Science.gov

Sample records for gas chromatography-mass spectrometry

  1. Specialized Gas Chromatography--Mass Spectrometry Systems for Clinical Chemistry.

    ERIC Educational Resources Information Center

    Gochman, Nathan; And Others

    1979-01-01

    A discussion of the basic design and characteristics of gas chromatography-mass spectrometry systems used in clinical chemistry. A comparison of three specific systems: the Vitek Olfax IIA, Hewlett-Packard HP5992, and Du Pont DP-102 are included. (BB)

  2. Specialized Gas Chromatography--Mass Spectrometry Systems for Clinical Chemistry.

    ERIC Educational Resources Information Center

    Gochman, Nathan; And Others

    1979-01-01

    A discussion of the basic design and characteristics of gas chromatography-mass spectrometry systems used in clinical chemistry. A comparison of three specific systems: the Vitek Olfax IIA, Hewlett-Packard HP5992, and Du Pont DP-102 are included. (BB)

  3. Identification of polychlorinated styrene compounds in heron tissues by gas-liquid chromatography-mass spectrometry.

    PubMed

    Reichel, W L; Prouty, R M; Gay, M L

    1977-01-01

    Unknown compounds detected in Ardea herodias tissues are identified by gas-liquid chromatography-mass spectrometry as residues of octachlorostyrene. Heptachlorostyrene and hexachlorostyrene were tentatively identified.

  4. Identification of polychlorinated styrene compounds in heron tissues by gas-liquid chromatography-mass spectrometry

    USGS Publications Warehouse

    Reichel, W.L.; Prouty, R.M.; Gay, M.L.

    1977-01-01

    Unknown compounds detected in Ardea herodias tissues are identified by gas-liquid chromatography-mass spectrometry as residues of octachlorostyrene. Heptachlorostyrene and hexachlorostyrene were tentatively identified.

  5. Field gas chromatography-mass spectrometry for fast analysis.

    PubMed

    Makas, Alexei L; Troshkov, Mikhail L

    2004-02-05

    The objective of this presentation is to demonstrate the original device and procedure for fast gas chromatography-mass spectrometry (GC-MS) analysis of gaseous and liquid samples and to discuss its features and capabilities. The concept was developed in order to expand the range of compounds suitable for GC separation and to reduce the time of analysis. Field GC-MS, consisting of original "concentrator-thermodesorber" (CTD) unit, multiple module GC system and compact magnetic mass spectrometer with powerful two-stage vacuum system and multicollector ion detector, is represented. The whole weight of the device is 90 kg. Power consumption is 250 W. The device and analytical procedures allow high speed screening of toxic substances in air and extracts within 100 s per sample. The examples of applications are described, including fast screening of tributyl phosphate (TBP) in air at low ppt level at the rate 1 sample/min.

  6. Estimation of brassylic acid by gas chromatography-mass spectrometry

    SciTech Connect

    Mohammed J. Nasrullah, Erica N. Pfarr, Pooja Thapliyal, Nicholas S. Dusek, Kristofer L. Schiele, Christy Gallagher-Lein, and James A. Bahr

    2010-10-29

    The main focus of this work is to estimate Brassylic Acid (BA) using gas chromatography-mass spectrometry (GC-MS). BA is a product obtained from the oxidative cleavage of Erucic Acid (EA). BA has various applications for making nylons and high performance polymers. BA is a 13 carbon compound with two carboxylic acid functional groups at the terminal end. BA has a long hydrocarbon chain that makes the molecule less sensitive to some of the characterization techniques. Although BA can be characterized by NMR, both the starting material (EA) and products BA and nonanoic acid (NA) have peaks at similar {delta}, ppm values. Hence it becomes difficult for the quick estimation of BA during its synthesis.

  7. Quantification of antidepressants using gas chromatography-mass spectrometry.

    PubMed

    Winecker, Ruth E

    2010-01-01

    Antidepressants are of great interest to clinical and forensic toxicologists as they are frequently used in suicidal gestures; they can be the source of drug interactions and some have narrow therapeutic indices making the potential for toxicity more likely. There are five categories of antidepressants based on function and/or structure. These are monoamine oxidase inhibitors (MAOI), cyclic antidepressants including tricyclic and tetracyclic compounds (TCA), selective serotonin reuptake inhibitors (SSRI), serotonin-norepinephrine reuptake inhibitors (SNRI), and atypical compounds. This method is designed to detect the presence of antidepressant drugs in blood/serum, urine, and tissue specimens using gas chromatography/mass spectrometry (GC/MS) following liquid-liquid extraction (LLE) and identified by relative retention times and mass spectra.

  8. Gas chromatography-mass spectrometry of biofluids and extracts.

    PubMed

    Emwas, Abdul-Hamid M; Al-Talla, Zeyad A; Yang, Yang; Kharbatia, Najeh M

    2015-01-01

    Gas chromatography-mass spectrometry (GC-MS) has been widely used in metabonomics analyses of biofluid samples. Biofluids provide a wealth of information about the metabolism of the whole body and from multiple regions of the body that can be used to study general health status and organ function. Blood serum and blood plasma, for example, can provide a comprehensive picture of the whole body, while urine can be used to monitor the function of the kidneys, and cerebrospinal fluid (CSF) will provide information about the status of the brain and central nervous system (CNS). Different methods have been developed for the extraction of metabolites from biofluids, these ranging from solvent extracts, acids, heat denaturation, and filtration. These methods vary widely in terms of efficiency of protein removal and in the number of metabolites extracted. Consequently, for all biofluid-based metabonomics studies, it is vital to optimize and standardize all steps of sample preparation, including initial extraction of metabolites. In this chapter, recommendations are made of the optimum experimental conditions for biofluid samples for GC-MS, with a particular focus on blood serum and plasma samples.

  9. Classification of natural resins by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry using chemometric analysis.

    PubMed

    Rhourrhi-Frih, B; West, C; Pasquier, L; André, P; Chaimbault, P; Lafosse, M

    2012-09-21

    Twenty-six resins from six botanical sources belonging to the class Magnoliopsida were compared based on gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry data. The extracts were analysed by GC after silylation and by reversed phase LC combined with atmospheric pressure photoionisation (APPI) mass spectrometry. The chromatograms were re-organized in data matrices, where each sample was represented by a single column comprising 2755 observations (intensity, time, m/z) in GC-MS and 360 observations in LC-MS. A simple comparison of resin fingerprints was attempted by organizing data according to a three dimensional bubble chart (retention time against m/z where each point was a bubble which size represented the ion intensity) where it is possible to easily superimpose the fingerprints. Thus the common and different species can be easily observed enabling to classify the resins. Hierarchical cluster analysis based on characteristics of GC-MS and LC-MS profiles affords a complete description of the classes of the resins and shows that 26 resins are divided into five main clusters Commiphora mukul, Daniella oliveri, Gardenia gummifera, Canarium madagascariensis, Boswellia dalzielii and Boswellia serrata, respectively. In conclusion, the proposed method has been applied to three other resinous samples from the Burseraceae family to evaluate their alteration state.

  10. Chemical Composition of Latent Fingerprints by Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Hartzell-Baguley, Brittany; Hipp, Rachael E.; Morgan, Neal R.; Morgan, Stephen L.

    2007-01-01

    An experiment in which gas chromatography-mass spectrometry (GC-MS) is used for latent fingerprint extraction and analysis on glass beads or glass slides is conducted. The results determine that the fingerprint residues are gender dependent.

  11. Chemical Composition of Latent Fingerprints by Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Hartzell-Baguley, Brittany; Hipp, Rachael E.; Morgan, Neal R.; Morgan, Stephen L.

    2007-01-01

    An experiment in which gas chromatography-mass spectrometry (GC-MS) is used for latent fingerprint extraction and analysis on glass beads or glass slides is conducted. The results determine that the fingerprint residues are gender dependent.

  12. VACUUM DISTILLATION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY FOR THE ANALYSIS OF ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    A procedure is presented that uses a vacuum distillation/gas chromatography/mass spectrometry system for analysis of problematic matrices of volatile organic compounds. The procedure compensates for matrix effects and provides both analytical results and confidence intervals from...

  13. VACUUM DISTILLATION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY FOR THE ANALYSIS OF ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    A procedure is presented that uses a vacuum distillation/gas chromatography/mass spectrometry system for analysis of problematic matrices of volatile organic compounds. The procedure compensates for matrix effects and provides both analytical results and confidence intervals from...

  14. Determination of ink photoinitiators in packaged beverages by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry.

    PubMed

    Sagratini, Gianni; Caprioli, Giovanni; Cristalli, Gloria; Giardiná, Dario; Ricciutelli, Massimo; Volpini, Rosaria; Zuo, Yanting; Vittori, Sauro

    2008-06-20

    A new analytical method, using gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-mass spectrometry (LC/MS) techniques, was developed for the determination in packaged food beverages of five ink photoinitiator residues: 2-isopropylthioxanthone (ITX), benzophenone, 2-ethylhexyl-4-dimethylaminobenzoate (EHDAB), 1-hydroxycyclohexyl-1-phenyl ketone (IRGACURE 184) and ethyl-4-dimethylaminobenzoate (EDAB). Samples were extracted from selected beverages (milk, fruit juices and wine) and relative packagings, using n-hexane and dichloromethane, respectively, purified on solid-phase extraction (SPE) silica gel cartridges, and then analyzed in GC/MS and LC/MS. The recovery percentages, obtained spiking the beverage samples at concentrations of 4 and 10 microgl(-1) with a standard mixture of photoinitiators, were in the range 42-108% (milk), 50-84% (wine), and 48-109% (fruit juices). The repeatability of the method was assessed in all cases by the % of correlation value, that was lower than 19%. The lowest limits of detection (LODs) and limits of quantification (LOQs), obtained using GC/MS, were in the range 0.2-1 and 1-5 microgl(-1), respectively. The method was applied to the analysis of forty packaged food beverages (milk, fruit juices and wine samples). The most significant contamination was that of benzophenone, found in all samples in a concentration range of 5-217mugl(-1). Its presence was confirmed by an LC/Atmospheric-Pressure PhotoIonization (APPI)/MS/MS analysis. The photoinitiator (EHDAB) was found in eleven out of forty beverages in a concentration range of 0.13-0.8 microgl(-1). Less important was the ITX contamination, found in three out of forty samples in a range 0.2-0.24 microgl(-1). The work proposes a new method to analyze ink photoinitiator residues in polycoupled carton packaging and in contained food beverages.

  15. Steroid profiling by gas chromatography-mass spectrometry and high performance liquid chromatography-mass spectrometry for adrenal diseases.

    PubMed

    McDonald, Jeffrey G; Matthew, Susan; Auchus, Richard J

    2011-12-01

    The ability to measure steroid hormone concentrations in blood and urine specimens is central to the diagnosis and proper treatment of adrenal diseases. The traditional approach has been to assay each steroid hormone, precursor, or metabolite using individual aliquots of serum, each with a separate immunoassay. For complex diseases, such as congenital adrenal hyperplasia and adrenocortical cancer, in which the assay of several steroids is essential for management, this approach is time consuming and costly, in addition to using large amounts of serum. Gas chromatography/mass spectrometry profiling of steroid metabolites in urine has been employed for many years but only in a small number of specialized laboratories and suffers from slow throughput. The advent of commercial high-performance liquid chromatography instruments coupled to tandem mass spectrometers offers the potential for medium- to high-throughput profiling of serum steroids using small quantities of sample. Here, we review the physical principles of mass spectrometry, the instrumentation used for these techniques, the terminology used in this field and applications to steroid analysis.

  16. Incorporation of Gas Chromatography-Mass Spectrometry into the Undergraduate Organic Chemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Giarikos, Dimitrios G.; Patel, Sagir; Lister, Andrew; Razeghifard, Reza

    2013-01-01

    Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical tool for detection, identification, and quantification of many volatile organic compounds. However, many colleges and universities have not fully incorporated this technique into undergraduate teaching laboratories despite its wide application and ease of use in organic…

  17. Identification of Synthetic Polymers and Copolymers by Analytical Pyrolysis-Gas Chromatography/Mass Spectrometry

    ERIC Educational Resources Information Center

    Kusch, Peter

    2014-01-01

    An experiment for the identification of synthetic polymers and copolymers by analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and performed in the polymer analysis courses for third-year undergraduate students of chemistry with material sciences, and for first-year postgraduate students of polymer sciences. In…

  18. DEVELOPMENTS IN DIRECT THERMAL EXTRACTION GAS CHROMATOGRAPHY-MASS SPECTROMETRY OF FINE AEROSOLS

    EPA Science Inventory

    This examines thermal extraction gas chromatography-mass spectrometry (TE/GC/MS) applied to aerosols collected on filters. Several different TE/GC/MS systems as a group have speciated hundreds of individual organic constituents in ambient fine aerosols. Molecular marker source ap...

  19. Identification of Synthetic Polymers and Copolymers by Analytical Pyrolysis-Gas Chromatography/Mass Spectrometry

    ERIC Educational Resources Information Center

    Kusch, Peter

    2014-01-01

    An experiment for the identification of synthetic polymers and copolymers by analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and performed in the polymer analysis courses for third-year undergraduate students of chemistry with material sciences, and for first-year postgraduate students of polymer sciences. In…

  20. Incorporation of Gas Chromatography-Mass Spectrometry into the Undergraduate Organic Chemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Giarikos, Dimitrios G.; Patel, Sagir; Lister, Andrew; Razeghifard, Reza

    2013-01-01

    Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical tool for detection, identification, and quantification of many volatile organic compounds. However, many colleges and universities have not fully incorporated this technique into undergraduate teaching laboratories despite its wide application and ease of use in organic…

  1. Gas chromatography-mass spectrometry (GC-MS) analysis of extractives of naturally durable wood

    Treesearch

    G.T. Kirker; A.B. Blodgett; S.T. Lebow; C.A. Clausen

    2011-01-01

    A preliminary study to evaluate naturally durable wood species in an above ground field trial using Gas Chromatography-Mass Spectrometry (GC-MS) detected differences in fatty acid extractives between species and within the same species over time. Fatty acids were extracted with chloroform: methanol mixture then methylated with sodium methoxide and fractionated using...

  2. Structural analysis of commercial ceramides by gas chromatography-mass spectrometry.

    PubMed

    Bleton, J; Gaudin, K; Chaminade, P; Goursaud, S; Baillet, A; Tchapla, A

    2001-05-11

    A simple method using gas chromatography-mass spectrometry was applied to analyse structures of ceramides. Identification of trimethylsilylated ceramides were obtained in short analysis times (derivatization of ceramides in 30 min at room temperature and 20 min gas chromatography mass spectrometry run) even for complex mixtures. For example in ceramide Type III, 18 peaks were observed which represent 27 various structures. The coeluted compounds were ceramides containing the same functional groups and the same carbon number but with a different distribution on the two alkyl chains of the molecule. They were accurately differentiated by mass spectrometry. Therefore, 83 structures of trimethylsilylated ceramides were identified in 11 different commercial mixtures. For 52 structures of these, mass spectral data were not described in the literature, neither full mass spectra nor characteristic fragments.

  3. Determination of Dihydroqinghaosu in Blood by Pyrolysis Gas Chromatography/Mass Spectrometry

    DTIC Science & Technology

    1988-01-15

    capillary the therapeutic range, our laboratory sought to develop new column gas chromatography/mass spectrometry ( GCMS ) specific and sensitive methodologies...paper, the results on the development and validation of packed for pharmacoklneUc an metabolism studies In animals. and capillary column gas...respectively. Petroleum ether washave been treated with QHS or its derivatives in China with purchased from Mallinckrodt, Inc. (Paris, KY), and ethyl acetate

  4. Characterisation of beeswax in works of art by gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry procedures.

    PubMed

    Bonaduce, Ilaria; Colombini, Maria Perla

    2004-03-05

    Pyrolysis (Py) with in situ derivatisation with hexamethyldisilazane-gas chroma-break tography-mass spectrometry (GC-MS) and a gas chromatography-mass spectrometry procedure based on microwave-assisted saponification were used to identify the organic components in small sized beeswax samples. With the latter procedure quantitative recoveries can be made and hydrocarbons, alcohols and omega-1-diols in the neutral fraction, and fatty acids and omega-1-hydroxy acids in the acidic fraction can be efficiently separated and detected. Both procedures were used to characterise a wax anatomic sculpture "The Plague" (1691-1694) by Gaetano Zumbo, resulting in the identification of beeswax and a Pinaceae resin. The GC-MS analysis brought to light some essential differences in beeswax composition between the raw material and the old modelled wax thus giving some clear indications about the recipe used by the sculptor.

  5. Study of the microbiodegradation of terpenoid resin-based varnishes from easel painting using pyrolysis-gas chromatography-mass spectrometry and gas chromatography-mass spectrometry.

    PubMed

    Doménech-Carbó, María Teresa; Osete-Cortina, Laura; de la Cruz Cañizares, Juana; Bolívar-Galiano, Fernando; Romero-Noguera, Julio; Fernández-Vivas, María Antonia; Martín-Sánchez, Inés

    2006-08-01

    The alterations produced by microbiological attack on terpenoid resin-based varnishes from panel and canvas paintings have been evaluated using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) and gas chromatography-mass spectrometry (GC-MS). The proposed methods include the on-line derivatisation of drying oils and diterpenoid resins using hexamethyldisilazane during pyrolysis and the application of methyl chloroformate as a derivatisation reagent for triterpenoid resins in GC-MS. Two types of specimens, consisting of model oil medium prepared from linseed oil and model spirit varnishes prepared from colophony and mastic resins dissolved in turpentine, have been used as reference materials. For a series of specimens upon which different genera of bacteria and fungi were inoculated and encouraged to grow, analyses indicated that no mechanisms that commonly occur during the attack of enzymes on drying oils and terpenoid biodegraders were observed to occur in the oil medium and varnishes studied. Thus, the degradation pathways observed in the performed trials usually occur as consequence of natural ageing. Specific trials consisting of the application of biocides to uninoculated colophony varnish resulted in the identification of processes that produce undesirable degradation of the varnish due to interactions between the biocide and the varnish components. Finally, the studied biocides--Biotin, New-Des and Nipagine--generally exhibited good inhibiting effects on the microorganisms studied, although some interesting differences were found between them regarding the application method and type of biocide.

  6. Application of Headspace Solid Phase Microextraction and Gas Chromatography/Mass Spectrometry for Rapid Detection of the Chemical Warfare Agent Sulfur Mustard

    DTIC Science & Technology

    2002-05-16

    Title of Thesis: “Application of Headspace Solid Phase Microextraction and Gas Chromatography/Mass Spectrometry for Rapid...TITLE AND SUBTITLE Application of Headspace Solid Phase Microextraction and Gas Chromatography/Mass Spectrometry for Rapid Detection of the Chemical...phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). Five commercially available SPME fibers were investigated to determine the

  7. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  8. Quantification of carbonate by gas chromatography-mass spectrometry.

    PubMed

    Tsikas, Dimitrios; Chobanyan-Jürgens, Kristine

    2010-10-01

    Carbon dioxide and carbonates are widely distributed in nature, are constituents of inorganic and organic matter, and are essential in vegetable and animal organisms. CO(2) is the principal greenhouse gas in the atmosphere. In human blood, CO(2)/HCO(3)(-) is an important buffering system. Quantification of bicarbonate and carbonate in inorganic and organic matter and in biological fluids such as blood or blood plasma by means of the GC-MS technology has been impossible so far, presumably because of the lack of suitable derivatization reactions to produce volatile and thermally stable derivatives. Here, a novel derivatization reaction is described for carbonate that allows for its quantification in aqueous alkaline solutions and alkalinized plasma and urine. Carbonate in acetonic solutions of these matrices (1:4 v/v) and added (13)C-labeled carbonate for use as the internal standard were heated in the presence of the derivatization agent pentafluorobenzyl (PFB) bromide for 60 min and 50 °C. Investigations with (12)CO(3)(2-), (13)CO(3)(2-), (CH(3))(2)CO, and (CD(3))(2)CO in alkaline solutions and GC-MS and GC-MS/MS analyses under negative-ion chemical ionization (NICI) or electron ionization (EI) conditions of toluene extracts of the reactants revealed formation of two minor [i.e., PFB-OCOOH and O=CO(2)-(PFB)(2)] and two major [i.e., CH(3)COCH(2)-C(OH)(OPFB)(2) and CH(3)COCH=C(OPFB)(2)] carbonate derivatives. The latter have different retention times (7.9 and 7.5 min, respectively) but virtually identical EI and NICI mass spectra. It is assumed that CH(3)COCH(2)-C(OH)(OPFB)(2) is formed from the reaction of the carbonate dianion with two molecules of PFB bromide to form the diPFB ester of carbonic acid, which further reacts with one molecule of acetone. Subsequent loss of water finally generates the major derivative CH(3)COCH=C(OPFB)(2). This derivatization reaction was utilized to quantify total CO(2)/HCO(3)(-)/CO(3)(2-) (tCO(2)) in human plasma and urine by GC

  9. [Analysis of cracking gas compressor fouling by pyrolysis gas chromatography-mass spectrometry].

    PubMed

    Hu, Yunfeng; Fang, Fei; Wei, Tao; Liu, Shuqing; Jiang, Guangshen; Cai, Jun

    2013-06-01

    The fouling from the different sections of the cracked gas compressor in Daqing Petrochemical Corporation was analyzed by pyrolysis gas chromatography-mass spectrometry (Py/GC-MS). All the samples were cracked in RJ-1 tube furnace cracker at the cracking temperature of 500 degrees C, and separated with a 60 m DB-1 capillary column. An electron impact ionization (EI) source was used with the ionizing voltage of 70 eV. The results showed the formation of fouling was closely related with cyclopentadiene which accounted for about 50% of the cracking products. Other components detected were 1-butylene, propylene, methane and n-butane. This Py/GC-MS method can be used as an effective approach to analyze the causes of fouling in the petrochemical plants.

  10. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  11. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  12. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry.

    PubMed

    Chan, Eric Chun Yong; Pasikanti, Kishore Kumar; Nicholson, Jeremy K

    2011-09-08

    The role of urinary metabolic profiling in systems biology research is expanding. This is because of the use of this technology for clinical diagnostic and mechanistic studies and for the development of new personalized health care and molecular epidemiology (population) studies. The methodologies commonly used for metabolic profiling are NMR spectroscopy, liquid chromatography mass spectrometry (LC/MS) and gas chromatography-mass spectrometry (GC/MS). In this protocol, we describe urine collection and storage, GC/MS and data preprocessing methods, chemometric data analysis and urinary marker metabolite identification. Results obtained using GC/MS are complementary to NMR and LC/MS. Sample preparation for GC/MS analysis involves the depletion of urea via treatment with urease, protein precipitation with methanol, and trimethylsilyl derivatization. The protocol described here facilitates the metabolic profiling of ∼400-600 metabolites in 120 urine samples per week.

  13. Simultaneous Determination of Cyanide and Thiocyanate in Plasma by Chemical Ionization Gas Chromatography Mass-Spectrometry (CI-GC-MS)

    DTIC Science & Technology

    2012-09-04

    ORIGINAL PAPER Simultaneous determination of cyanide and thiocyanate in plasma by chemical ionization gas chromatography mass-spectrometry (CI-GC-MS...chemical ioniza- tion gas chromatography-mass spectrometry was developed for the simultaneous determination of cyanide and thiocya- nate in plasma...Sample preparation for this analysis required essentially one-step by combining the reaction of cyanide and thiocyanate with pentafluorobenzyl bromide

  14. Analysis of radioactive mixed hazardous waste using derivatization gas chromatography/mass spectrometry, liquid chromatography, and liquid chromatography/mass spectrometry

    SciTech Connect

    Campbell, J.A.; Lerner, B.D.; Bean, R.M.; Grant, K.E.; Lucke, R.B.; Mong, G.M.; Clauss, S.A.

    1994-08-01

    Six samples of core segments from Tank 101-SY were analyzed for chelators, chelator fragments, and several carboxylic acids by derivatization gas chromatography/mass spectrometry. The major components detected were ethylenediaminetetraacetic acid, nitroso-iminodiacetic acid, nitrilotriacetic acid, citric acid, succinic acid, and ethylenediaminetriacetic acid. The chelator of highest concentration was ethylenediaminetetraacetic acid in all six samples analyzed. Liquid chromatography was used to quantitate low molecular weight acids including oxalic, formic, glycolic, and acetic acids, which are present in the waste as acid salts. From 23 to 61% of the total organic carbon in the samples analyzed was accounted for by these acids.

  15. Pyrolysis-gas chromatography-mass spectrometry of a series of bile acid sequestrants.

    PubMed

    Haskins, N J; Eckers, C; Mitchell, R

    1992-09-01

    Pyrolysis of a series of polymers based on polystyrene and used as bile acid sequestrants produced characteristic mixtures of compounds which were analysed by gas chromatography-mass spectrometry. The nature of the substituent groups was clearly apparent while the polymer backbone gave rise to representative styrenes. The reproducibility of the results was examined by experimenting with the temperature of pyrolysis. It was found that at low temperatures very little fragmentation of the polystyrene backbone occurred but the substituents were still released in high yield. The orientation of the various substituted styrenes generated by pyrolysis was confirmed by the use of gas chromatography with infrared and mass spectrometric detection.

  16. Gas chromatography/mass spectrometry analysis of exhaled leukotrienes in asthmatic patients

    PubMed Central

    Cap, P; Chladek, J; Pehal, F; Maly, M; Petru, V; Barnes, P; Montuschi, P

    2004-01-01

    Background: Leukotriene-like immunoreactivity has been detected in exhaled breath condensate (EBC), but definitive evidence for the presence of leukotrienes (LTs) in this biological fluid is not available. A study was undertaken to determine whether LTC4, LTD4, LTE4, and LTB4 are measurable in EBC by gas chromatography/mass spectrometry and to quantify exhaled LTs in adults and children with asthma and in control subjects. Methods: Twenty eight adults and 33 children with mild to moderate persistent asthma treated with inhaled corticosteroids and age matched healthy controls (50 adults and 50 children) were studied. LTB4, LTC4, LTD4, and LTE4 in EBC were measured by gas chromatography/mass spectrometry. Results: LTD4, LTE4, and LTB4 were detectable in all samples. Concentrations of LTC4 in EBC were either close to or below the detection limit of 1 pg/ml. Median exhaled LTD4, LTE4, and LTB4 concentrations in asthmatic adults were increased 4.1-fold (p<0.001), 1.8-fold (p<0.01), and 2.6-fold (p<0.001), respectively, compared with values in healthy adults. Median exhaled LTD4, LTE4, and LTB4 concentrations in asthmatic children were increased 2.8-fold (p<0.001), 1.3-fold (p<0.001), and 1.6-fold (p<0.001), respectively, compared with those in healthy children. In patients with asthma there was a correlation between exhaled LTD4 and LTE4 in both adults (r = 0.87, p<0.0001) and children (r = 0.78, p<0.0001). Conclusions: Gas chromatography/mass spectrometry can be used to accurately quantify exhaled LTs which are increased in asthmatic adults and children compared with controls. PMID:15170025

  17. Screening of Brazilian fruit aromas using solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Augusto, F; Valente, A L; dos Santos Tada, E; Rivellino, S R

    2000-03-17

    Manual headspace solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was used for the qualitative analysis of the aromas of four native Brazilian fruits: cupuassu (Theobroma grandiflorum, Spreng.), cajá (Spondias lutea. L.), siriguela (Spondias purpurea, L.) and graviola (Anona reticulata, L). Industrialized pulps of these fruits were used as samples, and extractions with SPME fibers coated with polydimethylsiloxane, polyacrylate, Carbowax and Carboxen were carried out. The analytes identified included several alcohols, esters, carbonyl compounds and terpernoids. The highest amounts extracted, evaluated from the sum of peak areas, were achieved using the Carboxen fiber.

  18. Analysis of the citric acid cycle intermediates using gas chromatography-mass spectrometry.

    PubMed

    Kombu, Rajan S; Brunengraber, Henri; Puchowicz, Michelle A

    2011-01-01

    Researchers view analysis of the citric acid cycle (CAC) intermediates as a metabolomic approach to identifying unexpected correlations between apparently related and unrelated pathways of metabolism. Relationships of the CAC intermediates, as measured by their concentrations and relative ratios, offer useful information to understanding interrelationships between the CAC and metabolic pathways under various physiological and pathological conditions. This chapter presents a relatively simple method that is sensitive for simultaneously measuring concentrations of CAC intermediates (relative and absolute) and other related intermediates of energy metabolism using gas chromatography-mass spectrometry.

  19. Analysis of the anthraquinones aloe-emodin and aloin by gas chromatography/mass spectrometry.

    PubMed

    ElSohly, Mahmoud A; Gul, Waseem; Murphy, Timothy P

    2004-12-20

    A procedure was developed for the determination of low levels of the anthraquinones aloe-emodin and aloin A (barbalin) in aloe products based on gas chromatography/mass spectrometry (GC/MS) of the trimethyl silyl (TMS) derivatives of these analytes in the presence of Chrysophanol used as internal standard. The method was used to analyze several aloe based commercial products (liquids, gels and solids). Wide variation in the level of these anthraquinones was observed among the different products. The method had a sensitivity of 0.005 ppm of aloe-emodin and 0.05 ppm of aloin.

  20. Gas chromatography/mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin.

    PubMed

    Echard, J P; Benoit, C; Peris-Vicente, J; Malecki, V; Gimeno-Adelantado, J V; Vaiedelich, S

    2007-02-12

    The organic constituents of historical vanishes from two ancient Italian lutes and a Stradivari violin, kept in the Musée de la musique in Paris, have been characterized using gas chromatography-mass spectrometry. Results have been compared with the chromatograms and mass spectra of recent as well as old naturally aged reference materials. The three historical varnishes analyzed have been shown to be oil varnishes, probably mixtures of linseed oil with resins. Identification of diterpenoids and triterpenoids compounds, and of the resins that may have been ingredients of the varnishes, are discussed in this paper.

  1. Identification of cryptorchidism in horses by analysing urine samples with gas chromatography/mass spectrometry.

    PubMed

    Leung, David K K; Tang, Francis P W; Wan, Terence S M; Wong, Jenny K Y

    2011-01-01

    Currently there are two common radioimmunoassay-based methods for the detection of equine cryptorchidism; one measures testosterone concentrations in peripheral blood samples taken before and after an intravenous injection of human chorionic gonadotrophin (hCG) and the other measures plasma estrone sulfate. However, each of these invasive methods has its own shortfalls and neither gives unequivocal results. In this article a highly reliable gas chromatography/mass spectrometry (GC/MS) method is described based on the analysis of urine samples for the identification of cryptorchidism in horses, some as young as 2 years old. 2009 Elsevier Ltd. All rights reserved.

  2. Analysis of volatile organic compounds in groundwater samples by gas chromatography-mass spectrometry

    SciTech Connect

    Bernhardt, J.

    1995-08-23

    The Savannah River Site contains approximately 1500 monitoring wells from which groundwater samples are collected. Many of these samples are sent off-site for various analyses, including the determination of trace volatile organic compounds (VOCs). This report describes accomplishments that have been made during the past year which will ultimately allow VOC analysis to be performed on-site using gas chromatography-mass spectrometry. Through the use of the on-site approach, it is expected that there will be a substantial cost savings. This approach will also provide split-sample analysis capability which can serve as a quality control measure for off-site analysis.

  3. Comparison of photoacoustic radiometry to gas chromatography/mass spectrometry methods for monitoring chlorinated hydrocarbons

    SciTech Connect

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.

    1996-03-01

    A comparison of two methods of gas chromatography mass spectrometry (GCMS) and a nondispersive infrared technique, photoacoustic radiometry (PAR), is presented in the context of field monitoring a disposal site. First is presented an historical account describing the site and early monitoring to provide an overview. The intent and nature of the monitoring program changed when it was proposed to expand the Radiological Waste Site close to the Hazardous Waste Site. Both the sampling methods and analysis techniques were refined in the course of this exercise.

  4. Characterization and Differentiation of Geometric Isomers of 3-methylfentanyl Analogs by Gas Chromatography/Mass Spectrometry, Liquid Chromatography/Mass Spectrometry, and Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Kanamori, Tatsuyuki; Iwata, Yuko T; Segawa, Hiroki; Yamamuro, Tadashi; Kuwayama, Kenji; Tsujikawa, Kenji; Inoue, Hiroyuki

    2017-06-26

    The cis and trans isomers of 3-methylfentanyl and its three analogs were chemically synthesized, and these compounds were characterized and differentiated by gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS), and nuclear magnetic resonance (NMR) spectroscopy. The cis and trans isomers of the 3-methylfentanyl analogs were completely separated by GC/MS. Although the high temperature of the GC injection port caused thermal degradation of β-hydroxy-3-methylfentanyl, the degradation was completely suppressed by trimethylsilyl derivatization. The isomers were also well separated by LC/MS on an octadecylsilyl column with 10 mM ammonium acetate and methanol as the mobile phase. The proton NMR signals were split when the hydrochloride salts of the 3-methylfentanyl analogs were dissolved in deuterated chloroform because stereoisomers were formed by the coordination of the hydrochloride proton to the nitrogen of the piperidine ring of the 3-methylfentanyl analogs. © 2017 American Academy of Forensic Sciences.

  5. Gas chromatography/mass spectrometry and pyrolysis-gas chromatography/mass spectrometry for the chemical characterisation of modern and archaeological figs (Ficus carica).

    PubMed

    Ribechini, Erika; Pérez-Arantegui, Josefina; Colombini, Maria Perla

    2011-06-24

    Gas chromatography/mass spectrometry (GC/MS) after alkaline hydrolysis, solvent extraction and trimethylsilylation, and analytical pyrolysis using hexamethyldisilazane (HMDS) for in situ derivatisation followed by gas chromatographic/mass spectrometric analysis (Pyrolysis-silylation-GC/MS) were used to investigate the hydrolysable and soluble constituents, and the polymerised macromolecules of an archaeological fig (Ficus carica) recovered in Zaragoza (Spain), as well as of modern figs. The main aim was to study the compositional alterations undergone by the fig tissues in a particular archaeological environment: the fig was in a vessel and covered by a layer of a mixture of orpiment and gypsum. A comparison between the GC/MS results from modern and archaeological figs revealed that degradative reactions took place, leading to the disappearance/depletion of reactive (unsaturated fatty acids) and sensitive compounds (phytosterols and triterpenes). Py-silylation-GC/MS data provided evidence of a significant degradation of the saccharide and lipid components of the fig tissue, which left a residue enriched in polyphenols and polyesters. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Qualitative Gas Chromatography-Mass Spectrometry Analyses Using Amines as Chemical Ionization Reagent Gases

    NASA Astrophysics Data System (ADS)

    Little, James L.; Howard, Adam S.

    2013-12-01

    Ammonia is a very useful chemical ionization (CI) reagent gas for the qualitative analyses of compounds by positive ion gas chromatography-mass spectrometry (GCMS). The gas is readily available, inexpensive, and leaves no carbon contamination in the MS source. Compounds of interest to our laboratory typically yield abundant protonated or ammoniated species, which are indicative of a compound's molecular weight. Nevertheless, some labile compounds fragment extensively by substitution and elimination reactions and yield no molecular weight information. In these cases, a CI reagent gas mixture of methylamine in methane prepared dynamically was found to be very useful in obtaining molecular weight data. Likewise, deuterated ammonia and deuterated methylamine are useful CI reagent gases for determining the exchangeable protons in organic compounds. Deuterated methylamine CI reagent gas is conveniently prepared by dynamically mixing small amounts of methylamine with excess deuterated ammonia.

  7. Study on volatile components in salami by reverse carrier gas headspace gas chromatography-mass spectrometry.

    PubMed

    Procida, G; Conte, L S; Fiorasi, S; Comi, G; Favretto, L G

    1999-01-08

    Salami are a typical seasoned sausage of Italy; a number of types are produced, according to local traditional recipes. As industrial production has taken place, a number of problems rise in obtaining products similar to the traditional ones. The use of selected microbial starters is permitted by Italian law for some years and at present, microbiological research is engaged in selecting starters similar to the ones isolated from traditional products, with the aim of obtaining organoleptic characteristics close to the ones of traditional recipes. A study was carried out concerning the characterisation of volatile components of salami by headspace capillary gas chromatography-mass spectrometry. As during the sampling step, analytes could reach the analytical column, the carrier gas rate was back flushed in the latter, while a pre column was used as cold trap. Then GC-MS analysis follows. By these techniques, we were able to highlight typical profiles of different salami, as well as monitoring the ripening of a traditional and a starter added salami. Main peaks are of fermentative origin, while also peaks from spices were detected. Ethyl propionate was used as internal standard to be able to normalise the peaks amounts.

  8. Gas-liquid chromatography-mass spectrometry of synthetic ceramides containing phytosphingosine.

    PubMed

    Hammarström, S

    1970-05-01

    Ceramides containing phytosphingosine as base and one of the fatty acids 16:0, 18:0, 20:0, 22:0, 23:0, and 24:0, were prepared by direct coupling in the presence of a mixed carbodiimide. The ceramides were analyzed as the 1,3,4-tri-O-trimethylsilyl ether derivatives by gas-liquid chromatography-mass spectrometry. Gas chromatographic data is presented, and structures of mass spectral ions are suggested. The structures are supported by mass spectra of the homologous ceramides, by deuterium-labeling experiments, and by high resolution mass spectrometry. Some ions, formed by cleavage between C-3 and C-4 in the long-chain base, indicate the phytosphingosine nature of the ceramide.

  9. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling.

    PubMed

    Fiehn, Oliver

    2016-04-01

    Gas chromatography-mass spectrometry (GC-MS)-based metabolomics is ideal for identifying and quantitating small-molecule metabolites (<650 Da), including small acids, alcohols, hydroxyl acids, amino acids, sugars, fatty acids, sterols, catecholamines, drugs, and toxins, often using chemical derivatization to make these compounds sufficiently volatile for gas chromatography. This unit shows how GC-MS-based metabolomics allows integration of targeted assays for absolute quantification of specific metabolites with untargeted metabolomics to discover novel compounds. Complemented by database annotations using large spectral libraries and validated standard operating procedures, GC-MS can identify and semiquantify over 200 compounds from human body fluids (e.g., plasma, urine, or stool) per study. Deconvolution software enables detection of more than 300 additional unidentified signals that can be annotated through accurate mass instruments with appropriate data processing workflows, similar to untargeted profiling using liquid chromatography-mass spectrometry. GC-MS is a mature technology that uses not only classic detectors (quadrupole) but also target mass spectrometers (triple quadrupole) and accurate mass instruments (quadrupole-time of flight). This unit covers sample preparation from mammalian samples, data acquisition, quality control, and data processing. Copyright © 2016 John Wiley & Sons, Inc.

  10. Metabonomics investigation of human urine after ingestion of green tea with gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry and (1)H NMR spectroscopy.

    PubMed

    Law, Wai Siang; Huang, Pei Yun; Ong, Eng Shi; Ong, Choon Nam; Li, Sam Fong Yau; Pasikanti, Kishore Kumar; Chan, Eric Chun Yong

    2008-08-01

    A method using gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and (1)H NMR with pattern recognition tools such as principle components analysis (PCA) was used to study the human urinary metabolic profiles after the intake of green tea. From the normalized peak areas obtained from GC/MS and LC/MS and peak heights from (1)H NMR, statistical analyses were used in the identification of potential biomarkers. Metabolic profiling by GC/MS provided a different set of quantitative signatures of metabolites that can be used to characterize the molecular changes in human urine samples. A comparison of normalized metabonomics data for selected metabolites in human urine samples in the presence of potential overlapping peaks after tea ingestion from LC/MS and (1)H NMR showed the reliability of the current approach and method of normalization. The close agreements of LC/MS with (1)H NMR data showed that the effects of ion suppression in LC/MS for early eluting metabolites were not significant. Concurrently, the specificity of detecting the stated metabolites by (1)H NMR and LC/MS was demonstrated. Our data showed that a number of metabolites involved in glucose metabolism, citric acid cycle and amino acid metabolism were affected immediately after the intake of green tea. The proposed approach provided a more comprehensive picture of the metabolic changes after intake of green tea in human urine. The multiple analytical approach together with pattern recognition tools is a useful platform to study metabolic profiles after ingestion of botanicals and medicinal plants.

  11. Analysis of the venom of the Sydney funnel-web spider, Atrax robustus using gas chromatography mass spectrometry.

    PubMed

    Duffield, P H; Duffield, A M; Carroll, P R; Morgans, D

    1979-03-01

    Thirteen compounds have been identified using gas chromatography mass spectrometry in the venom of the Sydney funnel-web spider, Atrax robustus. The compounds were identified as their trimethylsilyl or pentafluoropropionate derivatives and were citric acid, lactic acid, phosphoric acid, glycerol, urea, glucose, gamma-aminobutyric acid, glycine, spermidine, spermine, tyramine and octopamine. Female venom contained trace quantities of 5-methyoxytryptamine which was not detected in male venom. Quantitative determination of tyramine and octopamine was achieved using chemical ionization (CH4) gas chromatography mass spectrometry and deuterated internal standards.

  12. Rapid quantification of dimethyl methylphosphonate from activated carbon particles by static headspace gas chromatography mass spectrometry.

    PubMed

    Mitchell, Brendan L; Billingsley, Brit G; Logue, Brian A

    2013-06-07

    Activated carbon (AC) particles are utilized as an adsorbent for binding hazardous vapors in protective equipment. The binding affinity and utilization of these AC particles should be known to ensure effective and efficient use. Therefore, a simple and effective method was developed for the quantification of the chemical warfare agent simulant, dimethyl methylphosphonate (DMMP), from AC particles. Static headspace gas chromatography mass-spectrometry with internal standard, DMMP-d6, was used to perform the analysis. The method produced a linear dynamic range of 2.48-620g DMMP/kg carbon and a detection limit of 1.24g DMMP/kg carbon. Furthermore, the method produced a coefficient of variation of less than 16% for all intra- and inter-assay analyses. The method provided a simple and effective procedure for quantifying DMMP from AC particles and was applied to the analysis of a DMMP-exposed AC protective respirator filter.

  13. Subsurface detection of fossil fuel pollutants by photoionization and gas chromatography/mass spectrometry.

    PubMed

    Robbat, Albert; Considine, Thomas; Antle, Patrick M

    2010-09-01

    This paper describes analysis of environmental pollutants at depth without bringing sample to the surface. It is based on an improved 3-stage Peltier freeze trap, which efficiently pre-concentrates volatile coal tar and petroleum hydrocarbons, and an integrated system for detecting pollutants on-line, in real-time by photoionization detection and quantitation by gas chromatography/mass spectrometry (GC/MS) as the probe is advanced into the subsurface. Findings indicate measurement precision and accuracy for volatiles meet EPA criteria for hazardous waste site investigations. When a Teflon membrane inlet is used to detect contaminants in groundwater, its 140 degrees C temperature limit restricts analyte collection in soil to C(2)-phenanthrenes. Two case studies demonstrate the probe is well-suited to tracking petroleum and coal tar plumes from source to groundwater. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Use of Gas Chromatography-Mass Spectrometry (GC-MS) in Nonscience Major Course Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Kostecka, Keith S.; Lerman, Zafra M.; Angelos, Sanford A.

    1996-06-01

    Gas chromatography-mass spectrometry (GC-MS) has been utilized with nonscience majors in the courses: "Modern Methods in Science: Discovering Molecular Secrets"; "The Extraordinary Chemistry of Ordinary Things"; "From Ozone to Oil Spills: Chemistry, the Environment and You"; and "Crime Lab Chemistry: Solving Crime through Analytical Chemistry". Our efforts have centered on introducing prospective science communicators (film, video, radio, television, and journalism majors) to science relative to their majors and personal interests. Quality lecture-discussion topics, "mystery"-based laboratory activities have assisted in introducing and/or explaining specific areas of chemistry that attempt to reduce fear of subject matter. Students have also used GC-MS, as a form of alternative assessment, in course projects that have been based on their majors, personal interests, and cultural backgrounds. Students have also conducted advanced independent work in different areas of chemistry, including the analysis of nail polishes and lacquers and eleven aromatic compounds present in three different brands of gasoline.

  15. Simultaneous determination of amphetamines and ketamines in urine by gas chromatography/mass spectrometry.

    PubMed

    Lin, Huei Ru; Lua, Ahai Chang

    2006-01-01

    A method for the simultaneous determination of amphetamines and ketamines (ketamine, norketamine and dehydronorketamine) in urine samples by gas chromatography/mass spectrometry was developed and validated. Urine samples were extracted with organic solvent and derivatized with trifluoroacetic anhydride (TFAA). The limits of detection and limits of quantification for each analyte were lower than 19 and 30 ng/mL, respectively. Within-day and between-day precisions were within 0.5% and 10.6%, respectively. Biases for three levels of control samples were within -10.6% and +7.8%. The concentration of dehydronorketamine was greater than those of ketamine or norketamine in 19 of 35 ketamine-positive samples. A group of 110 human urine samples previously determined to contain at least one of the target analytes was analyzed using the new method, and excellent agreement was observed with previous results.

  16. High-speed, low-pressure gas chromatography-mass spectrometry for essential oil analysis.

    PubMed

    Poynter, Samuel D H; Shellie, Robert A

    2008-07-18

    Analysis of parsley and fennel essential oils was performed by using low-pressure gas chromatography-mass spectrometry (GC-MS). The low-pressure instrument configuration was achieved by fitting a GC-MS instrument with a 530microm I.D. capillary column and an appropriate capillary restrictor at the inlet of the column. Comparison of the performance of the low-pressure GC-MS setup was made with fast GC-MS using a narrow-bore capillary column. By comparing the two approaches side-by-side the benefits of low-pressure GC-MS for characterisation of moderately complex essential oils comprising less than 50 detectable components can be fully appreciated. Although efficiency is sacrificed, the improved sample capacity of the 530microm I.D. column leads to higher peak intensities and in-turn better mass spectral library matching thus providing highly satisfactory results.

  17. Confirmatory tests for drugs in the workplace by gas chromatography-mass spectrometry.

    PubMed

    Goldberger, B A; Cone, E J

    1994-07-15

    The Mandatory Guidelines for Federal Workplace Drug Testing Programs require the use of gas chromatography-mass spectrometry (GC-MS) for the confirmation of presumptive positive urine specimens. This review focuses upon GC-MS methods developed specifically for forensic confirmation of amphetamine, methamphetamine, 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid (THC-acid), benzoylecgonine, morphine, codeine and phencyclidine in urine for purposes of workplace drug testing. In addition, current laboratory issues pertaining to each drug class are reviewed. Generally, drug assays utilized either liquid-liquid or solid-phase extraction methods, derivatization if necessary, and GC-MS detection operating in the selected ion monitoring mode or by full scan acquisition.

  18. Characterization of gamma irradiated petrolatum eye ointment base by headspace-gas chromatography-mass spectrometry.

    PubMed

    Hong, Lan; Altorfer, Hans

    2002-06-20

    The effects of gamma irradiation on petrolatum eye ointment base (EOB) and its ingredients (white petrolatum, liquid paraffin, and wool fat) were studied at different irradiation doses. Forty-one volatile radiolysis products were detected and identified by a combined system of headspace-gas chromatography-mass spectrometry (HS-GC-MS). The characteristics of the radiolysis products and the degradation pathway were discussed in each case, respectively. GC method demonstrates that the component distribution patterns of eye ointment as well as its individual ingredients have no differences before and after gamma irradiation. The influence of gamma treatment on EOB was quantitatively determined at 15, 25 and 50 kGy. The concentrations of the radiolysis products increase linearly with increasing doses. Both qualitative and quantitative data show that irradiated eye ointment is safe for human use.

  19. Characterization and quantification of fluoxymesterone metabolite in horse urine by gas chromatography/mass spectrometry.

    PubMed

    Yamada, Masayuki; Aramaki, Sugako; Hosoe, Tomoo; Kurosawa, Masahiko; Kijima-Suda, Isao; Saito, Koichi; Nakazawa, Hiroyuki

    2008-07-01

    Fluoxymesterone, an anabolic steroid with the 17alpha-methyl,17beta-hydroxy group, has been developed as an oral formulation for therapeutic purposes. However, it is also used illegally in racehorses to enhance racing performance. In this study, we detected 9alpha-fluoro-17,17-dimethyl-18-norandrostane-4,13-dien-11beta-ol-3-one by gas chromatography/mass spectrometry (GC/MS), which has not been reported as a fluoxymesterone metabolite so far in horse. It was synthesized for use as a reference standard, and characterized on the basis of (1)H NMR and (13)C NMR spectra, as well as GC/MS EI mass spectra of TMS derivatives. It was excreted as the main metabolite in horse urine, and its reference standard could be synthesized easily. Therefore, this metabolite could be a useful target for a doping test of fluoxymesterone in racehorses.

  20. Gas chromatography-mass spectrometry-based metabolic profiling of cerebrospinal fluid from epileptic dogs.

    PubMed

    Hasegawa, Tetsuya; Sumita, Maho; Horitani, Yusuke; Tamai, Reo; Tanaka, Katsuhiro; Komori, Masayuki; Takenaka, Shigeo

    2014-04-01

    Epilepsy is a common neurological disorder with seizures, but diagnostic approaches in veterinary clinics remain limited. Cerebrospinal fluid (CSF) is a body fluid used for diagnosis in veterinary medicine. In this study, we explored canine epilepsy diagnostic biomarkers using gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling of CSF and multivariate data analysis. Profiles for subjects with idiopathic epilepsy differed significantly from those of healthy controls and subjects with symptomatic epilepsy. Among 60 identified metabolites, the levels of 20 differed significantly among the three groups. Glutamic acid was significantly increased in idiopathic epilepsy, and some metabolites including ascorbic acid were changed in both forms of epilepsy. These findings show that metabolic profiles of CSF differ between idiopathic and symptomatic epilepsy and that metabolites including glutamic acid and ascorbic acid in CSF may be useful for diagnosis of canine epilepsy.

  1. Gas Chromatography-Mass Spectrometry-Based Metabolic Profiling of Cerebrospinal Fluid from Epileptic Dogs

    PubMed Central

    HASEGAWA, Tetsuya; SUMITA, Maho; HORITANI, Yusuke; TAMAI, Reo; TANAKA, Katsuhiro; KOMORI, Masayuki; TAKENAKA, Shigeo

    2013-01-01

    ABSTRACT Epilepsy is a common neurological disorder with seizures, but diagnostic approaches in veterinary clinics remain limited. Cerebrospinal fluid (CSF) is a body fluid used for diagnosis in veterinary medicine. In this study, we explored canine epilepsy diagnostic biomarkers using gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling of CSF and multivariate data analysis. Profiles for subjects with idiopathic epilepsy differed significantly from those of healthy controls and subjects with symptomatic epilepsy. Among 60 identified metabolites, the levels of 20 differed significantly among the three groups. Glutamic acid was significantly increased in idiopathic epilepsy, and some metabolites including ascorbic acid were changed in both forms of epilepsy. These findings show that metabolic profiles of CSF differ between idiopathic and symptomatic epilepsy and that metabolites including glutamic acid and ascorbic acid in CSF may be useful for diagnosis of canine epilepsy. PMID:24334864

  2. [Determination of 10 volatile organic compounds in toys by headspace gas chromatography-mass spectrometry].

    PubMed

    Lü, Qing; Zhang, Qing; Kang, Suyuan; Bai, Hua; Wang, Chao

    2010-08-01

    A headspace gas chromatography-mass spectrometry (HS-GC-MS) method was developed for the determination of 10 residual volatile organic compounds (VOCs) in toys. The experimental conditions such as headspace temperature, headspace time and the analytical conditions of GC-MS were optimized. Toy samples were treated at 140 degrees C for 45 min, and then the evolved products were separated on a DB-624 column, determined by MS and quantified by external standard method. The recoveries were from 79% to 106% and the relative standard deviations (RSDs) were from 0.4% to 5.6%. The linear range was 0.001 - 2.0 microg with a good linear correlation coefficient (r > 0.994 0) and the limits of quantification (LOQ) were less than 0 66 mg/kg. The method is accurate, simple, rapid, and is suitable for the analysis of residual VOCs in various toys.

  3. Analysis of beechwood creosote by gas chromatography-mass spectrometry and high-performance liquid chromatography.

    PubMed

    Ogata, N; Baba, T

    1989-12-01

    Compounds in beechwood creosote were analyzed by gas chromatography-mass spectrometry, and 22 major constituents were identified. Of these, 19 were phenolic compounds, i. e., guaiacol, phenol, two cresol isomers, four methylguaiacol (creosol) isomers, six xylenol isomers, two trimethylphenol isomers, 4-ethylguaiacol, 4-ethyl-5-methylguaiacol, and 4-propylguaiacol. The remaining three were hitherto unpredicted five-membered ring compounds, i. e., 3-methyl-2-hydroxy-2-cyclopenten-1-one, 3,5-dimethyl-2-hydroxy-2-cyclopenten-1-one, and 3-ethyl-2-hydroxy-2-cyclopenten-1-one. The relative quantities of these compounds were also compared with those obtained by high-resolution high-performance liquid chromatography. This report probably represents the first extensive analysis of beechwood creosote.

  4. Determination of glyphosate, glyphosate metabolites, and glufosinate in human serum by gas chromatography-mass spectrometry.

    PubMed

    Motojyuku, Megumi; Saito, Takeshi; Akieda, Kazuki; Otsuka, Hiroyuki; Yamamoto, Isotoshi; Inokuchi, Sadaki

    2008-11-15

    This paper describes an assay for the determination of glyphosate (GLYP), glyphosate metabolites [(aminomethyl) phosphonic acid] (AMPA), and glufosinate (GLUF) in human serum. After protein precipitation using acetonitrile and solid-phase extraction, serum samples were derivatized and analyzed by gas chromatography-mass spectrometry (GC-MS). The assay was linear over a concentration range of 3-100.0 microg/ml for GLYP, AMPA, and GLUF. The overall recoveries for the three compounds were >73%. The intra- and inter-day variations were <15%. Precision and accuracy were 6.4-10.6% and 88.2-103.7%, respectively. The validated method was applied to quantify the GLYP and AMPA content in the serum of a GLYP-poisoned patient. In conclusion, the method was successfully applied for the determination of GLYP and its metabolite AMPA in serum obtained from patient of GLYP-poisoning.

  5. Analysis of Iranian rosemary essential oil: application of gas chromatography-mass spectrometry combined with chemometrics.

    PubMed

    Jalali-Heravi, Mehdi; Moazeni, Rudabeh Sadat; Sereshti, Hassan

    2011-05-06

    This paper focuses on characterization of the components of Iranian rosemary essential oil using gas chromatography-mass spectrometry (GC-MS). Multivariate curve resolution (MCR) approach was used to overcome the problem of background, baseline offset and overlapping/embedded peaks in GC-MS. The analysis of GC-MS data revealed that sixty eight components exist in the rosemary essential oil. However, with the help of MCR this number was extended to ninety nine components with concentrations higher than 0.01%, which accounts for 98.23% of the total relative content of the rosemary essential oil. The most important constituents of the Iranian rosemary are 1,8-cineole (23.47%), α-pinene (21.74%), berbonone (7.57%), camphor (7.21%) and eucalyptol (4.49%).

  6. Preparative monohydroxyflavanone syntheses and a protocol for gas chromatography-mass spectrometry analysis of monohydroxyflavanones.

    PubMed

    Kagawa, Hitoshi; Shigematsu, Asako; Ohta, Shigeru; Harigaya, Yoshihiro

    2005-05-01

    We describe a facile efficient, and preparative approach for monohydroxyflavanone syntheses. Using this protocol, a hydroxyl is regio-selectively introduced at one carbon of a flavanone A- or B-ring per synthesis. The seven possible isomers were each synthesized from the corresponding monomethoxymethoxylated 2'-hydroxychalcones in acidic solution. These monohydroxyflavanones were characterized using a gas chromatography-mass spectrometry (GC-MS) system that incorporated a DB-5 capillary column. Ours is the first report of a preparative synthetic method during which a single hydroxyl can be selectively added to a flavanone A- or B-ring at any position. We are also the first to develop a procedure that separates the seven isomers by GC and characterizes the mass spectra of the isomers. Both the synthetic method and the GC-MS conditions may become important tools during future flavanone metabolism and oxidation studies.

  7. Gas chromatography/mass spectrometry for the determination of nitrosamines in red wine.

    PubMed

    Lona-Ramirez, Fernando J; Gonzalez-Alatorre, Guillermo; Rico-Ramírez, Vicente; Perez-Perez, Ma Cristina I; Castrejón-González, Edgar O

    2016-04-01

    N-nitrosamines (NAms) are highly active carcinogens that have been detected in food and beverages. Currently certain studies report their presence in red wine, while others fail to detect their presence. In this study the head space solid phase micro-extraction technique coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS) was applied to quantify four NAms in different types of red wine. The technique was found to be a simple, precise, fast and environmentally friendly alternative for the quantification of volatile NAms. A factorial analysis was carried out to evaluate the influence of the parameters on the HS-SPME technique. This is the first study that such analysis has been reported and where NAms in red wine have been quantified using HS-SPME-GC-MS. The method was validated by calculating the linearity, limit of detection and quantification. Two of the four NAms analyzed were found to be present in red wine samples.

  8. Verification of chemical composition of commercially available propolis extracts by gas chromatography-mass spectrometry analysis.

    PubMed

    Czyżewska, Urszula; Konończuk, Joanna; Teul, Joanna; Drągowski, Paweł; Pawlak-Morka, Renata; Surażyński, Arkadiusz; Miltyk, Wojciech

    2015-05-01

    Propolis is a resin that is collected by honeybees from various plant sources. Due to its pharmacological properties, it is used in commercial production of nutritional supplements in pharmaceutical industry. In this study, gas chromatography-mass spectrometry was applied for quality control analysis of the three commercial specimens containing aqueous-alcoholic extracts of bee propolis. More than 230 constituents were detected in analyzed products, including flavonoids, chalcones, cinnamic acids and their esters, phenylpropenoid glycerides, and phenylpropenoid sesquiterpenoids. An allergenic benzyl cinnamate ester was also identified in all tested samples. This analytical method allows to evaluate biological activity and potential allergenic components of bee glue simultaneously. Studies on chemical composition of propolis samples may provide new approach to quality and safety control analysis in production of propolis supplementary specimens.

