including α,α-dialkyl amino acids, were converted into the respective N-trifluoroacetyl-O-methyl esters and analyzed and resolved by gas chromatography (GC) on a commercial fused silica capillary column coated with the chiral stationary phase octakis(3-O-butyryl-2,6-di-O-pentyl)-γ-cyclodextrin. This column is marketed under the trade name Lipodex(®) E. Chromatograms, retention times, and a chart displaying the retention times of approximately 40 stereoisomers of amino acids are presented. With few exceptions, baseline or almost baseline resolution was achieved for enantiomers and diastereoisomers. The chromatographic method presented is considered to be highly suitable for the elucidation of the stereochemistry of non-protein amino acids, for example in natural products, and for evaluating the enantiopurity of genetically non-coded amino acids used for the synthesis and design of conformationally tailored peptides. The method is applicable to extraterrestrial materials or can be used in experimental work related to abiotic syntheses or enantioselective destruction and amplification of amino acids.

  9. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  10. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  11. Novel inorganic mesoporous material with chiral nematic structure derived from nanocrystalline cellulose for high-resolution gas chromatographic separations.

    PubMed

    Zhang, Jun-Hui; Xie, Sheng-Ming; Zhang, Mei; Zi, Min; He, Pin-Gang; Yuan, Li-Ming

    2014-10-07

    Chiral nematic mesoporous silica (CNMS) has attracted widespread attention due to some unique features, such as its nematic structure, chirality, large pore size, high temperature resistance, low cost, and ease of preparation. We first reported the use of CNMS as a stationary phase for capillary gas chromatography (GC). The CNMS-coated capillary column not only gives good selectivity for the separation of linear alkanes, aromatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and isomers but also offers excellent enantioselectivity for chiral compounds. Compared with enantioseparations on commercial β-DEX 120 and Chirasil-l-Val columns, a CNMS-coated capillary column offers excellent enantioselectivity, chiral recognition complementarity, and the separation of analytes within short elution times. It can also be potentially applied in high-temperature GC at more than 350 °C. This work indicates that CNMS could soon become very attractive for separations.

  12. Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry.

    PubMed

    Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Kramer, John K G; Jahreis, Gerhard; Kuhnt, Katrin; Santercole, Viviana; Rader, Jeanne I

    2013-12-01

    The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag(+)-HPLC fractionation and GC-TOF/MS analysis in CI(+) mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.

  13. Chromatographic Separation of Vitamin E Enantiomers.

    PubMed

    Fu, Ju-Yen; Htar, Thet-Thet; De Silva, Leanne; Tan, Doryn Meam-Yee; Chuah, Lay-Hong

    2017-02-04

    Vitamin E is recognized as an essential vitamin since its discovery in 1922. Most vegetable oils contain a mixture of tocopherols and tocotrienols in the vitamin E composition. Structurally, tocopherols and tocotrienols share a similar chromanol ring and a side chain at the C-2 position. Owing to the three chiral centers in tocopherols, they can appear as eight different stereoisomers. Plant sources of tocopherol are naturally occurring in the form of RRR while synthetic tocopherols are usually in the form of all-racemic mixture. Similarly, with only one chiral center, natural tocotrienols occur as the R-isoform. In this review, we aim to discuss a few chromatographic methods that had been used to separate the stereoisomers of tocopherols and tocotrienols. These methods include high performance liquid chromatography, gas chromatography and combination of both. The review will focus on method development including selection of chiral columns, detection method and choice of elution solvent in the context of separation efficiency, resolution and chiral purity. The applications for separation of enantiomers in vitamin E will also be discussed especially in terms of the distinctive biological potency among the stereoisoforms.

  14. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  15. 4,6-Di-O-pentyl-3-O-trifluoroacetyl/propionyl cyclofructan stationary phases for gas chromatographic enantiomeric separations.

    PubMed

    Zhang, Ying; Armstrong, Daniel W

    2011-07-21

    4,6-Di-O-pentyl-3-O-trifluoroacetyl cycloinulohexaose (DP-TA-CF6) and 4,6-di-O-pentyl-3-O-propionyl cycloinulohexaose (DP-PN-CF6) were synthesized and used as chiral stationary phases (CSPs) in gas chromatography (GC). The chiral recognition ability of the two CSPs was investigated. A total of 47 racemic compounds were separated on the two new CSPs, including derivatized amino acids, amino alcohols, amines, alcohols, tartrates and lactones. Interestingly, several analytes were only separated on either the DP-TA-CF6 or the DP-PN-CF6 phase. The chiral recognition mechanism was evaluated through thermodynamic analysis. The result indicated there was no inclusion complex formation involved in the chiral recognition process.

  16. High performance hand-held gas chromatograph

    SciTech Connect

    Yu, C.M.

    1998-04-28

    The Microtechnology Center of Lawrence Livermore National Laboratory has developed a high performance hand-held, real time detection gas chromatograph (HHGC) by Micro-Electro-Mechanical-System (MEMS) technology. The total weight of this hand-held gas chromatograph is about five lbs., with a physical size of 8{close_quotes} x 5{close_quotes} x 3{close_quotes} including carrier gas and battery. It consumes about 12 watts of electrical power with a response time on the order of one to two minutes. This HHGC has an average effective theoretical plate of about 40k. Presently, its sensitivity is limited by its thermal sensitive detector at PPM. Like a conventional G.C., this HHGC consists mainly of three major components: (1) the sample injector, (2) the column, and (3) the detector with related electronics. The present HHGC injector is a modified version of the conventional injector. Its separation column is fabricated completely on silicon wafers by means of MEMS technology. This separation column has a circular cross section with a diameter of 100 pm. The detector developed for this hand-held GC is a thermal conductivity detector fabricated on a silicon nitride window by MEMS technology. A normal Wheatstone bridge is used. The signal is fed into a PC and displayed through LabView software.

  17. Versatile gas/particle ion chromatograph.

    PubMed

    Ullah, S M Rahmat; Takeuchi, Masaki; Dasgupta, Purnendu K

    2006-02-01

    A new, compact gas/particle ion chromatograph has been developed for measuring ionic constituents in PM2.5 (particulate matter of aerodynamic diameter < or = 2.5 microm) and water-soluble ionogenic gases. The instrument has separate sampling channels for gases and particles. In one, a membrane denuder collects soluble gases for preconcentration and analysis. In the other, a cyclone removes larger particles, a membrane denuder removes soluble gases, and a continuously wetted hydrophilic filter collects particles. A single, multiport, syringe pump handles liquid transport, and one conductivity detector measures anions and ammonium for both channels. Electrodialytically generated gradient hydroxide eluent permits 20 min chromatographic runs. Gas/particle samples are each collected for 40 min, butthe sampling intervals are staggered by 20 min. Liquid samples from the gas denuder and particle collector are aspirated and preconcentrated on sequential cation and anion concentrators and transferred respectively to an ammonia transfer device and an anion separation column. The flow configuration results in an ammonium peak before anion peaks in the chromatogram. The system measures ammonia, organic acids (such as acetic, formic, and oxalic acids), HCl, HONO, SO2, HNO3, and the corresponding ions in the aerosol phase. Low ng/m3 to sub-ng/m3 limits of detection (LODs) are attained for most common gases and particulate constituents, the LODs for gaseous SO2 to NH3 range, for example, from sub parts per trillion by volume (sub-pptv) to approximately 5 pptv.

  18. Capillary gas chromatographic separation of organic bases using a pH-adjusted basic water stationary phase.

    PubMed

    Darko, Ernest; Thurbide, Kevin B

    2016-09-23

    The use of a pH-adjusted water stationary phase for analyzing organic bases in capillary gas chromatography (GC) is demonstrated. Through modifying the phase to typical values near pH 11.5, it is found that various organic bases are readily eluted and separated. Conversely, at the normal pH 7 operating level, they are not. Sodium hydroxide is found to be a much more stable base than ammonium hydroxide for altering the pH due to the higher volatility and evaporation of the latter. In the basic condition, such analytes are not ionized and are observed to produce good peak shapes even for injected masses down to about 20ng. By comparison, analyses on a conventional non-polar capillary GC column yield more peak tailing and only analyte masses of 1μg or higher are normally observed. Through carefully altering the pH, it is also found that the selectivity between analytes can be potentially further enhanced if their respective pKa values differ sufficiently. The analysis of different pharmaceutical and petroleum samples containing organic bases is demonstrated. Results indicate that this approach can potentially offer unique and beneficial selectivity in such analyses.

  19. Determination of methyl mercury by aqueous phase Eehylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection

    USGS Publications Warehouse

    De Wild, John F.; Olsen, Mark L.; Olund, Shane D.

    2002-01-01

    A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations

  20. Multicomponent separations using a continuous annular chromatograph

    SciTech Connect

    Begovich, J.M.

    1982-12-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. By continuously introducing the feed material to be separated at a stationary point at the top of the bed and eluent everywhere else around the annulus, elution chromatography occurs. The rotation rate of the sorbent bed causes the separated components to appear as helical bands, each of which has a characteristic, stationary exit point; hence, the separation process is truly continuous. The continuous separation of copper, nickel, and cobalt from an ammoniacal leach liquor has been used to evaluate the behavior and capabilities of a variety of continuous annular chromatographs (CACs). The experimental units ranged in diameter from 89 to 445 mm and in annulus width from 6 to 51 mm. The effects of feed rate, feed concentration, rotation rate, eluent and eluent velocity, and column size were experimentally determined and modeled to show how they affect the performance of a CAC system. Use of the described models should allow confident design of new CAC units for performing continuous separations on a preparative scale. With its capability for continuously separating many components using one or a number of eluents, the CAC should make chromatography a competitive process in many industrial applications. 21 tables, 105 figures.

  1. Separation of short-chain fatty acids on a gas chromatographic column coated with oxidized lubricating oil.

    PubMed

    Moustafa, Nagy Emam

    2007-07-01

    The oxidized lubricating naphthenic base oil was used as a stationary phase for the separation of short-chain free fatty acids (SFFA) either as a pure sample or an aqueous solution containing 0.9-1.2 mg/L of each acid. It is found that the oil oxidation for 20 h improved the separation of SFFA in these two sample forms. This separation improvement represents not only the increase in retention volume intervals and peak symmetries in case of the pure sample but also in acid peak areas in case of the aqueous solution sample.

  2. Gas chromatographic separation of hydrogen isotopes on columns packed with alumina, modified alumina and sol-gel alumina.

    PubMed

    Naik, Y P; Gupta, N K; Pillai, K T; Rao, G A Rama; Venugopal, V

    2012-01-06

    The stationary phase of alumina adsorbents, prepared by different chemical processes, was used to study the separation behaviour of hydrogen isotopes. Three types of alumina, obtained by conventional hydroxide route alumina coated with silicon oxide and alumina prepared by internal gelation process (IGP), were used as packing material to study the separation of HT and T(2) in a mixture at various temperatures. The conventional alumina and silicon oxide coated alumina resolved HT and T(2) at 77K temperature with different retention times. The retention times on SiO(2) coated columns were found to be higher than those of other adsorbents. However, the column filled with IGP alumina was found to be ideal for the separation of HT and T(2) at 240 K. The peaks were well resolved in less than 5 min on this column.

  3. Gas chromatographic analysis of trace gas impurities in tungsten hexafluoride.

    PubMed

    Laurens, J B; de Coning, J P; Swinley, J M

    2001-03-09

    Highly reactive fluorinated gaseous matrices require special equipment and techniques for the gas chromatographic analysis of trace impurities in these gases. The impurities that were analysed at the low-microg/l levels included oxygen, nitrogen, carbon dioxide, carbon monoxide, sulfur hexafluoride and hydrogen. This paper describes the use of a system utilising backflush column switching to protect the columns and detectors in the analysis of trace gas impurities in tungsten hexafluoride. Two separate channels were used for the analysis of H2, O2, N2, CO, CO2 and SF6 impurities with pulsed discharge helium ionisation detection.

  4. A Quantitative Gas Chromatographic Ethanol Determination.

    ERIC Educational Resources Information Center

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  5. A Quantitative Gas Chromatographic Ethanol Determination.

    ERIC Educational Resources Information Center

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  6. Continuous fraction collection of gas chromatographic separations with parallel mass spectrometric detection applied to cell-based bioactivity analysis.

    PubMed

    Jonker, Willem; Stöckl, Jan B; de Koning, Sjaak; Schaap, Jaap; Somsen, Govert W; Kool, Jeroen

    2017-06-01

    We describe the development and evaluation of a GC-MS fractionation platform that combines high-resolution fraction collection of full chromatograms with parallel MS detection. A y-split at the column divides the effluent towards the MS detector and towards an inverted y-piece where vaporized trap solvent is infused. The latter flow is directed outside the GC oven allowing subsequent condensation and stepwise collection of liquid fractions with trapped analytes on a 384-well plate. For study and optimization of the effluent split ratio, restriction capillaries of different lengths and diameters were evaluated. For a wide range of settings, local pressures were monitored during fractionation to assess the influence of MS vacuum and trap solvent infusion on the GC system stability. The platform performance was evaluated by GC-MS analysis and continuous fractionation of an n-alkane mixture followed by GC analysis of each fraction. Comparison of the on-line recorded and fraction-reconstructed chromatogram showed the GC separation is maintained during fractionation. Multiple fractionation cycles of the n-alkane sample on the same 384-well plate yielded a reconstructed chromatogram which was highly similar to that of a single analysis, demonstrating the high repeatability. The applicability of the GC-MS-fractionation platform for bioactivity screening was investigated by applying the AR-Ecoscreen reporter gene bioassay on fractions obtained after analysis of standard solutions and dust samples containing the anti-androgenic compounds vinclozolin and p,p'-DDE. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. High performance hand-held gas chromatograph

    SciTech Connect

    Yu, C M; Koo, J C

    2001-01-10

    Gas chromatography is a prominent technique for separating complex gases and then analyzing the relative quantities of the separate components. This analytical technique is popular with scientists in a wide range of applications, including environmental restoration for air and water pollution, and chemical and biological analysis. Today the analytical instrumentation community is to working towards moving the analysis away from the laboratory to the point of origin of the sample (''the field'') to achieve real-time data collection and lower analysis costs. The Microtechnology Center of Lawrence Livermore National Laboratory, has developed a hand-held, real-time detection gas chromatograph (GC) through Micro-Electro-Mechanical-System (MEMS) technology. The total weight of this GC is approximately 8 pounds, and it measures 8 inches by 5 inches by 3 inches. It consumes approximately 12 watts of electrical power and has a response time on the order of 2 minutes. The current detector is a glow discharge detector with a sensitivity of parts per billion. The average retention time is about 30 to 45 seconds. Under optimum conditions, the calculated effective plate number is 40,000. The separation column in the portable GC is fabricated completely on silicon wafers. Silicon is a good thermal conductor and provides rapid heating and cooling of the column. The operational temperature can be as high as 350 degrees Celsius. The GC system is capable of rapid column temperature ramping and cooling operations. These are especially important for organic and biological analyses in the GC applications.

  8. Packed multi-channels for parallel chromatographic separations in microchips.

    PubMed

    Nagy, Andrea; Gaspar, Attila

    2013-08-23

    Here we report on a simple method to fabricate microfluidic chip incorporating multi-channel systems packed by conventional chromatographic particles without the use of frits. The retaining effectivities of different bottlenecks created in the channels were studied. For the parallel multi-channel chromatographic separations several channel patterns were designed. The obtained multipackings were applied for parallel separations of dyes. The implementation of several chromatographic separation units in microscopic size makes possible faster and high throughput separations.

  9. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    SciTech Connect

    Liu, Ying

    2004-01-01

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  10. 40 CFR 1065.267 - Gas chromatograph.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Gas chromatograph. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements § 1065.267 Gas...

  11. 40 CFR 1065.267 - Gas chromatograph.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Gas chromatograph. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements § 1065.267 Gas...

  12. Portable gas chromatograph-mass spectrometer

    DOEpatents

    Andresen, Brian D.; Eckels, Joel D.; Kimmons, James F.; Myers, David W.

    1996-01-01

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  13. Portable gas chromatograph-mass spectrometer

    DOEpatents

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.

    1996-06-11

    A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.

  14. Portable gas chromatograph-mass spectrometer

    SciTech Connect

    Andresen, B.D.; Eckels, J.D.; Kimmins, J.F.; Myers, D.W.

    1994-12-31

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  15. Chromatographic separation of fructose from date syrup.

    PubMed

    Al Eid, Salah M

    2006-01-01

    The objective of this study is to provide a process for separating fructose from a mixture of sugars containing essentially fructose and glucose, obtained from date palm fruits. The extraction procedure of date syrup from fresh dates gave a yield of 86.5% solids after vacuum drying. A process for separating fructose from an aqueous solution of date syrup involved adding the date syrup solutions (20, 30 and 40% by weight) to a chromatographic column filled with Dowex polystyrene strong cation exchange gel matrix resin Ca2 + and divinylbenzene, a functional group, sulfonic acid, particle size 320 microm, with a flow rate of 0.025 and 0.05 bed volume/min, under 30 and 70 degrees C column temperature. After the date sugar solution batch, a calculated quantity of water was added to the column. Glucose was retained by the resin more weakly than fructose and proceeded faster into the water batch flowing ahead. Three fractions were collected: a glucose-rich fraction, a return fraction, and a fructose-rich fraction. The return fraction is based on when the peaks of fructose and glucose were reached, which could be determined by means of an analyzer (polarimeter) based on the property of glucose and fructose solutions to turn the polarization level of polarized light. A high yield of fructose is obtained at 70 degrees C column temperature with a flow rate of 0.025 bed volume/min and date syrup solution containing 40% sugar concentration. The low recovery by weight obtained using date syrup solutions having a sugar concentration of 20 and 30%, encourages the use of a concentration of 40%. However, with the 40% date syrup supply the average concentrations of glucose and fructose in the return fractions were more than 40%, which can be used for diluting the thick date syrup solution extracted from dates.

  16. Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds

    DOEpatents

    Grindstaff, Quirinus G.

    1992-01-01

    Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

  17. Numerical Simulation of an Optical Chromatographic Separator

    DTIC Science & Technology

    2009-02-02

    its close relative, Bacillus thuringiensis ," Anal. Chem. 78, 3221-3225 (2006). 10. S. J. Hart, A. Terray, K. L. Kuhn, J. Arnold, and T. A. Leski...Terray, T. A. Leski, J. Arnold, and R. Stroud, "Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and

  18. A compact gas chromatograph and pre-column concentration system for enhanced in-field separation of levoglucosan and other polar organic compounds.

    PubMed

    Cropper, Paul M; Goates, Steven R; Hansen, Jaron C

    2015-10-23

    Portable and compact instruments for separating and detecting organic compounds are needed in the field for environmental studies. This is especially the case for pollution studies as in-field detection of organic compounds helps identify sources of pollution. Here we describe the development of a compact GC and simple pre-concentrator coupled to a MS detector. This simple system can easily be incorporated into portable instrumentation. Combining the pre-concentrator and compact column has the advantage of decoupling separation from manual injection and enhances separation of environmentally relevant polar organic compounds, such as levoglucosan. A detection limit of 2.2 ng was obtained for levoglucosan. This simple design has the potential to expand the use of gas chromatography as a routine in-field separation technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents

    PubMed Central

    2014-01-01

    To achieve both high speed and separation efficiency in the separation of a mixture of nerve and blister agent simulants, a high-aspect-ratio micro-fabricated multi-capillary column (MCC, a 50-cm-long, 450-μm-deep, and 60-μm-wide four-capillary column) was fabricated by the application of the microelectromechanical system (MEMS) techniques. Mixtures of chemical warfare agent (CWA) simulants - dimethyl methylphosphonate (DMMP), triethyl phosphate (TEP), and methyl salicylate - were used as samples. The fabricated MCC allowed for the separation of all the components of the gaseous mixture within 24 s, even when the difference in boiling point was 4°C, as in the case of TEP and methyl salicylate. Furthermore, interfering agents - dichloromethane, ethanol, and toluene - were also included in the subsequent gaseous mixture samples. The boiling point of these six components ranged from 78°C to 219°C. All six components were clearly separated within 70 s. This study is the first to report the clear separation of gas mixtures of components with close boiling points. The column efficiency was experimentally determined to be 12,810 plates/m. PMID:24899869

  20. High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents

    NASA Astrophysics Data System (ADS)

    Li, Yi; Du, Xiaosong; Wang, Yang; Tai, Huiling; Qiu, Dong; Lin, Qinghao; Jiang, Yadong

    2014-05-01

    To achieve both high speed and separation efficiency in the separation of a mixture of nerve and blister agent simulants, a high-aspect-ratio micro-fabricated multi-capillary column (MCC, a 50-cm-long, 450-μm-deep, and 60-μm-wide four-capillary column) was fabricated by the application of the microelectromechanical system (MEMS) techniques. Mixtures of chemical warfare agent (CWA) simulants - dimethyl methylphosphonate (DMMP), triethyl phosphate (TEP), and methyl salicylate - were used as samples. The fabricated MCC allowed for the separation of all the components of the gaseous mixture within 24 s, even when the difference in boiling point was 4°C, as in the case of TEP and methyl salicylate. Furthermore, interfering agents - dichloromethane, ethanol, and toluene - were also included in the subsequent gaseous mixture samples. The boiling point of these six components ranged from 78°C to 219°C. All six components were clearly separated within 70 s. This study is the first to report the clear separation of gas mixtures of components with close boiling points. The column efficiency was experimentally determined to be 12,810 plates/m.

  1. High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents.

    PubMed

    Li, Yi; Du, Xiaosong; Wang, Yang; Tai, Huiling; Qiu, Dong; Lin, Qinghao; Jiang, Yadong

    2014-01-01

    To achieve both high speed and separation efficiency in the separation of a mixture of nerve and blister agent simulants, a high-aspect-ratio micro-fabricated multi-capillary column (MCC, a 50-cm-long, 450-μm-deep, and 60-μm-wide four-capillary column) was fabricated by the application of the microelectromechanical system (MEMS) techniques. Mixtures of chemical warfare agent (CWA) simulants - dimethyl methylphosphonate (DMMP), triethyl phosphate (TEP), and methyl salicylate - were used as samples. The fabricated MCC allowed for the separation of all the components of the gaseous mixture within 24 s, even when the difference in boiling point was 4°C, as in the case of TEP and methyl salicylate. Furthermore, interfering agents - dichloromethane, ethanol, and toluene - were also included in the subsequent gaseous mixture samples. The boiling point of these six components ranged from 78°C to 219°C. All six components were clearly separated within 70 s. This study is the first to report the clear separation of gas mixtures of components with close boiling points. The column efficiency was experimentally determined to be 12,810 plates/m.

  2. Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column.

    PubMed

    Delmonte, Pierluigi; Fardin Kia, Ali-Reza; Kramer, John K G; Mossoba, Magdi M; Sidisky, Len; Rader, Jeanne I

    2011-01-21

    The ionic liquid SLB-IL111 column, available from Supelco Inc., is a novel fused capillary gas chromatography (GC) column capable of providing enhanced separations of fatty acid methyl esters (FAMEs) compared to the highly polar cyanopropyl siloxane columns currently recommended for the separation of cis- and trans isomers of fatty acids (FAs), and marketed as SP-2560 and CP-Sil 88. The SLB-IL111 column was operated isothermal at 168°C, with hydrogen as carrier gas at 1.0 mL/min, and the elution profile was characterized using authentic GC standards and synthetic mono-unsaturated fatty acids (MUFAs) and conjugated linoleic acid (CLA) isomers as test mixtures. The SLB-IL111 column provided an improved separation of cis- and trans-18:1 and cis/trans CLA isomers. This is the first direct GC separation of c9,t11- from t7,c9-CLA, and t15-18:1 from c9-18:1, both of which previously required complimentary techniques for their analysis using cyanopropyl siloxane columns. The SLB-IL111 column also provided partial resolution of t13/t14-18:1, c8- from c6/c7-18:1, and for several t,t-CLA isomer pairs. This column also provided elution profiles of the geometric and positional isomers of the 16:1, 20:1 and 18:3 FAMEs that were complementary to those obtained using the cyanopropyl siloxane columns. However, on the SLB-IL111 column the saturated FAs eluted between the cis- and trans MUFAs unlike cyanopropyl siloxane columns that gave a clear separation of most saturated FAs. These differences in elution pattern can be exploited to obtain a more complete analysis of complex lipid mixtures present in ruminant fats. Published by Elsevier B.V.

  3. Detection system for a gas chromatograph

    DOEpatents

    Hayes, John M.; Small, Gerald J.

    1984-01-01

    A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam.

  4. FTIR gas chromatographic analysis of perfumes

    NASA Astrophysics Data System (ADS)

    Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.

    1992-03-01

    Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.

  5. Asymmetric gas separation membranes

    SciTech Connect

    Malon, R. F.; Zampini, A.

    1984-12-04

    Asymmetric gas separation membranes of materials having selective permeation of at least one gas of a gaseous mixture over that of one or more remaining gases of the gaseous mixture, exhibit significantly improved permeation selectivities for the at least one gas when the asymmetric membrane is contacted on one or both surfaces with an effective amount of a Lewis acid. The improved asymmetric gas separation membranes, process for producing the improved membrane, and processes utilizing such membranes for selectively separating at least one gas from a gaseous mixture by permeation are disclosed.

  6. Asymmetric gas separation membranes

    SciTech Connect

    Malon, R. F.; Zampini, A.

    1984-09-18

    Asymmetric gas separation membranes of materials having selective permeation of at least one gas of a gaseous mixture over that of one or more remaining gases of the gaseous mixture, exhibit significantly improved permeation selectivities for the at least one gas when the asymmetric membrane is contacted on one or both surfaces with an effective amount of a Br nsted-Lowry acid. The improved asymmetric gas separation membranes, process for producing the improved membrane, and processes utilizing such membranes for selectively separating at least one gas from a gaseous mixture by permeation are disclosed.

  7. Gas Chromatographic Detectors for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Humphry, Donald E.; Takeuchi, Nori; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Exobiology flight experiments require highly sensitive instrumentation for in situ chemical analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. Future missions to Mars', comets, or planetary moons such as Europa, will perform experiments with complex analyses. In addition, instrumentation for such missions must perform under severely restricted conditions with limited resources. To meet these analytical requirements, improved methods and highly sensitive yet smaller instruments must continually be developed with increasingly greater capabilities. We describe here efforts to achieve this objective, for past and future missions, through the development of new or the improvement of existing sensitive, miniaturized gas chromatographic detectors.

  8. Gas-Chromatographic Determination Of Water In Freon PCA

    NASA Technical Reports Server (NTRS)

    Melton, Donald M.

    1994-01-01

    Gas-chromatographic apparatus measures small concentrations of water in specimens of Freon PCA. Testing by use of apparatus faster and provides greater protection against accidental contamination of specimens by water in testing environment. Automated for unattended operation. Also used to measure water contents of materials, other than Freon PCA. Innovation extended to development of purgeable sampling accessory for gas chromatographs.

  9. Gas-Chromatographic Determination Of Water In Freon PCA

    NASA Technical Reports Server (NTRS)

    Melton, Donald M.

    1994-01-01

    Gas-chromatographic apparatus measures small concentrations of water in specimens of Freon PCA. Testing by use of apparatus faster and provides greater protection against accidental contamination of specimens by water in testing environment. Automated for unattended operation. Also used to measure water contents of materials, other than Freon PCA. Innovation extended to development of purgeable sampling accessory for gas chromatographs.

  10. Gas chromatographic analysis of toxic edemagenic inhalation compounds

    SciTech Connect

    Shih, M.L.; Smith, J.R.; McMonagle, J.D. )

    1990-01-01

    Different megabore column and packed column phases were evaluated for their suitability in the gas chromatographic analysis of three toxic polyhalogenated compounds (phosgene, TFD, and PFIB). Adsorbent type stationary phases provide better retention and separation for the volatile fluorocarbons than do polar and nonpolar liquid phases. The reactivity of phosgene precludes the use of many phases having hydroxy, amino, or cyano functional groups. Silica gel is still the column of choice for phosgene. The use of gas sampling bags and gas-tight syringes can provide reliable quantitation of these compounds in air samples. TFD and PFIB exhibit different electron capture mechanisms and detector temperature dependency. The mechanisms are supported by the results of negative ion mass spectrometry.

  11. Optimizing Chromatographic Separation: An Experiment Using an HPLC Simulator

    ERIC Educational Resources Information Center

    Shalliker, R. A.; Kayillo, S.; Dennis, G. R.

    2008-01-01

    Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…

  12. Optimizing Chromatographic Separation: An Experiment Using an HPLC Simulator

    ERIC Educational Resources Information Center

    Shalliker, R. A.; Kayillo, S.; Dennis, G. R.

    2008-01-01

    Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…

  13. Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers.

    PubMed

    Yang, Xiaohong; Li, Changxia; Qi, Meiling; Qu, Liangti

    2016-08-19

    This work presents the separation performance of graphene-ZIF8 (G-Z) composite material as stationary phase for capillary gas chromatography (GC). The G-Z stationary phase achieved high column efficiency of 5000 plates/m determined by n-dodecane (k=1.22) at 120°C and showed weakly polar nature. Importantly, it exhibited high selectivity and resolving capability for branched alkane isomers and aromatic positional isomers, showing clear advantages over the reported neat graphene and ZIF8. In addition, it attained high resolution for geometric cis-/trans-isomers. The G-Z column exhibited good column thermal stability up to 300°C and column repeatability with RSD values of retention times in the range of 0.01-0.19% for intra-day, 0.05-0.88% for inter-day and 0.66-5.6% for between-column, respectively, Moreover, the G-Z column was employed for the determination of minor impurity isomers in real reagent samples, which demonstrates its promising potential in GC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. On-line gas chromatographic analysis of airborne particles

    SciTech Connect

    Hering, Susanne V; Goldstein, Allen H

    2012-01-03

    A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

  15. Characterization of Gas Chromatographic Liquid Phases Using McReynolds Constants. An Experiment for Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Erskine, Steven R.; And Others

    1986-01-01

    Describes a laboratory experiment that is designed to aid in the understanding of the fundamental process involved in gas chromatographic separations. Introduces the Kovats retention index system for use by chemistry students to establish criteria for the optimal selection of gas chromatographic stationary phases. (TW)

  16. Mars surface gas chromatograph mass spectrometer

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.

    2000-01-01

    A Mars surface lander Gas Chromatograph Mass Spectrometer (GCMS) is described to measure the chemical composition of abundant and trace volatile species and isotope ratios for noble gases and other elements. These measurements are relevant to the study of atmospheric evolution and past climatic conditions. A Micromission plan is under study where a surface package including a miniaturized GCMS would be delivered to the surface by a solar heated hot air balloon based system. The balloon system would be deployed about 8 km above the surface of Mars, wherein it would rapidly fill with Martian atmosphere and be heated quickly by the sun. The combined buoyancy and parachuting effects of the solar balloon result in a surface package impact of about 5 m/sec. After delivery of the package to the surface, the balloon would ascend to about 4 km altitude, with imaging and magnetometry data being taken for the remainder of the daylight hours as the balloon is blown with the Martian winds. Total atmospheric entry mass of this mission is estimated to be approximately 50 kg, and it can fit as an Ariane 5 piggyback payload.

  17. Ion chromatographic separation and quantitation of alkyl methylamines and ethylamines in atmospheric gas and particulate matter using preconcentration and suppressed conductivity detection.

    PubMed

    VandenBoer, T C; Markovic, M Z; Petroff, A; Czar, M F; Borduas, N; Murphy, J G

    2012-08-24

    Two methods based on ion chromatography (IC) were developed for the detection of methyl and ethyl alkyl amines (methylamine (MA), ethylamine (EA), dimethylamine (DMA), diethylamine (DEA), trimethylamine (TMA) and triethylamine (TEA)) and NH(3)/NH(4)(+) in online atmospheric gas-particle and size-resolved particulate samples. The two IC methods were developed to analyze samples collected with an ambient ion monitor (AIM), an online gas-particle collection system, or with a Micro Orifice Uniform Deposit Impactor (MOUDI) for size-resolved particle samples. These methods enable selective and (semi-) quantitative detection of alkyl amines at ambient atmospheric concentrations (pptv and pgm(-3)) in samples where significant interferences can be expected from Na(+) and NH(4)(+), for example marine and rural air masses. Sample pre-concentration using a trace cation column enabled instrumental detection limits on the order of pmol (sub-ng) levels per sample, an improvement of up to 10(2) over current IC methods. Separation was achieved using a methanesulfonic acid gradient elution on Dionex CS12A and CS17 columns. The relative standard deviations in retention times during 3 weeks continuous (hourly) sampling campaigns ranged from 0.1 to 0.5% and 0.2 to 5% for the CS12A and CS17 across a wide dynamic range of atmospheric concentrations. Resolution of inorganic and organic cations is limited to 25min for online samples. Mass-dependent coelution of NH(4)(+)/MA/EA occurred on the CS12A column and DEA/TMA coeluted on both columns. Calibrations of ammonium show a non-linear response across the entire calibration range while all other analytes exhibit high linearity (R(2)=0.984-0.999), except for EA and TEA on the CS12A (R(2)=0.960 and 0.941, respectively). Both methods have high analytical accuracy for the nitrogenous bases ranging from 9.5 to 20% for NH(3) and <5-15% for the amines. Hourly observations of amines at Egbert, ON in October 2010 showed gaseous DMA and TMA+DEA at 1

  18. Cation exchange chromatographic elution and separation of rubidium

    SciTech Connect

    Mehta, V.P.; Khopkar, S.M.

    1982-01-01

    The systematic cation exchange chromatographic separation of rubidium on Dowex 50W-X8 was carried out with mineral acids and their salts as eluants.A selectivity scale for various eluants in terms of the elution constant was devised. Rubidium was separated from a large number of elements in binary mixtures by the process of gradient or selective elutions or selective sorption. The noteworthy feature of the method is the sequential separation of rubidium from alkali as well as alkaline earth elements.

  19. Rotating annular chromatograph for continuous metal separations and recovery

    SciTech Connect

    Begovich, J.M.; Sisson, W.G.

    1981-01-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. By continuously introducing the feed material to be separated at a stationary point at the top of the bed and eluent everywhere else around the annulus, elution chromatography occurs. The rotation of the sorbent bed causes the separated components to appear as helical bands, each of which has a characteristic, stationary exit point; hence, the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6-m-long device with a 12.7-mm-wide annulus. The effect of annulus width and diameter has recently been studied using the same device with a 50.8-mm-wide annulus and another 0.6-m-long chromatograph with an 89-mm diameter and annulus widths of 6.4, 12.7, and 22.2 mm. These columns have been constructed of Plexiglas and typically operate at a gauge pressure of 175 kPa. To further study the effect of size and pressure, a new 445-mm-diam by 1-m-long column with a 31.8-mm-wide annulus has been fabricated. Its metal construction allows preparative-scale operation with a wide variety of liquids at pressures to 1.3 MPa. Three metal recovery systems have been explored: (1) separation of iron and aluminum in ammonium sulfate-sulfuric acid solutions; (2) separation of hafnium from zirconium in sulfuric acid solutions; and (3) the separation of copper, nickel, and cobalt in ammonium carbonate solutions. This last system simulates the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. It has been studied, using similar conditions, on each of the chromatographs, and the results demonstrate the effect of column dimensions on the quality and quantity of the separation. 8 figures, 1 table.

  20. Can enantiomers be separated in achiral chromatographic systems?

    NASA Astrophysics Data System (ADS)

    Davankov, V. A.

    2016-10-01

    Consideration of chromatography of a nonracemic mixture on an achiral sorbent from a stereochemical point of view allows the claim that partial separation of the excess enantiomer zone from the racemate zone is possible only with analytes capable of self-associating under the conditions of the chromatographic column. It is from these positions that features of this process can be explained and conditions for its maximal proceeding formulated.

  1. Gas chromatographic characterization of vegetable oil deodorization distillate.

    PubMed

    Verleyen, T; Verhe, R; Garcia, L; Dewettinck, K; Huyghebaert, A; De Greyt, W

    2001-07-06

    Because of its complex nature, the analysis of deodorizer distillate is a challenging problem. Deodorizer distillate obtained from the deodorization process of vegetable oils consists of many components including free fatty acids, tocopherols, sterols, squalene and neutral oil. A gas chromatographic method for the analysis of deodorizer distillate without saponification of the sample is described. After a concise sample preparation including derivatization and silylation, distillate samples were injected on column at 60 degrees C followed by a gradual increase of the oven temperature towards 340 degrees C. The temperature profile of the oven was optimized in order to obtain a baseline separation of the different distillate components including free fatty acids, tocopherols, sterols, squalene and neutral oil. Good recoveries for delta-tocopherol, alpha-tocopherol, stigmasterol and cholesteryl palmitate of 97, 94.4, 95.6 and 92%, respectively were obtained. Repeatability of the described gas chromatographic method was evaluated by analyzing five replicates of a soybean distillate. Tocopherols and sterols had low relative standard deviations ranging between 1.67 and 2.25%. Squalene, mono- and diacylglycerides had higher relative standard deviations ranging between 3.33 and 4.12%. Several industrial deodorizer distillates obtained from chemical and physical refining of corn, canola, sunflower and soybean have been analyzed for their composition.

  2. Gas Chromatographic Determination of Enrivonmentally Significant Pesticides.

    ERIC Educational Resources Information Center

    Rudzinski, Walter E.; Beu, Steve

    1982-01-01

    A chromatographic procedure for analyzing organophosphorus pesticides (such as PCB's, nitrosamines, and phthalate esters) in orange juice is described, including a summary of the method, instrumentation, methodology, results/discussion, and calculations. (JN)

  3. Gas Chromatographic Determination of Enrivonmentally Significant Pesticides.

    ERIC Educational Resources Information Center

    Rudzinski, Walter E.; Beu, Steve

    1982-01-01

    A chromatographic procedure for analyzing organophosphorus pesticides (such as PCB's, nitrosamines, and phthalate esters) in orange juice is described, including a summary of the method, instrumentation, methodology, results/discussion, and calculations. (JN)

  4. Gas chromatographic determination of sulphur compounds in town gas.

    PubMed

    Hoshika, Y; Iida, Y

    1977-04-11

    The gas chromatographic (GC) determination of the sulphur compounds in town gas (in the Nagoya area) was studied by using a flame-photometric detector (FPD) and the cold-trap method with liquid oxygen. The column packings used were 25% TCEP on Shimalite (AW, DMCS), 25% TCP on Shimalite (AW, DMCS), 10% PPE on Shimalite TPA, Porapak Q and silica gel. The major components identified were carbonyl sulphide, hydrogen sulphide, carbon disulphide, thiophene and tetrahydrothiophene (THT). The identities of thiophene and THT were also confirmed by GC combined with the use of a quadrupole mass spectrometer. The average concentrations and standard deviations of thiophene and THT were 8.8 +/- 1.8and 124 +/- 35 ng per 0.051, respectively. The latter value corresponds to 0.7 ppm, which is relatively high for the concentration of an odorant.

  5. Gas separation membranes

    DOEpatents

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  6. [The gas chromatographic detection of acetylene in cadaveric material].

    PubMed

    Iablochkin, V D

    1999-01-01

    Acetylene traces were detected by gas chromatography in the cadaveric right crural muscle of a 30-year-old man dead from an explosion of an acetylene reservoir at a plant. Acetylene was identified using the absolute calibration method on 3 standard gas chromatographic columns, reaction gas chromatography, and acetylene "deduction" by silver sulfate on silicagel.

  7. Chromatographic selectivity study of 4-fluorophenylacetic acid positional isomers separation.

    PubMed

    Chasse, Tyson; Wenslow, Robert; Bereznitski, Yuri

    2007-07-13

    Unique properties of the fluorine atom stimulate widespread use and development of new organofluorine compounds in agrochemistry, biotechnology and pharmacology applications. However, relatively few synthetic methods exhibit a high degree of fluorination selectivity, which ultimately results in the presence of structurally related fluorinated isomers in the synthetic product. This outcome is undesirable from a pharmaceutical perspective as positional isomers possess different reactivity, biological activity and toxicity as compared to the desired product. It is advantageous to control positional isomers in the early stages of the synthetic process, as rejection and analysis of these isomers will likely become more difficult in later stages. The current work reports the development of a chromatographic analysis of 2- and 3-fluorophenylacetic acid positional isomer impurities in 4-fluorophenylacetic acid (4-FPAA), a building block in the synthesis of an active pharmaceutical ingredient. The method is employed as a part of a Quality by Design Approach to control purity of the starting material in order to eliminate the presence of undesirable positional isomers in the final drug substance. During method development, a wide range of chromatographic conditions and structurally related positional isomer probe molecules were exploited in an effort to gain insight into the specifics of the separation mechanism. For the systems studied it was shown that the choice of organic modifier played a key role in achieving acceptable separation. Further studies encompassed investigation of temperature influence on retention and selectivity of the FPAA isomers separation. Thermodynamic analysis of these data showed that the selectivity of the 2- and 4- fluorophenylacetic acids separation was dominated by an enthalpic process, while the selectivity of the 4- and 3-fluorophenylacetic acids separation was exclusively entropy driven (Delta(DeltaH degrees approximately 0). Studies of

  8. Chromatographic enrichment and enantiomer separation of axially chiral polybrominated biphenyls in a technical mixture.

    PubMed

    Berger, Urs; Vetter, Walter; Götsch, Arntraut; Kallenborn, Roland

    2002-10-11

    The separation properties of different chromatographic methods regarding the enantioselective separation of axially chiral (atropisomeric) polybrominated biphenyls (PBB) were studied. For this purpose, the technical hexabromobiphenyl product Firemaster BP-6 was characterised by gas-chromatography coupled to electron capture detection (GC/ECD) and electron-capture negative ion mass spectrometry (GC/ECNI-MS) as well as by liquid chromatographic fractionating on active carbon and celite. Twelve individual PBBs including potential atropisomeric PBBs were isolated from Firemaster BP-6 by reversed-phase high-performance liquid chromatography (HPLC) on three serially coupled octadecylsilane columns. Six of the 12 isolated PBBs (three tri-ortho and di-ortho substituted PBBs, respectively) were separated into atropisomers on a HPLC column containing permethylated beta-cyclodextrin on silica. Moreover, the temperature dependency of the enantiomer separations is discussed. Gas chromatographic enantiomer separation of PBBs is a very demanding task due to high elution temperatures. However, the atropisomers of one tri-ortho substituted PBB congener (PBB 149) could be resolved on a column coated with randomly modified heptakis(6-O-tert.-butyldimethylsilyl-2,3-di-O-methyl)-beta-cyclodextrin in OV 1701.

  9. Polymide gas separation membranes

    DOEpatents

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  10. Multi-objective optimization of chromatographic rare earth element separation.

    PubMed

    Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt

    2015-10-16

    The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Role of substituents in cyclodextrin derivatives for enantioselective gas chromatographic separation of chiral terpenoids in the essential oils of Mentha spicata.

    PubMed

    Pragadheesh, V S; Yadav, Anju; Chanotiya, Chandan Singh

    2015-10-01

    Enantioselective GC-FID and enantioselective GC-MS have been utilized under temperature gradient mode with differently substituted heptakis- and octakis-cyclodextrins to achieve the resolution of chiral terpenoids in the essential oil of indigenously grown cultivars of Mentha spicata. Modified cyclodextrins were derivatized in GC column for the separation of chiral terpenoids. A 2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin doped into 14% cyanopropylphenyl/86%dimethylpolysiloxane (TBDE-β-CD) showed good enantioselectivity for all the studied chiral compounds excluding carvone. Carvone enantiomers were well resolved in 2,3-diacetoxy-6-tert-butyldimethylsilyl-β-cyclodextrin column (TBDA-β-CD) with enantioseparation (Es) of 1.006. A TBDE-β-CD provides maximum enantiomeric separation for β-pinene (Es 1.038), sabinene (Es 1.051), limonene (Es 1.045), isomenthone (Es 1.029) and α-terpineol (Es 1.014). Furthermore, enantiomer elution order reversal was observed for sabinene, menthone, terpinen-4-ol and menthol while changing from β- to γ-cyclodextrin phase. Carvone exhibits enantiomer elution order reversal by changing substituents i.e., methyl to acetyl at 2- & 3- position of the cyclodextrin derivative. Chiral constituents such as (+)-isomenthone, (-)-menthone, (1R,2S,5R)-(-)-menthol and (4S)-(+)-piperitone exist as a single enantiomer with >99% excess. Existence of (R)-(+)-limonene and (S)-(+)-carvone enantiomers has been proven first time in M. spicata essential oils and can be used as the marker for Indian origin. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Gas chromatographic determination of pentachlorophenol in gelatin.

    PubMed

    Borsetti, A P; Thurston, L S

    1984-01-01

    A method is described for the determination of pentachlorophenol (PCP) in gelatin. The method employs acid and heat to hydrolyze the gelatin matrix, a base partition and wash for separation and cleanup, and a reacidification and extraction with hexane for direct determination of PCP, without preparation of a derivative, using gas chromatography (GC) with a 1% SP- 124ODA liquid phase and a 63Ni electron capture detector. Recoveries averaged 106% for fortifications between 0.02 and 1.0 ppm. The limit of quantitation is 20 ppb. The limit of detection is 4-6 ppb. The method, which has undergone a successful intralaboratory trial, is simple and rapid, and requires only general laboratory reagents and equipment. GC of the acetate derivative of PCP is used for confirmation of identity.

  13. [Chromatographic separation of plasmid DNA by anion-exchange cryogel].

    PubMed

    Guo, Yantao; Shen, Shaochuan; Yun, Junxian; Yao, Kejian

    2012-08-01

    Plasmid DNA (pDNA) is used as an important vector for gene therapy, and its wide application is restricted by the purity and yield. To obtain high-purity pDNA, a chromatographic method based on anion-exchange supermacroporous cryogel was explored. The anion-exchange cryogel was prepared by grafting diethylaminoethyl-dextran to the epoxide groups of polyacrylamide-based matrix and pUC19 plasmid was used as a target to test the method. The plasmid was transferred into Escherichia coli DH5alpha, cultivated, harvested and lysed. The obtained culture was centrifuged and the supernatant was used as the plasmid feedstock, which was loaded into the anion-exchange cryogel bed for chromatographic separation. By optimizing the pH of running buffer and the elution conditions, high-purity pDNA was obtained by elution with 0.5 mol/L sodium chloride solution at pH 6.6. Compared to the traditional methods for purification of pDNA, animal source enzymes and toxic reagents were not involved in the present separation process, ensuring the safety of both the purification operations and the obtained pDNA.

  14. Gas chromatograph-combustion system for 14C-accelerator mass spectrometry.

    PubMed

    McIntyre, Cameron P; Sylva, Sean P; Roberts, Mark L

    2009-08-01

    A gas chromatograph-combustion (GC-C) system is described for the introduction of samples as CO(2) gas into a (14)C accelerator mass spectrometry (AMS) system with a microwave-plasma gas ion source. Samples are injected into a gas chromatograph fitted with a megabore capillary column that uses H(2) as the carrier gas. The gas stream from the outlet of the column is mixed with O(2) and Ar gas and passed through a combustion furnace where the H(2) carrier gas and separated components are quantitatively oxidized to CO(2) and H(2)O. Water vapor is removed using a heated nafion dryer. The Ar carries the CO(2) to the ion source. The system is able to separate and oxidize up to 10 microg of compound and transfer the products from 7.6 mL/min of H(2) carrier gas into 0.2-1.0 mL/min of Ar carrier gas. Chromatographic performance and isotopic fidelity satisfy the requirements of the (14)C-AMS system for natural abundance measurements. The system is a significant technical advance for GC-AMS and may be capable of providing an increase in sensitivity for other analytical systems such as an isotope-ratio-monitoring GC/MS.

  15. Mathematical model for multicomponent separations on the continuous annular chromatograph

    SciTech Connect

    Bratzler, R.L.; Begovich, J.M.

    1980-12-01

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally.

  16. Chromatographic separation of neodymium isotopes by using chemical exchange process.

    PubMed

    Ismail, I M; Ibrahim, M; Aly, H F; Nomura, M; Fujii, Y

    2011-05-20

    The neodymium isotope effects were investigated in Nd-malate ligand exchange system using the highly porous cation exchange resin SQS-6. The temperature of the chromatographic columns was kept constant at 50°C by temperature controlled water passed through the columns jackets. The separation coefficient of neodymium isotopes, ɛ's, was calculated from the isotopic ratios precisely measured by means of an ICP mass spectrometer equipped with nine collectors as ion detectors. The separation coefficient, ɛ×10(5), were calculated and found to be 1.4, 4.8, 5.4, 10.6, 16.8 and 20.2 for (143)Nd, (144)Nd, (145)Nd, (146)Nd, (148)Nd and (150)Nd, respectively.

  17. Gas chromatographic analysis of volatiles in fluid and gas inclusions

    USGS Publications Warehouse

    Andrawes, F.; Holzer, G.; Roedder, E.; Gibson, E.K.; Oro, J.

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These inclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusions in a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crusing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the process involved in the history of the samples analyzed. ?? 1984.

  18. Gas chromatographic analysis of volatiles in fluid and gas inclusions.

    PubMed

    Andrawes, F; Holzer, G; Roedder, E; Gibson, E K; Oro, J

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These conclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusion on a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crushing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the processes involved in the history of the samples analyzed.

  19. High-speed gas chromatography with direct resistively-heated column (ultra fast module-GC)-separation measure (S) and other chromatographic parameters under different analysis conditions for samples of different complexities and volatilities.