  9. [Determination of primary aromatic amines in crayons gas chromatography-mass spectrometry].

    PubMed

    Kang, Suyuan; Zhang, Qing; Bai, Hua; Wang, Chao; Lü, Qing

    2011-05-01

    A method for the determination of nine primary aromatic amines in crayon by solid phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) was developed. The alkanes in the sample were removed with n-hexane. Then the sample was extracted twice with ultrasonic extraction by methanol. The extract was evaporated, then the concentrated solution reacted with the reducing agent (sodium hydrosulfite) for 30 min at 70 degrees C. After the extraction with a diatomite SPE column, the aromatic amines were collected and separated on an HP-5M column, determined by MS. The nine primary aromatic amines can be separated and determined successfully. Under the optimized conditions, the detection limits were 5 mg/kg and the spiked recoveries of the samples were in the range of 86.02%-102.43%. The method is accurate and stable. It can be applied in the analysis of the primary aromatic amine of real crayon samples.

  10. Determination of chemical components derived from 2% chlorhexidine gel degradation using gas chromatography-mass spectrometry.

    PubMed

    Câmara De Bem, Samuel Henrique; Estrela, Carlos; Guedes, Débora Fernandes Costa; Sousa-Neto, Manoel Damião; Pécora, Jesus Djalma

    2014-11-01

    This study determined the chemical components derived from degradation of 2% chlorhexidine (CHX) gel and solution by using gas chromatography-mass spectrometry. Three 2% CHX gels were used to identify the products of CHX gel degradation using gas chromatography-mass spectrometry. A solution of CHX was also evaluated to compare the degradation between gel and solution. Degradation was evaluated in four storage situations (on the worktable with light: on the worktable without light; in the Pasteur oven at 36.5°C without light; and in the refrigerator at 8°C without light). Measurements were made at four time points: initial analysis and 1, 3 and 6 months after. The conversion of CHX into para-chloroaniline in storage situations and in different periods was analyzed statistically using chi-square test (α = 5%). The 2% CHX gel or solution had already degraded vial found within the period of validity, at all time points and for all storage conditions. The amount of para-chloroaniline (pCA) was directly proportional to time in the case of CHX solution, but not in CHX gel due to lack of homogeneity. CHX homogeneity in hydroxyethylcellulose gel was directly dependent on compounding mode. Degradation products, such as para-chloroaniline (pCA), orto- chloroaniline (oCA), meta-chloroaniline (mCA), reactive oxygen species (ROS) and organochlorines (ortho-chlorophenyl isocyanate and 2-amino-5-clorobenzonitrila) were found in 2% CHX gel and solution, regardless of storage conditions or time. In relationship to gel homogenization an alternative to produce 2% CHX gel and a new homogenization method have been developed.

  11. Study on the photostability of guaiazulene by high-performance liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry.

    PubMed

    Fiori, Jessica; Gotti, Roberto; Albini, Angelo; Cavrini, Vanni

    2008-09-01

    The photostability of guaiazulene (1,4-dimethyl-7-isopropylazulene; GA), a natural azulenic compound used in cosmetic and health-care products, as well as in pharmaceutical preparations, was investigated in solution (methanol, ethanol, acetonitrile), by different techniques: gas chromatography/mass spectrometry (GC/MS) and high-performance liquid chromatography combined with atmospheric pressure chemical ionization mass spectrometry and UV detection (LC/APCI-MS and HPLC/UV). A solar simulator (xenon-arc lamp) was used as UV-A radiation source. The study involved: monitoring compound decomposition, identifying products of photodegradation (PPs), assessing the role of oxygen and evaluating the kinetics of the process. Minor PPs are volatile compounds and were characterized by GC/MS, while oligomeric polyoxygenated compounds, tentatively characterized on the basis of MS and MS/MS spectra, were found to be the main photoproducts. The photodegradation was found to be enhanced by the presence of oxygen; nevertheless, determination of the singlet oxygen quantum yield for GA gave a lower value than that for the reference standard Rose Bengal. The obtained results and the developed stability-indicating methods (GC/MS and LC/MS) are of interest for stability studies and/or quality control purposes of GA as raw material or cosmetic products.

  12. Determination of hormonal growth promoters in bovine hair: comparison of liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry methods for estradiol benzoate and nortestosterone decanoate.

    PubMed

    Duffy, Eleanor; Rambaud, Lauriane; Le Bizec, Bruno; O'Keeffe, Michael

    2009-04-01

    The detection of steroid residues in hair is a powerful strategy to demonstrate long-term administration of these growth promoters in meat production animals. Analysis of the ester form of administered steroids is an unambiguous approach to prove the illegal use of natural hormones. For detection, gas chromatography-mass spectrometry (GC-MS/MS) was generally used. However, recent advances in liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology have improved the robustness and potential sensitivity of this method. This paper describes development and validation, according to Commission Decision 2002/657/EC, of LC-MS/MS and GC-MS/MS methods, in two separate laboratories, for determination of steroid esters in bovine hair. Bovine hair samples taken from animals treated with estradiol-3-benzoate and nortestosterone decanoate, as well as from an untreated animal, were used to evaluate the comparability of the results of the two validated methods. The results of the inter-comparison demonstrate that both the LC-MS/MS and the GC-MS/MS methods are fit for purpose and capable of determining steroid esters in hair samples from treated bovine animals.

  13. ANALYSIS OF TRACE-LEVEL ORGANIC COMBUSTION PROCESS EMISSIONS USING NOVEL MULTIDIMENSIONAL GAS CHROMATOGRAPHY-MASS SPECTROMETRY PROCEDURES

    EPA Science Inventory

    The paper discusses the analysis of trace-level organic combustion process emissions using novel multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures. It outlines the application of the technique through the analyses of various incinerator effluent and produ...

  14. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  15. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    ERIC Educational Resources Information Center

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  16. Quantitation of Phenol Levels in Oil of Wintergreen Using Gas Chromatography-Mass Spectrometry with Selected Ion Monitoring

    ERIC Educational Resources Information Center

    Sobel, Robert M.; Ballantine, David S.; Ryzhov, Victor

    2005-01-01

    Industrial application of gas chromatography-mass spectrometry (GC-MS) analysis is a powerful technique that could be used to elucidate components of a complex mixture while offering the benefits of high-precision quantitative analysis. The natural wintergreen oil is examined for its phenol concentration to determine the level of refining…

  17. Quantitation of Phenol Levels in Oil of Wintergreen Using Gas Chromatography-Mass Spectrometry with Selected Ion Monitoring

    ERIC Educational Resources Information Center

    Sobel, Robert M.; Ballantine, David S.; Ryzhov, Victor

    2005-01-01

    Industrial application of gas chromatography-mass spectrometry (GC-MS) analysis is a powerful technique that could be used to elucidate components of a complex mixture while offering the benefits of high-precision quantitative analysis. The natural wintergreen oil is examined for its phenol concentration to determine the level of refining…

  18. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  19. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    ERIC Educational Resources Information Center

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  20. Identification and Quantification of Pesticides in Environmental Waters With Solid Phase Microextraction and Analysis Using Field-Portable Gas Chromatography-Mass Spectrometry

    DTIC Science & Technology

    2004-06-10

    Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Name of Candidate: CPT Michael J. Nack...in the thesis manuscript entitled: Identification and Quantification of Pesticides in Environmental Waters with Solid Phase Microextraction ...Pesticides in Environmental Waters with Solid Phase Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry

  1. Isolation and derivatization of plasma taurine for stable isotope analysis by gas chromatography-mass spectrometry

    SciTech Connect

    Irving, C.S.; Klein, P.D.

    1980-09-01

    A method for the isolation and derivatization of plasma taurine is described that allows stable isotope determinations of taurine to be made by gas chromatography-mass spectrometry. The isolation procedure can be applied to 0.1 ml of plasma; the recovery of plasma taurine was 70 to 80%. For gc separation, taurine was converted to its dimethylaminomethylene methyl ester derivative which could not be detected by hydrogen flame ionization, but could be monitored readily by NH/sub 3/ chemical ionization mass spectrometry. The derivatization reaction occurred partially on-column and required optimization of injection conditions. Using stable isotope ratiometry multiple ion detection, (M + 2 + H)/sup +//(M + H)/sup +/ ion ratio of natural abundance taurine was determined with a standard deviation of less than +-0.07% of the ratio. The (1,2-/sup 13/C)taurine/taurine mole ratios of standard mixtures could be accurately determined to 0.001. This stable isotope gc-ms method is suitable for studying the plasma kinetics of (1,2-/sup 13/C)taurine in infants who are at risk with respect to taurine depletion.

  2. Issues pertaining to the analysis of buprenorphine and its metabolites by gas chromatography-mass spectrometry.

    PubMed

    Wang, Yu-Shan; Lin, Dong-Liang; Yang, Shu-Ching; Wu, Meng-Yan; Liu, Ray H; Su, Lien-Wen; Cheng, Pai-Sheng; Liu, Chiareiy; Fuh, Ming-Ren

    2010-03-05

    "Substitution therapy" and the use of buprenorphine (B) as an agent for treating heroin addiction continue to gain acceptance and have recently been implemented in Taiwan. Mature and widely utilized gas chromatography-mass spectrometry (GC-MS) technology can complement the low cost and highly sensitive immunoassay (IA) approach to facilitate the implementation of analytical tasks supporting compliance monitoring and pharmacokinetic/pharmacogenetic studies. Issues critical to GC-MS analysis of B and norbuprenorphine (NB) (free and as glucuronides), including extraction, hydrolysis, derivatization, and quantitation approaches were studied, followed by comparing the resulting data against those derived from IA and two types of liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. Commercial solid-phase extraction devices, highly effective for recovering all metabolites, may not be suitable for the analysis of free B and NB; acetyl-derivatization products exhibit the most favorable chromatographic, ion intensity, and cross-contribution characteristics for GC-MS analysis. Evaluation of IA, GC-MS, and LC-MS/MS data obtained in three laboratories has proven the 2-aliquot GC-MS protocol effective for the determination of free B and NB and their glucuronides.

  3. Laser desorption fast gas chromatography-mass spectrometry in supersonic molecular beams.

    PubMed

    Shahar, T; Dagan, S; Amirav, A

    1998-06-01

    A novel method for fast analysis is presented. It is based on laser desorption injection followed by fast gas chromatography-mass spectrometry (GC-MS) in supersonic molecular beams. The sample was placed in an open air or purged laser desorption compartment, held at atmospheric pressure and near room temperature conditions. Desorption was performed with a XeCl Excimer pulsed laser with pulse energy of typically 3 mJ on the surface. About 20 pulses at 50 Hz were applied for sample injection, resulting in about 0.4 s injection time and one or a few micrograms sample vapor or small particles. The laser desorbed sample was further thermally vaporized at a heated frit glass filter located at the fast GC inlet. Ultrafast GC separation and quantification was achieved with a 50-cm-long megabore column operated with a high carrier gas flow rate of up to 240 mL/min. The high carrier gas flow rate provided effective and efficient entrainment of the laser desorbed species in the sweeping gas. Following the fast GC separation, the sample was analyzed by mass spectrometry in supersonic molecular beams. Both electron ionization and hyperthermal surface ionization were employed for enhanced selectivity and sensitivity. Typical laser desorption analysis time was under 10 s. The laser desorption fast GC-MS was studied and demonstrated with the following sample/matrices combinations, all without sample preparation or extraction: (a) traces of dioctylphthalate plasticizer oil on stainless steel surface and the efficiency of its cleaning; (b) the detection of methylparathion and aldicarb pesticides on orange leaves; (c) water surface analysis for the presence of methylparathion pesticide; (d) caffeine analysis in regular and decaffeinated coffee powder; (e) paracetamol and codeine drug analysis in pain relieving drug tablets; (f) caffeine trace analysis in raw urine; (g) blood analysis for the presence of 1 ppm lidocaine drug. The features and advantages of the laser desorption fast GC

  4. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    SciTech Connect

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-09-01

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that

  5. Isotope dilution gas chromatography/mass spectrometry method for determination of pyrethroids in apple juice.

    PubMed

    Wong, Siu-kay; Yu, Kwok-chiu; Lam, Chi-ho

    2010-03-01

    This paper presents the development of a highly precise and accurate analytical method for the determination of three matrix-bound pyrethroids, namely, cypermethrin, permethrin, and bifenthrin, using an isotope dilution gas chromatography/mass spectrometry technique. Identification of the analytes was confirmed under selective ion monitoring mode by the presence of two dominant ion fragments within specific time windows and matching of relative ion intensities of the ions concerned in samples and calibration standards. Quantitation was based on the measurement of concentration ratios of the natural and isotope analogues in the sample and calibration blends. Intraday and interday repeatabilities of replicate analyses of the pyethroids in an apple juice sample were below 0.5%. The expanded relative uncertainty ranged from 3 to 6%, which was significantly lower than the range obtained using internal or external calibration methods. As a labeled analogue is not available for bifenthrin, bifenthrin was determined using labeled cis-permethrin as the internal standard. The results were counterchecked by a gas chromatography-electron capture detection technique using PCB 209 as the internal standard. The method developed was applied to a recent pilot study organized by CCQM and the results were consistent with those of other participants.

  6. Metabolomics by Gas Chromatography-Mass Spectrometry: the combination of targeted and untargeted profiling

    PubMed Central

    Fiehn, Oliver

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS)-based metabolomics is ideal for identifying and quantitating small molecular metabolites (<650 daltons), including small acids, alcohols, hydroxyl acids, amino acids, sugars, fatty acids, sterols, catecholamines, drugs, and toxins, often using chemical derivatization to make these compounds volatile enough for gas chromatography. This unit shows that on GC-MS- based metabolomics easily allows integrating targeted assays for absolute quantification of specific metabolites with untargeted metabolomics to discover novel compounds. Complemented by database annotations using large spectral libraries and validated, standardized standard operating procedures, GC-MS can identify and semi-quantify over 200 compounds per study in human body fluids (e.g., plasma, urine or stool) samples. Deconvolution software enables detection of more than 300 additional unidentified signals that can be annotated through accurate mass instruments with appropriate data processing workflows, similar to liquid chromatography-MS untargeted profiling (LC-MS). Hence, GC-MS is a mature technology that not only uses classic detectors (‘quadrupole’) but also target mass spectrometers (‘triple quadrupole’) and accurate mass instruments (‘quadrupole-time of flight’). This unit covers the following aspects of GC-MS-based metabolomics: (i) sample preparation from mammalian samples, (ii) acquisition of data, (iii) quality control, and (iv) data processing. PMID:27038389

  7. [Analysis of volatile oil of garlic by gas chromatography-mass spectrometry].

    PubMed

    Guo, Xiaofei; Du, Ailing; Guan, Congsheng; Pan, Guangmin; Du, Aiqin; Wang, Weiqiang

    2005-09-01

    The volatile oil of garlic was extracted by hydrodistillation method and gas chromatography-mass spectrometry was applied to analyse the compounds in the oil. The best extraction conditions for high-content, effective components were obtained through optimization. The capillary column was an HP-5MS column (25 mm x 0.25 mm i.d. x 0.25 microm); oven temperature increased with a rate of 5 degrees C /min from 80 to 300 degrees C, and then maintained for 20 min; sample size of 1 microL; split ratio of 100:1; carrier gas of helium (1 mL/min). Mass spectra were obtained at 70 eV. The temperatures of injector base, ionization source were maintained at 270 degrees C, 230 degrees C respectively. Under these conditions, twenty compounds in the volatile oil of garlic were isolated and identified, and the content of each was determined. Sulfur-containing compounds were found to be the principal components, of which the major compound was diallyl trisulfide with the content of more than 30%, which is higher than the others in the literature. The experimental results also indicated that hydrodistillation method is an effective method for officinal component extraction. In addition, it was also demonstrated that the garlic volatile oil was stable when stored at 0 degrees C for 6 months.

  8. Determination of ortho-phenylphenol in human urine by gas chromatography-mass spectrometry.

    PubMed

    Bartels, M J; Brzak, K A; Bormett, G A

    1997-12-05

    A sensitive gas chromatographic-mass spectrometric method was developed to quantitate total o-phenylphenol (OPP) (free plus conjugates) in human urine. Conjugates of OPP were acid-hydrolyzed to free OPP, derivatized to the pentafluorobenzoyl ester derivative and analyzed via negative-ion chemical ionization gas chromatography-mass spectrometry. Two stable isotope analogs of OPP were shown to be suitable as internal standards for this method (D2-phenol ring, 13C6-phenyl ring). A synthetic method is presented for the preparation of the D2-OPP internal standard. The 13C6-OPP analog was also shown to be useful as an alternate test material for laboratory-based exposure studies. The limit of quantitation for this method was 1 ng OPP/ml urine. Calibration curves were linear for the analyte over the concentration range of 0.5-1117 ng OPP/ml urine. Relative recovery of OPP from urine ranged from 97.0 to 104.7%. Low levels of OPP (mean=6+/-7 ng/ml; n=22) were found in control human urine samples. The method was validated with urine samples obtained from human volunteers undergoing a dermal exposure study with 12C-/13C6-/14C-OPP. This method was developed to aid in assessments of human exposure to OPP during a variety of uses of the compound.

  9. Gas chromatography-mass spectrometry determination of phosphine residues in stored products and processed foods.

    PubMed

    Norman, K N; Leonard, K

    2000-09-01

    A gas chromatography-mass spectrometry (GC-MS) method was used for the quantitative confirmation of phosphine residues in stored products and processed foods. An established extraction technique was utilized for the preparation of headspace samples, which were analyzed by GC-MS and gas chromatography-nitrogen-phosphorus detection (GC-NPD). Wheat, oats, maize, white rice, brown rice, cornflakes, tortilla cornchips, groundnuts, and raisins were validated, showing excellent agreement between detectors when spiked at levels equivalent to 0.001 and 0.01 mg/kg phosphine and for samples containing incurred residues. The GC-MS method was reproducible and accurate when compared to the GC-NPD method and allowed five samples to be quantified in a working day. Subambient GC-MS oven temperatures were most suitable for phosphine residues ranging from 0.001 to 0.005 mg/kg, and a GC oven temperature of 100 degrees C was appropriate for residues >0.005 mg/kg. The method was sufficiently robust to be evaluated for other similar commodities as the need arises.

  10. Optimizing 2D gas chromatography mass spectrometry for robust tissue, serum and urine metabolite profiling.

    PubMed

    Yu, Zhanru; Huang, Honglei; Reim, Alexander; Charles, Philip D; Northage, Alan; Jackson, Dianne; Parry, Ian; Kessler, Benedikt M

    2017-04-01

    Two-dimensional gas chromatography mass spectrometry (GCxGC-MS) is utilized to an increasing extent in biomedical metabolomics. Here, we established and adapted metabolite extraction and derivatization protocols for cell/tissue biopsy, serum and urine samples according to their individual properties. GCxGC-MS analysis revealed detection of ~600 molecular features from which 165 were characterized representing different classes such as amino acids, fatty acids, lipids, carbohydrates, nucleotides and small polar components of glycolysis and the Krebs cycle using electron impact (EI) spectrum matching and validation using external standard compounds. Advantages of two-dimensional gas chromatography based resolution were demonstrated by optimizing gradient length and separation through modulation between the first and second column, leading to a marked increase in metabolite identification due to improved separation as exemplified for lactate versus pyruvate, talopyranose versus methyl palmitate and inosine versus docosahexaenoic acid. Our results demonstrate that GCxGC-MS represents a robust metabolomics platform for discovery and targeted studies that can be used with samples derived from the clinic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Oxysterols in cosmetics-Determination by planar solid phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Schrack, S; Hohl, C; Schwack, W

    2016-11-18

    Sterol oxidation products (SOPs) are linked to several toxicological effects. Therefore, investigation of potential dietary uptake sources particularly food of animal origin has been a key issue for these compounds. For the simultaneous determination of oxysterols from cholesterol, phytosterols, dihydrolanosterol and lanosterol in complex cosmetic matrices, planar solid phase extraction (pSPE) was applied as clean-up tool. SOPs were first separated from more non-polar and polar matrix constituents by normal phase thin-layer chromatography and then focussed into one target zone. Zone extraction was performed with the TLC-MS interface, followed by gas chromatography-mass spectrometry analysis. pSPE showed to be effective for cleaning up cosmetic samples as sample extracts were free of interferences, and gas chromatographic columns did not show any signs of overloading. Recoveries were between 86 and 113% with relative standard deviations of below 10% (n=6). Results of our market survey in 2016 showed that some cosmetics with ingredients of plant origin contained phytosterol oxidation products (POPs) in the low ppm range and therefore in line with levels reported for food. In lanolin containing products, total SOPs levels (cholesterol oxidation products (COPs), lanosterol oxidation products (LOPs), dihydrolanosterol oxidation products (DOPs)) being in the low percent range exceeded reported levels for food by several orders of magnitudes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Determination of Morphine and Codeine in Human Urine by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Zhang, Xiaoqian; Cao, Gaozhong; Hu, Guoxin

    2013-01-01

    A sensitive and selective gas chromatography-mass spectrometry (GC-MS) method was developed and validated for the determination of morphine and codeine in human urine. The GC-MS conditions were developed. The analysis was carried out on a HP-1MS column (30 m × 0.25 mm, 0.25 μm) with temperature programming, and Helium was used as the carrier gas with a flow rate of 1.0 mL/min. Selected ion monitoring (SIM) mode was used to quantify morphine and codeine. The derivation solvent, temperature, and time were optimized. A mixed solvent of propionic anhydride and pyridine (5 : 2) was finally used for the derivation at 80°C for 3 min. Linear calibration curves were obtained in the concentration range of 25–2000.0 ng/mL, with a lower limit of quantification of 25 ng/mL. The intra- and interday precision (RSD) values were below 13%, and the accuracy was in the range 87.2–108.5%. This developed method was successfully used for the determination of morphine and codeine in human urine for forensic identification study. PMID:24222889

  13. Determination of methomyl in the stomach contents of baited wildlife by gas chromatography-mass spectrometry.

    PubMed

    Buchweitz, John P; Bokhart, Mark; Johnson, Margaret; Lehner, Andreas

    2013-11-01

    The poisoning of wildlife with fly-bait containing the active ingredient methomyl is an intentional and illegal act in many jurisdictions. A case of 2 animals poisoned by methomyl through consumption of tainted bait at multiple stations is described. Although thermally and ultraviolet-labile, methomyl can be identified by gas chromatography-mass spectrometry and is detected in abundance in bait samples; however, it is not readily observed in tissues, owing to its rapid metabolism and elimination. The application of derivatizing functionalities, such as trimethylsilyl groups, stabilizes the methomyl-oxime metabolite to facilitate its detectability during exposure to the relatively harsh conditions of gas chromatography. This brief communication reports on the analytical detection of methomyl in baits and biological samples from poisoned wildlife. Essential to the case were the added determination of a fly-bait coactive ingredient, (Z)-9-tricosene, and identification of a chemical indicator, caffeine, to confirm both the type of pesticide product involved in the poisoning incident and the vehicle used to perpetrate its delivery.

  14. Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization.

    PubMed

    Akutsu, Mamoru; Sugie, Ken-Ichi; Saito, Koichi

    2017-01-01

    Gas chromatography-mass spectrometry (GC-MS) in electron ionization (EI) mode is one of the most commonly used techniques for analysis of synthetic cannabinoids, because the GC-EI-MS spectra contain characteristic fragment ions for identification of a compound; however, the information on its molecular ions is frequently lacking. To obtain such molecular ion information, GC-MS in chemical ionization (CI) mode is frequently used. However, GC-CI-MS requires a relatively tedious process using reagent gas such as methane or isobutane. In this study, we show that GC-MS in photoionization (PI) mode provided molecular ions in all spectra of 62 synthetic cannabinoids, and 35 of the 62 compounds showed only the molecular radical cations. Except for the 35 compounds, the PI spectra showed very simple patterns with the molecular peak plus only a few fragment peak(s). An advantage is that the ion source for GC-PI-MS can easily be used for GC-EI-MS as well. Therefore, GC-EI/PI-MS will be a useful tool for the identification of synthetic cannabinoids contained in a dubious product. To the best of our knowledge, this is the first report to use GC-PI-MS for analysis of synthetic cannabinoids.

  15. Identifying and quantifying contaminants contributing to endogenous analytes in gas chromatography/mass spectrometry.

    PubMed

    Tsikas, Dimitrios

    2010-09-15

    Contaminants from various sources including medical devices, laboratory materials and the environment, and analytical apparatus may contribute to their endogenous congeners at different stages of the analytical process. Here, an approach is reported for the identification and quantification of contaminating analytes in biological fluids by stable-isotope dilution gas chromatography/mass spectrometry (GC/MS) and gas chromatography/tandem mass spectrometry (GC/MS/MS) methods. This approach is based on the analysis of different sample volumes and determination of the peak area ratio (PAR) of the endogenous analyte to the stable-isotope labeled analogue serving as the internal standard. The PAR is obtained by selected-ion monitoring or selected-reaction monitoring of appropriate ions. Generation of PAR values that correlate inversely with the sample volume subjected to analysis reveals the existence of contamination. The extent of contamination is obtained by plotting the PAR of endogenous analyte to internal standard versus the reciprocal of the sample volume analyzed. Examples are given for uncontaminated and contaminated endogenous analytes in biological samples, including nitrite and nitrate analyzed by GC/MS, and the fatty acid metabolites oleic acid oxide, oleic acid ethanol amide, and arachidonic acid ethanol amide analyzed by GC/MS/MS. Dependence of the PAR of endogenous analyte to its internal standard upon derivatization time reveals a unique kind of contamination that was identified in the GC/MS analysis of nitrate in plasma as pentafluorobenzyl ester. This kind of contamination occurs at the latest stage of GC/MS analysis and cannot be controlled by reference to the internal standard.

  16. Determination of cyclamate in urine by derivatized gas chromatography-mass spectrometry.

    PubMed

    Idris, Mohd; Middha, Deepak; Rasool, Shaik N; Shukla, Sudhir K; Baggi, Tulsidas R

    2013-01-01

    It is important in toxicological/drug screening work to rule out the possible interfering analytes, to eliminate the false positive or negative results. In this paper, we describe a simple, selective, and sensitive derivatized GC-MS method for the determination of cyclohexylsulfamic acid (cyclamate) in urine. Elite- 5MS capillary column was used for the separation of analytes and detection using GC-MS. The analysis was carried out in selected ion monitoring mode (SIM) in the range of 26 to 200 using m/z values of 57, 30, 55, 41, 44, 67, 82, 98, and 39. The method is based on the conversion of cyclamate into nitroso derivative of cyclamate followed by its gas chromatography-mass spectrometry determination. The limit of detection, limit of quantitation, and linearity range of the proposed method were found to be 0.2 μg/ ml, 0.7 μg/ml, and 1-15 μg/ml, respectively. The recovery of the present method is in the range of 88-94%. The proposed method can be applied for detection and quantification of cyclamate in urine.

  17. Determination of cyclamate in urine by derivatized gas chromatography-mass spectrometry

    PubMed Central

    Idris, Mohd; Middha, Deepak; Rasool, Shaik N.; Shukla, Sudhir K.; Baggi, Tulsidas R.

    2013-01-01

    Aim: It is important in toxicological/drug screening work to rule out the possible interfering analytes, to eliminate the false positive or negative results. In this paper, we describe a simple, selective, and sensitive derivatized GC-MS method for the determination of cyclohexylsulfamic acid (cyclamate) in urine. Materials and Methods: Elite- 5MS capillary column was used for the separation of analytes and detection using GC-MS. The analysis was carried out in selected ion monitoring mode (SIM) in the range of 26 to 200 using m/z values of 57, 30, 55, 41, 44, 67, 82, 98, and 39. Results and Discussion: The method is based on the conversion of cyclamate into nitroso derivative of cyclamate followed by its gas chromatography-mass spectrometry determination. The limit of detection, limit of quantitation, and linearity range of the proposed method were found to be 0.2 μg/ ml, 0.7 μg/ml, and 1-15 μg/ml, respectively. The recovery of the present method is in the range of 88-94%. Conclusion: The proposed method can be applied for detection and quantification of cyclamate in urine. PMID:23559823

  18. In situ Analysis of Organic Compounds on Mars using Chemical Derivatization and Gas Chromatography Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Buch, A.; Cabane, M.; Coll, P.; Navarro-Gonzalez, R.; Mahaffy, P. R.

    2005-01-01

    One of the core science objectives of NASA's 2009 Mars Science Laboratory (MSL) mission is to determine the past or present habitability of Mars. The search for key organic compounds relevant to terrestrial life will be an important part of that assessment. We have developed a protocol for the analysis of amino acids and carboxylic acids in Mars analogue materials using gas chromatography mass spectrometry (GCMS). As shown, a variety of carboxylic acids were readily identified in soil collected from the Atacama Desert in Chile at part-per-billion levels by GCMS after extraction and chemical derivatization using the reagent N,N-tert.-butyl (dimethylsilyl) trifluoroacetamide (MTBSTFA). Several derivatized amino acids including glycine and alanine were also detected by GCMS in the Atacama soil at lower concentrations (chromatogram not shown). Lacking derivatization capability, the Viking pyrolysis GCMS instruments could not have detected amino acids and carboxylic acids, since these non-volatile compounds require chemical transformation into volatile species that are stable in a GC column. We are currently optimizing the chemical extraction and derivatization technique for in situ GCMS analysis on Mars. Laboratory results of analyses of Atacama Desert samples and other Mars analogue materials using this protocol will be presented.

  19. [Determination of organotin compounds in textile auxiliaries by gas chromatography-mass spectrometry].

    PubMed

    Li, Yanming; Hu, Yongjie; Liu, Jinhua; Guo, Yuliang; Wang, Guiqin

    2011-04-01

    A gas chromatography-mass spectrometry (GC-MS) method has been developed for the determination of dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPhT) in textile auxiliaries. The sample was first extracted with n-hexane in acetate buffer solution (pH 4.0) under ultrasonication (for hydrophobic sample) or oscillation extraction (for hydrophilic sample) and then derivatized with sodium tetraethylborate in tetrahydrofuran. The derivative was determined by GC-MS in selected ion monitoring (SIM) mode. The separation and quantification were achieved using a Rxi-5 ms silica capillary column (30 m x 0.25 mm x 0.25 microm). The linear ranges were 0.1-8.0 mg/L for both DBT and TBT, and 0.1-4.0 mg/L for TPhT. There were good linear relationships between the peak area and concentration in the linear ranges and the correlation coefficients (r2) were 0.9994-0.9998. The detection limits (LOD) were from 0.003 mg/L to 0.005 mg/L. The average recoveries of these organotin compounds at the three spiked levels of 4.0, 10.0 and 40.0 mg/kg were 92.6%-108.0% with the relative standard deviations (RSDs) of 2.5%-10.2%. The method is simple and accurate for simultaneous analysis of the DBT, TBT and TPhT in textile auxiliaries.

  20. Identification and differentiation of dragon's blood in works of art using gas chromatography/mass spectrometry.

    PubMed

    Baumer, Ursula; Dietemann, Patrick

    2010-06-01

    Dragon's blood is a common but non-specific name for red-coloured resins that are produced by various plants, particularly exudations from plant species belonging to the genera Dracaena and Daemonorops. Although dragon's blood is mentioned in historic sources as a colourant, it has hardly ever been identified in real artworks. This paper reports the identification and discrimination of dragon's blood produced by Dracaena cinnabari, Dracaena draco as well as Daemonorops draco and Daemonorops micracantha by means of gas chromatography/mass spectrometry (GC/MS) within the context of a routine analysis of binding media used in works of art. The detection of specific flavonoid marker compounds in both underivatised and methylated methanol extracts provided the first evidence for the use of dragon's blood from all four species in various works of art from the fifteenth to nineteenth centuries. Dragon's blood was mainly used as a red colourant in gold lacquers as well as translucent glazes and paints, e.g. in reverse-glass paintings (Hinterglasmalerei).

  1. Evaluation of the quality of sandalwood essential oils by gas chromatography-mass spectrometry.

    PubMed

    Howes, Melanie-Jayne R; Simmonds, Monique S J; Kite, Geoffrey C

    2004-03-05

    Trade and historic oils from 'sandalwoods', labelled as Amyris balsamifera, Eremophila mitchelli, Fusanus acuminatus (= Santalum acuminatum), Santalum album, S. austrocaledonicum, S. latifolium, S. spicatum and S. yasi, were assessed using gas chromatography-mass spectrometry (GC-MS). Using GC-MS, none of the oils assessed complied with the internationally recognised standard of a 90% santalol content, and only about half of the trade sandalwood oils met with recent International Organisation for Standardisation standards. The majority of trade oils, reportedly from S. album, contained approximately 50-70% santalols (Z-alpha and Z-beta). Thus, the internationally recognised specification (90% santalols) for S. album requires re-evaluation by more efficient analysis methods. In view of the issues associated with the quality of sandalwood oils being traded, specifications of > or = 43% Z-alpha-santalol and > or = 18% Z-beta-santalol for S. album oil estimated by GC-MS are suggested. GC-MS are recommended as it assists with authentication and quality control issues associated with sandalwood oils.

  2. Multi-class method for biomonitoring of hair samples using gas chromatography-mass spectrometry.

    PubMed

    Martín, Julia; Möder, Monika; Gaudl, Alexander; Alonso, Esteban; Reemtsma, Thorsten

    2015-11-01

    Currently, non-invasive biomonitoring of human exposure to organic pollutants bases upon the analysis mainly of urine and human breast milk. While mostly persistent organic pollutants are the center of interest, the aim of our study was to develop a method for the determination of different chemical classes of emerging pollutants (organophosphorus flame retardants, plastic additives such as phthalates, bisphenol A, insecticides, antimicrobials, preservatives and musk fragrances) in hair by gas chromatography-mass spectrometry. The preferred sample preparation included hydrolysis of the hair with trifluoroacetic acid in methanol followed by a liquid-liquid extraction using hexane/ethyl acetate. The validated method is characterized by recoveries higher than 77 % for most analytes, relative standard deviations below 16 % and limits of detection between 2 pg mg(-1) (HHCB) and 292 pg mg(-1) (propylparaben) using 50 mg of dry hair. After respective blank corrections, bis-(2-ethylhexyl)phthalate (DEHP) and the musk fragrance HHCB were the predominant compounds determined in all hair samples at concentrations between 32 and 59 ng mg(-1) and 0.8-13 ng mg(-1), respectively. The bactericide triclosan and the insect repellent N,N-diethyl-3-methylbenzamide (DEET) were detected in selected hair samples at 2 and 0.8 ng mg(-1), respectively.

  3. Headspace Analysis of Philippine Civet Coffee Beans Using Gas Chromatography-Mass Spectrometry and Electronic Nose

    NASA Astrophysics Data System (ADS)

    Ongo, E.; Sevilla, F.; Antonelli, A.; Sberveglieri, G.; Montevecchi, G.; Sberveglieri, V.; de Paola, E. L.; Concina, I.; Falasconi, M.

    2011-11-01

    Civet coffee, the most expensive and best coffee in the world, is an economically important export product of the Philippines. With a growing threat of food adulteration and counterfeiting, a need for quality authentication is essential to protect the integrity and strong market value of Philippine civet coffee. At present, there is no internationally accepted method of verifying whether a bean is an authentic civet coffee. This study presented a practical and promising approach to identify and establish the headspace qualitative profile of Philippine civet coffee using electronic nose (E-nose) and gas chromatography-mass spectrometry (GC-MS). E-nose analysis revealed that aroma characteristic is one of the most important quality indicators of civet coffee. The findings were supported by GC-MS analysis. Principal component analysis (PCA) exhibited a clearly separated civet coffees from their control beans. The chromatographic fingerprints indicated that civet coffees differed with their control beans in terms of composition and concentration of individual volatile constituents.

  4. Analysis of isothiazolinones in environmental waters by gas chromatography-mass spectrometry.

    PubMed

    Rafoth, Astrid; Gabriel, Sabine; Sacher, Frank; Brauch, Heinz-Jürgen

    2007-09-14

    This paper describes an analytical method for the determination of five biocides of isothiazolinone type (2-methyl-3-isothiazolinone (MI), 5-chloro-2-methyl-3-isothiazolinone (CMI), 1,2-benzisothiazolinone (BIT), 2-octyl-3-isothiazolinone (OI), 4,5-dichloro-2-octyl-3-isothiazolinone (DCOI)) in environmental waters. The method is based on pre-concentration of the analytes by solid-phase extraction onto a mixture of a polymeric material and RP-C18 material and subsequent determination by gas chromatography-mass spectrometry (GC-MS). One of the target compounds (BIT) is derivatised with diazomethane after pre-concentration to improve its chromatographic performance. The method was optimised with respect to pre-concentration conditions (liquid-liquid extraction versus solid-phase extraction, solid-phase material, elution solvent and volume) and extensively validated. Applying the method to surface waters, groundwaters, and drinking waters, limits of detection between 0.01 and 0.1 microg/l could be achieved and the repeatability was below 10% for all compounds except for MI. Additional investigations showed that the stability of the isothiazolinones in environmental waters is limited and sample storage at 4 degrees C is mandatory to preserve the target biocides. First investigations of influents and effluents of a wastewater treatment plant showed that conventional wastewater treatment exhibits a high efficiency for removal of the isothiazolinones. In river waters, the target isothiazolinones could not be detected.

  5. Determination of emulsion explosives with Span-80 as emulsifier by gas chromatography-mass spectrometry.

    PubMed

    Tian, Fei-Fei; Yu, Jing; Hu, Jia-Hong; Zhang, Yong; Xie, Meng-Xia; Liu, Yuan; Wang, Xiang-Feng; Liu, Hai-Ling; Han, Jie

    2011-06-03

    A novel approach for identification and determination of emulsion explosives with Span-80 (sorbitol mono-oleate) as the emulsifier and their postblast residues by gas chromatography-mass spectrometry (GC-MS) has been developed. 24 kinds of emulsion explosives collected have been processed by transesterification reaction with metholic KOH solution and the emulsifier has turned into methyl esters of fatty acids. From the peak area ratios of their methyl esters, most of these emulsion explosives can be differentiated. In order to detect the postblast residues of emulsion explosives, the sorbitols in the emulsifier Span-80 obtained after transesterification reaction have been further derivatized by silylation reaction with N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% trimethylchlorosilane (TMCS) as the derivatizing reagent. The derivatization conditions were optimized and the derivatives were determined by GC-MS. The results showed that the silylation derivatives of sorbitol and it isomers, combined with hydrocarbon compounds and methyl esters of fatty acids, were the characteristic components for identification of the emulsion explosives. The established approach was applied to analyze the postblast residues of emulsion explosives. It has been found that the method was sensitive and specific, especially when detecting the derivatives of sorbitol and its isomers by GC-MS in selecting ion mode. The information of the characteristic components can help probe the origin of the emulsion explosives and providing scientific evidences and clues for solving the crimes of the emulsion explosive explosion. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Determination of beta-hydroxybutyrate in blood and urine using gas chromatography- mass spectrometry.

    PubMed

    Hassan, Huda M A; Cooper, Gail A A

    2009-10-01

    Beta-hydroxybutyrate (BHB) is considered a potential biomarker for alcoholic ketoacidosis (AKA). A robust and sensitive method was developed and validated for the quantitative determination of BHB in postmortem blood and urine using deuterated gamma-hydroxybutyrate as an internal standard. Samples were analyzed by gas chromatography-mass spectrometry following liquid-liquid extraction and silyl derivatization. The limits of detection and lower limits of quantification in blood and urine were 2 and 7 mg/L and 2 and 6 mg/L, respectively. The interday and intraday precision was measured by coefficients of variation for blood and urine and ranged from 1.0 to 12.4% for quality control samples spiked at 50 and 300 mg/L. The linear range of 50-500 mg/L resulted in an average correlation of R(2) > 0.99, and the average extraction recoveries in blood and urine were >or= 82% and >or= 59%, respectively. BHB remains stable in blood spiked at a concentration of 300 mg/L for 15 days when stored within a refrigerator (2-5 degrees C). Postmortem blood and urine samples were analyzed using the validated method for cases where the deceased had a history of chronic alcohol abuse to establish the use of BHB as a potential marker of AKA.

  7. EIder: A compound identification tool for gas chromatography mass spectrometry data.

    PubMed

    Koo, Imhoi; Kim, Seongho; Shi, Biyun; Lorkiewicz, Pawel; Song, Ming; McClain, Craig; Zhang, Xiang

    2016-05-27

    We report software entitled EIder (EI mass spectrum identifier) that provides users with eight literature reported spectrum matching algorithms for compound identification from gas chromatography mass spectrometry (GC-MS) data. EIder calculates retention index according to experimental conditions categorized by column class, column type and data type, where 9 empirical distribution functions of the absolute retention index deviation to its mean value were constructed using the National Institute of Standards and Technology (NIST) 2011 retention index database to improve the accuracy of compound identification. EIder filters compound candidates based on elementary composition and derivatization reagent, and automatically adds the molecular information of the native compound to each derivatized compound using a manually created database. When multiple samples are analyzed together, EIder performs cross-sample alignment and provides an option of using an average mass spectrum for compound identification. Furthermore, a suite of graphical user interfaces are implemented in EIder to allow users to both manually and automatically modify the identification results using experimental information at various analysis stages. Analysis of three types of GC-MS datasets indicates that the developed EIder software can improve the accuracy of compound identification.

  8. Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data.

    PubMed

    Reisetter, Anna C; Muehlbauer, Michael J; Bain, James R; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L; Scholtens, Denise M

    2017-02-02

    Metabolomics offers a unique integrative perspective for health research, reflecting genetic and environmental contributions to disease-related phenotypes. Identifying robust associations in population-based or large-scale clinical studies demands large numbers of subjects and therefore sample batching for gas-chromatography/mass spectrometry (GC/MS) non-targeted assays. When run over weeks or months, technical noise due to batch and run-order threatens data interpretability. Application of existing normalization methods to metabolomics is challenged by unsatisfied modeling assumptions and, notably, failure to address batch-specific truncation of low abundance compounds. To curtail technical noise and make GC/MS metabolomics data amenable to analyses describing biologically relevant variability, we propose mixture model normalization (mixnorm) that accommodates truncated data and estimates per-metabolite batch and run-order effects using quality control samples. Mixnorm outperforms other approaches across many metrics, including improved correlation of non-targeted and targeted measurements and superior performance when metabolite detectability varies according to batch. For some metrics, particularly when truncation is less frequent for a metabolite, mean centering and median scaling demonstrate comparable performance to mixnorm. When quality control samples are systematically included in batches, mixnorm is uniquely suited to normalizing non-targeted GC/MS metabolomics data due to explicit accommodation of batch effects, run order and varying thresholds of detectability. Especially in large-scale studies, normalization is crucial for drawing accurate conclusions from non-targeted GC/MS metabolomics data.

  9. Determination of pesticides in soil by liquid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Hou, Li; Lee, Hian Kee

    2004-06-04

    Trace amounts of pesticides in soil were determined by liquid-phase microextraction (LPME) coupled to gas chromatography-mass spectrometry (GC-MS). The technique involved the use of a small amount (3 microl) of organic solvent impregnated in a hollow fiber membrane, which was attached to the needle of a conventional GC syringe. The organic solvent was repeatedly discharged into and withdrawn from the porous polypropylene hollow fiber by a syringe pump, with the pesticides being extracted from a 4 ml aqueous soil sample into the organic solvent within the hollow fiber. Aspects of the developed procedure such as organic solvent selection, extraction time, movement pattern of plunger, concentrations of humic acid and salt, and the proportion of organic solvent in the soil sample, were optimized. Limits of detection (LOD) were between 0.05 and 0.1 microg/g with GC-MS analysis under selected-ion monitoring (SIM). Also, this method provided good precision ranging from 6 to 13%; the relative standard deviations were lower than 10% for most target pesticides (at spiked levels of 0.5 microg/g in aqueous soil sample). Finally, the results were compared to those achieved using solid-phase microextraction (SPME). The results demonstrated that LPME was a fast (within 4 min) and accurate method to determine trace amounts of pesticides in soil.

  10. Postmortem interval estimation: a novel approach utilizing gas chromatography/mass spectrometry-based biochemical profiling.

    PubMed

    Kaszynski, Richard H; Nishiumi, Shin; Azuma, Takeshi; Yoshida, Masaru; Kondo, Takeshi; Takahashi, Motonori; Asano, Migiwa; Ueno, Yasuhiro

    2016-05-01

    While the molecular mechanisms underlying postmortem change have been exhaustively investigated, the establishment of an objective and reliable means for estimating postmortem interval (PMI) remains an elusive feat. In the present study, we exploit low molecular weight metabolites to estimate postmortem interval in mice. After sacrifice, serum and muscle samples were procured from C57BL/6J mice (n = 52) at seven predetermined postmortem intervals (0, 1, 3, 6, 12, 24, and 48 h). After extraction and isolation, low molecular weight metabolites were measured via gas chromatography/mass spectrometry (GC/MS) and examined via semi-quantification studies. Then, PMI prediction models were generated for each of the 175 and 163 metabolites identified in muscle and serum, respectively, using a non-linear least squares curve fitting program. A PMI estimation panel for muscle and serum was then erected which consisted of 17 (9.7%) and 14 (8.5%) of the best PMI biomarkers identified in muscle and serum profiles demonstrating statistically significant correlations between metabolite quantity and PMI. Using a single-blinded assessment, we carried out validation studies on the PMI estimation panels. Mean ± standard deviation for accuracy of muscle and serum PMI prediction panels was -0.27 ± 2.88 and -0.89 ± 2.31 h, respectively. Ultimately, these studies elucidate the utility of metabolomic profiling in PMI estimation and pave the path toward biochemical profiling studies involving human samples.

  11. Determination of Synthetic Cathinones in Urine Using Gas Chromatography-Mass Spectrometry Techniques.

    PubMed

    Hong, Wei-Yin; Ko, Ya-Chun; Lin, Mei-Chih; Wang, Po-Yu; Chen, Yu-Pen; Chiueh, Lih-Ching; Shih, Daniel Yang-Chih; Chou, Hsiu-Kuan; Cheng, Hwei-Fang

    2016-01-01

    In recent years, the abuse of synthetic cathinones has increased considerably. This study proposes a method, based on gas chromatography/mass spectrometry (GC-MS), to analyze and quantify six synthetic cathinones in urine samples: mephedrone (4-MMC), methylone (bk-MDMA), butylone, ethylone, pentylone and methylenedioxypyrovalerone (MDPV). In our procedure, the urine samples undergo solid-phase extraction (SPE) and derivatization prior to injection into the GC-MS device. Separation is performed using a HP-5MS capillary column. The use of selective ion monitoring (SIM mode) makes it is good sensitivity in this method, and the entire analysis process is within 18 min. In addition, the proposed method maintains linearity in the calibration curve from 50 to 2,000 ng/mL (r(2) > 0.995). The limit of detection of this method is 5 ng/mL, with the exception of MDPV (20 ng/mL); the limit of quantification is 20 ng/mL, with the exception of MDPV (50 ng/mL). In testing, the extraction performance of SPE was between 82.34 and 104.46%. Precision and accuracy results were satisfactory <15%. The proposed method was applied to six real urine samples, one of which was found to contain 4-MMC and bk-MDMA. Our results demonstrate the efficacy of the proposed method in the identification of synthetic cathinones in urine, with regard to the limits of detection and quantification. This method is highly repeatable and accurate.

  12. Characterization by gas chromatography/mass spectrometry of sterols in saccharomyces cerevisiae during autolysis.

    PubMed

    Le Fur, Y; Maume, G; Feuillat, M; Maume, B F

    1999-07-01

    Yeast autolysis affects membrane stability and induces a release of vacuolar enzymes into the cell cytoplasm. Consecutively, it was important to study the evolution of sterol content in Saccharomycescerevisiae for a fourteen day period of accelerated autolysis. Unesterified and esterified sterols were analyzed both in the biomass and in the autolysis medium. Ten sterols were identified by gas chromatography/mass spectrometry. A second group of six sterols was separated and partially characterized. Among the first group of 10 sterols, a dehydroergosterol was identified as ergosta-5, 7,9(11),22-tetraen-3beta-ol, not yet charaterized in S. cerevisiae. Yeast autolysis induced a decrease of esterified sterol content, especially first intermediates in the sequence of the ergosterol biosynthesis, as zymosterol. In contrast, the yeast autolysis resulted in the release of a low quantity of sterols into the medium. At the end of the fourteenth day of autolysis, 0.015% of the total sterol content of the initial biomass was found in the medium.

  13. A novel method for the determination of guanfacine in urine by gas chromatography-mass spectrometry.

    PubMed

    Haglock, Carrie; Wolf, Carl; Poklis, Alphonse

    2008-10-01

    Guanfacine (Tenex), an antihypertensive available since 1975, has recently been indicated for the treatment of attention deficit hyperactivity disorder in children (Intuniv). Because of this new usage, a gas chromatography-mass spectrometry method was developed and validated for the determination of guanfacine in urine. Guanfacine and 100 ng of protriptyline (internal standard) were extracted from 1.0 mL urine with 0.5 mL of saturated carbonate/bicarbonate buffer and 2 mL of ethyl acetate. The solvent extract was evaporated and derivatized with heptaflurobutyric anhydride in n-butyl chloride. Chromatographic separation was achieved using a DB-5 capillary column (30 m x 0.32 mm, 0.25 microm). Ions monitored for guanfacine were m/z 86.1, 272.1, and 274.1, and ions monitored for protriptyline were m/z 191.1 and 189.1. Concentrations were determined using calibrators over the range of 0.1-2.0 mg/L. The linear regression for all calibration curves had r2 values > or = 0.99. The limit of detection was 0.05 mg/L; limit of quantitation was 0.1 mg/L; and upper limit of linearity was 10.0 mg/L. Percent recovery of guanfacine at 0.1 and 2.0 mg/L was 93% and 71%, respectively. The method was found acceptable for routine quantitative analysis of guanfacine in urine.

  14. Determination of phthalate esters in teas and tea infusions by gas chromatography-mass spectrometry.

    PubMed

    Du, Liping; Ma, Lijuan; Qiao, Yang; Lu, Yan; Xiao, Dongguang

    2016-04-15

    Phthalate esters (PAEs), a group of environmental pollutants which are carcinogenic to human body, have been detected in teas. In this work, five PAEs in teas and tea infusions were quantitatively determined by a modified simultaneous distillation extraction (SDE) coupled with gas chromatography-mass spectrometry. After the optimization of SDE, the proposed method afforded a wide range of linearity and high linear regression coefficients with the limits of detection range of 0.24-3.72 μg/kg. The average recoveries were 79.83-116.67% for tea samples and 78.22-101.64% for tea infusions with all the relative standard deviations below 20%. The total content of five PAEs in teas was 1.135-3.734 mg/kg and the total dissolving ratio of five PAEs from tea to infusion was 19.05-28.07% for the selected tea samples. The risk assessment result of all the selected tea samples demonstrated that the population with the habit of drinking tea won't cause risk to human health.

  15. Quantification of busulfan in plasma by gas chromatography-mass spectrometry following derivatization with tetrafluorothiophenol.

    PubMed

    Quernin, M H; Poonkuzhali, B; Montes, C; Krishnamoorthy, R; Dennison, D; Srivastava, A; Vilmer, E; Chandy, M; Jacqz-Aigrain, E

    1998-05-08

    A specific and highly sensitive method has been developed for the determination of busulfan in plasma by gas chromatography-mass spectrometry using a deuterium-labeled busulfan (busulfan-d8) as internal standard. Plasma containing busulfan and busulfan-d8 were extracted with ethyl acetate and derivatized with 2,3,5,6-tetrafluorothiophenol prior to the monitoring of specific ions. The limit of quantification of the assay was 20 ng/ml and the calibration curve was linear over the range of 10 to 2000 ng/ml of derivatized busulfan. This method was in good agreement with the GC-MS assay using derivatization with sodium iodide and measuring diiodobutane. In addition, a pharmacokinetic study of busulfan was conducted in six children. The apparent oral clearance was 5.7+/-1.9 ml/kg/min and the volume of distribution was 1.0+/-0.4 l/kg and were similar to those previously reported in pediatric patients.

  16. Discriminating Hodgdon Pyrodex(®) and Triple Seven(®) using gas chromatography-mass spectrometry.

    PubMed

    Routon, Benjamin J; Kocher, Brandon B; Goodpaster, John V

    2011-01-01

    Pyrodex(®) and Triple Seven(®) are black powder substitutes that often find use as fillers in improvised explosive devices, such as pipe bombs. These propellants have essentially the same overall appearance and oxidizers, but different fuels. For example, Pyrodex(®) contains sulfur, sodium benzoate, and dicyandiamide (DCDA), whereas Triple Seven(®) lacks sulfur but also contains 3-nitrobenzoic acid. In this method, intact particles and postblast solid residues were reacted with bis(trimethylsilyl)trifluoroacetamide + 1% trimethylchlorosilane in acetonitrile for 30 min at 60°C. The resultant trimethylsilyl derivatives of the organic fuels were then analyzed by gas chromatography-mass spectrometry. Each derivative was clearly resolved from other components, and high-quality mass spectra were obtained. In addition, characteristic fragments resulting from loss of a methyl radical from the molecular ion (m/z 163 for sulfur, m/z 171 for DCDA, m/z 179 for benzoic acid, and m/z 224 for nitrobenzoic acid) were able to be monitored.

  17. Flow modulation comprehensive two-dimensional gas chromatography-mass spectrometry with a supersonic molecular beam.

    PubMed

    Kochman, Maya; Gordin, Alexander; Alon, Tal; Amirav, Aviv

    2006-09-29

    A new approach of flow modulation comprehensive two-dimensional gas chromatography-mass spectrometry (GC x GC-MS) with supersonic molecular beam (SMB) and a quadrupole mass analyzer is presented. Flow modulation uniquely enables GC x GC-MS to be achieved even with the limited scan speed of quadrupole MS, and its 20 ml/min column flow rate is handled, splitless, by the SMB interface. Flow modulation GC x GC-SMB-MS shares all the major benefits of GC x GC and combines them with GC-MS including: (a) increased GC separation capability; (b) improved sensitivity via narrower GC peaks; (c) improved sensitivity through reduced matrix interference and chemical noise; (d) polarity and functional group sample information via the order of elution from the second polar column. In addition, GC x GC-SMB-MS is uniquely characterized by the features of GC-MS with SMB of enhanced and trustworthy molecular ion plus isotope abundance analysis (IAA) for improved sample identification and fast fly-through ion source response time. The combination of flow modulation GC x GC with GC-MS with SMB (supersonic GC-MS) was explored with complex matrices such as diesel fuel analysis and pesticide analysis in agricultural products.

  18. Characterization of ballpoint pen inks by thermal and desorption and gas chromatography-mass spectrometry.

    PubMed

    Bügler, Jürgen H; Buchner, Hans; Dallmayer, Anton

    2005-09-01

    The characterization of ink on paper is of importance for dating and comparing questioned ink entries in forensic document examination. Inks are commonly characterized by their colorant profile that is identified by well-established analytical methods. Numerous ink formulations show identical colorant profiles, though. In order to differentiate inks that are not distinguishable by colorant analysis, a method for the characterization of colorless ink ingredients, namely binders, solvents and additives is necessary. In this paper, we propose a technique for the analysis of colorless compounds in ballpoint inks using direct thermal desorption of the ink on paper followed by chemical analysis of the desorbed volatile compounds by gas chromatography-mass spectrometry. As compared to liquid extraction and subsequent analysis of the extracts, the technique avoids possible contamination risks. Sensitivity is very high due to the enrichment of volatile components by thermal desorption. Even from old samples, the chromatograms obtained by the method enable the determination of binder polymers, solvents and additives. Pure binders as used by ink manufacturers were analyzed for unambiguous assignment of analytical results to specific polymers. To prove the practical applicability, we analyzed 121 ballpoint pens, not all having the same colorant profile, and grouped the pens into resin and solvent categories.

  19. The gas chromatography/mass spectrometry can be used for dose estimation in irradiated pork

    NASA Astrophysics Data System (ADS)

    D'Oca, M. C.; Bartolotta, A.; Cammilleri, M. C.; Giuffrida, S. A.; Parlato, A.; Di Noto, A. M.; Caracappa, S.

    2009-07-01

    Food safety can be improved using ionizing radiation to reduce food spoilage and to extend its shelf life. The gas chromatography/mass spectrometry (GC/MS) has been validated by the European Community as a powerful method to identify irradiated food containing fat. The preliminary goals of our research were: (i) to set up this method, based on the detection of radiation induced 2-dodecylcyclobutanones (2-DCB) in pork muscle samples and (ii) to check the microbiological efficacy of the treatment. The main objective was to render the GC/MS a quantitative technique for dose estimation, through the measurement of the 2-DCB concentration in the irradiated sample. Our results show that the reduction of the microbial population is substantially reduced even at 2 kGy, and that a clear identification of irradiated samples can be achieved also one month after irradiation at 2 kGy in frozen-stored samples. The 2-DCB concentration showed a linear dependence on dose in the range 1-10 kGy, no matter the origin of the sample; a unique calibration function was obtained, that allowed dose estimation in irradiated pork samples. A retrospective evaluation on the quality of the treatment could be carried out this way.

  20. Serum total testosterone: immunoassay compared with negative chemical ionization gas chromatography-mass spectrometry.

    PubMed

    Fitzgerald, R L; Herold, D A

    1996-05-01

    We have developed an electron capture negative chemical ionization gas chromatography-mass spectrometry (GC-MS) procedure to quantify serum testosterone in the clinically relevant range 0.69-69.3 nmol/L and used this procedure to assess Ciba Corning Diagnostics ACS:180 testosterone immunoassay. The GC-MS method involves liquid-liquid extraction of serum samples and synthesis of a pentafluorobenzyloxime/silyl ether derivative of testosterone with excellent chromatographic and electron capturing properties. The ACS testosterone assay is the first fully automated nonradioactive testosterone immunoassay approved by the US Food and Drug Administration. Patients' specimens (101, 57 males, 44 females) were analyzed by both techniques. A plot of the GC-MS (x) vs ACS (y) testosterone concentrations for men was linear (y = 1.07x + 0.19 nmol/L), showing excellent correlation (r2 = 0.98) between the two assays. Agreement of the two assays for female specimens was poor (y = 0.72x + 1.2 nmol/L), with a poor correlation (r2 = 0.31).

  1. Identification of tartary buckwheat tea aroma compounds with gas chromatography-mass spectrometry.

    PubMed

    Qin, Peiyou; Ma, Tingjun; Wu, Li; Shan, Fang; Ren, Guixing

    2011-08-01

    Tartary buckwheat tea, which is an important and healthy product, has a distinct malty aroma. However, its characteristic aroma compounds have not been elucidated. The aims of present study were identification and quantification of its aroma compounds. The analyses were performed by gas chromatography-mass spectrometry (GC-MS) after 3 different isolation techniques. Seventy-seven compounds were identified. Among these compounds, 35 were quantified by available standards. The compounds with a high probability of contribution to the tartary buckwheat tea aroma (OAV ≥ 10) were as follows: 2,5-dimethyl-4-hydroxy-3(2H)-furanone, nonanal, 2,3-diethyl-5-methylpyrazine, benzeneacetaldehyde, maltol, 2,5-dimethylpyrazine, 2-ethyl-5-methylpyrazine, trimethylpyrazine. Some nutritional and bioactive compounds were also identified in this study, such as linoleic acid, niacin, vanillic acid, 7-hydroxycoumarin, butylated hydroxytoluene. Practical Application: Tartary buckwheat, one type of buckwheat, has gained much attention from nutritionists and medical doctors in recent years. It is rich in rutin, quercetin, and other nutrients that are good for health. Tartary buckwheat-based product such as tartary buckwheat tea is an important and popular healthy product in China, Japan,South Korea, European countries as well as in American countries. It has a distinct malty aroma. The present study first identified and quantified of its aroma compounds. The results will draw attention to other researchers in food flavor and buckwheat filed.

  2. Integration of gas chromatography mass spectrometry methods for differentiating ricin preparation methods.

    PubMed

    Wunschel, David S; Melville, Angela M; Ehrhardt, Christopher J; Colburn, Heather A; Victry, Kristin D; Antolick, Kathryn C; Wahl, Jon H; Wahl, Karen L

    2012-05-07

    The investigation of crimes involving chemical or biological agents is infrequent, but presents unique analytical challenges. The protein toxin ricin is encountered more frequently than other agents and is found in the seeds of Ricinus communis, commonly known as the castor plant. Typically, the toxin is extracted from castor seeds utilizing a variety of different recipes that result in varying purity of the toxin. Moreover, these various purification steps can also leave or differentially remove a variety of exogenous and endogenous residual components with the toxin that may indicate the type and number of purification steps involved. We have applied three gas chromatography-mass spectrometry (GC-MS) based analytical methods to measure the variation in seed carbohydrates and castor oil ricinoleic acid, as well as the presence of solvents used for purification. These methods were applied to the same samples prepared using four previously identified toxin preparation methods, starting from four varieties of castor seeds. The individual data sets for seed carbohydrate profiles, ricinoleic acid, or acetone amount each provided information capable of differentiating different types of toxin preparations across seed types. However, the integration of the data sets using multivariate factor analysis provided a clear distinction of all samples based on the preparation method, independent of the seed source. In particular, the abundance of mannose, arabinose, fucose, ricinoleic acid, and acetone were shown to be important differentiating factors. These complementary tools provide a more confident determination of the method of toxin preparation than would be possible using a single analytical method.

  3. [Determination of two mouldy compounds in cork by gas chromatography-mass spectrometry].

    PubMed

    Tang, Xi; Liang, Ming; Li, Xiaojing; Xiong, Wenming; Tang, Hong; Jiang, Xiaoli; Chen, Jiamin

    2012-07-01

    A simple and fast method for the simultaneous determination of two mouldy compounds, 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA), in cork by gas chromatography-mass spectrometry (GC-MS) was established. The analytes were extracted by ultrasonic extraction with methanol, and purified then by solid phase extraction using primary secondary amine (PSA) as solid phase. After concentrating, the sample was analyzed by GC-MS and quantified by the external standard method. The linear ranges were from 10 microg/L to 10 000 microg/L for TCA and TBA, the correlation coefficients (r2) of the calibration curves were above 0.99. The recoveries and the relative standard deviations (RSDs) of TCA and TBA in different kinds of corks were investigated. The recoveries ranged from 88.4% to 97.6% with the RSDs between 1.02% and 4.58% (n = 6). The limits of detection (LODs) were 12 microg/L for TCA and 18 microg/L for TBA, and the limits of quantification (LOQs) were 40 microg/L for TCA and 50 microg/L for TBA. The method is suitable to the determination of TCA and TBA in corks.

  4. Thermal degradation of α-pyrrolidinopentiophenone during injection in gas chromatography/mass spectrometry.

    PubMed

    Tsujikawa, Kenji; Kuwayama, Kenji; Kanamori, Tatsuyuki; Iwata, Yuko T; Inoue, Hiroyuki

    2013-09-10

    α-Pyrrolidinopentiophenone (α-PVP) is a popular recreational drug in Japan. This drug easily undergoes thermal decomposition during gas chromatography/mass spectrometry analysis. We evaluated three factors involved in the decomposition, namely the injection method (splitless or split, split ratio), injector temperature, and surface activity on the inlet liner. Splitless injection of α-PVP using a used deactivated split/splitless liner at an injector temperature of 250 °C caused thermal decomposition. This decomposition was inhibited by split injection. A higher split ratio resulted in greater prevention. Based on the mass spectrum of deuterated α-PVP, the decomposition product was presumed to be an enamine whose double bond was located in the alkyl chain. Lowering the injection temperature from 250 °C to 200 °C did not prevent decomposition. New glass liners, both deactivated and non-deactivated, were compared. The use of a new deactivated liner minimized thermal decomposition, even for splitless injection, while the non-deactivated liner generated an increase in the amount of the decomposition product. These results showed that the injection method and the surface activity on the inlet liner were involved in the thermal decomposition of α-PVP.

  5. A gas chromatography-mass spectrometry method to monitor detergents removal from a membrane protein sample.

    PubMed

    Shi, Chaowei; Han, Fang; Xiong, Ying; Tian, Changlin

    2009-12-01

    In membrane protein biochemical and structural studies, detergents are used to mimic membrane environment and maintain functional, stable conformation of membrane proteins in the absence of lipid bilayers. However, detergent concentration, esp. molar ratio of membrane protein to detergent is usually unknown. Here, a gas chromatography-mass spectrometry selected ion monitoring (GC-MS-SIM) method was developed to quantify four detergents which are frequently used in membrane protein structural studies. To remove excessive detergents, a filtered centrifugation using Centricon tubes was applied. A membrane protein Ig-Beta fragment in four different detergent micelles was exemplified. Detergent concentrations in the upper and lower fraction of the Centricon tube were measured after each round of centrifugation. The results were very consistent to basic properties of detergent micelles in aqueous solvents. Therefore, coupling of GC-MS-SIM and detergent removal by Centricon tubes, detergents concentration, esp. molar ratio of membrane protein to detergent could be controlled, which will expedite membrane protein structural and biochemical studies.

  6. Determination of terpenes in tequila by solid phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Peña-Alvarez, Araceli; Capella, Santiago; Juárez, Rocío; Labastida, Carmen

    2006-11-17

    Solid phase microextraction and capillary gas chromatography-mass spectrometry were used for the determination of seven terpenes in tequila. The method was selected based on the following parameters: coating selection (PA, PDMS, CW/DVB, and PDMS/DVB), extraction temperature, addition of salt, and extraction time profile. The extraction conditions were: PDMS/DVB fiber, Headspace, 100% NaCl, 25 degrees C extraction temperature, 30 min extraction time and stirring at 1200 rpm. The calibration curves (50-1000 ng/ml) for the terpenes followed linear relationships with correlation coefficients (r) greater than 0.99, except for trans,trans-farnesol (r = 0.98). RSD values were smaller than 10% confirmed that the technique was precise. Samples from 18 different trade brands of "Aged" tequila analyzed with the developed method showed the same terpenes in different concentrations. The analytical procedure used is selective, robust (more than 100 analyses with the same fiber), fast and of low-cost.

  7. Urinary Succinylacetone Analysis by Gas Chromatography-Mass Spectrometry (GC-MS).

    PubMed

    Chen, Hongjie; Yu, Chunli

    2016-01-01

    Succinylacetone (SA) is used for the diagnosis and monitoring of patients with tyrosinemia type I (Tyr I). SA is exclusively elevated in blood and urine of patients with Tyr I. As urinary SA concentration is much higher than blood, SA is usually tested in urine samples. Urinary SA quantitation by gas chromatography mass spectrometry (GC-MS) is described in this chapter. The urine sample in the amount of 1 μmol creatinine is used for testing. 3,4,5,6,7-(13)C5-succinylacetone ((13)C5-SA) is used as an internal standard (IS). SA and (13)C5-SA are oximated and extracted from urine with organic solvents, and then derivatized to form trimethylsilane (TMS) derivatives. TMS derivatives of SA and (13)C5-SA are detected and quantified by GC-MS using selective ion monitoring (SIM). The assay is linear from 0.05 to 450 mmol/mol creatinine to cover the broad range of urinary SA concentrations.

  8. Fingerprint developing of coffee flavor by gas chromatography-mass spectrometry and combined chemometrics methods.

    PubMed

    Huang, Lan-Fang; Wu, Ming-Jian; Zhong, Ke-Jun; Sun, Xian-Jun; Liang, Yi-Zeng; Dai, Yun-Hui; Huang, Ke-Long; Guo, Fang-Qiu

    2007-04-11

    In this paper, chromatographic fingerprint was firstly used for quality control of tobacco flavors. Based on gas chromatography-mass spectrometry (GC-MS) and combined chemometrics methods, a simple, reliable and reproducible method for developing chromatographic fingerprint of coffee flavor, one of tobacco flavors, was described. Six coffee flavor samples obtained from different locations were used to establish the fingerprint. The qualitative and quantitative analysis of coffee flavor sample from Shenzhen was completed with the help of subwindow factor analysis (SFA). Fifty-two components of 68 separated constituents in coffee flavor sample from Shenzhen, accounting for 88.42% of the total content, were identified and quantified. Then, spectral correlative chromatography (SCC) was used to extract the common peaks from other five studied coffee flavor samples. Thirty-eight components were found to exist in all six samples. Finally, the method validation of fingerprint analysis was performed based on the relative retention time and the relative peak area of common peaks, sample stability and similarity analysis. The similarities of six coffee flavor samples were more than 0.9104 and showed that samples from different locations were consistent to some extent. The developed chromatographic fingerprint was successfully used to differentiate coffee flavor from cocoa flavor and some little difference sample prepared with coffee flavor and cocoa flavor by both similarity comparison and principal component projection analysis. The developed method can be used for quality control of coffee flavor.

  9. Valid internal standard technique for arson detection based on gas chromatography-mass spectrometry.

    PubMed

    Salgueiro, Pedro A S; Borges, Carlos M F; Bettencourt da Silva, Ricardo J N

    2012-09-28

    The most popular procedures for the detection of residues of accelerants in fire debris are the ones published by the American Society for Testing and Materials (ASTM E1412-07 and E1618-10). The most critical stages of these tests are the conservation of fire debris from the sampling to the laboratory, the extraction of residues of accelerants from the debris to the activated charcoal strips (ACS) and from those to the final solvent, as well as the analysis of sample extract by gas chromatography-mass spectrometry (GC-MS) and the interpretation of the instrumental signal. This work proposes a strategy for checking the quality of the sample conservation, the accelerant residues transference to final solvent and GC-MS analysis, using internal standard additions. It is used internal standards ranging from a highly volatile compound for checking debris conservation to low volatile compound for checking GC-MS repeatability. The developed quality control (QC) parameters are not affected by GC-MS sensitivity variation and, specifically, the GC-MS performance control is not affected by ACS adsorption saturation that may mask test performance deviations. The proposed QC procedure proved to be adequate to check GC-MS repeatability, ACS extraction and sample conservation since: (1) standard additions are affected by negligible uncertainty and (2) observed dispersion of QC parameters are fit for its intended use.

  10. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry.

    PubMed

    Jäger, Christian; Hiller, Karsten; Buttini, Manuel

    2016-09-01

    Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc.

  11. Microwave-assisted derivatization: application to steroid profiling by gas chromatography/mass spectrometry.

    PubMed

    Casals, Gregori; Marcos, Josep; Pozo, Oscar J; Alcaraz, José; Martínez de Osaba, María Jesús; Jiménez, Wladimiro

    2014-06-01

    Gas chromatography-mass spectrometry (GC-MS) remains as the gold-standard technique for the study of the steroid metabolome. A main limitation is the need of performing a derivatization step since incubation with strong silylations agents for long periods of time (usually 16 h) is required for the derivatization of hindered hydroxyls present in some steroids of interest. In the present work, a rapid, simple and reproducible microwave-assisted derivatization method was developed. In the method, 36 steroids already treated with methoxyamine (2% in pyridine) were silylated with 50 μl of N-trimethylsilylimidazole by using microwave irradiation, and the formed methyloxime-trimethylsilyl derivatives were analyzed by GC-MS. Microwave power and derivatization time silylation conditions were optimized being the optimum conditions 600 W and 3 min respectively. In order to evaluate the usefulness of this technique, the urine steroid profiles for 20 healthy individuals were analyzed. The results of a comparison of microwave irradiation with the classical heating protocol showed similar derivatization yields, thus suggesting that microwave-assisted silylation is a valid tool for the rapid steroid metabolome study.

  12. Measurement of F2- isoprostanes and isofurans using gas chromatography-mass spectrometry.

    PubMed

    Milne, Ginger L; Gao, Benlian; Terry, Erin S; Zackert, William E; Sanchez, Stephanie C

    2013-06-01

    F2-Isoprostanes (IsoPs) are isomers of prostaglandin F2α formed from the nonenzymatic free radical-catalyzed peroxidation of arachidonic acid. Since discovery of these molecules by Morrow and Roberts in 1990, F2-IsoPs have been shown to be excellent biomarkers as well as potent mediators of oxidative stress in vivo in humans. Isofurans (IsoFs) are also oxidation products generated from the nonenzymatic oxidation of arachidonic acid. IsoFs are preferentially formed instead of F2-IsoPs in settings of increased oxygen tension. The protocol presented herein is the current methodology that our laboratory uses to quantify F2-IsoPs and IsoFs in biological tissues and fluids using gas chromatography/mass spectrometry (GC/MS). A variety of analytical procedures to measure F2-IsoPs, including other GC/MS methods and liquid chromatography/MS and immunological approaches, are reported in the literature. This method provides a very low limit of quantitation and is suitable for analysis of both F2-IsoPs and IsoFs from a variety of biological sources including urine, plasma, tissues, cerebral spinal fluid, exhaled breath condensate, and amniotic fluid, among others.

  13. Determination of free and ethoxylated alkylphenols in leather with gas chromatography-mass spectrometry.

    PubMed

    Ma, He-Wei; Cheng, Ya

    2010-12-10

    An analytical approach was developed to determine nonylphenol (NP), octylphenol (OP), nonylphenol ethoxylates (NPEO(n)) and octylphenol ethoxylates (OPEO(n)) in leather samples involving the conversion of NPEO(n) and OPEO(n) into the corresponding NP and OP. The four targets were extracted from samples using ultrasonic-assisted acetonitrile extraction. NP and OP in the extracts were directly isolated with hexane and quantitatively determined with 4-n-nonylphenol as internal standard by gas chromatography-mass spectrometry (GC-MS). For NPEO(n) and OPEO(n) in the extracts, they were first converted into NP and OP with aluminum triiodide as cleavage agent, and the yielded NP and OP were determined by GC-MS. The contents of NPEO(n) and OPEO(n) were calculated by normalizing to NPEO(9) and OPEO(9), respectively. This method was properly validated and the real sample tests revealed the pollution significance of leather by NPEO(n) and OPEO(n).

  14. Solid-phase microextraction gas chromatography-mass spectrometry determination of fragrance allergens in baby bathwater.

    PubMed

    Lamas, J Pablo; Sanchez-Prado, Lucia; Garcia-Jares, Carmen; Llompart, Maria

    2009-07-01

    A method based on solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) has been optimized for the determination of fragrance allergens in water samples. This is the first study devoted to this family of cosmetic ingredients performed by SPME. The influence of parameters such as fibre coating, extraction and desorption temperatures, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mixed-level factorial design, which allowed the study of the main effects as well as two-factor interactions. Excluding desorption temperature, the other parameters were, in general, very important for the achievement of high response. The final procedure was based on headspace sampling at 100 degrees C, using polydimethylsiloxane/divinylbenzene fibres. The method showed good linearity and precision for all compounds, with detection limits ranging from 0.001 to 0.3 ng mL(-1). Reliability was demonstrated through the evaluation of the recoveries in different real water samples, including baby bathwater and swimming pool water. The absence of matrix effects allowed the use of external standard calibration to quantify the target compounds in the samples. The proposed procedure was applied to the determination of allergens in several real samples. All the target compounds were found in the samples, and, in some cases, at quite high concentrations. The presence and the levels of these chemicals in baby bathwater should be a matter of concern.

  15. Analysis of extractable organic compounds in water by gas chromatography mass spectrometry: applications to surface water.

    PubMed

    Deroux, J M; Gonzalez, C; Le Cloirec, P; Kovacsik, G

    1996-03-01

    Contamination of water by organic pollutants is a common environmental problem. Over a period of 1 year, the surface water of a canal network (Languedoc-Roussillon area, France) was analysed in order to identify organic compounds and to monitor its quality. Pollutants were extracted from 19 l of raw water using methylene chloride in a continuous countercurrent liquid-liquid extractor with a pulsed column. The extraction was performed at a pH above 11 and again at a pH below 2 according to U.S. Environmental Protection Agency method 625. The extract was analysed by gas chromatography/mass spectrometry, using two ionization techniques, namely electron ionization and chemical ionization. Mass spectra obtained by electron ionization were compared with those in a database (NIST). Some natural compounds and micropollutants were identified. Their structures were confirmed by chemical ionization (methane). One hundred and ten substances, making up the broad spectrum of extractable compounds in the surface water studied, were found by this method at a nanogram per litre concentration level. Among them, 13 are priority pollutants. These specific pollutants were qualified.

  16. [Determination of five representative ultraviolet filters in water by gas chromatography-mass spectrometry].

    PubMed

    Ding, Yiran; Huang, Yun; Zhao, Tingting; Cai, Qian; Luo, Yu; Huang, Bin; Zhang, Yuxia; Pan, Xuejun

    2014-06-01

    A method for the determination of five representative organic UV filters: ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), 4-methylbenzylidene camphor (4-MBC), octocrylene (OC), homosalate (HMS) in water was investigated. The method was ased on derivatization, solid phase extraction (SPE), followed by determination with gas chromatography-mass spectrometry (GC-MS). The variables involved in the derivatization of BP-3 and HMS were optimized, and SPE conditions were studied. For derivatization, 100 microL N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) was used as derivatization reagent and reacted with BP-3 and HMS at 100 degrees C for 100 min. For SPE, the pH value of water sample was adjusted to 3-5. The Oasis HLB cartridges were employed and the solution of ethyl acetate and dichloromethane (1 : 1, v/v) was used as the eluting solvent, and good recoveries of the target compounds were obtained. The limits of detection (LODs) and the limits of quantification (LOQs) for the five target compounds in water samples were 0.5-1.2 ng/L and 1.4-4.0 ng/L, respectively. The recoveries of spiked water samples were 87.85%-102.34% with good repeatability and reproducibility (RSD < 5%, n = 3) for all the target compounds. Finally, the validated method was applied to analysis the representative UV filters in water samples collected from a wastewater treatment plant in Kunming city of Yunnan province.

  17. Measurement of nitrite in urine by gas chromatography-mass spectrometry.

    PubMed

    Tsikas, Dimitrios; Suchy, Maria-Theresia; Mitschke, Anja; Beckmann, Bibiana; Gutzki, Frank-Mathias

    2012-01-01

    Nitric oxide (NO) is enzymatically produced from L-arginine and has a variety of biological functions. Autoxidation of NO in aqueous media yields nitrite (O = N-O(-)). NO and nitrite are oxidized in erythrocytes by oxyhemoglobin to nitrate (NO(3)(-)). Nitrate reductases from bacteria reduce nitrate to nitrite. Nitrite and nitrate are ubiquitous in nature, they are present throughout the body and they are excreted in the urine. Nitrite in urine has been used for several decades as an indicator and measure of bacteriuria. Since the identification of nitrite as a metabolite of NO, circulating nitrite is also used as an indicator of NO synthesis and is considered an NO storage form. In contrast to plasma nitrite, the significance of nitrite in the urine beyond bacteriuria is poorly investigated and understood. This chapter describes a gas chromatography-mass spectrometry (GC-MS) protocol for the quantitative determination of nitrite in urine of humans. Although the method is useful for detection and quantification of bacteriuria, the procedures described herein are optimum for urinary nitrite in conditions other than urinary tract infection. The method uses [(15)N]nitrite as internal standard and pentafluorobenzyl bromide as the derivatization agent. Derivatization is -performed on 100-μL aliquots and quantification of toluene extracts by selected-ion monitoring of m/z 46 for urinary nitrite and m/z 47 for the internal standard in the electron-capture negative-ion chemical ionization mode.

  18. Optimization of focused ultrasonic extraction of propellant components determined by gas chromatography/mass spectrometry.

    PubMed

    Fryš, Ondřej; Česla, Petr; Bajerová, Petra; Adam, Martin; Ventura, Karel

    2012-09-15

    A method for focused ultrasonic extraction of nitroglycerin, triphenyl amine and acetyl tributyl citrate presented in double-base propellant samples following by the gas chromatography/mass spectrometry analysis was developed. A face-centered central composite design of the experiments and response surface modeling was used for optimization of the time, amplitude and sample amount. The dichloromethane was used as the extractant solvent. The optimal extraction conditions with respect to the maximum yield of the lowest abundant compound triphenyl amine were found at the 20 min extraction time, 35% amplitude of ultrasonic waves and 2.5 g of the propellant sample. The results obtained under optimal conditions were compared with the results achieved with validated Soxhlet extraction method, which is typically used for isolation and pre-concentration of compounds from the samples of explosives. The extraction yields for acetyl tributyl citrate using both extraction methods were comparable; however, the yield of ultrasonic extraction of nitroglycerin and triphenyl amine was lower than using Soxhlet extraction. The possible sources of different extraction yields are estimated and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Quantitation of ibuprofen in blood using gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Huber, Gerry; Garg, Uttam

    2010-01-01

    Ibuprofen is a non-narcotic, non-steroidal anti-inflammatory drug used for the treatment of pain, fever, and inflammatory diseases such as rheumatoid arthritis, osteoarthritis, and ankylosing spondylitis. It is also used for induction of closure of patent ductus arteriosus (PDA) in neonates. Although the exact mechanism of action of ibuprofen is not known, it is believed to mediate its therapeutic effects through the inhibition of cyclooxygenase and subsequently by the inhibition of prostacyclin production. As the drug has a number of side effects, which correlate to its circulating concentration, monitoring of ibuprofen in plasma or serum is desired for patients receiving high-dose therapy. Chromatographic methods are frequently used for the assay of ibuprofen, as no immunoassays are currently available.In the method described, the drug is extracted from the serum or plasma using methylene chloride and phosphate buffer (pH 6). Meclofenamic acid is used as an internal standard. The organic phase containing the drug is separated and dried under stream of nitrogen. After trimethylsilyl derivatization, analysis is done using gas-chromatography/ mass spectrometry (GC-MS). Quantification of the drug in a sample is achieved by comparing responses of the unknown sample to the responses of the calibrators using selected ion monitoring.

  20. Derivatization followed by gas chromatography-mass spectrometry for quantification of ethyl carbamate in alcoholic beverages.

    PubMed

    Xu, Xuejiao; Gao, Yihan; Cao, Xiujun; Wang, Xiang; Song, Guoxin; Zhao, Jianfeng; Hu, Yaoming

    2012-04-01

    A sensitive and rapid analytical methodology based on derivatization followed by gas chromatography-mass spectrometry (GC-MS) was developed for the quantitative determination of the toxic contaminant ethyl carbamate (EC, urethane, C(2)H(5)OCONH(2)) in alcoholic samples. EC was extracted using liquid-liquid extraction technique, and then silylated with bis-(trimethylsilyl)trifluoroacetamide, analysed finally by GC-MS. The isopropyl carbamate was used as the internal standard for quantitative analysis of EC in alcoholic samples. In this work, the sample extraction and derivatization reaction conditions were investigated, and the optimal extraction conditions obtained were: pH 9 and solvent of ethyl acetate, and the derivatization conditions were: derivatization reaction temperature of 80°C and time duration of 30 min. With the optimal conditions, the method validations were also studied. In the validation studies, EC exhibited good linearity with a regression coefficient of 0.9999. The limit of detection and limit of quantification were 0.30 and 5.0 μg/kg, respectively. The precision was less than 8.4%. Finally, the proposed technique was successfully applied to the analysis of EC in 35 kinds of alcoholic samples. The experimental results have demonstrated that the proposed technique is a fast, reliable and low-cost method for determination of EC in alcoholic samples. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metabolic products in urine of preterm infants characterized via gas chromatography-mass spectrometry

    PubMed Central

    Hao, Hu; Li, Sitao; Zhou, Wei; Wang, Hong; Liu, Mengxian; Shi, Congcong; Chen, Jing; Xiao, Xin

    2015-01-01

    Objective: To characterize the metabolic products of urine associated with preterm birth, thus providing clinical guidelines for intestinal and parenteral nutrition in preterm infants. Methods: Urine samples of 47 preterm infants and 45 full-term infants were collected and prepared for trimethylsilylation by treatment with urease. The levels of lysine, phenylalanine, histidine, ornithine, fumaric acid, malic acid, succinic acid, lactose, stearic acid, and 4-hydroxyphenylacetic acid were detected by gas chromatography-mass spectrometry (GC/MS), and statistically analyzed. Results: The normalized concentrations of the following metabolites in preterm infant urine samples were significantly lower than that of full-term infant urine samples: lysine (P = 0.003), phenylalanine (P = 0.001), histidine (P = 0.006), ornithine (P = 0.000), fumaric acid (P = 0.002), malic acid (P = 0.006), succinic acid (P = 0.000), lactose (P = 0.000), stearic acid (P = 0.000) and 4-hydroxyphenylacetic acid (P = 0.000). Conclusions: The results of the GC/MS analysis indicated that amino acid, carbohydrate, and fatty acid metabolism defects exist in preterm infants. The use of GC/MS to determine metabolic products in urine samples could be helpful for prospectively evaluating the nutritional status of preterm infants, and therefore providing clinical guidelines on reasonable nutritional support. PMID:26629171

  2. Gas chromatography-mass spectrometry profiles of urinary organic acids in healthy captive cheetahs (Acinonyx jubatus).

    PubMed

    Tordiffe, Adrian Stephen Wolferstan; van Reenen, Mari; Reyers, Fred; Mienie, Lodewyk Jacobus

    2017-04-01

    In captivity, cheetahs (Acinonyx jubatus) frequently suffer from several unusual chronic diseases that rarely occur in their free-ranging counterparts. In order to develop a better understanding of their metabolism and health we documented the urine organic acids of 41 apparently healthy captive cheetahs, in an untargeted metabolomic study, using gas chromatography-mass spectrometry. A total of 339 organic acids were detected and annotated. Phenolic compounds, thought to be produced by the anaerobic fermentation of aromatic amino acids in the distal colon, as well as their corresponding glycine conjugates, were present in high concentrations. The most abundant organic acids in the cheetahs' urine were an as yet unidentified compound and a novel cadaverine metabolite, tentatively identified as N(1),N(5)-dimethylpentane-1,5-diamine. Pantothenic acid and citramalic acid concentrations correlated negatively with age, while glutaric acid concentrations correlated positively with age, suggesting possible dysregulation of coenzyme A metabolism in older cheetahs. This study provides a baseline of urine organic acid reference values in captive cheetahs and suggests important avenues for future research in this species.

  3. Enhanced analysis of steroids by gas chromatography/mass spectrometry using microwave-accelerated derivatization.

    PubMed

    Bowden, John A; Colosi, Dominic M; Stutts, Whitney L; Mora-Montero, Diana C; Garrett, Timothy J; Yost, Richard A

    2009-08-15

    Derivatization of steroids is typically required before analysis by gas chromatography/mass spectrometry (GC/MS); nevertheless, the derivatization process can often be time-consuming and irreproducible. Although several strategies have been employed to enhance this process, few have the potential of microwave-accelerated derivatization (MAD) to be more efficient than traditional thermal derivatization methods. MAD using a synthesis microwave system was evaluated and compared to traditional thermal derivatization methods in terms of yield, reproducibility, and overall analysis time. Parameters affecting MAD, including reaction temperature, time, and power, were systematically optimized for several silyl reagents (BSTFA with TMCS, MSTFA, and BSA) and other derivatization procedures (MOX reagent and MTBSTFA). MSTFA was found to derivatize best with the microwave, as demonstrated by the enhanced relative response factors (RRFs). BSTFA with TMCS, on the other hand, did not couple as well, but RRF values improved significantly upon addition of polar solvents. The rapid (1 min) derivatization reactions associated with MAD had comparable RRFs for all reagents with those obtained with thermal heating (>30 min). This study highlights the best methods for analyzing a comprehensive variety of steroids and also provides ideal strategies for MAD of steroids on an individual or class level.

  4. Aromatic resin characterisation by gas chromatography-mass spectrometry. Raw and archaeological materials.

    PubMed

    Modugno, Francesca; Ribechini, Erika; Colombini, Maria Perla

    2006-11-17

    An analytical procedure based on alkaline hydrolysis, solvent extraction and trimethyl-silylation followed by gas chromatography-mass spectrometry (GC-MS) analysis was used to study the chemical composition of benzoe and storax resins, water-insoluble exudates of trees of the Styrax and Liquidambar genus. They are chemically characterised by having aromatic acids, alcohols and esters as their main components and are thus known as aromatic and/or balsamic resins. This analytical procedure allowed us to characterise the main components of the two resins and, even though cinnamic acid is the main component of both the resins, the presence of other characteristic aromatic compounds and triterpenes permitted us to distinguish between the two materials. All the compounds identified in benzoe resin were detected in an archaeological organic residue from an Egyptian ceramic censer (fifth to seventh centuries a.d.), thus proving that this resin was used as one of the components of the mixture of organic materials burned as incense. These results provide the first chemical evidence of the presence of benzoe resin in an archaeological material from Mediterranean area.

  5. Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites.

    PubMed

    Lu, Yan; Niu, Wenqi; Zou, Xue; Shen, Chengyin; Xia, Lei; Huang, Chaoqun; Wang, Hongzhi; Jiang, Haihe; Chu, Yannan

    2017-05-05

    Breath analysis is a non-invasive approach which may be applied to disease diagnosis and pharmacokinetic study. In the case of offline analysis, the exhaled gas needs to be collected and the sampling bag is often used as the storage vessel. However, the sampling bag usually releases some extra compounds, which may interfere with the result of the breath test. In this study, a novel breath sampling glass bottle was developed with a syringe needle sampling port for solid phase microextraction (SPME). Such a glass bottle scarcely liberates compounds and can be used to collect exhaled gas for ensuing analysis by gas chromatography-mass spectrometry (GC-MS). The glass bottle sampling SPME-GC-MS analysis was carried out to investigate the breath metabolites of myrtol, a multicompound drug normally used in the treatment of bronchitis and sinusitis. Four compounds, α-pinene, 2,3-dehydro-1,8-cineole, d-limonene and 1,8-cineole were found in the exhaled breath of all eight volunteers who had taken the myrtol. While for other ten subjects who had not used the myrtol, these compounds were undetectable. In the SPME-GC-MS analysis of the headspace of myrtol, three compounds were detected including α-pinene, d-limonene and 1,8-cineole. Comparing the results of breath and headspace analysis, it indicates that 2,3-dehydro-1,8-cineole in the breath is the metabolite of 1,8-cineole. It is the first time that this metabolite was identified in human breath. The study demonstrates that the glass bottle sampling SPME-GC-MS method is applicable to exhaled gas analysis including breath metabolites investigation of drugs like myrtol. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gas chromatography-mass spectrometry analysis of nitrite in biological fluids without derivatization.

    PubMed

    Tsikas, Dimitrios; Böhmer, Anke; Mitschke, Anja

    2010-06-15

    We report on a gas chromatography-mass spectrometry (GC-MS) method for the quantification of nitrite in biological fluids without preceding derivatization. This method is based on the solvent extraction with ethyl acetate of nitrous acid (HONO, pK(a) = 3.29), i.e., HO(14)NO and (15)N-labeled nitrous acid (HO(15)NO) which was supplied as the sodium salt of (15)N-labeled nitrite and served as the internal standard. HO(14)NO and HO(15)NO react within the injector (at 300 degrees C) of the gas chromatograph with the solvent ethyl acetate to form presumably unlabeled and (15)N-labeled acetyl nitrite, respectively. Under negative ion chemical ionization (NICI) conditions with methane as the reagent gas, these species ionize to form O(14)NO(-) (m/z 46) and O(15)NO(-) (m/z 47), respectively. Quantification is performed by selected ion monitoring of m/z 46 for nitrite and m/z 47 for the internal standard. Nitrate at concentrations up to 20 mM does not interfere with nitrite analysis in this method. The GC-MS method was validated for the quantification of nitrite in aqueous buffer, human urine (1 mL, acidification) and saliva (0.1-1 mL, acidification), and hemolysates. The method was applied in studying reactions of nitrite (0-10 mM) with oxyhemoglobin ( approximately 6 mM) in lysed human erythrocytes (100 microL aliquots, no acidification).

  7. Characterization of oil shale waters by gas chromatography/mass spectrometry

    SciTech Connect

    Lane, D.C.; Baughman, K.J.; Jones, J.S.

    1986-09-01

    Characterization work has begun on organic compounds and compound classes to establish a baseline for the evaluation and development of alternative instrumental characterization techniques. For this purpose raw water from two oil shale processes has been subjected to an extraction and gas chromatography/mass spectrometry (GC/MS) analysis. Samples from the R-17 and Rio Blanco processes were chosen for comparison with previous characterization work reported by Poulson et al. (1984, 1985), who used low-cost gas and reverse-phase liquid chromatographic (LC) techniques. In addition, various inorganic and physical parameters were re-evaluated. The preliminary comparison of GC/MS data with the GC and reverse phase LC data previously reported by Poulson et al., indicates a number of positive correlations for both the process waters. Aliphatic carboxylic acids, cresols, xylenols, methyl pyridines, dimethyl pyridines, and trimethyl pyridines were found both in present GC/MS analysis and in earlier GC and LC analyses of the samples. In addition, trimethylphenols were observed in both the present GC/MS analysis and in the previous GC and LC analyses of the Rio Blanco sample. A number of tentatively identified compounds and compound classes were observed in the GC/MS analysis but were unreported in either the GC or LC analyses for both samples. Similarly, several compounds and compound classes previously reported by GC and LC techniques were absent in the GC/MS analysis. These discrepancies may be attributed to either the original GC and LC research design or to a fundamental chemical change in the samples used for the GC/MS characterization. Additional research is necessary in the areas of extraction design, use of comparable GC and GC/MS marker compounds for identification, standardization of chromatographic columns and GC conditions, and the validity of computer library identifications. 3 refs., 2 figs., 12 tabs.

  8. Identification of organic acids as potential biomarkers in the urine of autistic children using gas chromatography/mass spectrometry.

    PubMed

    Kałużna-Czaplińska, Joanna; Żurawicz, Ewa; Struck, Wiktoria; Markuszewski, Michał

    2014-09-01

    There is a need to identify metabolic phenotypes in autism as they might each require unique approaches to prevention. Biological markers can help define autism subtypes and reveal potential therapeutic targets. The aim of the study was to identify alterations of small molecular weight compounds and to find potential biomarkers. Gas chromatography/mass spectrometry was employed to evaluate major metabolic changes in low molecular weight urine metabolites of 14 children with autism spectrum disorders vs. 10 non-autistic subjects. The results prove the usefulness of an identified set of 21 endogenous compounds (including 14 organic acids), whose levels are changed in diseased children. Gas chromatography/mass spectrometry method combined with multivariate statistical analysis techniques provide an efficient way of depicting metabolic perturbations of diseases, and may potentially be applicable as a novel strategy for the noninvasive diagnosis and treatment of autism.

  9. Identification of New Metabolites of Bacterial Transformation of Indole by Gas Chromatography-Mass Spectrometry and High Performance Liquid Chromatography

    PubMed Central

    Arora, Pankaj Kumar

    2014-01-01

    Arthrobacter sp. SPG transformed indole completely in the presence of an additional carbon source. High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products. This is the first report of the formation of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde from indole by any bacterium. PMID:25548566

  10. Quantitation of opioids in whole blood by electron impact-gas chromatography-mass spectrometry.

    PubMed

    Tiscione, Nicholas B; Shan, Xiaoqin; Alford, Ilene; Yeatman, Dustin Tate

    2011-03-01

    Opioids are frequently encountered in Forensic Toxicology casework. A PubMed literature search was conducted to find a method using electron impact-gas chromatography-mass spectrometry to examine whole blood specimens. A previously published method was identified, and an updated version was provided by the State of North Carolina Office of the Chief Medical Examiner. This procedure was used as a starting point for development and validation of a refined procedure to be used in the Palm Beach County Sheriff's Office Forensic Toxicology laboratory for routine analysis of antemortem forensic toxicology case samples. Materials and instrumentation common to most forensic toxicology laboratories were utilized while obtaining detection limits from 1 to 10 ng/mL and quantitation limits of 2.5 to 10 ng/mL using 1 mL of whole blood. Target compounds were chosen based on applicability to the method as well as availability and common use in the United States and include dihydrocodeine, codeine, morphine, hydrocodone, 6-monoacetylmorphine, hydromorphone, oxycodone, and oxymorphone. Each analyte demonstrated two zero-order linear ranges (r(2) > 0.990) over the concentrations evaluated (from 2.5 to 500 ng/mL). The coefficient of variation of replicate analyses was less than 12%. Quantitative accuracy was within ± 27% at 2.5 ng/mL, ± 11% at 10 ng/mL, and ± 8% at 50 ng/mL. The validated method provides a more sensitive procedure for the quantitation of common opioids in blood using standard laboratory equipment and a small amount of sample.

  11. Quantitation of benzodiazepines in whole blood by electron impact-gas chromatography-mass spectrometry.

    PubMed

    Tiscione, Nicholas B; Shan, Xiaoqin; Alford, Ilene; Yeatman, Dustin Tate

    2008-10-01

    Benzodiazepines are frequently encountered in forensic toxicology. A literature search was conducted to find a simple method using electron impact-gas chromatography-mass spectrometry (EI-GC-MS) to examine whole blood specimens for the most commonly encountered benzodiazepines in the United States. A recently published method was identified in the literature search and used as a starting point for development of a new procedure to be used for routine analysis of forensic toxicology case samples. The procedure was then developed and validated as a rapid and efficient method for the screening and quantitation of benzodiazepines in blood using liquid-liquid extraction and EI-GC-MS in selective ion monitoring mode. Materials and instrumentation common to most forensic toxicology laboratories were utilized while obtaining LODs from 5 to 50 ng/mL and LOQs of 50 ng/mL or less using 1 mL of sample. Target compounds were chosen based on availability and common use in the United States and include diazepam, desalkylflurazepam, nordiazepam, midazolam, oxazepam, temazepam, lorazepam, clonazepam, and alprazolam (relative elution order). The linear range (r2 > 0.990) was validated from 50 to 1000 ng/mL for all analytes. The CV of replicate analyses at both 50 and 200 ng/mL was less than 4%. Quantitative accuracy was within +/- 16% at 50 ng/mL and within +/- 7% at 200 ng/mL. The validated method provides an efficient procedure for the quantitation of a broad range of the most common benzodiazepines in blood at meaningful limits of detection and quantitation using standard laboratory equipment and a small amount of sample.

  12. [Simultaneous determination of five hypertoxic rodenticides in serum by gas chromatography-mass spectrometry].

    PubMed

    Huang, Huiqiu; Huang, Xun; Yu, Jingsun

    2015-03-01

    A fast analytical method based on gas chromatography-mass spectrometry (GC-MS) was established for the simultaneous determination of tetramine, fluoroacetamide, sodium fluoroacetate, gliftor I and gliftor II in serum. At pH 2.0, sodium fluoroacetate was derivatizated at room temperature for 5 min by using N,N-diethyl-p-phenylenediamine as the derivatization reagent and N, N'-dicyclohexylcarbodiimide as the catalyst. The derivative and other rodenticides were extracted with ethyl acetate and concentrated with nitrogen at 50 °C, then determined by GC-MS in selected ion monitoring (SIM) mode, and quantified with matrix-match standard solutions. The analysis was carried out on an ionic liquid chromatographic capillary column (SLB-IL59, 30 m x 0.25 mm x 0.20 µm, maximum temperature 300 °C) at a flow rate of 1.0 mL/min, and the five rodenticides were successfully separated in 15 min when temperature programming was used. The results showed that the calibration curves were linear in the range of 0.01-1.0 mg/L, except for fluoroacetamide (0.02-2.0 mg/L) and tetramine (0.02-10 mg/L), with correlation coefficients (R2) greater than 0.995, and the limits of detection (LODs) were 0.001-0.002 mg/L (S/N = 3). The recoveries were 84.0%-110.0% at three different spiked levels, and the relative standard deviations (RSDs) were 2.9%-7.5% (n = 6). The method is simple, accurate, highly sensitive and suitable for the detection of the five hypertoxic rodenticides in serum for toxicological purposes.

  13. Rapid analysis of benzoylecgonine in urine by fast gas chromatography-mass spectrometry.

    PubMed

    Romberg, Robert W; Jamerson, Matthew H; Klette, Kevin L

    2006-10-01

    A novel fast gas chromatography-mass spectrometry (FGC-MS) analytical method for benzoylecgonine (BZE) has been developed to improve the efficiency of specimen analysis without diminishing the reliability of metabolite identification and quantification. Urine specimens were spiked with deuterated internal standard (BZE-d8), subjected to solid-phase extraction, and derivatized with pentafluoropropionic anhydride (PFPA) and pentafluoropropanol (PFPOH). The pentafluoropropyl ester derivative of BZE was identified and quantified using both a standard GC-MS method and the newly developed FGC-MS method. Shorter GC analyte retention times were made possible in the FGC-MS method by employing a 220-volt GC oven controller, which allowed an increased temperature ramp rate. The FGC-MS method was linear between 25 and 10,000 ng/mL of BZE yielding a correlation coefficient of 0.9994. The intra-assay precision of a 100 ng/mL BZE standard (n=15) yielded an average concentration of 99.7 ng/mL and a coefficient of variation of 1.2%. The interassay precision of 21 sets of 50, 100, and 125 ng/mL BZE controls was found to be acceptable, with coefficients of variation less than 2.4%. No interference was observed when the FGC-MS method was challenged with cocaine, ecgonine, ecgonine methyl ester, and nine other drugs of abuse. Analysis of presumptively positive specimens (n=146) by both analytical methods yielded comparable results with a correlation coefficient of 0.996. The FGC-MS method, when compared with a standard GC-MS method, reduces total assay time by approximately 50% while demonstrating comparable reliability.

  14. Urine Mescaline Screening With a Biochip Array Immunoassay and Quantification by Gas Chromatography-Mass Spectrometry.

    PubMed

    Battal, Dilek; Barnes, Allan J; Castaneto, Marisol S; Martin, Thomas M; Klette, Kevin L; Huestis, Marilyn A

    2015-12-01

    Mescaline, the primary psychoactive chemical in peyote cactus, has been consumed for thousands of years in ancient religious ceremonies. The US military wanted to determine if mescaline intake was a problem for personnel readiness. Twenty thousand seventeen urine specimens negative for cannabinoids, cocaine, opiates, and amphetamines were tested for mescaline with the Randox Drugs of Abuse V (DOA-V) biochip array immunoassay at the manufacturer's recommended cutoff of 6 mcg/L. A sensitive and specific method for mescaline quantification in urine was developed and fully validated. Extracted analytes were derivatized with pentafluoropropionic anhydride and pentafluoropropanol and quantified by gas chromatography-mass spectrometry (GC/MS) with electron impact ionization. Standard curves, using linear least squares regression with 1/x weighting, were linear from 1 to 250 mcg/L with coefficients of determination >0.994. Intra- and inter-assay imprecision was <4.4 coefficient of variation (%CV), with accuracies >90.4%. Mean extraction efficiencies were >92.0% across the linear range. This fully validated method was applied for the confirmation of urinary mescaline in 526 presumptive-positive specimens and 198 randomly selected presumptive-negative specimens at the manufacturer's 6 mcg/L cutoff. No specimen confirmed positive at the GC/MS limit of quantification of 1 mcg/L. Results indicated that during this time frame, there was insufficient mescaline drug use in the military to warrant routine screening in the drug testing program. However, mescaline stability, although assessed, could have contributed to lower prevalence. We also present a validated GC/MS method for mescaline quantification in urine for reliable confirmation of suspected mescaline intake.

  15. Analysis of acetylene in blood and urine using cryogenic gas chromatography-mass spectrometry.

    PubMed

    Kashiwagi, Masayuki; Hara, Kenji; Fujii, Hiroshi; Kageura, Mitsuyoshi; Takamoto, Mutsuo; Matsusue, Aya; Sugimura, Tomoko; Kubo, Shin-ichi

    2009-09-01

    A method for quantitative analysis of acetylene in blood and urine samples was investigated. Using cryogenic gas chromatography-mass spectrometry (GC-MS), acetylene was measured with isobutane as the internal standard in the headspace method, which revealed a linear response over the entire composite range with an excellent correlation coefficient, both in blood (R = 0.9968, range = 5.39-43.1 microg/ml) and urine (R = 0.9972, range = 2.16-10.8 microg/ml). The coefficients of variation (CV) for blood ranged from 2.62 to 11.6% for intra-day and 4.55 to 10.4% for inter-day. The CV for urine ranged from 2.38 to 3.10% for intra-day and 4.83 to 11.0% for inter-day. The recovery rate as an index of accuracy ranged from 83 to 111%. The present method showed good reliability, and is also simple and rapid. In actual samples from a charred cadaver due to acetylene explosion, the measured concentrations of acetylene by this method were 21.5 microg/ml for femoral vein blood, 17.9 microg/ml for right atrial blood, 25.5 microg/ml for left atrial blood and 7.49 microg/ml for urine. Quantification of acetylene provides important information, because the acetylene concentration is a vital reaction or sign. For example, when acetylene is filled in a closed space and then explodes, in antemortem explosion, the blood acetylene concentration of the cadaver might be significant. On the other hand, in postmortem explosion, acetylene is not detected in blood. Furthermore, when several victims are involved in one explosion, comparison of the sample concentrations can also provide useful information to establish the conditions at the accident scene; therefore, the present method is useful in forensics.

  16. Analysis of 23 polycyclic aromatic hydrocarbons in smokeless tobacco by gas chromatography-mass spectrometry.

    PubMed

    Stepanov, Irina; Villalta, Peter W; Knezevich, Aleksandar; Jensen, Joni; Hatsukami, Dorothy; Hecht, Stephen S

    2010-01-01

    Smokeless tobacco contains 28 known carcinogens and causes precancerous oral lesions and oral and pancreatic cancer. A recent study conducted by our research team identified eight different polycyclic aromatic hydrocarbons (PAHs) in U.S. moist snuff, encouraging further investigations of this group of toxicants and carcinogens in smokeless tobacco products. In this study, we developed a gas chromatography-mass spectrometry method that allows simultaneous analysis of 23 various PAHs in smokeless tobacco after a simple two-step extraction and purification procedure. The method produced coefficients of variation under 10% for most PAHs. The limits of quantitation for different PAHs varied between 0.3 and 11 ng/g tobacco, starting with a 300 mg sample. The recovery of the stable isotope-labeled internal standards averaged 87%. The method was applied to analysis of 23 moist snuff samples that included various flavors of the most popular U.S. moist snuff brands, as well as 17 samples representing the currently marketed brands of spit-free tobacco pouches, a relatively new type of smokeless tobacco. The sum of all detected PAHs in conventional moist snuff averaged 11.6 (+/-3.7) microg/g dry weight; 20% of this amount was comprised of carcinogenic PAHs. The levels of PAHs in new spit-free tobacco products were much lower than those in moist snuff; the sum of all detected PAHs averaged 1.3 (+/-0.28) microg/g dry weight. Our findings render PAHs one of the most prevalent groups of carcinogens in smokeless tobacco. Urgent measures are required from the U.S. tobacco industry to modify manufacturing processes so that the levels of these toxicants and carcinogens in U.S. moist snuff are greatly reduced.

  17. A gas chromatography-mass spectrometry method for the quantitation of clobenzorex.

    PubMed

    Cody, J T; Valtier, S

    1999-01-01

    Drugs metabolized to amphetamine or methamphetamine are potentially significant concerns in the interpretation of amphetamine-positive urine drug-testing results. One of these compounds, clobenzorex, is an anorectic drug that is available in many countries. Clobenzorex (2-chlorobenzylamphetamine) is metabolized to amphetamine by the body and excreted in the urine. Following administration, the parent compound was detectable for a shorter time than the metabolite amphetamine, which could be detected for days. Because of the potential complication posed to the interpretation of amphetamin-positive drug tests following administration of this drug, the viability of a current amphetamine procedure using liquid-liquid extraction and conversion to the heptafluorobutyryl derivative followed by gas chromatography-mass spectrometry (GC-MS) analysis was evaluated for identification and quantitation of clobenzorex. Qualitative identification of the drug was relatively straightforward. Quantitative analysis proved to be a far more challenging process. Several compounds were evaluated for use as the internal standard in this method, including methamphetamine-d11, fenfluramine, benzphetamine, and diphenylamine. Results using these compounds proved to be less than satisfactory because of poor reproducibility of the quantitative values. Because of its similar chromatographic properties to the parent drug, the compound 3-chlorobenzylamphetamine (3-Cl-clobenzorex) was evaluated in this study as the internal standard for the quantitation of clobenzorex. Precision studies showed 3-Cl-clobenzorex to produce accurate and reliable quantitative results (within-run relative standard deviations [RSDs] < 6.1%, between-run RSDs < 6.0%). The limits of detection and quantitation for this assay were determined to be 1 ng/mL for clobenzorex.

  18. Age determination of ballpoint pen ink by thermal desorption and gas chromatography-mass spectrometry.

    PubMed

    Bügler, Jürgen H; Buchner, Hans; Dallmayer, Anton

    2008-07-01

    Two main approaches can be used for determining the age of an ink: indirect dating and direct dating. Indirect dating is based on the chemical analysis of an ink followed by comparison with known samples in a reference collection. The collection should contain information about the inks including the market introduction dates. This approach may allow for an anachronism to be detected. The second concept is based on measuring ink components that change with age. The analysis of solvents in ballpoint inks may be a useful parameter for determining the age of ink on paper. In a previous study, the authors demonstrated that thermal desorption of ink directly from paper, followed by chemical analysis using gas chromatography-mass spectrometry (GC-MS), is a promising procedure for characterizing ink-binder resins and solvents. Preliminary tests showed that monitoring the evaporation of ink solvent from ink on paper is not a suitable method for ink dating. Thermal analysis of ink on paper in two steps revealed that fresh ink releases a relative amount of solvent at a certain low temperature in a defined period of time, which decreases as the ink ages. As a consequence, this relative amount of solvent released at a certain low temperature, and its decrease with time, can be used to estimate ink age. This age-dependent parameter was studied in 85 different inks ranging in age from 1 week to 1.5 years. It was found that some inks showed a significant decrease of this parameter up to an age of several months, and that the aging process can be monitored within this period. For other inks, however, the age-dependent parameter decreases relatively fast, e.g., within a few days, to a constant level, which can be too fast for casework. Based on these results, a general procedure for assessing the age of ballpoint pen inks on paper was developed.

  19. Triple sorbent thermal desorption/gas chromatography/mass spectrometry determination of vapor phase organic contaminants

    SciTech Connect

    Ma, C.Y.; Skeen, J.T.; Dindal, A.B.; Higgins, C.E.; Jenkins, R.A.

    1994-05-01

    A thermal desorption/ps chromatography/mass spectrometry (TD/GC/MS) has been evaluated for the determination of volatile organic compounds (VOCS) in vapor phase samples using Carbosieve S-III/Carbotrap/Carotrap C triple sorbent traps (TST) similar to those available from a commercial source. The analysis was carried out with a Hewlett-Packard 5985A or 5995 GC/MS system with a modified injector to adapt an inhouse manufactured short-path desorber for transferring desorbate directly onto a cryofocusing loop for subsequent GC/MS analysis. Vapor phase standards generated from twenty six compounds were used for method validation, including alkanes, alkyl alcohols, alkyl ketones, and alkyl nitrites, a group of representative compounds that have previously been identified in a target airborne matrix. The method was validated based on the satisfactory results in terms of reproducibility, recovery rate, stability, and linearity. A relative, standard deviation of 0.55 to 24.3 % was obtained for the entire TD process (generation of gas phase standards, spiking the standards on and desorbing from TST) over a concentration range of 20 to 500 ng/trap. Linear correlation coefficients for the calibration curves as determined ranged from 0.81 to 0.99 and limits of detection ranged from 3 to 76 ng. For a majority of standards, recoveries of greater than 90% were observed. For three selected standards spiked on TSTS, minimal loss (10 to 22%) was observed after storing the spiked in, a 4{degree}C refrigerator for 29 days. The only chromatographable artifact observed was a 5% conversion of isopropanol to acetone. The validated method been successfully applied, to the determination of VOCs collected from various emission sources in a diversified concentration range.

  20. Supervised pattern recognition procedures for discrimination of whiskeys from gas chromatography/mass spectrometry congener analysis.

    PubMed

    González-Arjona, Domingo; López-Pérez, Germán; González-Gallero, Víctor; González, A Gustavo

    2006-03-22

    The volatile congener analysis of 52 commercialized whiskeys (24 samples of single malt Scotch whiskey, 18 samples of bourbon whiskey, and 10 samples of Irish whiskey) was carried out by gas chromatography/mass spectrometry after liquid-liquid extraction with dichloromethane. Pattern recognition procedures were applied for discrimination of different whiskey categories. Multivariate data analysis includes linear discriminant analysis (LDA), k nearest neighbors (KNN), soft independent modeling of class analogy (SIMCA), procrustes discriminant analysis (PDA), and artificial neural networks techniques involving multilayer perceptrons (MLP) and probabilistic neural networks (PNN). Classification rules were validated by considering the number of false positives (FPs) and false negatives (FNs) of each class associated to the prediction set. Artificial neural networks led to the best results because of their intrinsic nonlinear features. Both techniques, MLP and PNN, gave zero FPs and zero FNs for all of the categories. KNN is a nonparametric method that also provides zero FPs and FNs for every class but only when selecting K = 3 neighbors. PDA produced good results also (zero FPs and FNs always) but only by selecting nine principal components for class modeling. LDA shows a lesser classification performance, because of the building of linear frontiers between classes that does not apply in many real situations. LDA led to one FP for bourbons and one FN for scotches. The worse results were obtained with SIMCA, which gave a higher number of FPs (five for both scotches and bourbons) and FNs (six for scotchs and two for bourbons). The possible cause of these findings is the strong influence of class inhomogeneities on the SIMCA performance. It is remarkable that in any case, all of the methodologies lead to zero FPs and FNs for the Irish whiskeys.

  1. Analysis of 23 polycyclic aromatic hydrocarbons in smokeless tobacco by gas chromatography-mass spectrometry

    PubMed Central

    Stepanov, Irina; Villalta, Peter W.; Knezevich, Aleksandar; Jensen, Joni; Hatsukami, Dorothy; Hecht, Stephen S.