    PubMed

    Bicchi, C; Brunelli, C; Cordero, C; Rubiolo, P; Galli, M; Sironi, A

    2005-04-15

    The influence of GC speed on the separation capability of a chromatographic system is reported measuring a series of parameters including separation measure (S), peak capacity (n), peak width (w), analysis time, t(b) (determined on the last eluting compound) and separation measure/analysis time ratio (S/t(b)) determined by analyzing a bergamot essential oil sample and a standard mixture of pesticides. Conventional GC, fast GC (with 10 m (FGC10) and 5 m (FGC5) narrow-bore columns), and direct resistively-heated ultra fast module-GC (UFM-GC) were the GC speed approaches used. The influence of different heating rates with a constant flow for FGC5, FGC 10, and UFM-GC and with variable flows for UFM-GC on S, n, w, S/t(b), and t(b) was also studied. The results of this study show that: (a) separation capability of the chromatographic system (i.e. S and n) and analysis time depend on the GC approaches. Within each GC approach, S and n and analysis time depend on the heating rates, although to a different extent, and S and n decrease much less than the gain in analysis time, in particular when fast heating rates are applied; (b) in UFM-GC, the loss of separation capability with heating rate can also be partially compensated by the choice of an appropriate flow rate that, within each heating rate, may contribute to increase S while reducing t(b); (c) within a specific GC approach, the chromatographic system (column and stationary phase) and conditions (heating and flow rates) must be such to achieve a suitable S-value when two analytes must be separated with a given resolution in a minimum analysis time.

  20. Gas chromatographic determination of phosgene and dichloroacetylene in air1

    PubMed Central

    Jeltes, R.; Burghardt, E.; Breman, J.

    1971-01-01

    Jeltes, R., Burghardt, E., and Breman, J. (1971). Brit. J. industr. Med., 28, 96-99. Gas chromatographic determination of phosgene and dichloroacetylene in air. Phosgene and dichloroacetylene vapours may be present in the working environment near places where chlorinated hydrocarbons are used, including exposure chambers and the like in which people or animals are deliberately exposed to chlorinated hydrocarbons to investigate the effects of these substances. A gas liquid chromatographic method was developed for the determination of sub-Threshold Limit Value concentrations of phosgene and dichloroacetylene. Using electron capture detection, concentrations from 0·02 ppm of each compound could be determined. Images PMID:5543634

  1. [Derivative gas chromatographic analysis of fructooligosaccharide in fermented sucrose].

    PubMed

    Cai, W M; Liu, H; Sun, X J

    2000-01-01

    As a new sweetener, fructooligosaccharide is paid more and more attention for its health improvement property. It includes trisaccharide, tetrasaccharide and pentasaccharide, and can be produced from sucrose by the fermentation of microorganism. In order to analyze the content of fructooligosaccharide in fermented sugar by gas chromatography, fructooligosaccharide was transformed into trimethylsilyl derivatives. Based on the modified gas chromatograph SP2308, and under the chosen chromatographic conditions with 0.53 mm capillary column of OV-101, the contents of fructose, glucose, sucrose and fructooligosaccharide were determined by programmed temperature chromatography. The recovery of fructooligosaccharide was satisfactory.

  2. Comparison of physicochemical and gas chromatographic polarity measures for simple organic compounds.

    PubMed

    Héberger, Károly; Zenkevich, Igor G

    2010-04-23

    The comparison of different polarity measures (parameters, descriptors, variables, scales, etc.) indicates that evaluation of interrelations between these measures is important for better understanding and interpretation of chemical and/or analytical data, especially for chromatographic separation. The best linear correlation between gas chromatographic and non-chromatographic polarity descriptors is revealed for the first time: this pair of variables is the difference of gas chromatographic retention indices on standard polar and non-polar phases as well as the difference between non-dimensional indices of boiling points (known in chromatography since mid-1980s as dispersion indices) and indices of molar refractions. The correlation helps chromatographers to find preferable chemical variables (features) to understand better the separation phenomena and to find better correlations in QSRR models. Principal component analysis (PCA) of ten frequently applied polarity measures shows their similarity and, at the same time, it shows the absence of anomalies within the set of simple organic molecules. A novel ranking method for ten polarity parameters points out that the two most informative polarity measures are (i) the non-dimensional index for boiling point and (ii) the difference in chromatographic retention indices on standard polar and non-polar stationary phases. On the other hand, the hydrophobicity parameter, log P, sometimes considered as polarity parameter in HPLC seems to be the worst one in description of "polarity" in gas chromatography. Surprisingly, such polarity measures like dipole moment and permittivity used often in organic chemistry does not provide the best correlation with gas chromatographic polarity measures.

  3. [Gas chromatographic analysis of cannabinoids on tandem columns].

    PubMed

    Petri, G; Nyiredy, S; Veszki, P; Oroszlán, P; Turiák, G

    1995-05-01

    A simple, isotherm packed column gas chromatographic method was developed for the quantitative determination of neutral cannabinoids using 4-androstene-3,17-dion as internal standard. In order to achieve the best resolution and to avoid the evaluation of the disturbing hydrocarbon peaks a method was developed using "tandem" column made of 3% OV-1 (90%) and 3% OV-17 (10%) stationary phases. The psychotropic cannabinoids delta 1-tetrahydrocannabinol (delta 1-THC) and delta 1(6)-tetrahydrocannabionol (delta 1(6)-THC), as well as, their main metabolites cannabidiol (CBD) and cannabichromene (CBC) were baseline separated except the cannabigerol (CBG) and cannabinol (CBN) pair, however for these compounds the separation was also satisfactory for the quantitative determinations. The Kováts retention indices were calculated for the most important cannabinoids and established the detection limits, respectively (20-50 ng range). The reproducibility was found excellent cv% = 1.06 for delta 1-THC and the analysis time was 55 minutes. The practical usefulness of the method was demonstrated by the comparative analyses on hashish- and fibre type hemps.

  4. Method for the chromatographic separation of cations from aqueous samples

    DOEpatents

    Horwitz, E.P.; Chiarizia, R.; Dietz, M.L.

    1998-12-22

    An extraction chromatographic material is described for extracting metal cations from a liquid stream. The extraction chromatographic material is prepared by adsorbing a diesterified methane-diphosphonic acid on an inert particulate support. 7 figs.

  5. Method for the chromatographic separation of cations from aqueous samples

    DOEpatents

    Horwitz, E.P.; Chiarizia, R.; Dietz, M.L.

    1997-07-29

    An extraction chromatographic material is described for extracting metal cations from a liquid stream. The extraction chromatographic material is prepared by adsorbing a diesterified methanediphosphonic acid on an inert particulate support. 7 figs.

  6. Derivatization procedure for gas chromatographic determination of hydroxylamine

    SciTech Connect

    Pesselman, R.L.; Foral, M.J.; Langer, S.H.

    1987-04-15

    Hydroxylamine has been of special interest recently because of the possibilities of manufacturing it by using electrochemical methods in which ammonia might also be formed. Its general chemistry and applications have been described elsewhere. Presently, there are two gas chromatographic methods reported for the determination of hydroxylamine in aqueous media. The first involves reacting the hydroxylamine to form acetone oxime and subsequently injecting the aqueous solution directly into a gas chromatograph equipped with nitrogen and flame ionization detectors. The second involves oxidizing hydroxylamine to nitrous oxide and trapping the gas for determination in an electron capture equipped gas chromatograph. Limits of detection are in the micromolar range for the former and the nanomolar range for the latter. Here, an alternate gas chromatographic procedure for determining hydroxylamine as the acetone oxime is described. Neither direct aqueous injection nor elaborate instrumentation is required. Extraction of the oxime into an ether phase allows for concentrating the analyte ad facilitates the use of an internal standard. The limitations and inconveniences of direct aqueous injection are avoided included column degradation and filament burnout in mass spectrometry detectors.

  7. Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; Samperi, Roberto; Laganà, Aldo

    2011-12-09

    Mass spectrometry used in combination with a wide variety of separation methods is the principal methodology for proteomics. In bottom-up approach, proteins are cleaved with a specific proteolytic enzyme, followed by peptide separation and MS identification. In top-down approach intact proteins are introduced into the mass spectrometer. The ions generated by electrospray ionization are then subjected to gas-phase separation, fragmentation, fragment separation, and automated interpretation of mass spectrometric and chromatographic data yielding both the molecular weight of the intact protein and the protein fragmentation pattern. This approach requires high accuracy mass measurement analysers capable of separating the multi-charged isotopic cluster of proteins, such as hybrid ion trap-Fourier transform instruments (LTQ-FTICR, LTQ-Orbitrap). Front-end separation technologies tailored for proteins are of primary importance to implement top-down proteomics. This review intends to provide the state of art of protein chromatographic and electrophoretic separation methods suitable for MS coupling, and to illustrate both monodimensional and multidimensional approaches used for LC-MS top-down proteomics. In addition, some recent progresses in protein chromatography that may provide an alternative to those currently employed are also discussed.

  8. Gas separation membrane module assembly

    DOEpatents

    Wynn, Nicholas P; Fulton, Donald A.

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  9. Gas chromatographic-mass spectrometric analysis of volatile amines produced by several strains of Clostridium.

    PubMed

    Pons, J L; Rimbault, A; Darbord, J C; Leluan, G

    1985-02-08

    A gas chromatographic--mass spectrometric technique is proposed for the analysis of volatile amines which were isolated from Clostridium cultures by vacuum distillation and concentrated as hydrochloride salts. Headspace sampling after alkalinization of the salts under vacuum was the most suitable for subsequent gas chromatographic analysis. With ammonia-loaded helium as carrier gas, methylamines were separated on 4.8% PEG 2OM + 0.3% potassium hydroxide on Carbopack B, and other volatile amines on 28% Pennwalt 223 + 4% potassium hydroxide on Gas-Chrom R. Bacterial volatile amines (dimethylamine, trimethylamine, isobutylamine, 3-methylbutylamine, etc.) were detected with a flame-ionization detector and identified by gas chromatography--mass spectrometry in electron-impact and chemical ionization modes.

  10. Chromatographic Studies of Protein-Based Chiral Separations.

    PubMed

    Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S

    2016-09-01

    The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations.

  11. Chromatographic Studies of Protein-Based Chiral Separations

    PubMed Central

    Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S.

    2016-01-01

    The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations. PMID:28344977

  12. Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics

    NASA Astrophysics Data System (ADS)

    Brenneman, Charles A.; Ebeler, Susan E.

    1999-12-01

    We describe a simple laboratory experiment that demonstrates the principles of chromatographic separation using solid-phase extraction columns and red wine. By adjusting pH and mobile phase composition, the wine is separated into three fractions of differing polarity. The content of each fraction can be monitored by UV-vis spectroscopy. When the experiment is combined with experiments involving HPLC or GC separations, students gain a greater appreciation for and understanding of the highly automated instrumental systems currently available. In addition, they learn about the chemistry of polyphenolic compounds, which are present in many foods and beverages and which are receiving much attention for their potentially beneficial health effects.

  13. Characterisation of wax works of art by gas chromatographic procedures.

    PubMed

    Regert, M; Langlois, J; Colinart, S

    2005-10-14

    To identify the various natural and synthetic substances used by sculptors at the end of the 19th century, several contemporary reference samples were investigated by high temperature gas chromatography (HT GC) and HT GC-MS. Using specific chromatographic conditions and minimising sample preparation, we could separate, detect and identify a wide range of biomolecular markers covering a great variety of molecular weights and volatilities, with a minimum amount of sample, in a single run. Beeswax, spermaceti, carnauba, candellila and Japan waxes as well as pine resin derivatives, animal fats, paraffin, ozokerite and stearin, used as additives in wax works of art, were chemically investigated. In the case of low volatile compounds, transbutylation was performed. The structure of long-chain esters of spermaceti was elucidated for the first time by HT GC-MS analysis. Such a method was then carried out on 10 samples collected on a statuette of Junon by Antoine-Louis Barye (Louvre Museum, Paris, France) and on a sculpture by Aimé-Jules Dalou (Musée de la Révolution Française, Vizille, France). The analytical results obtained provide new data on the complex recipes elaborated by sculptors at the end of the 19th century.

  14. [Separation of chiral pharmaceutical drugs by chromatographic and electrophoretic techniques].

    PubMed

    Morin, P

    2009-07-01

    A large number of pharmaceutical drugs possess one or more centers of asymmetry giving rise to enantiomers whose pharmacological properties and toxicity are often different. At successive stages of drug discovery, the enantiomers of any chiral molecule must be isolated and analyzed and their enantiomeric purity determined. The electrophoretic and chromatographic techniques have become the most important tools to routinely determine the enantiomeric purity of pharmaceutical molecules. Liquid chromatography (LC) is the most widely used because of the large number of columns marketed, the variety of selectivities available and the ease at which analytical results can be scaled up to the preparative level. In particular, more than 80% of enantioseparations of pharmaceutical molecules are successful with polysaccharide-derivative stationary phases (cellulose, amylose) for multiple system solvents (normal phase, polar organic phase or reverse phase). Complementary selectivities can be achieved more rapidly with other types of stationary phase (glycopeptides, Pirkle, cyclodextrins) but their application is hindered by problems of stability (proteins) or transfer to the preparative scale (cyclodextrins). At the present time, glycopeptide phases offer very promising prospects for the separation of amino acids (and derivatives) and peptide enantiomers. In addition, because of its faster analysis and environmental benefits, supercritical chromatography (SFC) has given rise to renewed interest. Capillary electrophoresis (CE) is an orthogonal technique complementary to chromatographic methods. Its principle involves the formation of diastereoisomer complexes after addition of anionic (HS-beta-CD, HS-gamma-CD CM-beta-CD) or neutral (TM-beta -CD, HP-beta-CD, DM-beta-CD, HP-gamma-CD) cyclodextrins to the running buffer. Compared to LC, CE analyses are cheaper (no chiral column, no solvent, low consumption of chiral selector) and peak efficiencies are higher by one order of

  15. Gas chromatographic determination of yohimbine in commercial yohimbe products.

    PubMed

    Betz, J M; White, K D; der Marderosian, A H

    1995-01-01

    The bark of Pausinystalia yohimbe [K. Schumann] Pierre (Rubiaceae), long valued as an aphrodisiac in West Africa, recently has been promoted in the United States as a dietary supplement alternative to anabolic steroids for enhancement of athletic performance. As the number of yohimbe products on the retail market increases, concerns about their safety are raised because of the reported toxicity of yohimbine (the major alkaloid of the plant). Although plant materials are usually identified microscopically, we were unable to identify them in many of the products, because as their labels indicated, the products were mixtures of various botanicals or were bark extracts and contained little or no plant material. A method for extraction and capillary gas chromatographic (GC) separation of the alkaloids of P. yohimbe was, therefore, developed and used to analyze a number of commercial yohimbe products. The method involved solvent extraction and partitioning in chloroform-water followed by separation on a methyl silicone capillary GC column (N-P detection). Comparisons of chromatograms of extracts of authentic bark with those of commercial products indicated that, although many products contained measurable quantities of the alkaloid yohimbine, they were largely devoid of the other alkaloids previously reported in this species. Concentrations of yohimbine in the commercial products ranged from < 0.1 to 489 ppm, compared with 7089 ppm in the authentic material. Authentic bark has been reported to contain up to 6% total alkaloids, 10-15% of which are yohimbine. The possible presence of undeclared diluents in the products was indicated by peaks in product chromatograms but not in those of authentic bark.

  16. Mars Solar Balloon Landed Gas Chromatograph Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Harpold, D.; Niemann, H.; Atreya, S.; Gorevan, S.; Israel, G.; Bertaux, J. L.; Jones, J.; Owen, T.; Raulin, F.

    1999-01-01

    payload based Micromissions, it is essential to implement an even broader chemical analysis and to enable a significant extension of previous isotope measurements. Such a development would enhance the presently very active study of questions of atmospheric evolution and loss and past climatic conditions. The method selected to implement this program can be based on well-established mass spectrometry techniques. Sampled gas is chemically and physically processed to separate the gas mixture into components using gas chromatograph and related enrichment techniques. This allows trace species to be identified and reveals isotopic distributions in many cases with improved precision. Samples of interest, such as organic molecules, may lie deep below the highly oxidized surface layer and the suggested program includes enhanced sampling techniques to measure volatiles preserved in solid phase material deep below the surface as well as gas from the well mixed atmosphere.

  17. Chemometric approach for development, optimization, and validation of different chromatographic methods for separation of opium alkaloids.

    PubMed

    Acevska, J; Stefkov, G; Petkovska, R; Kulevanova, S; Dimitrovska, A

    2012-05-01

    The excessive and continuously growing interest in the simultaneous determination of poppy alkaloids imposes the development and optimization of convenient high-throughput methods for the assessment of the qualitative and quantitative profile of alkaloids in poppy straw. Systematic optimization of two chromatographic methods (gas chromatography (GC)/flame ionization detector (FID)/mass spectrometry (MS) and reversed-phase (RP)-high-performance liquid chromatography (HPLC)/diode array detector (DAD)) for the separation of alkaloids from Papaver somniferum L. (Papaveraceae) was carried out. The effects of various conditions on the predefined chromatographic descriptors were investigated using chemometrics. A full factorial linear design of experiments for determining the relationship between chromatographic conditions and the retention behavior of the analytes was used. Central composite circumscribed design was utilized for the final method optimization. By conducting the optimization of the methods in very rational manner, a great deal of excessive and unproductive laboratory research work was avoided. The developed chromatographic methods were validated and compared in line with the resolving power, sensitivity, accuracy, speed, cost, ecological aspects, and compatibility with the poppy straw extraction procedure. The separation of the opium alkaloids using the GC/FID/MS method was achieved within 10 min, avoiding any derivatization step. This method has a stronger resolving power, shorter analysis time, better cost/effectiveness factor than the RP-HPLC/DAD method and is in line with the "green trend" of the analysis. The RP-HPLC/DAD method on the other hand displayed better sensitivity for all tested alkaloids. The proposed methods provide both fast screening and an accurate content assessment of the six alkaloids in the poppy samples obtained from the selection program of Papaver strains.

  18. Chromatographic Separation and NMR An Integrated Approach in Pharmaceutical Development.

    PubMed

    Gonnella, Nina C

    2012-01-01

    Over the past 10 years, major improvements in the performance of LC-NMR have been realized. The addition of postcolumn SPE, advances in probe technology including cryogenic probes and microcoil probes, improved solvent suppression pulse sequences, and shielded magnets with better homogeneity have all contributed to rapid advancements in this technology. Application of LC-NMR to problems in pharmaceutical development has had a major impact on structure elucidation studies. LC-NMR has been successfully applied to determine the structures of degradation products, impurities, mixtures of compounds, and metabolites. Use of stop flow techniques with LC-NMR experiments has been a critical means of identifying unstable compounds and studying conformational kinetics. The integration of SPE as an intermediate step between the LC unit and the NMR spectrometer has vastly improved the power of the hyphenated technique in trace analysis applications. Online postcolumn enrichment of chromatographic peaks by SPE dramatically reduces the NMR acquisition times by allowing repeated injections to be trapped onto the same cartridge or different cartridges. Because protonated solvents can be easily removed with a drying procedure, solvents and buffers may be freely chosen for maximizing chromatographic separation without compromising NMR spectral quality. The compound of interest may then be eluted from an SPE cartridge using deuterated organic solvent, which helps to reduce dynamic range issues. When combined with cryogenically cooled microcapillary probes, the sensitivity of the NMR signal increases about 10-fold over conventional room temperature probes, enabling full structure characterization at the microgram level. Heteronuclear experiments with concentrations previously only possible in a limited number of cases have now become standard experiments. The availability of HSQC and HMBC experiments and microcoil/cryogenic technology opens the possibility of using LC-(SPE) NMR for the

  19. The Gas Chromatograph Mass Spectrometer for the Huygens Probe

    NASA Astrophysics Data System (ADS)

    Niemann, H. B.; Atreya, S. K.; Bauer, S. J.; Biemann, K.; Block, B.; Carignan, G. R.; Donahue, T. M.; Frost, R. L.; Gautier, D.; Haberman, J. A.; Harpold, D.; Hunten, D. M.; Israel, G.; Lunine, J. I.; Mauersberger, K.; Owen, T. C.; Raulin, F.; Richards, J. E.; Way, S. H.

    2002-07-01

    The Gas Chromatograph Mass Spectrometer (GCMS) on the Huygens Probe will measure the chemical composition of Titan's atmosphere from 170 km altitude (~1 hPa) to the surface (~1500 hPa) and determine the isotope ratios of the major gaseous constituents. The GCMS will also analyze gas samples from the Aerosol Collector Pyrolyser (ACP) and may be able to investigate the composition (including isotope ratios) of several candidate surface materials. The GCMS is a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns. The mass spectrometer employs five ion sources sequentially feeding the mass analyzer. Three ion sources serve as detectors for the GC columns and two are dedicated to direct atmosphere sampling and ACP gas sampling respectively. The instrument is also equipped with a chemical scrubber cell for noble gas analysis and a sample enrichment cell for selective measurement of high boiling point carbon containing constituents. The mass range is 2 to 141 Dalton and the nominal detection threshold is at a mixing ratio of 10- 8. The data rate available from the Probe system is 885 bit/s. The weight of the instrument is 17.3 kg and the energy required for warm up and 150 minutes of operation is 110 Watt-hours.

  20. The Gas Chromatograph Mass Spectrometer for the Huygens Probe

    NASA Astrophysics Data System (ADS)

    Niemann, H. B.; Atreya, S. K.; Bauer, S. J.; Biemann, K.; Block, B.; Carignan, G. R.; Donahue, T. M.; Frost, R. L.; Gautier, D.; Haberman, J. A.; Harpold, D.; Hunten, D. M.; Israel, G.; Lunine, J. I.; Mauersberger, K.; Owen, T. C.; Raulin, F.; Richards, J. E.; Way, S. H.

    2002-07-01

    The Gas Chromatograph Mass Spectrometer (GCMS) on the Huygens Probe will measure the chemical composition of Titan's atmosphere from 170 km altitude (˜1 hPa) to the surface (˜1500 hPa) and determine the isotope ratios of the major gaseous constituents. The GCMS will also analyze gas samples from the Aerosol Collector Pyrolyser (ACP) and may be able to investigate the composition (including isotope ratios) of several candidate surface materials. The GCMS is a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns. The mass spectrometer employs five ion sources sequentially feeding the mass analyzer. Three ion sources serve as detectors for the GC columns and two are dedicated to direct atmosphere sampling and ACP gas sampling respectively. The instrument is also equipped with a chemical scrubber cell for noble gas analysis and a sample enrichment cell for selective measurement of high boiling point carbon containing constituents. The mass range is 2 to 141 Dalton and the nominal detection threshold is at a mixing ratio of 10- 8. The data rate available from the Probe system is 885 bit/s. The weight of the instrument is 17.3 kg and the energy required for warm up and 150 minutes of operation is 110 Watt-hours.

  1. Catalytically-Promoted Analyte Derivatization Inside a Gas Chromatographic Inlet

    PubMed Central

    Fowler, William K.; Gamble, Kelly J.; Wright, Amber R.

    2010-01-01

    Reported here is a preliminary assessment of the feasibility of catalyzing on-line derivatization reactions inside the inlet (i.e., the injection port) of a gas chromatograph (GC) with solid heterogeneous catalysts. The experiments described here entail the installation of candidate catalysts inside the GC inlet liner and the subsequent injection of analyte/reagent mixtures onto the catalyst beds. Two catalysts are identified, each of which clearly catalyzes one of the chosen model derivatization reactions in the inlet of a GC. This result supports our hypothesis that on-line derivatizations can, in principle, be reproducibly catalyzed inside the GC inlet by solid heterogeneous catalysts and that the presence of such catalysts in the inlet do not necessarily cause a serious loss of instrument performance or chromatographic efficiency. PMID:20822662

  2. Evaluation of Gas Chromatographic Methods for Analysis of Gasoline/Oxygenate Blends.

    DTIC Science & Technology

    1981-12-01

    determination of various oxygenated compounds in gasoline by gas chromotography have been developed.(3-6) These include gas chromatographic (GC) analysis of the...ID-Ai33 0i6 EVALUATION OF GAS CHROMATOGRAPHIC METHODS FOR ANALYSIS i/t OF GASOLINE/OXYGEN.. (U) SOUTHWEST RESEARCH INST SAN ANTONIO TX ARMY FUELS...0 EVALUATION OF GAS -CHROMATOGRAPHIC METHODS FOR ANALYSIS OF GASOLINE/OXYGENATE BLENDS INTERIM REPORT

  3. Gas-sampling accuracy unaffected by in-line separator

    SciTech Connect

    Ting, V.C.

    1997-01-13

    How sampling accuracy is affected by the use of an in-line separator during the sampling of unprocessed natural gas has been studied at Chevron`s Sand Hills gas plant, in Crane, Texas. In experiments on three pipelines, the in-line separator caused no statistically significant condensation of unprocessed gas. Entrained NGL in the pipeline was observed, however, and gas liquid collected in the separator. The in-line separator is used to remove any liquid entrainment in the sample gas stream to protect the gas chromatograph system. There is a concern, however, that thermodynamic conditions in the in-line separator cause the heavy, gaseous-phase hydrocarbon components to condense. The paper discusses measurement accuracy, test locations, sampling and analysis systems, sampling methods, and operation.

  4. Gas-chromatographic characterization of physicochemical properties of astatine compounds

    SciTech Connect

    Norseev, Yu.V.

    1995-07-01

    The organoastatine compounds obtained were identified by gas-liquid chromatography on a specially designed gas radiochromatograph with detection of eluted compounds both by their radioactivity and by thermal conductivity. Gas-liquid chromatography is the most efficient method for separation and identification of volatile organoastatine compounds.

  5. Gas chromatographic concepts for the analysis of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.; Cullers, D. K.; Hall, K. W.; Krekorian, R. L.; Phillips, J. B.

    1991-01-01

    Over the last few years, new gas chromatographic (GC) concepts were developed for use on board spacecraft or any other restricted environments for determining the chemical composition of the atmosphere and surface material of various planetary bodies. Future NASA Missions include an entry probe that will be sent to Titan and various spacecraft that will land on Mars. In order to be able to properly respond to the mission science requirements and physical restrictions imposed on the instruments by these missions, GC analytical techniques are being developed. Some of these techniques include hardware and mathematical techniques that will improve GC sensitivity and increase the sampling rate of a GC descending through a planetary atmosphere. The technique of Multiplex Gas Chromatography (MGC) is an example of a technique that was studied in a simulated Titan atmosphere. In such an environment, the atmospheric pressure at instrument deployment is estimated to be a few torr. Thus, at such pressures, the small amount of sample that is acquired might not be enough to satisfy the detection requirements of the gas chromatograph. In MGC, many samples are pseudo-randomly introduced to the chromatograph without regard to elution of preceding components. The resulting data is then reduced using mathematical techniques such as cross-correlation of Fourier Transforms. Advantages realized from this technique include: improvement in detection limits of several orders of magnitude and increase in the number of analyses that can be conducted in a given period of time. Results proving the application of MGC at very low pressures emulating the same atmospheric pressures that a Titan Probe will encounter when the instruments are deployed are presented. The sample used contained hydrocarbons that are expected to be found in Titan's atmosphere. In addition, a new selective modulator was developed to monitor water under Martian atmospheric conditions. Since this modulator is selective only

  6. Gas chromatographic determination of propylene glycol dinitrate in rodent skin.

    PubMed

    Godin, C S; Pollard, D L

    1992-01-01

    A gas chromatographic (GC) method was developed for the detection of propylene glycol dinitrate (PGDN) in rodent skin following extraction with ethyl acetate. Known quantities of PGDN contained in the torpedo fuel Otto Fuel II were added to homogenates of rat skin, which were subsequently extracted with two 10-mL portions of ethyl acetate. An aliquot of each extract was analyzed by GC with a flame ionization detector. With this method, concentrations ranging from 0.0042 to 11.2 mg/mL were determined by comparison with a standard curve. The extraction efficiencies ranged from 85.7% for the lowest concentration to 101% for the highest concentration.

  7. Preliminary numerical analysis of improved gas chromatograph model

    NASA Technical Reports Server (NTRS)

    Woodrow, P. T.

    1973-01-01

    A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.

  8. 21 CFR 862.2230 - Chromatographic separation material for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... chromatographic separation material for clinical use is a device accessory (e.g., ion exchange absorbents, ion exchagne resins, and ion papers) intended for use in ion exchange chromatography, a procedure in which...

  9. 21 CFR 862.2230 - Chromatographic separation material for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... chromatographic separation material for clinical use is a device accessory (e.g., ion exchange absorbents, ion exchagne resins, and ion papers) intended for use in ion exchange chromatography, a procedure in which...

  10. 21 CFR 862.2230 - Chromatographic separation material for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... chromatographic separation material for clinical use is a device accessory (e.g., ion exchange absorbents, ion exchagne resins, and ion papers) intended for use in ion exchange chromatography, a procedure in which...

  11. HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC SEPARATION OF THE ENANTIOMERS OF ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    EPA Science Inventory

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) was obtained on polysaccharide enantioselective HPLC columns using alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, fonofos, fenamiph...

  12. Separation and identification of various vulcanization agents and antioxidants in two types of rubber by chromatographic and spectrometric methods.

    PubMed

    Chauveau, S; Hamon, M; Leleu, E

    1991-11-01

    The aim of this study was to separate and identify by chromatographic and spectrometric methods, the various allergenic vulcanization agents and antioxidants used in the manufacture of industrial rubber. Specimens of elastomers were manufactured specially for this study. The specificity of the gas chromatographic method developed allows separation of all the manufacturing additives in the selected rubber types after one injection only, even though they belong to extremely varied chemical categories. The GLC method was coupled with mass spectrometry, which permitted identification of the peaks obtained and the study of the fragmentation of the 4 reference products under various conditions. Separation by TLC was performed in parallel on the same extracts, allowing rapid identification of the products tested for, and showed new spots after vulcanization.

  13. Chromatographic separation and concentration of quercetin and (+)-catechin using mesoporous composites based on MCM-41

    NASA Astrophysics Data System (ADS)

    Karpov, S. I.; Belanova, N. A.; Korabel'nikova, E. O.; Nedosekina, I. V.; Roessner, F.; Selemenev, V. F.

    2015-05-01

    Data on chromatographic separation of quercetin and (+)-catechin-flavonoids with similar physicochemical (including sorption) properties—are presented. The highest efficiency of chromatographic process at high sorption capacity of the material with respect to quercetin and slightly lower capacity for (+)-catechin were observed when silylated composites of ordered MCM-41 type materials were used. The application of acetonitrile as a solvent increased the sorption capacity of the material and can be recommended for separation of related polyphenol substances and their determination using ordered MCM-41 modified with trimethylchlorosilane as a stationary phase in a chromatographic column.

  14. Techniques of preparing plant material for chromatographic separation and analysis.

    PubMed

    Romanik, G; Gilgenast, E; Przyjazny, A; Kamiński, M

    2007-03-10

    This paper discusses preparation techniques of samples of plant material for chromatographic analysis. Individual steps of the procedures used in sample preparation, including sample collection from the environment or from tissue cultures, drying, comminution, homogenization, leaching, extraction, distillation and condensation, analyte enrichment, and obtaining the final extracts for chromatographic analysis are discussed. The techniques most often used for isolation of analytes from homogenized plant material, i.e., Soxhlet extraction, ultrasonic solvent extraction (sonication), accelerated solvent extraction, microwave-assisted extraction, supercritical-fluid extraction, steam distillation, as well as membrane processes are emphasized. Sorptive methods of sample enrichment and removal of interferences, i.e., solid-phase extraction, and solid-phase micro-extraction are also discussed.

  15. Gas Separations using Ceramic Membranes

    SciTech Connect

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  16. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds.

    PubMed

    Soares, Belinda; Passos, Helena; Freire, Carmen S R; Coutinho, João A P; Silvestre, Armando J D; Freire, Mara G

    2016-09-07

    Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction-separation processes using IL aqueous solutions are suggested within a green chemistry perspective.

  17. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds

    PubMed Central

    Freire, Carmen S. R.; Coutinho, João A. P.; Silvestre, Armando J. D.; Freire, Mara G.

    2016-01-01

    Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction–separation processes using IL aqueous solutions are suggested within a green chemistry perspective. PMID:27667965

  18. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.

    1989-01-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  19. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres.

    PubMed

    Valentin, J R

    1989-03-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  20. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.

    1989-01-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  1. Gas chromatographic-mass spectrometric analysis of plasma oxybutynin using a deuterated internal standard.

    PubMed

    Patrick, K S; Markowitz, J S; Jarvi, E J; Straughn, A B; Meyer, M C

    1989-01-27

    A gas chromatographic-mass spectrometric method is described for the quantitative analysis of plasma oxybutynin. Deuterated oxybutynin served as the internal standard and its synthesis is described. Chromatographic separation on a methylsilicone capillary column avoided the thermal decomposition observed using a packed column. Electron-impact ionization and selected-ion monitoring of the alpha-cleavage fragments of drug and internal standard permitted quantitation of oxybutynin down to 0.25 ng/ml of plasma. At the 2 ng/ml level the accuracy and precision are 4 and 10%, respectively, and improved at higher drug concentrations. Application of the method to the pharmacokinetics of oral oxybutynin in man demonstrated rapid absorption and elimination of the drug.

  2. Gas chromatographic retention characteristics of phenols with Superox-20M

    SciTech Connect

    White, C.M.; Li, N.C.

    1982-08-01

    The gas chromatographic retention characteristics of a variety of underivatized phenols have been studied by using Superox-20M coated on fused silica. The relative retention times of thes compounds were measured at 160, 150, and 140/sup 0/C in order to determine the effect of operating temperature on relative retention. This information is used to predict relative retention times of phenols for which we had no standards. The linear temperature-programmed retention indexes of the solutes were measured. The retention of phenols on this phase is a function of the compounds vapor pressure, its ability to hydrogen bond with the stationary phase, and the strengths of those hydrogen bonds. These properties are in turn governed by steric, inductive, and resonance effects of the substituents. Linear free-energy relations between the logarithm of the ratio of the activity coefficients of phenol to substituted phenol (calculated from relative retention data) and the chromatographic substituent constant, sigma/sub c/, have been determined for some phenols on Superox-20M. Lastly, it was shown by nuclear magnetic resonance experiments that Superox-20M is apparently a poly(ethylene glycol) (also called a polyoxiran or poly(ethylene oxide)). 5 figures, 3 tables.

  3. Asymmetric membranes for gas separations

    SciTech Connect

    Finken, H.

    1985-01-01

    Recent membrane developments for gaseous mixture separations are compared to the development of reverse osmosis membranes for water desalination. The goals of these developments have been the search for ideal permselective polymeric materials, techniques for producing ultrathin membrane layers free of imperfections and transforming gelled reverse osmosis membranes into solid gas permeation membranes. A novel approach to meeting the basic requirements of high permselectivity is attempted by altering the physical polymer structure within the membrane prior to application for gas separation. The influence of these physical interactions on membrane properties is presented. 47 references, 11 figures, 6 tables.

  4. Gas separations using inorganic membranes

    SciTech Connect

    Egan, B.Z.; Singh, S.P.N.; Fain, D.E.; Roettger, G.E.; White, D.E.

    1992-04-01

    This report summarizes the results from a research and development program to develop, fabricate, and evaluate inorganic membranes for separating gases at high temperatures and pressures in hostile process environments encountered in fossil energy conversion processes such as coal gasification. The primary emphasis of the research was on the separation and recovery of hydrogen from synthesis gas. Major aspects of the program included assessment of the worldwide research and development activity related to gas separations using inorganic membranes, identification and selection of candidate membrane materials, fabrication and characterization of membranes using porous membrane technology developed at the Oak Ridge K-25 Site, and evaluation of the separations capability of the fabricated membranes in terms of permeabilities and fluxes of gases.

  5. Solid-phase microextraction-gas chromatographic determination of volatile monoaromatic hydrocarbons in soil.

    PubMed

    Zygmunt, B; Namiesnik, J

    2001-08-01

    Benzene, toluene, ethylbenzene, three isomers of xylene, and cumene have been isolated and enriched from soil samples by a combination of water extraction at room and elevated temperature and headspace-solid-phase microextraction before their gas chromatographic-mass spectrometric (GC-MS) determination. The conditions used for all stages of sample preparation and chromatographic analysis were optimized. Analytes sampled on a polydimethylsiloxane-coated solid-phase microextraction fiber were thermally desorbed in the split/splitless injector of a gas chromatograph (GC) coupled with a mass spectrometer (MS). The desorption temperature was optimized. The GC separation was performed in a capillary column. Detection limits were found to be of the order of ca. 1 ng g(-1). Relative recoveries of the analytes from soils were found to be highly dependent on soil organic-matter content and on compound identity; they ranged from ca 92 to 96% for sandy soil (extraction at room temperature) and from ca 27 to 55% for peaty soil (extraction at elevated temperature). A few real-world soil samples were analyzed; the individual monoaromatic hydrocarbon content ranged from below detection limits to 6.4 ng g(-1) for benzene and 8.1 for the total of p- + m-xylene.

  6. Improved Chromatographic Separation of Sitagliptin Phosphate and Metformin Hydrochloride

    PubMed Central

    Hendy, Moataz S.

    2015-01-01

    New UPLC method was developed for determination of sitagliptin and metformin using Symmetry C18 column (100 mm × 2.1 mm, 2.2 μm) and isocratic elution (methanol 20%), pH (3.5) as a mobile phase. The ultraviolet detector was operated at 220 nm and the column temperature was 50°C. Linearity parameters were acceptable over the concentration ranges of 2-12 μgml-1 and 5-35 μgml-1 for sitagliptin and metformin, respectively. The variables were premeditated to adjust the chromatographic conditions using design of experiment. The proposed method was proved to be accurate for the quality control of the mentioned drugs in their pharmaceutical dosage form. PMID:26759536

  7. Reversed-phase liquid chromatographic separation and simultaneous profiling of steroidal glycoalkaloids and their aglycones.

    PubMed

    Kuronen, P; Väänänen, T; Pehu, E

    1999-11-19

    Improved and simplified reversed-phase liquid chromatographic conditions for the separation and simultaneous profiling of both steroidal glycoalkaloids and their aglycones, having solanidane- or spirosolane-type structures, are described. The most reproducible retention behavior for these ionizable compounds on C18 columns was achieved under isocratic and gradient elution conditions using acetonitrile in combination with triethylammonium phosphate buffer at pH 3.0, when basic functional groups of solutes and silanol groups on the silica are fully protonated minimizing ionic interactions. Gradient elution was the only feasible approach for the simultaneous separation of steroidal glycoalkaloids and their aglycones. A Zorbax SB C18 column, specially designed for low-pH separations, showed good performance in critical separations. The impurities of the commercial tomatine and tomatidine standards were studied and confirmed using mass spectrometric, liquid chromatographic and thin-layer chromatographic methods.

  8. Fatty acids determination in Bronte pistachios by gas chromatographic method.

    PubMed

    Pantano, Licia; Lo Cascio, Giovanni; Alongi, Angelina; Cammilleri, Gaetano; Vella, Antonio; Macaluso, Andrea; Cicero, Nicola; Migliazzo, Aldo; Ferrantelli, Vincenzo

    2016-10-01

    A gas chromatographic with flame ionization detector (GC-MS FID) method for the identification and quantification of fatty acids based on the extraction of lipids and derivatisation of free acids to form methyl esters was developed and validated. The proposed method was evaluated to a number of standard FAs, and Bronte pistachios samples were used for that purpose and to demonstrate the applicability of the proposed method. In this regard, repeatability, mean and standard deviation of the analytical procedure were calculated. The results obtained have demonstrated oleic acid as the main component of Bronte pistachios (72.2%) followed by linoleic acid (13.4%) and showed some differences in composition with respect to Tunisian, Turkish and Iranian pistachios.

  9. The gas chromatographic resolution of DL-isovaline

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Bonner, W. A.; Van Dort, M. A.

    1977-01-01

    Isovaline is of cosmological interest because it is one of the 12 non-protein amino acids which have been isolated from the Murchison meteorite, and unlike the other chiral amino acids in this meteorite, it has no alpha-hydrogen at its asymmetric center and hence cannot racemize by the customary alpha-hydrogen-dependent mechanisms which engender racemization in ordinary amino acids. Experiments were conducted in which a .01 M solution of N-TFA-DL-isovalyl-L-leucine isopropyl ester in nitromethane was injected into the capillary column of a gas chromatograph coupled to a digital electronic integrator-recorder. Efflux times and integrated peak area percents are shown next to each diastereometer peak.

  10. Gas chromatographic determination of oxalic acid in foods.

    PubMed

    Ohkawa, H

    1985-01-01

    A new quantitative gas chromatographic (GC) method has been developed for the determination of oxalic acid in foods. Solid sample is extracted with water (soluble oxalic acid) or 2N hydrochloric acid (total oxalic acid) at room temperature. An aliquot of sample extract is evaporated to dryness, and the oxalic acid in the residue is methylated with 7% hydrochloric acid-methanol. The reaction mixture is extracted with chloroform, and dimethyl oxalate is quantitated by GC. Recovery of oxalic acid added to liquid samples averaged 100.6%; recoveries from extracts of solid samples were 96.2-99.5 and 97.2-100.1% for water and hydrochloric acid extractions, respectively. Results are shown for determination of oxalic acid in spinach and beverages. The technique is simple, rapid, and accurate, and small samples may be used. The limit of determination is 20 micrograms.

  11. Doxylamine: a cause for false-positive gas chromatographic assay for phencyclidine.

    PubMed

    Schaldenbrand, J D; McClatchey, K D; Patel, J A; Muilenberg, M J

    1981-01-01

    A 25-year-old white woman ingested an unknown quantity of doxylamine succinate and flurazepam. Urine immunoassay screen (EMIT-dau) was positive for benzodiazopine and negative for phencyclidine. Subsequent gas chromatographic assay of the urine revealed a markedly positive assay for phencyclidine. Doxylamine was ultimately found to be the cause for the false-positive gas chromatographic assay for phencyclidine.

  12. A gas chromatographic air analyzer fabricated on a silicon wafer

    NASA Technical Reports Server (NTRS)

    Terry, S. C.; Jerman, J. H.; Angell, J. B.

    1979-01-01

    A miniature gas analysis system has been built based on the principles of gas chromatography (GC). The major components are fabricated in silicon using photolithography and chemical etching techniques, which allows size reductions of nearly three orders of magnitude compared to conventional laboratory instruments. The chromatography system consists of a sample injection valve and a 1.5-m-long separating capillary column, which are fabricated on a substrate silicon wafer. The output thermal conductivity detector is separately batch fabricated and integrably mounted on the substrate wafer. The theory of gas chromatography has been used to optimize the performance of the sensor so that separations of gaseous hydrocarbon mixtures are performed in less than 10 s. The system is expected to find application in the areas of portable ambient air quality monitors, implanted biological experiments, and planetary probes.

  13. Phosphazene membranes for gas separations

    DOEpatents

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11

    A polyphosphazene having a glass transition temperature ("T.sub.g") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a T.sub.g ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]- . The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  14. High productivity chromatographic separations on monolithic capillary columns

    NASA Astrophysics Data System (ADS)

    Korolev, A. A.; Shiryaeva, V. E.; Popova, T. P.; Kurganov, A. A.

    2013-03-01

    The productivity of monolithic capillary columns based on silica gel and polymers of different polarities (divinylbenzene and ethyleneglycol dimethacrylate) is investigated using a model mixture of light hydrocarbons. It is shown that the productivity of a column is noticeably affected by the type of gas carrier. The highest productivity is observed when using carbon dioxide or dinitrogen monoxide as the gas carrier. The lowest productivity is observed when uisng hydrogen or helium.

  15. Chemical characterization of Brickellia cavanillesii (Asteraceae) using gas chromatographic methods

    PubMed Central

    Eshiet, Etetor R; Zhu, Jinqiu; Anderson, Todd A; Smith, Ernest E

    2014-01-01

    A methanol extract of lyophilized Brickellia cavanillesii was quantitatively analyzed using gas chromatographic (GC) techniques. The chromatographic methods employed were (i) GC-flame ionization detector (GC-FID), (ii) GC-mass spectrometry (GC-MS), and (iii) purge and trap GC-MS (P&T GC-MS). Thirteen compounds were identified with a quality match of 90% and above using GC-MS. The compounds were (1) Cyclohexene, 6-ethenyl-6-methyl-1-(1-methylethyl)-3-(1-methylethylidene)-, (S)-; (2) Bicylo (2.2.1) heptan-2-one, 1, 7, 7-trimethyl-(1S, 4S)-; (3) Phenol, 2-methoxy-4-(1-propenyl)-; (4) Benzene, 1-(1, 5-dimethyl-4-hexenyl)-4-methyl-; (5) Naphthalene, 1, 2, 3, 5, 6, 8a-hexahydro4, 7-dimethyl-1-1-(1-methylethyl)-, (1S-cis)-; (6) Phenol, 2-methoxy-; (7) Benzaldehyde, 3-hydroxy-4-methoxy-; (8) 11, 13-Eicosadienoic acid, methyl ester; (9) 2-Furancarboxaldehyde, 5-methyl-; (10) Maltol; (11) Phenol; (12) Hydroquinone; (13) 1H-Indene, 1-ethylideneoctahydro-7a-methyl-, (1E, 3a.alpha, 7a.beta.). Other compounds (14) 3-methyl butanal; (15) (D)-Limonene; (16) 1-methyl-4-(1-methyl ethyl) benzene; (17) Butanoic acid methyl ester; (18) 2-methyl propanal; (19) 2-butanone; (20) 2-pentanone; and (21) 2-methyl butane were also identified when P&T GC-MS was performed. Of the 21 compounds identified, 12 were validated using chemical standards. The identified compounds were found to be terpenes, derivatives of terpenes, esters, ketones, aldehydes, and phenol-derived aromatic compounds; these are the primary constituents of the essential oils of many plants and flowers. PMID:24804069

  16. Chemical characterization of Brickellia cavanillesii (Asteraceae) using gas chromatographic methods.

    PubMed

    Eshiet, Etetor R; Zhu, Jinqiu; Anderson, Todd A; Smith, Ernest E

    2014-03-01

    A methanol extract of lyophilized Brickellia cavanillesii was quantitatively analyzed using gas chromatographic (GC) techniques. The chromatographic methods employed were (i) GC-flame ionization detector (GC-FID), (ii) GC-mass spectrometry (GC-MS), and (iii) purge and trap GC-MS (P&T GC-MS). Thirteen compounds were identified with a quality match of 90% and above using GC-MS. The compounds were (1) Cyclohexene, 6-ethenyl-6-methyl-1-(1-methylethyl)-3-(1-methylethylidene)-, (S)-; (2) Bicylo (2.2.1) heptan-2-one, 1, 7, 7-trimethyl-(1S, 4S)-; (3) Phenol, 2-methoxy-4-(1-propenyl)-; (4) Benzene, 1-(1, 5-dimethyl-4-hexenyl)-4-methyl-; (5) Naphthalene, 1, 2, 3, 5, 6, 8a-hexahydro4, 7-dimethyl-1-1-(1-methylethyl)-, (1S-cis)-; (6) Phenol, 2-methoxy-; (7) Benzaldehyde, 3-hydroxy-4-methoxy-; (8) 11, 13-Eicosadienoic acid, methyl ester; (9) 2-Furancarboxaldehyde, 5-methyl-; (10) Maltol; (11) Phenol; (12) Hydroquinone; (13) 1H-Indene, 1-ethylideneoctahydro-7a-methyl-, (1E, 3a.alpha, 7a.beta.). Other compounds (14) 3-methyl butanal; (15) (D)-Limonene; (16) 1-methyl-4-(1-methyl ethyl) benzene; (17) Butanoic acid methyl ester; (18) 2-methyl propanal; (19) 2-butanone; (20) 2-pentanone; and (21) 2-methyl butane were also identified when P&T GC-MS was performed. Of the 21 compounds identified, 12 were validated using chemical standards. The identified compounds were found to be terpenes, derivatives of terpenes, esters, ketones, aldehydes, and phenol-derived aromatic compounds; these are the primary constituents of the essential oils of many plants and flowers.

  17. The Huygens Gas Chromatograph Mass Spectrometer Investigation Of Titan

    NASA Astrophysics Data System (ADS)

    Atreya, Sushil; Harpold, Dan; Owen, Tobias

    2015-04-01

    A decade ago, on 14 January 2005, the Huygens probe of the Cassini-Huygens mission descended through the smog filled atmosphere of Titan and landed on the surface, revealing for the first time the extraordinary nature of Saturn's largest moon. One of the six payload instruments, the gas chromatograph mass spectrometer (GCMS), was crucial for measuring the composition of the atmosphere and the surface of Titan [1,2]. Most of the GCMS findings were "firsts", including the first direct identification of molecular nitrogen as the bulk constituent of the atmosphere, first vertical profile of Titan's second most abundant volatile, methane, first determination of primordial and radiogenic argon, first quantification of a number of stable gas isotopes, and the first measurements of the make-up of Titan's surface. These data are key to understanding why Titan is so unique amongst planetary moons in possessing a massive atmosphere [3], how Titan maintains a cycle of methane complete with surface reservoirs, evaporation and condensation like the hydrological cycle on earth [3,4,5], and what is responsible for the photochemical smog on Titan that plays a central role in the very existence of an atmosphere on Titan [3]. This presentation will discuss the GCMS investigation and how it helped shape our current view of Titan. [website for downloading pdf's of relevant papers: www.umich.edu/~atreya] [1] Niemann, H. B. et al., The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe, Nature 438, 779-784, 2005. [2] Niemann, H. B. et al., The composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment, J. Geophys. Res. (Planets) 115, 12006, 2010. [3] Atreya S. K., R. D. Lorenz and J. H. Waite, Volatile origin and cycles: Nitrogen and methane, in Titan from Cassini-Huygens, R. H. Brown, J. P. Lebreton and J. Waite, (eds.), Springer Dordrecht

  18. High-performance liquid chromatographic separation of subcomponents of antimycin A.

    PubMed

    Abidi, S L

    1988-08-05

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, A1a, A1b, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins A1, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpreted based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  19. High-performance liquid-chromatographic separation of subcomponents of antimycin-A

    USGS Publications Warehouse

    Abidi, S.L.