    2009-01-01

    Smokeless tobacco contains 28 known carcinogens and causes precancerous oral lesions and oral and pancreatic cancer. A recent study conducted by our research team identified 8 different polycyclic aromatic hydrocarbons (PAH) in U.S. moist snuff, encouraging further investigations of this group of toxicants and carcinogens in smokeless tobacco products. In this study, we developed a gas chromatography-mass spectrometry method that allows simultaneous analysis of 23 various PAH in smokeless tobacco after a simple two-step extraction and purification procedure. The method produced coefficients of variation under 10% for most PAH. The limits of quantitation for different PAH varied between 0.3 ng/g tobacco and 11 ng/g tobacco, starting with a 300-mg sample. The recovery of the stable isotope-labeled internal standards averaged 87%. The method was applied to analysis of 23 moist snuff samples that include various flavors of the most popular U.S. moist snuff brands, as well as 17 samples representing the currently marketed brands of spit-free tobacco pouches, a relatively new type of smokeless tobacco. The sum of all detected PAH in conventional moist snuff averaged 11.6 (± 3.7) µg/g dry weight, 20% of this amount being comprised by carcinogenic PAH. The levels of PAH in new spit-free tobacco products were much lower than those in moist snuff, the sum of all detected PAH averaging 1.3 (±0.28) µg/g dry weight. Our findings render PAH one of the most prevalent groups of carcinogens in smokeless tobacco, along with tobacco-specific nitrosamines. Urgent measures are required from the U.S. tobacco industry to modify manufacturing processes so that the levels of these toxicants and carcinogens in the U.S. moist snuff are greatly reduced. PMID:19860436

  2. Nitrate Reduction in a Groundwater Microcosm Determined by 15N Gas Chromatography-Mass Spectrometry

    PubMed Central

    Bengtsson, Göran; Annadotter, Heléne

    1989-01-01

    Aerobic and anaerobic groundwater continuous-flow microcosms were designed to study nitrate reduction by the indigenous bacteria in intact saturated soil cores from a sandy aquifer with a concentration of 3.8 mg of NO3−-N liter−1. Traces of 15NO3− were added to filter-sterilized groundwater by using a Darcy flux of 4 cm day−1. Both assimilatory and dissimilatory reduction rates were estimated from analyses of 15N2, 15N2O, 15NH4+, and 15N-labeled protein amino acids by capillary gas chromatography-mass spectrometry. N2 and N2O were separated on a megabore fused-silica column and quantified by electron impact-selected ion monitoring. NO3− and NH4+ were analyzed as pentafluorobenzoyl amides by multiple-ion monitoring and protein amino acids as their N-heptafluorobutyryl isobutyl ester derivatives by negative ion-chemical ionization. The numbers of bacteria and their [methyl-3H]thymidine incorporation rates were simultaneously measured. Nitrate was completely reduced in the microcosms at a rate of about 250 ng g−1 day−1. Of this nitrate, 80 to 90% was converted by aerobic denitrification to N2, whereas only 35% was denitrified in the anaerobic microcosm, where more than 50% of NO3− was reduced to NH4+. Assimilatory reduction was recorded only in the aerobic microcosm, where N appeared in alanine in the cells. The nitrate reduction rates estimated for the aquifer material were low in comparison with rates in eutrophic lakes and coastal sediments but sufficiently high to remove nitrate from an uncontaminated aquifer of the kind examined in less than 1 month. PMID:16348048

  3. Unconjugated morphine in blood by radioimmunoassay and gas chromatography/mass spectrometry.

    PubMed

    Spiehler, V; Brown, R

    1987-07-01

    Morphine, the active metabolite of heroin, is rapidly inactivated by glucuronidation at the 3 carbon. Unconjugated (pharmacologically active) morphine was measured in postmortem blood by radioimmunoassay using an antibody-coated tube kit. The kit shows less than 0.2% cross-reactivity with codeine and morphine-glucuronide. Unconjugated morphine concentrations were confirmed by gas chromatography/mass spectrometry (GC/MS) using deuterated morphine as the internal standard. The blood was precipitated with 10% trichloroacetic acid (TCA) and concentrated hydrochloric acid (HCl), centrifuged, and decanted. The supernatant was then either diluted (unhydrolyzed) or heated to 100 degrees C, 30 min (hydrolyzed), followed by a wash with 4:1 chloroform:isopropranol. The upper aqueous layer was then saturated with sodium bicarbonate (NaHCO3) and extracted with 4:1 chloroform:isopropranol. The organic layer was evaporated, derivatized with trifluoroacetic anhydride (TFA), and analyzed by selected ion monitoring (SIM) GC/MS. Comparison of the results for unconjugated morphine by radioimmunoassay and unhydrolyzed morphine by GC/MS gave a correlation coefficient of r = 0.98, n = 100. Unconjugated morphine ranged from 0 to 100% of total morphine with a mean of 42%, n = 200, for heroin or morphine involved deaths. Review of 56 putative rapid deaths gave a mean of 68% unconjugated morphine with a range of 26 to 100%. The ratio of unconjugated to total morphine was found to be stable in postmortem blood after more than a year of storage at room temperature, within the precision of the method.

  4. Improved method for rapid detection of phthalates in bottled water by gas chromatography-mass spectrometry.

    PubMed

    Otero, Paz; Saha, Sushanta Kumar; Moane, Siobhan; Barron, John; Clancy, Gerard; Murray, Patrick

    2015-08-01

    An improved gas chromatography-mass spectrometry (GC-MS) method for simple, rapid and precise quantification of phthalates in drinking water is presented. This method was validated for bis (2-n-butoxyethyl) phthalate (DBEP), bis (2-n-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), di-butyl phthalate (DBP), diethyl phthalate (DEP), dihexyl phthalate (DHP), dimethyl phthalate (DMP), di-n-octyl phthalate (DNOP) and dinonyl phthalate (DINP). Linearity of 0.9984>r(2)>0.9975 in the range of 0.075-4.8μg/mL for the selected phthalates was obtained. Accuracy values were in the range of 93-114% and RSD% for the analysis of 1.2μg/mL of each phthalate was below 2.3% (n=9). This new method design has significantly improved the detection in terms of rapidity, specificity, repeatability and accuracy compared to available methods. The procedure has been applied to the analyses of three different brands of commercially available bottled mineral water and the corresponding plastic bottles. Phthalates were extracted with dichloromethane and re-constituted in cyclohexane prior to GC-MS analysis. When the validated GC-MS method was applied to the quantification of the selected phthalates in the samples, only DBP (up to 0.0675±0.0018μg/mL) and DEHP (up to 1.6848±0.1631μg/mL) were found. Furthermore, we provide specific data about the concentration of DBP and DEHP in bottled water attributable to migration of phthalates from respective plastic bottles. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A Gas Chromatography-Mass Spectrometry Method for the Detection and Quantitation of Monofluoroacetate in Plants Toxic to Livestock.

    PubMed

    Santos-Barbosa, Joyce M; Lee, Stephen T; Cook, Daniel; Gardner, Dale R; Viana, Luis Henrique; Ré, Nilva

    2017-02-22

    Monofluoroacetate (MFA) is a potent toxin that occurs in over 50 plant species in Africa, Australia, and South America and is responsible for significant livestock deaths in these regions. A gas chromatography-mass spectrometry (GC-MS) method for the analysis of MFA in plants based on the derivatization of MFA with n-propanol in the presence of sulfuric acid to form propyl fluoroacetate was developed. This method compared favorably to a currently employed high-performance liquid chromatography-mass spectrometry (HPLC-MS) method for the analysis of MFA in plants. The GC-MS method was applied to the analysis of MFA in herbarium specimens of Fridericia elegans, Niedenzuella stannea, N. multiglandulosa, N. acutifolia, and Aenigmatanthera lasiandra. This is the first report of MFA being detected in F. elegans, N. multiglandulosa, N. acutifolia, and A. lasiandra, some of which have been reported to cause sudden death or that are toxic to livestock.

  6. Characterisation of odorants in roasted stem tea using gas chromatography-mass spectrometry and gas chromatography-olfactometry analysis.

    PubMed

    Sasaki, Tetsuya; Koshi, Erina; Take, Harumi; Michihata, Toshihide; Maruya, Masachika; Enomoto, Toshiki

    2017-04-01

    Roasted stem tea has a characteristic flavour, which is obtained by roasting tea stems, by-product of green tea production. This research aims to understand the characteristic odorants in roasted stem tea by comparing it to roasted leaf tea. We revealed potent odorants in commercial roasted stem tea using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry with aroma extract dilution analysis (AEDA). The difference between roasted stem and leaf tea derived from the same tea plants were investigated using GC-MS. Pyrazine compounds exhibited a roasted odour and high flavour dilution (FD) factors, as determined via AEDA. Roasted stem tea was richer in these pyrazines than roasted leaf tea. Geraniol and linalool exhibited high FD factors and a floral odour, and roasted stem tea was richer in these compounds than roasted leaf tea. These results may have a positive impact on the development of tea products.

  7. Pyrolysis-high resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors

    NASA Technical Reports Server (NTRS)

    Van De Meent, D.; Brown, S. C.; Philp, R. P.; Simoneit, B. R. T.

    1980-01-01

    A series of kerogens and kerogen precursors isolated from DSDP samples, oil shales and recent algal mats have been examined by Curie point pyrolysis-high resolution gas chromatography and gas chromatography-mass spectrometry. This study has shown that the three main types of kerogens (marine, terrestrial and mixtures of both) can be characterized using these techniques. The marine (algal) kerogens yield principally aliphatic products and the terrestrial kerogens yield more aromatic and phenolic products with some n-alkanes and n-alkenes. The yields of n-alkanes and n-alkenes increase and phenols decrease with increasing geologic age, however, pyrolysis-GC cannot be used to characterize the influence of short term diagenesis on the kerogen structure.

  8. Pyrolysis-high resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors

    NASA Technical Reports Server (NTRS)

    Van De Meent, D.; Brown, S. C.; Philp, R. P.; Simoneit, B. R. T.

    1980-01-01

    A series of kerogens and kerogen precursors isolated from DSDP samples, oil shales and recent algal mats have been examined by Curie point pyrolysis-high resolution gas chromatography and gas chromatography-mass spectrometry. This study has shown that the three main types of kerogens (marine, terrestrial and mixtures of both) can be characterized using these techniques. The marine (algal) kerogens yield principally aliphatic products and the terrestrial kerogens yield more aromatic and phenolic products with some n-alkanes and n-alkenes. The yields of n-alkanes and n-alkenes increase and phenols decrease with increasing geologic age, however, pyrolysis-GC cannot be used to characterize the influence of short term diagenesis on the kerogen structure.

  9. Whole Microorganisms Studied by Pyrolysis-Gas Chromatography-Mass Spectrometry: Significance for Extraterrestrial Life Detection Experiments 1

    PubMed Central

    Simmonds, Peter G.

    1970-01-01

    Pyrolysis-gas chromatography-mass spectrometric studies of two microorganisms, Micrococcus luteus and Bacillus subtilis var. niger, indicate that the majority of thermal fragments originate from the principal classes of bio-organic matter found in living systems such as protein and carbohydrate. Furthermore, there is a close qualitative similarity between the type of pyrolysis products found in microorganisms and the pyrolysates of other biological materials. Conversely, there is very little correlation between microbial pyrolysates and comparable pyrolysis studies of meteoritic and fossil organic matter. These observations will aid in the interpretation of a soil organic analysis experiment to be performed on the surface of Mars in 1975. The science payload of this landed mission will include a combined pyrolysis-gas chromatography-mass spectrometry instrument as well as several “direct biology experiments” which are designed to search for extraterrestrial life. PMID:16349890

  10. EPA Method 525.3 - Determination of Semivolatile Organic Chemicals in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Science Inventory

    Method 525.3 is an analytical method that uses solid phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) for the identification and quantitation of 125 selected semi-volatile organic chemicals in drinking water.

  11. EPA Method 525.3 - Determination of Semivolatile Organic Chemicals in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Science Inventory

    Method 525.3 is an analytical method that uses solid phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) for the identification and quantitation of 125 selected semi-volatile organic chemicals in drinking water.

  12. Sweat testing for cocaine, codeine and metabolites by gas chromatography-mass spectrometry.

    PubMed

    Huestis, M A; Oyler, J M; Cone, E J; Wstadik, A T; Schoendorfer, D; Joseph, R E

    1999-10-15

    Sweat testing for drugs of abuse provides a convenient and considerably less invasive method for monitoring drug exposure than blood or urine. Numerous devices have been developed for collection of sweat specimens. The most common device in current use is the PharmChek Sweat Patch, which usually is worn by an individual for five to ten days. This device has been utilized in several field trials comparing sweat test results to conventional urinalysis and the results have been favorable. Two new Fast Patch devices have been developed and tested that allow rapid collection of sweat specimens. The Hand-held Fast Patch was applied to the palm of the hand and the Torso Fast Patch was applied to the abdomen or the sides of the trunk (flanks) of volunteer subjects participating in a research study. Both patches employed heat-induced sweat stimulation and a larger cellulose pad for increased drug collection. Sweat specimens were collected for 30 min at various times following administration of cocaine or codeine in controlled dosing studies. After patch removal, the cellulose pad was extracted with sodium acetate buffer, followed by solid-phase extraction. Extracts were derivatized and analyzed by gas chromatography mass spectrometry (GC-MS) simultaneously for cocaine, codeine and metabolites. Cocaine and codeine were the primary analytes detected in sweat. Peak cocaine and codeine concentrations ranged from 33 to 3579 ng/patch and 11 to 1123 ng/patch, respectively, across all doses for the Hand-held Patch compared to 22-1463 ng/patch and 12-360 ng/patch, respectively, for the Torso Fast Patch. Peak concentrations generally occurred 4.5-24 h after dosing. Both drugs could be detected for at least 48 h after dosing. Considerably smaller concentrations of metabolites of cocaine and codeine were also present in some patches. Generally, concentrations of cocaine and codeine were higher in sweat specimens collected with the Hand-held Fast Patch than for the Torso Fast Patch

  13. Detecting Organic Compounds in Martian Soil Analogues Using Gas Chromatography Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Buch, A.; Mahaffy, P. R.

    2004-01-01

    One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil [l], suggesting the absence of a widely distributed Martian biota. However, Benner et d. have suggested that significant amounts of non-volatile organic compounds, possibly including oxidation products of bioorganic molecules (e.g. carboxylic acids) would not have been detected by the Viking GCMS [2]. Moreover, other key organic compounds important to biology, such as amino acids and nucleobases, would also likely have been missed by the Viking GCMS as these compounds require chemical derivatization to be stable in a GC column [3]. Recent pyrolysis experiments with a Mars soil analogue that had been innoculated with Escherichia coli bacteria have shown that amino acid decomposition products (amines) and nucleobases are among the most abundant products generated after pyrolysis of the bacterial cells [4,5]. At the part per billion level (Viking GCMS detection limit), these pyrolysis products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments [4]. Analytical protocols are under development for upcoming in situ lander opportunities to target several important biological compounds including amino acids and nucleobases. For example, extraction and chemical derivatization techniques [3] are being adapted for space flight use to transform reactive or fragile molecules that would not have been detected by the Viking GCMS instruments, into species that are sufficiently volatile to be detected by GCMS. Recent experiments carried out at NASA Goddard have shown that using this derivatization technique all of the targeted compounds

  14. [Gas chromatography-mass spectrometry based urinary metabolomics in very low birth weight premature infants].

    PubMed

    Li, S T; Huang, X L; Wu, S G; Ma, Y M; Shi, C C; Xiao, X; Hao, H

    2017-06-02

    Objective: To investigate the urinary metabolic spectrum and pathways in very low birth weight (VLBW) premature infants. Method: A prospective case-control study was conducted to collect and compare the data of VLBW premature infants and full term infants from the Sixth Affiliated Hospital of Sun Yet-Sen University in 2014. Within 24 hours after birth, urine specimens in each group were collected. Metabolites of urine samples including amino acid, fatty acid and organic acid were detected using the urease pre-processing and gas chromatography mass spectrometry (GC-MS) technology. Using the orthogonal partial least squares discriminant analysis (OPLS-DA), the biomarkers and differences between the two groups were found. The online metabolic pathway website was explored and multivariable analysis was conducted to investigate the valuable pathways and biomarkers related to the prematurity. Result: A total of 20 VLBW premature infants were enrolled, among whom 11 were male, 9 were female; and 20 full term infants were enrolled, among whom 9 were male, 11 were female. The urinary metabolites were established and compared between the VLBW premature and term infants. The investigation showed that the following nine pathways were enriched: amino-acyl-tRNA biosynthesis(P=0.000), lysine degradation(P=0.007), fatty acid biosynthesis(P=0.008), pyrimidine metabolism(P=0.014), pantothenate and CoA biosynthesis(P=0.022), valine, leucine and isoleucine biosynthesis(P=0.022), lysine biosynthesis(P=0.031), glycerolipid metabolism(P=0.046), and valine, leucine and isoleucine degradation(P=0.031). Almost all the metabolites decreased except for the glyceric acid exhibiting a higher content in the VLBW premature infant. 12 potential biomarkers were explored with the most significant covariance and correlation, within which stearic acid, palmiticacid, myristic acid, β-amino-isobutyric acid, and uric acid were lower, while myo-inositol, mannitol, glycine, glucose1, glucose2, glyceric

  15. Nitrate reduction in a groundwater microcosm determined by sup 15 N gas chromatography-mass spectrometry

    SciTech Connect

    Bengtsson, G.; Annadotter, H. )

    1989-11-01

    Aerobic and anaerobic groundwater continuous-flow microcosms were designed to study nitrate reduction by the indigenous bacteria in intact saturated soil cores from a sandy aquifer with a concentration of 3.8 mg of NO{sub 3}{sup {minus}}-N liter{sup {minus}1}. Traces of {sup 15}NO{sub 3}{sup {minus}} were added to filter-sterilized groundwater by using a Darcy flux of 4 cm day{sup {minus}1}. Both assimilatory and dissimilatory reduction rates were estimated from analyses of {sup 15}N{sub 2}, {sup 15}N{sub 2}O, {sup 15}NH{sub 4}{sup +}, and {sup 15}N-labeled protein amino acids by capillary gas chromatography-mass spectrometry. N{sub 2} and N{sub 2}O were separated on a megabore fused-silica column and quantified by electron impact-selected ion monitoring. NO{sub 3}{sup {minus}} and NH{sub 4}{sup +} were analyzed as pentafluorobenzoyl amides by multiple-ion monitoring and protein amino acids as their N-heptafluorobutyryl isobutyl ester derivatives by negative ion-chemical ionization. The numbers of bacteria and their (methyl-{sup 3}H)thymidine incorporation rates were simultaneously measured. Nitrate was completely reduced in the microcosms at a rate of about 250 ng g{sup {minus}1} day{sup {minus}1}. Of this nitrate, 80 to 90% was converted by aerobic denitrification to N{sub 2}, whereas only 35% was denitrified in the anaerobic microcosm, where more than 50% of NO{sub 3}{sup {minus}} was reduced to NH{sub 4}{sup +}. Assimilatory reduction was recorded only in the aerobic microcosm, where N appeared in alanine in the cells. The nitrate reduction rates estimated for the aquifer material were low in comparison with rates in eutrophic lakes and coastal sediments but sufficiently high to remove nitrate from an uncontaminated aquifer of the kind examined in less than 1 month.

  16. Simultaneous determination of urinary dialkylphosphate metabolites of organophosphorus pesticides using gas chromatography-mass spectrometry.

    PubMed

    Ueyama, Jun; Saito, Isao; Kamijima, Michihiro; Nakajima, Tamie; Gotoh, Masahiro; Suzuki, Takayoshi; Shibata, Eiji; Kondo, Takaaki; Takagi, Kenji; Miyamoto, Ken-ichi; Takamatsu, Junki; Hasegawa, Takaaki; Takagi, Kenzo

    2006-02-17

    In this study, we developed a safe and sensitive method for the simultaneous determination of urinary dialkylphosphates (DAPs), metabolites of organophosphorus insecticides (OPs), including dimethylphosphate (DMP), diethylphosphate (DEP), dimethylthiophosphate (DMTP), and diethylthiophosphate (DETP), using a pentafluorobenzylbromide (PFBBr) derivatization and gas chromatography-mass spectrometry (GC-MS). Several parameters were investigated: pH on evaporation, reaction temperature and time for the derivatization, the use of an antioxidant for preventing oxidation, and a clean-up step. The pH was set at 6, adjusted with K2CO3, and the reaction temperature and time of derivatization were 80 degrees C and 30 min, respectively. Sodium disulfite was chosen as an antioxidant. The clean-up step was performed with a Florisil/PSE mini-column to remove the unreacted PFBBr and sample matrix. This established procedure markedly shortened the sample preparation time to only about 3 h, and completely inhibited the unwanted oxidization of dialkylthiophosphates. The limits of determination (LOD) were approximately 0.3 microg/L for DMP, and 0.1 microg/L for DEP, DMTP, and DETP in 5 mL of human urine. Within-series and between-day imprecision for the present method using pooled urine spiked with DAPs was less than 20.6% in the calibration range of 1-300 microg/L, and the mean recovery was 56.7-60.5% for DMP, 78.5-82.7% for DEP, 88.3-103.9% for DMTP, and 84.2-92.4% for DETP. This method detected geometric mean values of the urinary DAPs in Japanese with and without occupational exposure to OPs, 16.6 or 27.4 for DMP, 1.0 or 0.7 for DEP, 1.3 or 2.3 for DMTP, and 1.0 or 1.1 microg/L for DETP, respectively. The present method, which does not require special equipment except for GC-MS, is quick, safe, and sensitive enough to be adopted in routine biological monitoring of non-occupational as well as occupational exposure to OPs.

  17. Authentication of Organically and Conventionally Grown Basils by Gas Chromatography/Mass Spectrometry Chemical Profiles

    PubMed Central

    Wang, Zhengfang; Chen, Pei; Yu, Liangli; Harrington, Peter de B.

    2013-01-01

    Basil plants cultivated by organic and conventional farming practices were accurately classified by pattern recognition of gas chromatography/mass spectrometry (GC/MS) data. A novel extraction procedure was devised to extract characteristic compounds from ground basil powders. Two in-house fuzzy classifiers, i.e., the fuzzy rule-building expert system (FuRES) and the fuzzy optimal associative memory (FOAM) for the first time, were used to build classification models. Two crisp classifiers, i.e., soft independent modeling by class analogy (SIMCA) and the partial least-squares discriminant analysis (PLS-DA), were used as control methods. Prior to data processing, baseline correction and retention time alignment were performed. Classifiers were built with the two-way data sets, the total ion chromatogram representation of data sets, and the total mass spectrum representation of data sets, separately. Bootstrapped Latin partition (BLP) was used as an unbiased evaluation of the classifiers. By using two-way data sets, average classification rates with FuRES, FOAM, SIMCA, and PLS-DA were 100 ± 0%, 94.4 ± 0.4%, 93.3 ± 0.4%, and 100 ± 0%, respectively, for 100 independent evaluations. The established classifiers were used to classify a new validation set collected 2.5 months later with no parametric changes except that the training set and validation set were individually mean-centered. For the new two-way validation set, classification rates with FuRES, FOAM, SIMCA, and PLS-DA were 100%, 83%, 97%, and 100%, respectively. Thereby, the GC/MS analysis was demonstrated as a viable approach for organic basil authentication. It is the first time that a FOAM has been applied to classification. A novel baseline correction method was used also for the first time. The FuRES and the FOAM are demonstrated as powerful tools for modeling and classifying GC/MS data of complex samples and the data pretreatments are demonstrated to be useful to improve the performance of classifiers

  18. Headspace solid-phase microextraction-gas chromatography-mass spectrometry characterization of propolis volatile compounds.

    PubMed

    Pellati, Federica; Prencipe, Francesco Pio; Benvenuti, Stefania

    2013-10-01

    In this study, a novel and efficient method based on headspace solid-phase microextraction (HS-SPME), followed by gas chromatography-mass spectrometry (GC-MS), was developed for the analysis of propolis volatile compounds. The HS-SPME procedure, whose experimental parameters were properly optimized, was carried out using a 100 μm polydimethylsiloxane (PDMS) fiber. The GC-MS analyses were performed on a HP-5 MS cross-linked 5% diphenyl-95% dimethyl polysiloxane capillary column (30 m × 0.25 mm I.D., 1.00 μm film thickness), under programmed-temperature elution. Ninety-nine constituents were identified using this technique in the samples of raw propolis collected from different Italian regions. The main compounds detected include benzoic acid (0.87-30.13%) and its esters, such as benzyl benzoate (0.16-13.05%), benzyl salicylate (0.34-1.90%) and benzyl cinnamate (0.34-3.20%). Vanillin was detected in most of the samples analyzed in this study (0.07-5.44%). Another relevant class of volatile constituents is represented by sesquiterpene hydrocarbons, such as δ-cadinene (1.29-13.31%), γ-cadinene (1.36-8.85%) and α-muurolene (0.78-6.59%), and oxygenated sesquiterpenes, such as β-eudesmol (2.33-12.83%), T-cadinol (2.73-9.95%) and α-cadinol (4.84-9.74%). Regarding monoterpene hydrocarbons, they were found to be present at low level in the samples analyzed in this study, with the exception of one sample from Southern Italy, where α-pinene was the most abundant constituent (13.19%). The results obtained by HS-SPME-GC-MS were also compared with those of hydrodistillation (HD) coupled with GC-MS. The HS-SPME-GC-MS method developed in this study allowed us to determine the chemical fingerprint of propolis volatile constituents, thus providing a new and reliable tool for the complete characterization of this biologically active apiary product.

  19. Correlation of Drug-Testing Results - Immunoassay versus Gas Chromatography-Mass Spectrometry.

    PubMed

    Huang, M H; Liu, R H; Chen, Y L; Rhodes, S L

    2006-01-01

    The need for and prevalence of workplace drug-testing programs mandate the development of an effective and efficient two-step test strategy. Successful implementation of the two-step test strategy relies on the establishment of a reasonable correlation between the preliminary and the confirmatory test data and the selection of an appropriate cutoff for each test step. Correlations of test data derived form these two test steps were most commonly studied qualitatively by comparing the positive/negative test result concluded by these two test steps; however, when instrument-based immunoassays (IA) are used in the preliminary test step, the resulting "semiquantitative" and "apparent" concentration of the targeted analyte can be quantitatively correlated to the analyte concentration as determined by gas chromatography-mass spectrometry (GC-MS). Specimens selected for quantitative correlation studies should be clinical specimens with the distributions of metabolites similar to that present in test specimens; if the resulting correlation data are to be used for selecting appropriate/corresponding cutoffs for these two test steps, the concentrations of the targeted analyte in these specimens should also be within a narrow range centering on the proposed GC-MS cutoff concentration. Among the very significant number of reports correlating IA and GC-MS test data, cannabis and urine are the most common drug category and test specimen studied. The degree of correlation between IA and the GC-MS test data varies with the IA reagent manufacturers, and even with manufacture dates/lots of those supplied by the same manufacturer. The most important factors underlying the observed degree of correlation are undoubtedly the cross-reacting characteristics of the antibody and the metabolite distribution pattern of the drug of concern. Over time, specificities of IA reagents have been optimized so that the two-step test strategy can be most effectively and efficiently applied using the

  20. Plasma metabolomic profiling of dairy cows affected with ketosis using gas chromatography/mass spectrometry

    PubMed Central

    2013-01-01

    Background Ketosis is an important problem for dairy cows` production performance. However, it is still little known about plasma metabolomics details of dairy ketosis. Results A gas chromatography/mass spectrometry (GC/MS) technique was used to investigate plasma metabolic differences in cows that had clinical ketosis (CK, n=22), subclinical ketosis (SK, n=32), or were clinically normal controls (NC, n=22). The endogenous plasma metabolome was measured by chemical derivatization followed by GC/MS, which led to the detection of 267 variables. A two-sample t-test of 30, 32, and 13 metabolites showed statistically significant differences between SK and NC, CK and NC, and CK and SK, respectively. Orthogonal signal correction-partial least-square discriminant analysis (OPLS-DA) revealed that the metabolic patterns of both CK and SK were mostly similar, with the exception of a few differences. The development of CK and SK involved disturbances in many metabolic pathways, mainly including fatty acid metabolism, amino acid metabolism, glycolysis, gluconeogenesis, and the pentose phosphate pathway. A diagnostic model arbitrary two groups was constructed using OPLS-DA and receiver–operator characteristic curves (ROC). Multivariate statistical diagnostics yielded the 19 potential biomarkers for SK and NC, 31 for CK and NC, and 8 for CK and SK with area under the curve (AUC) values. Our results showed the potential biomarkers from CK, SK, and NC, including carbohydrates, fatty acids, amino acids, even sitosterol and vitamin E isomers, etc. 2-piperidinecarboxylic acid and cis-9-hexadecenoic acid were closely associated with metabolic perturbations in ketosis as Glc, BHBA and NEFA for dealing with metabolic disturbances of ketosis in clinical practice. However, further research is needed to explain changes of 2,3,4-trihydroxybutyric acid, 3,4-dihydroxybutyric acid, α-aminobutyric acid, methylmalonic acid, sitosterol and α-tocopherol in CK and SK, and to reveal differences

  1. Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry.

    PubMed

    Colombini, Maria Perla; Andreotti, Alessia; Bonaduce, Ilaria; Modugno, Francesca; Ribechini, Erika

    2010-06-15

    Throughout history, artists have experimented with a variety of organic-based natural materials, using them as paint binders, varnishes, and ingredients for mordants in gildings. Artists often use many layers of paint to produce particular effects. How we see a painting is thus the final result of how this complex, highly heterogeneous, multimaterial, and multilayered structure interacts with light. The chemical characterization of the organic substances in paint materials is of great importance for artwork conservation because the organic components of the paint layers are particularly subject to degradation. In addition, understanding the organic content and makeup of paint materials allows us to differentiate between the painting techniques that have been used over history. Applying gas chromatography/mass spectrometry (GC/MS) analysis to microsamples of paint layers is widely recognized as the best approach for identifying organic materials, such as proteins, drying oils, waxes, terpenic resins, and polysaccharide gums. The method provides essential information for reconstructing artistic techniques, assessing the best conditions for long-term preservation, and planning restoration. In this Account, we summarize the more common approaches adopted in the study of the organic components of paint materials. Our progress in developing GC/MS analytical procedures in the field of cultural heritage is presented, focusing on problems that arise from (i) the presence of mixtures of many chemically complex and degraded materials, (ii) the interference of inorganic species, (iii) the small size of the samples, and (iv) the risk of contamination. We outline some critical aspects of the analytical strategy, such as the need to optimize specific wet-chemical sample pretreatments in order to separate the various components, hydrolyze macromolecular analytes, clean-up inorganic ions, and derivatize polar molecules for subsequent GC/MS separation and identification. We also

  2. Measurement of 8-hydroxy-2'-deoxyguanosine in DNA by high-performance liquid chromatography-mass spectrometry: comparison with measurement by gas chromatography-mass spectrometry.

    PubMed

    Dizdaroglu, M; Jaruga, P; Rodriguez, H

    2001-02-01

    Measurement of 8-hydroxy-2'-deoxyguanosine (8-OH-dGuo) in DNA by high-performance liquid chromatography/mass spectrometry (LC/MS) was studied. A methodology was developed for separation by LC of 8-OH-dGuo from intact and modified nucleosides in DNA hydrolyzed by a combination of four enzymes: DNase I, phosphodiesterases I and II and alkaline phosphatase. The atmospheric pressure ionization-electrospray process was used for mass spectral measurements. A stable isotope-labeled analog of 8-OH-dGuo was used as an internal standard for quantification by isotope-dilution MS (IDMS). Results showed that LC/IDMS with selected ion-monitoring (SIM) is well suited for identification and quantification of 8-OH-dGuo in DNA at background levels and in damaged DNA. The sensitivity level of LC/IDMS-SIM was found to be comparable to that reported previously using LC-tandem MS (LC/MS/MS). It was found that approximately five lesions per 10(6) DNA bases can be detected using amounts of DNA as low as 2 microgram. The results also suggest that this lesion may be quantified in DNA at levels of one lesion per 10(6) DNA bases, or even lower, when more DNA is used. Up to 50 microgram of DNA per injection were used without adversely affecting the measurements. Gas chromatography/isotope-dilution MS with selected-ion monitoring (GC/IDMS-SIM) was also used to measure this compound in DNA following its removal from DNA by acidic hydrolysis or by hydrolysis with Escherichia coli Fpg protein. The background levels obtained by LC/IDMS-SIM and GC/IDMS-SIM were almost identical. Calf thymus DNA and DNA isolated from cultured HeLa cells were used for this purpose. This indicates that these two techniques can provide similar results in terms of the measurement of 8-OH-dGuo in DNA. In addition, DNA in buffered aqueous solution was damaged by ionizing radiation at different radiation doses and analyzed by LC/IDMS-SIM and GC/IDMS-SIM. Again, similar results were obtained by the two techniques. The

  3. Identification of Gibberellins in Norway Spruce (Picea abies [L.] Karst.) by Combined Gas Chromatography-Mass Spectrometry

    PubMed Central

    Odén, Per Christer; Schwenen, Ludger; Graebe, Jan E.

    1987-01-01

    Gibberellins A1 (GA1), A3 and A9 were identified from extracts of shoots of 6-month old Norway spruce (Picea abies) seedlings by the use of sequential reverse and normal phase high performance liquid chromatography (HPLC), bioassay, radioimmunoassay (RIA) and combined gas chromatography-mass spectrometry (GC-MS). The bioassay and RIA were used after fractionation by HPLC to detect the GA-containing fractions, which were then examined by GC-MS. The GAs identified are considered to be endogenous. PMID:16665471

  4. The use of stable isotopes and gas chromatography/mass spectrometry in the identification of steroid metabolites in the equine

    SciTech Connect

    Houghton, E.; Dumasia, M.C.; Teale, P.; Smith, S.J.; Cox, J.; Marshall, D.; Gower, D.B. )

    1990-10-01

    Stable isotope gas chromatography/mass spectrometry has been used successfully in the elucidation of structures of urinary steroid metabolites in the horse and in the identification of metabolites isolated from in vivo perfusion and in vitro incubation studies using equine tissue preparations. Deuterium-labeled steroids, testosterone, dehydroepiandrosterone, and 5-androstene-3 beta,17 beta-diol have been synthesized by base-catalyzed isotope exchange methods and the products characterized by gas chromatography/mass spectrometry. (16,16(-2)H2)Dehydroepiandrosterone (plus radiolabeled dehydroepiandrosterone) was perfused into a testicular artery of a pony stallion and was shown to be metabolized into 2H2-labeled testosterone, 4-androstenedione, isomers of 5-androstene-3,17-diol, 19-hydroxytestosterone, and 19-hydroxy-4-androstenedione. In further studies, equine testicular minces have been incubated with 2H2-labeled and radiolabeled dehydroepiandrosterone and 5-androstene-3 beta, 17 beta-diol. The metabolites, whose identity was confirmed by stable isotope gas chromatography/mass spectrometry, proved the interconversion of the two substrates, as well as formation of testosterone and 4-androstenedione. The aromatization of dehydroepiandrosterone was also confirmed, together with the formation of an isomer of 5(10)-estrene-3,17-diol from both substrates showing 19-demethylation without concomitant aromatization. In studies of the feto-placental unit, the allantochorion was shown to aromatize (2H5)testosterone to (2H4)estradiol, the loss of one 2H from the substrate being consistent with aromatization of the A ring. The formation of 6-hydroxyestradiol was also confirmed in this study. The same technique has been valuable in determining the structure of two metabolites of nandrolone isolated from horse urine.

  5. [Differentiation of ballpoint pen inks by thermodesorption and gas chromatography-mass spectrometry].

    PubMed

    Bügler, Jürgen; Buchner, Hans; Dallmayer, Anton

    2004-01-01

    Differentiation and classification of ink entries with dated samples of a reference collection are important aspects in the examination of questioned documents. Classification of writing inks is presently achieved by analysis of dyes and colorants contained in the ink. This technique has its limitations in newly developed ink formulations with identical dye composition but differing in their solvents and binder resins. This paper introduces a method for the determination of solvents and binder resins of an ink sample directly from paper without sample preparation. This aim is accomplished by thermodesorption of the sample followed by gas chromatography/mass spectroscopy. The method was tested on numerous samples of ballpoint pen inks, which were subsequently grouped into several solvent and resin subgroups. A case study shows the applicability of the newly developed method.

  6. Quantitative Analysis and Fingerprint Profiles for Quality Control of Fructus Schisandrae by Gas Chromatography: Mass Spectrometry

    PubMed Central

    Xia, Yong-Gang; Yang, Bing-You; Liang, Jun; Yang, Qi; Wang, Di; Kuang, Hai-Xue

    2014-01-01

    This paper describes a simple, rapid, and effective quality assessment method for Fructus Schisandrae by gas chromatography-mass spectrum (GC-MS). The method was established by using specific lignan fingerprint profiles and quantitation of characteristic compounds in this herbal medicine. The GC-MS fingerprints of 15 batches of Schisandra samples from different regions of China showed similar lignan profiles. Five peaks were selected as characteristic peaks, and all of these were identified by using GC-MS techniques. The relative retention times of these characteristic peaks in the GC-MS fingerprint were established as an important parameter for identification of Schisandra samples. Meanwhile, relative peak areas may be a feasible approach to discriminate the S. chinensis and S. sphenanthera. Finally, these pharmacologically active constituents in the titled plant, schisandrins A–C and schizandrols A and B, were quantitatively determined using a validated GC-MS method. PMID:24574919

  7. The composition of volatile components in olivines from Yakutian kimberlites of various ages: Evidence from gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tomilenko, A. A.; Bul'bak, T. A.; Khomenko, M. O.; Kuzmin, D. V.; Sobolev, N. V.

    2016-06-01

    The composition of volatiles from fluid and melt inclusions in olivine phenocrysts from Yakutian kimberlite pipes of various ages (Olivinovaya, Malokuonapskaya, and Udachnaya-East) were studied for the first time by gas chromatography-mass spectrometry. It was shown that hydrocarbons and their derivatives, as well as nitrogen-, halogen-, and sulfur-bearing compounds, played a significant role in the mineral formation. The proportion of hydrocarbons and their derivatives in the composition of mantle fluids could reach 99%, including up to 4.9% of chlorineand fluorine-bearing compounds.

  8. Application of capillary gas chromatography mass spectrometry/computer techniques to synoptic survey of organic material in bed sediment

    USGS Publications Warehouse

    Steinheimer, T.R.; Pereira, W.E.; Johnson, S.M.

    1981-01-01

    A bed sediment sample taken from an area impacted by heavy industrial activity was analyzed for organic compounds of environmental significance. Extraction was effected on a Soxhlet apparatus using a freeze-dried sample. The Soxhlet extract was fractionated by silica gel micro-column adsorption chromatography. Separation and identification of the organic compounds was accomplished by capillary gas chromatography/mass spectrometry techniques. More than 50 compounds were identified; these include saturated hydrocarbons, olefins, aromatic hydrocarbons, alkylated polycyclic aromatic hydrocarbons, and oxygenated compounds such as aldehydes and ketones. The role of bed sediments as a source or sink for organic pollutants is discussed. ?? 1981.

  9. Chemical analysis of surface hydrocarbons in fireflies by direct contact extraction and gas chromatography-mass spectrometry.

    PubMed

    Shibue, Keiko; Goto, Yoshimasa; Kawashima, Itsuro; Shibue, Toshimichi

    2004-12-01

    We characterized three Japanese firefly species (Luciola lateralis, Luciola cruciata, and Lucidina biplagiata) and three North American firefly species (Lucidota atra, Photuris lucicrescens, and Photuris cinctipennis) based on their surface hydrocarbons. The analysis of firefly extracts by gas chromatography-mass spectrometry (GC-MS) revealed clear differences in the chromatographic profiles and mass spectra. Each firefly could be distinguished by its GC-MS profile. A major difference was observed between Japanese fireflies and North American fireflies. Among the North American fireflies, non-luminous fireflies, Lucidota atra, showed much more complicated GC-MS profile than those of luminous fireflies, Photuris lucicrescens and Photuris cinctipennis.

  10. Detection of perfluorocarbons in blood by headspace solid-phase microextraction combined with gas chromatography/mass spectrometry.

    PubMed

    Mathurin, J C; de Ceaurriz, J; Audran, M; Krafft, M P

    2001-11-01

    A new method of detection of perfluorocarbon molecules (PFCs) in blood sample has been established. After an extraction and pre-concentration step performed by headspace solid-phase microextraction (HS-SPME), the PFCs are detected by gas chromatography-mass spectrometry (GC/MS) with an ion trap mass spectrometer in MS and MS/MS modes. The influence of different parameters on the SPME process is discussed. The limit of detection and the linearity of the procedure have been determined for two PFCs.

  11. Determination of cocaine and cocaethylene in plasma by solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Alvarez, Iván; Bermejo, Ana María; Tabernero, María Jesús; Fernández, Purificación; López, Patricia

    2007-01-01

    The present paper describes a method for the simultaneous determination of cocaine and cocaethylene in plasma. It was based in the extraction of the analytes by solid-phase microextraction (SPME), and gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify the analytes in selected ion monitoring (SIM) mode. The method showed to be very simple, rapid and sensitive. The method was validated for the two compounds, including linearity (range 25-1000 ng/mL) and the main precision parameters. It was applied to ten plasma samples from cocaine and alcohol users, obtaining positive results in all cases.

  12. Isotope ratio monitoring gas chromatography/Mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry.

    PubMed

    Hilkert; Douthitt; Schlüter; Brand

    1999-07-01

    Of all the elements, hydrogen has the largest naturally occurring variations in the ratio of its stable isotopes (D/H). It is for this reason that there has been a strong desire to add hydrogen to the list of elements amenable to isotope ratio monitoring gas chromatography/mass spectrometry (irm-GC/MS). In irm-GC/MS the sample is entrained in helium as the carrier gas, which is also ionized and separated in the isotope ratio mass spectrometer (IRMS). Because of the low abundance of deuterium in nature, precise and accurate on-line monitoring of D/H ratios with an IRMS requires that low energy helium ions be kept out of the m/z 3 collector, which requires the use of an energy filter. A clean mass 3 (HD(+.)) signal which is independent of a large helium load in the electron impact ion source is essential in order to reach the sensitivity required for D/H analysis of capillary GC peaks. A new IRMS system, the DELTA(plus)XL(trade mark), has been designed for high precision, high accuracy measurements of transient signals of hydrogen gas. It incorporates a retardation lens integrated into the m/z 3 Faraday cup collector. Following GC separation, the hydrogen bound in organic compounds must be quantitatively converted into H(2) gas prior to analysis in the IRMS. Quantitative conversion is achieved by high temperature conversion (TC) at temperatures >1400 degrees C. Measurements of D/H ratios of individual organic compounds in complicated natural mixtures can now be made to a precision of 2 per thousand (delta notation) or, better, with typical sample amounts of approximately 200 ng per compound. Initial applications have focused on compounds of interest to petroleum research (biomarkers and natural gas components), food and flavor control (vanillin and ethanol), and metabolic studies (fatty acids and steroids). Copyright 1999 John Wiley & Sons, Ltd.

  13. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Predicting percent composition of blends of biodiesel and conventional diesel using gas chromatography-mass spectrometry, comprehensive two-dimensional gas chromatography-mass spectrometry, and partial least squares analysis.

    PubMed

    Pierce, Karisa M; Schale, Stephen P

    2011-01-30

    The percent composition of blends of biodiesel and conventional diesel from a variety of retail sources were modeled and predicted using partial least squares (PLS) analysis applied to gas chromatography-total-ion-current mass spectrometry (GC-TIC), gas chromatography-mass spectrometry (GC-MS), comprehensive two-dimensional gas chromatography-total-ion-current mass spectrometry (GCxGC-TIC) and comprehensive two-dimensional gas chromatography-mass spectrometry (GCxGC-MS) separations of the blends. In all four cases, the PLS predictions for a test set of chromatograms were plotted versus the actual blend percent composition. The GC-TIC plot produced a best-fit line with slope=0.773 and y-intercept=2.89, and the average percent error of prediction was 12.0%. The GC-MS plot produced a best-fit line with slope=0.864 and y-intercept=1.72, and the average percent error of prediction was improved to 6.89%. The GCxGC-TIC plot produced a best-fit line with slope=0.983 and y-intercept=0.680, and the average percent error was slightly improved to 6.16%. The GCxGC-MS plot produced a best-fit line with slope=0.980 and y-intercept=0.620, and the average percent error was 6.12%. The GCxGC models performed best presumably due to the multidimensional advantage of higher dimensional instrumentation providing more chemical selectivity. All the PLS models used 3 latent variables. The chemical components that differentiate the blend percent compositions are reported. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Interference of 3-hydroxyisobutyrate with measurements of ketone body concentration and isotopic enrichment by gas chromatography-mass spectrometry.

    PubMed

    Des Rosiers, C; Montgomery, J A; Desrochers, S; Garneau, M; David, F; Mamer, O A; Brunengraber, H

    1988-08-15

    Concentrations and 13C2 molar percentage enrichments of blood R-3-hydroxybutyrate and acetoacetate are measured by selected ion monitoring gas chromatography-mass spectrometry. Samples are treated with NaB2H4 to reduce unlabeled and labeled acetoacetate to corresponding deuterium-labeled RS-3-hydroxybutyrate species. Only the gas chromatographic peak for the tert-butyldimethylsilyl derivative of 3-hydroxybutyrate needs to be monitored. The various compounds are quantitated using an internal standard of RS-3-hydroxy-[2,2,3,4,4,4-2H6]-butyrate. Concentrations of ketone bodies are obtained by monitoring the m/z 159 to 163 fragments of tert-butyldimethylsilyl derivatives of labeled and unlabeled 3-hydroxybutyrate species. High correlations were obtained between ketone body concentrations assayed (i) enzymatically with R-3-hydroxybutyrate dehydrogenase and (ii) by gas chromatography-mass spectrometry. The limit of detection is about 10 nmol of substrate in blood samples. The current practice of monitoring the m/z 275 to 281 fragments overestimates the concentration of endogenous R-3-hydroxybutyrate, due to co-elution of 3-hydroxyisobutyrate, a valine metabolite. The method presented is used to measure ketone body turnover in vivo in 24-h-fasted dogs.

  16. Chromatographic fingerprint analysis of metabolites in natural and artificial agarwood using gas chromatography-mass spectrometry combined with chemometric methods.

    PubMed

    Gao, Xiaoxia; Xie, Mingrong; Liu, Shaofeng; Guo, Xiaoling; Chen, Xiaoying; Zhong, Zhaojian; Wang, Lei; Zhang, Weimin

    2014-09-15

    Agarwood is a resinous material formed in wounded Aquilaria sinensis in China, which is widely used as an effective traditional Chinese medicine (TCM). This study is aimed to use gas chromatography-mass spectrometry combined with chemometric methods to create reliable criteria for accurate identification of natural agarwood and artificial agarwood, as well as for quality evaluation of artificial agarwood. Natural agarwood and artificial agarwood (stimulated by formic acid or formic acid plus fungal inoculation) were used as standards and controls for the gas chromatography-mass spectrometry (GC-MS) and multivariate analysis. The identification criteria developed were applied to commercial agarwood. A reliable criteria including correlation coefficient of GC-MS fingerprint of natural agarwood and 22 markers of metabolism in natural and artificial agarwood was constructed. Compared with chemically stimulated agarwood (formic acid) and in terms of the 22 markers, artificial agarwood obtained by formic acid stimulation and fungal inoculation were much closer to natural agarwood. The study demonstrates that the chemical components of artificial agarwood obtained by comprehensive stimulated method (formic acid plus fungal inoculation) are much closer to the natural agarwood than those obtained by chemically stimulated method (formic acid), as times goes by. A reliable criteria containing correlation coefficient of GC-MS fingerprint of natural agarwood and 22 metabolism markers can be used to evaluate the quality of the agarwood. As an application case, three samples were identified as natural agarwood from the 25 commercial agarwood by using the evaluation method.

  17. Potential of needle trap microextraction-portable gas chromatography-mass spectrometry for measurement of atmospheric volatile compounds

    NASA Astrophysics Data System (ADS)

    Feijó Barreira, Luís Miguel; Xue, Yu; Duporté, Geoffroy; Parshintsev, Jevgeni; Hartonen, Kari; Jussila, Matti; Kulmala, Markku; Riekkola, Marja-Liisa

    2016-08-01

    Volatile organic compounds (VOCs) play a key role in atmospheric chemistry and physics. They participate in photochemical reactions in the atmosphere, which have direct implications on climate through, e.g. aerosol particle formation. Forests are important sources of VOCs, and the limited resources and infrastructures often found in many remote environments call for the development of portable devices. In this research, the potential of needle trap microextraction and portable gas chromatography-mass spectrometry for the study of VOCs at forest site was evaluated. Measurements were performed in summer and autumn 2014 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. During the first part of the campaign (summer) the applicability of the developed method was tested for the determination of monoterpenes, pinonaldehyde, aldehydes, amines and anthropogenic compounds. The temporal variation of aerosol precursors was determined, and evaluated against temperature and aerosol number concentration data. The most abundant monoterpenes, pinonaldehyde and aldehydes were successfully measured, their relative amounts being lower during days when particle number concentration was higher. Ethylbenzene, p- and m-xylene were also found when wind direction was from cities with substantial anthropogenic activity. An accumulation of VOCs in the snow cover was observed in the autumn campaign. Results demonstrated the successful applicability of needle trap microextraction and portable gas chromatography-mass spectrometry for the rapid in situ determination of organic gaseous compounds in the atmosphere.

  18. Sensitive determination of methomyl in blood using gas chromatography-mass spectrometry as its oxime tert.-butyldimethylsilyl derivative.

    PubMed

    Ito, S; Kudo, K; Imamura, T; Suzuki, T; Ikeda, N

    1998-08-25

    A sensitive, selective and reliable method was developed to determine methomyl ¿methyl-N-[(methylcarbamoyl)oxy]-thioacetimidate¿, a carbamate insecticide in human blood, using gas chromatography-mass spectrometry. Dimethylglyoxime served as an internal standard (I.S.). Methomyl in the blood was converted to its oxime form by sodium hydroxide. The solution made acidic with hydrochloric acid was poured into a column packed with Extrelut. Methomyloxime and I.S. were eluted from the column with a mixture of dichloromethane-ethyl acetate-chloroform (65:25:10), transformed to tert.-butyldimethylsilyl derivatives, and analyzed by gas chromatography-mass spectrometry in the electron impact mode. The calibration curves were linear in the concentration range from 1 ng/g to 100 ng/g and 100 ng/g to at least 5000 ng/g. The lower limit of detection was 0.5 ng/g. The absolute recoveries were 72-93% and within-day coefficients of variation were 3.1-5.6% at blood concentrations of 10 and 1000 ng/g. Two practical forensic applications are described.

  19. Direct analysis of oligomeric tackifying resins in rubber compounds by automatic thermal desorption gas chromatography/mass spectrometry

    PubMed

    Kim

    1999-01-01

    Two analytical methods, automatic thermal desorption gas chromatography/mass spectrometry (ATD-GC/MS) and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS), were applied as direct methods for the analysis of oligomeric tackifying resins in a vulcanized rubber. The ATD-GC/MS method, based on discontinuous volatile extraction, was found to be an effective means for direct analysis of the oligomeric tackifying resins contained in a vulcanized rubber. The oligomeric tackifying resins, such as t-octylphenolformaldehyde (TOPF) resin, rosin-modified terpene resin, and cashew resin, could be directly analyzed in vulcanized rubber by ATD-GC/MS. Much simpler total ion chromatograms were obtained by ATD-GC/MS than by flash pyrolysis with a Curie-point pyrolyzer, permitting much easier interpretation. Ions at m/z 206, 135, and 107 were fingerprints in the characteristic mass spectra obtained by ATD-GC/MS for TOPF resin in the vulcanized rubber. 1H-Indene, styrene, and isolongifolene were observed as their characteristic mass spectra in the pyrolyzate of the rosin-modified terpene resin. From the cashew resin, phenol, 3-methylphenol, and 4-(1,1,3, 3-tetramethylbutyl)phenol were obtained as the characteristic pyrolyzates by discontinuous thermal extraction via ATD-GC/MS. Copyright 1999 John Wiley & Sons, Ltd.

  20. SPECIATION OF SUBSURFACE CONTAMINANTS BY CONE PENETROMETRY GAS CHROMATOGRAPHY/MASS SPECTROMETRY. (R826184)

    EPA Science Inventory

    A thermal extraction cone penetrometry gas chroma tography/mass spectrometry system (TECP GC/MS) has been developed to detect subsurface contaminants in situ. The TECP can collect soil-bound organics up to depths of 30 m. In contrast to traditional cone penetrometer sample collec...

  1. Sensitive determination of fluoride in biological samples by gas chromatography-mass spectrometry after derivatization with 2-(bromomethyl)naphthalene.

    PubMed

    Kwon, Sun-Myung; Shin, Ho-Sang

    2014-12-10

    A gas chromatography-mass spectrometric method was developed in this study in order to determine fluoride in plasma and urine after derivatization with 2-(bromomethyl)naphthalene. 2-Fluoronaphthalene was chosen as the internal standard. The derivatization of fluoride was performed in the biological sample and the best reaction conditions (10.0 mg mL(-1) of 2-(bromomethyl)naphthalene, 1.0 mg mL(-1) of 15-crown-5-ether as a phase transfer catalyst, pH of 7.0, reaction temperature of 70°C, and heating time of 70 min) were established. The organic derivative was extracted with dichloromethane and then measured by a gas chromatography-mass spectrometry. Under the established condition, the detection limits were 11 μg L(-1) and 7 μg L(-1) by using 0.2 mL of plasma or urine, respectively. The accuracy was in a range of 100.8-107.6%, and the precision of the assay was less than 4.3% in plasma or urine. Fluoride was detected in a concentration range of 0.12-0.53 mg L(-1) in six urine samples after intake of natural mineral water containing 0.7 mg L(-1) of fluoride. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Solid-phase microcolumn extraction and gas chromatography-mass spectrometry identification of volatile organic compounds emitted by paper.

    PubMed

    Hrivnák, Ján; Tölgyessy, Peter; Figedyová, Sona; Katuscák, Svetozár

    2009-11-15

    A rapid non-destructive sampling technique for the analysis of volatile organic compounds (VOCs) emitted by paper sheets is described. A capillary, which is connected to a microcolumn packed with Tenax TA, is inserted between two sheets at the centre of a paper stack encapsulated inside a PET/Al/PE composite foil. The other end of the microcolumn is connected to a gas-tight syringe and an appropriate volume of gaseous phase is aspirated. The microcolumn is then thermally desorbed in a modified GC inlet (modification is presented) and analysed by gas chromatography-mass spectrometry (GC-MS). In the chromatogram from the analysis of artificially aged paper sample 21 compounds were identified. Advantages of the method including the short sampling time (1 min), simplicity and economic aspect are discussed.

  3. Protocol: A simple protocol for quantitative analysis of bio-oils through gas- chromatography/mass spectrometry.

    PubMed

    Bartoli, Mattia; Rosi, Luca; Frediani, Marco; Frediani, Piero

    2016-01-01

    A new and simple protocol for quantitative analysis of bio-oils using gas-chromatography/mass spectrometry is suggested. Compounds were identified via their mass spectra, and then unavailable response factors were calculated with respect to diphenyl as the internal standard using a modified method previously suggested for gas chromatography with flame ionization detection. This new protocol was applied to the characterization of bio-oils obtained from the pyrolysis of woods of different sources or using different pyrolysis procedures. This protocol allowed evaluation of the yields of products from poplar pyrolysis (among 50% and 99%), while a reduced amounts of products were identified from the pyrolysis of cellulose (between 46% and 58%). The main product was always acetic acid, but it was formed in very large yields from poplar while lower yields were obtained from cellulose.

  4. Identification of wild collected mosquito vectors of diseases using gas chromatography-mass spectrometry in Jazan Province, Saudi Arabia.

    PubMed

    Al Ahmed, Azzam M; Badjah-Hadj-Ahmed, Ahmed-Yacine; Al Othman, Zeid A; Sallam, Mohamed F

    2013-11-01

    Thirty-three species of mosquitoes have been reported from the Kingdom of Saudi Arabia. Several of these mosquitoes, Anopheles gambiae Giles s.l., Anopheles stephensi Liston, Culex pipiens Linnaeus, Culex quinquefasciatus Say, Culex tritaeniorhynchus Giles, Stegomyia aegypti (Linnaeus) and Aedimorphus vexans arabiensis (Patton) are known vectors of human and animal diseases. In this study, the cuticular hydrocarbon profiles of eight mosquito species using gas chromatography-mass spectrometry were analyzed. Wild collected fourth-instar larvae were reared, and single, newly emerged, unfed adult females were used for the analysis. A total of 146-160 peaks were detected from the cuticular extracts by gas chromatography. Repeated analysis of variance (ANOVA) and Tukey HSD Post Hoc test was used to test for quantitative differences in relative hydrocarbon quantity. In addition, a linear regression model was applied using Enter method to determine the diagnostic peaks for the eight mosquito specimens. The ANOVA test indicated that relative peaks were significant (P < 0.05) when selected pairs of peaks were compared. Also, seven compounds showed qualitative differences among the five mosquito vectors tested. The classes of constituents present were n-alkanes, monomethylalkanes, dimethylalkanes, trimethylalkanes, alkenes, branched aromatic hydrocarbons, aldehydes and esters. These compounds have a carbon chain length ranging from 8 to 18 carbons. The most abundant compound in all adult mosquito specimens was n-hexylacrylate [retention time (RT) 6.73 min], which was not detected in Cx. pipiens. In Cx. pipiens, the most abundant peak was benzaldehyde (RT 2.98 min). Gas chromatography-mass spectrometry is a suitable method to identify adult mosquitoes, especially from focal areas of public health concern such as Jazan Province, Saudi Arabia. This method allows a wide range of adult collected material to be identified with high accuracy.

  5. Analysis of odour compounds from scented consumer products using gas chromatography-mass spectrometry and gas chromatography-olfactometry.

    PubMed

    Bartsch, Jennifer; Uhde, Erik; Salthammer, Tunga

    2016-01-21

    Scented consumer products are being bought in increasing amounts and gaining more popularity. There is, however, relatively little information available about their ingredients, emissions and allergenic potential. Frequently, a mixture of different fragrance substances and not solely an individual substance contributes to the overall desired smell. The aim of this study was to investigate the odorous volatile organic compounds (OVOCs) in consumer products containing fragrances. Over 44 products were selected: various scented candles, printing products with different scent types and other products types particularly meant to be used indoors. Measurements were carried out in a desiccator. Air samples were collected on thermal desorption tubes to determine the released fragrance substances by means of gas chromatography-mass spectrometry (GC-MS). Moreover, gas chromatography-olfactometry (GC-O) was used to obtain sensory data and to ensure no important odorant was overlooked. Using both methods it was possible to distinguish between odour active and inactive compounds and subsequently to identify almost 300 different odorants across all scented products. Besides the advantage of differentiation, as the human nose is a very sensitive detector, GC-O was found to be a useful tool for detecting traces and chosen target compounds. One focus in this study lay on the 26 EU-regulated fragrance allergens to prove their relevance in scented consumer goods. In total, 18 of them were identified, with at least one substance being present in almost every product. Benzyl alcohol, cinnamaldehyde, citronellol, eugenol, linalool and limonene were the prevalently detected allergens. Particularly linalool and limonene were observed in over 50% of the products. In addition, eugenol appeared to be one of the most frequently detected compounds in trace-level concentrations in the candle emissions.

  6. Pyrolysis-gas chromatography/mass spectrometry analyses of biological particulates collected during recent space shuttle missions

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Limero, T. F.; James, J. T.

    1994-01-01

    Biological particulates collected on air filters during shuttle missions (STS-40 and STS-42) were identified using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). A method was developed for identifying the atmospheric particles and their sources through the analysis of standard materials and the selection of "marker" compounds specific to the particle type. Pyrolysis spectra of biological standards were compared with those of airborne particles collected during two space shuttle missions; marker compounds present in the shuttle particle spectra were matched with those of the standards to identify the source of particles. Particles of 0,5--1-mm diameter and weighing as little as 40 micrograms could be identified using this technique. The Py-GC/MS method identified rat food and soilless plant-growth media as two sources of particles collected from the shuttle atmosphere during flight.

  7. Determination of some volatile compounds in alcoholic beverage by headspace solid-phase microextraction gas chromatography - mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schmutzer, G.; Avram, V.; Feher, I.; David, L.; Moldovan, Z.

    2012-02-01

    The volatile composition of alcoholic beverage was studied by headspace solid-phase microextraction (HSSPME) method and gas chromatography - mass spectrometry (GC-MS). Some volatile compounds, such as alcohols, esters, terpenes and other are mainly responsible for the flavor of fortified wines and their amounts specify the quality of the alcoholic beverages. From this perspective it is interesting to develop a rapid, selective and sensitive analytical method suitable for simultaneous quantification of the main molecules being responsible for the organoleptic characteristic of alcoholic beverages. Vermouth fortified drink was analyzed in order to characterize the volatile profile. Using the HS-SPME/GC-MS a number of twenty-six volatile compounds from a commercial market alcoholic beverage were identified. The most abundant compounds were m-thymol, o-thymol and eugenol, alongside of the ethyl ester compounds.

  8. A fatal case of trichlorofluoromethane (Freon 11) poisoning. Tissue distribution study by gas chromatography-mass spectrometry.

    PubMed

    Groppi, A; Polettini, A; Lunetta, P; Achille, G; Montagna, M

    1994-05-01

    A case of lethal poisoning due to trichlorofluoromethane (FC11) inhalation is described. The fluorocarbon was determined in biological tissues by headspace gas chromatography-mass spectrometry. FC11 was detected in all the examined tissues, with decreasing levels in heart, lung, brain, liver, blood, kidney, and spleen. The highest concentration measured in heart could be related to the mode of toxic action of fluorocarbons postulated by many authors, characterized by the sensitization of the myocardium to the catecholamines producing arrhythmia and cardiac arrest. Nevertheless the aspecific picture of the anatomo-pathological and histological findings does not exclude that the described accidental fatality may have been caused by the combination of direct from toxicity with hypoxemic asphyxiation, due to the saturation of the atmosphere by FC11 in the closed environment in which the intoxication occurred.

  9. Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry.

    PubMed

    Li, Kai; Zhang, Liqiang; Zhu, Liang; Zhu, Xifeng

    2017-06-01

    The cornstalk and chlorella were selected as the representative of lignocelulosic and algal biomass, and the pyrolysis experiments of them were carried out using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The physicochemical properties of samples and the pyrolytic product distribution were presented. And then the compositional differences between the two kinds of pyrolytic products were studied, the relevant pyrolysis mechanisms were analyzed systematically. Pyrolytic vapor from lignocellulosic biomass contained more phenolic and carbonyl compounds while that from algal biomass contained more long-chain fatty acids, nitrogen-containing compounds and fewer carbonyl compounds. Maillard reaction is conducive to the conversion of carbonyl compounds to nitrogenous heterocyclic compounds with better thermal stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Measurement uncertainty for the determination of amphetamines in urine by liquid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Franco de Oliveira, Sarah Carobini Werner de Souza Eller; Yonamine, Mauricio

    2016-08-01

    A gas chromatography-mass spectrometry method for the determination of amphetamines in urine samples by means of liquid-phase microextraction was validated, including calculation of measurement uncertainty. After extraction in the three-phase mode, acceptor phase was withdrawn from the fiber and the residue was derivatized with trifluoroacetic anhydride. The method showed to be very simple, rapid and it required a significantly low amount of organic solvent for extraction. The limits of detection were 10 and 20μg/L for amphetamine and methamphetamine, respectively. The calibration curves were linear over the specified range (20μg/L to 1400μg/L; r(2)>0.99). The method showed to be both precise and accurate and a relative combined uncertainty of 2% was calculated. In order of importance, the factors which were more determinant for the calculation of method uncertainty were: analyte concentration, sample volume, trueness and method precision.

  11. Multiresidue determination of pesticides in agricultural products by gas chromatography/mass spectrometry with large volume injection.

    PubMed

    Saito, Yukio; Kodama, Shuji; Matsunaga, Akinobu; Yamamoto, Atsushi

    2004-01-01

    A method is described for the rapid determination of pesticide residues in agricultural products. Pesticides were extracted from samples with acetonitrile. To remove pigments and fatty acids, an aliquot of the extract was cleaned up by a minicolumn that was packed both with graphitized carbon black and primary secondary amine. Analysis was performed by gas chromatography/ mass spectrometry with programmable temperature vaporizer-based large volume injection using a liner packed with phenylmethylsilicone chemically bonded silica. The method was evaluated for 114 pesticides by spiking into tomato, spinach, Japanese pear, grape, and brown rice at various concentrations of each pesticide (0.02-0.4 microg/g). The method, which gave good recovery (>60%) for 108 pesticides, is characterized by high cleanup efficiency and short cleanup time, and is useful as a rapid screening analysis.

  12. Pyrolysis-capillary gas chromatography-mass spectrometry for the determination of polyvinyl chloride traces in solid environmental samples.

    PubMed

    Tienpont, B; David, F; Vanwalleghem, F; Sandra, P

    2001-03-16

    A novel method based on pyrolysis-capillary gas chromatography-mass spectrometry (CGC-MS) was developed for the quantitative analysis of polyvinylchloride (PVC) in solid environmental samples like sludge and dust. The samples are extracted and the extract is fractionated by solid-phase extraction (SPE). Possibly interfering biological and frequently occuring synthetic polymers are removed by this clean-up. The final extract is analyzed by pyrolysis-CGC-MS. Selective detection of PVC is performed by using specific markers in the pyrogram. Quantitation is done on naphthalene. Good linearity was obtained in a range from 0.5 to 100 microg applied to the pyrolyser. The limit of quantitation (LOQ) in sludge and dust samples is 10 mg/kg dry mass. A correlation between PVC and phthalates was made for sewage sludge samples.

  13. Improved peak selection strategy for automatically determining minute compositional changes in fuels by gas chromatography-mass spectrometry.

    PubMed

    Cramer, Jeffrey A; Begue, Nathan J; Morris, Robert E

    2011-02-11

    During the development of automated computational methods to detect minute compositional changes in fuels, it became apparent that peak selection through the spectral deconvolution of gas chromatography-mass spectrometry (GC-MS) data is limited by the complexity and noise levels inherent in the data. Specifically, current techniques are not capable of detecting minute, chemically relevant compositional differences with sufficient sensitivity. Therefore, an alternative peak selection strategy was developed based on spectral interpretation through interval-oriented parallel factor analysis (PARAFAC). It will be shown that this strategy outperforms the deconvolution-based peak selection strategy as well as two control strategies. Successful application of the PARAFAC-based method to detect minute chemical changes produced during microbiological growth in four different inoculated diesel fuels will be discussed.

  14. Analyzing salvia divinorum and its active ingredient salvinorin a utilizing thin layer chromatography and gas chromatography/mass spectrometry.

    PubMed

    Jermain, John D; Evans, Hiram K

    2009-05-01

    In recent years, Salvia divinorum has become a major focus by state legislatures throughout the United States looking to prohibit the sale of the psychoactive plant. After researching testing procedures presented in the literature and those employed by crime laboratories throughout the country, it was decided that thin layer chromatography (TLC) and gas chromatography/mass spectrometry (GC/MS) were the methods to use to analyze plant material for salvinorin A. With TLC, salvinorin A was detected from extracted plant material and was easily distinguishable from 13 other Salvia species as well as Cannabis sativa L. (marijuana). When using GC/MS, salvinorin A was best extracted from plant material with chloroform at ambient temperature when using a nonpolar solvent and acetone at ambient temperature when using a polar solvent. By utilizing these techniques, criminalists are now able to confirm the presence of salvinorin A in a submitted plant material suspected to be Salvia divinorum.

  15. Characterization by gas chromatography-mass spectrometry of diterpenoid resinous materials in Roman-age amphorae from northern Greece.

    PubMed

    Dimitrakoudi, Evagelia A; Mitkidou, Sofia A; Urem-Kotsou, Dushka; Kotsakis, Kostas; Stephanidou-Stephanatou, Julia; Stratis, John A

    2011-01-01

    A combined gas chromatography-mass spectrometry approach has been used for the characterization of two lumps of resin and 17 adsorbed residues on Roman-age vessels, mainly amphorae, from northern Greece. The data show that a diterpenic resin from plants of the Pinacae family is the main component of the tarry material associated with the analyzed archaeological samples. The identification and mass spectrometric fragmentation of several characteristic diterpenoid biomarkers is discussed. The abundance of secondary products identified in the archaeological samples suggests that the oxidative degradation of abietic acid and dehydroabietic acid to aromatic products was the main pathway. Of particular interest is the presence of characteristic saturated abietane hydrocarbons in one sample, which indicate that a reductive process also occurred on a small scale. The overall similarity in the composition of the residues suggests the common use of pine tar as a waterproofing and sealing agent at different sites in northern Greece during the Roman period.

  16. Fatty acid composition of wild mushroom species of order Agaricales--examination by gas chromatography-mass spectrometry and chemometrics.

    PubMed

    Marekov, Ilko; Momchilova, Svetlana; Grung, Bjørn; Nikolova-Damyanova, Boryana

    2012-12-01

    Applying gas chromatography-mass spectrometry of 4,4-dimethyloxazoline fatty acid derivatives, the fatty acid composition of 15 mushroom species belonging to 9 genera and 5 families of order Agaricales growing in Bulgaria is determined. The structure of 31 fatty acids (not all present in each species) is unambiguously elucidated, with linoleic, oleic and palmitic acids being the main components (ranging between 70.9% (Marasmius oreades) and 91.2% (Endoptychum agaricoides)). A group of three hexadecenoic positionally isomeric fatty acids, 6-, 9- and 11-16:1, appeared to be characteristic components of the examined species. By applying chemometrics it was possible to show that the fatty acid composition closely reflects the classification of the species. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The analysis of tire rubber traces collected after braking incidents using Pyrolysis-GasChromatography/Mass Spectrometry.

    PubMed

    Sarkissian, Garry

    2007-09-01

    Automobile tire marks can routinely be found at the scenes of crime, particularly hit-and-run accidents and are left on road surfaces because of sudden braking or the wheels spinning. The tire marks are left due to the friction between the tire rubber and the solid road surface, and do not always demonstrate the tire tread pattern. However, the tire mark will contain traces of the tire. In this study, Pyrolysis Gas Chromatography/Mass Spectrometry was used to analyze 12 tires from different manufacturer's and their traces collected after braking incidents. Tire marks were left on a conglomerate road surface with sudden braking. The samples were pyrolysed without removal of contaminant in a micro-furnace type pyrolyser. Quantitative and qualitative analysis were performed on all the samples. All 12 samples were distinguished from each other. Each of the tire traces were identified as coming from there original source.

  18. Determination of testosterone:epitestosterone ratio after pentafluorophenyldimethylsilyl-trimethylsilyl derivatisation using gas chromatography-mass spectrometry in equine urine.

    PubMed

    Choi, M H; Kim, J Y; Chung, B C

    1999-05-01

    A highly specific method is described for measuring the testosterone:epitestosterone ratio in equine urine by gas chromatography-mass spectrometry (GC-MS) with stable isotope internal standards. The procedure was based on Serdolit Pad-1 resin extraction, enzymatic hydrolysis, and chemical derivatisation prior to instrumental analysis. The mixed derivatives, 3-trimethylsilyl-17-pentafluorophenyldimethylsilyl ether (3-TMS-17-flophemesyl) testosterone and epitestosterone, were found to have excellent analytical properties. The specificity of the derivatisation method exploits a unique feature of steroids: the selective exchange of the alcoholic flophemesyl ether for the trimethylsilyl ether. The sensitivity and specificity of the mixed 3-TMS-17-flophemesyl derivatives allow adequate determinations of testosterone and epitestosterone, even in urine from mares, in 5 ml samples. The repeatability of testosterone and epitestosterone was 6.2 and 5.7%, respectively, and their reproducibility was in the range of 6.4-8.7%.

  19. Simultaneous determination of alachlor, metolachlor, atrazine, and simazine in water and soil by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect

    Huang, L.Q.

    1989-03-01

    A multiresidue method was developed for the simultaneous determination of low parts per billion (ppb) concentrations of the herbicides alachlor, metolachlor, atrazine, and simazine in water and soil using isotope dilution gas chromatography/mass spectrometry (GC/MS). Known amounts of /sup 15/N,/sup 13/C-alachlor and /sup 2/H/sub 5/-atrazine were added to each sample as internal standards. The samples were then prepared by a solid phase extraction with no further cleanup. A high resolution GC/low resolution MS system with data acquisition in selected ion monitoring mode was used to quantitate herbicides in the extract. The limit of detection was 0.05 ppb for water and 0.5 ppb for soil. Accuracy greater than 80% and precision better than 4% was demonstrated with spiked samples.

  20. Ultra trace determination of fluorobenzoic acids in reservoir and ground water using isotope dilution gas chromatography mass spectrometry.

    PubMed

    Müller, Karsten; Seubert, Andreas

    2014-06-01

    The accurate ultra-trace analysis of six fluorobenzoic acids (FBAs) via isotope dilution gas chromatography mass spectrometry through their deuterated analogues is described. North Sea reservoir and ground water samples were spiked with six deuterated FBAs (dFBAs), enriched using solid-phase extraction (SPE) and analysed using GC/MS after derivatisation with BF 3· MeOH. All FBAs were enriched and determined simultaneously. SPE allowed a 250-fold enrichment of the acids if 100 mL of sample volume was used. The method enables the determination of FBAs down to the range of 8-37 ng L (-1) with recoveries between 66 % and 85 %. It uses low amounts of chemicals and is adaptable to larger and smaller sample volumes.

  1. Gas Chromatography-Mass Spectrometry Analysis of Constituent Oil from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), from Nigeria.

    PubMed

    Ohiri, Reginald Chibueze; Bassey, Essien Eka

    2016-01-01

    Gas chromatography-mass spectrometry analysis of constituent oil from dried Ganoderma lucidum was carried out. Fresh G. lucidum obtained from its natural environment was thoroughly washed with distilled water and air-dried for 2 weeks and the component oils were extracted and analyzed. Four predominant components identified were pentadecanoic acid, 14-methyl-ester (retention time [RT] = 19.752 minutes; percentage total = 25.489), 9,12-octadecadienoic acid (Z,Z)- (RT = 21.629 minutes and 21.663 minutes; percentage total = 25.054), n-hexadecanoic acid (RT = 20.153 minutes; percentage total = 24.275), and 9-octadecenoic acid (Z)-, methyl ester (RT = 21.297 minutes; percentage total = 13.027). The two minor oils identified were 9,12-octadecadienoic acid, methyl ester, (E,E)- and octadecanoic acid, methyl ester (RT = 21.246 minutes and 21.503 minutes; percentage total = 7.057 and 5.097, respectively).

  2. Determination of benzene in soft drinks and other beverages by isotope dilution headspace gas chromatography/mass spectrometry.

    PubMed

    Cao, Xu-Liang; Casey, Valerie; Seaman, Steve; Tague, Brett; Becalski, Adam

    2007-01-01

    An automated, simple, and reproducible method was developed for the determination of benzene in soft drinks, based on isotope dilution headspace gas chromatography/mass spectrometry in the selected-ion monitoring mode. The method was used to assess benzene levels in samples of 124 soft drinks and beverages. Benzene was not detected in 60% of the 124 products. The average benzene levels in 6 products exceeded the Canadian maximum acceptable concentration of 5 microg/L for benzene in drinking water, and 2 of the 6 products had benzene levels above the World Health Organization guideline of 10 microg/L. The highest level of benzene, 23 microg/L, was found in a soft drink product specifically marketed to children.

  3. Headspace solid-phase microextraction for characterization of fragrances of lemon verbena (Aloysia triphylla) by gas chromatography-mass spectrometry.

    PubMed

    Kim, Nam-Sun; Lee, Dong-Sun

    2004-01-01

    Natural fragrances from lemon verbena (Aloysia triphylla) were studied by headspace solid phase microextraction (HS-SPME) techniques followed by gas chromatography-mass spectrometry (GC-MS), with six different fibre coatings being tested to evaluate the extraction efficiencies of several selected compounds. A total of 14 compounds were identified in the fragrances of lemon verbena. Geranial and neral were detected as major components and alpha-pinene, beta-pinene, beta-caryophyllene, and curcumene as minor components. Enantiomeric analysis of chiral compounds from lemon verbena was carried out on a chiral column. alpha-Pinene, limonene, and camphor in the fragrances emitted from lemon verbena were found in the (+), (-), and (-) forms, respectively.

  4. Characterization of novel varietal floral hop aromas by headspace solid phase microextraction and gas chromatography-mass spectrometry/olfactometry.

    PubMed

    Van Opstaele, Filip; De Causmaecker, Brecht; Aerts, Guido; De Cooman, Luc

    2012-12-19

    In this study, headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) were optimized and implemented to investigate the volatile composition of novel floral hop essences prepared from four German aroma hop varieties. In total, 91 different constituents were assigned, which were further grouped into monoterpene hydrocarbons, esters, ketones, aldehydes, furans, and oxygenated and nonoxygenated sesquiterpenes. Most volatiles belong to the ester group, whereas the monoterpene hydrocarbon β-myrcene appears to be the predominant compound in all hop oil preparations investigated. Furthermore, as demonstrated by principal component analysis, varietal floral hop essences are clearly discriminated on the basis of their characteristic volatile composition. Via GC-olfactometry on the floral essence variety Spalter Select, β-myrcene and 2-undecanone were identified as the most potent odorants. Several hop oil constituents were reported for the first time as impact odorants of hop aroma.

  5. Ink dating using thermal desorption and gas chromatography/mass spectrometry: comparison of results obtained in two laboratories.

    PubMed

    Koenig, Agnès; Bügler, Jürgen; Kirsch, Dieter; Köhler, Fritz; Weyermann, Céline

    2015-01-01

    An ink dating method based on solvent analysis was recently developed using thermal desorption followed by gas chromatography/mass spectrometry (GC/MS) and is currently implemented in several forensic laboratories. The main aims of this work were to implement this method in a new laboratory to evaluate whether results were comparable at three levels: (i) validation criteria, (ii) aging curves, and (iii) results interpretation. While the results were indeed comparable in terms of validation, the method proved to be very sensitive to maintenances. Moreover, the aging curves were influenced by ink composition, as well as storage conditions (particularly when the samples were not stored in "normal" room conditions). Finally, as current interpretation models showed limitations, an alternative model based on slope calculation was proposed. However, in the future, a probabilistic approach may represent a better solution to deal with ink sample inhomogeneity. © 2014 American Academy of Forensic Science.

  6. Dissimilarity analysis and automatic identification of monomethylalkanes from gas chromatography mass spectrometry data 1. Principle and protocols.

    PubMed

    Zhang, Liangxiao; Liang, Yizeng

    2009-07-03

    Monomethylalkanes are common but important components in many naturally occurring and synthetic organic materials. Generally, this kind of compounds is routinely analyzed by gas chromatography mass spectrometry (GC-MS) and identified by the retention pattern or similarity matching to the reference mass spectral library. However, these identification approaches rely on the limited standard database or costly standard compounds. When unknown monomethylalkane is absent from the reference library, these approaches might be less useful. In this study, based on the fragmentation rules and empirical observation, many interesting mass spectral characteristics of monomethylalkanes were discovered and employed to infer the number of carbon atoms and methylated position. Combined with the retention pattern, a protocol was described for the identification of monomethylalkane analyzed by GC-MS. After tested by simulated data and GC-MS data of the gasoline sample, it was demonstrated that the developing approach could automatically and correctly identify monomethylalkanes in complicated GC-MS data.

  7. Determination of chlorpromazine and its major metabolites by gas chromatography/mass spectrometry: application to biological fluids.

    PubMed

    Gruenke, L D; Craig, J C; Klein, F D; Nguyen, T L; Hitzemann, B A; Holaday, J W; Loh, H H; Braff, L; Fischer, A; Glick, I D

    1985-12-01

    A method for the quantitative determination of chlorpromazine and five of its major metabolites in a single sample of biological fluid in the ng/ml range has been developed utilizing gas chromatography/mass spectrometry with selected ion recording. The assay is highly specific and quantification is accomplished by an inverse stable isotope dilution technique, using deuterium-labeled variants of the compounds as internal standards. In this way the concentrations of chlorpromazine and five of its major metabolites (the sulfoxide, the N-oxide, the monodemethylated, the didemethylated, and the 7-hydroxylated compounds) can be determined in biological fluids. Levels in humans have been measured both in plasma and in red blood cells and are compared to those found in related in vitro studies.

  8. Dual low thermal mass gas chromatography-mass spectrometry for fast dual-column separation of pesticides in complex sample.

    PubMed

    Sasamoto, Kikuo; Ochiai, Nobuo; Kanda, Hirooki

    2007-07-31

    A method is described for fast dual-column separation of pesticides by use of dual low thermal mass gas chromatography-mass spectrometry (dual LTM-GC-MS) with different temperature programming. The method can provide two total ion chromatograms with different separation on DB-5 and DB-17 in a single run, which allows improved identification capability, even with short analysis time (<17 min). Also simultaneous detection with MS and elemental selective detector, e.g. pulsed flame photometric detection (PFPD) was evaluated for fast dual-column separation of 82 pesticide mixtures including 27 phosphorus pesticides. Dual LTM-GC-MS/PFPD was applied to analysis of pesticides in a brewed green tea sample with dual stir bar sorptive extraction method (dual SBSE).

  9. Volatile constituents of Murraya koenigii fresh leaves using headspace solid phase microextraction--gas chromatography-mass spectrometry.

    PubMed

    Sukkaew, Sayamol; Pripdeevech, Patcharee; Thongpoon, Chalermporn; Machan, Theeraphan; Wongchuphan, Rattana

    2014-12-01

    The volatile components of Murraya koenigii fresh leaves, collected from Surat Thani province, Thailand were studied by using headspace (HS) solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The four fibers employed to extract the volatiles were polydimethylsiloxane (PDMS), polydimethylsiloxane-divinylbenzene (PDMS-DVB), carboxane-polydimethylsiloxane (CAR-PDMS) and polydimethylsiloxane-divinylbenzene-carboxane (PDMS-DVB-CAR). The volatile constituents of M. koenigii fresh leaves were also extracted by hydrodistillation and analyzed by GC-MS. Fifty-one compounds were identified by these fibers. Five major compounds, γ-terpinene, β-caryophyllene, β-phellandrene, a-selinene and a-pinene, were detected in all fibers. The PDMS-DVB-CAR fiber was considered as the best for trapping key volatiles of M. koenigii fresh leaves.

  10. Analysis of volatile components in a Chinese fish sauce, Fuzhou Yulu, by gas chromatography-mass spectrometry*

    PubMed Central

    Yang, Yuan-fan; Chen, Shen-ru; Ni, Hui; Ye, Xing-qian

    2008-01-01

    Volatile components of Fuzhou Yulu, a Chinese fish sauce, were analyzed by gas chromatography-mass spectrometry (GC-MS), and two pretreatment methods, i.e., purge and trap (P&T) GC-MS and ethyl acetate extraction followed by GC-MS, were compared. P&T-GC-MS method determined 12 components, including sulfur-containing constituents (such as dimethyl disulfide), nitrogen-containing constituents (such as pyrazine derivatives), aldehydes and ketones. Ethyl acetate extraction followed by GC-MS method detected 10 components, which were mainly volatile organic acids (such as benzenepropanoic acid) and esters. Neither of the two methods detected alcohols or trimethylamine. This study offers an important reference to determine volatile flavor components of traditional fish sauce through modern analysis methods. PMID:19067466

  11. Analysis of volatile components in a Chinese fish sauce, Fuzhou Yulu, by gas chromatography-mass spectrometry.

    PubMed

    Yang, Yuan-fan; Chen, Shen-ru; Ni, Hui; Ye, Xing-qian

    2008-12-01

    Volatile components of Fuzhou Yulu, a Chinese fish sauce, were analyzed by gas chromatography-mass spectrometry (GC-MS), and two pretreatment methods, i.e., purge and trap (P&T) GC-MS and ethyl acetate extraction followed by GC-MS, were compared. P&T-GC-MS method determined 12 components, including sulfur-containing constituents (such as dimethyl disulfide), nitrogen-containing constituents (such as pyrazine derivatives), aldehydes and ketones. Ethyl acetate extraction followed by GC-MS method detected 10 components, which were mainly volatile organic acids (such as benzenepropanoic acid) and esters. Neither of the two methods detected alcohols or trimethylamine. This study offers an important reference to determine volatile flavor components of traditional fish sauce through modern analysis methods.

  12. The identification of synthetic organic pigments in modern paints and modern paintings using pyrolysis-gas chromatography-mass spectrometry.

    PubMed

    Russell, Joanna; Singer, Brian W; Perry, Justin J; Bacon, Anne

    2011-05-01

    A collection of more than 70 synthetic organic pigments were analysed using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). We report on the analysis of diketo-pyrrolo-pyrrole, isoindolinone and perylene pigments which are classes not previously reported as being analysed by this technique. We also report on a number of azo pigments (2-naphthol, naphthol AS, arylide, diarylide, benzimidazolone and disazo condensation pigments) and phthalocyanine pigments, the Py-GC-MS analysis of which has not been previously reported. The members of each class were found to fragment in a consistent way and the pyrolysis products are reported. The technique was successfully applied to the analysis of paints used by the artist Francis Bacon (1909-1992), to simultaneously identify synthetic organic pigments and synthetic binding media in two samples of paint taken from Bacon's studio and micro-samples taken from three of his paintings and one painting attributed to him.

  13. Use of gas chromatography-mass spectrometry/solid phase microextraction for the identification of MVOCs from moldy building materials.

    PubMed

    Wady, Loay; Bunte, Annicka; Pehrson, Christina; Larsson, Lennart

    2003-03-01

    Gas chromatography-mass spectrometry/solid phase microextraction (GC-MS/SPME) was applied to identify microbial volatile organic compounds (MVOCs) in water-damaged, mold-infested building materials (gypsum board papers (n=2), mineral wool, and masonite) and in cultivated molds (Aspergillus penicillioides, Stachybotrys chartarum, and Chaetomium globosum). Three SPME fibers (65-microm PDMS-DVB, 75-microm Carboxen-PDMS, and 70-microm Carbowax-stableflex) designed for automated injection were used of which the latter showed best performance. A number of previously reported MVOCs were detected both in the building materials and the cultivated molds. In addition, methyl benzoate was identified both in the S. chartarum and A. penicillioides cultures and in the building materials. SPME combined with GC-MS may be a useful method for the determination of MVOCs emitted from mold-infested building materials.

  14. Environmental and biological determination of acrolein using new cold fiber solid phase microextraction with gas chromatography mass spectrometry.

    PubMed

    Dias, Cláudia M; Menezes, Helvécio C; Cardeal, Zenilda L

    2017-04-01

    Acrolein is a pollutant released daily to the indoor environment from different sources. The present study reports the development of a simple and sensitive cold fiber solid phase microextraction sampling method for the determination of acrolein in exhaled air and indoor air by gas chromatography mass spectrometry. O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine was used as derivatizing agent supported on a 65-μm polydimethylsiloxane-divinylbenzene SPME fiber. An acrolein permeation tube at 326.25 ng min(-1) rate was used to generate gaseous standards. The method shows good results for main validation parameters. The limits of detection and quantification were 2.88 and 5.08 μg m(-3), respectively, for indoor analysis; and 2.40 and 3.79 μg m(-3), respectively, for exhaled air analysis. The precision showed standard deviation ranges from 6.00 to 8.00% for intra-assay analyses and from 8.00 to 10.00% for inter-assay analyses. After optimizing the conditions, analyses of real samples were performed on indoor environments contaminated by cigarette smoke, or heated oil, including pastry shops, restaurants, churros stands, and closed parking cars located in the city of Belo Horizonte, Brazil. Acrolein breaths of exposed people were also determined. A good Pearson correlation coefficient (r = 0.901) was observed between the concentration of acrolein in indoor air and exhaled air, allowing to propose acrolein breath as environmental exposure biomarker. Graphical Abstract Cold fiber solid phase microextraction gas chromatography/mass spectrometry.

  15. A gas chromatography-mass spectrometry-based metabolomic approach for the characterization of goat milk compared with cow milk.

    PubMed

    Scano, Paola; Murgia, Antonio; Pirisi, Filippo M; Caboni, Pierluigi

    2014-10-01

    In this work, the polar metabolite pool of commercial caprine milk was studied by gas chromatography-mass spectrometry and multivariate statistical data analysis. Experimental data were compared with those of cow milk and the discriminant analysis correctly classified milk. By the same means, differences due to heat treatments (UHT or pasteurization) on milk samples were also investigated. Results of the 2 discriminant analyses were combined, with the aim of finding the discriminant metabolites unique for each class and shared by 2 classes. Valine and glycine were specific to goat milk, talose and malic acid to cow milk, and hydroxyglutaric acid to pasteurized samples. Glucose and fructose were shared by cow milk and UHT-treated samples, whereas ribose was shared by pasteurized and goat milk. Other discriminant variables were not attributed to specific metabolites. Furthermore, with the aim to reduce food fraud, the issue of adulteration of caprine milk by addition of cheaper bovine milk has been also addressed. To this goal, mixtures of goat and cow milk were prepared by adding the latter in a range from 0 to 100% (vol/vol) and studied by multivariate regression analysis. The error in the level of cow milk detectable was approximately 5%. These overall results demonstrated that, through the combined approach of gas chromatography-mass spectrometry and multivariate statistical data analysis, we were able to discriminate between milk typologies on the basis of their polar metabolite profiles and to propose a new analytical method to easily discover food fraud and to protect goat milk uniqueness. The use of appropriate visualization tools improved the interpretation of multivariate model results. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Enantioselective gas chromatography/mass spectrometry of methylsulfonyl PCBs with application to arctic marine mammals.

    PubMed

    Wiberg, K; Letcher, R; Sandau, C; Duffe, J; Norstrom, R; Haglund, P; Bidleman, T

    1998-09-15

    Four different commercially available cyclodextrin (CD) capillary gas chromatography (GC) columns were tested for the enantioselective separation of nine environmentally persistent atropisomeric 3- and 4-methylsulfonyl PCBs (MeSO2-CBs). The selected columns contained cyclodextrins with various cavity diameters (beta- or gamma-CD), which were methylated and/or tert-butyldimethylsilylated (TBDMS) in the 2,3,6-O-positions. The beta-CD column with TBDMS substituents in all of the 2,3,6-O-positions was by far the most selective column for the MeSO2-CBs tested. Enantiomers of congeners with 3-MeSO2 substitution were more easily separated than those with 4-MeSO2 substitution. The separation also seemed to be enhanced for congeners with the chlorine atoms on the non-MeSO2-containing ring and clustered on one side of the same ring. The 2,3-di-O-methyl-6-O-TBDMS-beta-CD was found to give somewhat better selectivity than the corresponding gamma-CD, in comparison between the two columns, which were identical in all other respects. Enantioselective analysis of arctic ringed seal (Phoca hispida) and polar bear (Ursus maritimus) adipose tissue revealed a strong dominance of certain enantiomers. For example, the enantiomer ratio (ER) of 3-MeSO2-CB149 was 0.32 and < 0.1 in ringed seal blubber and polar bear fat, respectively. These low ER values are indicative of highly enantioselective formation, enantioselective metabolism, enantioselective transport across cell membranes, or a combination of the three in both species. Comparable results for the enantiomeric analysis of MeSO2-CBs in biotic tissue extracts were obtained using two highly selective mass spectrometric techniques, ion trap mass spectrometry/mass spectrometry and electron capture negative ion low-resolution mass spectrometry.

  17. DETERMINATION OF A BOUND MUSK XYLENE METABOLITE IN CARP HEMOGLOBIN AS A BIOMARKER OF EXPOSURE BY GAS CHROMATOGRAPHY MASS SPECTROMETRY USING SELECTED ION MONITORING

    EPA Science Inventory

    Musk xylene (MX) is widely used as a fragrance ingredient in commercial toiletries. Identification and quantification of a bound 4-amino-MX (AMX) metabolite was carried out by gas chromatography-mass spectrometry (GC/MS), with selected ion monitoring (SIM). Detection of AMX occur...

  18. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    ERIC Educational Resources Information Center

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  19. METHOD 530 DETERMINATION OF SELECT SEMIVOLATILE ORGANIC CHEMICALS IN DRINKING WATER BY SOLID PHASE EXTRACTION AND GAS CHROMATOGRAPHY/ MASS SPECTROMETRY (GC/MS)

    EPA Science Inventory

    1.1. This is a gas chromatography/mass spectrometry (GC/MS) method for the determination of selected semivolatile organic compounds in drinking waters. Accuracy and precision data have been generated in reagent water, and in finished ground and surface waters for the compounds li...

  20. DETERMINATION OF A BOUND MUSK XYLENE METABOLITE IN CARP HEMOGLOBIN AS A BIOMARKER OF EXPOSURE BY GAS CHROMATOGRAPHY MASS SPECTROMETRY USING SELECTED ION MONITORING

    EPA Science Inventory

    Musk xylene (MX) is widely used as a fragrance ingredient in commercial toiletries. Identification and quantification of a bound 4-amino-MX (AMX) metabolite was carried out by gas chromatography-mass spectrometry (GC/MS), with selected ion monitoring (SIM). Detection of AMX occur...

  1. Lipid fatty acid profile analyses in liver and serum in rats with nonalcoholic steatohepatitis using improved gas chromatography-mass spectrometry methodology

    USDA-ARS?s Scientific Manuscript database

    Fatty acids (FA) are essential components of lipids and exhibit important biological functions. The analyses of FAs are routinely carried out by gas chromatography-mass spectrometry, after multi-step sample preparation. In this study, several key experimental factors were carefully examined, validat...

  2. Odor and odorous chemical emissions from dairy and swine facilities: Part 5-Simultaneous chemical and sensory analysis with Gas Chromatography - Mass Spectrometry - Olfactometry

    USDA-ARS?s Scientific Manuscript database

    Simultaneous chemical and sensory analyses using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for air samples collected at barn exhaust fans were used for quantification and ranking of odor impact of target odorous gases. Fifteen target odorous VOCs (odorants) were selected. Air sampl...

  3. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    ERIC Educational Resources Information Center

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  4. Analysis of Whiskey by Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography/Mass Spectrometry: An Upper Division Analytical Chemistry Experiment Guided by Green Chemistry

    ERIC Educational Resources Information Center

    Owens, Janel E.; Zimmerman, Laura B.; Gardner, Michael A.; Lowe, Luis E.

    2016-01-01

    Analysis of whiskey samples prepared by a green microextraction technique, dispersive liquid-liquid microextraction (DLLME), before analysis by a qualitative gas chromatography-mass spectrometry (GC/MS) method, is described as a laboratory experiment for an upper division instrumental methods of analysis laboratory course. Here, aroma compounds in…

  5. Analysis of Whiskey by Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography/Mass Spectrometry: An Upper Division Analytical Chemistry Experiment Guided by Green Chemistry

    ERIC Educational Resources Information Center

    Owens, Janel E.; Zimmerman, Laura B.; Gardner, Michael A.; Lowe, Luis E.

    2016-01-01

    Analysis of whiskey samples prepared by a green microextraction technique, dispersive liquid-liquid microextraction (DLLME), before analysis by a qualitative gas chromatography-mass spectrometry (GC/MS) method, is described as a laboratory experiment for an upper division instrumental methods of analysis laboratory course. Here, aroma compounds in…

  6. METHOD 530 DETERMINATION OF SELECT SEMIVOLATILE ORGANIC CHEMICALS IN DRINKING WATER BY SOLID PHASE EXTRACTION AND GAS CHROMATOGRAPHY/ MASS SPECTROMETRY (GC/MS)

    EPA Science Inventory

    1.1. This is a gas chromatography/mass spectrometry (GC/MS) method for the determination of selected semivolatile organic compounds in drinking waters. Accuracy and precision data have been generated in reagent water, and in finished ground and surface waters for the compounds li...

  7. [Determination of acetanilide herbicide residues in tea by gas chromatography-mass spectrometry with two different ionization techniques].

    PubMed

    Shen, Weijian; Xu, Jinzhong; Yang, Wenquan; Shen, Chongyu; Zhao, Zengyun; Ding, Tao; Wu, Bin

    2007-09-01

    An analytical method of solid phase extraction-gas chromatography-mass spectrometry with two different ionization techniques was established for simultaneous determination of 12 acetanilide herbicide residues in tea-leaves. Herbicides were extracted from tea-leaf samples with ethyl acetate. The extract was cleaned-up on an active carbon SPE column connected to a Florisil SPE column. Analytical screening was determined by the technique of gas chromatography (GC)-mass spectrometry (MS) in the selected ion monitoring (SIM) mode with either electron impact ionization (EI) or negative chemical ionization (NCI). It is reliable and stable that the recoveries of all herbicides were in the range from 50% to 110% at three spiked levels, 10 microg/kg, 20 microg/kg and 40 microg/kg, and the relative standard deviations (RSDs) were no more than 10.9%. The two different ionization techniques are complementary as more ion fragmentation information can be obtained from the EI mode while more molecular ion information from the NCI mode. By comparison of the two techniques, the selectivity of NCI-SIM was much better than that of EI-SIM method. The sensitivities of the both techniques were high, the limit of quantitative (LOQ) for each herbicide was no more than 2.0 microg/kg, and the limit of detection (LOD) with NCI-SIM technique was much lower than that of EI-SIM when analyzing herbicides with several halogen atoms in the molecule.

  8. Automation of solid-phase microextraction-gas chromatography-mass spectrometry extraction of eucalyptus volatiles.

    PubMed

    Zini, Cláudia A; Lord, Heather; Christensen, Eva; de, Assis Teotĵnio F; Caramão, Elina B; Pawliszyn, Janusz

    2002-03-01

    Solid-phase microextraction (SPME) coupled with gas chromatography (GC)-ion-trap mass spectrometry (ITMS) is employed to analyze fragrance compounds from different species of eucalyptus trees: Eucalyptus dunnii, Eucalyptus saligna, Eucalyptus grandis, and hybrids of other species. The analyses are performed using an automated system for preincubation, extraction, injection, and analysis of samples. The autosampler used is a CombiPAL and has much flexibility for the development of SPME methods and accommodates a variety of vial sizes. For automated fragrance analysis the 10- and 20-mL vials are the most appropriate. The chromatographic separation and identification of the analytes are performed with a Varian Saturn 4D GC-ITMS using an HP-5MS capillary column. Several compounds of eucalyptus volatiles are identified, with good reproducibility for both the peak areas and retention times. Equilibrium extraction provides maximal sensitivity but requires additional consideration for the effect of carryover. Preequilibrium extraction allows good sensitivity with minimal carryover.

  9. Impact of Pharmaceutical Impurities in Ecstasy Tablets: Gas Chromatography-Mass Spectrometry Study.

    PubMed

    Jalali, Amir; Hatamie, Amir; Saferpour, Tahere; Khajeamiri, Alireza; Safa, Tahere; Buazar, Foad

    2016-01-01

    In this study, a simple and reliable method by gas chromatograph-mass spectrometry (GC-MS) was developed for the fast and regular identification of 3, 4-MDMA impurities in ecstasy tablets. In so doing, 8 samples of impurities were extracted by diethyl ether under alkaline condition and then analyzed by GC-MS. The results revealed high MDMA levels ranging from 37.6% to 57.7%. The GC-MS method showed that unambiguous identification can be achieved for MDMA from 3, 4-methylenedioxyamphetamine (MDA), Amphetamine (AM), methamphetamine (MA) and ketamine (Keta) compounds, respectively. The experimental results indicated the acceptable time window without interfering peaks. It is found that GC-MS was provided a suitable and rapid identification approach for MDMA (Ecstacy) tablets, particularly in the Forensic labs. Consequently, the intense MDMA levels would support the police to develop a simple quantification of impurity in Ecstasy tablets.

  10. Impact of Pharmaceutical Impurities in Ecstasy Tablets: Gas Chromatography-Mass Spectrometry Study

    PubMed Central

    Jalali, Amir; Hatamie, Amir; Saferpour, Tahere; Khajeamiri, Alireza; Safa, Tahere; Buazar, Foad

    2016-01-01

    In this study, a simple and reliable method by gas chromatograph–mass spectrometry (GC–MS) was developed for the fast and regular identification of 3, 4-MDMA impurities in ecstasy tablets. In so doing, 8 samples of impurities were extracted by diethyl ether under alkaline condition and then analyzed by GC–MS. The results revealed high MDMA levels ranging from 37.6% to 57.7%. The GC-MS method showed that unambiguous identification can be achieved for MDMA from 3, 4-methylenedioxyamphetamine (MDA), Amphetamine (AM), methamphetamine (MA) and ketamine (Keta) compounds, respectively. The experimental results indicated the acceptable time window without interfering peaks. It is found that GC-MS was provided a suitable and rapid identification approach for MDMA (Ecstacy) tablets, particularly in the Forensic labs. Consequently, the intense MDMA levels would support the police to develop a simple quantification of impurity in Ecstasy tablets. PMID:27610162

  11. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams.

    PubMed

    Fialkov, Alexander B; Moragn, Mati; Amirav, Aviv

    2011-12-30

    A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of

  12. Different headspace solid phase microextraction--gas chromatography/mass spectrometry approaches to haloanisoles analysis in wine.

    PubMed

    Jeleń, Henryk H; Dziadas, Mariusz; Majcher, Małgorzata

    2013-10-25

    Three approaches in determination of six haloanisoles (2,4,6-trichloroanisole, 2,3,4-trichloroanisole, 2,3,6-trichloroanisole, tetrachloroanisole, pentachloroanisole and 2,4,6-tribromoanisole) in wine were compared. Comprehensive gas chromatography - time of flight mass spectrometry (GC×GC-ToF-MS) was described for the first time for this application and compared to gas chromatography-tandem mass spectrometry (GC-MS/MS) using triple quadrupole instrument. These techniques were compared with "standard" analytical approach using GC-MS(SIM). SPME method was developed and used for all separation methods (DVB/PDMS fiber, 70 °C, 30%NaCl, 20 min extraction). Extraction dependence on matrix was discussed using model wines with different ethanol contents (8%, 12%, and 18%) as well as water and different wines (dry white, dry red and sweet liqueur), with the lowest sensitivities obtained for highest ethanol contents in model wine and for liqueur wine. Limits of detection for GC×GC-ToF-MS method were 0.09-2.92 ng/L depending on the examined compound and matrix (compared to 0.1-13.3 ng/L obtained using GC/MS(SIM)). For GC-MS/MS method lower detection limits were achieved than for the GC×GC method (0.01-0.1 ng/L), however comprehensive gas chromatography-mass spectrometry provides full spectral information on analyzed compounds. Both methods had limits of detection far below odor thresholds of haloanisoles in wine, good linearity up to 2000 ng/L tested and good precision, what makes them suitable for analysis of these compounds in low ppt levels. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Evidence of lipid degradation during overnight contact lens wear: gas chromatography mass spectrometry as the diagnostic tool.

    PubMed

    Panaser, Amandeep; Tighe, Brian J

    2014-03-20

    We investigated structural differences in the fatty acid profiles of lipids extracted from ex vivo contact lenses by using gas chromatography mass spectrometry (GCMS). Two lens materials (balafilcon A or lotrafilcon A) were worn on a daily or continuous wear schedule for 30 and 7 days. Lipids from subject-worn lenses were extracted using 1:1 chloroform: methanol and transmethylated using 5% sulfuric acid in methanol. Fatty acid methyl esters (FAMEs) were collected using hexane and water, and analyzed by GCMS (Varian 3800 GC, Saturn 2000 MS). The gas chromatograms of lens extracts that were worn on a continuous wear schedule showed two predominant peaks, C16:0 and C18:0, both of which are saturated fatty acids. This was the case for balafilcon A and lotrafilcon A lenses. However, the gas chromatograms of lens extracts that were worn on a daily wear schedule showed saturated (C16:0, C18:0) and unsaturated (C16:1 and C18:1) fatty acids. Unsaturated fatty acids are degraded during sleep in contact lenses. Degradation occurred independently of lens material or subject-to-subject variability in lipid deposition. The consequences of lipid degradation are the production of oxidative products, which may be linked to contact lens discomfort.

  14. An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lerner, Brian M.; Gilman, Jessica B.; Aikin, Kenneth C.; Atlas, Elliot L.; Goldan, Paul D.; Graus, Martin; Hendershot, Roger; Isaacman-VanWertz, Gabriel A.; Koss, Abigail; Kuster, William C.; Lueb, Richard A.; McLaughlin, Richard J.; Peischl, Jeff; Sueper, Donna; Ryerson, Thomas B.; Tokarek, Travis W.; Warneke, Carsten; Yuan, Bin; de Gouw, Joost A.

    2017-01-01

    Volatile organic compounds were quantified during two aircraft-based field campaigns using highly automated, whole air samplers with expedited post-flight analysis via a new custom-built, field-deployable gas chromatography-mass spectrometry instrument. During flight, air samples were pressurized with a stainless steel bellows compressor into electropolished stainless steel canisters. The air samples were analyzed using a novel gas chromatograph system designed specifically for field use which eliminates the need for liquid nitrogen. Instead, a Stirling cooler is used for cryogenic sample pre-concentration at temperatures as low as -165 °C. The analysis system was fully automated on a 20 min cycle to allow for unattended processing of an entire flight of 72 sample canisters within 30 h, thereby reducing typical sample residence times in the canisters to less than 3 days. The new analytical system is capable of quantifying a wide suite of C2 to C10 organic compounds at part-per-trillion sensitivity. This paper describes the sampling and analysis systems, along with the data analysis procedures which include a new peak-fitting software package for rapid chromatographic data reduction. Instrument sensitivities, uncertainties and system artifacts are presented for 35 trace gas species in canister samples. Comparisons of reported mixing ratios from each field campaign with measurements from other instruments are also presented.

  15. Quantitation of ethyl glucuronide in serum & urine by gas chromatography - mass spectrometry

    PubMed Central

    Sharma, Priyamvada; Bharat, Venkatesh; Murthy, Pratima

    2015-01-01

    Background & objectives: Alcohol misuse has now become a serious public health problem and early intervention is important in minimizing the harm. Biochemical markers of recent and high levels of alcohol consumption can play an important role in providing feedback regarding the health consequences of alcohol misuse. Existing markers are not sensitive to recent consumption and in detecting early relapse. Ethyl glucuronide (EtG), a phase-II metabolite of ethanol is a promising marker of recent alcohol use and can be detected in body fluids. In this study an analytical technique for quantitation of EtG in body fluids using solid-phase extraction (SPE) and gas chromatography (GC) with mass spectrometric detection (MS) was developed and validated. Methods: De-proteinization of serum and urine samples was done with perchloric acid and hydrochloric acid, respectively. Serum samples were passed through phospholipids removal cartridges for further clean up. EtG was isolated using amino propyl solid phase extraction columns. Chromatographic separation was achieved by gas chromatography with mass spectrometry. Results: Limit of detection and limit of quantitation were 50 and 150 ng/ml for urine and 80 and 210 ng/ml for serum, respectively. Signal to noise ratio was 3:1, mean absolute recovery was 80-85 per cent. Significant correlation was obtained between breath alcohol and serum EtG levels (r=0.853) and urine EtG and time since last abuse (r = -0.903) in clinical samples. Interpretation & conclusions: In the absence of other standardized techniques to quantitate EtG in biological samples, this GC-MS method was found to have high throughput and was sensitive and specific. PMID:25857498

  16. Quantitation of ethyl glucuronide in serum & urine by gas chromatography - mass spectrometry.

    PubMed

    Sharma, Priyamvada; Bharat, Venkatesh; Murthy, Pratima

    2015-01-01

    Alcohol misuse has now become a serious public health problem and early intervention is important in minimizing the harm. Biochemical markers of recent and high levels of alcohol consumption can play an important role in providing feedback regarding the health consequences of alcohol misuse. Existing markers are not sensitive to recent consumption and in detecting early relapse. Ethyl glucuronide (EtG), a phase-II metabolite of ethanol is a promising marker of recent alcohol use and can be detected in body fluids. In this study an analytical technique for quantitation of EtG in body fluids using solid-phase extraction (SPE) and gas chromatography (GC) with mass spectrometric detection (MS) was developed and validated. De-proteinization of serum and urine samples was done with perchloric acid and hydrochloric acid, respectively. Serum samples were passed through phospholipids removal cartridges for further clean up. EtG was isolated using amino propyl solid phase extraction columns. Chromatographic separation was achieved by gas chromatography with mass spectrometry. Limit of detection and limit of quantitation were 50 and 150 ng/ml for urine and 80 and 210 ng/ml for serum, respectively. Signal to noise ratio was 3:1, mean absolute recovery was 80-85 per cent. Significant correlation was obtained between breath alcohol and serum EtG levels (r=0.853) and urine EtG and time since last abuse (r = -0.903) in clinical samples. In the absence of other standardized techniques to quantitate EtG in biological samples, this gc - ms method was found to have high throughput and was sensitive and specific.

  17. Stable isotope dilution gas chromatography-mass spectrometry for quantification of thymoquinone in black cumin seed oil.

    PubMed

    Johnson-Ajinwo, Okiemute Rosa; Li, Wen-Wu

    2014-06-18

    Black cumin seed (Nigella sativa L.) is a widely used spice and herb, where thymoquinone (2-isopropyl-5-methyl-1,4-benzoquinone) is the major bioactive compound. Here, a stable isotope dilution (SID) gas chromatography-mass spectrometry (GC-MS) technique was developed for the quantification of thymoquinone. A doubly deuterated thymoquinone ([(2)H2]-thymoquinone) was synthesized for the first time with more than 93% deuteration degree shown by mass spectrometry and proton nuclear magnetic resonance ((1)H NMR). This compound was used as an internal standard for the quantification of thymoquinone using a SID GC-MS method. The validation experiment showed a recovery rate of 99.1 ± 1.1% relative standard deviation (RSD). Standard addition and external calibration methods have also been used to quantify thymoquinone, which cross-validated the developed stable isotope dilution assay (SIDA). In comparison to external calibration and standard addition methods, the SIDA method is robust and accurate. The concentration of thymoquinone in five marketed black cumin seed oils ranged between 3.34 and 10.8 mg/mL by use of SID GC-MS.

  18. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    PubMed Central

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  19. Migrating components in a polyurethane laminating adhesive identified using gas chromatography/mass spectrometry.

    PubMed

    Athenstädt, Behnusch; Fünfrocken, Michael; Schmidt, Torsten C

    2012-08-30

    Plastics are increasingly used as packaging materials for pharmaceuticals. However, diffusion of compounds in plastic into drugs may endanger patients' health. Regulatory authorities therefore demand detailed information about leachable compounds in plastics. Here we identify migrating components of a sterilization-resistant polyurethane (PUR) adhesive used in the primary packaging for an aqueous pharmaceutical. This identification is an essential first step for quantification and toxicological evaluation of the compounds. We used various hyphenated mass spectrometry (MS) methods: gas chromatography (GC/MS) with either electron impact ionization or chemical ionization, and high resolution liquid chromatography (LC/MS) with electrospray ionization. Of the 13 migrating substances detected, 11 are cyclic esters with characteristic fragmentation schemes apparent from their mass spectra. These esters are formed as by-products during the reaction of adipic and isophthalic acid with monoethylene glycol and diethyelene glycol. A cyclic ester of isophthalic acid and tetraethylene glycol and a product of the reaction of isophoron diisocyanate with methanol were clearly identified. Complementary use of several hyphenated mass spectrometric methods enables successful identification of leachable compounds in the PUR adhesive under study. This opens the way for quantification and evaluation of the potential toxicities of these compounds. Despite the range of compositions of PUR laminates, the approach presented here may be applicable for the qualitative assessment of all PURs. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Vinegar Metabolomics: An Explorative Study of Commercial Balsamic Vinegars Using Gas Chromatography-Mass Spectrometry

    PubMed Central

    Pinu, Farhana R.; de Carvalho-Silva, Samuel; Trovatti Uetanabaro, Ana Paula; Villas-Boas, Silas G.

    2016-01-01

    Balsamic vinegar is a popular food condiment produced from cooked grape must by two successive fermentation (anaerobic and aerobic) processes. Although many studies have been performed to determine the composition of major metabolites, including sugars and aroma compounds, no study has been undertaken yet to characterize the comprehensive metabolite composition of balsamic vinegars. Here, we present the first metabolomics study of commercial balsamic vinegars by gas chromatography coupled to mass spectrometry (GC-MS). The combination of three GC-MS methods allowed us to detect >1500 features in vinegar samples, of which 123 metabolites were accurately identified, including 25 amino acids, 26 carboxylic acids, 13 sugars and sugar alcohols, four fatty acids, one vitamin, one tripeptide and over 47 aroma compounds. Moreover, we identified for the first time in vinegar five volatile metabolites: acetin, 2-methylpyrazine, 2-acetyl-1-pyroline, 4-anisidine and 1,3-diacetoxypropane. Therefore, we demonstrated the capability of metabolomics for detecting and identifying large number of metabolites and some of them could be used to distinguish vinegar samples based on their origin and potentially quality. PMID:27455339

  1. Gas chromatography/mass spectrometry based component profiling and quality prediction for Japanese sake.

    PubMed

    Mimura, Natsuki; Isogai, Atsuko; Iwashita, Kazuhiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-10-01

    Sake is a Japanese traditional alcoholic beverage, which is produced by simultaneous saccharification and alcohol fermentation of polished and steamed rice by Aspergillus oryzae and Saccharomyces cerevisiae. About 300 compounds have been identified in sake, and the contribution of individual components to the sake flavor has been examined at the same time. However, only a few compounds could explain the characteristics alone and most of the attributes still remain unclear. The purpose of this study was to examine the relationship between the component profile and the attributes of sake. Gas chromatography coupled with mass spectrometry (GC/MS)-based non-targeted analysis was employed to obtain the low molecular weight component profile of Japanese sake including both nonvolatile and volatile compounds. Sake attributes and overall quality were assessed by analytical descriptive sensory test and the prediction model of the sensory score from the component profile was constructed by means of orthogonal projections to latent structures (OPLS) regression analysis. Our results showed that 12 sake attributes [ginjo-ka (aroma of premium ginjo sake), grassy/aldehydic odor, sweet aroma/caramel/burnt odor, sulfury odor, sour taste, umami, bitter taste, body, amakara (dryness), aftertaste, pungent/smoothness and appearance] and overall quality were accurately explained by component profiles. In addition, we were able to select statistically significant components according to variable importance on projection (VIP). Our methodology clarified the correlation between sake attribute and 200 low molecular components and presented the importance of each component thus, providing new insights to the flavor study of sake.

  2. Methods of analysis-Determination of pesticides in sediment using gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Hladik, Michelle; McWayne, Megan M.

    2012-01-01

    A method for the determination of 119 pesticides in environmental sediment samples is described. The method was developed by the U.S. Geological Survey (USGS) in support of the National Water Quality Assessment (NAWQA) Program. The pesticides included in this method were chosen through prior prioritization. Herbicides, insecticides, and fungicides along with degradates are included in this method and span a variety of chemical classes including, but not limited to, chloroacetanilides, organochlorines, organophosphates, pyrethroids, triazines, and triazoles. Sediment samples are extracted by using an accelerated solvent extraction system (ASE®, and the compounds of interest are separated from co-extracted matrix interferences (including sulfur) by passing the extracts through high performance liquid chromatography (HPLC) with gel-permeation chromatography (GPC) along with the use of either stacked graphitized carbon and alumina solid-phase extraction (SPE) cartridges or packed Florisil®. Chromatographic separation, detection, and quantification of the pesticides from the sediment-sample extracts are done by using gas chromatography with mass spectrometry (GC/MS). Recoveries in test sediment samples fortified at 10 micrograms per kilogram (μg/kg) dry weight ranged from 75 to 102 percent; relative standard deviations ranged from 3 to 13 percent. Method detection limits (MDLs), calculated by using U.S. Environmental Protection Agency procedures (40 CFR 136, Appendix B), ranged from 0.6 to 3.4 μg/kg dry weight.

  3. Analysis of anisoles in wines using pervaporation coupled to gas chromatography-mass spectrometry.

    PubMed

    Gómez-Ariza, J L; García-Barrera, T; Lorenzo, F

    2004-09-17

    Two procedures for the determination of 2,4,6-trichloroanisole, 2,6-dichloroanisole and 2,4,6-tribromoanisole in tainted wines have been developed. Both methods are based on pervaporation (PV) of the analytes and final determination by gas chromatography-ion-trap tandem mass spectrometry (GC-MS). In the Approach A, pervaporation was directly coupled to the GC-MS system (PV-GC-MS/MS) and in Approach B a solid-phase cryogenic trap-thermal desorption (CT-TD) device was connected to the pervaporator (PV-CT-TD-GC-MS/MS). Results show that last coupling present better sensitivity as well as precision. Detection limits (DLs) for 2,4,6-trichloroanisole were estimated to be 25.8 and 4.2 ng l(-1) for Approaches A and B, respectively, when 10 ml of sample was analysed. Linear range of the calibration curves ranged from quantification limit to 15 ng for PV-GC-MS/MS and from quantification limit to 2 ng for PV-CT-TD-GC-MS/MS. Due to the low threshold odour concentration of these compounds in wine, Approach B is proposed as a reliable method for analytical quality control of this product.

  4. Capillary gas chromatography-mass spectrometry of volatile and semi-volatile compounds of Salvia officinalis.

    PubMed

    Radulescu, Valeria; Chiliment, Silvia; Oprea, Eliza

    2004-02-20

    The essential oil and infusion of Salvia officinalis leaves have been widely applied in traditional medicine since ancient times and nowadays subjected to extensive research of their antibacterial, antiviral and cytotoxic properties. This paper shows chemical composition data of S. officinalis leaves essential oil isolated by steam distillation using a Clevenger-type apparatus. Also, the paper presents the chemical content of volatile and semi-volatile compounds of S. officinalis leaves infusion. The volatile and semi-volatile compounds of S. officinalis leaves infusion were isolated by solid-phase extraction (SPE) and liquid-liquid extraction with hexane and dichloromethane. SPE was carried out on 500 mg octadecylsilane (C18) cartridges and elution with dichloromethane. Liquid-liquid extraction was performed with hexane and dichloromethane. The essential oil in dichloromethane and infusion extracts in hexane and dichloromethane were analyzed by gas chromatography coupled with mass spectrometry. The quantitative results obtained by solid-phase extraction and liquid-liquid extraction showed that SPE on C18 performed the highest recovery of the volatile compounds from infusion sample.