    1988-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  20. A Gas-Liquid Chromatographic Examination of Stilbene Derivatives

    Treesearch

    Richard W. Hemingway; W. E. Hillis; K Burerton

    1970-01-01

    Trimethylsilyl ether derivatives of twenty hydroxystilbenes were separated by gas-liquid chromatography on Apiezon-L, OV-1, OV-17, and SE-54. Relative retention times were highly dependent upon the degree of hydroxylation and methoxylation, the positions of these groups and on cis-trans...

  1. Gas chromatographic analysis of organic marker compounds in fine particulate matter using solid-phase microextraction.

    PubMed

    Lin, Lin; Lee, Milton L; Eatough, Delbert J

    2007-01-01

    A gas chromatographic method that uses solid-phase microextraction for analysis of organic marker compounds in fine particulate matter (PM2.5) is reported. The target marker compounds were selected for specificity toward emission from wood smoke, diesel or gasoline combustion, or meat cooking. Temperature-programmed volatilization analysis was used to characterize the thermal stabilities and volatile properties of the compounds of interest. The compounds were thermally evaporated from a quartz filter, sorbed to a solid phase microextraction (SPME) fiber, and thermally desorbed at 280 degrees C in a gas chromatograph injection port connected via a DB 1701 capillary separating column. Various experimental parameters (fiber type, time, and temperature of sorption) were optimized. It was found that high extraction yield could be achieved using a polyacrylate fiber for polar substances, such as levoglucosan, and a 7-microm polydimethylsiloxane (PDMS)-coated fiber for nonpolar compounds, such as hopanes and polyaromatic hydrocarbon. A compromise was made by selecting a carboxen/PDMS fiber, which can simultaneously extract all of the analytes of interest with moderate-to-high efficiency at 180 degrees C within a 30-min accumulation period. The optimized method was applied to the determination of levoglucosan in pine wood combustion emissions. The simplicity, rapidity, and selectivity of sample collection with a polymer-coated SPME coupled to capillary gas chromatography (GC) made this method potentially useful for atmospheric chemistry studies.

  2. Liquid chromatographic separation of the stereoisomers of thiazide diuretics.

    PubMed

    Hyun, M H; Pirkle, W H

    2000-04-21

    A number of racemic thiazide diuretics and analogues were resolved on two diastereomeric chiral stationary phases (CSPs) prepared from (S)- or (R)-alpha-[1-(6,7-dimethyl)naphthyl]-10-dodecenylamine and (S)-2-phenylpropanoic acid. Of the two diastereomeric CSPs, the (S,S) and the (R,S), the former is found to be better than the latter in separating the enantiomers of the racemic thiazide diuretics and their analogues with complete separation being observed on the (S,S)-CSP. Chiral recognition is controlled principally by the (R)- or (S)-alpha-[1-(6,7-dimethyl)naphthyl]-10-dodecenylamine portion of the CSPs. The second stereogenic center of the CSP provides but secondary effects on the chiral recognition presumably involving, in the case of the (S,S)-CSP, face-to-edge pi-pi interaction between the aromatic ring of the analytes and the phenyl on the second stereogenic center.

  3. Multidimensional High-Resolution Gas Chromatographic Investigations of Hydrocarbon Fuels and Various Turbine Engine Fuel Precursors.

    DTIC Science & Technology

    1985-08-01

    Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy . 15. B. Welton, Column Switching and Backflush Techniques with Open Tubular and...Packed Columns in Gas Chromatography, Paper presented at 1978 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy . 16. R. Miller... Applied Spectroscopy . 33. J. F. Pankow and L. M. Isabelle, Interface of the Direct Coupling of a Second Gas Chromatograph to a Gas Chromatograph/ Mass

  4. Gas chromatographic determination of hydroxyproline in urine hydrolysates.

    PubMed

    Makita, M; Yamamoto, S; Tsudaka, Y

    1978-09-01

    A simple and specific method for the determination of hydroxyproline in urine hydrolysates has been described. Hydroxyproline was converted into its N-isobutyloxycarbonyl methyl ester derivative without elaborate cleanup, which was analyzed by gas chromatography. Hydroxyproline was clearly separated from other urinary constituents on a 0.60% FFAP on dimethyldichlorosilane-treated Gas-Chrom P column. Kainic acid was used as the most convenient internal standard available. The relative standard deviations of peak height ratios were 1.15--2.51% at the 10--150 microgram levels. Percent recoveries of hydroxyproline added to urine hydrolysates ranged from 98.8 to 107.3%.

  5. Thin-Layer Chromatographic Separation of Phenols: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Kurth, Mark J.

    1986-01-01

    Background information, procedures used, and equipment needed are provided for an experiment in which a series of readily available, inexpensive, and relatively nontoxic phenols are separated using thin-layer chromatographic techniques. The experiment permits a discussion of how relative Rf values may be rationalized by considering a molecule's…

  6. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  7. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  8. Capillary gas chromatographic analysis of pans with luminol chemilumnescent detection

    SciTech Connect

    Gaffney, J.; Bornick, R.; Chen, Yu-Harn; Marley, N.

    1996-12-31

    Peroxyacyl nitrates (PANs) are important air pollutants in tropospheric chemistry. PANs are known to be potent phytotoxins at low ppb concentrations and are lachrymators. They can also transport the more reactive nitrogen dioxide long distances, because they are in equilibrium with that NO{sub x} species. Since PANs are trapped peroxyradicals, they are a direct measure of the peroxyradical levels and the of {open_quotes}photochemical age{close_quotes} of an air parcel. The PANs are typically measured in the atmosphere by using electron capture detection methods. These methods suffer from large background signals and detector responses to oxygen and water vapor. This paper describes the combination of a capillary gas chromatographic column with a modified luminol chemiluminescent nitrogen dioxide detector (Scintrex, Luminox) for rapid and sensitive detection of nitrogen dioxide, peroxyacetyl nitrate, peroxypropionyl nitrate, and peroxybutyryl nitrate. Detection limits for this approach in the low tens of parts per trillion have been observed with total analysis times of less than three minutes. We will discuss the potential application of this method to other compounds, particularly, organonitrates, in a pyrolysis system and/or with ozone addition to the sampling streams.

  9. Micro-miniature gas chromatograph column disposed in silicon wafers

    DOEpatents

    Yu, Conrad M.

    2000-01-01

    A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

  10. [Chromatographic separation of activated proteases from human plasma].

    PubMed

    Lehmann, B; Taucher, M; Kühne, H; Scheuch, D W

    1988-01-01

    After separation of aceton and dextran sulfate activated human plasma by column chromatography on DEAE-cellulose three esterolytically and amidolytically active fractions, respectively, were obtained, which were assigned to the following species: plasma kallikrein (PK), PK.alpha-macroglobulin.HMW-Kininogen. Their percentage in the whole activity is variable. The proportion of free PK is low (0.11). For characterization of the products we studied inhibition by different polyvalent inhibitors. The Michaelis constant (Km) with p-toluene-sulfonyl-L-arginine methyl ester (TAME) were determined. For simulation of in vivo conditions dextran sulfate activated plasma was inactivated at 37 degrees C. The residual activity and the spontaneous activity in plasma from patients with shock are produced by different active protease inhibitor complexes.

  11. High-speed counter-current chromatographic separation of phytosterols.

    PubMed

    Schröder, Markus; Vetter, Walter

    2011-07-01

    Phytosterols are bioactive compounds which occur in low concentrations in plant oils. Due to their beneficial effects on human health, phytosterols have already been supplemented to food. Commercial phytosterol standards show insufficient purity and/or are very expensive. In this study, we developed a high-speed counter-current chromatography (HSCCC) method for the fractionation and analysis of a commercial crude β-sitosterol standard (purity ∼60% according to supplier). Different solvent systems were tested in shake-flask experiments, and the system n-hexane/methanol/aqueous silver nitrate solution (34/24/1, v/v/v) was finally used for HSCCC fractionation. About 50 mg phytosterols was injected and distributed into 57 fractions. Selected fractions were condensed and re-injected into the HSCCC system. This measure provided pure sitostanol (>99%) and β-sitosterol (∼99%), as well as a mixture of campesterol and stigmasterol without further phytosterols. An enriched HSCCC fraction facilitated the mass spectrometric analysis of further 11 minor phytosterols (after trimethylsilylation). It was also shown that the commercial product contained about 0.3% carotinoids which eluted without delay into an early HSCCC fraction and which were separated from the phytosterols.

  12. Effect of pressure on the chromatographic separation of enantiomers under reversed-phase conditions.

    PubMed

    Makarov, Alexey A; Regalado, Erik L; Welch, Christopher J; Schafer, Wes A

    2014-07-25

    Commercially available ultra high pressure liquid chromatography (UHPLC) equipment offers the ability to explore the influence of backpressure on chromatographic separations. However, the influence of pressure on the chromatographic separation of enantiomers on chiral stationary phases remains largely unexplored. In this investigation we surveyed the effects of pressure on the separation of enantiomers using several reversed-phase chiral stationary phases. The experiments were conducted at constant flow rate and column temperature, using isocratic conditions. The only variable parameter was pressure, which was adjusted using a post-column backpressure regulator. For the separation of enantiomers on chiral stationary phases, an increase in pressure from approximately 2,000 psi (138 bar) to approximately 8,000 psi (552 bar) at constant flow rate and temperature led to an increase of retention factors for some analytes and a decrease for others. Achiral separations on a C-18 stationary phase always led only to an increase of retention factor. Interestingly, changes in pressure led to small changes in enantioselectivity during reversed-phase chiral separation of enantiomers, suggesting that such studies may be of value for better understanding the mechanisms underlying chromatographic enantioseparation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Integrated vacuum absorption steam cycle gas separation

    DOEpatents

    Chen, Shiaguo [Champaign, IL; Lu, Yonggi [Urbana, IL; Rostam-Abadi, Massoud [Champaign, IL

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  14. Isolation and Characterization of Fractions of Mycoplasma pneumoniae I. Chemical and Chromatographic Separation

    PubMed Central

    Prescott, B.; Sobeslavsky, O.; Caldes, G.; Chanock, R. M.

    1966-01-01

    Prescott, B. (National Institute of Allergy and Infectious Diseases, Bethesda, Md.), O. Sobeslavsky, G. Caldes, and R. M. Chanock. Isolation and characterization of fractions of Mycoplasma pneumoniae. I. Chemical and chromatographic separation. J. Bacteriol. 91:2117–2125. 1966.—Fractionation of Mycoplasma pneumoniae, cultured on a beef heart infusion-horse serum-yeast extract medium, was carried out by chemical and chromatographic procedures. The chemical method yielded eight fractions consisting of lipid, carbohydrates, and proteins. Four protein-rich fractions were isolated by chromatographing a supernatant fluid of sonically treated organisms on Sephadex G-25. The 12 fractions were tested for serological and antigenic activity in vitro and in vivo. The lipid fraction was serologically active and the relative order of activity of the protein fractions appeared to depend on the amount of lipid present in the molecule. The highly serologically active Sephadex G-25 protein fraction 1 prepared chromatographically contained 15% lipid in the molecule, whereas the less serologically active protein fraction 2 prepared by chemical means contained 2% lipid. The acetone-extracted lipid fraction was chromatographed on thin-layer chromatography plates and found to consist of nine fractions. Serological activity was associated with only the first three spots above the origin. Lipid extracted from the protein fractions seemed to be similar to the acetone-extracted lipid from the sediment of the sonically treated organisms. PMID:5943931

  15. The gas-chromatographic analysis system in the JET active gas handling plant

    NASA Astrophysics Data System (ADS)

    Lässer, R.; Grieveson, B.; Hemmerich, J. L.; Stagg, R.; Dowhyluk, T.; Torr, K.; Massey, R.; Chambers, P.

    1993-09-01

    A gas chromatographic system for the analysis of gas species to be collected from the JET torus and to be processed in the JET active gas handling plant during the active operation phase with deuterium and tritium plasmas was designed and built by CFFTP under contract with JET. The gas-chromatograph consists of a compression/injection stage and of two parallel, analytical stages, one for the detection of helium, hydrogen, oxygen, nitrogen, methane, carbon monoxide, and the six hydrogen molecules by means of a thermal conductivity detector (TCD) and one for the detection of carbon monoxide, methane, carbon dioxide, and higher hydrocarbons by means of a flame ionization detector (FID). A flow proportional counting detector (FPCD) is placed in series to TCD and FID for the specific analysis of tritiated gas compounds. A detailed description of the system and of its performance will be given which was evaluated using several calibrated gas mixtures including test runs with tritiated species at JET. The gas species mentioned above can be detected in the concentration range from ppm levels to 100%. The estimated error is about 20% at very low concentrations and 1% at high concentrations. The required minimum detection limit for the TCD can be achieved by the injection of large samples and the use of large filament currents. In addition, neon or helium can be chosen as carrier gas. The use of Ne increases the sensitivity for hydrogen and allows the detection of He, whereas He carrier gas gives superior TCD results for all other gases. Due to the high sensitivity of the FPCDs ppb levels of tritiated gas species can be detected.

  16. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector

    NASA Astrophysics Data System (ADS)

    O'Hara, Dean; Singh, Hanwant B.

    The response of a newly available mercuric oxide Reduction Gas Detector (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more sensitive than an FID (Flame Ionization Detector) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more sensitive than an FID. The detector is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.

  17. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector

    NASA Technical Reports Server (NTRS)

    O'Hara, Dean; Singh, Hanwant B.

    1988-01-01

    The response of a newly available mercuric oxide Reduction Gas Detector (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more sensitive than an FID (Flame Ionization Detector) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more sensitive than an FID. The detector is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.

  18. Oxygen carrier for gas chromatographic analysis of inert gases in propellants

    NASA Technical Reports Server (NTRS)

    Cannon, W. A.

    1972-01-01

    Gas chromatographic determination of small quantities of inert gases in reactive propellants is discussed. Operating conditions used for specific analyses of helium in diborane and nitrogen in oxygen difluoride are presented in tabular form.

  19. Miniaturized gas chromatograph-Paul ion trap system: applications to environmental monitoring

    NASA Technical Reports Server (NTRS)

    Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.

    2004-01-01

    A miniature gas chromatograph (GC) and miniature Paul ion trap (PT) mass spectrometer system has been developed for identifying and quantifying chemical species present in closed environments having a complex mixture of gases.

  20. A Miniature Gas Chromatograph Mass Spectrometer (GCMS) for Planetary Atmospheres Studies

    NASA Astrophysics Data System (ADS)

    Simcic, J.; Madzunkov, S. M.; Bae, B.; Nikolic, D.; Darrach, M.

    2016-10-01

    Presented herein are the latest achievements in developing an instrument with the same analytical performance of commercial Gas Chromatograph Mass Spectrometer systems but approximately an order of magnitude smaller and optimized for space missions.

  1. Gas chromatographic technologies for the analysis of essential oils.

    PubMed

    Marriot, P J; Shellie, R; Cornwell, C

    2001-11-30

    Essential oil analysis has basically had one technical goal: to achieve the best possible separation performance by using the most effective, available technology of the day. The result achieved from this may then be used to answer the research or industrial analysis questions which necessitated the analysis. This may be for comparative purposes, where one oil is contrasted with other(s) for quality control or investigation of adulteration, to discover new components, or to characterise the chemical classes of compounds present. Clearly, today the analyst turns to chromatography as the provider of separation and then may supplement that with mass spectrometry to aid identification. The power of GC-MS means that advances in both the separation technique, and improvements in mass spectrometry detection - along with improved data handling tools - will immediately be relevant to the essential oil area. This present review outlines the developmental nature of instrumental approaches to essential oil analysis using gas chromatography. Mass spectrometry will be included to the extent that it represents the hyphenation of choice for most analysts when analysing essential oils. Thus single-column and multi-dimensional analysis will be covered, as will sample handling or introduction techniques prior to the analysis step, where these techniques provide some measure of separation. The recent demonstration of comprehensive gas chromatography will be discussed as the potentially most powerful separation method for essential oils. This brief review is not intended to be a comprehensive dissertation on the field of essential oil analysis since that would require sufficient space to occupy a book in its own right. Rather, it will outline selected considerations and developments, to help explain where new technology has been applied to advantage in this field.

  2. Improving Hydrocarbon Separation In Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Woeller, F.; Kojiro, D. R.

    1983-01-01

    Modified solica spheres enhance chromatographic separation. Commercially available silica spheres are modified by reacting them with molecules containing isocyante and isothiocyanate groups. Applications of surface derivatized spheres that result from reaction include analysis of samples prouced by atmospheric or soil probes.

  3. Improving Hydrocarbon Separation In Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Woeller, F.; Kojiro, D. R.

    1983-01-01

    Modified solica spheres enhance chromatographic separation. Commercially available silica spheres are modified by reacting them with molecules containing isocyante and isothiocyanate groups. Applications of surface derivatized spheres that result from reaction include analysis of samples prouced by atmospheric or soil probes.

  4. Chromatographic separation as selection process for prebiotic evolution and the origin of the genetic code.

    PubMed

    Lehmann, U

    1985-01-01

    A model for the evolution of a translation apparatus has been suggested where oligonucleotides in a hairpin conformation act as primordial adapters. Specifically activated amino acids are assumed to be attached to these hairpin molecules. For the specific activation, a chromatographic separation of, e.g. ala and CMP from gly and GMP can be accomplished on silica (e.g. of volcanic origin) with aqueous salt solutions. Other adsorbents like clays (kaolin, bentonite, montmorillonite), different silicates (florisil, magnesium trisilicate, calcium silicate, talc), hydroxyapatite, barium sulfate, calcium carbonate, calcium fluoride and titanoxide have been examined as model systems for the separation of nucleotides, nucleosides and amino acids on mineral surfaces. The possible role of chromatographic separation of amino acids for the formation of proteinoids, composed of selected amino acids, is also considered.

  5. Chromatographic methods for the separation of biocompatible iron chelators from their synthetic precursors and iron chelates.

    PubMed

    Kovaríková, Petra; Mokrý, Milan; Klime, Jirí; Vávrová, Katerina

    2004-12-01

    Chromatographic methods have been developed for the separation of the three novel biocompatible iron chelators pyridoxal isonicotinoyl hydrazone (PIH), salicylaldehyde isonicotinoyl hydrazone (SIH), and pyridoxal 2-chlorobenzoyl hydrazone (o-108) from their synthetic precursors and iron chelates. The chromatographic analyses were achieved using analytical columns packed with 5 microm Nucleosil 120-5 C18. For the evaluation of all chelators in the presence of the synthetic precursors, EDTA was added to the mobile phase at a concentration of 2 mM. The best separation of PIH and its synthetic precursors was achieved using a mixture of phosphate buffer (0.01 M NaH2PO4, 5 mM 1-heptanesulfonic acid sodium salt; pH 3.0) and methanol (55:45, v/v). For separation of SIH and its synthetic precursors, the mobile phase was composed of 0.01 M phosphate buffer (pH 6.0) and methanol (60:40, v/v). o-108 was analyzed employing a mixture of 0.01 M phosphate buffer (pH 7.0), methanol, and acetonitrile (60:20:20, v/v/v). These mobile phases were slightly modified to separate each chelator from its iron chelate. Furthermore, a RP-TLC method has also been developed for fast separation of all compounds. The chromatographic methods described herein could be applied in the evaluation of purity and stability of these drug candidates.

  6. Design and Performance of a Gas Chromatograph for Automatic Monitoring of Pollutants in Ambient Air

    NASA Technical Reports Server (NTRS)

    Villalobos, R.; Stevens, D.; LeBlanc, R.; Braun, L.

    1971-01-01

    In recent years, interest in air pollution constituents has focused on carbon monoxide and hydrocarbons as prime components of polluted air. Instrumental methods have been developed, and commercial instruments for continuous monitoring of these components have been available for a number of years. For the measurement of carbon monoxide, non-dispersive infrared spectroscopy has been the accepted tool, in spite of its marginal sensitivity at low parts-per-million levels. For continuously monitoring total hydrocarbons, the hydrogen flame ionization analyzer has been widely accepted as the preferred method. The inadequacy of this latter method became evident when it was concluded that methane is non-reactive and cannot be considered a contaminant even though present at over 1 ppm in the earth's atmosphere. Hence, the need for measuring methane separately became apparent as a means of measuring the reactive and potentially harmful non-methane hydrocarbons fraction. A gas chromatographic method for the measurement of methane and total hydrocarbons which met these requirements has been developed. In this technique, methane was separated on conventional gas chromatographic columns and detected by a hydrogen flame ionization detector (FID) while the total hydrocarbons were obtained by introducing a second sample directly into the FID without separating the various components. The reactive, or non-methane hydrocarbons, were determined by difference. Carbon monoxide was also measured after converting to methane over a heated catalyst to render it detectable by the FID. The development of this method made it possible to perform these measurements with a sensitivity of as much as 1 ppm full scale and a minimum detectability of 20 ppb. Incorporating this technique, criteria were developed by APCO for a second generation continuous automatic instrument for atmospheric monitoring stations.

  7. Design and Performance of a Gas Chromatograph for Automatic Monitoring of Pollutants in Ambient Air

    NASA Technical Reports Server (NTRS)

    Villalobos, R.; Stevens, D.; LeBlanc, R.; Braun, L.

    1971-01-01

    In recent years, interest in air pollution constituents has focused on carbon monoxide and hydrocarbons as prime components of polluted air. Instrumental methods have been developed, and commercial instruments for continuous monitoring of these components have been available for a number of years. For the measurement of carbon monoxide, non-dispersive infrared spectroscopy has been the accepted tool, in spite of its marginal sensitivity at low parts-per-million levels. For continuously monitoring total hydrocarbons, the hydrogen flame ionization analyzer has been widely accepted as the preferred method. The inadequacy of this latter method became evident when it was concluded that methane is non-reactive and cannot be considered a contaminant even though present at over 1 ppm in the earth's atmosphere. Hence, the need for measuring methane separately became apparent as a means of measuring the reactive and potentially harmful non-methane hydrocarbons fraction. A gas chromatographic method for the measurement of methane and total hydrocarbons which met these requirements has been developed. In this technique, methane was separated on conventional gas chromatographic columns and detected by a hydrogen flame ionization detector (FID) while the total hydrocarbons were obtained by introducing a second sample directly into the FID without separating the various components. The reactive, or non-methane hydrocarbons, were determined by difference. Carbon monoxide was also measured after converting to methane over a heated catalyst to render it detectable by the FID. The development of this method made it possible to perform these measurements with a sensitivity of as much as 1 ppm full scale and a minimum detectability of 20 ppb. Incorporating this technique, criteria were developed by APCO for a second generation continuous automatic instrument for atmospheric monitoring stations.

  8. Ion chromatographic separation of inorganic ions using a combination of hydrophilic interaction chromatographic column and cation-exchange resin column.

    PubMed

    Arai, Kaori; Mori, Masanobu; Hironaga, Takahiro; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2012-04-01

    A combination of hydrophilic interaction chromatographic (HILIC) column and a weakly acidic cation-exchange resin (WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography (IC). Firstly, the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions. The columns used were SeQuant ZIC-HILIC (ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase (ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase (HILIC-10). When using tartaric acid as the eluent, the HILIC columns indicated strong retentions for anions, based on ion-pair interaction. Especially, HILIC-10 could strongly retain anions compared with ZIC-HILIC. The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I(-) > NO3(-) > Br(-) > Cl(-) > H2PO4(-). However, since HILIC-10 could not separate analyte cations, a WCX column (TSKgel Super IC-A/C) was connected after the HILIC column in series. The combination column system of HILIC and WCX columns could successfully separate ten ions (Na+, NH4+, K+, Mg2+, Ca2+, H2PO4(-), Cl(-), Br(-), NO3(-) and I(-)) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6. The relative standard deviations (RSDs) of analyte ions by the system were in the ranges of 0.02% - 0.05% in retention times and 0.18% - 5.3% in peak areas through three-time successive injections. The limits of detection at signal-to-noise ratio of 3 were 0.24 - 0.30 micromol/L for the cations and 0.31 - 1.2 micromol/L for the anions. This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.

  9. ToF-SIMS characterisation of diterpenoic acids after chromatographic separation

    NASA Astrophysics Data System (ADS)

    Oriňák, Andrej; Oriňáková, Renáta; Arlinghaus, Heinrich F.; Vering, Guido; Hellweg, Sebastian; Cechinel-Filho, Valdir

    2006-07-01

    Microcolumn liquid chromatography (μHPLC) coupled on-line with time of flight secondary ion mass spectrometry (ToF-SIMS) was applied for mixture of diterpenoic acids (abietic, gibberellic and kaurenoic) analysis. Chromatographic effluent, with analytes separated, was carried out directly onto different, ToF-SIMS compatible surface substrates, for further ToF-SIMS analysis. Silica gel Si 60, aluminium backplate modified Si 60, monolithic silica gel and Raman spectroscopy chromatographic thin layers were used as the deposition substrates in this experiment. By ToF-SIMS surface imaging the deposition trace picture has been obtained. Effluent deposition surface area was scanned for diterpenoic acid fragment mass values based on mass spectrometric library. Measured ToF-SIMS dataset of fragment abundance and intensities were used for preliminary fragmentation schemes construction. The lowest substrate background activity has been established for monolithic silica gel thin layer and aluminium backplate modified Si 60 thin layer. In the case of Raman spectroscopy pre-treated thin layer or conventional chromatographic thin layer Si 60, the both, high background signal intensity and impossibility to construct negative ions surface image, were observed. Diterpenoic acids studied serve the similar mass spectrum but ToF-SIMS coupled with liquid chromatographic separation brings new impact to the positive identification of analytes studied.

  10. Anisotropic membranes for gas separation

    DOEpatents

    Gollan, Arye Z.

    1987-01-01

    A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.

  11. Anisotropic membranes for gas separation

    DOEpatents

    Gollan, A.Z.

    1987-07-21

    A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7--25 C and then air dried at ambient temperature, typically 10--30 C. 2 figs.

  12. Gas chromatographic method for measuring nitrogen dioxide and peroxyacetyl nitrate in air without compressed gas cylinders

    SciTech Connect

    Burkhardt, M.R.; Maniga, N.I.; Stedman, D.H.; Paur, R.J.

    1988-04-15

    A gas chromatographic technique that measures atmospheric concentrations of peroxyacetyl nitrate (PAN) and NO/sub 2/ has been developed that uses luminol-based chemiluminescence for detection. The carrier gas is air that has been scrubbed by passing it over FeSO/sub 4/, which eliminates the need for any compressed gas cylinders. A novel gas sampling system and time enable variable sample volumes of contaminated air to be injected. Ambient PAN and NO/sub 2/ measurements can be made every 40 s with detection limits of 0.12 ppb for PAN and 0.2 ppb for NO/sub 2/. Seven other atmospheric species, including ozone, gave no interference. Linear response was observed for NO/sub 2/ from 0.2 to 170 ppb and for PAN from 1 to 70 ppb.

  13. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations.

    PubMed

    Patel, Darshan C; Wahab, M Farooq; Armstrong, Daniel W; Breitbach, Zachary S

    2016-10-07

    The need for improved liquid chromatographic chiral separations has led to the advancement of chiral screening techniques as well as the development of new, high efficiency chiral separation methods and stationary phases. This review covers these advancements, which primarily occurred over the last 15 years. High throughput techniques include multi-column screening units, multiple injection sequences, and fast gradient SFC screening. New separation methods and column technologies that aim at high efficiency chiral separations include the use of achiral UHPLC (i.e. sub-2μm) columns for separating derivatized chiral analytes or using chiral additives in the run buffer, UHPLC chiral stationary phases, and superficially porous particle based chiral stationary phases. Finally, the enhancement of chiral separations through these new technologies requires that certain instrumental considerations be made. Future directions in continuing to improve chiral separations are also discussed.

  14. Mud/gas separator sizing and evaluation

    SciTech Connect

    MacDougall, G.R. )

    1991-12-01

    Recent wellsite disasters have led to an increased emphasis on properly sized mud/gas separators. This paper reviews and analyzes existing mud/gas separator technology and recommends separator configuration, components, design considerations, and a sizing procedure. A simple method of evaluating mud/gas separation within the separator vessel has been developed as a basis for the sizing procedure. A mud/gas separator sizing worksheet will assist drilling personnel with the sizing calculations. The worksheet provides a quick and easy evaluation of most mud/gas separators for a specific well application. A brief discussion of other mud/gas separator considerations is provided, including separator components, testing, materials, and oil-based-mud considerations.

  15. Passive gas separator and accumulator device

    DOEpatents

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  16. Chromatographic Separation of Germanium and Arsenic for the Production of High Purity 77As

    PubMed Central

    Gott, Matthew D.; DeGraffenreid, Anthony J.; Feng, Yutian; Phipps, Michael D.; Wycoff, Donald E.; Embree, Mary F.; Cutler, Cathy S.; Ketring, Alan R.; Jurisson, Silvia S.

    2016-01-01

    A simple column chromatographic method was developed to isolate 77As (94 ± 6% (EtOH/HCl); 74 ± 11 (MeOH)) from germanium for potential use in radioimmunotherapy. The separation of arsenic from germanium was based on their relative affinities for different chromatographic materials in aqueous and organic environments. Using an organic or mixed mobile phase, germanium was selectively retained on a silica gel column as germanate, while arsenic was eluted from the column as arsenate. Subsequently, enriched 76Ge (98 ± 2) was recovered for reuse by elution with aqueous solution (neutral to basic). Greater than 98% radiolabeling yield of a 77As-trithiol was observed from methanol separated [77As]arsenate [17]. PMID:26947162

  17. Optimization of an improved single-column chromatographic process for the separation of enantiomers.

    PubMed

    Kazi, Monzure-Khoda; Medi, Bijan; Amanullah, Mohammad

    2012-03-30

    This work addresses optimization of an improved single-column chromatographic (ISCC) process for the separation of guaifenesin enantiomers. Conventional feed injection and fraction collection systems have been replaced with customized components facilitating simultaneous separation and online monitoring with the ultimate objective of application of an optimizing controller. Injection volume, cycle time, desorbent flow rate, feed concentration, and three cut intervals are considered as decision variables. A multi-objective optimization technique based on genetic algorithm (GA) is adopted to achieve maximum productivity and minimum desorbent requirement in the region constrained by product specifications and hardware limitations. The optimization results along with the contribution of decision variables are discussed using Pareto fronts that identify non-dominated solutions. Optimization results of a similar simulated moving bed process have also been included to facilitate comparison with a continuous chromatographic process. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Chromatographic separation of germanium and arsenic for the production of high purity (77)As.

    PubMed

    Gott, Matthew D; DeGraffenreid, Anthony J; Feng, Yutian; Phipps, Michael D; Wycoff, Donald E; Embree, Mary F; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S

    2016-04-08

    A simple column chromatographic method was developed to isolate (77)As (94±6% (EtOH/HCl); 74±11 (MeOH)) from germanium for potential use in radioimmunotherapy. The separation of arsenic from germanium was based on their relative affinities for different chromatographic materials in aqueous and organic environments. Using an organic or mixed mobile phase, germanium was selectively retained on a silica gel column as germanate, while arsenic was eluted from the column as arsenate. Subsequently, enriched (76)Ge (98±2) was recovered for reuse by elution with aqueous solution (neutral to basic). Greater than 98% radiolabeling yield of a (77)As-trithiol was observed from methanol separated [(77)As]arsenate [17]. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient purification (MCSGP).

    PubMed

    Müller-Späth, Thomas; Aumann, Lars; Melter, Lena; Ströhlein, Guido; Morbidelli, Massimo

    2008-08-15

    Multicolumn countercurrent solvent gradient purification (MCSGP) is a continuous chromatographic process developed in recent years (Aumann and Morbidelli, 2007a; Aumann et al., 2007) that is particularly suited for applications in the field of bioseparations. Like batch chromatography, MCSGP is suitable for three-fraction chromatographic separations and able to perform solvent gradients but it is superior in terms of solvent consumption, yield, purity, and productivity due to the countercurrent movement of the liquid and the solid phases. In this work, the MCSGP process is applied to the separation of three monoclonal antibody variants on a conventional preparative cation exchange resin. The experimental process performance was compared to simulations based on a lumped kinetic model. Yield and purity values of the target variant of 93%, respectively were obtained experimentally. The batch reference process was clearly outperformed by the MCSGP process.

  20. Passive gas separator and accumulator device

    DOEpatents

    Choe, Hwang; Fallas, Thomas T.

    1994-01-01

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  1. Ion-exchange chromatographic separation of anions on hydrated bismuth oxide impregnated papers

    SciTech Connect

    Dabral, S.K.; Muktawat, K.P.S.; Rawat, J.P.

    1988-04-01

    A comparative study of the chromatographic behavior of anions, iodide, sulfide, phosphate, arsenate, arsenite, vanadate, chromate, dichromate, thiosulfate, thiocyanate, ferricyanide and ferrocyanide on papers impregnated with hydrated bismuth oxide and untreated Whatman no.1 paper has been made by employing identical aqueous, non-aqueous and mixed solvent system. Sharp and compact spots were obtained with impregnated papers whereas the opposite applied to plain papers. Various analytically important binary and ternary separations are reported.

  2. Determination of metal ions by high-performance liquid chromatographic separation of their hydroxamic acid chelates

    SciTech Connect

    Palmieri, M.D.; Fritz, J.S.

    1987-09-15

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV), Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.

  3. Microfabricated silicon gas chromatographic micro-channels: fabrication and performance

    SciTech Connect

    Matzke, C.M.; Kottenstette, R.J.; Casalnuovo, S.A.; Frye-Mason, G.C.; Hudson, M.L.; Sasaki, D.Y.; Manginell, R.P.; Wong, C.C.

    1998-11-01

    Using both wet and plasma etching, we have fabricated micro-channels in silicon substrates suitable for use as gas chromatography (GC) columns. Micro-channel dimensions range from 10 to 80 {micro}m wide, 200 to 400 {micro}m deep, and 10 cm to 100 cm long. Micro-channels 100 cm long take up as little as 1 cm{sup 2} on the substrate when fabricated with a high aspect ratio silicon etch (HARSE) process. Channels are sealed by anodically bonding Pyrex lids to the Si substrates. We have studied micro-channel flow characteristics to establish model parameters for system optimization. We have also coated these micro-channels with stationary phases and demonstrated GC separations. We believe separation performance can be improved by increasing stationary phase coating uniformity through micro-channel surface treatment prior to stationary phase deposition. To this end, we have developed microfabrication techniques to etch through silicon wafers using the HARSE process. Etching completely through the Si substrate facilitates the treatment and characterization of the micro- channel sidewalls, which domminate the GC physico-chemical interaction. With this approach, we separately treat the Pyrex lid surfaces that form the top and bottom surfaces of the GC flow channel.

  4. [Chromatographic separation of aminoglutethimide enantiomers on cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phase].

    PubMed

    Lin, Xiaoiian; Gong, Rujin; Li, Ping; Yu, Jianguo

    2014-08-01

    Aminoglutethimide (AG) has been used clinically as a drug in the treatment of hormone-dependent metastatic breast cancer. It was reported that S-(-)-AG enantiomer had small activity and sometimes might cause side effects. Therefore, it was of great significance to obtain the high-purity R-(+)-AG by enantioseparation. In this work, aminoglutethimide enantiomers were separated by high performance liquid chromatography (HPLC) using an analytical column which was packed with cellulose tris(3,5-dimethylphenylcarbamate) stationary phase (Chiralcel OD-H). The solubilities of racemic AG in two different solvent compositions, n-hexane/ethanol and n-hexane/isopropanol, were measured, separately. The effects of alcohol content and monoethanolamine additive on the separation performance of racemic AG by HPLC were investigated. According to the experiments, n-hexane-ethanol (30:70, v/v) with 0.1% monoethanolamine additive was selected as the mobile phase. The separation factor, resolution, asymmetry factor, number of theoretical plates and maximum column capacity were measured and analyzed for the chromatographic separation of racemic AG at a flow-rate of 0. 6 mL/min and column temperature of 25-40 °C, with Chiralcel OD-H as stationary phase and n-hexane-ethanol (30:70, v/v) with 0. 1% monoethanolamine as mobile phase. This work provides the basic information of chromatographic separation for the batch and continuous production of aminoglutethimide enantiomers.

  5. An advanced hybrid reprocessing system based on UF{sub 6} volatilization and chromatographic separation

    SciTech Connect

    Wei, Yuezhou; Liu, Ruiqin; Wu, Yan; Zu, Jianhua; Zhao, Long; Mimura, Hitoshi; Shi, Weiqun; Chai, Zhifang; Yang, Jinling; Ding, Youqian

    2013-07-01

    To recover U, Pu, MA (Np, Am, Cm) and some specific fission products FPs (Cs, Sr, Tc, etc.) from various spent nuclear fuels (LWR/FBR: Oxide, Metal Fuels), we are studying an advanced hybrid reprocessing system based on UF6 volatilization (Pyro) and chromatographic separation (Aqueous). Spent fuels are de-cladded by means of thermal and mechanical methods and then applied to the fluorination/volatilization process, which selectively recovers the most amount of U. Then, the remained fuel components are converted to oxides and dissolved by HNO{sub 3} solution. Compared to U, since Pu, MA and FPs are significantly less abundant in spent fuels, the scale of the aqueous separation process could become reasonably small and result in less waste. For the chromatographic separation processes, we have prepared different types of porous silica-based organic/inorganic adsorbents with fast diffusion kinetics, improved chemical stability and low pressure drop in a packed column. So they are advantageously applicable to efficient separation of the actinides and FP elements from the fuel dissolved solution. In this work, adsorption and separation behavior of representative actinides and FP elements was studied. Small scale separation tests using simulated and genuine fuel dissolved solutions were carried out to verify the feasibility of the proposed process. (authors)

  6. [Regression evaluation index intelligent filter method for quick optimization of chromatographic separation conditions].

    PubMed

    Gan, Wei; Liu, Xuemin; Sun, Jing

    2015-02-01

    This paper presents a method of regression evaluation index intelligent filter method (REIFM) for quick optimization of chromatographic separation conditions. The hierarchical chromatography response function was used as the chromatography-optimization index. The regression model was established by orthogonal regression design. The chromatography-optimization index was filtered by the intelligent filter program, and the optimization of the separation conditions was obtained. The experimental results showed that the average relative deviation between the experimental values and the predicted values was 0. 18% at the optimum and the optimization results were satisfactory.

  7. Considerations on the temperature dependence of the gas-liquid chromatographic retention.

    PubMed

    González, Francisco Rex

    2002-01-04

    A discussion on the temperature dependence of the partition coefficient K is developed. This discussion embraces topics such as the limitations of conventional thermodynamic approaches followed in the chromatographic literature, qualitative theoretical notions arising from molecular thermodynamics and the experimental information that is accessible through modern capillary gas chromatography. It is shown that the heat capacity difference of solute transfer for flexible molecules has at least one maximum in the chromatographic range of temperature. As a consequence, a great amount of experimental data is required for a correct thermodynamic interpretation of the chromatographic retention.

  8. High-resolution gas chromatographic profiles of volatile organic compounds produced by microorganisms at refrigerated temperatures.

    PubMed Central

    Lee, M L; Smith, D L; Freeman, L R

    1979-01-01

    Three different strains of bacteria isolated from spoiled, uncooked chicken were grown in pure culture on Trypticase soy agar supplemented with yeast extract. The volatile organic compounds produced by each culture were concentrated on a porous polymer precolumn and analyzed by high-resolution gas chromatographic mass spectrometry. Twenty different compounds were identified. Both qualitative and quantitative differences in the chromatographic profiles from each culture were found. PMID:104660

  9. On-line overpressure thin-layer chromatographic separation and electrospray mass spectrometric detection of glycolipids.

    PubMed

    Chai, Wengang; Leteux, Christine; Lawson, Alexander M; Stoll, Mark S

    2003-01-01

    On-line thin-layer chromatographic separation and electrospray mass spectrometry (TLC/ESI-MS) has been accomplished by direct linking of a commercial overpressure TLC instrument, OPLC 50, and a Q-TOF mass spectrometer. Mass spectrometric detection sensitivity and chromatographic resolution achieved by this configuration were assessed using acidic glycolipids as examples. Under the optimized conditions, a sensitivity of 5 pmol of glycosphingolipid was readily demonstrated for TLC/ESI-MS and 20 pmol for TLC/ESI-MS/MS production scanning to derive the saccharide sequence and long chain base/fatty acid composition of the ceramide. Initial preconditioning of TLC plates is necessary to achieve high sensitivity detection by reducing chemical background noise. Plates can be used repeatedly (at least 10 times) for analysis, although this may result in a minor reduction in TLC resolution. Following solvent development, separated components on the TLC plates can be detected in the conventional way by nondestructive staining or UV absorption or fluorescence and can be stored for on-line TLC/ESI-MS analysis at a later stage without reduction in mass spectrometric detection sensitivity and chromatographic resolution. Aspects for further improvement of OPLC instrumentation include use of narrower TLC plate dimensions and refined design of the eluate exit system.

  10. Application of Sigmoidal Transformation Functions in Optimization of Micellar Liquid Chromatographic Separation of Six Quinolone Antibiotics.

    PubMed

    Hadjmohammadi, Mohammadreza; Salary, Mina

    2016-03-01

    A chemometrics approach has been used to optimize the separation of six quinolone compounds by micellar liquid chromatography (MLC). A Derringer's desirability function, a multicriteria decision-making (MCDM) method, was tested for evaluation of two different measures of chromatographic performance (resolution and analysis time). The effect of three experimental parameters on a chromatographic response function (CRF) expressed as a product of two sigmoidal desirability functions was investigated. The sigmoidal functions were used to transform the optimization criteria, resolution and analysis time into the desirability values. The factors studied were the concentration of sodium dodecyl sulfate, butanol content and pH of the mobile phase. The experiments were done according to the face-centered cube central composite design, and the calculated CRF values were fitted to a polynomial model to correlate the CRF values with the variables and their interactions. The developed regression model showed good descriptive and predictive ability (R(2) = 0.815, F = 6.919, SE = 0.038, [Formula: see text]) and used, by a grid search algorithm, to optimize the chromatographic conditions for the separation of the mixture. The efficiency of prediction of polynomial model was confirmed by performing the experiment under the optimal conditions.

  11. Liquid chromatographic separation in metal-organic framework MIL-101: a molecular simulation study.

    PubMed

    Hu, Zhongqiao; Chen, Yifei; Jiang, Jianwen

    2013-02-05

    A molecular simulation study is reported to investigate liquid chromatographic separation in metal-organic framework MIL-101. Two mixtures are considered: three amino acids (Arg, Phe, and Trp) in aqueous solution and three xylene isomers (p-, m-, and o-xylene) dissolved in hexane. For the first mixture, the elution order is found to be Arg > Phe > Trp. The hydrophilic Arg has the strongest interaction with the polar mobile phase (water) and the weakest interaction with the stationary phase (MIL-101), and thus transports at the fastest velocity. Furthermore, Arg forms the largest number of hydrogen bonds with water and possesses the largest hydrophilic solvent-accessible surface area. For the second mixture, the elution order is p-xylene > m-xylene > o-xylene, consistent with available experimental observation. With the largest polarity as compared to p- and m-xylenes, o-xylene interacts the most strongly with the stationary phase and exhibits the slowest transport velocity. For both mixtures, the underlying separation mechanism is elucidated from detailed energetic and structural analysis. It is revealed that the separation can be attributed to the cooperative solute-solvent and solute-framework interactions. This simulation study, for the first time, provides molecular insight into liquid chromatographic separation in a MOF and suggests that MIL-101 might be an interesting material for the separation of industrially important liquid mixtures.

  12. Recirculating gas separator for electric submersible

    SciTech Connect

    Powers, M.L.

    1991-01-01

    This patent describes a gas separator apparatus for a submersible well pump. It comprises: a rotary gas separator means; and recirculating means for recirculating a portion of the liquid discharged from the discharge outlet back to the separating chamber so that a gas-to-liquid ratio in the separator means is substantially lower than a gas-to-liquid ratio of well fluid entering the well fluid inlet wherein the recirculating means. This patent also describes a method of pumping liquid from a well producing well fluids having a relatively high gas-to-liquid ratio. It comprises: centrifugally separating the well fluid into a liquid and a gas with a separator located downhole in the well; directing the separated liquid toward an inlet of a submersible well pump; recycling a portion of the separated liquid to the separator; and providing an effective gas-to-liquid ratio in the separator substantially lower than a gas-to-liquid ratio of the well fluid prior to separation.

  13. Superheated water as chromatographic eluent for parabens separation on octadecyl coated zirconia stationary phase.

    PubMed

    Dugo, Paola; Buonasera, Katia; Crupi, Maria Lucia; Cacciola, Francesco; Dugo, Giovanni; Mondello, Luigi

    2007-05-01

    In this study, the use of pure water at superheated temperatures, between 100 and 200 degrees C, as a mobile phase for RP separation is explored. Instrumental parameters, such as temperature, flow rate, preheating and cooling, have shown significant effects on the quality of the chromatographic peaks. The properties of superheated water as an eluent were investigated by observing the chromatographic behaviour of four parabens on a carbon-clad zirconia (ZR) phase with covalently bonded octadecyl groups. Results were compared with those obtained at 30 degrees C on a silica-based phase with octadecyl groups, using water and ACN as mobile phase. The optimized method was finally applied to analyse parabens in a commercial body cream.

  14. Thermal soil desorption for total petroleum hydrocarbon testing on gas chromatographs

    SciTech Connect

    Mott, J.

    1995-12-31

    Testing for total petroleum hydrocarbons (TPH) is one of the most common analytical tests today. A recent development in chromatography incorporates Thermal Soil Desorption technology to enable analyses of unprepared soil samples for volatiles such as BTEX components and semi-volatiles such as diesel, PCBs, PAHs and pesticides in the same chromatogram, while in the field. A gas chromatograph is the preferred method for determining TPH because the column in a GC separates the individual hydrocarbons compounds such as benzene and toluene from each other and measures each individually. A GC analysis will determine not only the total amount of hydrocarbon, but also whether it is gasoline, diesel or another compound. TPH analysis with a GC is typically conducted with a Flame Ionization Detector (FID). Extensive field and laboratory testing has shown that incorporation of a Thermal Soil Desorber offers many benefits over traditional analytical testing methods such as Headspace, Solvent Extraction, and Purge and Trap. This paper presents the process of implementing Thermal Soil Desorption in gas chromatography, including procedures for, and advantages of faster testing and analysis times, concurrent volatile and semi-volatile analysis, minimized sample manipulation, single gas (H{sub 2}) operation, and detection to the part-per billion levels.

  15. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.

    PubMed

    Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping

    2012-05-15

    In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF

  16. Finding the best separation in situations of extremely low chromatographic resolution.

    PubMed

    Ortín, A; Torres-Lapasió, J R; García-Álvarez-Coque, M C

    2011-04-22

    Samples with a large number of compounds or similarities in their structure and polarity may yield insufficient chromatographic resolution. In such cases, however, finding conditions where the largest number of compounds appears sufficiently resolved can be still worthwhile. A strategy is here reported that optimises the resolution level of chromatograms in cases where conventional global criteria, such as the worst resolved peak pair or the product of elementary resolutions, are not able to detect any separation, even when most peaks are baseline resolved. The strategy applies a function based on the number of "well resolved" peaks, which are those that exceed a given threshold of peak purity. It is, therefore, oriented to quantify the success in the separation, and not the failure, as the conventional criteria do. The conditions that resolve the same amount of peaks are discriminated by either quantifying the partial resolution of those peaks that exceed the established threshold, or by improving the separation of peaks below it. The proposed approach is illustrated by the reversed-phase liquid chromatographic separation of a mixture of 30 ionisable and neutral compounds, using the acetonitrile content and pH as factors.

  17. Extraction chromatographic separation of Am(III) and Eu(III) by TPEN-immobilized gel

    SciTech Connect

    Takeshita, K.; Ogata, T.; Oaki, H.; Inaba, Y.; Mori, A.; Yaita, T.; Koyama, S.I.

    2013-07-01

    A TPEN derivative with 4 vinyl groups, N,N,N',N' -tetrakis-(4-propenyloxy-2-pyridylmethyl)ethylenediamine (TPPEN) was synthesized for the separation of trivalent minor actinides (Am(III)) and lanthanides (Eu(III)). A co-polymer gel with TPPEN and N-isopropylacrylamide (NIPA) showed a high separation factor of Am(III) over Eu(III) (SF[Am/Eu]), which was evaluated to be 26 at pH=5. Thin film of NIPA-TPPEN gel (average thickness: 2-40 nm) was immobilized on the pore surface in porous silica particles (particle diameter : 50 μm, average pore diameter : 50 and 300 nm) and a chromatographic column (diameter: 6 mm, height: 11 mm) packed with the gel-coated particles was prepared. A small amount of weakly acidic solution (pH=4) containing Am(III) and Eu(III) was supplied in the column and the elution tests of Am(III) and Eu(III) were carried out. Eu(III) was recovered separately by a weakly acidic eluent (pH=4) at 313 K and Am(III) by a highly acidic eluent (pH=2) at 298 K. These results suggest that the contentious separation of minor actinides and lanthanides is attainable by a new extraction chromatographic process with two columns adjusted to 298 K and 313 K. (authors)

  18. Liquid Chromatographic Separation and Thermodynamic Investigation of Mirabegron Enantiomers on a Chiralpak AY-H Column.