  5. High-temperature gas chromatography-mass spectrometry for skin surface lipids profiling[S

    PubMed Central

    Michael-Jubeli, Rime; Bleton, Jean; Baillet-Guffroy, Arlette

    2011-01-01

    Skin surface lipids (SSLs) arising from both sebaceous glands and skin removal form a complex lipid mixture composed of free fatty acids and neutral lipids. High-temperature gas chromatography coupled with electron impact or chemical ionization mass spectrometry was used to achieve a simple analytical protocol, without prior separation in classes and without prior cleavage of lipid molecules, in order to obtain simultaneously i) a qualitative characterization of the individual SSLs and ii) a quantitative evaluation of lipid classes. The method was first optimized with SSLs collected from the forehead of a volunteer. More than 200 compounds were identified in the same run. These compounds have been classified in five lipid classes: free fatty acids, hydrocarbons, waxes, sterols, and glycerides. The advantage to this method was it provided structural information on intact compounds, which is new for cholesteryl esters and glycerides, and to obtain detailed fingerprints of the major SSLs. These fingerprints were used to compare the SSL compositions from different body areas. The squalene/cholesterol ratio was used to determine the balance between sebaceous secretion and skin removal. This method could be of general interest in fields where complex lipid mixtures are involved. PMID:20952798

  6. Gas chromatography/mass spectrometry applied for the analysis of triazine herbicides in environmental waters.

    PubMed

    Ma, W T; Fu, K K; Cai, Zongwei; Jiang, G B

    2003-09-01

    The excess use of triazine herbicides in agriculture causes severe contamination to the environment especially for ground water. Gas chromatography coupled with mass spectrometry (GC/MS) was used to analyze simazine, atrazine (ATR), cyanazine, as well as the degradation products of ATR such as deethylatrazine and deisopropylatrazine in environmental water samples. These compounds were baseline separated by the established GC method. The water samples were pre-concentrated by solid-phase-extraction (SPE) and analyzed by ion trap MS at sub- to low-ppt levels. Recovery of ATR by the SPE pre-concentration using a C18 cartridge was determined as 90.5 +/- 3.5%. Detection limit of the method using selected ion monitoring technique for ATR was 1.7 ppt when one liter water was analyzed. The relative analytical error for ATR fortified water samples at 200 ppt was -12.5% (n=12) with triple analysis and the relative standard deviation was 3.2%. Trace levels of ATR at 3.9 and 9.7 ppt were determined in water samples collected from a reservoir and a river in Hong Kong.

  7. Structural determination of nerve agent markers using gas chromatography mass spectrometry after derivatization with 3-pyridyldiazomethane.

    PubMed

    Nyholm, Jenny Rattfelt; Gustafsson, Tomas; Östin, Anders

    2013-07-01

    Nerve agents are a class of organophosphorous chemicals that are prohibited under the Chemical Weapons Convention. Their degradation products, phosphonic acids, are analyzed as markers of nerve agent contamination and use. Because the phosphonic acids are non-volatile and very polar, their identification by GC-MS requires a derivatization step prior to analysis. Standard derivatization methods for gas-chromatography electron-impact mass-spectrometry analysis give very similar spectra for many alkyl phosphonic acid isomers, which complicates the identification process. We present a new reagent, 3-pyridyldiazomethane, for preparing picolinyl ester derivatives of alkyl methylphosphonic acids facilitating the determination of their structure by enhancing predictable fragmentation of the O-alkyl chain. This fragmentation is directed by the nitrogen nucleus of the pyridyl moiety that abstracts hydrogen from the O-alkyl chain, inducing radical cleavage of the carbon-carbon bonds and thereby causing extensive fragmentation that can be used for detailed structure elucidation of the O-alkyl moiety. The separability of related isomers was tested by comparing the spectra of the picolinyl esters formed from twelve hexyl methylphosphonic acid isomers. Spectral library matches and principal component analysis showed that the picolinyl esters were more effectively separated than the corresponding trimethylsilyl derivatives used in the standard operating procedures. The suggested method will improve the unambiguous structural determination process for phosphonic acids. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Quantification of Short-Chain Chlorinated Paraffins by Deuterodechlorination Combined with Gas Chromatography-Mass Spectrometry.

    PubMed

    Gao, Yuan; Zhang, Haijun; Zou, Lili; Wu, Ping; Yu, Zhengkun; Lu, Xianbo; Chen, Jiping

    2016-04-05

    Analysis of short-chain chlorinated paraffins (SCCPs) is extremely difficult because of their complex compositions with thousands of isomers and homologues. A novel analytical method, deuterodechlorination combined with high resolution gas chromatography-high resolution mass spectrometry (HRGC-HRMS), was developed. A protocol is applied in the deuterodechlorination of SCCPs with LiAlD4, and the formed deuterated n-alkanes of different alkane chains can be distinguished readily from each other on the basis of their retention time and fragment mass ([M](+)) by HRGC-HRMS. An internal standard quantification of individual SCCP congeners was achieved, in which branched C10-CPs and branched C12-CPs were used as the extraction and reaction internal standards, respectively. A maximum factor of 1.26 of the target SCCP concentrations were determined by this method, and the relative standard deviations for quantification of total SCCPs were within 10%. This method was applied to determine the congener compositions of SCCPs in commercial chlorinated paraffins and environmental and biota samples after method validation. Low-chlorinated SCCP congeners (Cl1-4) were found to account for 32.4%-62.4% of the total SCCPs. The present method provides an attractive perspective for further studies on the toxicological and environmental characteristics of SCCPs.

  9. Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry

    PubMed Central

    2010-01-01

    Background Biofuels derived from algae biomass and algae lipids might reduce dependence on fossil fuels. Existing analytical techniques need to facilitate rapid characterization of algal species by phenotyping hydrocarbon-related constituents. Results In this study, we compared the hydrocarbon rich algae Botryococcus braunii against the photoautotrophic model algae Chlamydomonas reinhardtii using pyrolysis-gas chromatography quadrupole mass spectrometry (pyGC-MS). Sequences of up to 48 dried samples can be analyzed using pyGC-MS in an automated manner without any sample preparation. Chromatograms of 30-min run times are sufficient to profile pyrolysis products from C8 to C40 carbon chain length. The freely available software tools AMDIS and SpectConnect enables straightforward data processing. In Botryococcus samples, we identified fatty acids, vitamins, sterols and fatty acid esters and several long chain hydrocarbons. The algae species C. reinhardtii, B. braunii race A and B. braunii race B were readily discriminated using their hydrocarbon phenotypes. Substructure annotation and spectral clustering yielded network graphs of similar components for visual overviews of abundant and minor constituents. Conclusion Pyrolysis-GC-MS facilitates large scale screening of hydrocarbon phenotypes for comparisons of strain differences in algae or impact of altered growth and nutrient conditions. PMID:20492649

  10. Simultaneous chiral separation of methylamphetamine and common precursors using gas chromatography/mass spectrometry.

    PubMed

    Drake, Samantha J; Morrison, Calum; Smith, Frank

    2011-09-01

    Methylamphetamine, ephedrine, and pseudoephedrine were derivatized using trifluoroacetic anhydride and enantiomers of each were analyzed using gas chromatography coupled to mass spectrometry (GC/MS) fitted with a γ-cyclodextrin (Chiraldex™ G-PN) chiral column. A temperature-programmed method was developed and optimized and the results compared with those obtained using a previously published isothermal GC method applied to GC/MS analysis. Trifluoroacetylated 3-(trifluoromethyl)phenethylamine hydrochloride was used as an internal standard, and mass fragmentation patterns are proposed for all derivatives analyzed. Qualitative validation of the optimized chromatographic conditions was completed in accordance with the guidelines published by the United Nations Office on Drugs and Crime (UNODC). Under conditions of repeatability and reproducibility, the method gave relative retention times with a relative standard deviation of less than 0.02% for all six analytes of interest. This surpasses the UNODC's acceptance criteria of 2% for validation of qualitative precision. Ephedrine and pseudoephedrine are common precursors in the clandestine manufacture of methylamphetamine. Seizures of illicit methylamphetamine therefore often contain mixtures of these optically active compounds. The simultaneous enantioseparation of these compounds to produce a profile would provide valuable information to law enforcement agencies regarding the provenance of a methylamphetamine seizure.

  11. Development of thermal desorption gas chromatography/mass spectrometry as a rapid method for ambient particulate characterization

    NASA Astrophysics Data System (ADS)

    Sheya, Sue Anne N.

    A direct thermal desorption gas chromatography/mass spectrometry (TD GC/MS) method for air particulate matter (PM) analysis of volatile and semivolatile organic compounds was investigated. This technique uses a specially designed microdesorption GC inlet utilizing an inductively heated ferromagnetic foil with a Curie point temperature suitable for desorption, which can accommodate microgram amounts of material deposited on a thin strip of quartz fiber filter. Liquid or solid samples can be rapidly desorbed within 10 s at 315°C, followed by 30--40 min of chromatography time. The results obtained by this technique were found to be statistically equivalent to those obtained by the conventional solvent extraction gas chromatography/mass spectrometry (SX GC/MS) method for analysis of aromatic and n alkane standards, single source soot particles, and PM 10 filter samples. Correlations between injecting an extract, desorbing an extract, and desorbing particles averaged R = 0.94, with a three way correlation averaging R = 0.97. High volume sampling conducted at 12 spatially distributed sites located along the US/Mexican border of the El Paso/Juarez metroplex supplied 24h PM 10 filters for an investigation combining thermal desorption with a rapid online chemical derivatization procedure, and multivariate methods of source attribution using principal component and canonical correlation analysis of the resultant chemical markers. Four major combustion related PM emission sources were revealed at these sites: automotive, waste burning, biomass burning and meat cooking. A second investigation conducted in the same area used mediumvolume sampling to collect 2 h timeresolved PM 10 receptor samples for TD GC/MS analysis. Additionally, 2 h samples for inorganic analysis, multichannel particle size distribution measurements, and meteorological data were collected enabling generation of circadian PM multicharacterization profiles. Factor analysis based receptor modeling using

  12. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry.

    PubMed

    Roessner, U; Wagner, C; Kopka, J; Trethewey, R N; Willmitzer, L

    2000-07-01

    A new method is presented in which gas chromatography coupled to mass spectrometry (GC-MS) allows the quantitative and qualitative detection of more than 150 compounds within a potato tuber, in a highly sensitive and specific manner. In contrast to other methods developed for metabolite analysis in plant systems, this method represents an unbiased and open approach that allows the detection of unexpected changes in metabolite levels. Although the method represents a compromise for a wide range of metabolites in terms of extraction, chemical modification and GC-MS analysis, for 25 metabolites analysed in detail the recoveries were found to be within the generally accepted range of 70-140%. Further, the reproducibility of the method was high: the error occurring in the analysis procedures was found to be less than 6% for 30 out of 33 compounds tested. Biological variability exceeded the systematic error of the analysis by a factor of up to 10. The method is also suited for upscaling, potentially allowing the simultaneous analysis of a large number of samples. As a first example this method has been applied to soil- and in vitro-grown tubers. Due to the simultaneous analysis of a wide range of metabolites it was immediately apparent that these systems differ significantly in their metabolism. Furthermore, the parallel insight into many pathways allows some conclusions to be drawn about the underlying physiological differences between both tuber systems. As a second example, transgenic lines modified in sucrose catabolism or starch synthesis were analysed. This example illustrates the power of an unbiased approach to detecting unexpected changes in transgenic lines.

  13. Metabotyping of human colorectal cancer using two-dimensional gas chromatography mass spectrometry.

    PubMed

    Mal, Mainak; Koh, Poh Koon; Cheah, Peh Yean; Chan, Eric Chun Yong

    2012-04-01

    Colorectal cancer (CRC) is the fourth most common cause of death from cancer in the world. The limitations of the currently available methods and biomarkers for CRC management highlight the necessity of finding novel markers. Metabonomics can be used to search for potential markers that can provide molecular insight into human CRC. The emergence of two-dimensional gas chromatography time of flight mass spectrometry (GC × GC/TOFMS) has comprehensively enhanced the metabolic space coverage of conventional GC/MS. In this study, a GC × GC/TOFMS was developed for the tissue-based global metabonomic profiling of CRC. A Pegasus GC × GC/TOFMS (Leco Corp., St. Joseph, MI, USA) system comprising an Agilent 7890 GC and Pegasus IV TOFMS was used for this purpose. An Agilent DB-1 (30 m × 250 μm × 0.25 μm) fused silica capillary column and a Restek Rxi®-17 (1 m × 100 μm × 0.10 μm) fused silica capillary column were used as the primary and secondary columns, respectively. The method was applied for global metabonomic profiling of matched CRC and normal tissues (n = 63) obtained from 31 CRC patients during surgery. An attempt was also made to compare GC × GC/TOFMS with GC/MS and NMR in similar application. The results showed that the metabotype associated with CRC is distinct from that of normal tissue and led to the identification of chemically diverse marker metabolites. Metabolic pathway mapping suggested deregulation of various biochemical processes such as glycolysis, Krebs cycle, osmoregulation, steroid biosynthesis, eicosanoid biosynthesis, bile acid biosynthesis, lipid, amino acid and nucleotide metabolism.

  14. GLOBAL PEAK ALIGNMENT FOR COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY MASS SPECTROMETRY USING POINT MATCHING ALGORITHMS

    PubMed Central

    Deng, Beichuan; Kim, Seongho; Li, Hengguang; Heath, Elisabeth; Zhang, Xiang

    2016-01-01

    Comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-MS) has been used to analyze multiple samples in a metabolomics study. However, due to some uncontrollable experimental conditions, such as the differences in temperature or pressure, matrix effects on samples, and stationary phase degradation, there is always a shift of retention times in the two GC columns between samples. In order to correct the retention time shifts in GC×GC-MS, the peak alignment is a crucial data analysis step to recognize the peaks generated by the same metabolite in different samples. Two approaches have been developed for GC×GC-MS data alignment: profile alignment and peak matching alignment. However, these existing alignment methods are all based on a local alignment, resulting that a peak may not be correctly aligned in a dense chromatographic region where many peaks are present in a small region. False alignment will result in false discovery in the downstream statistical analysis. We, therefore, develop a global comparison based peak alignment method using point matching algorithm (PMA-PA) for both homogeneous and heterogeneous data. The developed algorithm PMA-PA first extracts feature points (peaks) in the chromatography and then searches globally the matching peaks in the consecutive chromatography by adopting the projection of rigid and non-rigid transformation. PMA-PA is further applied to two real experimental data sets, showing that PMA-PA is a promising peak alignment algorithm for both homogenous and heterogeneous data in terms of F1 score, although it uses only peak location information. PMID:27650662

  15. [Determination of alditols in wine by gas chromatography-mass spectrometry after acetate derivatization].

    PubMed

    Zhou, Hongbin; Xiong, Zhiyu; Yu, Yang; Wan, Rong; Li, Ping; Shen, Bo

    2013-08-01

    The acetate derivatization of alditols for determining alditol level in wine by gas chromatography (GC)-mass spectrometry (MS) has been developed. The wine sample was mixed with pyridine and centrifuged at 5,000 r/min at the temperature of 4 degrees C for 10 min. After filtration with organic phase membrane, the supernatant was derivatized with acetic anhydride, and then dehydrated with anhydrous sodium sulfate. The GC separation was performed on a DB-5MS capillary column. The alditols were determined by MS in selected ion monitoring (SIM) mode and quantified by external standard method. The calibration curves showed good linearities in the range of 0.019 - 1.25 mg/L except for lactitol (0.039 - 2.50 mg/L) with the correlation coefficients greater than 0.99. The limits of quantification (S/N= 10) of erythritol, xylitol, D-mannitol, sorbitol, galactitol and lactitol were 0.17, 0.29, 0.43, 0.46, 0.47 and 2.88 mg/L respectively. The limits of detection (S/N = 3) were 0.05, 0.08, 0.13, 0.14, 0.14 and 1.38 mg/L respectively. The recoveries of alditols spiked in the wine at two levels of 40 mg/L and 80 mg/L were ranged from 80.15% to 108.75% with the relative standard deviations (RSDs) of 2.16% - 6.97%. The sensitivity, accuracy and precision of the method can meet the technical standard. The method can be applied to the rapid determination of alditols in wine.

  16. Sensitive determination of bromate in ozonated and chlorinated water, and sea water by gas chromatography-mass spectrometry after derivatization.

    PubMed

    Shin, Ho-Sang

    2012-02-03

    A sensitive gas chromatographic method has been established for the determination of bromate in ozonated and chlorinated water, and in sea water. With acidic conditions, bromate reacts with chloride to form bromine, which reacts with 2,6-dialkylphenol to form 4-bromo-2,6-dialkylphenol. The organic derivative was extracted with ethyl acetate after quenching remaining oxidants with ascorbic acid, and then measured by gas chromatography-mass spectrometry (GC-MS). The lowest detection limit and limit of quantification of bromate in drinking water were 0.02 and 0.07 μg/L, respectively, and the calibration curve showed good linearity with r²=0.998. The 32 common ions did not interfere even when present in 100-fold excess over the bromated ion. The accuracy was in a range of 102-106% and the precision of the assay was less than 6% in chlorinated and ozonated tap water, ozonated mineral water, and sea water. The method was sensitive, reproducible and simple enough to permit reliable analysis of bromate to the ng/L level in water. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. High Sensitivity Quantitative Lipidomics Analysis of Fatty Acids in Biological Samples by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Quehenberger, Oswald; Armando, Aaron M.; Dennis, Edward A.

    2011-01-01

    Historically considered to be simple membrane components serving as structural elements and energy storing entities, fatty acids are now increasingly recognized as potent signaling molecules involved in many metabolic processes. Quantitative determination of fatty acids and exploration of fatty acid profiles have become common place in lipid analysis. We present here a reliable and sensitive method for comprehensive analysis of free fatty acids and fatty acid composition of complex lipids in biological material. The separation and quantitation of fatty acids is achieved by capillary gas chromatography. The analytical method uses pentafluorobenzyl bromide derivatization and negative chemical ionization gas chromatography-mass spectrometry. The chromatographic procedure provides base line separation between saturated and unsaturated fatty acids of different chain lengths as well as between most positional isomers. Fatty acids are extracted in the presence of isotope-labeled internal standards for high quantitation accuracy. Mass spectrometer conditions are optimized for broad detection capacity and sensitivity capable of measuring trace amounts of fatty acids in complex biological samples. PMID:21787881

  18. Fluoroacetylation/fluoroethylesterification as a derivatization approach for gas chromatography-mass spectrometry in metabolomics: preliminary study of lymphohyperplastic diseases.

    PubMed

    Karamani, Anna A; Fiamegos, Yiannis Ch; Vartholomatos, George; Stalikas, Constantine D

    2013-08-09

    Metabolic fingerprinting in combination with gas chromatography and multivariate analysis is being extensively employed for the improved understanding of biological changes induced by endogenous or exogenous factors. Chemical derivatization increases the sensitivity and specificity of gas chromatography-mass spectrometry (GC-MS) for polar or thermally labile biological compounds, which bear derivatizable groups. Thus, there is a constant demand for simple methods of derivatization and separation that satisfy the need for metabolite analysis, identifying as many chemical classes of compounds as possible. In this study, an optimized protocol of extraction and derivatization is established as a generally applicable method for the analysis of a wide range of classes of metabolites in urine, whole blood and saliva. Compounds of biological relevance bearing hydroxyl- carboxyl- and amino-groups are derivatized using single-step fluoroacetylation/fluoroethylesterification after proper optimization of the protocol. Subsequently, the developed derivatization procedure is engaged in finding blood metabolic biomarkers, induced by lymphohyperplastic disease, through the metabolomic fingerprinting approach, the multivariate modeling (hierarchical cluster analysis) and GC-MS. Our preliminary, GC-MS-based metabolomic fingerprinting study underlines the contribution of certain metabolites to the discrimination of patients with lymphohyperplastic diseases.

  19. Direct sample introduction-gas chromatography-mass spectrometry for the determination of haloanisole compounds in cork stoppers.

    PubMed

    Cacho, J I; Nicolás, J; Viñas, P; Campillo, N; Hernández-Córdoba, M

    2016-12-02

    A solventless analytical method is proposed for analyzing the compounds responsible for cork taint in cork stoppers. Direct sample introduction (DSI) is evaluated as a sample introduction system for the gas chromatography-mass spectrometry (GC-MS) determination of four haloanisoles (HAs) in cork samples. Several parameters affecting the DSI step, including desorption temperature and time, gas flow rate and other focusing parameters, were optimized using univariate and multivariate approaches. The proposed method shows high sensitivity and minimises sample handling, with detection limits of 1.6-2.6ngg(-1), depending on the compound. The suitability of the optimized procedure as a screening method was evaluated by obtaining decision limits (CCα) and detection capabilities (CCβ) for each analyte, which were found to be in 6.9-11.8 and 8.7-14.8ngg(-1), respectively, depending on the compound. Twenty-four cork samples were analysed, and 2,4,6-trichloroanisole was found in four of them at levels between 12.6 and 53ngg(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Determination of Levetiracetam in Human Plasma by Dispersive Liquid-Liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry

    PubMed Central

    2016-01-01

    Levetiracetam (LEV) is an antiepileptic drug that is clinically effective in generalized and partial epilepsy syndromes. The use of this drug has been increasing in clinical practice and intra- or -interindividual variability has been exhibited for special population. For this reason, bioanalytical methods are required for drug monitoring in biological matrices. So this work presents a dispersive liquid-liquid microextraction method followed by gas chromatography-mass spectrometry (DLLME-GC-MS) for LEV quantification in human plasma. However, due to the matrix complexity a previous purification step is required. Unlike other pretreatment techniques presented in the literature, for the first time, a procedure employing ultrafiltration tubes Amicon® (10 kDa porous size) without organic solvent consumption was developed. GC-MS analyses were carried out using a linear temperature program, capillary fused silica column, and helium as the carrier gas. DLLME optimized parameters were type and volume of extraction and dispersing solvents, salt addition, and vortex agitation time. Under chosen parameters (extraction solvent: chloroform, 130 μL; dispersing solvent: isopropyl alcohol, 400 μL; no salt addition and no vortex agitation time), the method was completely validated and all parameters were in agreement with the literature recommendations. LEV was quantified in patient's plasma sample using less than 550 μL of organic solvent. PMID:27830105

  1. Dynamic headspace gas chromatography/mass spectrometry characterization of volatiles produced in fish oil enriched mayonnaise during storage.

    PubMed

    Hartvigsen, K; Lund, P; Hansen, L F; Holmer, G

    2000-10-01

    Protection against lipid oxidation and formation of unpleasant fishy and rancid off-flavors in oil-in-water food emulsions, such as fish oil enriched mayonnaise, is difficult to achieve. Volatile profiles from stored mayonnaises with different oil phase compositions were collected using a developed dynamic headspace sampling technique, in which interfering acetic acid was removed in situ with potassium hydroxide, and subsequently 148 volatiles were characterized and monitored by gas chromatography/mass spectrometry. Multivariate statistics showed correlation between the concentration of 62 volatiles and the fish oil and storage parameters, indicating the formation of lipid oxidation products, which impose fishy off-flavors. Further verification was obtained by gas chromatography/olfactometry, by which, among 78 odors, cis-4-heptenal and trans,cis-2,4-heptadienal were detected as distinct fishy notes. In total, 27 volatiles, including 1-penten-3-one, cis-2-penten-1-ol, cis-3-hexenal, cis-4-heptenal, 1-octen-3-one, 1,cis-5-octadien-3-one, 1-octen-3-ol, trans,cis-2, 4-heptadienal, and trans,cis-2,6-nonadienal, were suggested to contribute to the developed unpleasant fishy and rancid off-flavors.

  2. An experimental design approach for optimizing polycyclic aromatic hydrocarbon analysis in contaminated soil by pyrolyser-gas chromatography-mass spectrometry.

    PubMed

    Buco, S; Moragues, M; Sergent, M; Doumenq, P; Mille, G

    2007-06-01

    Pyrolyser-gas chromatography-mass spectrometry was used to analyze polycyclic aromatic hydrocarbons in contaminated soil without preliminary extraction. Experimental research methodology was used to obtain optimal performance of the system. After determination of the main factors (desorption time, Curie point temperature, carrier gas flow), modeling was done using a Box-Behnken matrix. Study of the response surface led to factor values that optimize the experimental response and achieve better chromatographic results.

  3. Simultaneous Determination of 10 Photoinitiators in Milk by Solid-Phase Microextraction Coupled with Gas Chromatography/Mass Spectrometry.

    PubMed

    Liu, Pengyan; Zhao, Chunxia; Zhang, Yajing; Chen, Yanjie

    2016-05-01

    Photoinitiators (PIs) are widely used in food packaging materials, can migrate easily from packaging materials to food, and cause food contamination. It is essential to establish a method of determining PIs residues in food. A new method for simultaneously determining 10 kinds of PIs in milk has been established by using solid-phase microextraction (SPME) combined with a simple method of protein precipitation as the pretreatment approach and gas chromatography/mass spectrometry as the detecting technique. The limits of detection for 10 PIs in different milks were between 0.05 and 1.4 μg/L (skimmed milk), between 0.07 and 2.2 μg/L (semi-skimmed milk), between 0.11 and 4.4 μg/L (whole milk), respectively. The recoveries were from 71.5% to 133.5%, and the relative standard deviations were less than 15%. Twelve kinds of packed milk with different brands and fat contents were determined using this method.

  4. Gas chromatography-mass spectrometry analysis of effects of dietary fish oil on total fatty acid composition in mouse skin

    PubMed Central

    Wang, Peiru; Sun, Min; Ren, Jianwei; Djuric, Zora; Fisher, Gary J.; Wang, Xiuli; Li, Yong

    2017-01-01

    Altering the fatty acid (FA) composition in the skin by dietary fish oil could provide therapeutic benefits. Although it has been shown that fish oil supplementation enhances EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) abundance in the skin, comprehensive skin FA profiling is needed. We established a gas chromatography-mass spectrometry method, which allows precise quantification of FA profile using small (<24 mm2 for mice and <12 mm2 for humans) skin specimens that can be readily obtained from live mice and humans. We determined mouse skin FA composition after 2, 4 and 8 weeks of consuming a control diet or a diet supplemented with fish oil. Fish oil markedly enhanced EPA and DHA in mouse skin within 2 weeks, and this increase plateaued after 4 weeks. The FA composition in mouse skin was different from that of serum, indicating that skin has homeostatic control of FA metabolism. Mice fed the control diet designed to simulate Western human diet displayed similar skin FA composition as that of humans. The present study presents a validated method for FA quantification that is needed to investigate the mechanisms of actions of dietary treatments in both mouse and human skin. PMID:28195161

  5. [Determination of volatile N-nitrosamine compounds in salted aquatic products by gas chromatography-mass spectrometry].

    PubMed

    Zhao, Hua; Wang, Xiuyuan; Wang, Pingya; Zhou, Yong; Xue, Chaobo; Jiang, Lingbo

    2013-03-01

    An analytical method was developed for the determination of the extraction of volatile N-nitrosamine compounds including N-nitrosodimethylamine ( NDMA) , N-nitrosodiethylamine (NDEA), N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA), N-nitrosopiperidine (NPIP), and N-nitrosopyrrolidine (NPYR) from salted aquatic products by gas chromatography-mass spectrometry (GC-MS). In this experiment, the separation and detection conditions were optimized for different extraction methods, solid-phase extraction columns, and chromatographic columns. The results showed that the linear correlation coefficients (R2) were higher than 0. 999 8 within 10 - 1 000 micro g/L, and the reproducibilities were good with the - relative standard deviations (RSD) less than 8%. The recoveries were 79% - 105%. It is noted that this method for the determination of volatile N-nitrosamine compounds in salted aquatic products was much more sensitivity and with a lower detection limits (0. 05 micro g/kg except NDPA) than the previously reported methods. This proposed method is rapid and convenient for the determination, and easy for the operation. It is appropriate for the determination of volatile N-nitrosamine compounds in various salted aquatic products.

  6. Application of gas chromatography-mass spectrometry in analyzing pharmacokinetics and distribution of deltamethrin in miniature pig tissues.

    PubMed

    Zhu, Pan; Fan, Sai; Zou, Jian Hong; Miao, Hong; Li, Jing Guang; Zhang, Guo Wen; Wu, Yong Ning

    2014-06-01

    To characterize the pharmacokinetics and distribution profiles of deltamethrin in miniature pig tissues by gas chromatography-mass spectrometry (GC-MS). Pharmacokinetics and distribution of deltamethrin in blood and tissues of 30 miniature pigs were studied by GC-MS after oral administration of deltamethrin (5 mg/kg bw). Data were processed by 3P97 software. The serum deltamethrin level was significantly lower in tissues than in blood of miniature pigs. The AUC0-72 h, Cmax, of deltamethrin were 555.330 ± 316.987 ng h/mL and 17.861 ± 11.129 ng/mL, respectively. The Tmax, of deltamethrin was 6.004 ± 3.131 h. The metabolism of deltamethrin in miniature pigs is fit for a one-compartment model with a weighting function of 1/C2. Deltamethrin is rapidly hydrolyzed and accumulated in miniature pig tissues. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  7. Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects.

    PubMed

    Bonaduce, Ilaria; Ribechini, Erika; Modugno, Francesca; Colombini, Maria Perla

    2016-02-01

    Gas chromatography/mass spectrometry (GC/MS), after appropriate wet chemical sample pre-treatments or pyrolysis, is one of the most commonly adopted analytical techniques in the study of organic materials from cultural heritage objects. Organic materials in archaeological contexts, in classical art objects, or in modern and contemporary works of art may be the same or belong to the same classes, but can also vary considerably, often presenting different ageing pathways and chemical environments. This paper provides an overview of the literature published in the last 10 years on the research based on the use of GC/MS for the analysis of organic materials in artworks and archaeological objects. The latest progresses in advancing analytical approaches, characterising materials and understanding their degradation, and developing methods for monitoring their stability are discussed. Case studies from the literature are presented to examine how the choice of the working conditions and the analytical approaches is driven by the analytical and technical question to be answered, as well as the nature of the object from which the samples are collected.

  8. Analysis of isotope ratios in vitamin K1 (phylloquinone) from human plasma by gas chromatography/mass spectrometry.

    PubMed

    Jones, Kerry S; Bluck, Leslie J C; Coward, W Andy

    2006-01-01

    Vitamin K(1) is a fat-soluble vitamin required for the gamma-carboxylation of vitamin K-dependent proteins. Recent work has suggested an important role for vitamin K(1) in bone health beyond its more established function in the control and regulation of blood coagulation. However, current UK recommended intakes do not reflect this recent evidence. The use of stable isotopes provides a powerful tool to investigate vitamin K kinetics, turnover and absorption in man, although published methods have reported difficulties in the extraction and analysis of isotope ratios of vitamin K in human plasma. In this paper, we report a new methodology for the extraction and measurement of isotope ratios in vitamin K(1). Sample clean-up is achieved with liquid-liquid extraction, enzyme hydrolysis with lipase and cholesterol esterase, and solid-phase extraction. Isotopic analysis of the pentafluoropropionyl derivative of vitamin K(1) is performed by gas chromatography/mass spectrometry (GC/MS). The limit of quantitation is equivalent to at least 0.3 nmol/L and the method is demonstrated to be linear over a range of enrichments. This method provides a robust alternative to previous work requiring the use of semi-preparative high-performance liquid chromatography (HPLC). Copyright (c) 2006 John Wiley & Sons, Ltd.

  9. A gas chromatography-mass spectrometry based study on urine metabolomics in rats chronically poisoned with hydrogen sulfide.

    PubMed

    Deng, Mingjie; Zhang, Meiling; Sun, Fa; Ma, Jianshe; Hu, Lufeng; Yang, Xuezhi; Lin, Guanyang; Wang, Xianqin

    2015-01-01

    Gas chromatography-mass spectrometry (GS-MS) in combination with multivariate statistical analysis was applied to explore the metabolic variability in urine of chronically hydrogen sulfide- (H2S-) poisoned rats relative to control ones. The changes in endogenous metabolites were studied by partial least squares-discriminate analysis (PLS-DA) and independent-samples t-test. The metabolic patterns of H2S-poisoned group are separated from the control, suggesting that the metabolic profiles of H2S-poisoned rats were markedly different from the controls. Moreover, compared to the control group, the level of alanine, d-ribose, tetradecanoic acid, L-aspartic acid, pentanedioic acid, cholesterol, acetate, and oleic acid in rat urine of the poisoning group decreased, while the level of glycine, d-mannose, arabinofuranose, and propanoic acid increased. These metabolites are related to amino acid metabolism as well as energy and lipid metabolism in vivo. Studying metabolomics using GC-MS allows for a comprehensive overview of the metabolism of the living body. This technique can be employed to decipher the mechanism of chronic H2S poisoning, thus promoting the use of metabolomics in clinical toxicology.

  10. Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.

    PubMed

    Dang, Ngoc A; Kuijper, Sjoukje; Walters, Elisabetta; Claassens, Mareli; van Soolingen, Dick; Vivo-Truyols, Gabriel; Janssen, Hans-Gerd; Kolk, Arend H J

    2013-01-01

    Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound model to distinguish between MTB and NTM. It is based on thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and partial least square discriminant analysis. Here we report the validation of this model with two independent sample sets, one consisting of 39 MTB and 17 NTM isolates from the Netherlands, the other comprising 103 isolates (91 MTB and 12 NTM) from Stellenbosch, Cape Town, South Africa. All the MTB strains in the 56 Dutch samples were correctly identified and the model had a sensitivity of 100% and a specificity of 94%. For the South African samples the model had a sensitivity of 88% and specificity of 100%. Based on our model, we have developed a new decision-tree that allows the differentiation of MTB from NTM with 100% accuracy. Encouraged by these findings we will proceed with the development of a simple, rapid, affordable, high-throughput test to identify MTB directly in sputum.

  11. Gas chromatography-mass spectrometry and Raman imaging measurement of squalene content and distribution in human hair.

    PubMed

    Wu, Yan; Chen, Guoqiang; Ji, Chengdong; Hoptroff, Michael; Jones, Andrew; Collins, Luisa Z; Janssen, Hans-Gerd

    2016-03-01

    A sensitive and specific gas chromatography-mass spectrometry (GC-MS) method was developed and validated for the measurement of the squalene content from root to tip, in both Chinese black virgin and bleached hair. Deuterated squalene was used as the internal standard. For quantification, selective ion monitoring (SIM) at m/z 410.0 and 347.0 were monitored for squalene and deuterated squalene, respectively. Different methods for the extraction of squalene from ex vivo human hair were compared including organic solvent extraction and acid/alkali hydrolysis. The best extraction efficiency was obtained by using a mixed solvent consisting of chloroform:methanol = 2:1 (v:v). The linear range of squalene ran from 1.0 to 50.0 μg mL(-1). The limit of detection (LOD) was 0.10 μg mL(-1) (corresponding to 0.005 mg g(-1) in human hair), which enabled quantification of squalene in human hair at very low level. The recovery of squalene was 96.4 ± 1.46% (n = 3). Using the above-mentioned mixed solvent extraction, squalene content in human hair was successfully quantified from root to tip. Meanwhile, a Raman imaging method was developed to visualize the squalene distribution in Chinese white virgin hair from cuticle to medulla.

  12. Determination of alkylphenolic residues in fresh fruits and vegetables by extractive steam distillation and gas chromatography-mass spectrometry.

    PubMed

    Yang, Deng-Kai; Ding, Wang-Hsien

    2005-09-23

    This study describes a simple and sensitive method for determining the alkylphenolic compounds, 4-tert-octylphenol (4-t-OP), 4-nonylphenol isomers (4-NPs), and their monoethoxylates (4-t-OP1EO and 4-NP1EOs), in fresh fruits and vegetables. The method involves extracting a sample by a modified Nielson-Kryger steam distillation extraction using n-hexane for 1 h. The alkylphenolic compounds were identified and quantitated by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. Various pH values and amounts of NaCl added to the sample solution were evaluated as extraction conditions. The quantitation limit of this method was less than 0.2 ng/g in 10 g (fresh weight) of sample. Recovery of alkylphenolic compounds in spiked samples exceeded 64% while R.S.D. ranged from 1.0 to 9.8%. Alkylphenolic residues were detected in fresh fruits and vegetables at concentrations of 4-NPs and 4-t-OP from n.d. to 16 ng/g and from n.d. to 4.8 ng/g (fresh weight), respectively. NP1EO and OP1EO were always below the quantitation limit.

  13. A simple gas chromatography-mass spectrometry procedure for the simultaneous determination of buprenorphine and norbuprenorphine in human urine.

    PubMed

    Fuller, Dwain C

    2008-10-01

    With the increasing use of buprenorphine in treatment of opiate addiction and pain management, it is important that laboratories be able to assess patient compliance. The presented procedure is simple, efficient, and employs gas chromatography-mass spectrometry (GC-MS) technology available to most laboratories. The specimen is hydrolyzed with beta-glucuronidase prior to liquid-liquid extraction at a basic pH. The evaporated extract is derivatized to form the tertiary-butyl-dimethyl-silyl derivatives of buprenorphine and norbuprenorphine prior to analysis by GC-MS in the electron impact mode. Confirmation of the analytes is based on comparing the ion abundance ratios of the analytes to those of a contemporaneously analyzed standard. The qualitative ion abundance ratios are required to be within 20% of those of the standard for acceptance. Quantification is based on the ion ratios of the analytes to those of their corresponding deuterated analogues. Linearity was obtained for buprenorphine in the range of 1 to 2000 microg/L with a correlation coefficient (R) exceeding 0.999 and for norbuprenorphine from 1 to 1000 microg/L with R exceeding 0.997. Percent recoveries for the buprenorphine and norbuprenorphine were 71% and 75%, respectively. It was found that the recovery of norbuprenorphine could be enhanced to 100% by a simple "salting-out" modification to the procedure.

  14. Determination of microcontaminants in sediments by on-line solid-phase extraction-gas chromatography-mass spectrometry.

    PubMed

    Slobodník, J; Ramalho, S; van Baar, B L; Louter, A J; Brinkman, U A

    2000-11-01

    Two simple and straightforward analytical procedures for the screening of sediment samples are reported. They involve extraction with ethyl acetate or methanol and subsequent analysis by means of gas chromatography-mass spectrometry (GC-MS) using large-volume injection (LVI) or solid-phase extraction (SPE). The latter, which was originally developed for the analysis of aqueous samples, can be used without any modification. In general, 10 ml of organic solvent were added to 2 g of sediment, and the mixture was shaken and allowed to stand overnight. The methanolic extracts were then diluted in water and subjected to preconcentration and analysis using on-line SPE-GC-MS. The ethyl acetate extracts were injected directly into the GC using LVI. Both methods were used for the detection and identification of microcontaminants during a monitoring study of the river Nitra (Slovak Republic). They included polyaromatic hydrocarbons (PAHs), chlorofluorohydrocarbons, alkoxylated and alkylated phenols and benzothiazole derivatives. Semi-quantitative profiles of the contaminants were constructed and provisionally interpreted. The results indicate that SPE-GC-MS, and also LVI-GC-MS, have good potential for a rapid screening of sediment samples and the identification of microcontaminants. The analytical procedures pose no problems, and the on-line set-up is user-friendly.

  15. Evaluation of beer deterioration by gas chromatography-mass spectrometry/multivariate analysis: a rapid tool for assessing beer composition.

    PubMed

    Rodrigues, João A; Barros, António S; Carvalho, Beatriz; Brandão, Tiago; Gil, Ana M; Ferreira, António C Silva

    2011-02-18

    Beer stability is a major concern for the brewing industry, as beer characteristics may be subject to significant changes during storage. This paper describes a novel non-targeted methodology for monitoring the chemical changes occurring in a lager beer exposed to accelerated aging (induced by thermal treatment: 18 days at 45 °C), using gas chromatography-mass spectrometry in tandem with multivariate analysis (GC-MS/MVA). Optimization of the chromatographic run was performed, achieving a threefold reduction of the chromatographic time. Although losing optimum resolution, rapid GC runs showed similar chromatographic profiles and semi-quantitative ability to characterize volatile compounds. To evaluate the variations on the global volatile signature (chromatographic profile and m/z pattern of fragmentation in each scan) of beer during thermal deterioration, a non-supervised multivariate analysis method, Principal Component Analysis (PCA), was applied to the GC-MS data. This methodology allowed not only the rapid identification of the degree of deterioration affecting beer, but also the identification of specific compounds of relevance to the thermal deterioration process of beer, both well established markers such as 5-hydroxymethylfufural (5-HMF), furfural and diethyl succinate, as well as other compounds, to our knowledge, newly correlated to beer aging. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Gas chromatography-mass spectrometry analysis of different organic crude extracts from the local medicinal plant of Thymus vulgaris L

    PubMed Central

    Hashmi, Laila Salim Al; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-01-01

    Objective To isolate and analyze the chemical composition in different crude extracts of from the leaves of locally grown of Thymus vulgaris L (T. vulgaris) by gas chromatography-mass spectrometry (GC-MS). Methods The shade dried leaves powder was extracted with methanol by using Soxhlet extractor. Methanol crude extracts of T. vulgaris and the derived fractions of hexane, chloroform, ethyl acetate and butanol were obtained. Results Qualitative analyses of various organic crude extracts of T. vulgaris by using GC-MS showed that there were different types of high and low molecular weight compounds. Most of the isolated and identified compounds by GC-MS in the crude extracts are basically biologically important. Further, the T. vulgaris leaf possessed certain characteristics that can be ascribed to cultivation on a domestic plantation. The crude extracts were prepared from the powder leaves of T. vulgaris for respective compounds can be chosen on the basis of above GC-MS analysis. Conclusions All the major compounds were identified and characterized by spectroscopic method in different organic crude extracts of T. vulgaris are biologically active molecules. Thus the identification of a good number of compounds in various crude extracts of T. vulgaris might have some ecological role. PMID:23570020

  17. Identification and quantitation of urinary dicarboxylic acids as their dicyclohexyl esters in disease states by gas chromatography mass spectrometry.

    PubMed

    Norman, E J; Berry, H K; Denton, M D

    1979-12-01

    Clinical studies were conducted by gas chromatography mass spectrometry selected ion monitoring of urinary dicarboxylic acids as dicyclohexyl esters. The dicyclohexyl esters of the dicarboxylic acids give characteristic electron impact mass spectra suitable for selected ion monitoring. The mass spectra exhibit a prominent acid + 1H ion and an (acid + 1H)-H2O ion for use as quantitating and confirming ions. The cyclohexyl esters are stable for days at room temperature and have excellent chromatographic properties. Dicarboxylic acid quantitation is performed within one hour using only 50 microliter of unpurified urine. A rapid method specifically for methylmalonic acid quantitation is described which has assisted physicians in the diagnosis of pernicious anemia and methylmalonic aciduria. This procedure is applicable for screening urinary organic acids for detection of inborn errors of metabolism. The detection of a child with elevated medium length dicarboxylic acids in the terminal urine specimen is reported. This condition, previously described as an inborn error, is attributed to a terminal event. Finally, an increase in urinary succinic acid paralleling putrescine levels is described during a response to cancer chemotherapy.

  18. Determination of Drugs of Abuse in a Single Sample of Human Teeth by a Gas Chromatography-Mass Spectrometry Method.

    PubMed

    Ottaviani, Giovanni; Cameriere, Roberto; Cippitelli, Marta; Froldi, Rino; Tassoni, Giovanna; Zampi, Massimiliano; Cingolani, Mariano

    2017-01-01

    The purpose of this study was to develop and validate a gas chromatography-mass spectrometry method to detect drugs of abuse in a single sample of tooth. Pulverized samples of dental materials were subjected to acid hydrolysis to detect opiates, cocaine and their metabolites. The residual dental materials from these analyses were subjected to basic extraction to detect cannabis products (Δ(9)-tetrahydrocannabinol, cannabidiol and cannabinol). The method showed a good linearity between 0.05 and 2 ng/mg for all substances. The limit of detection ranged from 0.02 to 0.03 ng/mg, and the limit of quantification was 0.05 ng/mg. The application of the method to samples of teeth obtained from drug addicts was successful. It can be applied in post-mortem cases, especially when limited amounts of sample are available. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Recent trends in application of multivariate curve resolution approaches for improving gas chromatography-mass spectrometry analysis of essential oils.

    PubMed

    Jalali-Heravi, Mehdi; Parastar, Hadi

    2011-08-15

    Essential oils (EOs) are valuable natural products that are popular nowadays in the world due to their effects on the health conditions of human beings and their role in preventing and curing diseases. In addition, EOs have a broad range of applications in foods, perfumes, cosmetics and human nutrition. Among different techniques for analysis of EOs, gas chromatography-mass spectrometry (GC-MS) is the most important one in recent years. However, there are some fundamental problems in GC-MS analysis including baseline drift, spectral background, noise, low S/N (signal to noise) ratio, changes in the peak shapes and co-elution. Multivariate curve resolution (MCR) approaches cope with ongoing challenges and are able to handle these problems. This review focuses on the application of MCR techniques for improving GC-MS analysis of EOs published between January 2000 and December 2010. In the first part, the importance of EOs in human life and their relevance in analytical chemistry is discussed. In the second part, an insight into some basics needed to understand prospects and limitations of the MCR techniques are given. In the third part, the significance of the combination of the MCR approaches with GC-MS analysis of EOs is highlighted. Furthermore, the commonly used algorithms for preprocessing, chemical rank determination, local rank analysis and multivariate resolution in the field of EOs analysis are reviewed.

  20. Gas chromatography-mass spectrometry screening for phytochemical 4-desmethylsterols accumulated during development of Tunisian peanut kernels (Arachis hypogaea L.).

    PubMed

    Cherif, Aicha O; Trabelsi, Hajer; Ben Messaouda, Mhamed; Kâabi, Belhassen; Pellerin, Isabelle; Boukhchina, Sadok; Kallel, Habib; Pepe, Claude

    2010-08-11

    4-Desmethylsterols, the main component of the phytosterol fraction, have been analyzed during the development of Tunisian peanut kernels ( Arachis hypogaea L.), Trabelsia (AraT) and Chounfakhi (AraC), which are monocultivar species, and Arbi (AraA), which is a wild species, by gas chromatography-mass spectrometry. Immature wild peanut (AraA) showed the highest contents of beta-sitosterol (554.8 mg/100 g of oil), campesterol (228.6 mg/100 g of oil), and Delta(5)-avenasterol (39.0 mg/100 g of oil) followed by peanut cultivar AraC with beta-sitosterol, campesterol, and Delta(5)-avenasterol averages of 267.7, 92.1, and 28.6 mg/100 g of oil, respectively, and similarly for AraT 309.1, 108.4, and 27.4 mg/100 g of oil, respectively, were found. These results suggest that, in immature stages, phytosterol contents can be important regulator factors for the functional quality of peanut oil for the agro-industry chain from plant to nutraceuticals.

  1. Determination of carbon number distributions of complex phthalates by gas chromatography-mass spectrometry with ammonia chemical ionization.

    PubMed

    Di Sanzo, Frank P; Lim, Peniel J; Han, Wenning W

    2015-01-01

    An assay method for phthalate esters with a complex mixture of isomer of varying carbon numbers, such as di-isononyl phthalate (DINP) and di-isodecyl phthalate (DIDP), using gas chromatography-mass spectrometry (GC-MS) positive chemical ionization (PCI) with 5% ammonia in methane is described. GC-MS-PCI-NH3, unlike GC-MS electron ionization (EI) (GC-MS-EI) that produces generally m/z 149 ion as the main base peak and low intensity M(+) peaks, produces higher intensity (M + 1) ions that allow the determination of total (R + R') carbon number distributions based on the various R and R' alkyl groups of the di-esters moiety. The technique allows distinguishing among the various commercial DINP and DIDP plasticizers. The carbon number distributions are determined in the acceptable range of <0.1 mole percent to >85 mole percent (m/m). Several examples of analysis made on commercial DINP and DIDP are presented. The use of only 5% instead of 100% ammonia simplifies use of GC-MS-PCI-NH3 but still produces sufficient M + 1 ion intensities that are appropriate for the assay. In addition, use of low concentrations of ammonia mitigates potential safety aspects related to use of ammonia and provides less corrosion for the instrument hardware.

  2. Determination of cocaine and heroin with their respective metabolites in meconium by gas chromatography-mass spectrometry.

    PubMed

    López, P; Bermejo, A M; Tabernero, M J; Fernández, P; Alvarez, I

    2007-01-01

    The analysis of meconium specimens is a relatively accurate method for the detection of fetal exposure to drugs. The purpose of this study was to develop and validate a method for meconium sample preparation for a gas chromatography-mass spectrometry (GC-MS) confirmation of meconium extracts for cocaine, benzoylecgonine, codeine, morphine and 6-monoacetylmorphine. The analytes were initially extracted from the matrix by methanol. Subsequently a solid-phase extraction with Waters Oasis HLB cartridges was applied. Analytes were determined in GC-MS single monitoring mode. The method was validated in the range 40-2000 ng g(-1) using 0.5 g of meconium per assay. The detector response was linear over the studied range, and limits of quantitation and detection were found to be acceptable. Intra- and inter-batch coefficients of variation oscillated between 2.54% and 20.5%, and mean relative errors were in the range 0.79%-19.9%. The recoveries were higher than 42.1% in all cases. Finally the method was applied to analysis of meconium in newborns to assess fetal exposure to cocaine and opiates.

  3. Simultaneous determination of cyanide and thiocyanate in plasma by chemical ionization gas chromatography mass-spectrometry (CI-GC-MS).

    PubMed

    Bhandari, Raj K; Oda, Robert P; Youso, Stephanie L; Petrikovics, Ilona; Bebarta, Vikhyat S; Rockwood, Gary A; Logue, Brian A

    2012-11-01

    An analytical method utilizing chemical ionization gas chromatography-mass spectrometry was developed for the simultaneous determination of cyanide and thiocyanate in plasma. Sample preparation for this analysis required essentially one-step by combining the reaction of cyanide and thiocyanate with pentafluorobenzyl bromide and simultaneous extraction of the product into ethyl acetate facilitated by a phase-transfer catalyst, tetrabutylammonium sulfate. The limits of detection for cyanide and thiocyanate were 1 μM and 50 nM, respectively. The linear dynamic range was from 10 μM to 20 mM for cyanide and from 500 nM to 200 μM for thiocyanate with correlation coefficients higher than 0.999 for both cyanide and thiocyanate. The precision, as measured by %RSD, was below 9 %, and the accuracy was within 15 % of the nominal concentration for all quality control standards analyzed. The gross recoveries of cyanide and thiocyanate from plasma were over 90 %. Using this method, the toxicokinetic behavior of cyanide and thiocyanate in swine plasma was assessed following cyanide exposure.

  4. Determination of aromatic hydrocarbons in bituminous emulsion sealants using headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Tang, Bing; Isacsson, Ulf

    2006-12-22

    The possibility of quantitative determination of aromatic hydrocarbons in bituminous emulsion sealants was investigated using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS). The target analytes studied were benzene, toluene, ethylbenzene, p-, m-, and o-xylene (BTEX) as well as 1,3,5- and 1,2,4-trimethylbenzene. Experimental factors influencing HS-SPME efficiency were studied (sample-headspace equilibration time, extraction time and sample matrix effects). A HS-SPME method using surrogate matrix was developed. The detection limit was estimated as approximately 0.1 ppmw for the target analytes investigated. Good linearity was observed (R(2)>0.997) for all calibration curves obtained. The repeatability of the method (RSD, relative standard deviation) was found less than 10%. The accuracy of the method given by recovery of spiked samples was between 99 and 116%. The HS-SPME method developed was applied to two commercially available bituminous emulsion sealants. External calibration and standard addition approaches were investigated, and statistical paired t-test was performed. The contents of target aromatic hydrocarbons in the sealants studied varied from approximately 0.4 to 150 ppmw. The method developed shows potential as a tool for the determination of aromatic hydrocarbons in emulsified bituminous materials.

  5. Identification the Key Odorants in Different Parts of Hyla Rabbit Meat via Solid Phase Microextraction Using Gas Chromatography Mass Spectrometry

    PubMed Central

    Lv, Jingzhi; Zhang, En

    2016-01-01

    The aim of this study was to explore the volatile compounds of hind leg, foreleg, abdomen and Longissimus dorsi in both male and female Hyla rabbit meat by solid phase microextraction tandem with gas chromatography mass spectrometry, and to seek out the key odorants via calculating the odor activity value and principal component analysis. Cluster analysis is used to study the flavor pattern differences in four edible parts. Sixty three volatile compounds were detected, including 23 aldehydes, 4 alcohols, 5 ketones, 11 esters, 5 aromatics, 8 acids and 7 hydrocarbons. Among them, 6 aldehydes and 3 acids were identified as the potential key odorants according to the ratio of concentration and threshold. The contents of volatile compounds in male Hyla rabbit meat were significantly higher than those in female one (p<0.05). The results of principal component analysis showed that the first two principal component cumulative variance contributions reach 87.69%; Hexanal, octanal, 2-nonenal, 2-decenal and decanal were regard as the key odorants of Hyla rabbit meat by combining odor activity value and principal component analysis. Therefore volatile compounds of rabbit meat can be effectively characterized. Cluster analysis indicated that volatile chemical compounds of Longissimus dorsi were significantly different from other three parts, which provide reliable information for rabbit processing industry and for possible future sale. PMID:28115882

  6. Distinguishing chinese star anise from Japanese star anise using thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Howes, Melanie-Jayne R; Kite, Geoffrey C; Simmonds, Monique S J

    2009-07-08

    The volatile compounds from the pericarps of Illicium anisatum L., Illicium brevistylum A.C.Sm., Illicium griffithii Hook.f. & Thomson, Illicium henryi Diels, Illicium lanceolatum A.C.Sm., Illicium majus Hook.f. & Thomson, Illicium micranthum Dunn, and Illicium verum Hook.f. were examined by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The volatiles desorbed from the pericarps of I. verum (Chinese star anise), the species traded for culinary purposes, were generally characterized by a high proportion of (E)-anethole (57.6-77.1%) and the presence of foeniculin; the latter was otherwise only detected in the pericarps of I. lanceolatum. In the pericarps of all other species analyzed, the percentage composition of (E)-anethole was comparatively lower (

  7. Characterization of organic fouling in reverse osmosis membranes by headspace solid phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Martínez, C; Gómez, V; Pocurull, E; Borrull, F

    2015-01-01

    Adsorption of organic substances on reverse osmosis (RO) membrane surfaces may form an organic film on the membrane, known as organic fouling, and cause flow-rate loss. This problem is mostly unavoidable as no pretreatment method exists for perfect removal of possible foulants, including organic compounds resulting from undesirable bioactivity. Understanding the characteristics of fouling layers is an essential step towards overall improvement of RO membrane operations. In this study, the organic fouling in RO membranes treating the effluent of a secondary treatment from an urban wastewater treatment plant was characterized. Headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry has been used for the first time, to provide valuable information of organic fouling. Different polarity SPME fibers were tested for this purpose. In addition, the characterization of the organic fouling obtained by HS-SPME was compared with the results obtained by extraction using several organic solvents. The results indicated that more compound families can be identified by HS-SPME than by organic solvent extraction. Moreover, complementary organic analyses were done for better understanding of the organic fouling in RO membranes, such as total organic carbon and loss on ignition.

  8. Determination of dimethyl trisulfide in rabbit blood using stir bar sorptive extraction gas chromatography-mass spectrometry.

    PubMed

    Manandhar, Erica; Maslamani, Nujud; Petrikovics, Ilona; Rockwood, Gary A; Logue, Brian A

    2016-08-26

    Cyanide poisoning by accidental or intentional exposure poses a severe health risk. The current Food and Drug Administration approved antidotes for cyanide poisoning can be effective, but each suffers from specific major limitations concerning large effective dosage, delayed onset of action, or dependence on enzymes generally confined to specific organs. Dimethyl trisulfide (DMTS), a sulfur donor that detoxifies cyanide by converting it into thiocyanate (a relatively nontoxic cyanide metabolite), is a promising next generation cyanide antidote. Although a validated analytical method to analyze DMTS from any matrix is not currently available, one will be vital for the approval of DMTS as a therapeutic agent against cyanide poisoning. Hence, a stir bar sorptive extraction (SBSE) gas chromatography - mass spectrometry (GC-MS) method was developed and validated for the analysis of DMTS from rabbit whole blood. Following acid denaturation of blood, DMTS was extracted into a polydimethylsiloxane-coated stir bar. The DMTS was then thermally desorbed from the stir bar and analyzed by GC-MS. The limit of detection of DMTS using this method was 0.06μM with dynamic range from 0.5-100μM. For quality control standards, the precision, as measured by percent relative standard deviation, was below 10%, and the accuracy was within 15% of the nominal concentration. The method described here will allow further investigations of DMTS as a promising antidote for cyanide poisoning.

  9. Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Companioni-Damas, E Y; Santos, F J; Galceran, M T

    2014-01-01

    In the present work, a simple and fast method for the analysis of linear and cyclic methylsiloxanes in ambient air based on active sampling combined with gas chromatography - mass spectrometry (GC-MS) was developed. The retention efficiency of five sampling sorbents (activated coconut charcoal, Carbopack B, Cromosorb 102, Cromosorb 106 and Isolute ENV+) was evaluated and Isolute ENV+ was found to be the most effective. A volume of 2700 L of air can be sampled without significant losses of the most volatile methylsiloxanes. To improve the sensitivity of the GC-MS method, concurrent solvent recondensation - large volume injection (CSR-LVI), using volumes up to 30 µl of sample extract, is proposed and limits of quantification down to 0.03-0.45 ng m(-3), good linearity (r>0.999) and precision (RSD %<9%) were obtained. The developed method was applied to the analysis of ambient air. Concentrations of linear and cyclic methylsiloxanes in indoor air ranging from 3.9 to 319 ng m(-3) and between 48 and 292668 ng m(-3), were obtained, respectively, while levels from 6 to 22 ng m(-3) for linear and between 2.2 and 439 ng m(-3) for cyclic methylsiloxanes in outdoor air from Barcelona (Spain), were found.

  10. Determination of petroleum hydrocarbons in contaminated soils using solid-phase microextraction with gas chromatography-mass spectrometry.

    PubMed

    Cam, D; Gagni, S

    2001-11-01

    Manual solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry is investigated as a possible alternative for the determination of petroleum hydrocarbons in soils. Spiked onto an agricultural soil is a commercial diesel fuel (DF) with the following composition by weight: 12% linear alkanes, 52% saturated hydrocarbons (branched and cyclic), 21% alkylated aromatic hydrocarbons, 6% polycyclic aromatic hydrocarbons, and 9% unidentified compounds. The spiked soil samples are aged three days at room temperature before analysis. The optimal conditions for the SPME of DF from soils are examined and maximum sensitivity is obtained using a 100-microm polydimethylsiloxane fiber at a sampling temperature of 47 degrees C by sonication both in the headspace and directly through a water medium. The reproducibility of the whole technique showed a relative standard deviation of 10%. The parameters that can influence the recovery of DF (such as the time of SPME extraction, the presence of organic solvent and water, and the matrix) are investigated. The linearity is verified in the range of 40 to 1200 mg/L for the direct injection of DF, 0.1 to 1 mg/L for the SPME of DF from water, and 1 to 50 mg/Kg of dry soil for the SPME of DF from soils. The detection limits are respectively 0.5 mg/L, 0.02 mg/L, and 0.1 mg/Kg of dry soil. The method is corroborated by comparing the results with those obtained by the traditional way.

  11. [Determination of bisphenol A from toys and food contact materials by derivatization and gas chromatography-mass spectrometry].

    PubMed

    Gao, Yonggang; Zhang, Yanyan; Gao, Jianguo; Zhang, Huiling; Zheng, Lisha; Chen, Jing

    2012-10-01

    A method was developed for the determination of bisphenol A (BPA) in toys and food contact materials. The BPA was extracted with Soxhlet extraction method from the sample and reacted with acetic anhydride. The final product was determined by gas chromatography-mass spectrometry (GC-MS). To achieve the optimum derivatization performance, the derivatization time and dosage of derivatization reagent etc. were investigated. Under the optimized experimental conditions, the final product was stable and the peak shape was good. The linearity of the derivative was good in the range of 0.05 to 50 mg/L with the correlation coefficient (r2) above 0.999. The recoveries ranged from 80% to 93% at the spiked levels of 0.05, 1.00, 10.00 mg/kg with the relative standard deviations (RSDs) less than 3.7%. The limit of detection (S/N = 3) was 10 microg/kg. The method is accurate and has high recovery. The method is suitable for the inspection of bisphenol A in toys and food contact materials.

  12. Derivatization procedures and determination of levoglucosan and related monosaccharide anhydrides in atmospheric aerosols by gas chromatography-mass spectrometry.

    PubMed

    Hsu, Ching-Lin; Cheng, Chin-Yuan; Lee, Chung-Te; Ding, Wang-Hsien

    2007-04-15

    This study evaluated the derivatization procedures for detecting the three most commonly monosaccharide anhydrides (MAs) (levoglucosan, mannosan and galactosan) in atmospheric aerosols using gas chromatography-mass spectrometry (GC-MS). Various silylating agents, mainly trimethylsilylating agents (TMS), were compared and the effects of various contents of trimethylchlorosilane (TMCS, as a stimulator) were evaluated to optimize the conditions for detecting these compounds in aerosol samples. Differences among the abundances of the derivatives were caused by the sterical hindrance of three hydroxyl groups in the structures of monosaccharide anhydrides. The effects of the reaction time and temperature were also examined. The optimal reaction time and temperature were 60min and 80 degrees C with 1% TMCS plus 0.2% 1,4-dithioerythritol (DTE). Under these conditions, the percentages of formation of bis-O-TMS derivatives (as by-products) were 23, 29 and 10% for galactosan, mannosan and levoglucosan, respectively. The concentrations of galactosan, mannosan and levoglucosan in particles of smoke samples ranged from 29 to 88, 23 to 69 and 77 to 380ng/m(3), respectively; and in particles of atmospheric aerosols ranged from 0.06 to 0.75, n.d. to 0.49 and 1.6 to 132ng/m(3), respectively. Levoglucosan was the dominant MAs detected in both type of samples. Less than 10% quantitation difference was obtained when bis-O-TMS derivatives were included in the calculation.

  13. MSPD procedure for determining buprofezin, tetradifon, vinclozolin, and bifenthrin residues in propolis by gas chromatography-mass spectrometry.

    PubMed

    dos Santos, Thaíse Fernanda Santana; Aquino, Adriano; Dórea, Haroldo Silveira; Navickiene, Sandro

    2008-03-01

    A simple and effective extraction method based on matrix solid-phase dispersion (MSPD) was developed to determine bifenthrin, buprofezin, tetradifon, and vinclozolin in propolis using gas chromatography-mass spectrometry in selected ion monitoring mode (GC-MS, SIM). Different method conditions were evaluated, for example type of solid phase (C(18), alumina, silica, and Florisil), the amount of solid phase and eluent (n-hexane, dichloromethane, dichloromethane-n-hexane (8:2 and 1:1, v/v) and dichloromethane-ethyl acetate (9:1, 8:2 and 7:3, v/v)). The best results were obtained using 0.5 g propolis, 1.0 g silica as dispersant sorbent, 1.0 g Florisil as clean-up sorbent, and dichloromethane-ethyl acetate (9:1, v/v) as eluting solvent. The method was validated by analysis of propolis samples fortified at different concentration levels (0.25 to 1.0 mg kg(-1)). Average recoveries (four replicates) ranged from 67% to 175% with relative standard deviation between 5.6% and 12.1%. Detection and quantification limits ranged from 0.05 to 0.10 mg kg(-1) and 0.15 to 0.25 mg kg(-1) propolis, respectively.

  14. Gas Chromatography-Mass Spectrometry Analysis of Ulva fasciata (Green Seaweed) Extract and Evaluation of Its Cytoprotective and Antigenotoxic Effects

    PubMed Central

    Rodeiro, Idania; Olguín, Sitlali; Santes, Rebeca; Herrera, José A.; Pérez, Carlos L.; Mangas, Raisa; Hernández, Yasnay; Fernández, Gisselle; Hernández, Ivones; Hernández-Ojeda, Sandra; Camacho-Carranza, Rafael; Valencia-Olvera, Ana; Espinosa-Aguirre, Jesús Javier

    2015-01-01

    The chemical composition and biological properties of Ulva fasciata aqueous-ethanolic extract were examined. Five components were identified in one fraction prepared from the extract by gas chromatography-mass spectrometry, and palmitic acid and its ethyl ester accounted for 76% of the total identified components. Furthermore, we assessed the extract's antioxidant properties by using the DPPH, ABTS, and lipid peroxidation assays and found that the extract had a moderate scavenging effect. In an experiment involving preexposition and coexposition of the extract (1–500 µg/mL) and benzo[a]pyrene (BP), the extract was found to be nontoxic to C9 cells in culture and to inhibit the cytotoxicity induced by BP. As BP is biotransformed by CYP1A and CYP2B subfamilies, we explored the possible interaction of the extract with these enzymes. The extract (25–50 µg/mL) inhibited CYP1A1 activity in rat liver microsomes. Analysis of the inhibition kinetics revealed a mixed-type inhibitory effect on CYP1A1 supersome. The effects of the extract on BP-induced DNA damage and hepatic CYP activity in mice were also investigated. Micronuclei induction by BP and liver CYP1A1/2 activities significantly decreased in animals treated with the extract. The results suggest that Ulva fasciata aqueous-ethanolic extract inhibits BP bioactivation and it may be a potential chemopreventive agent. PMID:26612994

  15. Novel ethyl-derivatization approach for the determination of fluoride by headspace gas chromatography/mass spectrometry.

    PubMed

    Pagliano, Enea; Meija, Juris; Ding, Jianfu; Sturgeon, Ralph E; D'Ulivo, Alessandro; Mester, Zoltán

    2013-01-15

    We report a novel derivatization chemistry for determination of fluoride based on the batch reaction of fluoride ions with triethyloxonium tetrachloroferrate(III) in a closed vessel to yield fluoroethane. Gaseous fluoroethane was readily separated from the matrix, sampled from the headspace, and determined by gas chromatography/mass spectrometry. The method was validated using rainwater certified reference material (IRMM CA408) and subsequently applied to the determination of fluoride in various matrixes, including tap water, seawater, and urine. An instrumental limit of detection of 3.2 μg/L with a linear range up to 50 mg/L was achieved. The proposed derivatization is a one-step reaction, requires no organic solvents, and is safe, as the derivatizing agent is nonvolatile. Determination of fluoride is affected by common fluoride-complexing agents, such as Al(III) and Fe(III). The effect of large amounts of these interferences was studied, and the adverse effect of these ions was eliminated by use of the method of standard additions.

  16. Analysis of linear and cyclic methylsiloxanes in water by headspace-solid phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Companioni-Damas, E Y; Santos, F J; Galceran, M T

    2012-01-30

    This paper proposes a new method for the analysis of linear and cyclic methylsiloxanes in water samples based on headspace-solid phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). The extraction efficiency of four commercially available SPME-fibres was evaluated and it was found that a 65 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB) coating was the most suitable for the extraction of siloxanes. The method provided good linearity (r>0.999) and precision (RSD % <17%), and low limits of quantification ranging from 0.01 to 0.74 ng L(-1) for linear siloxanes and between 18 and 34 ng L(-1) for cyclic siloxanes. The HS-SPME-GC-MS method was applied to the analysis of linear and cyclic siloxanes in river waters from Catalonia (NE, Spain) and the results showed concentrations of linear and cyclic siloxanes ranging from 0.09 to 3.94 ng L(-1) and 22.2 to 58.5 ng L(-1), respectively.

  17. [Simultaneous determination of nine pharmaceuticals personal care products in waters by solid phase extraction-gas chromatography-mass spectrometry].

    PubMed

    Jia, Yanyan; Tan, Jianhua; Xu, Chen; Tang, Jiajun; Wang, Yingli; Xie, Qilai

    2014-03-01

    An analytical method has been developed and validated for the simultaneous determination of nine pharmaceuticals and personal care products (PPCPs) in water samples, including salicylic acid, naproxen, ibuprofen, paracetamol, clofibric acid, triclosan, diclofenac, ketoprofen, bisphenol A. The qualification and quantification of the target compounds were performed by gas chromatography-mass spectrometry in selected ion monitoring mode (GC-MS-SIM). The water samples were concentrated and purified through Oasis HLB cartridges after the pH value of the water was adjusted to 3, then derivatized with trimethyl sulfonium hydroxide (TMSH) at room temperature, and determined by GC-MS-SIM using 2,4,5-fenoprop as internal standard. The conditions for sample pretreatment (e. g. solid phase extraction and derivatization) were studied. Under the optimized conditions, the recoveries were ranged from 50.7% to 115.4% with the relative standard deviations lower than 10%. The limits of detection were in the range of 0.03-0.30 microg/L and the limits of quantification were in the range of 0.15-1.50 microg/L. The method has been successfully applied to monitor the occurrence of the PPCPs residues in agricultural irrigation water in Dongguan, Guangdong Province. The four compounds were detected at maximum mass concentration range of 0.176-0.998 microg/L. It proved that this analytical method is sensitive, reliable and acceptable.

  18. Quantitative ester analysis in cachaca and distilled spirits by gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Nascimento, Eduardo S P; Cardoso, Daniel R; Franco, Douglas W

    2008-07-23

    An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) microg L(-1), whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters.

  19. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry

    PubMed Central

    Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings. PMID:24592162

  20. A fast gas chromatography/mass spectrometry method for the determination of stimulants and narcotics in urine.

    PubMed

    Strano Rossi, Sabina; de la Torre, Xavier; Botrè, Francesco

    2010-05-30

    A fast method has been developed for the simultaneous determination of 52 stimulants and narcotics excreted unconjugated in urine by gas chromatography/mass spectrometry (GC/MS). The procedure involves the liquid/liquid extraction of the analytes from urine at strong alkaline pH and the injection of the extract into a GC/MS instrument with a fast GC column (10 m x 0.18 mm i.d.); the short column allows the complete separation of the 52 analytes in a chromatographic run of 8 min. The method has been fully validated giving lower limits of detection (LLODs) satisfactory for its application to antidoping analysis as well as to forensic toxicology. The repeatability of the concentrations and the retention times are good both for intra- and for inter-day experiments (%CV of concentrations always lower than 15 and %CV of retention times lower than 0.6). In addition, the analytical bias is satisfactory (A% always >15%). The method proposed here would be particularly useful whenever there are time constraints and the analyses have to be completed in the shortest possible time. Copyright 2010 John Wiley & Sons, Ltd.

  1. Natural resins and balsams from an eighteenth-century pharmaceutical collection analysed by gas chromatography/mass spectrometry.

    PubMed

    Steigenberger, Gundel; Herm, Christoph

    2011-10-01

    Historical nomenclature has not always been unequivocally associated with the botanical origin of natural resins. The availability of natural resins has changed throughout the centuries and so have their trade names. Furthermore, adulterations and lack of knowledge have led to variations in the composition of the products traded under the same name. This investigation aims at a new understanding of the interrelation between the historical and modern terms for natural resins. Different Pinaceae and Pistacia resins, mastic, sandarac, copaiba balm and burgundy pitch from Vigani's Cabinet, a 300-year-old pharmaceutical collection owned by Queens' College, Cambridge (UK) were investigated. Related reference materials from modern collections were analysed together with natural resins derived from reliable botanical sources. The analytical method was gas chromatography/mass spectrometry (GC-MS) with and without derivatisation with trimethylsulfonium hydroxide. This technique provided detailed molecular compositions of the studied materials, which in turn led to particular data profiles of the materials. Marker molecules of Copaifera, Pinaceae, Cupressaceae and Pistacia resins were identified. By comparing the GC-MS data profiles to the reference samples, a clearer picture of the connection between nomenclature and botanical origin was obtained. With the aid of the marker molecules and data profiles, it was then possible to clarify the nomenclature of the aged resins sampled from Vigani's Cabinet.

  2. Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Rossi, Serena; Sileoni, Valeria; Perretti, Giuseppe; Marconi, Ombretta

    2014-03-30

    The objective of this study was a multivariate characterization of the volatile profile of beers. Such a characterization is timely considering the increasing worldwide consumption of beer, the continuous growth of microbreweries and the importance of volatile compounds to beer flavour. A method employing solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) was optimized and then applied to a sample set of 36 industrial and craft beers of various styles and fermentation types. The volatile profiles of different beer styles is described, with particular attention paid to the volatile compounds characteristic of a spontaneously fermented lambic raspberry framboise beer. Furthermore, it was also possible to identify which specific volatile compounds are principally responsible for the differences in the volatile profiles of top- and bottom-fermented beers. Moreover, a volatile fingerprint of the craft top-fermented Italian beers was defined, as they show a very similar volatile profile. Finally, the volatile compounds that are characteristic of the bock-style beers are described. The SPME-GC-MS analytical method optimized in this study is suitable for characterizing the volatile fingerprint of different beers, especially on the basis of the kind of fermentation (top, bottom or spontaneous), the method of production and the style of the beer. © 2013 Society of Chemical Industry.

  3. Profile of volatile compounds in 11 brandies by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry.

    PubMed

    Zhao, Y; Xu, Y; Li, J; Fan, W; Jiang, W

    2009-03-01

    A headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography-mass spectrometry (GC-MS) was applied for the qualitative or semiquantitative characterization of brandy volatiles. SPME variables (SPME fiber, extraction temperature and time, and ethanol concentration) were optimized. A total of 144 compounds were from the brandies' volatiles, tentatively identified or identified by comparing mass spectra and retention indices of the standards or from literature. Of these, 57 are common to 11 brandies. They were mainly represented by esters and alcohols, such as 2-methyl propanol, 3-methyl butanol, 1-hexanol, ethyl octanoate, and ethyl decanoate, which were quantitatively determined. Chromatographic peaks were integrated using selective ion method (SIM) and the semiquantitative data analyzed using principal component analysis (PCA) and cluster analysis (CA) to study relationships between volatile composition and brandy. Eleven brandies were differentiated into 3 groups: 1 for Hennessy VSOP and XO samples, 1 for Changyu PEGASE VSOP and XO-1, 2, 3 samples, and the other for Changyu PEGASE brandy and VO, Taro brandy, Baiyang River brandy, and Wealth XO samples. The classification of groups is consistent with the brandy samples by variety and grade.

  4. Gas Chromatography- Mass Spectrometry Based Metabolomic Approach for Optimization and Toxicity Evaluation of Earthworm Sub-Lethal Responses to Carbofuran

    PubMed Central

    Saxena, Prem Narain

    2013-01-01

    Despite recent advances in understanding mechanism of toxicity, the development of biomarkers (biochemicals that vary significantly with exposure to chemicals) for pesticides and environmental contaminants exposure is still a challenging task. Carbofuran is one of the most commonly used pesticides in agriculture and said to be most toxic carbamate pesticide. It is necessary to identify the biochemicals that can vary significantly after carbofuran exposure on earthworms which will help to assess the soil ecotoxicity. Initially, we have optimized the extraction conditions which are suitable for high-throughput gas chromatography mass spectrometry (GC-MS) based metabolomics for the tissue of earthworm, Metaphire posthuma. Upon evaluation of five different extraction solvent systems, 80% methanol was found to have good extraction efficiency based on the yields of metabolites, multivariate analysis, total number of peaks and reproducibility of metabolites. Later the toxicity evaluation was performed to characterize the tissue specific metabolomic perturbation of earthworm, Metaphire posthuma after exposure to carbofuran at three different concentration levels (0.15, 0.3 and 0.6 mg/kg of soil). Seventeen metabolites, contributing to the best classification performance of highest dose dependent carbofuran exposed earthworms from healthy controls were identified. This study suggests that GC-MS based metabolomic approach was precise and sensitive to measure the earthworm responses to carbofuran exposure in soil, and can be used as a promising tool for environmental eco-toxicological studies. PMID:24324663

  5. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  6. [Analysis of pesticide multiresidues in rice by gas chromatography-mass spectrometry coupled with solid phase extraction].

    PubMed

    Liu, Pengyan; Liu, Qingxue; Ma, Yusong; Liu, Jinwei; Jia, Xuan

    2006-05-01

    A new analytical method was developed to simultaneously determine multiple pesticide residues in rice including organophosphorus, organochlorine, carbamate and pyrethroid. First, the solvents for pesticide extraction were selected for optimization. Eight solvents were screened to find that the extraction efficiency with dichloromethane was the best. Second, clean-up was performed by solid phase extraction using a Florisil cartridge. Various mixtures of hexane and acetone were tested to show that the mixture of hexane-acetone (4:1, v/v) had the best performance. The clean-up helped the sample purification significantly. The prepared sample was analyzed using gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. The pesticides were identified with retention time and selected ions and their relative abundances, and they were quantified based on extract of spiking standards in a blank sample. The limits of detection (LODs) were evaluated on the values of the lower concentration fortified sample under the signal-to-noise ratio of 3:1. The recoveries and relative standard deviations (RSDs) were checked by adding pesticide standard solution at two levels to untreated samples, and the triplicate analysis of the samples were carried out for each spiked level. The LODs were at microg/kg level. The average recoveries of most pesticides were from 75% to 120 %. The RSDs were less than 10.4% (n = 3). These results indicated that this method is simple, rapid, sensitive for the simultaneous determination requirements of multiple pesticide residues in rice.

  7. Determination of polycyclic aromatic hydrocarbons in fresh milk by hollow fiber liquid-phase microextraction-gas chromatography mass spectrometry.

    PubMed

    Sanagi, Mohd Marsin; Loh, Saw Hong; Wan Ibrahim, Wan Aini; Hasan, Mohamed Noor; Aboul Enein, Hassan Y

    2013-02-01

    In this work, a two-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with gas chromatography-mass spectrometry (GC-MS) is developed to provide a rapid, selective and sensitive analytical method to determine polycyclic aromatic hydrocarbons (PAHs) in fresh milk. The standard addition method is used to construct calibration curves and to determine the residue levels for the target analytes, fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene, thus eliminating sample pre-treatment steps such as pH adjustment. The HF-LPME method shows dynamic linearity from 5 to 500 µg/L for all target analytes with R(2) ranging from 0.9978 to 0.9999. Under optimized conditions, the established detection limits range from 0.07 to 1.4 µg/L based on a signal-to-noise ratio of 3:1. Average relative recoveries for the determination of PAHs studied at 100 µg/L spiking levels are in the range of 85 to 110%. The relative recoveries are slightly higher than those obtained by conventional solvent extraction, which requires saponification steps for fluorene and phenanthrene, which are more volatile and heat sensitive. The HF-LPME method proves to be simple and rapid, and requires minimal amounts of organic solvent that supports green analysis.

  8. Development of Sensitive and Specific Analysis of Vildagliptin in Pharmaceutical Formulation by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Uçaktürk, Ebru

    2015-01-01

    A sensitive and selective gas chromatography-mass spectrometry (GC-MS) method was developed and fully validated for the determination of vildagliptin (VIL) in pharmaceutical formulation. Prior to GC-MS analysis, VIL was efficiently derivatized with MSTFA/NH4I/β-mercaptoethanol at 60°C for 30 min. The obtained O-TMS derivative of VIL was detected by selected ion monitoring mode using the diagnostic ions m/z 223 and 252. Nandrolone was chosen as internal standard. The GC-MS method was fully validated by the following validation parameters: limit of detection (LOD) and quantitation (LOQ), linearity, precision, accuracy, specificity, stability, robustness, and ruggedness. LOD and LOQ were found to be 1.5 and 3.5 ng mL−1, respectively. The GC-MS method is linear in the range of 3.5–300 ng mL−1. The intra- and interday precision values were less than ≤3.62%. The intra- and interday accuracy values were found in the range of −0.26–2.06%. Finally, the GC-MS method was successfully applied to determine VIL in pharmaceutical formulation. PMID:26682085

  9. An improved method for cyanide determination in blood using solid-phase microextraction and gas chromatography/mass spectrometry.

    PubMed

    Frison, Giampietro; Zancanaro, Flavio; Favretto, Donata; Ferrara, Santo Davide

    2006-01-01

    A new method is described for the qualitative and quantitative analysis of cyanide, a very short-acting and powerful toxic agent, in human whole blood. It involves the conversion of cyanide into hydrogen cyanide and its subsequent headspace solid-phase microextraction (HS-SPME) and detection by gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring (SIM) mode. Optimizing the conditions for the GC/MS (type of column, injection conditions, temperature program) and SPME (choice of SPME fiber, effect of salts, adsorption and desorption times, adsorption temperature) led to the choice of a 75-microm carboxen/polydimethylsiloxane SPME fiber, with D3-acetonitrile as internal standard, and a capillary GC column with a polar stationary phase. Method validation was carried out in terms of linearity, precision and accuracy in both aqueous solutions and blood. The limit of detection (LOD) and limit of quantitation (LOQ) were determined only in aqueous solutions. The assay is linear over three orders of magnitude (water 0.01-10, blood 0.05-10 microg/mL); and the LOD and LOQ in water were 0.006 and 0.01 microg/mL, respectively. Good intra- and inter-assay precision was obtained, always <8%. The method is simple, fast and sensitive enough for the rapid diagnosis of cyanide intoxication in clinical and forensic toxicology.

  10. Hollow-fiber liquid phase microextraction for lignin pyrolysis acids in aerosol samples and gas chromatography-mass spectrometry analysis.

    PubMed

    Hyder, Murtaza; Jönsson, Jan Åke

    2012-08-03

    A method based on three-phase hollow fiber liquid phase microextraction was developed and successfully applied to aerosols for the analysis of lignin pyrolysis acids such as syringic acid, vanillic acid and p-salicylic acid. Important parameters related to extraction process like organic solvent for membrane phase, tri-n-octylphosphine (TOPO) oxide contents in organic solvent, stirring speed, extraction time etc. were optimized. 6-Undecanone with 15% TOPO contents (w/v) was found a suitable solvent for organic liquid membrane, 900 rpm was the optimum stirring speed and time of 4h was found optimum extraction time. Donor phase pH was 1.3 while acceptor phase pH was adjusted to 9.5. The optimized extraction method was used for the extraction of real aerosol samples. Analytes were derivatized using BSTFA containing 1% trimethylsilyl chloride and gas chromatography mass spectrometry was used for analysis. Very low limits of detection in the range 0.2-1.0 ng L(-1) were found, corresponding to 10-50 pg m(-3) of analytes in aerosols. Extraction efficiency obtained ranged 60.3-71.7% and enrichment factors ranged 3015-3585 times. The optimized method was successfully applied to aerosol samples and all of the selected analytes were detected in the analyzed samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Simultaneous Determination of Tramadol and Its Metabolite in Human Urine by the Gas Chromatography-Mass Spectrometry Method.

    PubMed

    Yilmaz, Bilal; Erdem, Ali Fuat

    2015-08-01

    A sensitive and efficient method was developed for determination of tramadol and its metabolite (O-desmethyltramadol) in human urine by gas chromatography-mass spectrometry. Tramadol, O-desmethyltramadol and medazepam (internal standard) were extracted from human urine with a mixture of ethylacetate and diethylether mixture (1 : 1, v/v) at basic pH with liquid-liquid extraction. The calibration curves were linear (r = 0.99) over tramadol and O-desmethyltramadol concentrations ranging from 10 to 200 ng/mL and 7.5 to 300 ng/mL, respectively. The method had an accuracy of >95% and intra- and interday precision (relative standard deviation %) of ≤4.93 and ≤4.62% for tramadol and O-desmethyltramadol, respectively. The extraction recoveries were found to be 94.1 ± 2.91 and 96.3 ± 3.46% for tramadol and O-desmethyltramadol, respectively. The limit of quantification using 0.5 mL human urine was 10 ng/mL for tramadol and 7.5 ng/mL for O-desmethyltramadol. After oral administration of 100 mg of tramadol hydrochloride to a patient, the urinary excretion was monitored during 24 h. About 15% of the dose was excreted as unchanged tramadol. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Simultaneous determination of 76 micropollutants in water samples by headspace solid phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Martínez, C; Ramírez, N; Gómez, V; Pocurull, E; Borrull, F

    2013-11-15

    This study focuses on the development of an analytical method based on headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of 76 micropollutants in water samples. The selected micropollutants include volatile organic compounds (VOCs) (e.g. chlorobenzenes, chloroalkanes), endocrine disrupting compounds (EDCs) (e.g. bisphenol A and tributyl phosphate), odour compounds (e.g. limonene, phenol), fragrance allergens (e.g. geraniol, eugenol) and some pesticides (e.g. heptachlor, terbutryn). The experimental conditions affecting their extraction, such as the type of fibre, temperature and time of extraction, sample volume and ionic strength of the samples were optimized using HS-SPME. The method showed good linear range, reproducibility between days, repeatability and low detection limits (at ng L(-1) levels). The validated method has been applied to determine the target organic micropollutants in aqueous samples from different experimental research units of surface water, sea water, waste water and those effluents of advance membrane treatments. The optimized method showed good performance in the different types of samples studied. The analysis revealed the presence of several micropollutants at concentrations between 20 and 5000 μg L(-1), such as ethylbenzene, o-xylene, p-isopropilbenzene, D-limonene, citral and isoeugenol, due to the fact that these species are commonly used in domestic and industrial applications.

  13. Static headspace-gas chromatography-mass spectrometry for the simultaneous determination of trihalomethanes and haloacetic acids in canned vegetables.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes

    2016-07-08

    Canned vegetables appear to be a possible exposure pathway for hazardous disinfection by-products due to the use of sanitizers and treated water by the canning industry in the preparation of these foods. This work reports on two static headspace-gas chromatography-mass spectrometry methods for the simultaneous determination of 10 trihalomethanes (THMs) and 13 haloacetic acids (HAAs) in both solid and liquid phases of the canned vegetables. Both methods carry out the whole process (including the leaching of target analytes from the vegetable), derivatization of HAAs and volatilization of THMs and HAA esters, in a single step within a static headspace unit. The methods proposed provide an efficient and simple tool for the determination of regulated disinfection by-products in canned vegetables. Average limits of detection for THMs and HAAs were 0.19 and 0.45μg/kg, respectively, in the solid phase of canned vegetables, and 0.05 and 0.09μg/L, respectively, in the liquid phase. Satisfactory recoveries (90-99%) and precision, calculated as relative standard deviations (RSD≤10%), were obtained in both phases of canned vegetables. The methods proposed were applied for the analysis of frequently-used canned vegetables and confirmed the presence of up to 3 THMs and 5 HAAs at microgram per kilogram or liter levels in both phases of the samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Headspace-trap gas chromatography-mass spectrometry for determination of sulphur mustard and related compounds in soil.

    PubMed

    Røen, Bent T; Unneberg, Erik; Tørnes, John Aa; Lundanes, Elsa

    2010-04-02

    Methods for trace determination of sulphur mustard (HD) and some related cyclic sulphur compounds in soil samples have been developed using headspace-trap in combination with gas chromatography-mass spectrometry (GC-MS). Two quite different types of soil were employed in the method optimisation (sandy loam and silty clay loam). Prior to analysis, water saturated with sodium chloride was added to the samples, at a water to soil ratio of 1:1. A detection limit of 3 ng/g was achieved for HD, while the cyclic sulphur compounds 1,4-thioxane, 1,3-dithiolane and 1,4-dithiane could be detected at 0.2-0.7 ng/g. The methods were validated in the concentration range from the limit of quantification (LOQ) to hundred times LOQ. The within assay precision at fifty times LOQ was 6.9-7.3% relative standard deviation (RSD) for determination of the cyclic sulphur compounds, and 15% RSD for determination of HD. Recoveries were in the range of 43-60% from the two soil types. As the technique requires very little sample preparation, the total time for sample handling and analysis was less than 1h. The technique was successfully employed for the determination of cyclic sulphur compounds in a sediment sample from an old dumping site for chemical munitions, known to contain HD degradation products. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Analysis of ammonium nitrate headspace by on-fiber solid phase microextraction derivatization with gas chromatography mass spectrometry.

    PubMed

    Lubrano, Adam L; Andrews, Benjamin; Hammond, Mark; Collins, Greg E; Rose-Pehrsson, Susan

    2016-01-15

    A novel analytical method has been developed for the quantitation of trace levels of ammonia in the headspace of ammonium nitrate (AN) using derivatized solid phase microextraction (SPME) fibers with gas chromatography mass spectrometry (GC-MS). Ammonia is difficult to detect via direct injection into a GC-MS because of its low molecular weight and extreme polarity. To circumvent this issue, ammonia was derivatized directly onto a SPME fiber by the reaction of butyl chloroformate coated fibers with the ammonia to form butyl carbamate. A derivatized externally sampled internal standard (dESIS) method based upon the reactivity of diethylamine with unreacted butyl chloroformate on the SPME fiber to form butyl diethylcarbamate was established for the reproducible quantification of ammonia concentration. Both of these compounds are easily detectable and separable via GC-MS. The optimized method was then used to quantitate the vapor concentration of ammonia in the headspace of two commonly used improvised explosive device (IED) materials, ammonium nitrate fuel oil (ANFO) and ammonium nitrate aluminum powder (Ammonal), as well as identify the presence of additional fuel components within the headspace.

  16. Characterization of commercial synthetic resins by pyrolysis-gas chromatography/mass spectrometry: application to modern art and conservation.

    PubMed

    Peris-Vicente, J; Baumer, U; Stege, H; Lutzenberger, K; Gimeno Adelantado, J V

    2009-04-15

    To characterize a set of synthetic resins, a methodology by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) has been developed. The studied reference materials were commercial versions of a wide range of synthetic resins. For each polymer, the pyrolytic and chromatographic conditions were optimized to adequately resolve the fragment mixture in a short time. The proposed analytical method does not require previous treatment of the sample, and due to its high sensitivity, only a small sample quantity in the microgram range can be used. The pyrolysis temperature was found to have little effect on the obtained pyrograms. The summarized data set for the individual polymer materials, especially the characteristic fragments with a structure close to the monomeric unit, was useful to identify commercial synthetic resins. These materials were used in the art and conservation field, as binding media, paint additives, painting varnishes, coatings, or consolidants. Two case studies are introduced where direct Py-GC/MS and thermally assisted hydrolysis and methylation GC/MS were applied on art objects: first, a modern gluing material of a medieval reverse glass painting, and the second example, the binding medium of a painting by Georg Baselitz ("Senta", 1992/1993) from the Sammlung Moderne Kunst at the Pinakothek der Moderne, Munich.

  17. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry.

    PubMed

    Yamamoto, Masayoshi; Baldermann, Susanne; Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  18. Solid phase microextraction and gas chromatography-mass spectrometry methods for residual solvent assessment in seized cocaine and heroin.

    PubMed

    Cabarcos, Pamela; Herbello-Hermelo, Paloma; Álvarez-Freire, Iván; Moreda-Piñeiro, Antonio; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar

    2016-09-01

    A simple sample pre-treatment method based on solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) has been optimized and validated for the assessment of 15 residual solvents (2-propanol, 2-methylpentane, 3-methylpentane, acetone, ethyl acetate, benzene, hexane, methylcyclohexane, methylcyclopentane, m-xylene, propyl acetate, toluene, 1,2,4-trimethylbenzene, dichloromethane, and ethylbenzene) in seized illicit cocaine and heroin. DMSO and DMF as sample diluents were found to offer the best residual solvent transference to the head space for further adsorption onto the SPME fiber, and the developed method therefore showed high sensitivity and analytical recovery. Variables affecting SPME were fully evaluated by applying an experimental design approach. Best conditions were found when using an equilibration time of 5 min at 70 °C and headspace sampling of residual solvents at the same temperature for 15 min. Method validation, performed within the requirements of international guidelines, showed excellent sensitivity, as well as intra- and inter-day precision and accuracy. The proposed methodology was applied to 96 cocaine samples and 14 heroin samples seized in Galicia (northwestern Spain) within 2013 and 2014.

  19. Quality evaluation of green tea leaf cultured under artificial light condition using gas chromatography/mass spectrometry.

    PubMed

    Miyauchi, Shunsuke; Yonetani, Tsutomu; Yuki, Takayuki; Tomio, Ayako; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    For an experimental model to elucidate the relationship between light quality during plant culture conditions and plant quality of crops or vegetables, we cultured tea plants (Camellia sinensis) and analyzed their leaves as tea material. First, metabolic profiling of teas from a tea contest in Japan was performed with gas chromatography/mass spectrometry (GC/MS), and then a ranking predictive model was made which predicted tea rankings from their metabolite profile. Additionally, the importance of some compounds (glutamine, glutamic acid, oxalic acid, epigallocatechin, phosphoric acid, and inositol) was elucidated for measurement of the quality of tea leaf. Subsequently, tea plants were cultured in artificial conditions to control these compounds. From the result of prediction by the ranking predictive model, the tea sample supplemented with ultraviolet-A (315-399 nm) showed the highest ranking. The improvement in quality was thought to come from the high amino-acid and decreased epigallocatechin content in tea leaves. The current study shows the use and value of metabolic profiling in the field of high-quality crops and vegetables production that has been conventionally evaluated by human sensory analysis. Metabolic profiling enables us to form hypothesis to understand and develop high quality plant cultured under artificial condition.

  20. Mass spectral studies on vinylic degradation products of sulfur mustards under gas chromatography/mass spectrometry conditions.

    PubMed

    Sai Sachin, L; Karthikraj, R; Kalyan Kumar, K; Sony, T; Prasada Raju, N; Prabhakar, S

    2015-01-01

    Sulfur mustards are a class of vesicant chemical warfare agents that rapidly degrade in environmental samples. The most feasible degradation products of sulfur mustards are chloroethyl vinylic compounds and divinylic compounds, which are formed by the elimination of one and two HCl molecules from sulfur mustards, respectively. The detection and characterization of these degradation products in environmental samples are an important proof for the verification of sulfur mustard usage. In this study, we synthesized a set of sulfur mustard degradation products, i.e., divinylic compounds (1-7) and chloroethyl vinylic compounds (8-14), and characterized using gas chromatography/mass spectrometry (GC/MS) under electron ionization (EI) and chemical ionization (CI) (methane) conditions. The EI mass spectra of the studied compounds mainly included the fragment ions that resulted from homolytic cleavages with or without hydrogen migrations. The divinylic compounds (1-7) showed [M-SH](+) ions, whereas the chloroethylvinyl compounds (8-14) showed [M-Cl](+) and [M-CH2CH2Cl](+) ions. Methane/CI mass spectra showed [M+H](+) ions and provided molecular weight information. The GC retention index (RI) values were also calculated for the studied compounds. The EI and CI mass spectral data together with RI values are extremely useful for off-site analysis for the verification of the chemical weapons convention and also to participate in official Organization for the Prohibition of Chemical Weapons proficiency tests.

  1. Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice.

    PubMed

    Patel, Daxesh P; Krausz, Kristopher W; Xie, Cen; Beyoğlu, Diren; Gonzalez, Frank J; Idle, Jeffrey R

    2017-01-01

    A novel, selective and sensitive single-ion monitoring (SIM) gas chromatography-mass spectrometry (GCMS) method was developed and validated for the determination of energy metabolites related to glycolysis, the tricarboxylic acid (TCA) cycle, glutaminolysis, and fatty acid β-oxidation. This assay used N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) containing 1% tert-butyldimethylchlorosilane (TBDMCS) as derivatizing reagent and was highly reproducible, sensitive, specific and robust. The assay was used to analyze liver tissue and serum from C57BL/6N obese mice fed a high-fat diet (HFD) and C57BL/6N mice fed normal chow for 8 weeks. HFD-fed mice serum displayed statistically significantly reduced concentrations of pyruvate, citrate, succinate, fumarate, and 2-oxoglutarate, with an elevated concentration of pantothenic acid. In liver tissue, HFD-fed mice exhibited depressed levels of glycolysis end-products pyruvate and lactate, glutamate, and the TCA cycle intermediates citrate, succinate, fumarate, malate, and oxaloacetate. Pantothenate levels were 3-fold elevated accompanied by a modest increased gene expression of Scl5a6 that encodes the pantothenate transporter SLC5A6. Since both glucose and fatty acids inhibit coenzyme A synthesis from pantothenate, it was concluded that these data were consistent with downregulated fatty acid β-oxidation, glutaminolysis, glycolysis, and TCA cycle activity, due to impaired anaplerosis. The novel SIM GCMS assay provided new insights into metabolic effects of HFD in mice.

  2. Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice

    PubMed Central

    Patel, Daxesh P.; Krausz, Kristopher W.; Xie, Cen; Beyoğlu, Diren; Gonzalez, Frank J.

    2017-01-01

    A novel, selective and sensitive single-ion monitoring (SIM) gas chromatography-mass spectrometry (GCMS) method was developed and validated for the determination of energy metabolites related to glycolysis, the tricarboxylic acid (TCA) cycle, glutaminolysis, and fatty acid β-oxidation. This assay used N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) containing 1% tert-butyldimethylchlorosilane (TBDMCS) as derivatizing reagent and was highly reproducible, sensitive, specific and robust. The assay was used to analyze liver tissue and serum from C57BL/6N obese mice fed a high-fat diet (HFD) and C57BL/6N mice fed normal chow for 8 weeks. HFD-fed mice serum displayed statistically significantly reduced concentrations of pyruvate, citrate, succinate, fumarate, and 2-oxoglutarate, with an elevated concentration of pantothenic acid. In liver tissue, HFD-fed mice exhibited depressed levels of glycolysis end-products pyruvate and lactate, glutamate, and the TCA cycle intermediates citrate, succinate, fumarate, malate, and oxaloacetate. Pantothenate levels were 3-fold elevated accompanied by a modest increased gene expression of Scl5a6 that encodes the pantothenate transporter SLC5A6. Since both glucose and fatty acids inhibit coenzyme A synthesis from pantothenate, it was concluded that these data were consistent with downregulated fatty acid β-oxidation, glutaminolysis, glycolysis, and TCA cycle activity, due to impaired anaplerosis. The novel SIM GCMS assay provided new insights into metabolic effects of HFD in mice. PMID:28520815

  3. Implementation of an Environmental Focus in an Undergraduate Chemistry Curriculum by the Addition of Gas Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Atterholt, Cynthia; Butcher, David J.; Bacon, J. Roger; Kwochka, William R.; Woosley, Royce

    2000-12-01

    The Department Chemistry and Physics at Western Carolina University has added an environmental focus to its curriculum, and gas chromatography-mass spectrometry (GC-MS) was identified as an essential tool in environmental analysis. GC-MS is used in undergraduate chemistry courses in: (i) the identification of synthesized compounds and natural products, (ii) monitoring compounds and their degradation in the environment, and (iii) analytical method development. In Organic Chemistry, the GC-MS is used to characterize natural products and the products of an environmentally benign chemical synthesis. In Environmental Chemistry, the GC-MS is used to identify compounds of environmental interest, such as pesticides in soil samples, polycyclic aromatic hydrocarbons in water, and hydrocarbons in gasoline samples. In Instrumental Analysis I, students characterize numerous compounds in cigarette smoke using GC-MS. In Instrumental Analysis II, students are presented with an analytical chemistry problem for which they research protocols, collect samples, and perform the analyses. The GC-MS has been used to identify volatile compounds in a number of complex mixtures. Also, research in chemistry is a significant part of our curriculum, and numerous undergraduate students have used the GC-MS in their research. The addition of GC-MS has enhanced many of our undergraduate laboratory courses and student-led research projects.

  4. Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry.

    PubMed

    Smart, Kathleen F; Aggio, Raphael B M; Van Houtte, Jeremy R; Villas-Bôas, Silas G

    2010-09-01

    This protocol describes an analytical platform for the analysis of intra- and extracellular metabolites of microbial cells (yeast, filamentous fungi and bacteria) using gas chromatography-mass spectrometry (GC-MS). The protocol is subdivided into sampling, sample preparation, chemical derivatization of metabolites, GC-MS analysis and data processing and analysis. This protocol uses two robust quenching methods for microbial cultures, the first of which, cold glycerol-saline quenching, causes reduced leakage of intracellular metabolites, thus allowing a more reliable separation of intra- and extracellular metabolites with simultaneous stopping of cell metabolism. The second, fast filtration, is specifically designed for quenching filamentous micro-organisms. These sampling techniques are combined with an easy sample-preparation procedure and a fast chemical derivatization reaction using methyl chloroformate. This reaction takes place at room temperature, in aqueous medium, and is less prone to matrix effect compared with other derivatizations. This protocol takes an average of 10 d to complete and enables the simultaneous analysis of hundreds of metabolites from the central carbon metabolism (amino and nonamino organic acids, phosphorylated organic acids and fatty acid intermediates) using an in-house MS library and a data analysis pipeline consisting of two free software programs (Automated Mass Deconvolution and Identification System (AMDIS) and R).

  5. [Development of a gas chromatography-mass spectrometry method for the metabolomic study of rice (Oryza sativa L.) grain].

    PubMed

    Zhou, Jia; Wang, Shuangyuan; Chang, Yuwei; Zhao, Yanni; Lu, Xin; Zhao, Chunxia; Xu, Guowang

    2012-10-01

    An analytical strategy for the metabolic profiling of rice grain was developed based on gas chromatography-mass spectrometry (GC-MS). For the purpose of obtaining abundant metabolite information, sample preparation step prior to instrumental analysis is necessary to be optimized. D-optimal experimental design was applied to optimize the extraction solvent. Four solvents, including water, methanol, isopropanol and acetonitrile, and their combinations were evaluated for the extraction efficiency using multivariate statistical analysis (partial least square regression). The count of resolved peaks and the sum of peak areas were taken as the evaluation indexes. Methanol/water (80:20, v/v) mixture was highly efficient for rice metabolites and was selected as the suitable solvent formulation. Then, the analytical characteristics of the method were measured. More than 90% of the metabolites had satisfactory precisions, reproducibilities and stabilities (relative standard deviations (RSDs) < 30%). Most of the detected metabolites (about 88.0% of total peak area) showed good linear responses. With the optimized analytical protocol, 315 metabolites were detected in rice and 86 of which were structurally identified by searching in the NIST 08/Wiley standard mass spectral library, covering carbohydrates, amino acids, organic acids, steroids and so on which showed a broad coverage of metabolite data. The established method is expected to be useful for the metabolomic studies of rice.

  6. [Determination of short chain chlorinated paraffins in leather products by solid phase extraction coupled with gas chromatography-mass spectrometry].

    PubMed

    Zhang, Weiya; Wan, Xin; Li, Lixia; Wang, Chengyun; Jin, Shupei; Xing, Jun

    2014-10-01

    The short chain chlorinated paraffins (SCCPs) are the additives frequently used in the leather production in China, but they have been put into the list of forbidden chemicals issued by European Union recently. In fact, there is not a commonly recognized method for the determination of the SCCPs in the leather products due to the serious matrix interferences from the leather products and the complex chemical structures of the SCCPs. A method of solid phase extraction coupled with gas chromatography-mass spectrometry (SPE-GC-MS) was established for the determination of the SCCPs in the leather products after the optimization of the SPE conditions. It was found that the interferences from the leather products were thor- oughly separated from the analyte of the SCCPs on a home-made solid phase extraction (SPE) column filled with silica packing while eluted with a mixed solvent of n-hexane-methylene chloride (2:1, v/v). With this method, the recoveries for the SCCPs spiked in the real leather samples varied from 90.47% to 99.00% with the relative standard deviations (RSDs) less than 6.7%, and the limits of detection (LODs) were between 0.069 and 0.110 mg/kg. This method is suitable for qualitative and quantitative analysis of SCCPs in the leather products.

  7. Determination of perfluorinated compounds in packaging materials and textiles using pressurized liquid extraction with gas chromatography-mass spectrometry.

    PubMed

    Lv, Gang; Wang, Libing; Liu, Shaocong; Li, Shufen

    2009-03-01

    A simultaneous determination method of trace amounts of perfluorinated compounds, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in packaging materials and textiles, has been developed, using pressurized liquid extraction (PLE) with gas chromatography-mass spectrometry (GC/MS). The perfluorinated compounds were primarily extracted from the samples by a PLE procedure, in which the parameters were optimized by response surface methodology. The solvent was then removed by blowing nitrogen and a silylation step was carried out with N,N-bis(trimethylsilyl)trifluoroacetamide. The silylated compounds were identified and quantified by GC/MS. The proposed method was applied to determine the PFOA and PFOS in polytetrafluoroethylene packaging materials and textiles, where the detection limits of the two compounds were 1.6 and 13.9 ng mL(-1), respectively. The results showed that the concentrations of PFOA and PFOS in the packaging materials and textiles ranged from 17.5 to 45.9 and 33.7 to 81.3 ng g(-1), respectively.

  8. Ester variability in apple varieties as determined by solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Young, J Christopher; Chu, C L George; Lu, Xuewen; Zhu, Honghui

    2004-12-29

    Solid-phase microextraction (SPME) with a polydimethylsiloxane fiber coupled with gas chromatography-mass spectrometry (GC-MS) was applied to the study of variability in volatiles released by 13 apple varieties. The relative amounts of 40 esters and alpha-farnesene were determined. Principal component analyses of these results clustered the apples into three groups according to skin color: red, green, and red-green. Total ester contents were highest with the red cluster apples, and the green cluster apples had the highest alpha-farnesene levels. This technology was also applied to the monitoring of changes in volatiles for apples removed from controlled-atmosphere storage with subsequent storage at 4 degrees C and room temperature. Total ester contents increased 25-fold, with the greater increases coming at room temperature, whereas alpha-farnesene levels increased only 5-fold. For apples stored at room temperature, after 11 days, the amount of increase was inversely proportional to the size of the ester: levels of smallest esters (molecular weight 116) increased 12.5-fold, and the largest esters (molecular weight 228) increased approximately 1.3-fold.

  9. Metabolomic investigation of porcine muscle and fatty tissue after Clenbuterol treatment using gas chromatography/mass spectrometry.

    PubMed

    Li, Guanglei; Fu, Yuhua; Han, Xiaosong; Li, Xinyun; Li, Changchun

    2016-07-22

    Clenbuterol is a β-adrenergic agonist used as additive to increase the muscle mass of meat-producing animals. Previous studies were limited to evaluations of animal growth performance and determination of the residues. Several studies have focused on urine samples. Little information about the underlying molecular mechanisms that can explain Clenbuterol metabolism and promote energy repartition in animal muscle and fatty tissue is available. Therefore, this research aims to detect the metabolite variations in muscle and fatty tissue acquired from Chinese pigs fed with Clenbuterol using gas chromatography/mass spectrometry (GC/MS). Ten two-month old Enshi black pigs were fed under the same condition; five of which were fed with basic ration containing Clenbuterol for one month, whereas the other five pigs were fed only with basic ration. Muscle and fatty tissue were subjected to metabolomics analysis using GC/MS. Differences in metabolomic profiles between the two groups were characterized by multivariate statistical analysis. The muscle samples showed that 15 metabolites were significantly different in the Clenbuterol-treated group compared with the control group; 13 potential biomarkers were found in the fatty tissue. Most of the metabolites were associated with fatty acid metabolism and amino acid metabolism. Glycerol, phenylalanine, and leucine were the common metabolites between the muscle and fatty tissue. These metabolites may provide a new clue that contributes to the understanding of the energy reassignment induced by Clenbuterol.

  10. Gas Chromatography-Mass Spectrometry Analysis of Ulva fasciata (Green Seaweed) Extract and Evaluation of Its Cytoprotective and Antigenotoxic Effects.

    PubMed

    Rodeiro, Idania; Olguín, Sitlali; Santes, Rebeca; Herrera, José A; Pérez, Carlos L; Mangas, Raisa; Hernández, Yasnay; Fernández, Gisselle; Hernández, Ivones; Hernández-Ojeda, Sandra; Camacho-Carranza, Rafael; Valencia-Olvera, Ana; Espinosa-Aguirre, Jesús Javier

    2015-01-01

    The chemical composition and biological properties of Ulva fasciata aqueous-ethanolic extract were examined. Five components were identified in one fraction prepared from the extract by gas chromatography-mass spectrometry, and palmitic acid and its ethyl ester accounted for 76% of the total identified components. Furthermore, we assessed the extract's antioxidant properties by using the DPPH, ABTS, and lipid peroxidation assays and found that the extract had a moderate scavenging effect. In an experiment involving preexposition and coexposition of the extract (1-500 µg/mL) and benzo[a]pyrene (BP), the extract was found to be nontoxic to C9 cells in culture and to inhibit the cytotoxicity induced by BP. As BP is biotransformed by CYP1A and CYP2B subfamilies, we explored the possible interaction of the extract with these enzymes. The extract (25-50 µg/mL) inhibited CYP1A1 activity in rat liver microsomes. Analysis of the inhibition kinetics revealed a mixed-type inhibitory effect on CYP1A1 supersome. The effects of the extract on BP-induced DNA damage and hepatic CYP activity in mice were also investigated. Micronuclei induction by BP and liver CYP1A1/2 activities significantly decreased in animals treated with the extract. The results suggest that Ulva fasciata aqueous-ethanolic extract inhibits BP bioactivation and it may be a potential chemopreventive agent.

  11. Simultaneous determination of cannabidiol, cannabinol, and delta9-tetrahydrocannabinol in human hair by gas chromatography-mass spectrometry.

    PubMed

    Kim, Jin Young; Suh, Sung Ill; In, Moon Kyo; Paeng, Ki-Jung; Chung, Bong Chul

    2005-09-01

    An analytical method was developed for evaluating the cannabidiol (CBD), cannabinol (CBN), and delta9-tetrahydrocannabinol (delta9-THC) level in human hair using gas chromatography-mass spectrometry (GC-MS). Hair samples (50 mg) were washed with isopropyl alcohol and cut into small fragments (< 1 mm). After adding a deuterated internal standard, the hair samples were incubated in 1.0 M NaOH for 10 min at 95 degrees C. The analytes from the resulting hydrolyzed samples were extracted using a mixture of n-hexane-ethyl acetate (75:25, v/v). The extracts were then evaporated, derivatized, and injected into the GC-MS. The recovery ranges of CBD, CBN, and delta9-THC at three concentration levels were 37.9-94.5% with good correlation coefficients (r2 >0.9989). The intra-day precision and accuracy ranged from -9.4% to 17.7%, and the inter-day precision and accuracy ranged from -15.5% to 14.5%, respectively. The limits of detection (LOD) for CBD, CBN, and delta9-THC were 0.005, 0.002, and 0.006 ng/mg, respectively. The applicability of this method of analyzing the hair samples from cannabis abusers was demonstrated.

  12. Simultaneous assay of isotopic enrichment and concentration of guanidinoacetate and creatine by gas chromatography-mass spectrometry.

    PubMed

    Kasumov, Takhar; Gruca, Lourdes L; Dasarathy, Srinivasan; Kalhan, Satish C

    2009-12-01

    A gas chromatography-mass spectrometry (GC-MS) method for the simultaneous measurement of isotopic enrichment and concentration of guanidinoacetate (GAA) and creatine in plasma sample for kinetic studies is reported. The method, based on preparation of the bis(trifluoromethyl)pyrimidine methyl ester derivatives of GAA and creatine, is robust and sensitive. The lowest measurable m(1) and m(3) enrichment for GAA and creatine, respectively, was 0.3%. The calibration curves for measurements of concentration were linear over ranges of 0.5 to 250microM GAA and 2 to 500microM for creatine. The method was reliable for inter- and intraassay precision, accuracy, and linearity. The technique was applied in a healthy adult to determine the in vivo fractional synthesis rate of creatine using primed-constant rate infusion of [1-(13)C]glycine. It was found that isotopic enrichment of GAA reached a plateau by 30min of infusion of [1-(13)C]glycine, indicating either a small pool size or a rapid turnover rate (or both) of GAA. In contrast, the tracer appearance in creatine was slow (slope=0.00097), suggesting a large pool size and a slow rate of synthesis of creatine. This method can be used to estimate the rate of synthesis of creatine in vivo in human and animal studies.

  13. Rapid monitoring of sulfur mustard degradation in solution by headspace solid-phase microextraction sampling and gas chromatography mass spectrometry.

    PubMed

    Creek, Jo-Anne M; McAnoy, Andrew M; Brinkworth, Craig S

    2010-12-15

    A method using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography/mass spectrometry (GC/MS) analysis has been developed to gain insight into the degradation of the chemical warfare agent sulfur mustard in solution. Specifically, the described approach simplifies the sample preparation for GC/MS analysis to provide a rapid determination of changes in sulfur mustard abundance. These results were found to be consistent with those obtained using liquid-liquid extraction (LLE) GC/MS. The utility of the described approach was further demonstrated by the investigation of the degradation process in a complex matrix with surfactant added to assist solvation of sulfur mustard. A more rapid reduction in sulfur mustard abundance was observed using the HS-SPME approach with surfactant present and was similar to results from LLE experiments. Significantly, this study demonstrates that HS-SPME can simplify the sample preparation for GC/MS analysis to monitor changes in sulfur mustard abundance in solution more rapidly, and with less solvent and reagent usage than LLE.

  14. Silicone discs as disposable enrichment probes for gas chromatography-mass spectrometry determination of UV filters in water samples.

    PubMed

    Negreira, N; Rodríguez, I; Rubí, E; Cela, R

    2011-04-01

    This work describes an effective, low solvent consumption and affordable sample preparation approach for the determination of eight UV filters in surface and wastewater samples. It involves sorptive extraction of target analytes in a disposable, technical grade silicone disc (5 mm diameter × 0.6 mm thickness) followed by organic solvent desorption, large volume injection (LVI), and gas chromatography-mass spectrometry determination. Final working conditions involved overnight extraction of 100-mL samples, containing 10% of methanol, followed by analytes desorption with 0.2 mL of ethyl acetate. The method provides linear responses between the limits of quantification (from 0.003 to 0.040 ng mL(-1)) and 10 ng mL(-1), an intra-day precision below 13%, and low matrix effects for surface, swimming pool, and treated sewage water samples. Moreover, the extraction yields provided by silicone discs were in excellent agreement with those achieved using polydimethylsiloxane-covered stir bars. Several UV filters were found in surface and sewage water samples, with the maximum concentrations corresponding to octocrylene.

  15. Dual dispersive liquid-liquid microextraction for determination of phenylpropenes in oils by gas chromatography-mass spectrometry.

    PubMed

    Tsai, Chia-Ju; Li, Jih-Heng; Feng, Chia-Hsien

    2015-09-04

    A novel, simple and quick sample preparation method was developed and used for pre-concentration and extraction of six phenylpropenes, including anethole, estragole, eugenol, methyl eugenol, safrole and myristicin, from oil samples by dual dispersive liquid-liquid microextraction. Gas chromatography-mass spectrometry was used for determination and separation of compounds. Several experimental parameters affecting extraction efficiency were evaluated and optimized, including forward-extractant type and volume, surfactant type and concentration, water volume, and back-extractant type and volume. For all analytes (10-1000ng/mL), the limits of detection (S/N≧3) ranged from 1.0 to 3.0ng/mL; the limits of quantification (S/N≧10) ranged from 2.5 to 10.0ng/mL; and enrichment factors ranged from 3.2 to 37.1 times. Within-run and between-run relative standard deviations (n=6) were less than 2.61% and less than 4.33%, respectively. Linearity was excellent with determination coefficients (r(2)) above 0.9977. The experiments showed that the proposed method is a simple, effective, and environmentally friendly method of analyzing phenylpropenes in oil samples.

  16. Determination of Panthenol, Cholecalciferol and Tocopherol in Cosmetic Products by Gas Chromatography-Mass Spectrometry in SIM Mode.