    PubMed

    Zhou, Fan; Zhou, Yuxia; Zou, Qiaogen; Sun, Lili; Wei, Ping

    2015-09-01

    Liquid chromatographic separation of mirabegron enantiomers on Chiralpak AY-H, a column coated with amylose tris-(5-chloro-2-methylphenylcarbamate) as a chiral stationary phase, was studied under normal phase conditions. The influence of ethanol content (30-45%) and column temperature (20-40°C) on retention, resolution and separation were evaluated. Apparent thermodynamic parameters deduced from Van't Hoff plots were used to understand chiral separation mechanisms, and the chiral separation was enthalpy driven. The optimized chromatographic conditions were using a mixture solution of n-hexane, ethanol and diethyl amine (55 : 45 : 0.1, v/v/v) as a mobile phase at a flow rate of 1.0 mL/min. The column temperature and UV detector were set at 35°C and 254 nm, respectively. The method was validated to be simple, accuracy, sensitive and robust according to the ICH guidelines, and it was suitable for the routine quality control of mirabegron enantiomers for pharmaceutical industries.

  19. Better downhole gas separation optimizes production

    SciTech Connect

    Ryan, J. )

    1994-03-01

    Pumping efficiency, impaired by gas produced through a downhole pump, can be improved with subsurface separators and gas anchors. The result is longer equipment life and enhanced well productivity. The physical mechanism that separates free or solution gas from fluids in a well is a gas separator, which operates by virtue of gas and fluid velocities in the well bore and downhole production equipment. When oil containing solution gas crosses the perforations or slots in a mud anchor, a pressure drop occurs, resulting in the evolution of free gas bubbles. Agitation, direction changes and sudden velocity increases also aid the evolution of free gas. Depending upon bubble size and shape and fluid viscosity and velocity, the free gas bubbles will attempt to migrate upward while the fluid moves down. If the downward fluid velocity exceeds the critical velocity required for upward gas bubble migration, free gas will be forced through the production equipment. For wells producing a water cut greater than 20%, the critical downward fluid velocity is 0.5 ft/sec. For wells producing water cuts less than 20%, the critical fluid velocity is 0.5 ft/sec divided by the fluid viscosity (in centipoise). Therefore, successful gas separation may be achieved by employing gas separators that ensure downward fluid velocities that do not exceed the above critical velocities.

  20. Gas chromatographic column for the storage of sample profiles

    NASA Technical Reports Server (NTRS)

    Dimandja, J. M.; Valentin, J. R.; Phillips, J. B.

    1994-01-01

    The concept of a sample retention column that preserves the true time profile of an analyte of interest is studied. This storage system allows for the detection to be done at convenient times, as opposed to the nearly continuous monitoring that is required by other systems to preserve a sample time profile. The sample storage column is essentially a gas chromatography column, although its use is not the separation of sample components. The functions of the storage column are the selective isolation of the component of interest from the rest of the components present in the sample and the storage of this component as a function of time. Using octane as a test substance, the sample storage system was optimized with respect to such parameters as storage and readout temperature, flow rate through the storage column, column efficiency and storage time. A 3-h sample profile was collected and stored at 30 degrees C for 20 h. The profile was then retrieved, essentially intact, in 5 min at 130 degrees C.

  1. Minimizing thermal degradation in gas chromatographic quantitation of pentaerythritol tetranitrate.

    PubMed

    Lubrano, Adam L; Field, Christopher R; Newsome, G Asher; Rogers, Duane A; Giordano, Braden C; Johnson, Kevin J

    2015-05-15

    An analytical method for establishing calibration curves for the quantitation of pentaerythriol tetranitrate (PETN) from sorbent-filled thermal desorption tubes by gas chromatography with electron capture detection (TDS-GC-ECD) was developed. As PETN has been demonstrated to thermally degrade under typical GC instrument conditions, peaks corresponding to both PETN degradants and molecular PETN are observed. The retention time corresponding to intact PETN was verified by high-resolution mass spectrometry with a flowing atmospheric pressure afterglow (FAPA) ionization source, which enabled soft ionization of intact PETN eluting the GC and subsequent accurate-mass identification. The GC separation parameters were transferred to a conventional GC-ECD instrument where analytical method-induced PETN degradation was further characterized and minimized. A method calibration curve was established by direct liquid deposition of PETN standard solutions onto the glass frit at the head of sorbent-filled thermal desorption tubes. Two local, linear relationships between detector response and PETN concentration were observed, with a total dynamic range of 0.25-25ng. Published by Elsevier B.V.

  2. LIQUID CHROMATOGRAPHIC SEPARATION OF THE ENANTIOMERS OF TRANS-CHLORDANE, CIS-CHLORDANE, HEPTACHLOR, HEPTACHLOR EPOXIDE AND ALPHA-HEXACHLOROCYCLOHEXANE WITH APPLICATION TO SMALL-SCALE PREPARATIVE SEPARATION

    EPA Science Inventory

    Analytical high-performance liquid chromatographic separations of the individual enantiomers of five polychlorinated compounds were obtained on polysaccharide stereoselective HPLC columns. The enantiomers of the pesticides trans-chlordane, cis-chlordane and heptachlor were separa...

  3. LIQUID CHROMATOGRAPHIC SEPARATION OF THE ENANTIOMERS OF TRANS-CHLORDANE, CIS-CHLORDANE, HEPTACHLOR, HEPTACHLOR EPOXIDE AND ALPHA-HEXACHLOROCYCLOHEXANE WITH APPLICATION TO SMALL-SCALE PREPARATIVE SEPARATION

    EPA Science Inventory

    Analytical high-performance liquid chromatographic separations of the individual enantiomers of five polychlorinated compounds were obtained on polysaccharide stereoselective HPLC columns. The enantiomers of the pesticides trans-chlordane, cis-chlordane and heptachlor were separa...

  4. New Method for Evaluating Irreversible Adsorption and Stationary Phase Bleed in Gas Chromatographic Capillary Columns

    SciTech Connect

    Wright, Bob W.; Wright, Cherylyn W.

    2012-10-26

    A novel method for the evaluation of gas chromatographic (GC) column inertness has been developed using a tandem GC approach. Typically column inertness is measured by analyte peak shape evaluation. In general, silica, glass, and metal surfaces are chemically reactive and can cause analyte adsorption, which typically is observed as chromatographic peak tailing. Adsorption processes produce broad, short chromatographic peaks that confound peak area determinations because a significant portion can reside in the noise. In addition, chromatographic surfaces and stationary phases can irreversibly adsorb certain analytes without obvious degradation of peak shape. The inertness measurements described in this work specifically determine the degree of irreversible adsorption behavior of specific target compounds at levels ranging from approximately 50 picograms to 1 nanogram on selected gas chromatographic columns. Chromatographic columns with 5% phenylmethylsiloxane, polyethylene glycol (wax), trifluoropropylsiloxane, and 78% cyanopropylsiloxane stationary phases were evaluated with a variety of phosphorus- and sulfur- containing compounds selected as test compounds due to their ease of adsorption and importance in trace analytical detection. In addition, the method was shown effective for characterizing column bleed.

  5. A trade off between separation, detection and sustainability in liquid chromatographic fingerprinting.

    PubMed

    Funari, Cristiano S; Carneiro, Renato L; Cavalheiro, Alberto J; Hilder, Emily F

    2014-08-08

    It is now recognized that analytical chemistry must also be a target for green principles, in particular chromatographic methods which typically use relatively large volumes of hazardous organic solvents. More generally, high performance liquid chromatography (HPLC) is employed routinely for quality control of complex mixtures in various industries. Acetonitrile and methanol are the most commonly used organic solvents in HPLC, but they generate an impact on the environment and can have a negative effect on the health of analysts. Ethanol offers an exciting alternative as a less toxic, biodegradable solvent for HPLC. In this work we demonstrate that replacement of acetonitrile with ethanol as the organic modifier for HPLC can be achieved without significantly compromising analytical performance. This general approach is demonstrated through the specific example analysis of a complex plant extract. A benchmark method employing acetonitrile for the analysis of Bidens pilosa extract was statistically optimized using the Green Chromatographic Fingerprinting Response (GCFR) which includes factors relating to separation performance and environmental parameters. Methods employing ethanol at 30 and 80°C were developed and compared with the reference method regarding their performance of separation (GCFR) as well as by a new metric, Comprehensive Metric to Compare Liquid Chromatography Methods (CM). The fingerprint with ethanol at 80°C was similar to or better than that with MeCN according to GCFR and CM. This demonstrates that temperature may be used to replace harmful solvents with greener ones in HPLC, including for solvents with significantly different physiochemical properties and without loss in separation performance. This work offers a general approach for the chromatographic analysis of complex samples without compromising green analytical chemistry principles.

  6. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas.

    PubMed

    Andersson, Robert; Boutonnet, Magali; Järås, Sven

    2012-07-20

    An on-line gas chromatographic (GC) system has been developed for rapid and accurate product analysis in catalytic conversion of syngas (a mixture of H₂ and CO) to alcohols, so called "higher alcohol synthesis (HAS)". Conversion of syngas to higher alcohols is an interesting second step in the route of converting coal, natural gas and possibly biomass to liquid alcohol fuel and chemicals. The presented GC system and method are developed for analysis of the products formed from syngas using alkali promoted MoS₂ catalysts, however it is not limited to these types of catalysts. During higher alcohol synthesis not only the wanted short alcohols (∼C₂-C₅) are produced, but also a great number of other products in smaller or greater amounts, they are mainly short hydrocarbons (olefins, paraffins, branched, non-branched), aldehydes, esters and ketones as well as CO₂, H₂O. Trace amounts of sulfur-containing compounds can also be found in the product effluent when sulfur-containing catalysts are used and/or sulfur-containing syngas is feed. In the presented GC system, most of them can be separated and analyzed within 60 min without the use of cryogenic cooling. Previously, product analysis in "higher alcohol synthesis" has in most cases been carried out partly on-line and partly off-line, where the light gases (gases at room temp) are analyzed on-line and liquid products (liquid at room temp) are collected in a trap for later analysis off-line. This method suffers from many drawbacks compared to a complete on-line GC system. In this paper an on-line system using an Agilent 7890 gas chromatograph equipped with two flame ionization detectors (FID) and a thermal conductivity detector (TCD), together with an Agilent 6890 with sulfur chemiluminescence dual plasma detector (SCD) is presented. A two-dimensional GC system with Deans switch (heart-cut) and two capillary columns (HP-FFAP and HP-Al₂O₃) was used for analysis of the organic products on the FIDs. Light

  7. Clickable Periodic Mesoporous Organosilica Monolith for Highly Efficient Capillary Chromatographic Separation.

    PubMed

    Wu, Ci; Liang, Yu; Yang, Kaiguang; Min, Yi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-02-02

    A novel clickable periodic mesoporous organosilica monolith with the surface area up to 1707 m(2) g(-1) was in situ synthesized in the capillary by the one-step condensation of the organobridged-bonded alkoxysilane precursor bis(triethoxysilyl)ethylene. With Si-C bonds in the skeleton, the monolith possesses excellent chemical and mechanical stability. With vinyl groups highly loaded and homogeneously distributed throughout the structure, the monolith can be readily functionalized with functional groups by effective thiol-ene "click" chemistry reaction. Herein, with "click" modification of C18, the obtained monolith was successfully applied for capillary liquid chromatographic separation of small molecules and proteins. The column efficiency could reach 148,000 N/m, higher than most reported hybrid monoliths. Moreover, intact proteins could be separated well with good reproducibility, even after the monolithic column was exposed by basic mobile phase (pH 10.0) overnight, demonstrating the great promising of such monolith for capillary chromatographic separation.

  8. Extraction chromatographic separations of tantalum and tungsten from hafnium and complex matrix constituents.

    PubMed

    Snow, Mathew S; Finck, Martha R; Carney, Kevin P; Morrison, Samuel S

    2017-02-10

    Tantalum (Ta), hafnium (Hf), and tungsten (W) analyses from complex matrices require high purification of these analytes from each other and major/trace matrix constituents, however, current state-of-the-art Ta/Hf/W separations rely on traditional anion exchange approaches that show relatively similar distribution coefficient (Kd) values for each element. This work reports an assessment of three commercially available extraction chromatographic resins (TEVA, TRU, and UTEVA) for Ta/Hf/W separations. Batch contact studies show differences in Ta/Hf and Ta/W Kd values of up to 10(6) and 10(4) (respectively), representing an improvement of a factor of 100 and 300 in Ta/Hf and Ta/W Kd values (respectively) over AG1×4 resin. Variations in the Kd values as a function of HCl concentration for TRU resin show that this resin is well suited for Ta/Hf/W separations, with Ta/Hf, Ta/W, and W/Hf Kd value improvements of 10, 200, and 30 (respectively) over AG1×4 resin. Analyses of digested soil samples (NIST 2710a) using TRU resin and tandem TEVA-TRU columns demonstrate the ability to achieve extremely high purification (>99%) of Ta and W from each other and Hf, as well as enabling very high purification of Ta and W from the major and trace elemental constituents present in soils using a single chromatographic step.

  9. Extraction chromatographic separations of tantalum and tungsten from hafnium and complex matrix constituents

    DOE PAGES

    Snow, Mathew S.; Finck, Martha R.; Carney, Kevin P.; ...

    2017-01-08

    Ta, Hf, and W analyses from complex matrices (including environmental samples) require high purification of these analytes from each other and major/trace matrix constituents, but, current state-of-the-art Ta/Hf/W separations rely on traditional anion exchange approaches that suffer from relatively similar distribution coefficient (Kd) values for these analytes. Our work reports assessment of three commercially available extraction chromatographic resins (TEVA, TRU, and UTEVA) for Ta/Hf/W separations. Batch contact studies show differences in Ta/W,Hf Kd values of up to 106, representing an improvement of a factor of 100 and 300 in Ta/Hf and Ta/W Kd values (respectively) over AG1x4 resin. Furthermore, variationsmore » in the Kd values as a function of HCl concentration for TRU resin show that this resin is well suited for Ta/Hf/W separations, with Ta/Hf, Ta/W, and W/Hf Kd value improvements of 10, 200, and 30 (respectively) over AG1x4 resin. Finally, analyses of digested soil samples (NIST 2710a) using TRU resin and tandem TEVA-TRU columns demonstrate the ability to achieve extremely high purification (>99%) of Ta and W from each other and Hf, as well as enabling very high purification of Ta and W from the major and trace elemental constituents present in soils, using a single chromatographic step.« less

  10. Chromatographic separation of phenylpropanol enantiomers on a quinidine carbamate-type chiral stationary phase

    SciTech Connect

    Asnin, Leonid; Guiochon, Georges A

    2005-07-01

    The retention and the separation of the enantiomers of 1-phenylpropanol (1PP), 2-phenylpropanol (2PP), and 3-chloro-1-phenylpropanol (3CPP) on silica-bonded quinidine carbamate under normal phase HPLC conditions were investigated. A relatively high selectivity of the stationary phase for 3CPP and 1PP ({alpha} {approx} 1.07-1.09) was achieved with eluents containing ethyl acetate as the polar modifier. These mobile phases were examined in detail. Based on the set of chromatographic and thermodynamic data collected, conclusions regarding the mechanism of enantioselectivity and the structure of the selector chiral center are made.

  11. Electrochemical stabilization of transplutonium-element valence states under chromatographic separation conditions

    SciTech Connect

    Kosyakov, V.N.; Yakovlev, N.G.; Vlasov, M.M.

    1987-03-01

    The example of separating berkelium and trivalent transplutonium elements (TPE) is considered for an extraction-chromatographic system containing 4 mole/liter HNO/sub 3/ with D2EHPA, which demonstrates the scope for electrochemical stabilization of valency states. The carrier for the stationary organic phase was a corrosion-resistant conducting material of large surface area (ground vitrocarbon, graphitized carbon fiber, etc.), which at the same time was the working electrode in an electrochemical cell supplied with the appropriate potential. The method does not require the addition of oxidizing or reducing agents and allows remote control.

  12. [Development of online conventional array-based two-dimensional liquid chromatographic system for proteins separation in human plasma].

    PubMed

    Huang, Zhi; Hong, Guangfeng; Gao, Mingxia; Zhang, Xiangmin

    2014-04-01

    Human plasma is one of the proteins-containing samples most difficult to characterize on account of the wide dynamic concentration range of its intact proteins. Herein, we developed a high-throughput conventional array-based two-dimensional liquid chromatographic system for proteins separation in human plasma in online mode. In the system, a conventional strong-anion exchange chromatographic column was used as the first separation dimension and eight parallel conventional reversed-phase liquid chromatographic columns were integrated as the second separation dimension. The fractions from the first dimension were sequentially transferred into the corresponding reversed-phase liquid chromatographic precolumns for retention and enrichment using a 10-port electrically actuated multi-position valve. The second dimensional solvent flow was directly and identically split into 8 channels. The fractions were concurrently back-flushed from the precolumns into the 8 conventional RP columns and were separated simultaneously. An 8-channel fraction collector was refitted to collect the reversed-phase liquid chromatographic fractions for further investigation. Bicinchoninic acid (BCA) dyein solution was conveniently used for high-abundance protein location. Two separation dimensions were relatively independent parts, as well as each channel of the second dimensional array separation. Therefore, the new system could improve the separation throughput and total peak capacity. The system was successfully applied for the separation of human plasma intact proteins. The results indicated the established system is an effective method for removing high abundance proteins in plasma and in-depth research in plasma proteomics.

  13. An inverse gas chromatographic methodology for studying gas-liquid mass transfer.

    PubMed

    Paloglou, A; Martakidis, K; Gavril, D

    2017-01-13

    A novel methodology of reversed flow inverse gas chromatography (RF-IGC) is presented. It permits the simultaneous determination of mass transfer coefficients across the gas liquid interface as well as the respective solubility parameters and thermodynamic functions of dissolution of gases into liquids. The standard deviation of the experimentally determined parameters is estimated for first time, which combined with the successful comparison of the values of the present parameters with other literature ones ascertain the reliability of the methodology. Another novelty of the present work is that the chromatographic sampling of the physicochemical phenomena is done without performing the usual flow reversals procedure. Vinyl chloride monomer's (VCM) interaction with various composition liquid foods: orange juice, milk and olive oil was used as model system. The present transfer rates are controlled by the gas film at lower temperatures, but at higher temperatures the resistances in both films tend to become equal. The found liquid diffusivity values express the total mass transfer from the gas phase into the liquid's bulk and they decrease with rising temperature, as the solubilities of gases in liquids do. Solubility, expressed by Henry's law constant and the mean values of interfacial thickness are of the same order of magnitude to literature ones. From the thermodynamic point of view, VCM dissolution in all liquids is accompanied by significant heat release and it is a slightly non-spontaneous process, near equilibrium, while the entropy change values are negative. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Development and evaluation of a gas chromatographic method for the determination of triazine herbicides in natural water samples

    USGS Publications Warehouse

    Steinheimer, T.R.; Brooks, M.G.

    1984-01-01

    A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0.1 ??g/L in a 1-litre sample. Three different natural water samples were used for error analysis via evaluation of recovery efficiencies and estimation of overall method precision. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0. 1 mu g/L in a 1-litre sample. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.

  15. Gas-liquid separation in vortex units

    SciTech Connect

    Dorokhov, A.R.; Lidin, V.S.

    1987-09-01

    The authors have conducted comparative tests of a number of designs of vortex separators for a gas-oil mixture having an increased content of the liquid phase. As a preliminary, tests were conducted to determine the regimes of motion of the swirled flow of the gas-oil mixture in a cylindrical duct. Diagrams are provided of the separator models. The efficiency of oil recovery for the constructions considered as a function of the rate of motion of the gas in the inlet tube is shown as is the concentration of mist as a function of air flow rate. The anticyclonic method of separating gas-oil mixtures saturated with oil is shown to ensure a higher quality of gas-liquid separation and it can be used for coarse purification in oil separators for screw-type compressors.

  16. Centrifuge for separating helium from natural gas

    SciTech Connect

    Theyse, F.H.; Kelling, F.E.T.

    1980-01-08

    Ultra Centrifuge Nederland N.V.'s improved centrifuge for separating helium from natural gas comprises a hollow cylindrical rotor, designated as a separating drum, within a stationary housing. Natural gas liquids that condense under pressure in the separating drum pass through openings in the drum into the space between the drum and housing. In this space, a series of openings, or throttling restrictors, allows the liquids to expand and return to gas. The gaseous component that does not liquefy in the drum remains separate for drawing off.

  17. Rapid detection of bacteria with miniaturized pyrolysis-gas chromatographic analysis

    NASA Astrophysics Data System (ADS)

    Mowry, Curtis; Morgan, Catherine H.; Baca, Quentin; Manginell, Ronald P.; Kottenstette, Richard J.; Lewis, Patrick; Frye-Mason, Gregory C.

    2002-02-01

    Rapid detection and identification of bacteria and other pathogens is important for many civilian and military applications. The profiles of biological markers such as fatty acids can be used to characterize biological samples or to distinguish bacteria at the gram-type, genera, and even species level. Common methods for whole cell bacterial analysis are neither portable nor rapid, requiring lengthy, labor intensive sample preparation and bench-scale instrumentation. These methods chemically derivatize fatty acids to produce more volatile fatty acid methyl esters (FAMEs) that can be separated and analyzed by a gas chromatograph (GC)/mass spectrometer. More recent publications demonstrate decreased sample preparation time with in situ derivatization of whole bacterial samples using pyrolysis/derivatization. Ongoing development of miniaturized pyrolysis/GC instrumentation by this department capitalizes on Sandia advances in the field of microfabricated chemical analysis systems ((mu) ChemLab). Microdevices include rapidly heated stages capable of pyrolysis or sample concentration, gas chromatography columns, and surface acoustic wave (SAW) sensor arrays. We will present results demonstrating the capabilities of these devices toward fulfilling the goal of portable, rapid detection and early warning of the presence of pathogens in air or water.

  18. Capillary gas chromatographic analysis of nitrogen dioxide and pans with luminol chemiluminescent detection.

    SciTech Connect

    Gaffney, J. S.; Bornick, R. M.; Chen, Y.-H.; Marley, N. A.; Environmental Research

    1998-01-01

    Peroxyacyl nitrates (PANs) and nitrogen dioxide are important atmospheric air pollutants in the troposphere. These atmospheric nitrogen species are strongly coupled chemically by a clearly temperature-dependent equilibrium in the troposphere. A chemical method that can measure both nitrogen dioxide and PANs rapidly and with sub-part-per-billion detection is described that is based upon a modified luminol detection system coupled to a capillary gas chromatographic column by using helium as a carrier. The system can readily separate and detect nitrogen dioxide, peroxyacetyl nitrate, peroxyproprionyl nitrate, and peroxybutyrl nitrate with detection limits in the low tens of parts per trillion with total analysis time of less than 1 min. Calibration of PAN by thermal decomposition to nitrogen dioxide is demonstrated with PAN detection sensitivities approximately 75% of the sensitivities observed for NO2 luminol detection by using helium as a carrier gas. The advantages of this method for simultaneous measurement of nitrogen dioxide and PANs over ozone chemiluminescent detection and electron capture detection are discussed, as well as potential applications of this method for heterogeneous surface chemistry studies of PANs and nitrogen dioxide and for tropospheric measurements.

  19. Mars Atmospheric Capture and Gas Separation

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.

  20. Gas chromatographic determination of water in organic compounds and of organic compounds in water after steam distillations

    SciTech Connect

    Dix, K.D.

    1990-01-01

    A gas chromatograph (GC) with a flame ionization detector (FID) is shown to be effective in the determination of water in organic compounds. Since the FID gives little response for water, a reaction is needed to convert water into a detectable species. The ketal, 2,2-dimethoxypropane (DMP), reacts quantitatively with water to yield the products methanol and acetone when an acid catalyst is present. Acetone is easily determined with a GC equipped with a capillary column and FID. A solid acid catalyst, Nafion, has been effective and is easily separated before sample introduction into the GC.

  1. [Gas chromatographic determination of N,N-asymmetric dimethylhydrazine in different environmental objects].

    PubMed

    Kuznetsova, L V; Egorova, G I; Mironov, A A

    2008-01-01

    The paper describes different guidelines used to develop a procedure for gas chromatographic determination of N,N-asymmetric dimethylhydrazine (NDMH) in various environmental objects in the area of a missile-dismantling base. The authors showed that the use of a capillary column with a 5-microm liquid phase layer on a Kristall-5000 chromatograph with a nitrogenous phosphoric detector (Russia) allowed development of a unified gas chromatographic procedure for determining NDMH in air, water, soil, biological material (urine), and plant cover (moss, couch-grass). The procedures differ in the way how to prepare samples and the analysis itself is based on conversion of NDMH to N,N-dimethylhydrazone-4-nitrobenzaldehyde, its liquid extraction from water, concentration of the extract via evaporation and assay by the internal standard test.

  2. Dried calcium alginate/magnetite spheres: a new support for chromatographic separations and enzyme immobilization

    SciTech Connect

    Burns, M.A.; Kvesitadze, G.I.; Graves, D.J.

    1985-02-01

    Dried spheres made from an alginate solution containing magnetite particles have excellent potential as a support for enzyme immobilization and chromatographic applications. The beads were found to be much stronger than gels such as polyacrylamide and dextran, indicating that high flow rates and pressures could be used in column separations. The support withstood not only temperatures of up to 120/sup 0/C, but also most pH values and common solvents. While some solutions, such as phosphate buffers, dissolved the spheres, stabilization with Tyzor TE eliminated this problem. The physical properties of the beads include a glasslike density of 2.2 g/mL, excellent sphericity, low porosity, and a narrow size distribution. The magnetite present in the support allows the beads to be used for magnetic separations such as high gradient magnetic filtration. Their high degree of microroughness provides a large exposed surface area for enzyme and ligand binding. Mixed Actinomyces fradiae proteases and Aspergillus niger ..cap alpha..-amylase, two enzymes representative of classes which attack large substrates, were immobilized on the bead's surface with high activity and stability. A cyanuric dye which can be used in chromatographic applications (Cibacron Blue F3GA) was also readily coupled to the surface of this support with good yield.

  3. Remotely detected NMR for the characterization of flow and fast chromatographic separations using organic polymer monoliths.

    PubMed

    Teisseyre, Thomas Z; Urban, Jiri; Halpern-Manners, Nicholas W; Chambers, Stuart D; Bajaj, Vikram S; Svec, Frantisek; Pines, Alexander

    2011-08-01

    An application of remotely detected magnetic resonance imaging is demonstrated for the characterization of flow and the detection of fast, small molecule separations within hypercrosslinked polymer monoliths. The hyper-cross-linked monoliths exhibited excellent ruggedness, with a transit time relative standard deviation of less than 2.1%, even after more than 300 column volumes were pumped through at high pressure and flow. Magnetic resonance imaging enabled high-resolution intensity and velocity-encoded images of mobile phase flow through the monolith. The images confirm that the presence of a polymer monolith within the capillary disrupts the parabolic laminar flow profile that is characteristic of mobile phase flow within an open tube. As a result, the mobile phase and analytes are equally distributed in the radial direction throughout the monolith. Also, in-line monitoring of chromatographic separations of small molecules at high flow rates is shown. The coupling of monolithic chromatography columns and NMR provides both real-time peak detection and chemical shift information for small aromatic molecules. These experiments demonstrate the unique power of magnetic resonance, both direct and remote, in studying chromatographic processes.

  4. Extraction chromatographic separation of promethium from high active waste solutions of Purex origin

    SciTech Connect

    Ramanujam, A.; Achuthan, P.V.; Dhami, P.S.; Gopalakrishnan, V.; Kannan, R.; Mathur, J.N.

    1995-03-01

    An extraction chromatographic procedure for the separation of {sup 147}Pm from High Active Waste solutions of Purex process has been developed. Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide(CMPO) and 2-ethylhexyl-2-ethylhexylphosphonic acid (KSM-17), both sorbed separately on an inert support(chromosorb-102) have been sequentially employed for this purpose. In the CMPO column, the rare earths and the trivalent actinides are sorbed together with uranium, plutonium and traces of few other fission products. The elution of this column with 0.04 M HNO{sub 3} gives an eluate containing trivalent actinides and lanthanides. This solution, after adjusting the pH to 2.0, is used as feed for the second extraction chromatographic column based on KSM-17. All the trivalent metal ions are sorbed on the column leaving the trace impurities in the effluent. Fractional elution of the metal ions from this column is carried out with nitric acid of varying concentrations. At 0.09 M HNO{sub 3}, the pure beta emitting fraction of {sup 147}Pm has been obtained. 16 refs., 3 figs., 2 tabs.

  5. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, EXPLOSIVES DETECTION TECHNOLOGY, SRI INSTRUMENTS, MODEL 8610C, GAS CHROMATOGRAPH/THERMIONIC IONIZATION DETECTION

    EPA Science Inventory

    The SRI Model 86 1 OC gas chromatograph (GC) is a transportable instrument that can provide on-site analysis of soils for explosives. Coupling this transportable gas chromatograph with a thermionic ionization detector (TID) allows for the determination of explosives in soil matri...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, EXPLOSIVES DETECTION TECHNOLOGY, SRI INSTRUMENTS, MODEL 8610C, GAS CHROMATOGRAPH/THERMIONIC IONIZATION DETECTION

    EPA Science Inventory

    The SRI Model 86 1 OC gas chromatograph (GC) is a transportable instrument that can provide on-site analysis of soils for explosives. Coupling this transportable gas chromatograph with a thermionic ionization detector (TID) allows for the determination of explosives in soil matri...

  8. Simple gas chromatographic system for analysis of microbial respiratory gases

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  9. Novel behavior of the chromatographic separation of linear and cyclic polymers.

    PubMed

    Montenegro-Burke, J Rafael; Bennett, Jackson M; McLean, John A; Hercules, David M

    2016-01-01

    In various polymerization processes, the formation of a wide variety of chains, not only in length but also in chemical composition, broadly complicates comprehensive polymer characterization. In this communication, we compare different stationary and mobile phases for the analysis of complex polymer mixtures via size-exclusion chromatography-mass spectrometry (SEC-MS). To the best of our knowledge, we report novel chromatographic effects for the separation of linear and cyclic oligomers for polyesters (PE) and polyurethanes (PUR). A complete separation for the different structures was achieved for both polymer types with a single-solvent system (acetonitrile, ACN) and without extensive optimization. Additionally, cyclic species were found to show an inverse elution profile compared to their linear counterparts, suggesting distinct physical properties between species.

  10. Ion chromatographic separation and determination of phosphate and arsenate in water and hair.

    PubMed

    Antony, P J; Karthikeyan, S; Iyer, C S P

    2002-02-15

    A simple and sensitive method for the sequential determination of phosphate and arsenate was developed based on initial ion chromatographic separation followed by detection as the ion-association complex formed by heteropolymolybdophosphate and arsenate with bismuth. With 200 microl sample injection and separation on a AS4A-SC column using an eluent of 3.5 mM sodium hydrogen carbonate-10.0 mM sodium hydroxide, the detection limits which are calculated as the concentration equivalent to twice the baseline noise, were found to be 0.8 microg/l and 4.2 microg/l for P and As, respectively. Spiked samples were analyzed and recoveries were found to be satisfactory in the range of 95-105% for phosphate and 90-105% for arsenate. Samples of water and hair were analyzed by the proposed method.

  11. Novel behavior of the chromatographic separation of linear and cyclic polymers

    PubMed Central

    Montenegro-Burke, J. Rafael; Bennett, Jackson M.; McLean, John A.; Hercules, David M.

    2016-01-01

    In various polymerization processes, the formation of a wide variety of chains, not only in length but also in chemical composition, broadly complicates comprehensive polymer characterization. In this communication, we compare different stationary and mobile phases for the analysis of complex polymer mixtures via size-exclusion chromatography-mass spectrometry (SEC-MS). To the best of our knowledge, we report novel chromatographic effects for the separation of linear and cyclic oligomers for polyesters (PE) and polyurethanes (PUR). A complete separation for the different structures was achieved for both polymer types with a single solvent system (ACN) and without extensive optimization. Additionally, cyclic species were found to show an inverse elution profile compared to their linear counterparts, suggesting distinct physical properties between species. PMID:26637218

  12. Chromatographic separation of vanadium, tungsten and molybdenum with a liquid anion-exchanger.

    PubMed

    Fritz, J S; Topping, J J

    1971-09-01

    In acidic solution only molybdenum(VI), tungsten(VI), vanadium(V), niobium(V) and tantalum(V) form stable, anionic complexes with dilute hydrogen peroxide. This fact has been used in developing an analytical method of separating molybdenum(VI), tungsten(VI) and vanadium(V) from other metal ions and from each other. Preliminary investigations using reversed-phase paper chromatography and solvent extraction led to a reversed-phase column Chromatographic separation technique. These metal-peroxy anions are retained by a column containing a liquid anion-exchanger (General Mills Aliquat 336) in a solid support. Then molybdenum(VI), tungsten(VI) and vanadium(V) are selectively eluted with aqueous solutions containing dilute hydrogen peroxide and varying concentrations of sulphuric acid.

  13. Chromatographic separation of cytidine triphosphate from fermentation broth of yeast using anion-exchange cryogel.

    PubMed

    Wang, Lianghua; Shen, Shaochuan; Yun, Junxian; Yao, Kejian; Yao, Shan-Jing

    2008-03-01

    A novel separation method was developed to isolate directly cytidine triphosphate (CTP) from fermentation broth of yeast using anion-exchange supermacroporous cryogel. The anion-exchange cryogel with tertiary amine groups was prepared by graft polymerization. The breakthrough characteristics and elution performance of pure CTP in the cryogel bed were investigated experimentally and the CTP binding capacity was determined. Then the separation experiments of CTP from crude fermentation broth of yeast using the cryogel column were carried out using deionized water and 0.01 M HCl as washing buffer, respectively. The chromatographic behavior was monitored and analyzed. The purity and concentration of the obtained CTP in these processes were determined quantitatively by HPLC. The maximal purity of CTP obtained at the condition of 0.01 M HCl as washing buffer and 0.5 M NaCl in 0.01 M HCl as elution buffer reached 93%.

  14. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  15. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  16. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  17. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  18. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  19. Gas separation performance of inorganic polyphosphazene membranes

    SciTech Connect

    Stone, M.L.

    1995-07-01

    The objective of this research program was to develop, characterize, and evaluate the potential of phosphazene polymers for separations performed in harsh environments. The program was divided into two general areas, gas separations and metal ion separations involving aqueous solutions. Each of these two areas is the subject of a topical report; this report deals with the gas separations. Throughout the world, there is rapidly growing interest in membrane separation as an energy efficient way to separate components of a process stream or waste stream, such as in desalination of water or clarification of fruit juices. In some cases membranes perform separations that are otherwise very difficult, such as breaking azeotropes. In the early stages of the work reported here, there was interest in separating acid gases from process flue gases and in natural gas sweetening. As a result, research was undertaken to characterize membrane performance. First, a pure gas test apparatus was developed to determine the permeabilities of a number of gases through various membranes at a variety of temperatures. Second, an automated mixed gas test cell was developed in which membranes could be exposed to mixtures of pairs of gases. Each of these approaches has its advantages and each will be discussed separately.

  20. Performance of the MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Pinnick, Veronica; Szopa, Cyril; Grand, Noël; Freissinet, Caroline; Danell, Ryan; van Ameron, Friso; Arevalo, Ricardo; Brinckerhoff, William; Raulin, François; Mahaffy, Paul; Goesmann, Fred

    2015-04-01

    The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquir-ing samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis gas chromatograph (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide in-formation on elemental and molecular makeup, po-larity, chirality and isotopic patterns of analyte spe-cies. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatography-mass spec-trometry (GC-MS) mode of operation. Both instruments have been tested separately first and have been coupled in order to test the efficiency of the future MOMA GC-MS instrument. The main objective of the second step has been to test the quantitative response of both instruments while they are coupled and to characterize the combined instrument detection limit for several compounds. A final experiment has been done in order to test the feasibility of the separation and detection of a mixture contained in a soil sample introduced in the MOMA oven.

  1. Development of and fabrication of high resolution gas chromatographic capillary columns

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1982-01-01

    Gas chromatographic columns which are used in the trace gas analyzer (TGA) for the space shuttle are coated with a polyoxyethylene lauryl ether. This stationary phase is of medium polarity and has a temperature limit of 160 C. A polymer for this application which has an improved thermal stability is investigated. The use of fused silica capillary columns with specially bonded phases as well as an introduction system (on column) was also studied.

  2. A gas chromatographic analysis of phosphine in biological material in a case of suicide.

    PubMed

    Musshoff, F; Preuss, J; Lignitz, E; Madea, B

    2008-05-20

    In a suicide committed using aluminium phosphide (AlP) the liberated toxic phosphine gas was detected in post-mortem specimens using a headspace gas chromatographic procedure with a nitrogen-phosphorous detector (HS-GC/NPD). At autopsy a direct sampling into airtight headspace vials for a later analysis is recommended. AlP has to be considered a potent pesticide and its use and availability should be restricted as much as possible.

  3. Radioactive-gas separation technique

    NASA Technical Reports Server (NTRS)

    Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.

    1977-01-01

    Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.

  4. Liquid chromatographic method for determination of water in soils and the optimization of anion separations by capillary zone electrophoresis

    SciTech Connect

    Benz, Nancy

    1994-01-01

    A liquid chromatographic method for the determination of water in soil or clay samples is presented. In a separate study, the optimization of electrophoretic separation of alkylated phenolate ions was optimized by varying the pH and acetonitrile concentration of the buffer solutions.

  5. Chromatographic retention behaviour, modelling and separation optimisation of the quaternary ammonium salt isometamidium chloride and related compounds on a range of reversed-phase liquid chromatographic stationary phases.

    PubMed

    Schad, Gesa J; Euerby, Melvin R; Skellern, Graham G; Tettey, Justice N A

    2012-07-01

    This paper describes the reversed-phase liquid chromatographic behaviour of the trypanocidal quaternary ammonium salt isometamidium chloride and its related compounds on a range of liquid chromatographic phases possessing alkyl and phenyl ligands on the same inert silica. In a parallel study with various extended polar selectivity phases which possessed different hydrophobic/silanophilic (hydrogen bonding) activity ratios, the chromatographic retention/selectivities of the quaternary ammonium salts was shown to be due to a co-operative mechanism between hydrophobic and silanophilic interactions. The highly aromatic and planar isometamidium compounds were found to be substantially retained on stationary phases containing aromatic functionality via strong π-π interactions. The chemometric approach of principal component analysis was used to characterise the chromatographic behaviour of the isometamidium compounds on the differing phases and to help identify the dominant retention mechanism(s). Two-dimensional (temperature/gradient) retention modelling was employed to develop and optimise a rapid liquid chromatography method for the separation of the six quaternary ammonium salts within 2.5 min which would be suitable for bioanalysis using liquid chromatography-mass spectrometry. This is the first reported systematic study of the relationship between stationary phase chemistries and retention/selectivity for a group of quaternary ammonium salts.

  6. Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media

    NASA Astrophysics Data System (ADS)

    Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.

    2015-06-01

    Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.

  7. Indirect gas chromatographic measurement of water for process streams

    SciTech Connect

    Barbour, F.A.

    1993-05-01

    This project was conducted to develop a moisture measurement method for process gas streams of fossil fuels. Objective was to from pyrolysis to measure the molar concentration of water in a gas stream without flow measurements. The method developed has been incorporated into the hydrocarbon gas analysis method currently used at Western Research Institute. A literature search of types of direct measuring moisture sensors was conducted, and a list of sensors available is given; most of them could not survive in the environment of the process streams. Indirect methods of measuring water involve changing the water via reaction to a compound that can be more readily measured. These methods react water with various reagents to form hydrogen, acetylene, and acetone. The method chose for this study uses a calcium carbide reaction column to convert the water present in the gas stream to acetylene for analysis. Relative deviation for the daily determination of water varied from 0.5 to 3.4%. The method chosen was tested for linearity over a wide range of gas stream water content. Response over 2 to 15 mole % water appears to be linear with a correlation coefficient of 0.991.

  8. Method for improved gas-solids separation

    DOEpatents

    Kusik, Charles L.; He, Bo X.

    1990-01-01

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from when it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel.

  9. Method for improved gas-solids separation

    DOEpatents

    Kusik, C.L.; He, B.X.

    1990-11-13

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

  10. Simulation of Ultrasonic-driven Gas Separations

    SciTech Connect

    Rector, David R.; Greenwood, Margaret S.; Ahmed, Salahuddin; Doctor, Steven R.; Posakony, Gerald J.; Stenkamp, Victoria S.

    2007-06-01

    The separation of components in a gas mixture is important for a wide range of applications. One method for achieving this separation is by passing a traveling acoustic wave through the gas mixture, which creates a flux of the lighter components away from the transducer. A series of simulation were performed to assess the effectiveness of this method for separating a binary mixture of argon and helium using the lattice kinetics method. The energy transport equation was modified to account for adiabatic expansion and compression. The species transport equation was modified to include a barodiffusion term. Simulations were performed on two different scales; detailed acoustic wave simulations to determine the net component flux as a function of local concentration, pressure, etc., and device scale simulations to predict the gas composition as a function of time inside a gas separation cylinder. The method is first validated using data from literature and then applied to mixtures of argon and helium. Results are presented and discussed.

  11. Capillary gas-liquid chromatography separation of phenethylamines in amphetamine-positive urine samples.

    PubMed

    DePace, A; Verebey, K; elSohly, M

    1990-11-01

    Good gas chromatography (GC) separation of molecules is essential for clean gas chromatography/mass spectrometry (GC/MS) confirmation of compounds. The trifluoro derivatives of ephedrine (E) and methamphetamine (MA) coelute on dimethyl silicone capillary columns, such as DB-1, which are most commonly used by chromatographers. Methods are described to separate E and MA to aid GC/MS confirmations of methamphetamine, ephedrine, or both E and MA together, whichever may be present in Enzyme Immunoassay (EIA)-analyzed amphetamine-positive urine samples. The use of the heptafluoro derivatives of E and MA on a DB-1 column, or the trifluoro derivatives of E and MA on a DB-17 column, is suggested for good gas chromatographic separation.

  12. Purge and trap with monolithic sorbent for gas chromatographic analysis of pesticides in honey.

    PubMed

    Chienthavorn, Orapin; Dararuang, Kanittha; Sasook, Anupop; Ramnut, Narumol

    2012-01-01

    Polydivinylbenzene (P-DVB) and silica monolithic materials were synthesised in capillaries and then used to adsorb nine organonitrogen pesticides extracted from honey. After adsorption, each monolith-capillary was connected to a gas chromatograph (GC) with nitrogen-phosphorous detector (NPD). The silica monolith gave better peak shape and intensity than the P-DVB monolith. Formulation of silica monolith with tetramethoxysilane (TMOS) as a sole initiator provided better separation and higher peak intensity, compared to those with methyltrimethoxysilane (MTMS) and (3:1) TMOS/MTMS initiators. The optimum internal diameter and length of silica monolith-capillary were 0.25 mm and 5 cm, respectively. The purge and trap conditions were optimised by purging with nitrogen and heating the honey sample solution at 100 °C for 60 min. Recovery of the method was in a range of 84.95-99.71% and the detection limits of the pesticides determined by using GC-NPD and GC-mass spectrometric detector (MSD) ranged between 0.36-1.75 and 0.13-0.25 ng g(-1), respectively.

  13. A transportable turnkey gas chromatograph/ion trap detector for field analysis of environmental samples

    SciTech Connect

    Cisper, M.E.; Alarid, J.E.; Hemberger, P.H.; Vanderveer, E.P.

    1990-01-01

    We have developed two transportable gas chromatograph/ion trap detectors (GC/ITD) for the in-situ characterization of chemical waste sites. These instruments are based on a modular design and can be readily modified in the field for air, water, or soil sampling. A purge-and-trap GC is used for the separation of volatile organic compounds before their introduction to the ion trap for mass spectral analysis. A secondary, or daughter, microprocessor controls ancillary hardware by means of the ion trap software. Most analyses are accomplished in an automated 20-min procedure. The detection limit for trichloroethylene in water is in the low part-per-trillion range. The analysis of soil and water samples is demonstrated by using surrogate samples spiked with 24 volatile organic compounds. The first instrument has been used under field conditions for soil analysis at a chemical waste site. The second-generation instrument differs from the first in the extensive use of commercially available equipment. The second-generation instrument will be briefly described here and some preliminary comparisons will be made to the first instrument. 11 refs., 8 figs., 2 tabs.

  14. Modified gas chromatographic/mass spectrometric method for determination of daminozide in high protein food products.

    PubMed

    Faughnan, K T; Woodruff, M A

    1991-01-01

    A modified version of the Conditt and Baumgardner gas chromatographic/mass spectroscopic (GC/MS) method for determination of daminozide in peanut butter and raw peanuts is described. Daminozide in the food product is hydrolyzed to unsymmetrical dimethylhydrazine (UDMH) by sodium hydroxide digestion. The generated UDMH is distilled from the food matrix and captured by reaction with salicylaldehyde in a condensation trap. Resulting high pH distillates generated by peanuts and peanut products are adjusted back to a pH of 5-6 through addition of glacial acetic acid. After thermal incubation and extraction into methylene chloride, salicylaldehyde dimethylhydrazone is separated from interferences by capillary GC and quantitated by MS using the selective ion monitoring (SIM) mode. Quantitation of daminozide is based on the ratio of the salicylaldehyde dimethylhydrazone molecular ion (m/z 164) to the molecular ion (m/z 153) of the internal standard, 4-nitroanisole. Confirmation of daminozide identity is determined by relative intensity of the m/z 164 ion to the m/z 120 (C7H4ON) ion. Improved m/z 164 ion intensity and reduction of neighboring interferences due to acetic acid treatment permitted a daminozide detection limit of 0.005 ppm in a 50 g sample and an associated 0.02 ppm limit of quantitation. This modification is specific for high protein samples that generate high pH distillates such as peanuts and peanut products and is not specifically intended for analysis of low protein samples.

  15. Gas chromatographic/mass spectrometric determination of daminozide in high protein food products.

    PubMed

    Conditt, M K; Baumgardner, J R; Hellmann, L M

    1988-01-01

    A gas chromatographic/mass spectrometric (GC/MS) method for determining daminozide in high protein products has been developed. Daminozide is hydrolyzed in the presence of a strong base to form unsymmetrical dimethylhydrazine (UDMH) which is then distilled from the food matrix. A stable derivative is formed by reacting UDMH with salicyladehyde to form salicyaldehyde dimethylhydrazone. This derivative is separated and quantitated by GC/MS using selected ion monitoring (SIM) of key ions in the fragmentation pattern: m/z 164 (molecular ion of hydrazone) and m/z 120 (C7H6ON). An internal standard, 4-nitroanisole, is monitored at m/z 153 (molecular ion) and m/z 123 (C6H5O2N). The limit of detection is 0.01 ppm daminozide in a 50 g sample; however, because of variation at low levels, the limit of quantitation is 0.1 ppm. Recoveries are 90% or greater from peanuts and peanut butter spiked at the 0.1-2 ppm level. Reproducibility of the method depends on the food matrix and is 26% RSD in the worst case. Data are compared for the GC/MS method and the official EPA colorimetric procedure. Results showed a high bias in the colorimetric method, especially when roasted peanut products were analyzed.

  16. Micro-machined planar field asymmetric ion mobility spectrometer as a gas chromatographic detector

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Nazarov, E. G.; Miller, R. A.; Krylov, E. V.; Zapata, A. M.

    2002-01-01

    A planar high field asymmetric waveform ion mobility spectrometer (PFAIMS) with a micro-machined drift tube was characterized as a detector for capillary gas chromatography. The performance of the PFAIMS was compared directly to that of a flame ionization detector (FID) for the separation of a ketone mixture from butanone to decanone. Effluent from the column was continuously sampled by the detector and mobility scans could be obtained throughout the chromatographic analysis providing chemical inforrmation in mobility scans orthogonal to retention time. Limits of detection were approximately I ng for measurement of positive ions and were comparable or slightly better than those for the FID. Direct comparison of calibration curves for the FAIMS and the FID was possible over four orders of magnitude with a semi-log plot. The concentration dependence of the PFAIMS mobility scans showed the dependence between ion intensity and ion clustering, evident in other mobility spectrometers and atmospheric pressure ionization technologies. Ions were identified using mass spectrometry as the protonated monomer and the proton bound dimer of the ketones. Residence time for column effluent in the PFAIMS was calculated as approximately 1 ms and a 36% increase in extra-column broadening versus the FID occurred with the PFAIMS.

  17. A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Ambrose, J. L.; Zhou, Y.; Haase, K.; Mayne, H. R.; Talbot, R. W.; Sive, B. C.

    2010-12-01

    Hydrogen cyanide (HCN) is thought to be a unique, long lived atmospheric tracer for biomass burning emissions. Very few in-situ measurements of HCN have been made at Earth’s surface to date, yet they are critically needed to better evaluate the processes governing the distribution of HCN in the global atmosphere and to assess contributions of biomass burning to the composition and chemistry of ambient air. We developed a gas-chromatographic (GC) instrument with an aim to improve capabilities for measurement of HCN in the lower atmosphere. The main features of the instrument are (1) a cryogen-free cooler for sample dehumidification and enrichment, (2) a porous polymer PLOT column for analyte separation, (3) a flame thermionic detector (FTD) for sensitive and selective detection and (4) a dynamic dilution system for calibration. The instrument was deployed for a ~4 month period from January-June, 2010 at the AIRMAP atmospheric monitoring station Thompson Farm 2 (THF2) in rural Durham, New Hampshire, USA. A subset of the measurements will be presented with a detailed description of the instrument features and performance characteristics. The results demonstrate that the instrument is capable of making long term in-situ measurements of HCN in the lower atmosphere.

  18. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    SciTech Connect

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  19. Evolutionary multi-objective optimization based comparison of multi-column chromatographic separation processes for a ternary separation.

    PubMed

    Heinonen, Jari; Kukkonen, Saku; Sainio, Tuomo

    2014-09-05

    Performance characteristics of two advanced multi-column chromatographic separation processes with discontinuous feed, Multi-Column Recycling Chromatogrphy (MCRC) and Japan Organo (JO), were investigated for a ternary separation using multi-objective optimization with an evolutionary algorithm. Conventional batch process was used as a reference. Fractionation of a concentrated acid hydrolysate of wood biomass into sulfuric acid, monosaccharide, and acetic acid fractions was used as a model system. Comparison of the separation processes was based on selected performance parameters in their optimized states. Flow rates and step durations were taken as decision variables whereas the column configuration and dimensions were fixed. The MCRC process was found to be considerably more efficient than the other processes with respect to eluent consumption. The batch process gave the highest productivity and the JO process the lowest. Both of the multi-column processes gave significantly higher monosaccharide yield than the batch process. When eluent consumption and monosaccharide yield are taken into account together with productivity, the MCRC process was found to be the most efficient in the studied case.

  20. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds.

    PubMed

    Kagan, Isabelle A; Flythe, Michael D

    2014-03-27

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species.

  1. Evaluation of chromatographic columns packed with semi- and fully porous particles for benzimidazoles separation.

    PubMed

    Gonzalo-Lumbreras, Raquel; Sanz-Landaluze, Jon; Cámara, Carmen

    2015-07-01

    The behavior of 15 benzimidazoles, including their main metabolites, using several C18 columns with standard or narrow-bore diameters and different particle size and type were evaluated. These commercial columns were selected because their differences could affect separation of benzimidazoles, and so they can be used as alternative columns. A simple screening method for the analysis of benzimidazole residues and their main metabolites was developed. First, the separation of benzimidazoles was optimized using a Kinetex C18 column; later, analytical performances of other columns using the above optimized conditions were compared and then individually re-optimized. Critical pairs resolution, analysis run time, column type and characteristics, and selectivity were considered for chromatographic columns comparison. Kinetex XB was selected because it provides the shortest analysis time and the best resolution of critical pairs. Using this column, the separation conditions were re-optimized using a factorial design. Separations obtained with the different columns tested can be applied to the analysis of specific benzimidazoles residues or other applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thin-layer Chromatographic (TLC) Separations and Bioassays of Plant Extracts to Identify Antimicrobial Compounds

    PubMed Central

    Kagan, Isabelle A.; Flythe, Michael D.

    2014-01-01

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species. PMID:24747583

  3. Utilization of a diol-stationary phase column in ion chromatographic separation of inorganic anions.

    PubMed

    Arai, Kaori; Mori, Masanobu; Kozaki, Daisuke; Nakatani, Nobutake; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2012-12-28

    We describe the ion chromatographic separation of inorganic anions using a diol-stationary phase column (-CH(OH)CH(2)OH; diol-column) without charged functional groups. Anions were separated using acidic eluent as in typical anion-exchange chromatography. The retention volumes of anions on the diol-column increased with increasing H(+) concentration in the eluent. The anion-exchange capacities of diol-columns in the acidic eluent (pH 2.8) were larger than that of zwitterionic stationary phase column but smaller than that of an anion-exchange column. The separation of anions using the diol-column was strongly affected by the interaction of H(+) ions with the diol-functional groups and by the types of the eluents. In particular, the selection of the eluent was very important for controlling the retention time and resolution. Good separation was obtained using a diol-column (HILIC-10) with 5 mM phthalic acid as eluent. The limits of detection at a signal-to-noise ratio of 3 ranged from 1.2 to 2.7 μM with relative standard deviations (RSD, n=5) of 0.04-0.07% for the retention time and 0.4-2.0% for the peak areas. This method was successfully applied to the determination of H(2)PO(4)(-), Cl(-), and NO(3)(-) in a liquid fertilizer sample.

  4. Kinetics and equilibria of the chromatographic separation of maltose and trehalose.

    PubMed

    He, Dengjun; Zhou, Jiachun; Xia, Quanming; Jiang, Lihua; Qiu, Yongjun; Zhao, Liming

    2015-07-01

    Trehalose, a nonreducing disaccharide, has been extensively applied to food, cosmetics, and pharmaceutical goods. The resultant solution of trehalose prepared by enzymatic methods includes high amounts of maltose. However, it is quite difficult to separate maltose and trehalose on an industrial scale because of their similar properties. In this paper, a high-performance resin was selected as a stationary phase to separate trehalose and maltose, and the resolution of these sugars was 0.59. The potential of a cation exchange resin was investigated as the stationary phase in separating trehalose and maltose using deionized water as the mobile phase. Based on the equilibrium dispersive model, the axial dispersion coefficients and overall mass transfer coefficients of maltose and trehalose were determined by moment analysis at two different temperatures, 50 and 70°C. Other parameters, including the column void and the adsorption isotherms, were also determined and applied to simulate the elution curves of trehalose and maltose. The simulated results matched the experimental data, validating the parameters. The optimized parameters are critical to the chromatographic separation of trehalose and maltose on an industrial scale.

  5. The Construction of a Simple Pyrolysis Gas Chromatograph.

    ERIC Educational Resources Information Center

    Hedrick, Jack L.

    1982-01-01

    Describes a simple and inexpensive pyrolysis gas chromatography (PGC) system constructed from items available in undergraduate institutions. The system is limited, accepting only liquid samples and pyrolyzing "on the fly" rather than statically and not allowing for reductive pyrolysis. Applications, experiments, and typical results are included.…

  6. The Construction of a Simple Pyrolysis Gas Chromatograph.

    ERIC Educational Resources Information Center

    Hedrick, Jack L.

    1982-01-01

    Describes a simple and inexpensive pyrolysis gas chromatography (PGC) system constructed from items available in undergraduate institutions. The system is limited, accepting only liquid samples and pyrolyzing "on the fly" rather than statically and not allowing for reductive pyrolysis. Applications, experiments, and typical results are included.…

  7. Development of gas chromatographic system for dissolved organic carbon analysis in seawater

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1992-12-01

    During the first six months of this two-year grant, we have completed the construction of the analytical portion of a prototype gas chromatograph-based system for the analysis of dissolved organic carbon in seawater. We also have begun testing the procedures to be used to cryogenically concentrate and transfer carbon dioxide from the oxidizing atmosphere of the high-temperature furnace into the reducing hydrogen carrier gas of the gas chromatograph. During the second half of the first year, we will construct the high-temperature catalytic oxidation furnace and test the entire system on laboratory-prepared aqueous solutions of various organic compounds. Also during this period, we will take part in an initial scoping study within the Cape Hatteras field area on board the R/V Gyre. This study will involve both the collection of samples of seawater for organic and inorganic carbon analysis and the measurement of surface-water pCO[sub 2].

  8. Development of gas chromatographic system for dissolved organic carbon analysis in seawater. Annual progress report

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1992-12-01

    During the first six months of this two-year grant, we have completed the construction of the analytical portion of a prototype gas chromatograph-based system for the analysis of dissolved organic carbon in seawater. We also have begun testing the procedures to be used to cryogenically concentrate and transfer carbon dioxide from the oxidizing atmosphere of the high-temperature furnace into the reducing hydrogen carrier gas of the gas chromatograph. During the second half of the first year, we will construct the high-temperature catalytic oxidation furnace and test the entire system on laboratory-prepared aqueous solutions of various organic compounds. Also during this period, we will take part in an initial scoping study within the Cape Hatteras field area on board the R/V Gyre. This study will involve both the collection of samples of seawater for organic and inorganic carbon analysis and the measurement of surface-water pCO{sub 2}.

  9. Estimation of the vapor pressure of petroleum distillate fractions from gas chromatographic data

    SciTech Connect

    Eggertsen, F.T.; Nygard, N.R.; Nickoley, L.D.

    1980-11-01

    The vapor pressure of petroleum distillate fractions is estimated conveniently by applying ideal gas and solution laws to gas chromatographic data. The vapor pressure is computed as a summation of the partial pressures for carbon number groups in the chromatogram, each partial pressure being derived as the product of mole fraction, determined from the chromatogram, and saturation pressure, calculated using the Antoine equation. A rapid method of computation with a programmable calculator was used. The method assumes approximate conformance to Raoult's and Dalton's laws relating to partial pressures from a solution. The results generally agree well with values obtained manometrically. Advantages of the method are the general availability of suitable gas chromatographic equipment, convenience and speed of the procedure and calculations, applicability over a wide range of volatility, freedom from temperature equilibration problems, and small sample requirement. 4 figures, 6 tables.

  10. Comparison of two gas-liquid chromatograph columns for the analysis of fatty acids in ruminant meat.

    PubMed

    Alves, Susana P; Bessa, Rui J B

    2009-06-26

    Two gas-liquid chromatograph capillary columns for the analysis of fatty acids (FA) in ruminant fat are compared. Those columns are the CP-Sil 88 of 100 m long with a highly polar stationary phase and the Omegawax 250 of 30 m long with a stationary phase of intermediate polarity. Fatty acid methyl ester (FAME) patterns of branched-chain, cis and trans octadecenoate isomers, as well as conjugated and non-conjugated 18:2 and 18:3 isomers are fairly different between columns, even though most of the FAME could be separated on either column. However, the CP-Sil 88 showed better resolution of 18:1 isomers than Omegawax 250. The analysis of 96 samples of ruminant meat fat in both chromatographic systems showed that averages obtained for total FA content and for most of the individual FA did not differ between columns. Moreover, regression analysis of Omegawax and CP-Sil 88 data is highly correlated. Quantitative differences between chromatographic systems were detected for samples containing more than 66 mg fatty acids per gram of muscle dry matter.

  11. Chromatographic cation exchange separation of decigram quantities of californium and other transplutonium elements

    SciTech Connect

    Benker, D.E.; Chattin, F.R.; Collins, E.D.; Knauer, J.B.; Orr, P.B.; Ross, R.G.; Wiggins, J.T.

    1981-01-01

    Decigram quantities of highly radioactive transplutonium elements are routinely partitioned at TRU by chromatographic elution from cation resin using AHIB eluents. Batch runs containing up to 200 mg of /sup 252/Cf can be made in about 5 h (2 h to load the feed and 3 h for the elution), with two high-pressure ion exchange columns, a small one for the initial loading of the feed and a large one for the elution. The separations achieved in the column are preserved by routing the column effluent through an alpha detector and using the response from the detector to select appropriate product fractions. The high-pressure ion exchange process has been reliable and relatively easy to operate; therefore it will continue to be used for partitioning transplutonium elements at TRU. 3 figures, 1 table.

  12. HAPSITE(Trademark) Gas Chromatograph/Mass Spectrometer Variability Assessment

    DTIC Science & Technology

    2005-07-27

    in an uncharacterized chemical environment that involves chemical warfare agents (CWA) or toxic industrial chemicals ( TIC ). Gas Chromatography/Mass...Research Institute (MRI) in Kansas City, Missouri conducted a study to optimize the use of a tri-bed concentrator with TIC . The tni-bed concentrator...The remaining 81 TIC were added based on a Navy threat assessment of chemicals that could be used in a terrorist attack or potentially hazardous

  13. Comprehensive headspace gas chromatographic analysis of denaturants in denatured ethanol.

    PubMed

    van Boxtel, Niels; Wolfs, Kris; Guillén Palacín, Marta; Van Schepdael, Ann; Adams, Erwin

    2017-08-09

    To discourage consumption, ethanol is often denatured using both volatile (e.g., methyl ethyl ketone and isopropanol) and nonvolatile (e.g., denatonium benzoate) chemical substances. As a result, the analysis of denatured ethanol samples is usually performed by multiple techniques such as gas chromatography for the volatile denaturants and liquid chromatography for the nonvolatile ones. However, the need for multiple techniques increases the cost of analysis and forms a severe obstruction for on-site product control. Using the full evaporation technique combined with gas chromatography and flame ionization detection, only one analytical methodology has to be used here to determine both volatile and nonvolatile denaturants in denatured ethanol. Denatonium benzoate is determined as benzyl chloride following an in-vial reaction. Compared to conventional techniques, the novel method performs equally well, but it is simpler to apply. At the same time, drawbacks of alternative methods are circumvented such as equilibration issues and alterations to the stationary phase when using liquid chromatography with ion pairing agents or matrix effects when applying static headspace gas chromatography. The developed method showed good linearity, repeatability, and recovery toward all analytes and was applied to the analysis of commercial denatured ethanol for disinfection and ethanol-based windscreen washer fluids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Miniature radio-frequency mobility analyzer as a gas chromatographic detector for oxygen-containing volatile organic compounds, pheromones and other insect attractants.

    PubMed

    Eiceman, G A; Tadjikov, B; Krylov, E; Nazarov, E G; Miller, R A; Westbrook, J; Funk, P

    2001-05-11

    A high electric field, radio-frequency ion mobility spectrometry (RF-IMS) analyzer was used as a small detector in gas chromatographic separations of mixtures of volatile organic compounds including alcohols, aldehydes, esters, ethers, pheromones, and other chemical attractants for insects. The detector was equipped with a 2 mCi 63Ni ion source and the drift region for ion characterization was 5 mm wide, 15 mm long and 0.5 mm high. The rate of scanning for the compensation voltages was 60 V s(-1) and permitted four to six scans to be obtained across a capillary chromatographic elution profile for each component. The RF-IMS scans were characteristic of a compound and provided a second dimension of chemical identity to chromatographic retention adding specificity in instances of co-elution. Limits of detection were 1.6-55 x 10(-11) g with an average detection limit for all chemicals of 9.4 x 10(-11) g. Response to mass was linear from 2-50 x 10(-10) g with an average sensitivity of 4 pA ng(-1). Separations of pheromones and chemical attractants for insects illustrated the distinct patterns obtained from gas chromatography with RF-IMS scans in real time and suggest an analytical utility of the RF-IMS as a small, advanced detector for on-site gas chromatographs.

  15. Compatibilized Immiscible Polymer Blends for Gas Separations.

    PubMed

    Panapitiya, Nimanka; Wijenayake, Sumudu; Nguyen, Do; Karunaweera, Chamaal; Huang, Yu; Balkus, Kenneth; Musselman, Inga; Ferraris, John

    2016-07-30

    Membrane-based gas separation has attracted a great deal of attention recently due to the requirement for high purity gasses in industrial applications like fuel cells, and because of environment concerns, such as global warming. The current methods of cryogenic distillation and pressure swing adsorption are energy intensive and costly. Therefore, polymer membranes have emerged as a less energy intensive and cost effective candidate to separate gas mixtures. However, the use of polymeric membranes has a drawback known as the permeability-selectivity tradeoff. Many approaches have been used to overcome this limitation including the use of polymer blends. Polymer blending technology synergistically combines the favorable properties of different polymers like high gas permeability and high selectivity, which are difficult to attain with a single polymer. During polymer mixing, polymers tend to uncontrollably phase separate due to unfavorable thermodynamics, which limits the number of completely miscible polymer combinations for gas separations. Therefore, compatibilizers are used to control the phase separation and to obtain stable membrane morphologies, while improving the mechanical properties. In this review, we focus on immiscible polymer blends and the use of compatibilizers for gas separation applications.

  16. Compatibilized Immiscible Polymer Blends for Gas Separations

    PubMed Central

    Panapitiya, Nimanka; Wijenayake, Sumudu; Nguyen, Do; Karunaweera, Chamaal; Huang, Yu; Balkus, Kenneth; Musselman, Inga; Ferraris, John

    2016-01-01

    Membrane-based gas separation has attracted a great deal of attention recently due to the requirement for high purity gasses in industrial applications like fuel cells, and because of environment concerns, such as global warming. The current methods of cryogenic distillation and pressure swing adsorption are energy intensive and costly. Therefore, polymer membranes have emerged as a less energy intensive and cost effective candidate to separate gas mixtures. However, the use of polymeric membranes has a drawback known as the permeability-selectivity tradeoff. Many approaches have been used to overcome this limitation including the use of polymer blends. Polymer blending technology synergistically combines the favorable properties of different polymers like high gas permeability and high selectivity, which are difficult to attain with a single polymer. During polymer mixing, polymers tend to uncontrollably phase separate due to unfavorable thermodynamics, which limits the number of completely miscible polymer combinations for gas separations. Therefore, compatibilizers are used to control the phase separation and to obtain stable membrane morphologies, while improving the mechanical properties. In this review, we focus on immiscible polymer blends and the use of compatibilizers for gas separation applications. PMID:28773766

  17. Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates.

    PubMed

    Yu, Wei W; White, Ian M

    2013-07-07

    In principle, surface enhanced Raman spectroscopy (SERS) is thought to provide unique identification of a target analyte, even in complex samples or in the presence of multiple analytes. In practice, however, this is not always true for real-world samples due to various forms of interference. In this report, we build upon our previous work on inkjet-printed SERS substrates by using paper and polymer membranes to integrate sample cleanup and analyte separation with SERS detection. Inkjet-printed paper SERS substrates provide a highly sensitive chemical detection platform of unprecedented cost and simplicity. In addition, paper inherently provides unique capabilities, such as capillary-actuated fluid transport and selective molecular retention. Utilizing these properties, we demonstrate two-dimensional chromatographic separation and SERS detection on inkjet-printed paper SERS substrates. Then, we leverage the separation properties of paper and polymer membranes for real applications that feature complex sample matrices, including the detection of down to 5 ppm melamine in infant formula, as well as the quantification of nanograms of heroin in samples contaminated with a highly fluorescent background. The results presented here demonstrate that inkjet-printed paper SERS devices not only provide advantages in terms of sensitivity and cost, but the paper provides inherently integrated sample cleanup capabilities that are not available in traditional SERS substrates and microfluidic SERS devices. These unique capabilities of paper SERS devices enable the identification of targeted analytes even in complex real-world samples.

  18. Effect of Coriolis force on counter-current chromatographic separation by centrifugal partition chromatography.

    PubMed

    Ikehata, Jun-Ichi; Shinomiya, Kazufusa; Kobayashi, Koji; Ohshima, Hisashi; Kitanaka, Susumu; Ito, Yoichiro

    2004-02-06

    The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.

  19. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    PubMed

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.

  20. SEPARATION OF GAS MIXTURES BY THERMOACOUSTIC WAVES

    SciTech Connect

    G.W. SWIFT; D.A. GELLER; P.S. SPOOR

    2001-06-01

    Imposing sound on a binary gas mixture in a duct separates the two gases along the acoustic-propagation axis. Mole-fraction differences as large as 10% and separation fluxes as high as 0.001 M-squared c, where M is Mach number and c is sound speed, are easily observed. We describe the accidental discovery of this phenomenon in a helium-xenon mixture, subsequent experiments with a helium-argon mixture, and theoretical developments. The phenomenon occurs because a thin layer of the gas adjacent to the wall is immobilized by viscosity while the rest of the gas moves back and forth with the wave, and the heat capacity of the wall holds this thin layer of the gas at constant temperature while the rest of the gas experiences temperature oscillations due to the wave's oscillating pressure. The oscillating temperature gradient causes the light and heavy atoms in the gas to take turns diffusing into and out of the immobilized layer, so that the oscillating motion of the wave outside the immobilized layer tends to carry light-enriched gas in one direction and heavy-enriched gas in the opposite direction. Experiment and theory are in very good agreement for the initial separation fluxes and the saturation mole-fraction differences.

  1. Separation of gas mixtures by thermoacoustic waves.

    SciTech Connect

    Swift, G. W.; Geller, D. A.

    2001-01-01

    Imposing sound on a binary gas mixture in a duct separates the two gases along the acoustic-propagation axis. Mole-fraction differences as large as 10% and separation fluxes as high as 0.001 M-squared c, where M is Mach number and c is sound speed, are easily observed. We describe the accidental discovery of this phenomenon in a helium-xenon mixture, subsequent experiments with a helium-argon mixture, and theoretical developments. The phenomenon occurs because a thin layer of the gas adjacent to the wall is immobilized by viscosity while the rest of the gas moves back and forth with the wave, and the heat capacity of the wall holds this thin layer of the gas at constant temperature while the rest of the gas experiences temperature oscillations due to the wave's oscillating pressure. The oscillating temperature gradient causes the light and heavy atoms in the gas to take turns diffusing into and out of the immobilized layer, so that the oscillating motion of the wave outside the immobilized layer tends to carry light-enriched gas in one direction and heavy-enriched gas in the opposite direction. Experiment and theory are in very good agreement for the initial separation fluxes and the saturation mole-fraction differences.

  2. Gas Chromatographic Analysis of Acidic Indole Auxins in Nicotiana1

    PubMed Central

    Bayer, Margret H.

    1969-01-01

    Acidic indole auxins have been extracted from N. glauca, N. langsdorffii and their 2 tumor-prone 4n- and 2n-hybrids. After purification of the extracts and thin-layer chromatography, acidic indoles were subjected to esterification and gas chromatography. The esters of 4 indole acids were detected and determined: indole-3-acetic acid, indole-3-carboxylic acid, indole-3-propionic acid and indole-3-butyric acid. The indolic nature of fractionated samples was confirmed by spectrophotofluorometry and the physiological significance of the indole esters proven in a biotest. A substantial increase in extractable indole-3-butyric acid in the tumor-prone hybrids suggests an additional pathway of auxin synthesis in these tissues. PMID:5774173

  3. Gas Strut Separation Alternative for Ares I

    NASA Technical Reports Server (NTRS)

    Floyd, Brian; Owens, James

    2008-01-01

    This paper presents a design alternative and the rationale for a stage separation system based on Metering Adiabatic Gas Struts (MAG Struts) for the Ares 1 launch vehicle. The MAG Strut separation system was proposed as an alternative to the current Ares 1 separation system, which relies on small solid rocket motors to provide the main separation force. This paper will describe technical issues that were addressed during the trade study and present a conceptual design of the strut system that best resolved the issues. Needed development testing and programmatic considerations will be addressed as part of the paper.

  4. Gas chromatographic analysis of polyhydroxybutyrate in activated sludge: a round-robin test.

    PubMed

    Baetens, D; Aurola, A M; Foglia, A; Dionisi, D; van Loosdrecht, M C M

    2002-01-01

    Polyhydroxyalkanoates (PHA) and poly-beta-hydroxybutyrate (PHB) in particular have become compounds which is routinely investigated in wastewater research. The PHB analysis method has only recently been applied to activated sludge samples where PHA contents might be relatively low. This urges the need to investigate the reproducibility of the gas chromatographic method for PHB analysis. This was evaluated in a round-robin test in 5 European laboratories with samples from lab-scale and full-scale enhanced biological phosphorus removal systems. It was shown that the standard deviation of measurements in each lab and the reproducibility between the labs was very good. Experimental results obtained by different laboratories using this analysis method can be compared. Sludge samples with PHB contents varying between 0.3 and 22.5 mg PHB/mg sludge were analysed. The gas chromatographic method allows for PHV, PH2MB and PH2MV analysis as well.

  5. [Optimization of two-dimensional high performance liquid chromatographic columns for highly efficient separation of intact proteins].

    PubMed

    Hong, Guangfeng; Gao, Mingxia; Yan, Guoquan; Guan, Xia; Tao, Qian; Zhang, Xiangmin

    2010-02-01

    In order to optimize two-dimensional liquid chromatographic (2D-LC) columns for highly efficient separation of proteins, several liquid chromatographic columns were investigated and evaluated. Weak anion-exchange (WAX) column was chosen as the first dimension because of its extensive protein separation power. By comparison of different WAX chromatographic columns for human liver protein separation, TSKgel DEAE-5PW column was selected as the first dimension of a 2D-LC system. For the second dimension, ten typical reversed-phase (RP) LC columns (250 mm x 4.6 mm, 5 microm, 30 nm) were investigated and evaluated. Their silica based RP stationary phases were butyl (C4), octyl (C8) or octadecyl (C18). To evaluate the retention behavior and non-specific protein adsorption ability of these ten columns, four neutral compounds (uracil, nitrobenzene, naphthalene and fluorene) and three standard proteins (cytochrome C, myoglobin and albumin from chicken egg white) were adopted and separated by RPLC. Meantime, WAX fractions were used to investigate the separation ability of different alkyl-bonded silica stationary phase columns for complex protein samples. By comparison of column separation efficiency, adsorption of intact proteins and sample analysis, Jupiter 300 C4 column was finally employed for its excellent separation ability. Optimization of WAX and RPLC columns offers reliable foundation for the construction of 2D-LC protein separation systems.

  6. Gas-chromatographic screening of capsular polysaccharides of Neisseria meningitidis.

    PubMed

    Bryn, K; Frøholm, L O; Holten, E; Bøvre, K

    1983-06-01

    Thirteen systemic strains, i e strains isolated from systemic infections, and 77 carrier isolates of Neisseria meningitidis were serogrouped by agglutination and analyzed by gas chromatography (GC) of phenol extracts. For systemic strains the sugar patterns were in accordance with their group-specific capsular polysaccharides (CPS). Some carrier isolates revealed unexpected GC profiles. Upon immunological retesting with new sera, GC results were generally confirmed. Occasional isolates initially serogrouped as B or Y completely lacked neuraminic acid. Some non-groupable isolates were shown by ultracentrifugation and GC to have significant amounts of this sugar likely to originate from CPS of known composition or from unknown polysaccharides. One such originally non-groupable isolate showed a weak agglutination reaction specifically with group B antiserum when reexamined. Generally, carrier isolates had lower amounts of CPS than systemic strains of the same group. Five successive isolates from one carrier were first serogrouped as X, Z or non-groupable, but they had high amounts of galactosamine and 2-keto-3-deoxy octonate, sugars characterizing CPS of serogroup 29E. These isolates were confirmed by agglutination with recently available group 29E antiserum to be of this serogroup, which has not been reported before in Norway. Ultracentrifugation revealed the presence of unknown polysaccharides containing glucose, galactose or glucosamine, but further purification of these polymers is required to determine their composition and immunological importance.

  7. Gas chromatographic determination of pesticide residues in white mustard.

    PubMed

    Słowik-Borowiec, Magdalena; Szpyrka, Ewa; Walorczyk, Stanisław

    2015-04-15

    A new analytical method employing gas chromatography coupled to electron capture and nitrogen phosphorus detection (GC-ECD/NPD) has been developed and validated for the screening and quantification of 51 pesticides in a matrix of high chlorophyll content - white mustard (Sinapis alba L.). For preparation of the sample extract, the citrate buffered QuEChERS procedure was followed. However certain changes were made to adapt the method to our needs and available laboratory resources. The sample size was reduced to 5 g, 10 mL water was added and exchange of solvent before GC analysis was done. The samples spiked with the target pesticides at the concentration level 0.01 mg/kg and a higher level (depending on the compound) yielded average recoveries in the range of 70-120% with relative standard deviations (RSDs) 0-19% except for HCB, S-metolachlor and teflubenzuron, and displayed very good linearity (R(2)>0.99) for nearly all the analytes. Limit of quantification was 0.01 mg/kg for the majority of the analytes. The expanded measurement uncertainties were estimated employing a "top-down" empirical model as being between 6% and 32% and yielding an average value of 18% (coverage factor k=2, confidence level 95%).

  8. Portable gas chromatograph mass spectrometer for on-site chemical analyses

    DOEpatents

    Haas, Jeffrey S.; Bushman, John F.; Howard, Douglas E.; Wong, James L.; Eckels, Joel D.

    2002-01-01

    A portable, lightweight (approximately 25 kg) gas chromatograph mass spectrometer, including the entire vacuum system, can perform qualitative and quantitative analyses of all sample types in the field. The GC/MS has a conveniently configured layout of components for ease of serviceability and maintenance. The GC/MS system can be transported under operating or near-operating conditions (i.e., under vacuum and at elevated temperature) to reduce the downtime before samples can be analyzed on-site.

  9. Separation of gas mixtures by supported complexes

    SciTech Connect

    Nelson, D.A.; Lilga, M.A.; Hallen, R.T.; Lyke, S.E.

    1986-08-01

    The goal of this program is to determine the feasibility of solvent-dissolved coordination complexes for the separation of gas mixtures under bench-scale conditions. In particular, mixtures such as low-Btu gas are examined for CO and H/sub 2/ separation. Two complexes, Pd/sub 2/(dpm)/sub 2/Br/sub 2/ and Ru(CO)/sub 2/(PPh/sub 3/)/sub 3/, were examined in a bench-scale apparatus for the separation of binary (CO-N/sub 2/ or H/sub 2/-N/sub 2/) and quinary (H/sub 2/, CO, CO/sub 2/, CH/sub 4/, and N/sub 2/) mixtures. The separation of CO-N/sub 2/ was enhanced by the presence of the palladium complex in the 1,1,2-trichloroethane (TCE) solvent, especially at high gas and low liquid rates. The five-component gas mixture separation with the palladium complex in TCE provided quite unexpected results based on physical solubility and chemical coordination. The complex retained CO, while the solvent retained CO/sub 2/, CH/sub 4/, and N/sub 2/ to varying degrees. This allowed the hydrogen content to be enhanced due to its low solubility in TCE and inertness to the complex. Thus, a one-step, hydrogen separation can be achieved from gas mixtures with compositions similar to that of oxygen-blown coal gas. A preliminary economic evaluation of hydrogen separation was made for a system based on the palladium complex. The palladium system has a separation cost of 50 to 60 cents/MSCF with an assumed capital investment of $1.60/MSCF of annual capacity charged at 30% per year. This assumes a 3 to 4 year life for the complex. Starting with a 90% hydrogen feed, PSA separation costs are in the range of 30 to 50 cents/MSCF. The ruthenium complex was not as successful for hydrogen or carbon monoxide separation due to unfavorable kinetics. The palladium complex was found to strip hydrogen gas from H/sub 2/S. The complex could be regenerated with mild oxidants which removed the sulfur as SO/sub 2/. 24 refs., 26 figs., 10 tabs.

  10. Evaluation of the separation performance of polyvinylpyrrolidone as a virtual stationary phase for chromatographic NMR.

    PubMed

    Huang, Shaohua; Wu, Rui; Bai, Zhengwu; Yang, Ying; Li, Suying; Dou, Xiaowei

    2014-09-01

    Polyvinylpyrrolidone (PVP) was used as a virtual stationary phase to separate p-xylene, benzyl alcohol, and p-methylphenol by the chromatographic NMR technique. The effects of concentration and weight-average molecular weight (Mw) of PVP, solvent viscosity, solvent polarity, and sample temperature on the resolution of these components were investigated. It was found that both higher PVP concentration and higher PVP Mw caused the increase of diffusion resolution for the three components. Moreover, the diffusion resolution did not change at viscosity-higher solvents. Moreover, the three components showed different resolution at different solvents. As temperature increased, the diffusion resolution between p-xylene and benzyl alcohol gradually increased, and the one between p-xylene and p-methylphenol slightly increased from 278 to 298 K and then decreased above 298 K. It was also found that the polarity of the analytes played an important role for the separation by affecting the diffusion coefficient. Copyright © 2014 John Wiley & Sons, Ltd.

  11. A novel and effective chromatographic approach to the separation of isoflavone derivatives from Pueraria lobata.

    PubMed

    Fu, Jiang; Jing, Wenguang; Wang, Weihao; Chen, Sha; Zhang, Jun; Liu, An

    2015-03-05

    A novel and effective chromatographic approach to the separation and purification of isoflavone compounds from Pueraria lobata is described. The method is based on flash chromatography (FC), coupled to preparative high performance liquid chromatography (prep-HPLC) via a six-way valve. The FC step comprised tandem reversed phase columns, pre-packed with MCI gel (Mitsubishi Chemical Corp., Tokyo, Japan) and C18 (Fuji Silysia Chemical Ltd, Osaka, Japan) resin, respectively, and was designed to separate a crude Pueraria lobata extract into several preliminary fractions. Fractions containing the target compounds were then directly injected via the six-way valve into prep-HPLC columns, without further treatment, for final isolation and purification. Nine isoflavonoids were successfully isolated, three through an online mode and the other six through an offline mode. The purities of all compounds exceeded 95.0%, as determined by HPLC with an UV-vis photodiode array detector. The convenience, low solvent consumption, and time-saving advantages of this method offer an attractive and promising approach to the isolation of natural products.

  12. Gas chromatographic determination of triclopyr in fruits and vegetables.

    PubMed

    Ting, K C; Lee, C S

    1995-01-20

    This research was comprised of two parts: quantitative analyses, and confirmatory test. In the quantitative analyses, five classes of fruits and vegetables comprising 10 individual commodities were fortified with triclopyr herbicide at 0.4 and 0.8 ppm level. Triclopyr was extracted from the matrices and derivatized separately to 2-chloroethylene ester with 2-chloroethanol-BCl3 and methyl ester with diazomethane. The esters were then quantitated by GC-ECD and GC-NPD. The GC-ECD recoveries for 2-chloroethylene ester were 100.0% and 100.7% at 0.4 ppm and 0.8 ppm fortification levels, respectively, whereas methyl ester recovery was 103.9% at 0.4 ppm fortification level. Similarly, the GC-NPD recoveries for 2-chloroethylene ester were 99.0% and 97.9% at 0.4 ppm and 0.8 ppm fortification levels respectively, whereas methyl ester recovery was 102.0% at 0.4 ppm fortification level. In the confirmatory test, the 2-chloroethylene ester was introduced into a GC-ion trap. The EI mass spectrum was then interpreted based on the criteria of molecular ion, isotopes, base ion, characteristic ions and the nitrogen rule. Compared to existing methods, this method has reduced partition solvents to nearly one-tenth. In addition, this method proved to be simple, fast, safe and accurate.

  13. Comparison of gas chromatographic hyphenated techniques for mercury speciation analysis.

    PubMed

    Nevado, J J Berzas; Martín-Doimeadios, R C Rodríguez; Krupp, E M; Bernardo, F J Guzmán; Fariñas, N Rodríguez; Moreno, M Jiménez; Wallace, D; Ropero, M J Patiño

    2011-07-15

    In this study, we evaluate advantages and disadvantages of three hyphenated techniques for mercury speciation analysis in different sample matrices using gas chromatography (GC) with mass spectrometry (GC-MS), inductively coupled plasma mass spectrometry (GC-ICP-MS) and pyrolysis atomic fluorescence (GC-pyro-AFS) detection. Aqueous ethylation with NaBEt(4) was required in all cases. All systems were validated with respect to precision, with repeatability and reproducibility <5% RSD, confirmed by the Snedecor F-test. All methods proved to be robust according to a Plackett-Burnham design for 7 factors and 15 experiments, and calculations were carried out using the procedures described by Youden and Steiner. In order to evaluate accuracy, certified reference materials (DORM-2 and DOLT-3) were analyzed after closed-vessel microwave extraction with tetramethylammonium hydroxide (TMAH). No statistically significant differences were found to the certified values (p=0.05). The suitability for water samples analysis with different organic matter and chloride contents was evaluated by recovery experiments in synthetic spiked waters. Absolute detection and quantification limits were in the range of 2-6 pg for GC-pyro-AFS, 1-4 pg for GC-MS, with 0.05-0.21 pg for GC-ICP-MS showing the best limits of detection for the three systems employed. However, all systems are sufficiently sensitive for mercury speciation in environmental samples, with GC-MS and GC-ICP-MS offering isotope analysis capabilities for the use of species-specific isotope dilution analysis, and GC-pyro-AFS being the most cost effective alternative.

  14. UPGRADING NATURAL GAS VIA MEMBRANE SEPARATION PROCESSES

    SciTech Connect

    S.A.Stern; P.A. Rice; J. Hao

    2000-03-01

    The objective of the present study is to assess the potential usefulness of membrane separation processes for removing CO{sub 2} and H{sub 2}S from low-quality natural gas containing substantial amounts of both these ''acid'' gases, e.g., up to 40 mole-% CO{sub 2} and 10 mole-% H{sub 2}S. The membrane processes must be capable of upgrading the crude natural gas to pipeline specifications ({le} 2 mole-% CO{sub 2}, {le} 4 ppm H{sub 2}S). Moreover, these processes must also be economically competitive with the conventional separation techniques, such as gas absorption, utilized for this purpose by the gas industry.

  15. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.

    PubMed

    Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping

    2015-08-07

    A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.

  16. Crosslinked Polybenzimidazole Membrane For Gas Separation

    DOEpatents

    Jorgensen, Betty S.; Young, Jennifer S.; Espinoza, Brent F.

    2005-09-20

    A cross-linked, supported polybenzimidazole membrane for gas separation is prepared by layering a solution of polybenzimidazole (PBI) and a,a'dibromo-p-xylene onto a porous support and evaporating solvent. A supported membrane of cross-linked poly-2,2'-(m-phenylene)-5,5'-bibenzimidazole unexpectedly exhibits an enhanced gas permeability compared to the non-cross linked analog at temperatures over 265° C.

  17. Gas chromatographic determination of residual solvents in lubricating oils and waxes

    SciTech Connect

    De Andrade Bruening, I.M.R.

    1983-10-01

    A direct gas-liquid chromatographic analysis of residual solvents is described, using tert-butylbenzene as an internal standard. The lube oils and waxes were prevented from contaminating the chromatographic column by injecting the samples directly into a precolumn containing a silicone stationary phase. The samples of lube oils and waxes were injected directly into the chromatographic column containing another stationary phase, 1,2,3-tris(2-cyanoethoxy)propane. (The waxy samples were dissolved in a light neutral oil). With proper operating conditions, analysis time was 7 min. The procedure has been applied in the control of a lube oil dewaxing plant; the chromatographic column showed no sign of deterioration after 1 h when the precolumn was removed. Known amounts of toluene and methylethyl ketone were added to the solvent-free lubricating oils and wax, and these mixtures were analyzed to evaluate the accuracy of the procedure. Precision and accuracy of these data are comparable to those of methods previously described. 1 figure, 1 table.

  18. Hollow fiber inorganic membranes for gas separations

    SciTech Connect

    Way, J.D. ); Roberts, D.L. )

    1992-01-01

    There is increasing interest to develop high temperature, high pressure membrane technology to perform a variety of gas separations such as acid gas removal from synthetic gas streams found in coal-fired power generation systems, hydrogen recovery in petrochemical production, and CO/H{sub 2} ratio adjustment in the production of oxychemicals. Pure gas permeabilities of He, H{sub 2}, CO{sub 2}, N{sub 2}, and CO were measured for microporous silica hollow fiber membranes as a function of temperature. The transport mechanism for gas permeation is clearly non-Knudsen since several heavier gases permeate faster then lighter gases. An excellent correlation is obtained between permeability and kinetic diameter of the penetrant. The proposed mass transfer mechanism is a combination of surface diffusion and molecular sieving. High ideal separation factors (permeability ratios) are observed at 343 K for H{sub 2}/N{sub 2} and H{sub 2}/CO of 163 62.4, respectively, which compare very favorably with polymeric and molecular sieve gas separation membranes.

  19. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  20. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  1. Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph

    NASA Astrophysics Data System (ADS)

    Iwaya, Takamitsu; Akao, Shingo; Sakamoto, Toshihiro; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    In the field of environmental measurement and security, a portable gas chromatograph (GC) is required for the on-site analysis of multiple hazardous gases. Although the gas separation column has been downsized using micro-electro-mechanical-systems (MEMS) technology, an MEMS column made of silicon and glass still does not have sufficient robustness and a sufficiently low fabrication cost for a portable GC. In this study, we fabricated a robust and inexpensive high-precision metal MEMS column by combining diffusion-bonded etched stainless-steel plates with alignment evaluation using acoustic microscopy. The separation performance was evaluated using a desktop GC with a flame ionization detector and we achieved the high separation performance comparable to the best silicon MEMS column fabricated using a dynamic coating method. As an application, we fabricated a palm-size surface acoustic wave (SAW) GC combining this column with a ball SAW sensor and succeeded in separating and detecting a mixture of volatile organic compounds.

  2. A Gas Chromatograph/Mass Spectrometer System for UltraLow-Emission Combustor Exhaust Studies

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Wey, Chowen Chou

    1996-01-01

    A gas chromatograph (GC)/mass spectrometer (MS) system that allows the speciation of unburnt hydrocarbons in the combustor exhaust has been developed at the NASA Lewis Research Center. Combustion gas samples are withdrawn through a water-cooled sampling probe which, when not in use, is protected from contamination by a high-pressure nitrogen purge. The sample line and its connecting lines, filters, and valves are all ultraclean and are heated to avoid condensation. The system has resolution to the parts-per-billion (ppb) level.

  3. Gas-chromatographic analysis of high-purity helium using a helium detector

    SciTech Connect

    Krylov, V.A.; Aleksandrov, S.D.; Krasotskii, S.G.; Chernyatin, A.K.; Shkrunina, T.V.

    1986-10-10

    The limits of gas-chromatographic detection of neon, hydrogen, argon, nitrogen, krypton, and methane in helium have been determined using a helium ionization detector under saturation current conditions. The detection limits are restricted by the gas permeability of the detector Teflon body and the injection system. The dependence of extraction of impurity gases by cryogenic adsorption enrichment on their contents and enrichment time has been examined. the relative detection limit can be lowered by preconcentration of 3 x 10/sup -5/% for neon and to 4 x 10/sup -7/ to 2 x 10/sup -8/% for other gases.

  4. Metering Gas Strut for Separating Rocket Stages

    NASA Technical Reports Server (NTRS)

    Floyd, Brian

    2010-01-01

    A proposed gas strut system would separate a liquid-fueled second rocket stage from a solid-fueled first stage using an array of pre-charged struts. The strut would be a piston-and-cylinder mechanism containing a compressed gas. Adiabatic expansion of the gas would drive the extension of the strut. The strut is designed to produce a force-versus-time profile, chosen to prevent agitation of the liquid fuel, in which the force would increase from an initial low value to a peak value, then decay toward the end of the stroke. The strut would include a piston chamber and a storage chamber. The piston chamber would initially contain gas at a low pressure to provide the initial low separation force. The storage chamber would contain gas at a higher pressure. The piston would include a longitudinal metering rod containing an array of small holes, sized to restrict the flow gas between the chambers, that would initially not be exposed to the interior of the piston chamber. During subsequent expansion, the piston motion would open more of the metering holes between the storage and piston chambers, thereby increasing the flow of gas into the piston chamber to produce the desired buildup of force.

  5. Optimization of the Finnigan MAT 5100 Capillary Gas Chromatograph-Mass Spectrometer for the Analysis of Polychlorinated Biphenyls.

    DTIC Science & Technology

    1986-11-01

    FINNIGAN MAT 5100 CAPILLARY GAS CHROMATOGRAPH-MASS SPECTROMETER FOR THE ANALYSIS OF POLYCHLORINATED BIPHENYLS J.A. Hiltz - J. Power ,¢., DJ : .,:.JAN 1 4...CAPILLARY GAS CHROMATOGRAPH-MASS SPECTROMETER FOR THE ANALYSIS OF POLYCHLORINATED BIPHENYLS J.A. Hiltz - J.J. Power November 1986 Approved by B.F. Peters A...INTRODUCTION The use of polychlorinated biphenyls (PCBs) as dielectric fluids in electrical transformers and capacitors has been commomplace over the

  6. Toward a microfabricated preconcentrator-focuser for a wearable micro-scale gas chromatograph.

    PubMed

    Bryant-Genevier, Jonathan; Zellers, Edward T

    2015-11-27

    This article describes work leading to a microfabricated preconcentrator-focuser (μPCF) designed for integration into a wearable microfabricated gas chromatograph (μGC) for monitoring workplace exposures to volatile organic compounds (VOCs) ranging in vapor pressure from ∼0.03 to 13kPa at concentrations near their respective Threshold Limit Values. Testing was performed on both single- and dual-cavity, etched-Si μPCF devices with Pyrex caps and integrated resistive heaters, packed with the graphitized carbons Carbopack X (C-X) and/or Carbopack B (C-B). Performance was assessed by measuring the 10% breakthrough volumes and injection bandwidths of a series of VOCs, individually and in mixtures, as a function of the VOC air concentrations, mixture complexity, sampling and desorption flow rates, adsorbent masses, temperature, and the injection split ratio. A dual-cavity device containing 1.4mg of C-X and 2.0mg of C-B was capable of selectively and quantitatively capturing a mixture of 14 VOCs at low-ppm concentrations in a few minutes from sample volumes sufficiently large to permit detection at relevant concentrations for workplace applications with the μGC detector that we ultimately plan to use. Thermal desorption at 225°C for 40s yielded ≥99% desorption of all analytes, and injected bandwidths as narrow as 0.6s facilitated efficient separation on a downstream 6-m GC column in <3min. A preconcentration factor of 620 was achieved for benzene from a sample of just 31mL. Increasing the mass of C-X to 2.3mg would be required for exhaustive capture of the more volatile target VOCs at high-ppm concentrations.

  7. A method for the analysis of tabun in multisol using gas chromatographic flame photometric detection.

    PubMed

    Logan, Thomas P; Allen, Edward D; Way, Mark R; Swift, Austin T; Soni, Sunil-Datta; Koplovitz, Irwin

    2006-01-01

    Preparation and analysis of tabun (GA) solutions are necessary for the continued development of countermeasures to this nerve agent. GA solutions must be stable and compatible for use in the test systems chosen for study; however, GA is very unstable in saline solutions. In the past we have found GA in saline at 2 mg/mL to be stable for a month or less at -70 degrees C, whereas saline solutions of sarin (GB), soman (GD), and cyclosarin (GF) were stable for many months. Previous studies have shown that Multisol (48.5% H(2)O, 40% propylene glycol, 10% ethanol, and 1.5% benzyl alcohol) provides stable solutions of GA. We confirmed the stability of GA in Multisol with phosphorus nuclear magnetic resonance (P horizontal line NMR) and developed a method for the analysis of GA in Multisol using gas chromatographic flame photometric detection (GCFPD) in the phosphorus mode. The GC method used acetonitrile (CH(3)CN) for a dilution solvent because of its miscibility with GA in chloroform (CHCl(3)) standards and GA in Multisol samples at 1% (v/v). Furthermore, the dilutions with CH(3)CN made the phosphorus mode interference peak present in CHCl(3) analytically manageable, reduced the interferences of Multisol in the GC separation, and contributed to a safe and reliable analysis of GA at 20 mug/mL. We demonstrated the stability of GA in Multisol stored for more than a year at 70 degrees C. This method contributes a suitable technique for the preparation and analysis of reliable solutions of GA in nerve agent medical research and demonstrates the extended stability of GA in Multisol.

  8. Ion Exchange and Thin Layer Chromatographic Separation and Identification of Amino Acids in a Mixture: An Experiment for General Chemistry and Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Caslavka, Katelyn E.; Van Groningen, Karinne

    2014-01-01

    A multiday laboratory exercise is described that is suitable for first-year undergraduate chemistry, biochemistry, or biotechnology students. Students gain experience in performing chromatographic separations of biomolecules, in both a column and thin layer chromatography (TLC) format. Students chromatographically separate amino acids (AA) in an…

  9. Ion Exchange and Thin Layer Chromatographic Separation and Identification of Amino Acids in a Mixture: An Experiment for General Chemistry and Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Caslavka, Katelyn E.; Van Groningen, Karinne

    2014-01-01

    A multiday laboratory exercise is described that is suitable for first-year undergraduate chemistry, biochemistry, or biotechnology students. Students gain experience in performing chromatographic separations of biomolecules, in both a column and thin layer chromatography (TLC) format. Students chromatographically separate amino acids (AA) in an…

  10. Pump Propels Liquid And Gas Separately

    NASA Technical Reports Server (NTRS)

    Harvey, Andrew; Demler, Roger

    1993-01-01

    Design for pump that handles mixtures of liquid and gas efficiently. Containing only one rotor, pump is combination of centrifuge, pitot pump, and blower. Applications include turbomachinery in powerplants and superchargers in automobile engines. Efficiencies lower than those achieved in separate components. Nevertheless, design is practical and results in low consumption of power.

  11. Gas separation using ultrasound and light absorption

    DOEpatents

    Sinha, Dipen N [Los Alamos, NM

    2012-07-31

    An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

  12. Using precipitation by polyamines as an alternative to chromatographic separation in antibody purification processes.

    PubMed

    Ma, Junfen; Hoang, Hai; Myint, Thomas; Peram, Thanmaya; Fahrner, Robert; Chou, Judy H

    2010-03-15

    Polyamine precipitation conditions for removing host cell protein impurities from the cell culture fluid containing monoclonal antibody were studied. We examined the impact of polyamine concentration, size, structure, cell culture fluid pH and ionic strength. A 96-well microtiter plate based high throughput screening method was developed and used for evaluating different polyamines. Polyallylamine, polyvinylamine, branched polyethyleneimine and poly(dimethylamine-co-epichlorohydrin-ethylenediamine) were identified as efficient precipitants in removing host cell protein impurities. Leveraging from the screening results, we incorporated a polyamine precipitation step into a monoclonal antibody purification process to replace the Protein A chromatography step. The optimization of the overall purification process was performed by taking the mechanisms of both precipitation and chromatographic separation into account. The precipitation-containing process removed a similar amount of process-related impurities, including host cell proteins, DNA, insulin and gentamicin and maintained similar product quality in respect of size and charge variants to chromatography based purification. Overall recovery yield was comparable to the typical Protein A affinity chromatography based antibody purification process.

  13. Novel chromatographic separation and carbon solid-phase extraction of acetanilide herbicide degradation products.

    PubMed

    Shoemaker, Jody A

    2002-01-01

    One acetamide and 5 acetanilide herbicides are currently registered for use in the United States. Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of these acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. Alachlor ESA and other acetanilide degradation products are listed on the U.S. Environmental Protection Agency's (EPA) 1998 Drinking Water Contaminant Candidate List. Consequently, EPA is interested in obtaining national occurrence data for these contaminants in drinking water. EPA currently does not have a method for determining these acetanilide degradation products in drinking water; therefore, a research method is being developed using liquid chromatography/negative ion electrospray/mass spectrometry with solid-phase extraction (SPE). A novel chromatographic separation of the acetochlor/alachlor ESA and OA structural isomers was developed which uses an ammonium acetate-methanol gradient combined with heating the analytical column to 70 degrees C. Twelve acetanilide degradates were extracted by SPE from 100 mL water samples using carbon cartridges with mean recoveries >90% and relative standard deviations < or =16%.

  14. Surface-modified polystyrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins.

    PubMed

    Qin, Lei; He, Xi-Wen; Zhang, Wei; Li, Wen-You; Zhang, Yu-Kui

    2009-01-30

    A new and facile fabricating method for lysozyme molecularly imprinted polymer beads (lysozyme-MIP beads) in aqueous media was presented. Mesoporous chloromethylated polystyrene beads (MCP beads) containing dithiocarbamate iniferter (initiator transfer agent terminator) were used as supports for the grafting of lysozyme imprinted copolymers with acrylamide and N,N'-methylenebisacrylamide through surface initiated living-radical polymerization (SIP). After the polymerization, a layer of lysozyme-MIP was formed on the MCP beads. The SIP allowed an efficient control of the grafting process and suppressed solution propagation. Therefore, the obtained lysozyme-MIP beads had a large quantity of well-distributed pores on the surface without any visible gel formation in solution and were more advantageous comparing with traditional MIPs which were prepared by traditionally initiated radical polymerization. The obtained composites were characterized by Fourier transform infrared spectroscopy, elemental analysis, nitrogen sorption analysis and scanning electron microscopy. Chromatographic behaviors of the column packed with lysozyme-MIP beads exhibited ability in separating lysozyme from competitive protein (bovine hemoglobin, bovine serum albumin, ovalbumin or cytochrome c) in aqueous mobile phase.

  15. Process for the separation of landfill gas

    SciTech Connect

    O'Brien, J.V.; Holmes, A.S.; Hopewell, R.B.

    1987-07-21

    A recycle process is described for the separation of a landfill feed gas stream, having a high concentration of methane and carbon dioxide and containing undesirable trace gas impurities, into a fuel-or sales-grade gas methane product stream and a liquid carbon dioxide product stream, which process comprises: (a) introducing an essentially hydrogen-free, dried, compressed, landfill feed gas stream into a cryogenic distillation column; (b) withdrawing a methane-enriched overhead product stream from the distillation column; (c) withdrawing an enriched liquid carbon dioxide bottom product stream, containing a major amount of the undesirable impurities, from the distillation column; (d) introducing the methane-enriched overhead product stream into a gas-permeation membrane apparatus; (e) withdrawing from the membrane apparatus a sales- or fuel-grade gas methane product stream; (f) withdrawing from the membrane apparatus a carbon-dioxide-enriched gas permeate stream; (g) compressing the carbon-dioxide-enriched gas permeate stream; and (h) recycling the compressed permeate stream for use in the process.

  16. First Results From the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    NASA Technical Reports Server (NTRS)

    Niemann, Hasso B.; Demick, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Raaen, E.; Way, S.; Atreya, S.; Carignan, G.; Bauer, S.

    2005-01-01

    The Huygens Probe of the Cassini Huygens Mission entered the atmosphere of the moon Titan on January 14,2005. The GCMS was part of the instrument complement on the Probe to measure in situ the chemical composition of the atmosphere during the probe descent and to support the Aerosol Collector Pyrolyser (ACP) experiment by serving as detector for the pyrolization products. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns. The mass spectrometer employed five electron impact ion sources with available electron energies of either 70 or 25 eV. Three ion sources served as detectors for the GC columns and two were dedicated to direct atmosphere sampling and ACP gas sampling, respectively. The GCMS gas inlet was heated to prevent condensation, and served to evaporate surface constituents after impact.

  17. First Results From the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    NASA Technical Reports Server (NTRS)

    Niemann, Hasso B.; Demick, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Raaen, E.; Way, S.; Atreya, S.; Carignan, G.; Bauer, S.

    2005-01-01

    The Huygens Probe of the Cassini Huygens Mission entered the atmosphere of the moon Titan on January 14,2005. The GCMS was part of the instrument complement on the Probe to measure in situ the chemical composition of the atmosphere during the probe descent and to support the Aerosol Collector Pyrolyser (ACP) experiment by serving as detector for the pyrolization products. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns. The mass spectrometer employed five electron impact ion sources with available electron energies of either 70 or 25 eV. Three ion sources served as detectors for the GC columns and two were dedicated to direct atmosphere sampling and ACP gas sampling, respectively. The GCMS gas inlet was heated to prevent condensation, and served to evaporate surface constituents after impact.

  18. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams.

    PubMed

    Fialkov, Alexander B; Moragn, Mati; Amirav, Aviv

    2011-12-30

    A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of

  19. Simple automated liquid chromatographic system for splitless nano column gradient separations.

    PubMed

    Sesták, Jozef; Duša, Filip; Moravcová, Dana; Kahle, Vladislav

    2013-02-08

    A simple splitless gradient liquid chromatographic system for micro and nano column separations has been assembled and tested. It consists of an OEM programmable syringe pump equipped with a glass microsyringe and ten-port selector valve. Gradient of mobile phase was created in the syringe barrel due to turbulent mixing. Capability of suggested system to create various gradient profiles was verified using 50-μl, 100-μl, and 250-μl glass syringes. Acetone, thiourea, and uracil were tested as gradient markers and finally, uracil was proved to be an excellent way of water-acetonitrile gradient tracing. It was found that up to 80% of the total syringe volume is available as a linear gradient section. In context to micro and nano column chromatography, the best results were obtained using the 100-μl syringe. Separations were performed on the capillary monolithic column Chromolith CapRod RP-18e (150mm×0.1mm) and system performance was evaluated using a test mixture of six alkylphenones as well as tryptic digest of bovine serum albumin. Results proved that suggested system is able to create uniform gradients with high repeatability of retention times of test solutes (RSD<0.3%). Repeatability of injection of sample volumes in the range of 0.1-3μl was evaluated using on-column preconcentration technique which means that sample was diluted in mobile phase of low eluting strength. Repeatability of the peak areas was measured and statistically evaluated (RSD<5%). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Development and assessment of a miniaturised centrifugal chromatograph for reversed-phase separations in micro-channels.

    PubMed

    Penrose, Andrew; Myers, Peter; Bartle, Keith; McCrossen, Sean

    2004-08-01

    This paper describes the micro-fabrication and preliminary assessment of a miniature polydimethylsiloxane (PDMS) device for performing rapid, parallel liquid phase chromatographic separations driven by centrifugal force in microchannels. Device components include a main separating channel, into which a high performance liquid chromatography (HPLC) particulate stationary phase was packed under pressure by application of centrifugal force, in addition to solvent and sample reservoirs. Also described are methods for sealing such devices based upon partial polymerisation of PDMS. The mobile phase flow rate through a typical device was measured and several important chromatographic parameters determined from a test separation. An expression describing mobile phase flow through packed channels was also developed, based upon work on liquid flow in open micro-channels. Good agreement between predicted and measured flow rates were observed. Some predictions for potential uses of such devices and possibilities for further miniaturisation are discussed.

  1. Application of gas chromatographic method in simultaneous measurements of helium, argon and neon concentration in groundwaters

    NASA Astrophysics Data System (ADS)

    Najman, J.; Bielewski, J.; Sliwka, I.

    2012-04-01

    Helium concentration in groundwater is a fine indicator in water dating in a range from a hundred to tens of thousands of years. Gas chromatography (GC) measurements of helium can be used as an alternative to mass spectrometry (MS) determinations of 4He for groundwater dating [1]. Argon and neon concentrations mainly serve for determining the temperature of recharge and the air excess which is needed to correct measured values of helium concentration [2] . A chromatographic measurement system of helium, argon and neon concentration in groundwater is presented [3]. Water samples are taken from groundwater with a precise procedure without contamination with air in a special stainless steel vessels of volume equal to 2900 cm3. Helium is extracted from water samples using the head-space method. After enrichment by cryotrap method helium is analyzed in the gas chromatograph equipped with the thermal conductivity detector (TCD) with detection limit of about 2.8 ng He. The helium limit of detection of presented method is 1,2·10-8 cm3STP/gH2O [4]. We are currently working on adapting the method of cryogenic enrichment of helium concentration for simultaneous measurements of the concentration of helium, argon and neon using single sample of groundwater. Neon will be measured with the thermal conductivity detector and capillary column filled with molecular sieve 5A. Argon will be analyzed also with the thermal conductivity detector and packed column filled with molecular sieve 5A. This work was supported by grant No. N N525 3488 38 from the polish National Science Centre. [1] A. Zuber, W. Ciężkowski, K. Różański (red.), Tracer methods in hydrogeological studies - a methodological guide. Wroclaw University of Technology Publishing House, Wroclaw, 2007 (in polish). [2] P. Mochalski, Chromatographic method for the determination of Ar, Ne and N2 in water, Ph.D. thesis, Institute of Nuclear Physics Polish Academy of Sciences in Krakow, 2003 (in polish). [3] A. Żurek, P

  2. Adsorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  3. Development of a harmonised method for the profiling of amphetamines: III. Development of the gas chromatographic method.

    PubMed

    Andersson, Kjell; Jalava, Kaisa; Lock, Eric; Finnon, Yvonne; Huizer, Henk; Kaa, Elisabet; Lopes, Alvaro; Poortman-van der Meer, Anneke; Cole, Michael D; Dahlén, Johan; Sippola, Erkki

    2007-06-14

    This study focused on gas chromatographic analysis of target compounds found in illicit amphetamine synthesised by the Leuckart reaction, reductive amination of benzyl methyl ketone, and the nitrostyrene route. The analytical method was investigated and optimised with respect to introduction of amphetamine samples into the gas chromatograph and separation and detection of the target substances. Sample introduction using split and splitless injection was tested at different injector temperatures, and their ability to transfer the target compounds to the GC column was evaluated using cold on column injection as a reference. Taking the results from both techniques into consideration a temperature of 250 degrees C was considered to be the best compromise. The most efficient separation was achieved with a DB-35MS capillary column (35% diphenyl 65% dimethyl silicone; 30 m x 0.25 mm, d(f) 0.25 microm) and an oven temperature program that started at 90 degrees C (1 min) and was increased by 8 degrees C/min to 300 degrees C (10 min). Reproducibility, repeatability, linearity, and limits of determination for the flame ionisation detector (FID), nitrogen phosphorous detector (NPD), and mass spectrometry (MS) in scan mode and selected ion monitoring (SIM) mode were evaluated. In addition, selectivity was studied applying FID and MS in both scan and SIM mode. It was found that reproducibility, repeatability, and limits of determination were similar for FID, NPD, and MS in scan mode. Moreover, the linearity was better when applying FID or NPD whereas the selectivity was better when utilising the MS. Finally, the introduction of target compounds to the GC column when applying injection volumes of 0.2 microl, 1 microl, 2 microl, and 4 microl with splitless injection respectively 1 microl with split injection (split ratio, 1:40) were compared. It was demonstrated that splitless injections of 1 microl, 2 microl, and 4 microl could be employed in the developed method, while split

  4. [Investigation of a gas chromatographic column system for the on-line analysis of gaseous components in de-propane tower of pyrolysis equipment].

    PubMed

    Cai, H; Liu, L J; Yan, J; Lu, X; Ye, F; Xu, G W

    2000-03-01

    Multi-dimensional gas chromatograph has become an important process analyzer due to the advantages of high resolution and fast speed. According to the production requirement, a gas chromatographic column switching system has been investigated for the on-line analysis of gaseous components from high-pressure and lower-pressure de-propane towers of pyrolysis equipment. By using two different injection times on three injectors, and fore-flush and back-flush techniques, C2-hydrocarbons, propane, propene, methylacetylene, propadiene and C4-hydrocarbons can be separated on 7 columns in 7 minutes. The practical application showed the developed column system is suitable for the on-line monitoring of the production process.

  5. Gas chromatographic-mass spectrometric determination of brain levels of alpha-cholest-8-en-3beta-ol (lathosterol).

    PubMed

    Luzón-Toro, Berta; Zafra-Gómez, Alberto; Ballesteros, Oscar

    2007-05-01

    A gas chromatographic-mass spectrometric (GC-MS) method is proposed for the detection and quantification of lathosterol in rabbit brain. This compound is one of the most important precursors of the cholesterol synthesis. The interest in brain cholesterol metabolism is growing nowadays since it was described to play an important role in some neurodegenerative disorders such as Alzheimer's disease and Multiple Sclerosis. The analytical methodology proposed involves a liquid-liquid extraction procedure (LLE) followed by a silylation step previous to the GC-MS analysis. The chromatographic separation was performed by using a low bleed HP5-MS fused silica capillary column. A clean up is not necessary when using single-ion monitoring (SIM) mode. The molecular ion appears at 458 m/z; being as well the base peak. Alpha-naphtol was used as an internal standard. The detection limit obtained was 0.09 microg mL(-1). The method was applied to the determination of brain lathosterol levels in rabbits fed with different types of diets (control and atherogenic, supplemented or not with natural polyphenolic antioxidants). The quantification of the compound in samples showed a reduction, after 1 month, of this precursor of cholesterol synthesis in groups fed with antioxidant supplemented diets.

  6. Separation studies of As(III), Sb(III) and Bi(III) by reversed-phase paper chromatographic technique

    SciTech Connect

    Raman, B.; Shinde, V.M.

    1987-07-01

    Reversed-phase paper chromatographic separations of As(III), Sb(III) and Bi(III) have been carried out on Whatman No 1 filter paper impregnated with triphenylphosphine oxide as stationary phase and using organic complexing agents such as sodium acetate, sodium succinate and sodium malonate solutions as active mobile phases. Results for the separation of binary and ternary mixtures are reported and the method has been successfully applied to the separation and detection of these elements present in real samples and at ppm level concentration.

  7. Polymeric molecular sieve membranes for gas separation

    DOEpatents

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai

    2017-08-15

    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  8. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  9. Experimental Confirmation of Isotope Fractionation in Thiomolybdates Using Ion Chromatographic Separation and Detection by Multicollector ICPMS.

    PubMed

    Kerl, Carolin F; Lohmayer, Regina; Bura-Nakić, Elvira; Vance, Derek; Planer-Friedrich, Britta

    2017-03-07

    Molybdenum (98)Mo/(95)Mo isotope ratios are a sediment paleo proxy for the redox state of the ancient ocean. Under sulfidic conditions, no fractionation between seawater and sediment should be observed if molybdate (MoO4(2-)) is quantitatively transformed to tetrathiomolybdate (MoS4(2-)) and precipitated. However, quantum mechanical calculations previously suggested that incomplete sulfidation could be associated with substantial fractionation. To experimentally confirm isotope fractionation in thiomolybdates, a new approach for determination of isotope ratios of individual thiomolybdate species was developed that uses chromatography (HPLC-UV) to separate individual thiomolybdates, collecting each peak and analyzing isotope ratios with multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). Using commercially available MoO4(2-) and MoS4(2-) standards, the method was evaluated and excellent reproducibility and accuracy were obtained. For species with longer retention times, complete chromatographic peaks had to be collected to avoid isotope fractionation within peaks. Isotope fractionation during formation of thiomolybdates could be experimentally proven for the first time in the reaction of MoO4(2-) with 20-fold or 50-fold excess of sulfide. The previously calculated isotope fractionation for MoS4(2-) was confirmed, and the result for MoO2S2(2-) was in the predicted range. Isotopic fractionation during MoS4(2-) transformation with pressurized air was dominated by kinetic fractionation. Further optimization and online-coupling of the HPLC-MC-ICPMS approach for determination of low concentrations in natural samples will greatly help to obtain more accurate species-selective isotope information.

  10. Structure, gas chromatographic measurement, and function of suberin synthesized by potato tuber tissue slices.

    PubMed

    Kolattukudy, P E; Dean, B B

    1974-07-01

    The polymeric material (suberin) of the wound periderm of potato tuber slices was analyzed after depolymerization with LiAIH(4) in tetrahydrofuran or BF(3) in methanol with the use of thin layer chromatography, chemical modification, and combined gas-liquid chromatography and mass spectrometry. Fatty acids (C(16) to C(26)), fatty alcohols (C(16) to C(26)), octadec-9-ene-1, 18-dioic acid, and 18-hydroxy-octadec-9-enoic acid were identified to be the major components. Based on the structural information that the two bifunctional C(18) molecules constituted a major portion of suberin, a gas chromatographic method of measuring suberization was developed. This method consisted of hydrogenolysis of powdered tissue followed by thin layer chromatography and gas chromatographic measurement of octadecene-1, 18-diol as the trimethylsilyl ether. With this assay it was shown that the development of resistance to water loss by the tissue slices was directly proportional to the quantity of the bifunctional C(18) molecules, thus providing evidence that a function of suberin is prevention of water loss.

  11. [Gas chromatographic analysis of methyl methacrylate and methanol in its esterification mixture].

    PubMed

    Wu, C; Zeng, C

    1997-09-01

    A fast, simple and accurate gas chromatographic method is established for determining the content of methyl methacrylate (MMA) and methanol in the esterification mixture of methacrylic acid with methanol in the presence of sulfuric acid. In the measurement, polyethylene glycol-20M/sodium hydroxide was adopted as liquid phase, coated on the acid-washed 201 pink support. n-Heptane was used as the internal standard and the correction factors of MMA and methanol obtained were 1.65 and 4.10, respectively. It is significant for this method to be used to control MMA production by acetone cyanohydrin method and to improve the production technology.

  12. Miniature triaxial metastable ionization detector for gas chromatographic trace analysis of extraterrestrial volatiles

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Kojiro, D. R.; Carle, G. C.

    1984-01-01

    The present investigation is concerned with a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design. The ionization detector is to be incorporated in a flight gas chromatograph (GC) for use in the Space Shuttle. The design of the detector is discussed, taking into account studies which verified the sensitivity of the detector. The triaxial design of the detector is compared with a flat-plate style. The obtained results show that the principal goal of developing a miniature, highly sensitive ionization detector for flight applications was achieved. Improved fabrication techniques will utilize glass-to-metal seals and brazing procedures.

  13. Gas chromatographic determination of propionates as paranitrobenzyl ester in bakery products.

    PubMed

    Takatsuki, K; Sakai, K

    1982-07-01

    A procedure was developed to determine propionates used as mold inhibitors and preservatives in bakery products. Propionates were extracted from the sample with water alkalinized by potassium carbonate. Water was evaporated, and the residue was reacted with paranitrobenzyl bromide in dimethyl-formamide-water (90 + 10) at room temperature to convert propionates to paranitrobenzyl ester, which was determined with a gas chromatograph equipped with a flame ionization detector. Bakery products, such as bread, sponge cake, cookies, and biscuits, were analyzed by this procedure. Recoveries from samples fortified with propionates ranged from 94 to 101%, with a standard deviation of 3.32. The concentrations determined were 50 to 2500 micrograms/g sample.

  14. High-performance reversed-phase ion-pair chromatographic study of myo-inositol phosphates. Separation of myo-inositol phosphates, some common nucleotides and sugar phosphates.

    PubMed

    Patthy, M; Balla, T; Arányi, P

    1990-12-07

    A detailed study of all the major chromatographic variables affecting the retention behaviour and separation of myo-inositol phosphates in reversed-phase ion-pair chromatographic systems was carried out. The parameters studied included the eluent concentration of the pairing ion, the eluent concentration of the organic modifier and the buffer salt, the pH of the eluent, the minimum column plate count necessary for the separation of the inositol trisphosphate isomers and isocratic and gradient modes of separation. The retention behaviour of some common nucleotides and sugar phosphates was also investigated as these phosphates present chromatographic interference problems in biochemical studies based on the cellular incorporation of [32P]Pi. The separation methods developed appear to be superior to established anion-exchange separation techniques in terms of separation speed and "mildness" of the chromatographic conditions.

  15. A theoretical model for the separation of glucose and fructose mixtures by using a semicontinuous chromatographic refiner

    SciTech Connect

    Lee, Kwang Nam; Lee, Won Kook )

    1992-03-01

    The separation of a glucose and fructose mixture was experimentally performed by using a semicontinuous chromatographic refiner (SCCR) packed with Ca{sup 2+} ion in the form of DOWEX 50W 12X resin. The plug flow model with velocity-dependent mass transfer resistance was resistance was presented for calculating both products and on-concentrations in the SCCR unit, and the validity of the model was experimentally confirmed.

  16. Four-port gas separation membrane module assembly

    DOEpatents

    Wynn, Nicholas P.; Fulton, Donald A.; Lokhandwala, Kaaeid A.; Kaschemekat, Jurgen

    2010-07-20

    A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

  17. Improvement of the chromatographic separation of several 1,4-dihydropyridines calcium channel antagonist drugs by experimental design.

    PubMed

    Baranda, Ana B; Etxebarria, Nestor; Jiménez, Rosa M; Alonso, Rosa M

    2005-01-01

    A high-performance liquid chromatographic method with diode array detection has been developed and optimized for the separation of five calcium channel blockers belonging to the 1,4-dihydropyridine subgroup (nifedipine and related drugs). The possibility of the simultaneous drug analysis allows a decrease of time during the assay as well as a saving of reagents and solvents. In this work, the effect of four experimental parameters (organic modifier percentage, pH value, concentration of the buffer in the mobile phase, and column temperature) on the chromatographic resolution are investigated by experimental design in order to optimize the chromatographic separation of five 1,4-dihydropyridines (amlodipine, nitrendipine, felodipine, lacidipine, and lercanidipine). Fractional factorial design, central composite design, and finally the Multisimplex program are used to establish the optimal conditions in terms of resolution and minimum analysis time. Optimal separation of the five compounds under study is achieved in less than 12 min using a Sulpecosil LC-ABZ+Plus C18 column, a composition of mobile phase of acetonitrile-10mM acetic acid acetate buffer pH 5 (72:28, v/v) at a flow rate of 1 mL/min, a column temperature of 30 degrees C +/- 0.1 degrees C, and a detection wavelength of 238 nm.

  18. Synthesis of a further improved porous polymer for the separation of nitrogen, oxygen, argon, and carbon monoxide by gas chromatography

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.

    1986-01-01

    A further improvement has been made in the synthesis of an N-type porous polymer for the separation of permanent gases. Changing the ratios of reactants and diluting the Hi-DVB with styrene led to a porous polymer gas chromatographic packing which is superior to commercial products and to the author's own previously reported custom-made polymer.

  19. Synthesis of a further improved porous polymer for the separation of nitrogen, oxygen, argon, and carbon monoxide by gas chromatography

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.

    1986-01-01

    A further improvement has been made in the synthesis of an N-type porous polymer for the separation of permanent gases. Changing the ratios of reactants and diluting the Hi-DVB with styrene led to a porous polymer gas chromatographic packing which is superior to commercial products and to the author's own previously reported custom-made polymer.

  20. Gas chromatograph analysis on closed air and nitrogen oxide storage atmospheres of recalcitrant seeds of Quercus Alba

    USDA-ARS?s Scientific Manuscript database

    Storage of recalcitrant seeds remains an unsolved problem. This study investigated the quantitative gas analysis of nitrous oxide (N2O) and air atmospheres on the recalcitrant seeds of Quercus alba by using gas chromatograph. Ten seeds were placed in each sealed atmospheric system of air and 98/2% N...

  1. Gas storage and separation by electric field swing adsorption

    DOEpatents

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  2. A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Ambrose, J. L.; Zhou, Y.; Haase, K.; Mayne, H. R.; Talbot, R.; Sive, B. C.

    2012-01-01

    A gas-chromatographic (GC) instrument was developed for measuring hydrogen cyanide (HCN) in the lower atmosphere. The main features of the instrument are (1) a cryogen-free cooler for sample dehumidification and enrichment, (2) a porous polymer PLOT column for analyte separation, (3) a flame thermionic detector (FTD) for sensitive and selective detection and (4) a dynamic dilution system for calibration. We deployed the instrument for a ~4 month period from January-June 2010 at the AIRMAP atmospheric monitoring station Thompson Farm 2 (THF2) in rural Durham, NH. A subset of measurements made during 3-31 March is presented here with a detailed description of the instrument features and performance characteristics. The temporal resolution of the measurements was ~20 min, with a 75 s sample capture time. The 1σ measurement precision was <10% and the instrument response linearity was excellent on a calibration scale of 0.10-0.75 ppbv (±5%). The estimated method detection limit (MDL) and accuracy were 0.021 ppbv and 15%, respectively. From 3-31 March 2010, ambient HCN mixing ratios ranged from 0.15-1.0 ppbv (±15%), with a mean value of 0.36 ± 0.16 ppbv (1σ). The approximate mean background HCN mixing ratio of 0.20 ± 0.04 ppbv appeared to agree well with tropospheric column measurements reported previously. The GC-FTD HCN measurements were strongly correlated with acetonitrile (CH3CN) measured concurrently with a proton transfer-reaction mass spectrometer (PTR-MS), as anticipated given our understanding that the nitriles share a common primary biomass burning source to the global atmosphere. The nitriles were overall only weakly correlated with CO, which is reasonable considering the greater diversity of sources for CO. However, strong correlations with CO were observed on several nights under stable atmospheric conditions and suggest regional combustion-based sources for the nitriles. These results demonstrate that the GC-FTD instrument is capable of making long

  3. A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Ambrose, J. L.; Zhou, Y.; Haase, K.; Mayne, H. R.; Talbot, R.; Sive, B. C.

    2012-06-01

    A gas-chromatographic (GC) instrument was developed for measuring hydrogen cyanide (HCN) in the lower atmosphere. The main features of the instrument are (1) a cryogen-free cooler for sample dehumidification and enrichment, (2) a porous polymer PLOT column for analyte separation, (3) a flame thermionic detector (FTD) for sensitive and selective detection, and (4) a dynamic dilution system for calibration. We deployed the instrument for a ∼4 month period from January-June, 2010 at the AIRMAP atmospheric monitoring station Thompson Farm 2 (THF2) in rural Durham, NH. A subset of measurements made during 3-31 March is presented here with a detailed description of the instrument features and performance characteristics. The temporal resolution of the measurements was ~20 min, with a 75 s sample capture time. The 1σ measurement precision was <10% and the instrument response linearity was excellent on a calibration scale of 0.10-0.75 ppbv (±5%). The estimated method detection limit (MDL) and accuracy were 0.021 ppbv and 15%, respectively. From 3-31 March 2010, ambient HCN mixing ratios ranged from 0.15-1.0 ppbv (±15%), with a mean value of 0.36 ± 0.16 ppbv (1σ). The approximate mean background HCN mixing ratio of 0.20 ± 0.04 ppbv appeared to agree well with tropospheric column measurements reported previously. The GC-FTD HCN measurements were strongly correlated with acetonitrile (CH3CN) measured concurrently with a proton transfer-reaction mass spectrometer (PTR-MS), as anticipated given our understanding that the nitriles share a common primary biomass burning source to the global atmosphere. The nitriles were overall only weakly correlated with carbon monoxide (CO), which is reasonable considering the greater diversity of sources for CO. However, strong correlations with CO were observed on several nights under stable atmospheric conditions and suggest regional combustion-based sources for the nitriles. These results demonstrate that the GC-FTD instrument is

  4. Headspace gas chromatographic method for determination of methyl bromide in food ingredients

    SciTech Connect

    DeVries, J.W.; Broge, J.M.; Schroeder, J.P.; Bowers, R.H.; Larson, P.A.; Burns, N.M.

    1985-11-01

    A headspace gas chromatographic (GC) method, which can be automated, has been developed for determination of methyl bromide. This method has been applied to wheat, flour, cocoa, and peanuts. Samples to be analyzed are placed in headspace sample vials, water is added, and the vials are sealed with Teflon-lined septa. After an appropriate equilibration time at 32 degrees C, the samples are analyzed within 10 h. A sample of the headspace is withdrawn and analyzed on a gas chromatograph equipped with an electron capture detector (ECD). Methyl bromide levels were quantitated by comparison of peak area with a standard. The standard was generated by adding a known amount of methyl bromide to a portion of the matrix being analyzed and which was known to be methyl bromide free. The detection limit of the method was 0.4 ppb. The coefficient of variation (CV) was 6.5% for wheat, 8.3% for flour, 3.3% for cocoa, and 11.6% for peanuts.

  5. Toward a Micro Gas Chromatograph/Mass Spectrometer (GC/MS) System

    NASA Technical Reports Server (NTRS)

    Wiberg, D. V.; Eyre, F. B.; Orient, O.; Chutjian, A.; Garkarian, V.

    2001-01-01

    Miniature mass filters (e.g., quadrupoles, ion traps) have been the subject of several miniaturization efforts. A project is currently in progress at JPL to develop a miniaturized Gas Chromatograph/Mass Spectrometer (GC/MS) system, incorporating and/or developing miniature system components including turbomolecular pumps, scroll type roughing pump, quadrupole mass filter, gas chromatograph, precision power supply and other electronic components. The preponderance of the system elements will be fabricated using microelectromechanical systems (MEMS) techniques. The quadrupole mass filter will be fabricated using an X-ray lithography technique producing high precision, 5x5 arrays of quadrupoles with pole lengths of about 3 mm and a total volume of 27 cubic mm. The miniature scroll pump will also be fabricated using X-ray lithography producing arrays of scroll stages about 3 mm in diameter. The target detection range for the mass spectrometer is 1 to 300 atomic mass units (AMU) with are solution of 0.5 AMU. This resolution will allow isotopic characterization for geochronology, atmospheric studies and other science efforts dependant on the understanding of isotope ratios of chemical species. This paper will discuss the design approach, the current state-of-the art regarding the system components and the progress toward development of key elements. The full system is anticipated to be small enough in mass, volume and power consumption to allow in situ chemical analysis on highly miniaturized science craft for geochronology, atmospheric characterization and detection of life experiments applicable to outer planet roadmap missions.

  6. Fast low-pressure microwave assisted extraction and gas chromatographic determination of polychlorinated biphenyls in soil samples.

    PubMed

    Bruzzoniti, M C; Maina, R; Tumiatti, V; Sarzanini, C; Rivoira, L; De Carlo, R M

    2012-11-23

    A new technology equipment for low-pressure microwave assisted extraction (usually employed for organic chemistry reactions), recently launched in the market, is used for the first time in environmental analysis for the extraction of commercial technical Aroclor mixtures from soil. Certified reference materials of Aroclor 1260, Aroclor 1254 and Aroclor 1242 in transformer oils were used to contaminate the soil samples and to optimize the extraction method as well as the subsequent gas chromatographic electron capture detection (GC-ECD) analytical method. The study was performed optimizing the extraction, the purification and the gas chromatographic separation conditions to enhance the resolution of difficult pairs of congeners (C28/31 and C141/179). After optimization, the recovery yields were included within the range 79-84%. The detection limits, evaluated for two different commercial polychlorinated biphenyl (PCB) mixtures (Aroclor 1260 and Aroclor 1242) were 0.056 ± 0.001 mg/kg and 0.290 ± 0.006 mg/kg, respectively. The method, validated with certified soil samples, was used to analyze a soil sample after an event of failure of a pole-mounted transformer which caused the dumping of PCB contaminated oil in soil. Moreover, the method provides simple sample handling, fast extraction with reduced amount of sample and solvents than usually required, and simple purification step involving the use of solvent (cyclohexane) volumes as low as 5 mL. Reliability and reproducibility of extraction conditions are ensured by direct and continuous monitoring of temperature and pressure conditions.

  7. Gas chromatographic determination of polysaccharide gums in foods after hydrolysis and derivatization.

    PubMed

    Lawrence, J F; Iyengar, J R

    1985-12-20

    A gas chromatographic method was evaluated for the determination of food grade gums in dairy products, salad dressings and meat sauces. The gums studied were tragacanth, karaya, ghatti, carob, guar, arabic and xanthan gum. The extraction method included removal of fat followed by starch degradation then precipitation of protein. The isolated gums were hydrolysed with trifluoroacetic acid and the resulting neutral monosaccharides converted to their aldonitrile acetate derivatives for determination by gas chromatography. Recoveries from thirteen different commodities averaged 85%. However, the recovery of guar gum from ice cream and cold pack cheese was 42 and 50%, respectively. In a comparison of enzyme hydrolysis and iodine complexation for the removal of starch the former was simpler and provided cleaner extracts than the iodine treatment. Both gave similar results.

  8. Liquid chromatographic determination of atropine in nerve gas antidotes and other dosage forms.

    PubMed

    Lehr, G J; Yuen, S M; Lawrence, G D

    1995-01-01

    A simple and specific liquid chromatographic method was developed for the determination of atropine in nerve gas antidotes and several other dosage forms. The method is also used simultaneously to quantitate phenol, an antimicrobial agent present in nerve gas antidotes, and to monitor the level of tropic acid, a principal degradation product of atropine. The system uses a Spherisorb CN column and a mobile phase of acetonitrile-0.05M sodium phosphate monobasic (10 + 90), pH 4.0. The detection wavelength is 220 nm. The method was validated by testing for accuracy, linearity, reproducibility and precision. In addition, the proposed method was applied to 8 commercial preparations of atropine, including injectables, ophthalmic solutions, and ointments, and was found to be satisfactory and free from interferences from preservatives, such as benzyl alcohol, methylparaben, benzalkonium chloride and chlorobutanol, that are present in these formulations.

  9. Gas-liquid chromatographic determination of sulfamethazine in swine and cattle tissues.

    PubMed

    Manuel, A J; Steller, W A

    1981-07-01

    A gas-liquid chromatographic (GLC) method is described for determining sulfonamide residues in animal tissues, with specificity for 7 sulfonamides. Residues are extracted from tissues with acetone-chloroform, fatty substances are removed, and the sulfonamide residue is methylated with diazomethane in acetone-ether to render it amenable to determination by gas-liquid chromatography on an all-glass column suitable for direct on-column injection and a Ni electron-capture detector. Quantitation is achieved by external standardization. The method has a validated limit of sensitivity of 0.10 ppm with the corresponding control values for all tissues being less than 0.01 ppm. Satisfactory recoveries have been obtained for sulfamethazine in swine and cattle tissues. Specificity for sulfamethazine in the presence of sulfathiazole, sulfaquinoxaline, sulfadimethoxine, sulfabromomethazine, sulfaethoxypyridazine, and sulfachloropyrazine is attained by resolution of the respective methyl derivatives on the GLC column.

  10. Gas chromatographic investigation of volatile nitrogen containing bases of Antarctic krill Euphausia superba Dana.

    PubMed

    Svetlova, N I; Golovnya, R V; Zhuravleva, I L; Grigorieva, D N; Samusenko, A L

    1985-01-01

    The composition of the volatile nitrogen-containing bases of fresh-caught Antarctic krill E. superba has been investigated by gas chromatography. The analysis was carried out on three packed columns with Apiezon L, Triton X-305, PEG-1000 and one glass capillary column with Triton X-305. The components were identified by standardless gas chromatographic method with a special computer program. No less than 63 compounds have been found and 54 compounds have been identified, among these primary, secondary and tertiary aliphatic amines as well as heterocyclic bases. The presence of 5 compounds has been confirmed by GC/MS technique. Analysis with the help of a specific flame-photometric detector has shown the presence of 9 bi-functional nitrogen- and sulfur-containing compounds.

  11. Detection system for a gas chromatograph. [. cap alpha. -methylnaphthalene,. beta. -methylnapthalene

    DOEpatents

    Hayes, J.M.; Small, G.J.

    1982-04-26

    A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam. 3 figures, 2 tables.

  12. Quantitative gas chromatographic analysis of volatile fatty acids in spent culture media and body fluids.

    PubMed Central

    van den Bogaard, A E; Hazen, M J; Van Boven, C P

    1986-01-01

    Gas chromatographic analysis of volatile fatty acids for identification of obligately anaerobic bacteria and for presumptive diagnosis of anaerobic infections is now widely practiced. However, it is difficult to compare data because only a qualitative analysis is done or only chromatograms are presented instead of quantitative data on volatile fatty acid production. We compared three stationary phases for volatile fatty acid analysis of aqueous solutions and four methods of pretreating samples for gas chromatography. Quantitative analysis could be done accurately by using Carbowax as the stationary phase after pretreatment of spent culture media with Dowex columns. If only qualitative analysis is required (e.g., for presumptive diagnosis of anaerobic infections), ether extraction and headspace analysis are equally suitable. The overall variation coefficient for volatile fatty acid production by four reference strains of obligately anaerobic bacteria after 24 h of incubation was approximately 10%. PMID:3958144

  13. Continuous Measurement of Multiple Gases Using Ball Surface Acoustic Wave Gas Chromatograph

    NASA Astrophysics Data System (ADS)

    Sakamoto, Toshihiro; Akao, Shingo; Iwaya, Takamitsu; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    Although portable gas chromatographs (GCs) have been developed for the monitoring of volatile organic compounds (VOCs) in working environments, they still need high power consumption for the heating column. Thus, we previously developed a portable surface acoustic wave (SAW) GC equipped with a ball SAW sensor and a micro-electromechanical-system column (ball SAW GC) and proved the usefulness of the forward flush (FF) method for realizing the fast analysis of multiple gases without a heater. However, its ability to measure ten kinds of VOCs at ppm order and automatic continuous measurement were not demonstrated. In this study, a ball SAW GC employing the FF method and equipped with a gas sampler for continuous injection was developed. Then, the performance of monitoring multiple gases in working environments was verified by measuring ten kinds of VOCs with maximum acceptable concentrations. Moreover, real-time monitoring of seven kinds of VOCs with a linear change in the response value to concentration changes was demonstrated.

  14. Hyperthin Organic Membranes for Gas Separations

    NASA Astrophysics Data System (ADS)

    Wang, Minghui

    Gas separation is practically important in many aspects, e.g., clean energy production and global warming prevention. Compared to other separation technologies like cryogenic distillation and pressure swing adsorption, membrane separation is considered to be more energy efficient. For practical purposes, the ultimate goal is to construct membranes producing high flux and high gas permeation selectivity at the same time. Based on the inverse relationship between flux and membrane thickness, it is clear that fabricating highly selective membranes as thin as possible could increase the flux through the membrane without sacrificing selectivity. But it has proven to be challenging to manufacture selective membranes in the hyperthin (< 100nm) region. [Note: 100 nm is the typical dense layer thickness of commercial membranes to separation gases.] In this dissertation, the focus is on the development of hyperthin selective membranes that were supported by poly(1-trimethylsilyl-1-propyne) (PTMSP), using Langmuir-Blodgett (LB) and Layer-by-Layer (LbL) deposition methods. A "gluing" strategy has been successfully introduced into LB films by our laboratory recently, in which LB monolayers are ionically crosslinked with polyelectrolytes. This success stimulated the pursuance of LB films with improved gas separation properties by: (i) examining calix[n]arene-based surfactants with different sizes (ii) using polymeric surfactants as LB forming materials, and (iii) optimizing the condition of the subphase containing polyelectrolytes. Both a strong polyelectrolyte poly(4-styrene sulfonate) (PSS) and a weak polyelectrolyte poly(acrylic acid) (PAA) were used to create glued LB bilayers. The gas permeation through PSS or PAA-glued LB bilayers made of calix[n]arenes was found to be dominated by solution-diffusion rather than molecular-sieving mechanism. The porous nature of calix[n]arene-based surfactants also turned out to be unnecessary for constructing LB films with high gas

  15. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2004-09-28

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  16. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2009-07-21

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  17. [Contamination mechanism and regeneration strategies of chromatographic resin in separation process for expression product from mammary gland bioreactor].

    PubMed

    Sun, Xiyan; Zhang, Yan; Li, Yan; Luo, Jian; Qin, Peiyong; Su, Zhiguo

    2011-11-01

    This study focused on the contamination mechanism and regeneration strategies of sulfopropyl ion exchange resin (SP Sepharose FF) during the separation of recombinant human lactoferrin from transgenic bovine milk. We analyzed primary constituents' contents in chromatorgraphic material and fractions. The results showed that the lipid in milk can clog the column or adhere to the resin through hydrophobic interaction, leading to an increase in column pressure. Some casein molecules were found to adsorb onto the resin through electrostatic interaction, therefore the adsorption capacity was decreased. There was no direct interaction between lactose and the resin in the chromatorgraphic process. Increased continuous chromatographic cycles and prolonged time interval between protein purification and column regeneration could enhance the undesirable interaction between the contaminants and resin, thus lowering the regeneration efficiency. NaOH was found to be effective in the removal of lipid and casein molecules from the column. Furthermore, normal microstructure and chromatographic performance of the ion exchanger was recovered after this cleaning procedure.

  18. [The development of a static water/gas separator].

    PubMed

    Zhou, K H; Ai, S K; Lu, X Y; Liu, C L

    2000-10-01

    Objective. To develop a device for separating water from gas in small flow rate under zero "G". Method. Beginning with the study of surface characteristic of materials, a capillary material was developed according to the requirement and the water/gas separator using this single separating material was designed. Result. The water/gas separator worked well in the range of gas flow below 10.0 L/min and water flow below 10.0 ml/min. No gas was found in the separated water and no water was found in the separated gas. Conclusion. The structure of the separator was reasonable and the water/gas separating method using a single separating material was feasible.

  19. Interfacing a robotic station with a gas chromatograph for the full automation of the determination of organochlorine pesticides in vegetables

    SciTech Connect

    Torres, P.; Luque de Castro, M.D.

    1996-12-31

    A fully automated method for the determination of organochlorine pesticides in vegetables is proposed. The overall system acts as an {open_quotes}analytical black box{close_quotes} because a robotic station performs the prelimninary operations, from weighing to capping the leached analytes and location in an autosampler of an automated gas chromatograph with electron capture detection. The method has been applied to the determination of lindane, heptachlor, captan, chlordane and metoxcychlor in tea, marjoram, cinnamon, pennyroyal, and mint with good results in most cases. A gas chromatograph has been interfaced to a robotic station for the determination of pesticides in vegetables. 15 refs., 4 figs., 2 tabs.

  20. Simultaneous gas chromatographic determination of four toxic gases generally present in combustion atmospheres.

    PubMed

    Endecott, B R; Sanders, D C; Chaturvedi, A K

    1996-01-01

    The measurement of combustion gases produced by burning aircraft cabin materials poses a continuing limitation for smoke toxicity research. Because toxic effects of gases depend on both their concentrations and the duration of exposure, frequent atmosphere sampling is necessary to define the gas concentration-exposure time curve. A gas chromatographic (GC) method was developed for the simultaneous analyses of carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), and hydrogen cyanide (HCN). The method used an MTI M200 dual-column gas chromatograph equipped with 4-m molecular sieve-5A and 8-m PoraPlot-U wall-coated capillary columns and two low-volume, high-sensitivity thermal conductivity detectors. Detectability (in parts per million [ppm]) and retention times (in seconds) for the gases were as follows: CO, 100 ppm, 28 s; H2S, 50 ppm, 26 s; SO2, 125 ppm, 76 s; and HCN, 60 ppm, 108 s. The method was effective for determining these gases in mixtures and in the combustion atmospheres generated by burning wool (CO, HCN, and H2S) and modacrylic fabrics (CO and HCN). Common atmospheric gaseous or combustion products (oxygen, carbon dioxide, nitrogen, water vapor, and other volatiles) did not interfere with the analyses. However, filtration of the combustion atmospheres was necessary to prevent restriction of the GC sampling inlet by smoke particulates. The speed, sensitivity, and selectivity of this method make it suitable for smoke toxicity research and for evaluating performance of passenger protective breathing equipment. Also, this method can potentially be modified to analyze these gases when they are liberated from biosamples.

  1. Chromatographic separation of platinum group metals from simulated high level liquid waste using macroporous silica-based adsorbents.

    PubMed

    Xu, Yuanlai; Kim, Seong-Yun; Ito, Tatsuya; Tokuda, Haruki; Hitomi, Keitaro; Ishii, Keizo

    2013-10-18

    To separate platinum group metals (PGMs) from high level liquid waste, three novel macroporous silica-based adsorbents, namely, (Crea+Dodec)/SiO2-P, (Crea+TOA)/SiO2-P and (MOTDGA+TOA)/SiO2-P, were synthesized by introducing extractants Crea (N',N'-di-n-hexyl-thiodiglycolamide), TOA (Tri-n-octylamine), MOTDGA (N,N'-dimethyl-N,N'-di-n-octyl-thiodiglycolamide) along with theirs modifier, Dodec (n-dodecyl alcohol), into 50μm diameter SiO2-P particles by impregnation. Chromatographic separation of PGMs from simulated high level liquid waste was investigated by column method. It was found that 100% of Pd(II) and Re(VII) could be eluted out from simulate HLLW in 3.0M HNO3 solution using three adsorbents. For Ru(III) and Rh(III), high temperature has distinct effect on the adsorption rate and a further study for Ru(III) and Rh(III) is necessary to separate them from HLLW completely. In all six column experiments, a relatively satisfactory chromatographic separation operating for PGMs from simulated HLLW was obtained using (Crea+TOA)/SiO2-P adsorbent packed column at 323K.

  2. Thin-layer chromatographic specification and separation of Cu(1+), Cu(2+), Ni(2+), and Co(2+) cations.

    PubMed

    Savasci, Sahin; Akçay, Mehmet; Ergül, Soner

    2010-07-01

    The M(PyDTC)(2) (M: Cu, Co, or Ni) and CuPyDTC complexes, prepared by reactions of ammonium pyrrolidinedithiocarbamate with metal nitrates, are examined for qualitative analysis, speciation, and mutual separation using thin-layer chromatography systems. These complexes and their mixtures are spotted to the activated and non-activated thin layers of silica gel 60GF(254) (Si-60GF(254)) with a 250-microm thickness. Toluene-dichloromethane mixtures (4:1, 1:1, 1:4 v/v) are used as mobile phases for running of the complexes. All of these chromatographic systems are successfully used for speciation of Cu(2+) and Cu(1+) cations. The best analytical separation for the qualitative analysis of corresponding metal cations and mutual separation of components in M(PyDTC)(2) and CuPyDTC complexes are obtained when using pure toluene-dichloromethane (1:1 v/v) on the activated layer. This study shows that it is possible to qualitatively analyze and satisfactorily separate a mixture of Cu(1+), Cu(2+), Ni(2+), and Co(2+) cations on cited chromatographic systems. These results may be also said for the adaptability or validity on column chromatography.

  3. Gas chromatographic determination of volatile congeners in spirit drinks: interlaboratory study.

    PubMed

    Kelly, J; Chapman, S; Brereton, P; Bertrand, A; Guillou, C; Wittkowski, R

    1999-01-01

    An interlaboratory study of a gas chromatographic (GC) method for the determination of volatile congeners in spirit drinks was conducted; 31 laboratories from 8 countries took part in the study. The method uses GC with flame ionization detection and incorporates several quality control measures which permit the choice of chromatographic system and conditions to be selected by the user. Spirit drink samples were prepared and sent to participants as 10 blind duplicate or split-level test materials for the determination of 1,1-diethoxyethane (acetal), 2-methylbutan-1-ol (active amyl alcohol), 3-methylbutan-1-ol (isoamyl alcohol), methanol (methyl alcohol), ethyl ethanoate (ethyl acetate), butan-1-ol (n-butanol), butan-2-ol (sec-butanol), 2-methylpropan-1-ol (isobutyl alcohol), propan-1-ol (n-propanol), and ethanal (acetaldehyde). The precision of the method for 9 of the 10 analytes was well within the range predicted by the Horwitz equation. The precision of the most volatile analyte, ethanal, was just above statistically predicted levels. This method is recommended for official regulatory purposes.

  4. Kinetic optimisation of the reversed phase liquid chromatographic separation of rooibos tea (Aspalathus linearis) phenolics on conventional high performance liquid chromatographic instrumentation.

    PubMed

    Beelders, Theresa; Sigge, Gunnar O; Joubert, Elizabeth; de Beer, Dalene; de Villiers, André

    2012-01-06

    Rooibos tea, produced from the endemic South African shrub Aspalathus linearis, has various health-promoting benefits which are attributed to its phenolic composition. Generating reliable, quantitative data on these phenolic constituents is the first step towards documenting the protective effects associated with rooibos tea consumption. Reversed phase liquid chromatographic (RP-LC) methods currently employed in the quantitative analysis of rooibos are, however, hampered by limited resolution and/or excessive analysis times. In order to overcome these limitations, a systematic approach towards optimising the RP-LC separation of the 15 principal rooibos tea phenolics on a 1.8 μm phase using conventional HPLC instrumentation was adopted. Kinetic plots were used to obtain the optimal configuration for the separation of the target analytes within reasonable analysis times. Simultaneous optimisation of temperature and gradient conditions provided complete separation of these rooibos phenolics on a 1.8 μm C18 phase within 37 min. The optimised HPLC-DAD method was validated and successfully applied in the quantitative analysis of aqueous infusions of unfermented and fermented rooibos. Major phenolic constituents of fermented rooibos were found to be a phenylpropanoid phenylpyruvic acid glucoside (PPAG), the dihydrochalcone C-glycoside aspalathin, the flavones isoorientin and orientin, and a flavonol O-diglycoside tentatively identified as quercetin-3-O-robinobioside. Content values for PPAG, ferulic acid and quercetin-3-O-robinobioside in rooibos are reported here for the first time. Mass spectrometric (MS) and tandem MS detection were used to tentatively identify 13 additional phenolic compounds in rooibos infusions, including a new luteolin-6-C-pentoside-8-C-hexoside and a novel C-8-hexosyl derivative of aspalathin reported here for the first time.

  5. Chromatographic separation of gram quantities of immunoglobulins from porcine colostrium against transmissible gastroenteritis virus.

    PubMed

    Stone, S S; Jensen, M T; Kemeny, L J; Wiltsey, L

    1976-01-01

    Similar immunoglobulin (Ig) classes were obtained from porcine colodtral whey by either column or batch chromatographic procedures; a stepwise buffer elution technique was used. Specific transmissible gastroenteritis virus neutralizing antibody was found in the 4 major fractions eluted comprising of IgG1, IgG2, IgA, and IgM. The IgG1, and IgG2 were essentially homogeneous, and the IgA- AND IgM-rich fractions had to be recycled several times through Sephadex G-200 to obtain pure IgA and IgM that had specific virus neutralizing activities per mg of protein of 342.1 and 302. 4, compared with 7.6 for IgG. By a combination of the batch chromatographic procedures and gel filtration, gram amounts of specific Ig could be fractionated from the same colostrum.

  6. Gas-solid chromatographic analysis of automobile tailpipe emissions as a function of different engine and exhaust system modifications

    SciTech Connect

    Kang, L.; Armstrong, D.W.

    1994-12-31

    The authors developed a single, relatively short gas-solid chromatographic PLOT column and used it to separate aliphatic hydrocarbons, aromatic hydrocarbons and some inorganic gases (O{sub 2}, N{sub 2}, CO and CO{sub 2}) found in automobile exhaust. In the case of hydrocarbons, both aliphatic and aromatic components (up through alkylated-benzenes) were done in one run. Subambient temperature was needed for the oxygen-nitrogen separation, but they were easily resolved from each other and the other compounds present. The effects of different engine and exhaust system modifications on the level of compounds in the exhaust were tested. The concentrations of the emission gases varied considerably with changes in air/fuel ratio, coil voltage, use of catalytic converters and so forth. The results showed that the use of catalytic converter and a higher voltage coil tended to produce the most pronounced decreases in emissions of hydrocarbons and the catalytic converter produced the significant decrease in carbon monoxide concentrations. The results of the GSC analyses were compared to those of a commercial emission analyzer (i.e., sniffer). They showed similar trends and relative concentrations but somewhat different absolute concentrations. This may have been due to differences in the calibration of these methods.

  7. Prediction of gas chromatographic retention indices based on Monte Carlo method.

    PubMed

    Veselinović, Aleksandar M; Velimorović, Dragan; Kaličanin, Biljana; Toropova, Alla; Toropov, Andrey; Veselinović, Jovana

    2017-06-01

    A new method for the prediction of retention indices using Monte Carlo method and based on local graph invariants and SMILES notation of studied compounds has been presented. Very satisfactory results were obtained with the proposed method, since robust model with good statistical quality was developed. The predictive potential of the applied approach was tested and the robustness of the model was proven with different methods. The best calculated QSPR model had following statistical parameters: r(2)=0.8097 for the training set and r(2)=0.9372 for the test set. Structural indicators defined responsible for the increases and decreases of gas chromatographic retention indices activity have been calculated. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Bio-sample preparation and gas chromatographic determination of benzodiazepines--a review.

    PubMed

    Uddin, Mohammad Nasir; Samanidou, Victoria F; Papadoyannis, Ioannis N

    2013-08-01

    Benzodiazepines have become commonly prescribed medicines worldwide in the therapy of anxiety, sleep disorders and convulsive attacks because they are relatively safe, with mild side effects. The availability of rapid, sensitive and selective analytical methods is essential for the determination of these drugs in clinical and forensic cases. Benzodiazepines are usually present at trace levels (μg/mL or ng/mL) in a complex biological matrix, and the potentially interfering compounds need to be removed before analysis. Therefore, a sample preparation technique is often mandatory, both to extract the drugs of interest from the matrices and to increase their concentration. An extended and comprehensive review is presented herein, focusing on bio-sample preparation (pretreatment, extraction and derivatization) and gas chromatographic methods applied for the quantification of 1,4-benzodiazepines.

  9. Determination and discrimination of biodiesel fuels by gas chromatographic and chemometric methods

    NASA Astrophysics Data System (ADS)

    Milina, R.; Mustafa, Z.; Bojilov, D.; Dagnon, S.; Moskovkina, M.

    2016-03-01

    Pattern recognition method (PRM) was applied to gas chromatographic (GC) data for a fatty acid methyl esters (FAME) composition of commercial and laboratory synthesized biodiesel fuels from vegetable oils including sunflower, rapeseed, corn and palm oils. Two GC quantitative methods to calculate individual fames were compared: Area % and internal standard. The both methods were applied for analysis of two certified reference materials. The statistical processing of the obtained results demonstrates the accuracy and precision of the two methods and allows them to be compared. For further chemometric investigations of biodiesel fuels by their FAME-profiles any of those methods can be used. PRM results of FAME profiles of samples from different vegetable oils show a successful recognition of biodiesels according to the feedstock. The information obtained can be used for selection of feedstock to produce biodiesels with certain properties, for assessing their interchangeability, for fuel spillage and remedial actions in the environment.

  10. The current practice in the application of chemometrics for correlation of sensory and gas chromatographic data.

    PubMed

    Seisonen, Sirli; Vene, Kristel; Koppel, Kadri

    2016-11-01

    A lot of research has been conducted in correlating the sensory properties of food with different analytical measurements in recent years. Various statistical methods have been used in order to get the most reliable results and to create prediction models with high statistical performance. The current review summarises the latest practices in the field of correlating attributes from sensory analysis with volatile data obtained by gas chromatographic analysis. The review includes the origin of the data, different pre-processing and variable selection methods and finally statistical methods of analysis and validation. Partial least squares regression analysis appears as the most commonly used statistical method in the area. The main shortcomings were identified in the steps of pre-processing, variable selection and also validation of models that have not gained enough attention. As the association between volatiles and sensory perception is often nonlinear, future studies should test the application of different nonlinear techniques.

  11. Rapid, automated gas chromatographic detection of organic compounds in ultra-pure water

    SciTech Connect

    MOWRY,CURTIS DALE; BLAIR,DIANNA S.; MORRISON,DENNIS J.; REBER,STEPHEN D.; RODACY,PHILIP J.

    2000-02-15

    An automated gas chromatography was used to analyze water samples contaminated with trace (parts-per-billion) concentrations of organic analytes. A custom interface introduced the liquid sample to the chromatography. This was followed by rapid chromatographic analysis. Characteristics of the analysis include response times less than one minute and automated data processing. Analytes were chosen based on their known presence in the recycle water streams of semiconductor manufacturers and their potential to reduce process yield. These include acetone, isopropanol, butyl acetate, ethyl benzene, p-xylene, methyl ethyl ketone and 2-ethoxy ethyl acetate. Detection limits below 20 ppb were demonstrated for all analytes and quantitative analysis with limited speciation was shown for multianalyte mixtures. Results are discussed with respect to the potential for on-line liquid process monitoring by this method.

  12. Computerised gas chromatographic-mass spectrometric analysis of complex mixtures of alkyl porphyrins.

    PubMed

    Marriott, P J; Gill, J P; Evershed, R P; Hein, C S; Eglinton, G

    1984-01-01

    Computerised capillary gas chromatography-mass spectrometry (GC-MS) analysis of complex mixtures of alkyl porphyrins, as their bis-(trimethylsiloxy)silicon(IV) and bis(tert.-butyldimethylsiloxy)silicon(IV) derivatives, is described. The latter derivative is more suitable for routine GC-MS analysis. This computerised GC-MS approach, when applied to the alkyl porphyrins of two geological samples, a bitumen (Gilsonite, Eocene age, UT, U.S.A.) and a crude oil (Boscan, Cretaceous age, West Venezuela), has revealed the highly complex compositions of these fractions. Computer-aided data processing, using relative retention index (RRI) calculations, facilitated the classification of the chromatographic peaks according to structural type and membership of pseudo-homologous series. Computerised GC-MS is compared with, and contrasted to high-performance liquid chromatography as a means of petroporphyrin analysis.

  13. Gas-chromatographic measurement of carboxyhemoglobin in blood from mothers and newborns.

    PubMed

    Fogh-Andersen, N; Eriksen, P S; Grinsted, J; Siggaard-Andersen, O

    1988-01-01

    HbCO in blood sampled from 20 mothers and newborns immediately after birth was measured with a new, simple gas-chromatographic method for CO. The mean ratio of HbCO to total hemoglobin for 13 non-smoking mothers did not differ significantly from that for their infants (mean 0.38%, SD 0.26% vs 0.38%, SD 0.13%), but the HbCO ratio varied more in the mothers than in the infants (P less than 0.05). The infants of seven cigarette-smoking mothers, tobacco-abstinent for 7 h during labor, had higher HbCO ratios than their mothers (mean 1.88% vs 1.28%, P less than 0.05). The results are in harmony with the concept of equal affinities of fetal and adult hemoglobin for CO and a long time for passage of CO across the placenta.

  14. Thermal Modulation Methods To Improve the Efficiency of a Gas Chromatograph

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.; Dimandja, J. D.; Do, M. T.; Kaljurand, M.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    Thermal modulation techniques can be used to improve capacity, resolution, and time of analysis of a gas chromatograph. Two of-the techniques developed in our laboratories include using a GC column to store a sample (sample storage system) and applying temperature programming directly onto the wall of a capillary column. The storage system developed allowed the continuous collection of a sample profile for about 3 hours and storing it for as long as 20 hours. Thereafter, the samples were eluted maintaining the individual characteristics of the components present in it. Moreover, temperature programming was done directly on a capillary column improving the time of analysis and resolution of a mixture containing light hydrocarbons.

  15. Correlation of the "EMIT" antiepileptic drug assay with a gas liquid chromatographic method.

    PubMed

    Legaz, M; Raisys, V A

    1976-02-01

    Many methodologies have been developed for determining anticonvulsant drug levels in human serum. Unfortunately, most procedures are either time consuming or subject to a variety of interferring substances. The "Enzyme Multiplied Immunoassay Technique" (EMIT) system has been evaluated for its speed, sensitivity, accuracy, and precision. When compared with a gas-liquid chromatographic procedure, the EMIT assay appeared to yield results which were statistically comparable for the drugs diphenylhydantoin, phenobarbital, and primidone. The EMIT assay also demonstrated no significant interference when challenged with extraordinarily high levels of potentially cross reacting drugs. Results obtained with the EMIT assay correlated well with GLC data and rank it as an attractive alternative to many of the existing procedures now being used.

  16. Thermal Modulation Methods To Improve the Efficiency of a Gas Chromatograph

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.; Dimandja, J. D.; Do, M. T.; Kaljurand, M.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    Thermal modulation techniques can be used to improve capacity, resolution, and time of analysis of a gas chromatograph. Two of-the techniques developed in our laboratories include using a GC column to store a sample (sample storage system) and applying temperature programming directly onto the wall of a capillary column. The storage system developed allowed the continuous collection of a sample profile for about 3 hours and storing it for as long as 20 hours. Thereafter, the samples were eluted maintaining the individual characteristics of the components present in it. Moreover, temperature programming was done directly on a capillary column improving the time of analysis and resolution of a mixture containing light hydrocarbons.

  17. Convenient headspace gas chromatographic determination of azide in blood and plasma.

    PubMed

    Meatherall, Robert; Palatnick, Wes

    2009-10-01

    Azide in human blood and plasma samples was derivatized with propionic anhydride in a headspace vial without prior sample preparation. The reaction proceeds quickly at room temperature to form propionyl azide. A portion of the headspace was assayed by gas chromatography with a nitrogen-phosphorus detector. In the heated injector of the gas chromatograph, the propionyl azide undergoes thermal rearrangement, forming ethyl isocyanate, which is subsequently chromatographed and detected. Propionitrile was used as the internal standard. The method is linear to at least 20 microg/mL. Limit of quantitation was 0.04 microg/mL, and the within-run coefficient of variation was 5.6% at 1 microg/mL. There was no interference from cyanide. A fatality report in which blood and plasma azide concentrations from a 59-year-old man were monitored for 24 h following the ingestion of an unknown amount of sodium azide is presented. The patient became critically ill after his self-inflicted sodium azide ingestion. He was intubated and treated with vasopressors and aggressive supportive care, including extracorporeal membrane oxygenation therapy, in the intensive care facility but died from neurological brain damage secondary to anoxia. On admission, 1.4 h after ingestion, his azide level was 5.6 microg/mL (blood); shortly thereafter, it had risen to 13.7 microg/mL (plasma) and, subsequently, was projected to have been eliminated by 16.7 h. No azide was detected in the postmortem blood and vitreous humor.

  18. Linear solvation energy relationships as classifiers in non-target analysis - a gas chromatographic approach.

    PubMed

    Ulrich, Nadin; Mühlenberg, Jana; Retzbach, Heiko; Schüürmann, Gerrit; Brack, Werner

    2012-11-16

    Linear solvation energy relationships (LSERs) are applied as classifiers to predict the logarithmic retention factors logk from the structures of candidate compounds in non-target analysis. By comparison of the predicted value with the experimentally determined logk, progressive exclusion of candidates is done. The approach is based on the determination of stationary phase parameters to describe ten different gas chromatographic columns under four isothermal conditions. To demonstrate retention prediction and the application of the classifier model, twelve compounds with the molecular formula C(12)H(10)O(2) were selected, while experimental logk values were compared to the predicted values and exclusion of potential candidate compounds was performed. The analytical power of the approach was demonstrated on the basis of experimentally determined compound descriptors achieved from gas chromatographic measurements. The prediction got less accurate when calculated compound descriptors were employed. For the time being insufficient precision in estimating the descriptors limits the possibility to exclude candidate compounds in non-target analysis. It is expected that new approaches to estimate compound descriptors, will improve this situation. At present, the insufficient accuracy of descriptor estimates can be dealt with larger prognosis intervals. Furthermore, the combination of two stationary phases with corresponding retention prediction further advanced the exclusion of potential candidates. The most appropriate pair of stationary phases was selected by the application of four different orthogonal strategies. In addition, the classifier was applied for a validation set with different molecular composition, where column selection was considered on the basis of the differences in the compound descriptors of the corresponding candidate compounds.

  19. Separation and purification of uridine diphosphate-glucuronosyltransferases by chromatofocusing on a high-performance liquid chromatograph.

    PubMed

    Takanashi, H; Homma, H; Matsui, M

    1989-06-01

    A rapid method for the separation and purification of uridine diphosphate-glucuronosyltransferases (GT) was developed with the use of chromatofocusing on a high-performance liquid chromatograph. GT isoenzymes solubilized from hepatic microsomes of Wistar rats were separated on a Mono P column, a pre-packed column for chromatofocusing. Using 4-nitrophenol, testosterone and androsterone as substrates, four fractions with different GT activities were separated in a pH gradient from 9.5 to 7.0. Two isoenzymes, testosterone GT and androsterone GT were purified to apparent homogeneity. They were eluted at pH 8.9 and 8.0 and had subunit molecular weight values of 50000 and 52000, respectively. Approximately 10 mg of solubilized microsomal proteins was applied and the elution was completed within 2 h. Addition of N-nitrodiethylamine, an in vitro activator of GT activity, enhanced the GT activity toward 4-nitrophenol in the three fractions. This chromatographic analysis confirmed the absence of androsterone GT isoenzyme in LA Wistar rats, a mutant strain in terms of androsterone glucuronidation.

  20. DETERMINATION OF PESTICIDES IN COMPOSITE DIETARY SAMPLES BY GAS CHROMATOGRAPHY/MASS SPECTROMETRY IN THE SELECTED ION MONITORING MODE USING A TEMPERATURE PROGRAMMABLE LARGE VOLUME INJECTOR WITH PRE-SEPARATION COLUMN

    EPA Science Inventory

    Use of a temperature-programmable pre-separation column in the gas chromatographic injection port permits determination of a wide range of semi-volatile pesticides including organochlorines, organophosphates, triazines, and anilines in fatty composite dietary samples while reduci...

  1. DETERMINATION OF PESTICIDES IN COMPOSITE DIETARY SAMPLES BY GAS CHROMATOGRAPHY/MASS SPECTROMETRY IN THE SELECTED ION MONITORING MODE USING A TEMPERATURE PROGRAMMABLE LARGE VOLUME INJECTOR WITH PRE-SEPARATION COLUMN

    EPA Science Inventory

    Use of a temperature-programmable pre-separation column in the gas chromatographic injection port permits determination of a wide range of semi-volatile pesticides including organochlorines, organophosphates, triazines, and anilines in fatty composite dietary samples while reduci...

  2. Multidimensional gas chromatography beyond simple volatiles separation.

    PubMed

    Chin, Sung-Tong; Marriott, Philip J

    2014-08-18

    Multidimensional separation in gas chromatography (MDGC) plays an important role in chemical analysis. This review presents selected literature on MDGC development and examples of the range of functionality reported for MDGC methods over the past 2 decades. With the most obvious advantage of providing much greater capacity for resolving constituents of a sample, MDGC extends analytical efficiency to a more substantial molecular coverage, combined with operational flexibility. But by judicious choice of implementation method, important chemical information relating to the sample, its components, potentially physico-chemical properties, and improved capacity for absolute identification may be realised. Sample-to-sample comparison is improved, and sample characterisation is facilitated especially when MDGC is combined with the informing power of modern mass spectrometry. Innovative MDGC arrangements allow high resolution coupled with spectroscopy and alternative bioassays, and delivers molecular elucidation in ways that are beyond just simple analysis of volatiles.

  3. TUNABLE COMPOSITE MEMBRANES FOR GAS SEPARATIONS

    SciTech Connect

    J.P. Ferraris; K.J. Balkus, Jr.; I.H. Musselman

    1999-01-01

    Poly 2-(3-thienyl)ethylacetate (PAET) was synthesized and solution cast as thin films to form dense membranes. These membranes are mechanically robust and are redox active, holding out promise as gas separation materials. The permeability properties of PAET membranes were evaluated for N{sub 2} (0.048 {+-} 0.008 Barrers), O{sub 2} (0.24 {+-} 0.02 Barrers), CH{sub 4} (0.081 {+-} 0.005 Barrers), and CO{sub 2} (1.4 {+-} 0.1 Barrers). The corresponding selectivity values ({alpha}) were: O{sub 2}/N{sub 2} = 5.1, CO{sub 2}/N{sub 2} = 29, and CO{sub 2}/CH{sub 4} = 18.

  4. Immobilized fluid membranes for gas separation

    DOEpatents

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  5. Screening Brazilian C gasoline quality: application of the SIMCA chemometric method to gas chromatographic data.

    PubMed

    Flumignan, Danilo Luiz; Tininis, Aristeu G; Ferreira, Fabrício de O; de Oliveira, José Eduardo

    2007-07-09

    A total of 2400 samples of commercial Brazilian C gasoline were collected over a 6-month period from different gas stations in the São Paulo state, Brazil, and analysed with respect to 12 physicochemical parameters according to regulation 309 of the Brazilian Government Petroleum, Natural Gas and Biofuels Agency (ANP). The percentages (v/v) of hydrocarbons (olefins, aromatics and saturated) were also determined. Hierarchical cluster analysis (HCA) was employed to select 150 representative samples that exhibited least similarity on the basis of their physicochemical parameters and hydrocarbon compositions. The chromatographic profiles of the selected samples were measured by gas chromatography with flame ionisation detection and analysed using soft independent modelling of class analogy (SIMCA) method in order to create a classification scheme to identify conform gasolines according to ANP 309 regulation. Following the optimisation of the SIMCA algorithm, it was possible to classify correctly 96% of the commercial gasoline samples present in the training set of 100. In order to check the quality of the model, an external group of 50 gasoline samples (the prediction set) were analysed and the developed SIMCA model classified 94% of these correctly. The developed chemometric method is recommended for screening commercial gasoline quality and detection of potential adulteration.

  6. [Pyrolysis-gas chromatographic fingerprints with hierarchical cluster analysis for Dendrobium candidum Wall. ex Lindl].

    PubMed

    Wang, Lili; Wang, Cong; Pan, Zaifa; Sun, Fa

    2008-09-01

    The pyrogram fingerprints of Dendrobium candidum Wall. ex Lindl. from different regions were studied by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and compared with hierarchical cluster analysis. The effect of pyrolysis temperature on the fingerprint was examined by evolved gas analysis, and then 450 degrees C was selected as the optimized pyrolysis temperature. An amount of 0.4 mg of raw drug powder was pyrolysed in a vertical microfurnace pyrolyzer, and the products were directly introduced into a gas chromatograph equipped with a flame ionization detector (FID) and a fused-silica capillary column (30 m x 0.25 mm x 0.25 microm). The pyrogram fingerprints of 10 samples from different regions showed a high similarity and a good reproducibility with the relative standard deviations (RSDs) of the retention times less than 0.33% and the RSDs of the relative peak areas less than 4.8%. Therefore, each sample was characterized by the peak area of 31 peaks in each pyrogram and these peaks were employed for hierarchical cluster analysis. Furthermore, the discrimination of the sample from different regions was achieved by hierarchical cluster analysis via recognizing the 10 x 31 data matrix. Thus, the results proved it is a simple, rapid and accurate method suitable for the quality control of the traditional Chinese medicines.

  7. Gas purge microsyringe extraction for quantitative direct gas chromatographic-mass spectrometric analysis of volatile and semivolatile chemicals.

    PubMed

    Yang, Cui; Piao, Xiangfan; Qiu, Jinxue; Wang, Xiaoping; Ren, Chunyan; Li, Donghao

    2011-03-25

    Sample pretreatment before chromatographic analysis is the most time consuming and error prone part of analytical procedures, yet it is a key factor in the final success of the analysis. A quantitative and fast liquid phase microextraction technique termed as gas purge microsyringe extraction (GP-MSE) has been developed for simultaneous direct gas chromatography-mass spectrometry (GC-MS) analysis of volatile and semivolatile chemicals without cleanup process. Use of a gas flowing system, temperature control and a conventional microsyringe greatly increased the surface area of the liquid phase micro solvent, and led to quantitative recoveries of both volatile and semivolatile chemicals within short extraction time of only 2 min. Recoveries of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and alkylphenols (APs) determined were 85-107%, and reproducibility was between 2.8% and 8.5%. In particular, the technique shows high sensitivity for semivolatile chemicals which is difficult to achieve in other sample pretreatment techniques such as headspace-liquid phase microextraction. The variables affecting extraction efficiency such as gas flow rate, extraction time, extracting solvent type, temperature of sample and extracting solvent were investigated. Finally, the technique was evaluated to determine PAHs, APs and OCPs from plant and soil samples. The experimental results demonstrated that the technique is economic, sensitive to both volatile and semivolatile chemicals, is fast, simple to operate, and allows quantitative extraction. On-site monitoring of volatile and semivolatile chemicals is now possible using this technique due to the simplification and speed of sample treatment.

  8. Gas-liquid separator and method of operation

    DOEpatents

    Soloveichik, Grigorii Lev; Whitt, David Brandon

    2009-07-14

    A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

  9. A purge-and-trap capillary column gas chromatographic method for the measurement of halocarbons in water and air

    SciTech Connect

    Happell, J.D.; Wallace, D.W.R.; Wills, K.D.; Wilke, R.J.; Neill, C.C.

    1996-06-01

    This report describes an automated, accurate, precise and sensitive capillary column purge- and -trap method capable of quantifying CFC-12, CFC-11, CFC-113, CH{sub 3}CCL{sub 3}, and CCL{sub 4} during a single chromatographic analysis in either water or gas phase samples.

  10. How to compare separation selectivity of high-performance liquid chromatographic columns properly?

    PubMed

    Andrić, Filip; Héberger, Károly

    2017-03-10

    Comparison and selection of chromatographic columns is an important part of development as well as validation of analytical methods. Presently there is abundant number of methods for selection of the most similar and orthogonal columns, based on the application of limited number of test compounds as well as quantitative structure retention relationship models (QSRR), from among Snyder's hydrophobic-subtraction model (HSM) have been most extensively used. Chromatographic data of 67 compounds were evaluated using principal component analysis (PCA), hierarchical cluster analysis (HCA), non-parametric ranking methods as sum of ranking differences (SRD) and generalized pairwise correlation method (GPCM), both applied as a consensus driven comparison, and complemented by the comparison with one variable at a time (COVAT) approach. The aim was to compare the ability of the HSM approach and the approach based on primary retention data of test solutes (logk values) to differentiate among ten highly similar C18 columns. The ranking (clustering) pattern of chromatographic columns based on primary retention data and HSM parameters gave different results in all instances. Patterns based on retention coefficients were in accordance with expectations based on columns' physicochemical parameters, while HSM parameters provided a different clustering. Similarity indices calculated from the following dissimilarity measures: SRD, GPCM Fisher's conditional exact probability weighted (CEPW) scores; Euclidian, Manhattan, Chebyshev, and cosine distances; Pearson's, Spearman's, and Kendall's, correlation coefficients have been ranked by the consensus based SRD. Analysis of variance confirmed that the HSM model produced statistically significant increases of SRD values for the majority of similarity indices, i.e. HS transformation of original retention data yields significant loss of information, and finally results in lower performance of HSM methodology. The best similarity measures were

  11. Results from the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    NASA Technical Reports Server (NTRS)

    Niemann, Hasso; Atreya, S.; Demick-Monelara, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Owen, T.; Raaen, E.; Way, S.

    2006-01-01

    The Gas Chromatograph Mass Spectrometer was one of six instruments on the Cassini-Huygens Probe mission to Titan. The GCMS measured in situ the chemical composition of the atmosphere during the probe descent and served as the detector for the pyrolization products for the Aerosol Collector Pyrolyser (ACP) experiment to determine the composition of the aerosol particles. The GCMS collected data from an altitude of 146 km to ground impact. The Probe and the GCMS survived impact and collected data for 1 hour and 9 minutes on the surface. Mass spectra were collected during descent and on the ground over a range of mlz from 2 to 141. The major constituents of the lower atmosphere were confirmed to be N2 and CH4. The methane mole fraction was uniform in the stratosphere. It increased below the tropopause, at about 32 km altitude, monotonically toward the surface, reaching a plateau at about 8 km at a level near saturation. After surface impact a steep increase of the methane signal was observed, suggesting evaporation of surface condensed methane due to heating by the GCMS sample inlet heater. The measured mole fraction of Ar-40 is 4.3x10(exp -5) and of Ar-36 is 2.8x10(exp -7). The other primordial noble gases were below 10(exp -8) mole fraction. The isotope ratios of C-12/C-13 determined from methane measurements are 82.3 and of N-14/N-15 determined from molecular nitrogen are 183. The D/H isotope ratio determined from the H2 and HD measurements is 2.3x10(exp -4). Carbon dioxide, ethane, acetylene and cyanogen were detected evaporating from the surface in addition to methane. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the

  12. Results from the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    NASA Technical Reports Server (NTRS)

    Niemann, H.; Atreya, S.; Demick-Montelara, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Owen, T.; Raaen, E.; Way, S.

    2006-01-01

    The Gas Chromatograph Mass Spectrometer was one of six instruments on the Cassini-Huygens Probe mission to Titan. The GCMS measured in situ the chemical composition of the atmosphere during the probe descent and served as the detector for the pyrolization products for the Aerosol Collector Pyrolyser (ACP) experiment to determine the composition of the aerosol particles. The GCMS collected data from an altitude of 146 km to ground impact. The Probe and the GCMS survived impact and collected data for 1 hour and 9 minutes on the surface. Mass spectra were collected during descent and on the ground over a range of m/z from 2 to 141. The major constituents of the lower atmosphere were confirmed to be N2 and CH4. The methane mole fraction was uniform in the stratosphere. It increased below the tropopause, at about 32 km altitude, monotonically toward the surface, reaching a plateau at about 8 km at a level near saturation. After surface impact a steep increase of the methane signal was observed, suggesting evaporation of surface condensed methane due to heating by the GCMS sample inlet heater. The measured mole fraction of Ar-40 is 4.3x10(exp -5) and of Ar-36 is 2.8x10(exp -7). The other primordial noble gases were below 10(exp -8) mole fraction. The isotope ratios of C-12/C-13 determined from methane measurements are 82.3 and of N-14/N-15 determined from molecular nitrogen are 183. The D/H isotope ratio determined from the H2 and HD measurements is 2.3x10(exp -4). Carbon dioxide, methane, acetylene and cyanogen were detected evaporating from the surface in addition to methane. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the

  13. Results from the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    NASA Technical Reports Server (NTRS)

    Niemann, H.; Atreya, S.; Demick-Montelara, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Owen, T.; Raaen, E.; Way, S.

    2006-01-01

    The Gas Chromatograph Mass Spectrometer was one of six instruments on the Cassini-Huygens Probe mission to Titan. The GCMS measured in situ the chemical composition of the atmosphere during the probe descent and served as the detector for the pyrolization products for the Aerosol Collector Pyrolyser (ACP) experiment to determine the composition of the aerosol particles. The GCMS collected data from an altitude of 146 km to ground impact. The Probe and the GCMS survived impact and collected data for 1 hour and 9 minutes on the surface. Mass spectra were collected during descent and on the ground over a range of m/z from 2 to 141. The major constituents of the lower atmosphere were confirmed to be N2 and CH4. The methane mole fraction was uniform in the stratosphere. It increased below the tropopause, at about 32 km altitude, monotonically toward the surface, reaching a plateau at about 8 km at a level near saturation. After surface impact a steep increase of the methane signal was observed, suggesting evaporation of surface condensed methane due to heating by the GCMS sample inlet heater. The measured mole fraction of Ar-40 is 4.3x10(exp -5) and of Ar-36 is 2.8x10(exp -7). The other primordial noble gases were below 10(exp -8) mole fraction. The isotope ratios of C-12/C-13 determined from methane measurements are 82.3 and of N-14/N-15 determined from molecular nitrogen are 183. The D/H isotope ratio determined from the H2 and HD measurements is 2.3x10(exp -4). Carbon dioxide, methane, acetylene and cyanogen were detected evaporating from the surface in addition to methane. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the

  14. Results from the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    NASA Technical Reports Server (NTRS)

    Niemann, Hasso; Atreya, S.; Demick-Monelara, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Owen, T.; Raaen, E.; Way, S.

    2006-01-01

    The Gas Chromatograph Mass Spectrometer was one of six instruments on the Cassini-Huygens Probe mission to Titan. The GCMS measured in situ the chemical composition of the atmosphere during the probe descent and served as the detector for the pyrolization products for the Aerosol Collector Pyrolyser (ACP) experiment to determine the composition of the aerosol particles. The GCMS collected data from an altitude of 146 km to ground impact. The Probe and the GCMS survived impact and collected data for 1 hour and 9 minutes on the surface. Mass spectra were collected during descent and on the ground over a range of mlz from 2 to 141. The major constituents of the lower atmosphere were confirmed to be N2 and CH4. The methane mole fraction was uniform in the stratosphere. It increased below the tropopause, at about 32 km altitude, monotonically toward the surface, reaching a plateau at about 8 km at a level near saturation. After surface impact a steep increase of the methane signal was observed, suggesting evaporation of surface condensed methane due to heating by the GCMS sample inlet heater. The measured mole fraction of Ar-40 is 4.3x10(exp -5) and of Ar-36 is 2.8x10(exp -7). The other primordial noble gases were below 10(exp -8) mole fraction. The isotope ratios of C-12/C-13 determined from methane measurements are 82.3 and of N-14/N-15 determined from molecular nitrogen are 183. The D/H isotope ratio determined from the H2 and HD measurements is 2.3x10(exp -4). Carbon dioxide, ethane, acetylene and cyanogen were detected evaporating from the surface in addition to methane. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the

  15. Comparison of nano and conventional liquid chromatographic methods for the separation of (+)-catechin-ethyl-malvidin-3-glucoside diastereoisomers.

    PubMed

    Kučera, Lukáš; Fanali, Salvatore; Aturki, Zeineb; Pospíšil, Tomáš; Bednář, Petr

    2016-01-08

    Nano-liquid chromatography and conventional HPLC were used for the separation of diastereomers of (+)-catechin-ethyl-malvidin-3-glucoside. Those bridged anthocyanin dyes were obtained by reaction of (+)-catechin with malvidin-3-glucoside in the presence of acetaldehyde. Both diastereomers were isolated with semipreparative chromatography and their structures were confirmed by nuclear magnetic resonance and mass spectrometry. In-laboratory prepared capillary columns packed with fully porous particles Chromosphere C18, dp=3μm, core-shell particles Kinetex C18, dp=2.6μm (100μm i.d.) and monolithic column Chromolith CapRod (100μm i.d.) were used for the separation of (+)-catechin, malvidin-3-glucoside and both diastereomers. Chromosphere C18 stationary phase provided the best chromatographic performance. Mobile phase containing water:acetonitrile (80:20) acidified with trifluoroacetic acid (0.1%, v/v/v) was used in an isocratic elution mode with a flow rate of 360nLmin(-1). Separation of studied compounds was achieved in less than 7min under optimized conditions. The nano-liquid chromatographic method and a conventional HPLC one using the same fully porous particles (Chromosphere C18, 3μm, 100mm×4.6mm) were compared providing higher separation efficiency with the first analytical method and similar selectivity. A better peak symmetry and higher resolution of the studied diastereomers was achieved by conventional chromatography. Nevertheless, nano-liquid chromatography appeared to be useful for the separation of complex anthocyanin dyes and can be utilized for their analysis in plant and food micro-samples. The developed method was used for analysis of red wine grape pomace. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A Gas Chromatographic Method for the Determination of Aldose and Uronic Acid Constituents of Plant Cell Wall Polysaccharides 1

    PubMed Central

    Jones, Thomas M.; Albersheim, Peter

    1972-01-01

    A major problem in determining the composition of plant cell wall polysaccharides has been the lack of a suitable method for accurately determining the amounts of galacturonic and glucuronic acids in such polymers. A gas chromatographic method for aldose analysis has been extended to include uronic acids. Cell wall polysaccharides are depolymerized by acid hydrolysis followed by treatment with a mixture of fungal polysaccharide-degrading enzymes. The aldoses and uronic acids released by this treatment are then reduced with NaBH4 to alditols and aldonic acids, respectively. The aldonic acids are separated from the alditols with Dowex-1 (acetate form) ion exchange resin, which binds the aldonic acids. The alditols, which do not bind, are washed from the resin and then acetylated with acetic anhydride to form the alditol acetate derivatives. The aldonic acids are eluted from the resin with HCl. After the resin has been removed, the HCl solution of the aldonic acids is evaporated to dryness, converting the aldonic acids to aldonolactones. The aldonolactones are reduced with NaBH4 to the corresponding alditols, dried and acetylated. The resulting alditol acetate mixtures produced from the aldoses and those from the uronic acids are analyzed separately by gas chromatography. This technique has been used to determine the changes in composition of Red Kidney bean (Phaseolus vulgaris) hypocotyl cell walls during growth, and to compare the cell wall polysaccharide compositions of several parts of bean plants. Galacturonic acid is found to be a major component of all the cell wall polysaccharides examined. PMID:16658086

  17. An effective way to hydrophilize gigaporous polystyrene microspheres as rapid chromatographic separation media for proteins.

    PubMed

    Qu, Jian-Bo; Zhou, Wei-Qing; Wei, Wei; Su, Zhi-Guo; Ma, Guang-Hui

    2008-12-02

    To overcome the disadvantages of protein denaturation and nonspecific adsorption on poly(styrene-divinylbenzene) (PS) medium as a chromatographic support, gigaporous PS microspheres prepared in our previous study were coated with hydrophobically modified agarose (phenoxyl agarose, Agap). Both the modification of agarose and the gigaporous structure of PS microspheres provided an advantage that facilitated the coating of Agap onto PS microspheres. The amount of Agap adsorbed onto the PS surface was examined as a function of the polymer concentration, and various samples of microspheres, differing in surface Agap density, were prepared. The adsorbed layer was then stabilized by chemical cross-linking and its stability was evaluated in the presence of sodium dodecyl sulfate. Results showed that PS microspheres were successfully coated with Agap, while the gigaporous structure could be well maintained. After coating, the nonspecific adsorption of proteins on PS microspheres was greatly reduced. Flow hydrodynamics experiments showed that the Agap-co-PS column had low backpressure, good permeability, and mechanical stability. Such a procedure could provide a hydrophilic low-pressure liquid chromatographic support for different types of chromatography, since the Agap layer may be easily derivatized by classical methods, and because of their good permeability, the coated microspheres have great potential applications in high-speed protein chromatography.

  18. Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols.

    PubMed

    Yang, Fang; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2015-05-01

    Effective separation of tocopherols is challenging and significant due to their structural similarity and important biological role. Here we report the post-synthetic modification of metal-organic framework (MOF) MIL-101(Cr) with pyridine for high-performance liquid chromatographic (HPLC) separation of tocopherols. Baseline separation of four tocopherols was achieved on a pyridine-grafted MIL-101(Cr) packed column within 10 min using hexane/isopropanol (96:4, v/v) as the mobile phase at a flow rate of 0.5 mL min(-1). The pyridine-grafted MIL-101(Cr) packed column gave high column efficiency (85,000 plates m(-1) for δ-tocopherol) and good precision (0.2-0.3% for retention time, 1.8-3.4% for peak area, 2.6-2.7% for peak height), and also offered much better performance than unmodified MIL-101(Cr) and commercial amino-bonded silica packed column for HPLC separation of tocopherols. The results not only show the promising application of pyridine-grafted MIL-101(Cr) as a novel stationary phase for HPLC separation of tocopherols, but also reveal a facile post-modification of MOFs to expand the application of MOFs in separation sciences.

  19. Separation Of Liquid And Gas In Zero Gravity

    NASA Technical Reports Server (NTRS)

    Howard, Frank S.; Fraser, Wilson S.

    1991-01-01

    Pair of reports describe scheme for separating liquid from gas so liquid could be pumped. Designed to operate in absence of gravitation. Jet of liquid, gas, or liquid/gas mixture fed circumferentially into cylindrical tank filled with liquid/gas mixture. Jet starts liquid swirling. Swirling motion centrifugally separates liquid from gas. Liquid then pumped from tank at point approximately diametrically opposite point of injection of jet. Vortex phase separator replaces such devices as bladders and screens. Requires no components inside tank. Pumps for gas and liquid outside tank and easily accessible for maintenance and repairs.

  20. Quantitative structure-retention relationships of polycyclic aromatic hydrocarbons gas-chromatographic retention indices.

    PubMed

    Drosos, Juan Carlos; Viola-Rhenals, Maricela; Vivas-Reyes, Ricardo

    2010-06-25

    Polycyclic aromatic compounds (PAHs) are of concern in environmental chemistry and toxicology. In the present work, a QSRR study was performed for 209 previously reported PAHs using quantum mechanics and other sources descriptors estimated by different approaches. The B3LYP/6-31G* level of theory was used for geometrical optimization and quantum mechanics related variables. A good linear relationship between gas-chromatographic retention index and electronic or topologic descriptors was found by stepwise linear regression analysis. The molecular polarizability (alpha) and the second order molecular connectivity Kier and Hall index ((2)chi) showed evidence of significant correlation with retention index by means of important squared coefficient of determination, (R(2)), values (R(2)=0.950 and 0.962, respectively). A one variable QSRR model is presented for each descriptor and both models demonstrates a significant predictive capacity established using the leave-many-out LMO (excluding 25% of rows) cross validation method's q(2) cross-validation coefficients q(2)(CV-LMO25%), (obtained q(2)(CV-LMO25%) 0.947 and 0.960, respectively). Furthermore, the physicochemical interpretation of selected descriptors allowed detailed explanation of the source of the observed statistical correlation. The model analysis suggests that only one descriptor is sufficient to establish a consistent retention index-structure relationship. Moderate or non-significant improve was observed for quantitative results or statistical validation parameters when introducing more terms in predictive equation. The one parameter QSRR proposed model offers a consistent scheme to predict chromatographic properties of PAHs compounds.

  1. Liquid chromatographic enantiomer separation of 1-naphthylamides of chiral acids using several amylose- and cellulose-derived chiral stationary phases.

    PubMed

    Islam, Md F; Adhikari, Suraj; Paik, Man-Jeong; Lee, Wonjae

    2017-03-01

    The liquid chromatographic enantiomer separation of various chiral acids as 1-naphthylamides was performed using several chiral stationary phases (CSPs). The CSPs used in this study were six covalently bonded and four coated type CSPs derived from amylose and cellulose derivatives as chiral selectors. The degree of enantioseparation is affected by the structure of chiral acids and the CSPs used, which have different chiral selectors and types of immobilization. For the enantiomer resolution of chiral acids as 1-naphthylamide derivatives, the performance of the coated type Lux Cellulose-1 was superior to those of the other CSPs, except for 2-aryloxypropionic acid derivatives. Owing to the strong ultraviolet absorbance of the 1-naphthyl group, the convenient analytical method developed and validated in this study could be expected to be very useful for the enantiomer separation of various chiral acids as 1-naphthylamide derivatives using polysaccharide-derived CSPs.

  2. Countercurrent Chromatographic Separation of Proteins Using an Eccentric Coiled Column with Synchronous and Nonsynchronous Type-J Planetary Motions

    PubMed Central

    SHINOMIYA, Kazufusa; YOSHIDA, Kazunori; TOKURA, Koji; TSUKIDATE, Etsuhiro; YANAGIDAIRA, Kazuhiro; ITO, Yoichiro

    2015-01-01

    Protein separation was performed using the high-speed counter-current chromatograph (HSCCC) at both synchronous and nonsynchronous type-J planetary motions. The partition efficiency was evaluated with two different column configurations, eccentric coil and toroidal coil, on the separation of a set of stable protein samples including cytochrome C, myoglobin and lysozyme with a polymer phase system composed of 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate. Better peak resolution was obtained by the eccentric coil than by the toroidal coil using either lower or upper phase as the mobile phase. The peak resolution was further improved using the eccentric coil by the nonsynchronous type-J planetary motion with the combination of 1066 rpm of column rotation and 1000 rpm of revolution. PMID:25765276

  3. Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration

    SciTech Connect

    Peter, F.J.; Laguna, G.R.

    1996-09-01

    An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published.

  4. Gas chromatographic and mass spectrometric analysis of polychlorinated biphenyls in human placenta and cord blood

    SciTech Connect

    Ando, M.; Saito, H.; Wakisaka, I.

    1986-10-01

    Gas chromatographic and mass spectrometric analyses of polychlorinated biphenyls (PCBs) in placenta, maternal blood, cord blood, and milk were carried out. Trichlorobiphenyl, tetrachlorobiphenyl, pentachlorobiphenyls, and hexachlorobiphenyls were identified by the mass chromatogram and the mass spectra. Some minor peaks of PCBs were identified by gas chromatography. The relationship between the PCB concentration in placenta and that in milk is different in each PCB congener. The higher the chlorine content of the PCB congener, the more significant the correlation. No significant but a low negative correlation exists between the concentration of some PCB congeners in the placenta and that in cord blood. On the other hand, a significant linear correlation exists between the concentration of hexachlorobenzene in the placenta and that in cord blood. The transplacental transport of each PCB congener varied depending upon its chemical nature. Trichlorobiphenyl and tetrachlorobiphenyl were more transferable than hexachlorobiphenyls. The results show that the placenta and cord blood are useful human samples to analyze the body burden of environmental pollutants and to estimate their transfer from mother to fetus.

  5. Gas chromatographic-mass spectrometric analysis of chemical volatiles in buffalo (Bubalus bubalis) urine.

    PubMed

    Barman, Purabi; Yadav, M C; Kumar, H; Meur, S K; Ghosh, S K

    2013-10-01

    Isolation of active fraction and characterization of chemosignals from urine have been attempted in several mammalian species in the recent years. The objective of this study was to identify the urinary volatiles across various reproductive stages of buffalo cow, namely, estrus, diestrus, and pregnancy, and in bull, by chemical extraction followed by gas chromatography-linked mass spectrometry (GC-MS). Urine samples were collected from six buffalo cows at two different phases of estrous cycle, namely, estrus and diestrus. Besides, urinary samples were collected from five pregnant buffalo cows (60-75 days after artificial insemination (AI)) and six adult bulls. Thin-layer chromatography was performed as a preliminary test for qualitative comparison of different compounds extracted by organic solvents. Identification of the urinary compounds was carried out in a gas chromatograph (Perkin Elmer, Autosystem XL) linked to a mass spectrometer (Turbomass). The results of GC-MS analysis indicated the presence of 21 compounds with varying molecular weights and retention time, which were further categorized as diestrus-specific, pregnancy-specific, and bull-specific urinary compounds. No compound, however, could be identified as estrus-specific. We concluded that qualitative differences do exist in estrus, diestrus, and pregnant buffalo cow urine and in bull urine, as evidenced by GC-MS. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Establishing high temperature gas chromatographic profiles of non-polar metabolites for quality assessment of African traditional herbal medicinal products.

    PubMed

    Bony, Nicaise F; Libong, Danielle; Solgadi, Audrey; Bleton, Jean; Champy, Pierre; Malan, Anglade K; Chaminade, Pierre

    2014-01-01

    The quality assessment of African traditional herbal medicinal products is a difficult challenge since they are complex mixtures of several herbal drug or herbal drug preparations. The plant source is also often unknown and/or highly variable. Plant metabolites chromatographic profiling is therefore an important tool for quality control of such herbal products. The objective of this work is to propose a protocol for sample preparation and gas chromatographic profiling of non-polar metabolites for quality control of African traditional herbal medicinal products. The methodology is based on the chemometric assessment of chromatographic profiles of non-polar metabolites issued from several batches of leaves of Combretum micranthum and Mitracarpus scaber by high temperature gas chromatography coupled to mass spectrometry, performed on extracts obtained in refluxed dichloromethane, after removal of chlorophyll pigments. The method using high temperature gas chromatography after dichloromethane extraction allows detection of most non-polar bioactive and non-bioactive metabolites already identified in leaves of both species. Chemometric data analysis using Principal Component Analysis and Partial Least Squares after Orthogonal Signal Correction applied to chromatographic profiles of leaves of Combretum micranthum and Mitracarpus scaber showed slight batch to batch differences, and allowed clear differentiation of the two herbal extracts.

  7. A specific gas chromatographic detector for carbonyl compounds, based on polarography.

    PubMed

    Fleet, B; Risby, T H

    1969-07-01

    The evaluation of a specific gas Chromatographie detector for carbonyl compounds is described. This is based on the polarographic reduction of the Girard T hydrazone derivative which is formed when the carbonyl compound is absorbed in a buffered supporting electrolyte containing the carbonyl reagent. The detector was used to monitor the separation of a homologous series of alkanals.

  8. Investigation of porous polymer gas chromatographic packings for atmospheric analysis of extraterrestrial bodies

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.

    1986-01-01

    Measurement of the permanent gases in the atmospheres of mission targets is a major objective. A 16 meter long Porapak N column was used on the Venus probe and required a rather high carrier gas flow rate. The researchers have, therefore, surveyed commercial porous polymer types which had some ability to resolve nitrogen, oxygen, argon and carbon monoxide gases. Porapaks N and Q appeared superior to most. Batch to batch variation, however, was quite wide, so the researchers learned how to synthesize porous polymer and investigated some of the factors affecting the separations. A polymer was synthesized which was superior to all commercial products and allowed at least a 50% reduction in length and flow rate of carrier gas. Similar studies were made concerning the separation of hydrocarbons and new porous polymers have been synthesized which represent significant improvements in time of analysis, column, and carrier gas flow rate.

  9. Gas chromatographic/thermal energy analyzer method for N-nitrosodibenzylamine in hams processed in elastic rubber netting.

    PubMed

    Pensabene, J W; Fiddler, W

    1994-01-01

    We previously described a solid-phase extraction (SPE) procedure for determining volatile nitrosamines in hams processed in elastic rubber nettings. This same procedure was found to successfully isolate N-nitrosodibenzylamine (NDBzA), a semivolatile nitrosamine. This nitrosamine may form as a result of the reformulated rubber now used in nettings. Reformulation became necessary because of the reported presence of N-nitrosodibutylamine in both the old nettings and on the exterior portion of commercial hams. After SPE, NDBzA was quantitated by using a gas chromatographic (GC) system interfaced to a nitrosamine-specific chemiluminescence detector [thermal energy analyzer (TEA)]. The GC system was equipped with a heated interface external to the TEA furnace to facilitate quantitation of NDBzA. With separation on a packed column, the method can be used to analyze 10 volatile nitrosamines and NDBzA. Repeatability of the method for NDBzA was found to be 2.1 ppb, and the coefficient of variation (CV) was 10.6%. Analysis of 18 commercial hams from 9 different producers, purchased from local retailers, indicated that 12 were positive for NDBzA (range, 2.6-128.5 ppb). NDBzA was confirmed by GC/mass spectrometry.

  10. Ethyl chloroformate as a derivatizing reagent for the gas chromatographic determination of isoniazid and hydrazine in pharmaceutical preparations.

    PubMed

    Khuhawar, Mohammad Yar; Zardari, Liaquat Ali

    2008-01-01

    Ethyl chloroformate was examined as a precolumn derivatizing reagent for the gas chromatographic (GC) determination of isoniazid (INH) and hydrazine (HZ). Phenylhydrazine (PHZ) was used as an internal standard. GC separation was carried out on an HP-5 column (30 m x 0.32 mm i.d.) with flame ionization detection. The elution was carried out at an initial column temperature of 150 degrees C for 1 min at a heating rate of 10 degrees C/min up to 250 degrees C, nitrogen flow rate of 4 ml/min and a split ratio of 10:1, v/v. The linear calibration ranges for INH and HZ were observed between 3.5-37.5 and 3.5-35 microg/ml with corresponding detection limits of 0.18 and 0.17 ng reaching the detector. The method was subsequently applied to the determination of INH and HZ in pharmaceutical preparations, achieving a relative standard deviation (RSD) of 3.8-5.8%. The recovery percentage of INH from isoniazid syrup was 98% with an RSD of 5.2%.

  11. Use of an acoustic wave device to detect target analytes during chromatographic separations

    SciTech Connect

    Tom-Moy, M.; Doherty, T.P.; Baer, R.L.

    1995-12-01

    Hewlett-Packard Laboratories has developed a proprietary acoustic wave device which permits the detection of specific analyte in a flowing system. By coupling specific chemistry to the surface of the device, the mass loading of the target analyte is detected as a shift in phase is measured in real time. In process monitoring, the analyte of interest is isolated by passing the sample through a series of chromatographic columns. Conventional HPLC systems monitor the protein peaks using UV-VIS. The peaks are collected and biochemical assays are performed to determine the specific peak of interest. We have configured our acoustic sensors to make specific chemical measurements without the use of labeled reagents or enzymes to generate a real time signal of specific analyte as it elutes from the column. The output signal can be integrated over time to yield a concentration. Such a detector has the potential to increase productivity in process chromatography in biopharmaceutical applications.

  12. Surface mass spectrometry of two component drug-polymer systems: novel chromatographic separation method using gentle-secondary ion mass spectrometry (G-SIMS).

    PubMed

    Ogaki, Ryosuke; Gilmore, Ian S; Alexander, Morgan R; Green, Felicia M; Davies, Martyn C; Lee, Joanna L S

    2011-05-15

    In recent years, there has been an increase in the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for characterizing material surfaces. A great advantage of SIMS is that the analysis is direct and has excellent spatial resolution approaching a few hundred nanometers. However, the lack of the usual separation methods in mass spectrometry such as chromatography or ion mobility combined with the complexity of the heavily fragmented ions in the spectra means that the interpretation of multicomponent spectra in SIMS is very challenging indeed. The requirements for high-definition imaging, with say 256 × 256 pixels, in around 10 min analysis time places significant constraints on the instrument design so that separation using methods such as ion mobility with flight times of milliseconds are incompatible. Clearly, traditional liquid and gas chromatographies are not at all possible. Previously, we developed a method known as Gentle-SIMS (G-SIMS) that simplifies SIMS spectra so that the dominant ions are simply related to the structure of the substances analyzed. The method uses a measurement of the fragmentation behavior under two different primary ion source conditions and a control parameter known as the g-index. Here, we show that this method may be used "chromatographically" to separate the mass spectra of a drug molecule from the matrix polymer. The method may be used in real-time and is directly compatible with the majority of TOF-SIMS instruments. The applicability to other imaging mass spectrometeries is discussed.

  13. Improving accuracy and precision of ice core δD(CH4) analyses using methane pre-pyrolysis and hydrogen post-pyrolysis trapping and subsequent chromatographic separation

    NASA Astrophysics Data System (ADS)

    Bock, M.; Schmitt, J.; Beck, J.; Schneider, R.; Fischer, H.

    2014-07-01

    Firn and polar ice cores offer the only direct palaeoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD(CH4) or δ2H(CH4)) 0.5 to 1.5 kg of ice was hitherto used. Here we present a method to improve precision and reduce the sample amount for δD(CH4) measurements in (ice core) air. Pre-concentrated methane is focused in front of a high temperature oven (pre-pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post-pyrolysis trapping), both on a carbon-PLOT capillary at -196 °C. Argon, oxygen, nitrogen, carbon monoxide, unpyrolysed methane and krypton are trapped together with H2 and must be separated using a second short, cooled chromatographic column to ensure accurate results. Pre- and post-pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods, we estimate a precision of 2.3‰ for 350 g of ice (or roughly 30 mL - at standard temperature and pressure (STP) - of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.

  14. Improving accuracy and precision of ice core δD (CH4) analyses using methane pre- and hydrogen post-pyrolysis trapping and subsequent chromatographic separation

    NASA Astrophysics Data System (ADS)

    Bock, M.; Schmitt, J.; Beck, J.; Schneider, R.; Fischer, H.

    2013-12-01

    Firn and polar ice cores offer the only direct paleoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD (CH4)) 0.5 to 1.5 kg of ice was previously necessary to achieve the required precision. Here we present a method to improve precision and reduce the sample amount for δD (CH4) measurements on (ice core) air. Pre-concentrated methane is focused before a high temperature oven (pre pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post pyrolysis trapping), both on a carbon-PLOT capillary at -196 °C. A small amount of methane and krypton are trapped together with H2 and must be separated using a short second chromatographic column to ensure accurate results. Pre and post pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods we estimate a precision of 2.2‰ for 350 g of ice (or roughly 30 mL (at standard temperature and pressure (STP)) of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.

  15. Kinetics and mechanism of gas-phase thermolysis using headspace-gas chromatographic analysis.

    PubMed

    Cafferata, L F; Manzione, C J

    2001-02-01

    Headspace gas chromatography is employed in order to study the thermal decomposition reaction of gaseous di-tert-butyl peroxide (DTBP) in the 130 degrees C to 160 degrees C temperature range and in the presence of n-hexane as the internal standard and nitrogen as the carrier gas. The reaction exclusively yields acetone and ethane as products. First-order kinetics are observed, including when the surface-to-volume ratio (S/V) of the Pyrex 20-mL vial employed as the reactor is increased by packing it with silanized glass wool. However, a small increase in the rate constant values is observed at each temperature, which supports a heterogeneous surface process in DTBP decomposition. The rate constant's dependence on the homogeneous unimolecular decomposition reaction corresponds to the O-O bond rupture of the DTBP molecule in a stepwise three-stage mechanism. Thus, the relevant question of the participation of a surface catalytic effect in the DTBP gas-phase thermolysis can easily be assessed through the procedure described in this work. In general, this is advantageous for the rapid investigation of the reaction kinetics of volatile compounds at different temperatures.

  16. 21 CFR 862.2230 - Chromatographic separation material for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical... compound is separated from a solution. (b) Classification. Class I (general controls). The device is exempt...

  17. 21 CFR 862.2230 - Chromatographic separation material for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical... compound is separated from a solution. (b) Classification. Class I (general controls). The device is exempt...

  18. Device for separation of vortex gas-dynamic energy

    NASA Astrophysics Data System (ADS)

    Leontiev, A. I.; Burtsev, S. A.

    2015-10-01

    A device for separation of vortex gas-dynamic energy, which combines the mechanism of separation of vortex energy used in the Ranque-Hilsch tubes and the mechanism of separation of gas-dynamic energy, is proposed for supersonic flows. A method of calculation of this device is developed. A comparison is made that showed that, when working with natural gas, the cooling depth of half of the mass flow rate proves to be 1.3 times higher than that for the vortex tube and three times higher than that for the device for separation of the gas-dynamic energy.

  19. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    PubMed

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dynamics of effusive and diffusive gas separation on pillared graphene.

    PubMed

    Wesołowski, Radosław P; Terzyk, Artur P

    2016-06-22

    Pillared graphene structures, from a practical viewpoint, are very interesting novel carbon materials. Combining the properties of graphene and nanotubes, such as durability, chemical purity and a controlled structure, they were proven to be effective membranes for noble gas separation processes. Here, we examine their possible use for other, more commercially useful gas mixture separation, i.e. air and coal gas. The mechanism of air gas transport through the pillar channels is studied, and the prospective application of 2-D pillared membranes in effusion-like processes provided. The separative abilities of hybrid systems consisting of membranes with different channel diameters in relation to coal gas are proven to be promising.

  1. Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics

    PubMed Central

    Pfeifer, Nico; Leinenbach, Andreas; Huber, Christian G; Kohlbacher, Oliver

    2007-01-01

    Background High-throughput peptide and protein identification technologies have benefited tremendously from strategies based on tandem mass spectrometry (MS/MS) in combination with database searching algorithms. A major problem with existing methods lies within the significant number of false positive and false negative annotations. So far, standard algorithms for protein identification do not use the information gained from separation processes usually involved in peptide analysis, such as retention time information, which are readily available from chromatographic separation of the sample. Identification can thus be improved by comparing measured retention times to predicted retention times. Current prediction models are derived from a set of measured test analytes but they usually require large amounts of training data. Results We introduce a new kernel function which can be applied in combination with support vector machines to a wide range of computational proteomics problems. We show the performance of this new approach by applying it to the prediction of peptide adsorption/elution behavior in strong anion-exchange solid-phase extraction (SAX-SPE) and ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Furthermore, the predicted retention times are used to improve spectrum identifications by a p-value-based filtering approach. The approach was tested on a number of different datasets and shows excellent performance while requiring only very small training sets (about 40 peptides instead of thousands). Using the retention time predictor in our retention time filter improves the fraction of correctly identified peptide mass spectra significantly. Conclusion The proposed kernel function is well-suited for the prediction of chromatographic separation in computational proteomics and requires only a limited amount of training data. The performance of this new method is demonstrated by applying it to peptide retention time prediction in IP

  2. Gas chromatographic methods for determination of gamma-BHC in technical emulsifiable concentrates and water-dispersible powder formulations and in lindane shampoo and lotion: collaborative study.

    PubMed

    Miles, J W; Mount, D L; Beckmann, T J; Carrigan, S K; Galoux, I M; Hitos, P; Hodge, M C; Kissler, K; Martijn, A; Sanchez-Rasero, F

    1984-01-01

    Although the gas chromatographic separation of the isomers of BHC was demonstrated two decades ago, the present AOAC method of analysis of BHC for gamma-isomer (lindane) content is based on a separation carried out on a liquid chromatographic partition column. A method of analysis has been developed that uses an OV-210 column for separation of the gamma-isomer from the other isomers and impurities in technical BHC. Di-n-propyl phthalate was chosen as an internal standard. The same system allows quantitation of lindane in lotion and shampoo after these products are extracted with ethyl acetate-isooctane (1 + 4). The analytical methods were subjected to a collaborative trial with 10 laboratories. The coefficient of variation for technical BHC was 2.83%. For the water-dispersible powder and emulsifiable concentrate, the coefficients of variation were 2.89% and 4.62%, respectively. Coefficients of variation for 1% lindane lotion and shampoo were 4.36% and 11.92%, respectively. The method has been adopted official first action.

  3. Comprehensive multi-dimensional liquid chromatographic separation in biomedical and pharmaceutical analysis: a review.

    PubMed

    Dixon, Steven P; Pitfield, Ian D; Perrett, David

    2006-01-01

    'Multi-dimensional' liquid separations have a history almost as long as chromatography. In multi-dimensional chromatography the sample is subjected to more than one separation mechanism; each mechanism is considered an independent separation dimension. The separations can be carried out either offline via fraction collection, or directly coupled online. Early multi-dimensional separations using combinations of paper chromatography, electrophoresis and gels, in both planar and columnar modes are reviewed. Developments in HPLC have increased the number of measurable analytes in ever more complex matrices, and this has led to the concept of 'global metabolite profiling'. This review focuses on the theory and practice of modern 'comprehensive' multi-dimensional liquid chromatography when applied to biomedical and pharmaceutical analysis.

  4. Robust isocratic liquid chromatographic separation of functional poly(methyl methacrylate).

    PubMed

    Jiang, Xulin; Lima, Vincent; Schoenmakers, Peter J

    2003-11-07

    The separation of telechelic poly(methyl methacrylate) (PMMA) prepolymers based on the number of end-groups under critical liquid chromatography (LC) conditions has been studied using a bare-silica column, which can interact with polar functional groups. The critical solvent compositions for non-functional, mono-functional and bi-functional PMMAs were determined in normal-phase LC using mixtures of acetonitrile and dichloromethane (DCM) of varying composition as the mobile phase. The telechelic prepolymers were successfully separated according to hydroxyl (OH) functionality (with zero, one, or two OH groups, respectively) under the critical conditions, in which fast (5 min), base-line separations were obtained independent of molecular weight. Changing the column temperature, flow rate, and mobile-phase composition within a certain range did not affect the functionality separation. Therefore this isocratic LC separation method is quite robust. Evaporative light-scattering detector (ELSD) calibration curves were used for the quantitative analysis of functional PMMA prepolymers.

  5. Potential for Measurement of Trace Volatile Organic Compounds in Closed Environments Using Gas Chromatograph/Differential Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Cheng, Patti

    2007-01-01

    For nearly 3.5 years, the Volatile Organic Analyzer (VOA) has routinely analyzed the International Space Station (ISS) atmosphere for a target list of approximately 20 volatile organic compounds (VOCs). Additionally, an early prototype of the VOA collected data aboard submarines in two separate trials. Comparison of the data collected on ISS and submarines showed a surprising similarity in the atmospheres of the two environments. Furthermore, in both cases it was demonstrated that the VOA data can detect hardware issues unrelated to crew health. Finally, it was also clear in both operations that the VOA s size and resource consumption were major disadvantages that would restrict its use in the future. The VOA showed the value of measuring VOCs in closed environments, but it had to be shrunk if it was to be considered for future operations in these environments that are characterized by cramped spaces and limited resources. The Sionex Microanalyzer is a fraction of the VOA s size and this instrument seems capable of maintaining or improving upon the analytical performance of the VOA. The two design improvements that led to a smaller, less complex instrument are the Microanalyzer s use of recirculated air as the gas chromatograph s carrier gas and a micromachined detector. Although the VOA s ion mobility spectrometer and the Microanalyzer s differential mobility spectrometer (DMS) are related detector technologies, the DMS was more amenable to micromachining. This paper will present data from the initial assessment of the Microanalyzer. The instrument was challenged with mixtures that simulated the VOCs typically detected in closed-environment atmospheres.

  6. Characterization of thermal desorption with the Deans-switch technique in gas chromatographic analysis of volatile organic compounds.

    PubMed

    Ou-Yang, Chang-Feng; Huang, Ying-Xue; Huang, Ting-Jyun; Chen, Yong-Shen; Wang, Chieh-Heng; Wang, Jia-Lin

    2016-09-02

    This study presents a novel application based on the Deans-switch cutting technique to characterize the thermal-desorption (TD) properties for gas chromatographic (GC) analysis of ambient volatile organic compounds (VOCs). Flash-heating of the sorbent bed at high temperatures to desorb trapped VOCs to GC may easily produce severe asymmetric or tailing GC peaks affecting resolution and sensitivity if care is not taken to optimize the TD conditions. The TD peak without GC separation was first examined for the quality of the TD peak by analyzing a standard gas mixture from C2 to C12 at ppb level. The Deans switch was later applied in two different stages. First, it was used to cut the trailing tail of the TD peak, which, although significantly improved the GC peak symmetry, led to more loss of the higher boiling compounds than the low boiling ones, thus suggesting compound discrimination. Subsequently, the Deans switch was used to dissect the TD peak into six 30s slices in series, and an uneven distribution in composition between the slices were found. A progressive decrease in low boiling compounds and increase in higher boiling ones across the slices indicated severe inhomogeneity in the TD profile. This finding provided a clear evidence to answer the discrimination problem found with the tail cutting approach to improve peak symmetry. Through the use of the innovated slicing method based on the Deans-switch cutting technique, optimization of TD injection for highly resolved, symmetric and non-discriminated GC peaks can now be more quantitatively assessed and guided.

  7. Potential for Measurement of Trace Volatile Organic Compounds in Closed Environments Using Gas Chromatograph/Differential Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Cheng, Patti

    2007-01-01

    For nearly 3.5 years, the Volatile Organic Analyzer (VOA) has routinely analyzed the International Space Station (ISS) atmosphere for a target list of approximately 20 volatile organic compounds (VOCs). Additionally, an early prototype of the VOA collected data aboard submarines in two separate trials. Comparison of the data collected on ISS and submarines showed a surprising similarity in the atmospheres of the two environments. Furthermore, in both cases it was demonstrated that the VOA data can detect hardware issues unrelated to crew health. Finally, it was also clear in both operations that the VOA s size and resource consumption were major disadvantages that would restrict its use in the future. The VOA showed the value of measuring VOCs in closed environments, but it had to be shrunk if it was to be considered for future operations in these environments that are characterized by cramped spaces and limited resources. The Sionex Microanalyzer is a fraction of the VOA s size and this instrument seems capable of maintaining or improving upon the analytical performance of the VOA. The two design improvements that led to a smaller, less complex instrument are the Microanalyzer s use of recirculated air as the gas chromatograph s carrier gas and a micromachined detector. Although the VOA s ion mobility spectrometer and the Microanalyzer s differential mobility spectrometer (DMS) are related detector technologies, the DMS was more amenable to micromachining. This paper will present data from the initial assessment of the Microanalyzer. The instrument was challenged with mixtures that simulated the VOCs typically detected in closed-environment atmospheres.

  8. Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals.

    PubMed

    Ahmed, Marwa; Yajadda, Mir Massoud Aghili; Han, Zhao Jun; Su, Dawei; Wang, Guoxiu; Ostrikov, Kostya Ken; Ghanem, Ashraf

    2014-09-19

    Single-walled carbon nanotubes were encapsulated into different polymer-based monolithic backbones. The polymer monoliths were prepared via the copolymerization of 20% monomers, glycidyl methacrylate, 20% ethylene glycol dimethacrylate and 60% porogens (36% 1-propanol, 18% 1,4-butanediol) or 16.4% monomers (16% butyl methacrylate, 0.4% sulfopropyl methacrylate), 23.6% ethylene glycol dimethacrylate and 60% porogens (36% 1-propanol, 18% 1,4-butanediol) along with 6% single-walled carbon nanotubes aqueous suspension. The effect of single-walled carbon nanotubes on the chiral separation of twelve classes of pharmaceutical racemates namely; α- and β-blockers, antiinflammatory drugs, antifungal drugs, dopamine antagonists, norepinephrine-dopamine reuptake inhibitors, catecholamines, sedative hypnotics, diuretics, antihistaminics, anticancer drugs and antiarrhythmic drugs was investigated. The enantioselective separation was carried out under multimodal elution to explore the chiral recognition capabilities of single-walled carbon nanotubes using reversed phase, polar organic and normal phase chromatographic conditions using nano-liquid chromatography. Baseline separation was achieved for celiprolol, chlorpheniramine, etozoline, nomifensine and sulconazole under multimodal elution conditions. Satisfactory repeatability was achieved through run-to-run, column-to-column and batch-to-batch investigations. Our findings demonstrate that single-walled carbon nanotubes represent a promising stationary phase for the chiral separation and may open the field for a new class of chiral selectors.

  9. Application of a Modified Gas Chromatograph to Analyze Space Experiment Combustion Gases on Space Shuttle Mission STS-94

    NASA Technical Reports Server (NTRS)

    Coho, William K.; Weiland, Karen J.; VanZandt, David M.

    1998-01-01

    A space experiment designed to study the behavior of combustion without the gravitational effects of buoyancy was launched aboard the Space Shuttle Columbia on July 1, 1997. The space experiment, designated as Combustion Module-1 (CM-1), was one of several manifested on the Microgravity Sciences Laboratory - 1 (MSL-1) mission. The launch, designated STS-94, had the Spacelab Module as the payload, in which the MSL-1 experiments were conducted by the Shuttle crewmembers. CM-1 was designed to accommodate two different combustion experiments during MSL-1. One experiment, the Structure of Flame Balls at Low Lewis-number experiment (SOFBALL), required gas chromatography analysis to verify the composition of the known, premixed gases prior to combustion, and to determine the remaining reactant and the products resulting from the combustion process in microgravity. A commercial, off-the-shelf, dual-channel micro gas chromatograph was procured and modified to interface with the CM-1 Fluids Supply Package and the CM-1 Combustion Chamber, to accommodate two different carrier gases, each flowing through its own independent column module, to withstand the launch environment of the Space Shuttle, to accept Spacelab electrical power, and to meet the Spacelab flight requirements for electromagnetic interference (EMI) and offgassing. The GC data was down linked to the Marshall Space Flight Center for near-real time analysis, and stored on-orbit for post-flight analysis. The gas chromatograph operated successfully during the entire SOFBALL experiment and collected 309 runs. Because of the constraints imposed upon the gas chromatograph by the CM-1 hardware, system and operations, it was unable to measure the gases to the required accuracy. Future improvements to the system for a re-flight of the SOFBALL experiment are expected to enable the gas chromatograph to meet all the requirements.

  10. Gas chromatographic-mass spectrometric assay for 6-hydroxymelatonin sulfate and 6-hydroxymelatonin glucuronide in urine

    SciTech Connect

    Francis, P.L.; Leone, A.M.; Young, I.M.; Stovell, P.; Silman, R.E.

    1987-04-01

    Circulating melatonin is hydroxylated to 6-hydroxymelatonin and excreted in urine as the sulfate and glucuronide conjugates. We extracted these two compounds from urine by using octadecylsilane-bonded silica cartridges to eliminate most of the urea and electrolytes, and silica cartridges to separate the sulfate and glucuronide conjugates. After hydrolyzing the separated conjugates enzymically, we determined the free hydroxymelatonin by gas chromatography-mass spectrometry. Though recoveries were low and variable, we were able to quantify the analyte in the original sample by adding deuterated sulfate and glucuronide conjugates to the urines before extraction.

  11. Oil/gas collector/separator for underwater oil leaks

    DOEpatents

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  12. Oil/gas collector/separator for underwater oil leaks

    SciTech Connect

    Henning, C.D.

    1992-12-31

    This invention is comprised of an oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  13. Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Foreman, W.T.; Tuschall, J.R.

    1990-01-01

    Vapor pressures for nonpolar and moderately polar organochlorine, pyrethroid, and organophosphate insecticides, phthalate esters, and organophosphate flame retardants were determined by capillary gas chromatography (GC). Organochlorines and polycyclic aromatic hydrocarbons with known liquid-phase vapor pressures (P??L) (standard compounds) were chromatographed along with two reference compounds n-C20 (elcosane) and p,p???-DDT on a 1.0-m-long poly(dimethylsiloxane) bonded-phase (BP-1) column to determine their vapor pressures by GC (P??GC). A plot of log P??L vs log P??GC for standard compounds was made to establish a correlation between measured and literature values, and this correlation was then used to compute P??L of test compounds from their measured P??GC. P??L of seven major components of technical chlordane, endosulfan and its metabolites, ??-hexachlorocyclohexane, mirex, and two components of technical toxaphene were determined by GC. This method provides vapor pressures within a factor of 2 of average literature values for nonpolar compounds, similar to reported interlaboratory precisions of vapor pressure determinations. GC tends to overestimate vapor pressures of moderately polar compounds. ?? 1990 American Chemical Society.

  14. Gas Chromatographic Determination of Fatty Acids in Oils with Regard to the Assessment of Fire Hazard

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Štefko, Tomáš

    2017-06-01

    The aim of the paper was to study and research the application of processing gas chromatographic method for the rapid and accurate determination of the composition of different types of oils, such as substances with the possibility of an adverse event spontaneous combustion or self-heating. Tendency to spontaneous combustion is chemically characterized mainly by the amount of unsaturated fatty acids, which have one or more double bonds in their molecule. Vegetable oils essentially consist of the following fatty acids: palmitic, stearic, oleic, linoleic, and linoleic. For the needs of assessment, the fire hazard must be known, in which the double bond is present, as well as their number in a molecule. As an analytical method, GCMS was used for determination of oils content. Three types of oil were used - rapeseed, sunflower, and coconut oil. Owing to the occurrence of linoleic acid C18:2 (49.8 wt.%) and oleic acid C18:1 (43.3 wt.%) with double bonds, sunflower oil is the most prone to self-heating. The coconut and rapeseed oils contain double bond FAME in lesser amount, and their propensity to self-heating is relatively low.

  15. Gas chromatographic quantitative analysis of methanol in wine: operative conditions, optimization and calibration model choice.

    PubMed

    Caruso, Rosario; Gambino, Grazia Laura; Scordino, Monica; Sabatino, Leonardo; Traulo, Pasqualino; Gagliano, Giacomo

    2011-12-01

    The influence of the wine distillation process on methanol content has been determined by quantitative analysis using gas chromatographic flame ionization (GC-FID) detection. A comparative study between direct injection of diluted wine and injection of distilled wine was performed. The distillation process does not affect methanol quantification in wines in proportions higher than 10%. While quantification performed on distilled samples gives more reliable results, a screening method for wine injection after a 1:5 water dilution could be employed. The proposed technique was found to be a compromise between the time consuming distillation process and direct wine injection. In the studied calibration range, the stability of the volatile compounds in the reference solution is concentration-dependent. The stability is higher in the less concentrated reference solution. To shorten the operation time, a stronger temperature ramp and carrier flow rate was employed. With these conditions, helium consumption and column thermal stress were increased. However, detection limits, calibration limits, and analytical method performances are not affected substantially by changing from normal to forced GC conditions. Statistical data evaluation were made using both ordinary (OLS) and bivariate least squares (BLS) calibration models. Further confirmation was obtained that limit of detection (LOD) values, calculated according to the 3sigma approach, are lower than the respective Hubaux-Vos (H-V) calculation method. H-V LOD depends upon background noise, calibration parameters and the number of reference standard solutions employed in producing the calibration curve. These remarks are confirmed by both calibration models used.

  16. Different reactivities of amphetamines with N-methyl-bis(trifluoroacetamide) in heated gas chromatographic injectors.

    PubMed

    Hidvégi, E; Hideg, Zs; Somogyi, G P

    2008-03-01

    A fast gas chromatographic mass spectrometric method has been developed earlier for the determination of amphetamine derivatives in human serum and urine. For derivatization, N-methyl-bis(trifluoroacetamide) (MBTFA) was used. Derivatization was performed using an on-line mode, since 1 microl of MBTFA and 1 microl sample extract, dissolved in toluene were injected simultaneously. In this study, the reactivity of the several amphetamine type analytes with MBTFA was investigated. MBTFA used for flash derivatization was applied undiluted on the one hand and diluted 4--4096-fold with acetonitrile on the other hand. Studying several amphetamines in the test sample spiked at the same concentrations we found that they could be divided into 3 groups based on relative target ion peak areas as a function of MBTFA dilution. Group 1, containing only primary amines showed an early increase of the relative peak areas if we increased MBTFA concentration, where group 2 (mainly N-methyl secondary amines) showed that relative peak areas started to increase intensively at higher MBTFA concentrations. Finally, MDEA as an N-ethyl secondary amine, representing group 3, showed significant increase if only slightly diluted MBTFA was used as a flash reagent. This phenomenon can be explained mainly with the less and less reactivity of amine groups in the case of groups 2 and 3, compared to group 1. These findings could help to optimise analytical methods involving flash derivatization processes.

  17. Analytical bias among different gas chromatographic approaches using standard BTX gases and exhaust samples.

    PubMed

    Kim, Ki-Hyun; Pandey, Sudhir Kumar; Pal, Raktim

    2009-02-01

    In this study, the analytical compatibility of the gas chromatographic (GC) approach was evaluated through a cross-calibration exercise. To this end, three aromatic volatile organic compounds (VOCs: benzene, toluene, and p-xylene (BTX)) were simultaneously analyzed with four individual instrumental setups (type I = GC with MS plus solid phase microextraction (SPME) method, II = GC with flame ionization detection (FID) plus SPME, III = fast GC-FID plus SPME, and IV = GC-FID plus air server/thermal desorption (AS/TD) method). A comparison of basic quality assurance (QA) data revealed considerable differences in DL values among the methods with moderate variabilities in the intercompound sensitivity. In light of the differences in detection properties, the analytical bias involved for each methodological approach was assessed by the relative relationship between analytes and basic operating conditions. The results suggest that the analysis of environmental samples at ultra-low concentration levels (at or below ppb level) can be subject to diverse sources of bias. Although detection properties of target compounds seem to be affected by the combined effects of various factors, changes in the sample concentration levels were seen to be the most consistent under the experimental setups analyzed in this study.

  18. Gas chromatographic method for analysis of 2,4-D in wheat: interlaboratory study.

    PubMed

    Smith, A E

    1984-01-01

    A procedure is described for the determination of 2,4-D (2,4-dichlorophenoxyacetic acid) in dried green plant material. Samples are first extracted with dilute sodium hydroxide, and then after acidification and solvent extraction, the residues are methylated using boron trifluoride-methanol reagent. The methyl ester of 2,4-D is cleaned up on a Florisil column and quantitated using a gas chromatograph equipped with an electron capture detector. Six laboratories made quadruplicate determinations on control, dried green wheat check samples, on 4 similar samples fortified at the 0.50 ppm level, and on 4 samples fortified at the 1.00 ppm level with 2,4-D. Based on the data from 5 laboratories, the plant fortifications of 0.50 and 1.00 ppm yielded average interlaboratory recoveries of 2,4-D of 83.3 and 88.2%, respectively. The procedure also has potential for the determination of 2,4-D in wheat straw and wheat grain.

  19. Micro-flame ionization detector with a novel structure for portable gas chromatograph.

    PubMed

    Wang, Jianwei; Wang, Hua; Duan, Chunfeng; Guan, Yafeng

    2010-08-15

    A micro-flame ionization detector (micro-FID) for portable gas chromatograph (GC) based on conventional mechanical fabrication techniques was developed and evaluated. Structure was redesigned and dimensions were optimized for best performance. Air is introduced from upper part of the detector, flowing downwards into the burning chamber along a narrow round gap between the collection electrode and the inner wall of the detector body, forming a uniform flow field around the burning jet. The lowest detection limit of the mu-FID was 5x10(-13)g/s for n-decane, with a linear response range of five orders of magnitude. The consumption of gases is only 10 ml/min for hydrogen, and 120 ml/min for air, that is about 1/3 of the gases required for conventional FIDs. A comparative study between the micro-FID and commercial FID was also performed that proved the advantages of the micro-FID. The micro-FID is simple in structure, low heating power, and low consumption of gases that not only decrease the cost of running, but also increase the portability of GC for filed applications. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Cross-column prediction of gas-chromatographic retention indices of saturated esters.

    PubMed

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio

    2014-08-15

    We combine computational molecular descriptors and variables related with the gas-chromatographic stationary phase into a comprehensive model able to predict the retention of solutes in external columns. To explore the quality of various approaches based on alternative column descriptors, we analyse the Kováts retention indices (RIs) of 90 saturated esters collected with seven columns of different polarity (SE-30, OV-7, DC-710, OV-25, XE-60, OV-225 and Silar-5CP). Cross-column retention prediction is evaluated on an internal validation set consisting of data of 40 selected esters collected with each of the seven columns, sequentially excluded from calibration. The molecular descriptors are identified by a genetic algorithm variable selection method applied to a large set of non-empirical structural quantities aimed at finding the best multi-linear quantitative structure-retention relationship (QSRR) for the column OV-25 having intermediate polarity. To describe the columns, we consider the sum of the first five McReynolds phase constants and, alternatively, the coefficients of the corresponding QSRRs. Moreover, the mean RI value for the subset of esters used in QSRR calibration or RIs of a few selected compounds are used as column descriptors. For each combination of solute and column descriptors, the retention model is generated both by multi-linear regression and artificial neural network regression. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Enantiospecific gas chromatographic-mass spectrometric analysis of urinary methylphenidate: implications for phenotyping.

    PubMed

    LeVasseur, Natalie L; Zhu, Hao-Jie; Markowitz, John S; DeVane, C Lindsay; Patrick, Kennerly S

    2008-02-01

    A chiral derivatization gas chromatographic-mass spectrometric (GC-MS) method for urine methylphenidate (MPH) analysis was developed and validated to investigate preliminary findings regarding a novel MPH poor metabolizer (PM). Detection was by electron impact (EI) ionization-selected ion monitoring of the N-trifluoroacetylprolylpiperidinium fragments from MPH and the piperidine-deuterated MPH internal standard. The PM eliminated approximately 70 times more l-MPH in urine (9% of the dose over 0-10h), and approximately 5 times more of the d-isomer (10% of the dose), than the mean values determined from 10 normal metabolizers of MPH. Only minor amounts of the metabolite p-hydroxy-MPH were found in the urine of both the PM and normal metabolizers, while the concentration of MPH lactam was not high enough to be detectable. The described method indirectly gauges the functional carboxylesterase-1 status of patients receiving MPH based on the evaluation of relative urine concentrations of d-MPH:l-MPH. Clinical implications concerning rational drug selection for an identified or suspected MPH PM are discussed.

  2. Gas chromatographic mass analysis and further pharmacological actions of Cymbopogon proximus essential oil.

    PubMed

    Al-Taweel, A M; Fawzy, G A; Perveen, S; El Tahir, K E H

    2013-09-01

    The present study reports Gas chromatographic mass analysis (GC-MS) as well as important biological activities of Cymbopogon proximus essential oil. The chemical composition of the essential oil of Cymbopogon proximus was investigated by GC-MS. Furthermore, the effects of Cymbopogon proximus essential oil on the cardiac parasympathetic ganglia in rats, the intra-tracheal pressure in guinea-pigs and on carrageenan-induced inflammation in the rats paw, were studied. The GC-MS study led to the identification of 22 components with Piperitone representing (73.81%), Elemol (9.32%), alpha-Eudesmol (5.21%) and alpha-Terpineol (3.01%) of the oils composition. The percentage protective effect of the oil on the vagus-induced bradycardia in rats was 90.1±3.1%, which represents a significant protection. As for the effect of Cymbopogon oil on bronchoconstrictors-induced increase in intra-tracheal pressure in guinea-pigs, the oil antagonized the actions of 5-HT and histamine by 80±3.7 and 93±8.3%, respectively. Pharmacological investigations using Cymbopogon oil revealed its inherent ability to possess a bronchodilator activity mediated via blockade of both histamine and serotonin receptors. It possessed a significant ganglionic blocking action and a limited anti-inflammatory activity that seemed to involve blockade of histamine and serotonin receptors in the rats' paws. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Prototype of the gas chromatograph - mass spectrometer to investigate volatile species in the lunar soil for the Luna-Glob and Luna-Resurs missions.

    NASA Astrophysics Data System (ADS)

    Hofer, L.; Lasi, D.; Tulej, M.; Wurz, P.; Cabane, M.; Cosica, D.; Gerasimov, M.; Rodinov, D.

    2013-09-01

    In preparation for the Russian Luna-Glob and Luna-Resurs missions we combined our compact time-offlight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Combined measurements with both instruments were successfully performed with the laboratory prototype of the mass spectrometer and a flight-like gas chromatograph. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 106 within 1s, the TOF-MS system is a valuable extension of the GC analysis. The combined GC-MS complex is able to detect concentrations of volatile species in the sample of about 2·10^-9 by mass.

  4. Design of chiral monochloro-s-triazine reagents for the liquid chromatographic separation of amino acid enantiomers.

    PubMed

    Brückner, H; Wachsmann, M

    2003-05-23

    A series of chiral derivatizing reagents (CDRs) was synthesized by nucleophilic replacement of one chlorine atom in cyanuric chloride (2,4,6-trichloro-1,3,5-triazine; s-triazine) by alkoxy (methoxy, butoxy, 1,1,1-trifluoroethoxy) or aryloxy groups (phenoxy, nitrophenoxy, phenylphenoxy, 4-methylcoumaryloxy), and displacement of a second chlorine by L-alanine amide, L-phenylalanine amide, L-proline tert.-butyl ester, or Boc-L-lysine tert.-butyl ester. Further, CDRs were investigated in which two chlorine atoms in cyanuric chloride were substituted consecutively by L-valine amide and L-phenylalanine amide. The resulting CDRs having a remaining reactive chlorine were tested for their capability of derivatizing DL-amino acids followed by liquid chromatographic separation of the resulting diastereomers.

  5. Miniature triaxial metastable ionization detector for gas chromatographic trace analysis of extraterrestrial volatiles.

    PubMed

    Woeller, F H; Kojiro, D R; Carle, G C

    1984-04-01

    Gas chromatography has found highly successful application in NASA's flight programs. Gas chromatographs have been flown to both Mars and Venus where detailed compositional measurements were made. These instruments were quite small and relatively sensitive when compared to commercially available instruments; however, they do not appear adequate for future missions currently being planned. The earlier flight GC's had incorporated thermistor bead thermal conductivity cells as the detector. This detector requires very precise temperature control and only provides about 1 ppm sensitivity. Temperature stabilization causes the detector to be quite heavy, i.e., about 200 g. Greater sensitivity will be required for measurements of trace components in extraterrestrial environments. Review of other detector types revealed the metastable ionization detector as a likely candidate because of its superior thermal stability and high sensitivity. The metastable detector, first described by Lovelock as an argon ionization detector, has been studied and somewhat modified by others. The commercial design by Hartmann and Dimick was used for comparison purposes in our work. In the past, three features of the metastable detector are prominent: it has part-per-billion sensitivity, contamination must be carefully controlled, and anomalous response is common. Since it is an ionization detector, however, temperature instabilities do not cause the major perturbations experienced by the thermal conductivity detectors. This paper describes a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design, while its weight is quite small. The prototype has been used in our laboratories routinely for 2 years, and the concept will be incorporated into a flight GC for use in the Space Shuttle.

  6. A pyrolysis/gas chromatographic method for the determination of hydrogen in solid samples

    NASA Technical Reports Server (NTRS)

    Carr, R. H.; Bustin, R.; Gibson, E. K.

    1987-01-01

    A method is described for the determination of hydrogen in solid samples. The sample is heated under vacuum after which the evolved gases are separated by gas chromatography with a helium ionization detector. The system is calibrated by injecting known amounts of hydrogen, as determined manometrically. The method, which is rapid and reliable, was checked for a variety of lunar soils; the limit of detection is about 10 ng of hydrogen.

  7. Capillary gas chromatographic assay of residual methenamine hippurate in equipment cleaning validation swabs.

    PubMed

    Mirza, T; George, R C; Bodenmiller, J R; Belanich, S A

    1998-02-01

    A capillary gas chromatographic method is described for the determination of methenamine hippurate residue in swabs collected from manufacturing equipment surfaces. Any residual methenamine hippurate remaining on process equipment after cleaning is removed by swabbing with one wet polyester Absorbond swab (4" x 4") pre-moistened with water followed by a dry Absorbond swab. The residual methenamine hippurate is chromatographed on a 30 x 0.32 mm (i.d.) Supelcowax-10 capillary column of 0.25-micron film thickness. The amount of residual methenamine hippurate is determined by comparing the ratio of methenamine hippurate peak area response to that of p-cresol (internal standard) obtained for the sample to a linear calibration curve obtained for a series of standard solutions. The method is demonstrated to be sufficiently linear, accurate, precise, sensitive and rugged for the determination of low levels of methenamine hippurate on equipment surfaces. Using this method, the mean recovery of methenamine hippurate from spiked Absorbond swab samples contained in high density polyethylene bottles was 105.2%, with a relative standard deviation (RSD) of +/- 7.1% (n = 25). The mean recoveries of methenamine hippurate from spiked test plates for '180 Grit' Stainless Steel, Teflon and WARCO White (neoprene and PVC) gasket material were 77.2, 96.1 and 50.6%, with RSDs of +/- 9.4 (n = 25), +/- 4.3 (n = 25) and +/- 36% (n = 20), respectively. Recovery correction factors have been incorporated into the method. The method was successfully applied to the assay of actual equipment cleaning validation swab samples. Stability studies demonstrate that methenamine hippurate is not very stable on the equipment surfaces or in the swabs. It is recommended that the surfaces be swabbed immediately after cleaning and the swabs analyzed within 24 h after sample collection. The results demonstrate that in order to fully validate the cleaning procedures, it is not only necessary to investigate the

  8. A novel derivatization procedure and chiral gas chromatographic method for enantiomeric purity screening of L-carnitine.

    PubMed

    Albreht, Alen; Zupančič, Borut; Vovk, Irena

    2014-01-01

    L-Carnitine is used extensively in functional foods and food supplements; consequently, the control of its enantiomeric purity is of paramount importance. A new derivatization procedure and chiral gas chromatographic method with flame ionization detection, using a cyclodextrin based stationary phase, enables prompt, simple, and inexpensive screening of the enantiomeric ratio of L- and D-carnitine in samples with different matrices. Conversion of carnitine to beta-acetoxy-gama-butyrolactone was optimized for maximum conversion (98% of the desired product lactone was formed and 2% of the side product gama-crotonolactone) and minimum racemization (no changes at the chiral center were detected) and time consumption. As it is shown in this study, a fast gas chromatographic method, with total run time of 7 min, together with the new derivatization procedure enables an effective enantiomeric purity screening of L-carnitine in real samples such as food supplements and L-carnitine raw ingredient.

  9. Gas-chromatographic determination of aviation gasoline and JP-4 jet fuel in subsurface core samples (journal version)

    SciTech Connect

    Vandegrift, S.A.; Kampbell, D.H.

    1988-01-01

    A new gas-chromatographic procedure for quantifying levels of aviation gasoline (avgas) and JP-4 jet fuel contamination in soils is described. The fuel is extracted from a small quantity of soil or subsurface material, typically about 6 g, using 3 mL of methylene chloride. The extract is analyzed by wide-bore capillary-column gas chromatography with flame-ionization detection. Advantages of the method are a short analysis time of 20 minutes, the use of small amounts of solvent, detection limit in the low parts-per-million range, and determination of the type of fuel contamination (i.e. avgas or jet fuel) by the chromatographic pattern or fingerprint.

  10. Gas chromatographic simulated distillation-mass spectrometry for the determination of the boiling point distributions of crude oils

    PubMed

    Roussis; Fitzgerald

    2000-04-01

    The coupling of gas chromatographic simulated distillation with mass spectrometry for the determination of the distillation profiles of crude oils is reported. The method provides the boiling point distributions of both weight and volume percent amounts. The weight percent distribution is obtained from the measured total ion current signal. The total ion current signal is converted to weight percent amount by calibration with a reference crude oil of a known distillation profile. Knowledge of the chemical composition of the crude oil across the boiling range permits the determination of the volume percent distribution. The long-term repeatability is equivalent to or better than the short-term repeatability of the currently available American Society for Testing and Materials (ASTM) gas chromatographic method for simulated distillation. Results obtained by the mass spectrometric method are in very good agreement with results obtained by conventional methods of physical distillation. The compositional information supplied by the method can be used to extensively characterize crude oils.

  11. Extraction chromatographic separation of minor actinides from PUREX high-level wastes using CMPO

    SciTech Connect

    Mathur, J.N.; Murali, M.S.; Iyer, R.H.; Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Rao, M.K.; Badheka, L.P.; Banerji, A.

    1995-02-01

    An extraction chromatographic technique using octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) adsorbed on chromosorb-102 (CAC) has been tested as an alternative to the TRUEX solvent extraction process, where CMPO has been used as the extracting agent to recover minor actinides from high-activity waste (HAW) solutions of PUREX origin. The batchwise uptake behavior of U(VI), Pu(IV), Am(III), Eu(III), Zr(IV), Fe(III), Ru(III), and TcO{sub 4}{sup {minus}} from a nitric acid medium by CAC has been studied. The uptake of actinides and lanthanides are higher than those of other fission products and inert materials. The batchwise loading experiments in the presence of Nd(III)/U(VI) have shown that at lower concentrations of these metal ions, the uptake of Pu(IV), U(VI), and Am(III) are reasonably high. Studies on loading of Nd(III), U(VI), and Pu(IV) on a column containing 1.7 g of CAC have shown that Nd(III) (30 mg) and U(VI) (90 mg) could be loaded, while Pu(IV) ({approximately}0.6) was loaded on a small column containing 100 mg of CAC without any break-through. Further, a synthetic HAW solution as such and the actual PUREX HAW solution, after depleting the uranium content by a 30% tributyl-phosphate contact, were loaded on a CAC column. The effluents did not contain any alpha activity above the background level. The activities could subsequently be eluted with 0.0.4 M HNO{sub 3} (americium and rare earths), 0.01 M oxalic acid (plutonium), and 0.25 M Na{sub 2}CO{sub 3} [U(VI)]. The recoveries of these metal ions were found to be >99%.

  12. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns.

    PubMed

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-11-10

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.

  13. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns

    PubMed Central

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-01-01

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis. PMID:27834896

  14. Decomposition of GD on CeO2/Alumina Adsorbents in a Gas Chromatograph On-Column Injector Tube Reactor

    DTIC Science & Technology

    2006-10-01

    Perkin Elmer Auto M Gas Chromatograph and maintained at 30 0C. A Nicolet 800 Bench Spectrometer with a mercury - cadmium-telluride detector (11,700 to 600...and decomposition of liD by these groups occurs by an elimination mechanism and not substitution (hydrolysis). bThe adsorbents were rubbed across...were recorded between 4000 cm-1 and 600 cm1 as percent transmission versus wavenumber using a Nicolet 800 Bench Spectrometer equipped with a mercury

  15. Fitting formula for the injection volume of a gas chromatograph for radio-xenon sampling in the lower troposphere.

    PubMed

    Shu-jiang, Liu; Zhan-ying, Chen; Shi-lian, Wang; Yin-zhong, Chang; Qi, Li; Yuan-qing, Fan; Yun-gang, Zhao; Huai-mao, Jia; Xin-jun, Zhang; Jun, Wang

    2014-06-01

    GC is usually used for xenon concentration and radon removal in the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty. In a gas chromatograph, the injection volume is defined to calculate the column capacity. In this paper, the injection volume was investigated and a fitting formula for the injection volume was derived and discussed subsequently. As a consequence, the xenon injection volume exponentially decreased with the column temperature increased, but exponentially increased as the flow rate increased.

  16. Application of chiral derivatizing agents in the high-performance liquid chromatographic separation of amino acid enantiomers: a review.

    PubMed

    Ilisz, István; Berkecz, Robert; Péter, Antal

    2008-05-12

    The past 20 years has seen an explosive growth in the field of chirality, as illustrated by the rapid progress in the various facets of this intriguing field. The impetus for advances in chiral separation has been highest in the past decade and this still continues to be an area of high focus. This paper reviews indirect separation approaches, i.e. derivatization reactions aimed at creating the basis for the chromatographic resolution of biologically and pharmaceutically important enantiomers, with emphasis on the literature published in the last 12 years. The main aspects of the chiral derivatization of amino acids are discussed, i.e. derivatization on the amino group, transforming the molecules into covalently bonded diastereomeric derivatives through the use of homochiral derivatizing agents. The diastereomers formed (amides, urethanes, urea, thiourea derivatives, etc.) can be separated on achiral stationary phases. The applications are considered, and in some cases different derivatizing agents for the resolution of complex mixtures of proteinogenic d,l-amino acids, non-proteinogenic amino acids and peptides/amino acids from peptide syntheses or microorganisms are compared.

  17. Evaluation of Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for 209 Chlorinated Biphenyl Congeners in Two Chromatographic Runs

    EPA Science Inventory

    This research evaluates a recently developed comprehensive 2-D GC coupled with a time-of-flight (TOF) mass spectrometer for the potential separation of 209 PCB congeners, using a sequence of 1-D and 2-D chromatographic modes. In two consecutive chromatographic runs, using a 40 m,...

  18. Evaluation of Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for 209 Chlorinated Biphenyl Congeners in Two Chromatographic Runs

    EPA Science Inventory

    This research evaluates a recently developed comprehensive 2-D GC coupled with a time-of-flight (TOF) mass spectrometer for the potential separation of 209 PCB congeners, using a sequence of 1-D and 2-D chromatographic modes. In two consecutive chromatographic runs, using a 40 m,...

  19. Chromatographic separation of arsenic species with pentafluorophenyl column and application to rice.

    PubMed

    Baba, Koji; Arao, Tomohito; Yamaguchi, Noriko; Watanabe, Eiki; Eun, Heesoo; Ishizaka, Masumi

    2014-08-08

    Arsenic species, including arsenous acid, arsenic acid, methylarsonic acid, and dimethylarsinic acid, were determined using HPLC-ICPMS. The species were separated with a Discovery HS F5 column and a simple, volatile, and isocratic mobile phase of 0.1% (v/v) formic acid and 1% (v/v) methanol. The Discovery HS F5 column with a pentafluorophenyl (PFP) stationary phase gave sharp peaks and full separation of the arsenic species in 5min, and other PFP columns showed lower performance. This separation method was applied to arsenic species analysis in rice. The extraction of arsenic from rice samples was performed using 0.15M nitric acid. The methodology was validated by use of certified reference materials, NMIJ CRM 7503-a and NIST SRM 1568a, and extremely low arsenic rice samples as blank samples.

  20. Chromatographic Separation of Selenium and Arsenic: A Potential 72Se/72As Generator

    PubMed Central

    Wycoff, Donald E.; Gott, Matthew D.; DeGraffenreid, Anthony J.; Morrow, Ryan P.; Sisay, Nebiat; Embree, Mary F.; Ballard, Beau; Fassbender, Michael E.; Cutler, Cathy S.; Ketring, Alan R.; Jurisson, Silvia S.

    2014-01-01

    Summary An anion exchange method was developed to separate selenium and arsenic for potential utility in a 72Se/72As generator. The separation of the daughter 72As from the 72Se parent is based on the relative acid-base behavior of the two oxo-anions in their highest oxidation states. At pH 1.5, selenate is retained on strongly basic anion exchange resin as HSeO4− and SeO42−, while neutral arsenic acid, H3AsO4, is eluted. PMID:24679827