    PubMed

    Jeong, H J; Lee, M H; Ro, K W; Hur, C W; Kim, J W

    1999-02-01

    A novel simple method to detect vitamins in cosmetic products by gas chromatography-mass spectrometry (GC-MS) has been developed. Three vitamins (panthenol, cholecalciferol and tocopherol) were used for this study. Vitamins were prepared by dissolving in tetrahydrofuran (ThF), and silylated with bis-trimethylsilyltri-fluoroacetamide- trichloromethylsilane (BSTFA). Silylated vitamins were separated on a fused-silica capillary column coated with DB-5. The identification of each vitamin was accomplished by retention time and mass spectrum library search with a computer, and the quantitation was made in the selected-ion monitoring (SIM) mode of GC-MS. SIM mode had given sensitivity to determine 50 pg of panthenol, 285 pg of cholecalciferol and 130 pg of tocopherol. Linearity was maintained over the range 0.005-0.20% for each vitamin. Each cosmetic product (i.e. hair tonic and lotion) was found to contain amounts of the vitamins. This method was sensitive and gave 77.5-99.9% recovery of each vitamin from these cosmetic products. From these results, we concluded that silylation with BSTFA followed by GC-MS analysis allows the simple, convenient and exact determination of panthenol, cholecalciferol and tocopherol.

  17. Neurochemical study of amino acids in rodent brain structures using an improved gas chromatography-mass spectrometry method.

    PubMed

    Pinto, Mauro Cunha Xavier; de Paiva, Maria José Nunes; Oliveira-Lima, Onésia Cristina; Menezes, Helvécio Costa; Cardeal, Zenilda de Lourdes; Gomez, Marcus Vinícius; Resende, Rodrigo Ribeiro; Gomez, Renato Santiago

    2014-01-01

    The analysis of amino acid levels is crucial for neuroscience studies because of the roles of these molecules as neurotransmitters and their influence on behavior. The present study describes the distribution and levels of 16 amino acids (alanine, asparagine, aspartic acid, cysteine, glycine, glutamic acid, isoleucine, leucine, lysine, methionine, phenylalanine, proline, sarcosine, serine, valine, and threonine) in brain tissues (prefrontal cortex, striatum, hippocampus and cerebellum) and the serum. Neurochemical analysis was performed on Wistar rats and C57BL/6 mice using an efficient method for extraction, a fast microwave-assisted derivatization and gas chromatography-mass spectrometry analysis. The amino acid concentration varied across brain regions for 14 of the 16 analyzed molecules, with detection limits ranging from 0.02±0.005μmolL(-1) to 7.07±0.05μmolL(-1). In rats, the concentrations of alanine, glycine, methionine, serine and threonine were higher in prefrontal cortex than in other areas, whereas in mice, the concentrations of glutamic acid, leucine and proline were highest in the hippocampus. In conclusion, this study provides a cerebral profile of amino acids in brain regions and the serum of rats and mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Method development for fingerprinting of biodiesel blends by solid-phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Yang, Zeyu; Hollebone, Bruce P; Wang, Zhendi; Yang, Chun; Landriault, Mike

    2011-11-01

    A method based on the combination of solid-phase extraction (SPE) with gas chromatography-mass spectrometry (GC/MS) for detailed chemical fingerprinting of biodiesel/petrodiesel blends was developed in the present study. Forensic identification, commonly referred to as chemical fingerprinting, is based on the relative distributions of individual aliphatic hydrocarbons, aromatic hydrocarbons, fatty acid alkyl esters, and free sterols. Fractionation of fuel samples is optimized for the separation of fatty acid esters and free sterols from petroleum hydrocarbons into four fractions: aliphatic, aromatic, fatty acid ester, and polar components. The final recoveries of aliphatic and aromatic hydrocarbons were determined to be in the range of 65-103%, 73-105% for FAMEs, and 78-103% for free sterols in the polar fraction. Excellent separation with negligible crossover of components with different polarities between fractions was observed. Quantitative analysis of blend levels and individual chemical distribution were achieved. The method has great potential for the identification of biodiesel in diesel fuel blends and could form the basis of a method for characterization of biodiesel-contaminated environmental samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Simultaneous measurement of cocaine, cocaethylene, their metabolites, and "crack" pyrolysis products by gas chromatography-mass spectrometry.

    PubMed

    Cone, E J; Hillsgrove, M; Darwin, W D

    1994-07-01

    We developed a sensitive and specific assay for the simultaneous measurement of cocaine, cocaethylene, six of their metabolites, and anhydroecgonine methyl ester, a pyrolysis product, in biological fluids. The assay involves solid-phase extraction columns containing a copolymeric bonded phase for isolation of cocaine analytes, derivatization with N,O-bis(trimethylsilyl)trifluoroacetamide and 10 g/L trimethylchlorosilane, and measurement with gas chromatography-mass spectrometry operating in the selected-ion monitoring mode. Detector responses for analytes were linear over a concentration range of 3.1-1000 micrograms/L. The limits of detection were approximately 1 microgram/L for cocaine, ecgonine methyl ester, and benzoylecgonine and 3-6 micrograms/L for the remaining analytes. Hydrolysis of cocaine and artifact formation of anhydroecogonine methyl ester during extraction and assay was < 1%. Cocaine and its derivatives appear in different proportions in plasma, saliva, and urine according to the biological fluid and time of measurement. Each biological fluid provides unique information on the disposition of cocaine in human subjects.

  20. An evaluation of acute hydrogen sulfide poisoning in rats through serum metabolomics based on gas chromatography-mass spectrometry.

    PubMed

    Zhang, Meiling; Deng, Mingjie; Ma, Jianshe; Wang, Xianqin

    2014-01-01

    Hydrogen sulfide (H2S) is the second leading cause of toxin-related deaths in the operational site. Its main target organs of toxic effects are the central nervous system and respiratory system. In this study, we developed a serum metabonomic method, based on gas chromatography-mass spectrometry (GC/MS), to evaluate the effect of acute poisoning by hydrogen sulfide on rats. Pattern recognition analysis, including both principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA), revealed that acute hydrogen sulfide poisoning induced metabolic perturbations. Compared to the control group, the level of urea, glucose, glyceryl stearate in rat serum of the poisoning group increased after two hours, and the level of glucose, docosahexaenoic acid, glyceryl stearate and arachidonic acid in rat serum of the poisoning group increased after 48 h, while the L-valine, galactose, L-tyrosine levels decreased. Our results indicate that metabonomic methods based on GC/MS may be useful to elucidate acute hydrogen sulfide poisoning through the exploration of biomarkers.

  1. Simultaneous determination of tramadol, O-desmethyltramadol and N-desmethyltramadol in human urine by gas chromatography-mass spectrometry.

    PubMed

    El-Sayed, Abdel-Aziz Y; Mohamed, Khaled M; Nasser, Ahmed Y; Button, Jennifer; Holt, David W

    2013-05-01

    Analytical procedures for the determination of tramadol (T), O-desmethyltramadol (ODT), and N-desmethyltramadol (NDT) in human urine have been developed and validated using gas chromatography-mass spectrometry (GC/MS). Sample preparation involved liquid-liquid extraction with methyl-tert-butyl ether (MTBE) and followed by back extraction with 0.1 M hydrochloric acid. Proadifen (SKF525A) was selected as internal standard (IS). Extraction efficiencies of T, ODT and NDT were 102.12, 101.30, and 98.21%, respectively. The calibration curves were linear (r(2)>0.99) in the concentration range 10-1000 ng/mL for all compounds. Limits of quantification (LOQ) were 10, 10 and 20 ng/mL for T, ODT and NDT, respectively. Intra-assay precision was within 1.29-6.48% and inter-assay precision was within 1.28-6.84% for T, ODT and NDT. Intra-assay accuracy was within 91.79-106.89% for all analytes. This method detected urine concentrations of T, ODT and NDT in six healthy volunteers for 7 days after administration of 50 mg oral doses of tramadol. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Development and Applications of Portable Gas Chromatography-Mass Spectrometry for Emergency Responders, the Military, and Law-Enforcement Organizations.

    PubMed

    Leary, Pauline E; Dobson, Gareth S; Reffner, John A

    2016-05-01

    Portable gas chromatography-mass spectrometry (GC-MS) systems are being deployed for field use, and are designed with this goal in mind. Performance characteristics of instruments that are successful in the field are different from those of equivalent technologies that are successful in a laboratory setting. These field-portable systems are extending the capabilities of the field user, providing investigative leads and confirmatory identifications in real time. Many different types of users benefit from the availability of this technology including emergency responders, the military, and law-enforcement organizations. This manuscript describes performance characteristics that are important for field-portable instruments, especially field-portable GC-MS systems, and demonstrates the value of this equipment to the disciplines of explosives investigations, fire investigations, and counterfeit-drug detection. This paper describes the current state of portable GC-MS technology, including a review of the development of portable GC-MS, as well as a demonstration of the value of this capability using different examples.

  3. Characterisation and discrimination of various types of lac resin using gas chromatography mass spectrometry techniques with quaternary ammonium reagents.

    PubMed

    Sutherland, K; del Río, J C

    2014-04-18

    A variety of lac resin samples obtained from artists' suppliers, industrial manufacturers, and museum collections were analysed using gas chromatography mass spectrometry (GCMS) and reactive pyrolysis GCMS with quaternary ammonium reagents. These techniques allowed a detailed chemical characterisation of microgram-sized samples, based on the detection and identification of derivatives of the hydroxy aliphatic and cyclic (sesquiterpene) acids that compose the resin. Differences in composition could be related to the nature of the resin, e.g. wax-containing (unrefined), bleached, or aged samples. Furthermore, differences in the relative abundances of aliphatic hydroxyacids appear to be associated with the biological source of the resin. The diagnostic value of newly characterised lac components, including 8-hydroxyacids, is discussed here for the first time. Identification of derivatised components was aided by AMDIS deconvolution software, and discrimination of samples was enhanced by statistical evaluation of data using principal component analysis. The robustness of the analyses, together with the minimal sample size required, make these very powerful approaches for the characterisation of lac resin in museum objects. The value of such analyses for enhancing the understanding of museum collections is illustrated by two case studies of objects in the collection of the Philadelphia Museum of Art: a restorer's varnish on a painting by Luca Signorelli, and a pictorial inlay in an early nineteenth-century High Chest by George Dyer. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Quantitative determination of methamphetamine in oral fluid by liquid-liquid extraction and gas chromatography/mass spectrometry.

    PubMed

    Bahmanabadi, L; Akhgari, M; Jokar, F; Sadeghi, H B

    2017-02-01

    Methamphetamine abuse is one of the most medical and social problems many countries face. In spite of the ban on the use of methamphetamine, it is widely available in Iran's drug black market. There are many analytical methods for the detection of methamphetamine in biological specimen. Oral fluid has become a popular specimen to test for the presence of methamphetamine. The purpose of the present study was to develop a method for the extraction and detection of methamphetamine in oral fluid samples using liquid-liquid extraction (LLE) and gas chromatography/mass spectrometry (GC/MS) methods. An analytical study was designed in that blank and 50 authentic oral fluid samples were collected to be first extracted by LLE and subsequently analysed by GC/MS. The method was fully validated and showed an excellent intra- and inter-assay precision (reflex sympathetic dystrophy ˂ 10%) for external quality control samples. Recovery with LLE methods was 96%. Limit of detection and limit of quantitation were 5 and 15 ng/mL, respectively. The method showed high selectivity, no additional peak due to interfering substances in samples was observed. The introduced method was sensitive, accurate and precise enough for the extraction of methamphetamine from oral fluid samples in forensic toxicology laboratories.

  5. Development of a Gas Chromatography-Mass Spectrometry Method for the Quantification of Glucaric Acid Derivatives in Beverage Substrates

    PubMed Central

    Craig, Ana Paula; Fields, Christine C.; Simpson, John V.

    2014-01-01

    A gas chromatography-mass spectrometry (GC-MS) method using the standard addition methodology was developed for the determination of glucuronolactone (GL) and glucuronic acid (DGuA) in four beverages categorized as detoxification, recovery, or energy drinks. The method features a precolumn derivatization step with a combination of BSTFA (N,O-bis(trimethylsilyl)trifluoroacetamide) and TMCS (trimethylchlorosilane) to silylate the analytes. The sample pretreatment required no extraction, filtration, or reduction step prior to the injection. The quantification of the analytes was performed using a five-point standard addition protocol. The proposed method presented excellent intraday precision (%RSD < 10) and linearity for GL calibration curves (correlation coefficients > 0.995) and acceptable linearity for DGuA calibration curves (correlation coefficients > 0.97). The estimated limits of detection (LOD) and quantification (LOQ) for GL ranged from 0.006 ppm to 0.14 ppm, and 0.02 ppm to 0.47 ppm, respectively. The estimated LOD and LOQ for DGuA determination ranged, respectively, from 0.06 ppm to 1.1 ppm and 0.2 ppm to 3.8 ppm. The results demonstrated that the method should be regarded as a reliable alternative to the simultaneous determination of GL and DGuA. PMID:25024704

  6. Identification the Key Odorants in Different Parts of Hyla Rabbit Meat via Solid Phase Microextraction Using Gas Chromatography Mass Spectrometry.

    PubMed

    Xie, Yuejie; He, Zhifei; Lv, Jingzhi; Zhang, En; Li, Hongjun

    2016-01-01

    The aim of this study was to explore the volatile compounds of hind leg, foreleg, abdomen and Longissimus dorsi in both male and female Hyla rabbit meat by solid phase microextraction tandem with gas chromatography mass spectrometry, and to seek out the key odorants via calculating the odor activity value and principal component analysis. Cluster analysis is used to study the flavor pattern differences in four edible parts. Sixty three volatile compounds were detected, including 23 aldehydes, 4 alcohols, 5 ketones, 11 esters, 5 aromatics, 8 acids and 7 hydrocarbons. Among them, 6 aldehydes and 3 acids were identified as the potential key odorants according to the ratio of concentration and threshold. The contents of volatile compounds in male Hyla rabbit meat were significantly higher than those in female one (p<0.05). The results of principal component analysis showed that the first two principal component cumulative variance contributions reach 87.69%; Hexanal, octanal, 2-nonenal, 2-decenal and decanal were regard as the key odorants of Hyla rabbit meat by combining odor activity value and principal component analysis. Therefore volatile compounds of rabbit meat can be effectively characterized. Cluster analysis indicated that volatile chemical compounds of Longissimus dorsi were significantly different from other three parts, which provide reliable information for rabbit processing industry and for possible future sale.

  7. Characterization of volatile compounds in fermented milk using solid-phase microextraction methods coupled with gas chromatography-mass spectrometry.

    PubMed

    Dan, T; Wang, D; Jin, R L; Zhang, H P; Zhou, T T; Sun, T S

    2017-04-01

    Lactic acid bacteria (LAB) are industrially important bacteria that are widely used in the fermented food industry, especially in the manufacture of yogurt. Characteristic flavors are produced by LAB during fermentation and storage that affect the quality and acceptability of fermented milk products. In this study, the volatile compounds in milk fermented by Streptococcus thermophilus IMAU80842 alone, Lactobacillus delbrueckii ssp. bulgaricus IMAU20401 alone, or both species together were identified using solid-phase microextraction methods coupled with gas chromatography-mass spectrometry. A total of 53, 43, and 32 volatile compounds were identified in milk fermented by S. thermophilus alone, L. delbrueckii ssp. bulgaricus alone, or both species together, respectively. The presence of some important flavor compounds was confirmed: acetic acid, acetaldehyde, acetoin, 2,3-butanedione, ethanol, and 1-heptanol. Our results demonstrate that the composition of the volatile compounds in fermented milk depends on the species of LAB used and whether they are used alone or in combination. This is important for the selection of appropriate starter cultures for the production of different types of fermented milk product with particular flavors.

  8. Development and validation of a gas chromatography-mass spectrometry assay for hair analysis of amphetamine, methamphetamine and methylenedioxy derivatives.

    PubMed

    Pujadas, Mitona; Pichini, Simona; Poudevida, Sandra; Menoyo, Ester; Zuccaro, Piergiorgio; Farré, Magí; de la Torre, Rafael

    2003-12-25

    A procedure based on gas chromatography-mass spectrometry (GC-MS) is described for the determination of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), 3,4-methylenedioxyethylamphetamine (MDE or MDEA) and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair. Hair samples were digested with 1 M sodium sulfide at 37 degrees C (by shaking for 3 h and was kept at room temperature overnight), and extracted with two sequential extraction procedures: liquid-liquid extraction with tert-butyl methyl ether and solid-phase extraction with Bond-Elut Certify columns. Extracted analytes were derivatised with N-methyl-bis(trifluoroacetamide), separated by a 5% phenylmethylsilicone column and determined by a mass spectrometer detector in selected ion monitoring mode. A good reproducibility (intra-assay R.S.D.=1.5-15.7%), accuracy (intra-assay error = 2.0-11.7%) and sensitivity (LOD=0.03-0.08 ng/mg hair) were attained. The method was successfully applied to the analysis of the proximal (1 cm) hair segment to assess recent self-reported use in "ecstasy" consumers. Otherwise, further studies are needed to validate methodology developed in case of amphetamine consumption.

  9. Volatile fingerprints of artemisinin-rich Artemisia annua cultivars by headspace solid-phase microextraction gas chromatography/ mass spectrometry.

    PubMed

    Reale, Samantha; Fasciani, Paolo; Pace, Loretta; De Angelis, Francesco; Marcozzi, Giordana

    2011-09-15

    The cultivar Anamed (A3) is a hybrid of Artemisia annua with a high content of the secondary metabolite artemisinin, a well-known antimalarial drug. Here we report for the first time the volatile profile of fresh leaves of this hybrid in comparison with that of Artemisia annua L. wild-type species. Evaluation and comparison of the volatile profiles of A. annua genotypes with different content in artemisinin were carried out by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography/mass spectrometry (GC/MS) that was performed on fresh leaves of the plants under investigation using a polydimethylsiloxane (PDMS) fiber. The chromatograms obtained from hybrids with a high content of artemisinin (A. annua cv. Anamed A3 and A. annua cv. Artemis F2) reveal the total absence of artemisia ketone, one of the major and characteristic compounds of the wild-type A. annua L., along with a significantly lower variety of volatile compounds. In conclusion, HS-SPME coupled with GC/MS is a very useful, non-destructive and efficient method to describe the volatile pattern of Artemisia annua cultivars. It represents a rapid screening method for the evaluation of volatile biomarkers like artemisia ketone, whose absence is typical of artemisinin-rich A. annua cultivars. Copyright © 2011 John Wiley & Sons, Ltd.

  10. [Rapid determination of benzene series in seawater by gas chromatography-mass spectrometry with static headspace extraction].

    PubMed

    Bai, Hongyan; Han, Bin; Chen, Junhui; Zheng, Li; Yang, Dongfang; Wang, Xiaoru

    2012-05-01

    A method for the simultaneous determination of 13 benzene series (BTEX) in seawater using gas chromatography-mass spectrometry with static headspace extraction (HS-GC/MS) was developed. To carefully characterize the performance of this method, several factors affecting parameters were studied in detail, such as the type of column, heating procedure, equilibrium temperature, equilibrium time and the volume ratio of gas phase to liquid phase. The optimized conditions were as follows: the polar column of DB-WAX; heating procedure, 40 degrees C kept for 4 min, then raised to 120 degrees C at 10 degrees C/min, to 180 degrees C at 25 degrees C/min; equilibrium temperature, 80 degrees C; equilibrium time, 10 min; and the volume ratio of gas phase to liquid phase, 1:1. Under the optimized conditions, the linear equations were obtained in the concentration range of 0.16-320 microg/L with correlation coefficients greater than 0.999. The limits of detection (S/N = 3) were 0.019-0.033 microg/L. The recoveries at the three spiked levels of 1.6, 16 and 160 microg/L ranged from 81. 25% to 103.73% with the relative standard deviations (RSD, n=6) from 0.3% to 4.4%. The analytical results of the practical seawater samples from Shanghai Huangpu District were satisfactory. The determination of the 13 benzene series can be finished in 12 min. The method is simple, accurate, reliable, efficient and environmental-friendly.

  11. Isotope abundance analysis methods and software for improved sample identification with supersonic gas chromatography/mass spectrometry.

    PubMed

    Alon, Tal; Amirav, Aviv

    2006-01-01

    We present newly developed isotope abundance analysis (IAA) methods and software which are used to derive elemental formula information from experimental mass spectral data of molecular ion isotopomeric abundances. The software, using a novel method, can also be used to automatically confirm or reject NIST library search results, thereby significantly improving the confidence level in sample identifications. In the case of IAA confirmation of the NIST library results, sample identification is unambiguous, since the confirmation is achieved by two independent sets of data and analytical methods. In the case of a rejection, such as when the molecule is not included in the library's databases, the IAA software independently provides a list of elemental formulae with declining order of matching to the isotopomeric experimental data, in a similar way to accurate mass measurements with costly instruments. IAA is ideally applicable to gas chromatography/mass spectrometry (GC/MS) (and liquid chromatography/electron ionization mass spectrometry (LC/EI-MS)) with a supersonic molecular beam (SMB) since it requires a trustworthy and highly abundant true molecular ion that is unique to the SMB-MS systems, plus the absence of self chemical ionization and vacuum background noise, again unique features of GC/SMB-MS. The various features of the IAA methods and software are described, their performance is demonstrated with the analysis of experimental GC-SMB-MS data and the IAA concept is compared with accurate mass alternatives. The combination of IAA and GC/SMB-MS is believed to be superior to accurate mass GC/MS in view of the general availability of trustworthy molecular ions for an extended range of compounds. Copyright (c) 2006 John Wiley & Sons, Ltd.

  12. Method Development for the Determination of Fluorotelomer Alcohols in Soils by Gas Chromatography Mass Spectrometry

    EPA Science Inventory

    Fluorotelomer alcohols (FTOHs) have been widely studied as precursors to perfluorocarboxylates, e.g. 8:2 FTOH degrades to perfluorooctanoic acid (PFOA). This presentation describes an analytical method for the extraction and analysis of 6:2, 8:2, and 10:2 FTOHs. Gas chromatograph...

  13. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Freeman, K. H.; Ricci, M. P.; Studley, S. A.; Hayes, J. M.

    1995-01-01

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  14. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry.

    PubMed

    Merritt, D A; Freeman, K H; Ricci, M P; Studley, S A; Hayes, J M

    1995-07-15

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  15. Analysis of Phenolic Antioxidants in Navy Mobility Fuels by Gas Chromatography-Mass Spectrometry

    DTIC Science & Technology

    2013-06-19

    degradation involves chemical changes that lead to oxidation of fuel molecules to form a variety of oxygenated species, often resulting in the accumulation...D5304, 2006, “Standard Test Method for Assessing Middle Distillate Fuel Storage Stability by Oxygen Overpressure,” ASTM International, West Conshohocken...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--13-9471 Analysis of Phenolic Antioxidants in Navy Mobility Fuels by Gas

  16. Analysis of volatiles from stored wheat and Rhyzopertha dominica (F.) with solid phase microextraction-gas chromatography mass spectrometry.

    PubMed

    Niu, Yonghao; Hua, Lei; Hardy, Giles; Agarwal, Manjree; Ren, Yonglin

    2016-03-30

    Volatile organic compounds (VOCs) contribute significantly to food flavour and can be used as indicators of quality, age of storage, and hygiene condition of stored products. The VOCs in the headspace of three different samples - healthy wheat, Rhyzopertha dominica, and wheat with R. dominica - were analysed at 25°C by solid phase micro-extraction (SPME) coupled with gas chromatography-flame ionisation detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). All the experimental conditions were kept consistent except a polar column and a non-polar column were used to assess the differences in volatile fingerprints. A total of 114 volatiles were identified by both the polar and non-polar columns, of which 48 were specific to one of the three samples tested. The volatiles were mainly carbonyl chemical compounds such as aldehydes, ketones and alcohols. GC-MS results showed slightly more VOCs were identified from the polar column. The total number for the three samples was 43 from the polar column compared to 39 from the non-polar column. Conversely, 30 VOCs unique to a given sample were identified from the non-polar column compared to 18 from the polar column. The use of both polar and non-polar columns is essential to capture the full range of VOCs produced by the three specific sample types investigated. The data can form the basis of enquiry into the relationship between storage and grain quality, and insect infestation and grain quality by observing the impact that these circumstances have on the production of volatile organic compounds. © 2015 Society of Chemical Industry.

  17. Development and Application of Pyrolysis Gas Chromatography/Mass Spectrometry for the Analysis of Bound Trinitrotoluene Residues in Soil

    USGS Publications Warehouse

    Weiss, J.M.; Mckay, A.J.; Derito, C.; Watanabe, C.; Thorn, K.A.; Madsen, E.L.

    2004-01-01

    TNT (trinitrotoluene) is a contaminant of global environmental significance, yet determining its environmental fate has posed longstanding challenges. To date, only differential extraction-based approaches have been able to determine the presence of covalently bound, reduced forms of TNT in field soils. Here, we employed thermal elution, pyrolysis, and gas chromatography/mass spectrometry (GC/MS) to distinguish between covalently bound and noncovalently bound reduced forms of TNT in soil. Model soil organic matter-based matrixes were used to develop an assay in which noncovalently bound (monomeric) aminodinitrotoluene (ADNT) and diaminonitrotoluene (DANT) were desorbed from the matrix and analyzed at a lower temperature than covalently bound forms of these same compounds. A thermal desorption technique, evolved gas analysis, was initially employed to differentiate between covalently bound and added 15N-labeled monomeric compounds. A refined thermal elution procedure, termed "double-shot analysis" (DSA), allowed a sample to be sequentially analyzed in two phases. In phase 1, all of an added 15N-labeled monomeric contaminant was eluted from the sample at relatively low temperature. In phase 2 during high-temperature pyrolysis, the remaining covalently bound contaminants were detected. DSA analysis of soil from the Louisiana Army Ammunition Plant (LAAP; ???5000 ppm TNT) revealed the presence of DANT, ADNT, and TNT. After scrutinizing the DSA data and comparing them to results from solvent-extracted and base/acid-hydrolyzed LAAP soil, we concluded that the TNT was a noncovalently bound "carryover" from phase 1. Thus, the pyrolysis-GC/MS technique successfully defined covalently bound pools of ADNT and DANT in the field soil sample.

  18. Urinary gas chromatography mass spectrometry metabolomics in asphyxiated newborns undergoing hypothermia: from the birth to the first month of life

    PubMed Central

    Noto, Antonio; Pomero, Giulia; Barberini, Luigi; Fattuoni, Claudia; Palmas, Francesco; Dalmazzo, Cristina; Delogu, Antonio; Dessì, Angelica; Fanos, Vassilios; Gancia, Paolo

    2016-01-01

    Background Perinatal asphyxia is a severe clinical condition affecting around four million newborns worldwide. It consists of an impaired gas exchange leading to three biochemical components: hypoxemia, hypercapnia and metabolic acidosis. Methods The aim of this longitudinal experimental study was to identify the urine metabolome of newborns with perinatal asphyxia and to follow changes in urine metabolic profile over time. Twelve babies with perinatal asphyxia were included in this study; three babies died on the eighth day of life. Total-body cooling for 72 hours was carried out in all the newborns. Urine samples were collected in each baby at birth, after 48 hours during hypothermia, after the end of the therapeutic treatment (72 hours), after 1 week of life, and finally after 1 month of life. Urine metabolome at birth was considered the reference against which to compare metabolic profiles in subsequent samples. Quantitative metabolic profiling in urine samples was measured by gas chromatography mass spectrometry (GC-MS). The statistical approach was conducted by using the multivariate analysis by means of principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA). Pathway analysis was also performed. Results The most important metabolites depicting each time collection point were identified and compared each other. At birth before starting therapeutic hypothermia (TH), urine metabolic profiles of the three babies died after 7 days of life were closely comparable each other and significantly different from those in survivors. Conclusions In conclusion, a plethora of data have been extracted by comparing the urine metabolome at birth with those observed at each time point collection. The modifications over time in metabolites composition and concentration, mainly originated from the depletion of cellular energy and homeostasis, seems to constitute a fingerprint of perinatal asphyxia. PMID:27942508

  19. Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry.

    PubMed

    Jurica, Karlo; Karačonji, Irena Brčić; Šegan, Sandra; Opsenica, Dušanka Milojković; Kremer, Dario

    2015-09-01

    The phenolic glycoside arbutin and its metabolite with uroantiseptic activity hydroquinone occur naturally in the leaves of various medicinal plants and spices. In this study, an extraction procedure coupled with gas chromatography-mass spectrometry (GC-MS) was developed to determine arbutin and hydroquinone content in strawberry tree (Arbutus unedo L., Ericaceae) leaves. The method showed good linearity (R2>0.9987) in the tested concentration range (0.5-200 μg mL(-1)), as well as good precision (RSD<5%), analytical recovery (96.2-98.0%), and sensitivity (limit of detection=0.009 and 0.004 μg mL(-1) for arbutin and hydroquinone, respectively). The results obtained by the validated GC-MS method corresponded well to those obtained by high performance liquid chromatography (HPLC) method. The proposed method was then applied for determining arbutin and hydroquinone content in methanolic leaf extracts. The amount of arbutin in the leaves collected on the island of Koločep (6.82 mg g(-1) dry weight) was found to be higher (tpaired=43.57, tc=2.92) in comparison to the amount of arbutin in the leaves collected on the island of Mali Lošinj (2.75 mg g(-1) dry weight). Hydroquinone was not detected in any of the samples. The analytical features of the proposed GC-MS method demonstrated that arbutin and hydroquinone could be determined alternatively by gas chromatography. Due to its wide concentration range, the method could also be suitable for arbutin and hydroquinone analysis in leaves of other plant families (Rosaceae, Lamiaceae, etc.).

  20. Determination of alcohol sulfates in wastewater treatment plant influents and effluents by gas chromatography-mass spectrometry.

    PubMed

    Fernández-Ramos, C; Ballesteros, O; Blanc, R; Zafra-Gómez, A; Jiménez-Díaz, I; Navalón, A; Vílchez, J L

    2012-08-30

    In the present paper, we developed an accurate method for the analysis of alcohol sulfates (AS) in wastewater samples from wastewater treatment plant (WWTP) influents and effluents. Although many methodologies have been published in the literature concerning the study of anionic surfactants in environmental samples, at present, the number of analytical methodologies that focus in the determination of AS by gas chromatography in the different environmental compartments is limited. The reason for this is that gas chromatography-mass spectrometry (GC-MS) technique requires a previous hydrolysis reaction followed by derivatization reactions. In the present work, we proposed a new procedure in which the hydrolysis and derivatization reactions take place in one single step and AS are directly converted to trimethylsilyl derivatives. The main factors affecting solid-phase extraction (SPE), hydrolysis/derivatization and GC-MS procedures were accurately optimised. Quantification of the target compounds was performed by using GC-MS in selected ion monitoring (SIM) mode. The limits of detection (LOD) obtained ranged from 0.2 to 0.3 μg L(-1), and limits of quantification (LOQ) from 0.5 to 1.0 μg L(-1), while inter- and intra-day variability was under 5%. A recovery assay was also carried out. Recovery rates for homologues in spiked samples ranged from 96 to 103%. The proposed method was successfully applied for the determination of anionic surfactants in wastewater samples from one WWTP located in Granada (Spain). Concentration levels for the homologues up to 39.4 μg L(-1) in influent and up to 8.1 μg L(-1) in effluent wastewater samples.

  1. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry.

    PubMed

    Lattuati-Derieux, A; Thao-Heu, S; Lavédrine, B

    2011-07-15

    Polyurethane foams are widely present in museum collections either as part of the artefacts, or as a material for their conservation. Unfortunately many of PU foam artefacts are in poor condition and often exhibit specific conservation issues. Their fast thermal and photochemical degradations have been the aim of previous researches. It is now accepted that hydrolysis predominates for polyester-based polyurethane PU(ES) whereas oxidation is the principal cause of degradation for polyether-based polyurethane PU(ET) variety. Only a few studies have been devoted to volatile organic compounds (VOCs) emitted by polyurethanes and, to our knowledge, none were performed on polyurethane foams by using headspace-solid phase microextraction (HS-SPME). The objective of the work described here is to assess the impact of some environmental factors (humidity, temperature and daylight) on the degradation of PU foams by evaluating their volatile fractions. We investigated morphological changes, polymerized fractions and volatile fractions of (i) one modern produced PU(ES) foam and one modern PU(ET) foam artificially aged in different conditions as well as (ii) four naturally aged foams collected from various daily life objects and selected for the representativeness of their analytical data. Characterization procedure used was based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and non-invasive headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry (HS-SPME-GC/MS). In this paper, the formation of alcohol and acid raw products for PU(ES) and glycol derivatives for PU(ET) during natural and artificial ageing is confirmed. These main products can be considered as degradation markers for PU foams. Results show that artificial and natural ageing provide similar analytical results, and confirm that the dominant degradation paths for PU(ES) and for PU(ET) are

  2. Simultaneous determination of melatonin and pyridoxine in tablets by gas chromatography-mass spectrometry.

    PubMed

    Nùñez-Vergara, L J; Squella, J A; Sturm, J C; Baez, H; Camargo, C

    2001-12-01

    A gas chromatographic-mass spectrometric (GC-MS) method for the qualitative and quantitative determination of melatonin plus pyridoxine commercial tablets is described. Melatonin and pyridoxine were simultaneously determined by GC-MS after extraction from ground tablets with methanol and derivatization with N-methyl-N-N-trimethlylsilyltrifluoroacetamide (MSTFA). The mass chromatograms were generated using 232 m/z ion for melatonin and 280 m/z ion for pyridoxine, respectively. Splitless injection offers good reproducibility with a standard deviation of 2%. The developed method was applied to analyze the melatonin and pyridoxine content from two different tablet formulations. Also, recovery, detection and quantification limits are reported.

  3. Evaluation of automated sample preparation, retention time locked gas chromatography-mass spectrometry and data analysis methods for the metabolomic study of Arabidopsis species.

    PubMed

    Gu, Qun; David, Frank; Lynen, Frédéric; Rumpel, Klaus; Dugardeyn, Jasper; Van Der Straeten, Dominique; Xu, Guowang; Sandra, Pat

    2011-05-27

    In this paper, automated sample preparation, retention time locked gas chromatography-mass spectrometry (GC-MS) and data analysis methods for the metabolomics study were evaluated. A miniaturized and automated derivatisation method using sequential oximation and silylation was applied to a polar extract of 4 types (2 types×2 ages) of Arabidopsis thaliana, a popular model organism often used in plant sciences and genetics. Automation of the derivatisation process offers excellent repeatability, and the time between sample preparation and analysis was short and constant, reducing artifact formation. Retention time locked (RTL) gas chromatography-mass spectrometry was used, resulting in reproducible retention times and GC-MS profiles. Two approaches were used for data analysis. XCMS followed by principal component analysis (approach 1) and AMDIS deconvolution combined with a commercially available program (Mass Profiler Professional) followed by principal component analysis (approach 2) were compared. Several features that were up- or down-regulated in the different types were detected.

  4. Biosynthesis of Gold Nanoparticles and Identification of Capping Agent Using Gas Chromatography-Mass Spectrometry and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry.

    PubMed

    Karthick, V; Kumar, V Ganesh; Dhas, T Stalin; Govindaraju, K; Sinha, Sweta; Singaravelu, G

    2015-06-01

    In the present study, gold nanoparticles (AuNPs) were synthesized using leaf extract of Syzygium jambolanum and capping agent has been explored. The synthesized AuNPs have been characterized using UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HRTEM) and atomic force microscopic (AFM) analysis. The AuNPs show intense surface plasmon resonance (SPR) band at 528 nm and were found to be spherical and hexagonal in shape with particle size ranging from 20-30 nm. Transmission electron microscopy and atomic force microscopy were used to analyze the surface morphology of synthesized AuNPs. The capping ligand has been evaluated using matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) and gas chromatography-mass spectrometry (GC-MS) analysis.

  5. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.

  6. Gas chromatography mass spectrometry computer analysis of volatile halogenated hydrocarbons in man and his environment--A multimedia environmental study.

    PubMed

    Barkley, J; Bunch, J; Bursey, J T; Castillo, N; Cooper, S D; Davis, J M; Erickson, M D; Harris, B S; Kirkpatrick, M; Michael, L C; Parks, S P; Pellizzari, E D; Ray, M; Smith, D; Tomer, K B; Wagner, R; Zweidinger, R A

    1980-04-01

    As part of a study to make a comparative analysis of selected halogenated compounds in man and the environmental media, a quantitative gas chromatography mass spectrometric analysis of the levels of the halogenated compounds found in the breath, blood and urine of an exposed population (Old Love Canal area, Niagara, New York) and their immediate environment (air and water) was undertaken. In addition, levels of halogenated hydrocarbons in air samples taken in the general Buffalo, Niagara Falls area were determined.

  7. Sensitive determination of bromazepam in human tissues using capillary gas chromatography-mass spectrometry.

    PubMed

    Zhang, X X; Kudo, K; Imamura, T; Jitsufuchi, N; Nagata, T

    1996-02-23

    A reliable and sensitive gas chromatographic-mass spectrometric method was devised to determine the levels of bromazepam in human tissues. Bromazepam was extracted from body tissues using a three-step solvent extraction procedure. N-Desmethyldiazepam served as the internal standard. Selected ion monitoring with m/z 317 for bromazepam and m/z 270 for internal standard was used for quantitation. Calibration curves in all body tissues were linear over the concentration range from 50-500 ng/g. The lower detection limit in body tissues was 2-5 ng/g and the absolute recovery in body tissues was 27.8-68.0%. This method was used to determine the levels of bromazepam in tissues of an autopsied individual who had been prescribed psychotropic drugs and who was found dead in a car.

  8. Impurity profiling of ecstasy tablets seized in Hong Kong by gas chromatography-mass spectrometry.

    PubMed

    Cheng, Jack Yuk Ki; Chan, Man Fai; Chan, Tai Wai; Hung, Mei Yuen

    2006-10-16

    In Hong Kong, ecstasy tablets are more commonly known as "Fing Tau Yuen", literally meaning "Shake Head Pills". The tablets contain mainly amphetamine-type stimulants (ATS) including 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), methamphetamine (MA) and/or ketamine. Adulterant such as caffeine was also detected in the tablets. This paper reports a study on the impurity profiles of ecstasy tablets from 89 seizures in Hong Kong from 2002 to early 2004. Tablet samples were extracted by diethyl ether under alkaline condition and then analyzed by gas GC-MS. The chromatograms obtained were compared. A total of 19 identified impurities were selected as markers for impurity profiling. They are different precursors, intermediates and by-products. The data matrices were examined by hierarchical cluster analysis (HCA), and then the ecstasy tablets were classified into different groups. Cluster analysis of ecstasy tablets is shown to be capable of providing intelligence on clandestine laboratory networks.

  9. Determination of residual styrene monomer in polystyrene granules by gas chromatography-mass spectrometry.

    PubMed

    Garrigós, M C; Marín, M L; Cantó, A; Sánchez, A

    2004-12-24

    Polystyrene is widely used in formulations intended for children use. The main problem with this plastic is the residual styrene, which can migrate from the product, and therefore, be in contact with children. The acute toxicity of styrene is well known, raising the need of an efficient and fast method of analysis for this compound. Several extraction methods have been evaluated and compared for the determination of residual styrene monomer in polystyrene granules used in toys: supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), Soxhlet extraction, headspace emission and dissolution-precipitation. The analyte was subsequently detected by gas chromatography (GC) with MS detection. The results indicated that the most efficient method was dissolution-precipitation giving even higher extraction efficiency than SFE. For validating the method, PS samples spiked with known quantities of styrene at three concentration levels were prepared to calculate the extraction recovery. The founded validation data proved the suitability of the proposed method.

  10. Characterization of synthetic polymers and speck impurities in cellulose pulp: a comparison between pyrolysis-gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy.

    PubMed

    Silvério, F O; Barbosa, L C A; Maltha, C R A; Piló-Veloso, D

    2009-06-08

    Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and Fourier transform infrared (FT-IR) spectroscopy were used for characterizing specks in cellulose pulp, polymeric materials and pitch formed during the cellulose extraction and paper production in the Brazilian mill. Three samples were analyzed and the pyrograms and infrared spectra obtained were compared. The results showed that the analytical pyrolysis more effectively differentiated between impurities (dirt specks) when compared to the infrared spectroscopy.

  11. Improved sensitivity gas chromatography-mass spectrometry determination of parabens in waters using ionic liquids.

    PubMed

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2016-01-01

    A new procedure for the introduction of ionic liquid samples in gas chromatography (GC) is proposed. This procedure, based on microvial insert thermal desorption, allows the direct analysis of the compounds preconcentrated by ionic liquid based liquid-liquid microextraction (IL-LLME) using the combination of a thermal desorption unit (TDU) and a programmed temperature vaporization injector (PTV). Two different IL-LLME methodologies, one based on the formation of a microdroplet emulsion by dispersive liquid-liquid microextraction (DLLME) and other through ultrasound-assisted emulsification microextraction (USAEME) were studied and evaluated. IL-DLLME proved advantageous and consequently, it was adopted for preconcentration purposes. This easy to apply approach was used for the determination of five parabens (methyl-, ethyl-, propyl-, butyl- and isobutyl paraben) in swimming pool waters, after in situ acetylation. The optimized conditions of TDU/PTV allowed the analytes contained in 20 µL of the enriched IL to be transferred to the capillary column. Quantification of the samples was carried out against aqueous standards, and quantification limits of between 4.3 and 8.1 ng L(-1) were obtained, depending on the compound. Concentrations of between 9 and 47 ng L(-1) for some analytes were obtained in the analysis of ten samples.

  12. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  13. Cinnamaldehyde content in foods determined by gas chromatography-mass spectrometry.

    PubMed

    Friedman, M; Kozukue, N; Harden, L A

    2000-11-01

    trans-Cinnamaldehyde, the principal component of cinnamon flavor, is a potent antimicrobial compound present in essential oils such as cinnamon. In the course of studies designed to discover its maximum microbial lethality under food-processing conditions, a gas chromatographic-mass spectrophotometric procedure was developed for the extraction and analysis of essential oil components such as cinnamaldehyde from commercial cinnamon-containing foods (several brands of cinnamon breads, cereals, cookies, puddings, applesauces, and fruit juices). The cinnamaldehyde content ranged from trace amounts in orange juice to 12.2 mg/100 g (122 ppm) in apple cinnamon cereals and 31.1 mg/100 g (311 ppm) for cinnamon swirl bread (highest value). To ascertain the heat stability of cinnamaldehyde, pure cinnamaldehyde, pure eugenol, cinnamon oil, and mixtures consisting of cinnamaldehyde plus eugenol or cinnamon oil were heated at graded temperatures up to 210 degrees C and 60 min, and then possible compositional changes were examined. Eugenol was stable to heat, as were the components of cinnamon oil: carvone, eugenol, and linalool. In contrast, starting at approximately 60 degrees C, pure cinnamaldehyde undergoes a temperature-dependent transformation to benzaldehyde under the influence of heat. Eugenol, both pure and in cinnamon oil, when added to pure cinnamaldehyde protected the aldehyde against heat destruction. The protection may due to an antioxidative action of eugenol. The possible mechanism of this effect and the significance of these findings for food chemistry and microbiology are discussed.

  14. Comprehensive three-dimensional gas chromatography mass spectrometry separation of diesel.

    PubMed

    Wang, Frank Cheng-Yu

    2017-03-17

    Diesel, a complex hydrocarbon mixture, was examined using comprehensive two-dimensional gas chromatography (GC×GC) and a field ionization mass spectrometer (FIMS), which preferentially yields molecular ions, providing an extra dimension for component separation. Molecular ions collected at low mass resolution can be assigned an NM-class (Nominal Mass-class) value that does not completely express hydrogen deficiency. In contrast to formulae and Z-class assignments that are possible from ultrahigh mass resolution, NM-class assignments are not unambiguous; however, the separation provided by GC×GC can result in coelution of components that differ in NM-class. Hence, compounds that are unresolved by GC×GC separation can be resolved by FIMS provided they differ in mass. This technique allows for easy, automated data processing, evaluation of coelution on quantitative analysis (e.g., using FID) and the identification of additional chemical species and structures. The development of GC×GC×MS creates new opportunities to improve the ability to determine hydrocarbon composition and structure in complex petroleum and refined petroleum products. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Determination of solanidine- and tomatidine-type glycoalkaloid aglycons by gas Chromatography/Mass spectrometry.

    PubMed

    Laurila, J; Laakso, I; Väänänen, T; Kuronen, P; Huopalahti, R; Pehu, E

    1999-07-01

    A combined derivatization method for gas chromatographic/mass spectrometric (GC/MS) analysis of steroidal glycoalkaloid (SGA) aglycons was developed using both trimethylsilylation and pentafluoropropionylation. In comparison with underivatized or only silylated aglycons, the new technique produces more specific and abundant fragmentation for compounds with a tomatidine-type structure. For example, the difference between solasodine and tomatidine, the former containing a double bond at position 5,6 in the steroidal skeleton, can be observed by their base peak fragments at m/z 417 (C(24)H(41)O(2)Si(2)) and m/z 419 (C(24)H(43)O(2)Si(2)). The method is well suited for the simultaneous determination of both solanidane- and spirosolane-type SGA aglycons from Solanum species and hybrids. The reproducibility of the method, including SGA extraction, hydrolysis, derivatization, and quantitative GC/MS analysis, was <6% (CV) for the principal aglycons determined from a hybrid between a wild potato species, Solanum brevidens Phil., and a cultivated potato, S. tuberosum L. A single ion monitoring technique using specific fragments m/z 419 and 417 could be applied for the determination of minor stereoisomers, which are often overlapped by large amounts of tomatidine.

  16. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  17. Integration of Gas Chromatography Mass Spectrometry Methods for Differentiating Ricin Preparation Methods

    SciTech Connect

    Wunschel, David S.; Melville, Angela M.; Ehrhardt, Christopher J.; Colburn, Heather A.; Victry, Kristin D.; Antolick, Kathryn C.; Wahl, Jon H.; Wahl, Karen L.

    2012-05-17

    The investigation of crimes involving chemical or biological agents is infrequent, but presents unique analytical challenges. The protein toxin ricin is encountered more frequently than other agents and is found in the seeds of the castor plant Ricinus communis. Typically, the toxin is extracted from castor seeds utilizing a variety of different recipes that result in varying purity of the toxin. Moreover, these various purification steps can also leave or differentially remove a variety of exogenous and endogenous residual components with the toxin that may indicate the type and number of purification steps involved. We have applied three gas chromatographic - mass spectrometric (GC-MS) based analytical methods to measure the variation in seed carbohydrates and castor oil ricinoleic acid as well as the presence of solvents used for purification. These methods were applied to the same samples prepared using four previously identified toxin preparation methods starting from four varieties of castor seeds. The individual data sets for seed carbohydrate profiles, ricinoleic acid or acetone amount each provided information capable of differentiating different types of toxin preparations across seed types. However, the integration of the data sets using multivariate factor analysis provided a clear distinction of all samples based on the preparation method and independent of the seed source. In particular the abundance of mannose, arabinose, fucose, ricinoleic acid and acetone were shown to be important differentiating factors. These complementary tools provide a more confident determination of the method of toxin preparation.

  18. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Merritt, Dawn A.; Hayes, J. M.; Marais, David J. Des

    1995-01-01

    Less than 15 min are required for the determination of δ13CPDB with a precision of 0.2‰ (1σ, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of δ on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of sample handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of <1‰.

  19. Comprehensive two-dimensional gas chromatography-mass spectrometry: a review.

    PubMed

    Mondello, Luigi; Tranchida, Peter Quinto; Dugo, Paola; Dugo, Giovanni

    2008-01-01

    Although comprehensive two-dimensional gas chromatography (GC x GC) has been on the scene for more than 15 years, it is still generally considered a relatively novel technique and is yet far from being fully established. The revolutionary aspect of GC x GC, with respect to classical multidimensional chromatography, is that the entire sample is subjected to two distinct analytical separations. The resulting enhanced separating capacity makes this approach a prime choice when GC analysts are challenged with highly complex mixtures. The combination of a third mass spectrometric dimension to a GC x GC system generates the most powerful analytical tool today for volatile and semi-volatile analytes. The present review is focused on the rather brief, but not scant, history of comprehensive two-dimensional GC-MS: the first experiments were carried out at the end of the 1990s and, since then, the methodology has been increasingly studied and applied. Almost all GC x GC-MS applications have been carried out by using either a time-of-flight or quadrupole mass analyzer; significant experiments relative to a variety of research fields, as well as advantages and disadvantages of the MS systems employed, are discussed. The principles, practical and theoretical aspects, and the most significant developments of GC x GC are also described. (c) 2008 Wiley Periodicals, Inc.

  20. Distinction among eight opiate drugs in urine by gas chromatography-mass spectrometry.

    PubMed

    Nowatzke, W; Zeng, J; Saunders, A; Bohrer, A; Koenig, J; Turk, J

    1999-09-01

    Opiates are commonly abused substances, and forensic urine drug-testing for them requires gas chromatographic-mass spectrometric (GC-MS) confirmation. There are also medical reasons to test urine for opiates, and confirmation procedures other than GC-MS are often used for medical drug-testing. A thin-layer chromatographic (TLC) method distinguishes morphine, acetylmorphine, hydromorphone, oxymorphone, codeine, dihydrocodeine, hydrocodone, and oxycodone in clinical specimens. In certain clinical circumstances, GC-MS confirmation is requested for opiates identified by TLC, but, to our knowledge, no previous report examines all of the above opiates in a single GC-MS procedure. We find that they can be distinguished by GC-MS analyses of trimethylsilyl (TMS) ether derivatives, and identities of 6-keto opiates can be further confirmed by GC-MS analysis of methoxime (MO)-TMS derivatives. Inclusion of deuterium-labeled internal standards permits identification of the opiates in urine at concentrations below the TLC cutoff level of 600 ng/ml, and the GC-MS assay is linear over a concentration range that spans that level. This GC-MS procedure has proved useful as a third-stage identification step in a medical drug-testing sequence involving prior immunoassay and TLC.

  1. Potential biomarkers of smoked fentanyl utilizing pyrolysis gas chromatography-mass spectrometry.

    PubMed

    Nishikawa, Rona K; Bell, Suzanne C; Kraner, James C; Callery, Patrick S

    2009-10-01

    Fentanyl is a potent opioid analgesic that is increasingly becoming a choice drug of abuse. Fentanyl transdermal patches (FTPs) are easily obtained and consumed by smoking the reservoir gel and/or the whole patch. This allows for an increased bioavailability when inhaled. A method using analytical pyrolysis was developed to identify possible biomarkers associated with smoked fentanyl and FTPs. Pyrolysis was carried out under anaerobic and aerobic conditions using helium and air coupled to a gas chromatograph-mass spectrometer. The presence of a trap enhanced recovery and afforded a positive identification of pyrolytic products. Anaerobic and aerobic pyrolysis of fentanyl and FTPs consistently yielded propionanilide as the major pyrolytic product along with pyridine and previously reported metabolites (norfentanyl and despropionyl fentanyl). Analysis of fentanyl resulted in chlorine-containing compounds, presumably formed from the HCl salt of fentanyl. Analysis of FTPs showed significant polymeric and hydrocarbon compounds and products likely derived from the gel matrix. Fentanyl in the FTPs was in the citrate salt form; therefore, the chlorine-containing pyrolytic products obtained with the neat drug were not observed. Based on this application, it may be possible to identify what salt form of the drug was smoked based on pyrolytic products and to target distinguishing metabolic products for future research.

  2. Analysis of galanthamine-type alkaloids by capillary gas chromatography-mass spectrometry in plants.

    PubMed

    Berkov, Strahil; Bastida, Jaume; Viladomat, Francesc; Codina, Carles

    2008-01-01

    Galanthamine, an acetylcholinesterase inhibitor used for the treatment of Alzheimer's disease, and galanthamine-type alkaloids are synthesised in different plants of the family Amaryllidaceae. A capillary gas chromatographic-mass spectroscopic (CGC-MS) method for the separation of 7 galanthamine type alkaloids, including galanthamine and epigalanthamine, is described in the present paper. A simple method for the routine quantification of galanthamine in plants was developed using pre-packed columns with diatomaceous earth (Isolute HM-N), allowing simultaneous preparation of a large number of samples. Galanthamine showed excellent linearity in the range from 50 to 1000 microg/mL and the limit of quantification was 5 microg/mL in total ion current mode and 1.6 ng/mL in selected ion monitoring mode. The recovery of galanthamine was more than 90%. Interday reproducibility (RSD) of the extraction was 2.74%. A method to find and to microextract Amaryllidaceae alkaloids in low-mass plant samples is also described.

  3. What Experimental Factors Influence the Accuracy of Retention Projections in Gas Chromatography-Mass Spectrometry?

    PubMed Central

    Wilson, Michael B.; Barnes, Brian B.; Boswell, Paul G.

    2014-01-01

    Programmed-temperature gas chromatographic (GC) retention information is difficult to share because it depends on so many experimental factors that vary among laboratories. Though linear retention indexing cannot properly account for experimental differences, retention times can be accurately calculated, or “projected”, from shared isothermal retention vs. temperature (T) relationships, but only if the temperature program and hold-up time vs. T profile produced by a GC is known with great precision. The effort required to measure these profiles were previously impractical, but we recently showed that they can be easily back-calculated from the programmed-temperature retention times of a set of 25 n-alkanes using open-source software at www.retentionprediction.org/gc. In a multi-lab study, the approach was shown to account for both intentional and unintentional differences in the temperature programs, flow rates, and inlet pressures produced by the GCs. Here, we tested 16 other experimental factors and found that only 5 could reduce accuracy in retention projections: injection history, exposure to very high levels of oxygen at high temperature, a very low transfer line temperature, an overloaded column, and a very short column (≤ 15 m). We find that the retention projection methodology acts as a hybrid of conventional retention projection and retention indexing, drawing on the advantages of both; it properly accounts for a wide range of experimental conditions while accommodating the effects of experimental factors not properly taken into account in the calculations. Finally, we developed a four-step protocol to efficiently troubleshoot a GC system after it is found to be yielding inaccurate retention projections. PMID:25482038

  4. Simultaneous detection of ten psychedelic phenethylamines in urine by gas chromatography-mass spectrometry.

    PubMed

    Kerrigan, Sarah; Banuelos, Stephanie; Perrella, Laura; Hardy, Brittany

    2011-09-01

    Psychedelic phenethylamines are an emerging class of designer drugs capable of producing a complex array of sought after adrenergic and hallucinogenic effects. Toxicological detection poses a number of challenges to laboratories. The purpose of this study was to develop a procedure for the detection of psychedelic amphetamines using techniques that are widely accepted in forensic toxicology laboratories. In all, 10 target analytes were selected: 2,5-dimethoxy-4-bromophenethylamine (2C-B), 2,5-dimethoxyphenethylamine (2C-H), 2,5-dimethoxy-4iodophenethylamine (2C-I), 2,5-dimethoxy-4ethylthiophenethylamine (2C-T-2), 2,5-dimethoxy-4-(n)propylthiophenethylamine (2C-T-7), 4-methylthioamphetamine (4-MTA), 2,5-dimethoxy-4-bromoamphetamine (DOB), 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy4-iodoamphetamine (DOI), and 2,5-dimethoxy-4methylamphetamine (DOM). Target drugs in urine were analyzed by gas chromatography in selected ion monitoring mode after mixed-mode solid-phase extraction. Limits of detection for all analytes were 2-10 ng/mL, and limits of quantitation were 10 ng/mL or less. Precision evaluated at 50 and 500 ng/mL yielded CVs of 0.4-7.9% and accuracy in the range 91-116%. Calibration curves were linear to 1500 ng/mL using mescaline-d₉ as the internal standard. No carryover was evident at 5000 ng/mL (the highest concentration tested) and no interferences were observed from the presence of other structurally related compounds or endogenous bases.

  5. What experimental factors influence the accuracy of retention projections in gas chromatography-mass spectrometry?

    PubMed

    Wilson, Michael B; Barnes, Brian B; Boswell, Paul G

    2014-12-19

    Programmed-temperature gas chromatographic (GC) retention information is difficult to share because it depends on so many experimental factors that vary among laboratories. Though linear retention indexing cannot properly account for experimental differences, retention times can be accurately calculated, or "projected", from shared isothermal retention vs. temperature (T) relationships, but only if the temperature program and hold-up time vs. T profile produced by a GC is known with great precision. The effort required to measure these profiles were previously impractical, but we recently showed that they can be easily back-calculated from the programmed-temperature retention times of a set of 25 n-alkanes using open-source software at www.retentionprediction.org/gc. In a multi-lab study, the approach was shown to account for both intentional and unintentional differences in the temperature programs, flow rates, and inlet pressures produced by the GCs. Here, we tested 16 other experimental factors and found that only 5 could reduce accuracy in retention projections: injection history, exposure to very high levels of oxygen at high temperature, a very low transfer line temperature, an overloaded column, and a very short column (≤15m). We find that the retention projection methodology acts as a hybrid of conventional retention projection and retention indexing, drawing on the advantages of both; it properly accounts for a wide range of experimental conditions while accommodating the effects of experimental factors not properly taken into account in the calculations. Finally, we developed a four-step protocol to efficiently troubleshoot a GC system after it is found to be yielding inaccurate retention projections.

  6. Fast, high-sensitivity, multipesticide analysis of complex mixtures with supersonic gas chromatography-mass spectrometry.

    PubMed

    Kochman, Maya; Gordin, Alexander; Goldshlag, Paulina; Lehotay, Steven J; Amnirav, Aviv

    2002-10-18

    We developed a new instrumental approach, termed Supersonic GC-MS, which achieves fast, sensitive, confirmatory and quantitative analysis of a broad range of pesticides in complex agricultural matrices. Our Supersonic GC-MS system is a modification of a bench-top Agilent 6890 GC+5972 MSD with a supersonic molecular beam (SMB) interface and fly-through EI ion source. One of the main advantages of Supersonic GC-MS is an enhanced molecular ion (M+) in the resulting mass spectra. For example, the M+ was observed in all 88 pesticides that we studied using the Supersonic GC-MS whereas only 36 of 63 (57%) pesticides that we investigated in standard GC-MS exhibited a M+. We also found that the degree of matrix interference is exponentially reduced with the fragment mass by about 20-fold per 100 amu increasing mass. The enhancement of the M+ combined with the reduction in matrix background noise permit rapid full scan analysis of a potentially unlimited number of pesticides, unlike selected ion monitoring or MS-MS in which specific conditions are required in segments for targeted pesticides. Furthermore, unlike the case with chemical ionization, EI-SMB-MS spectra still give accurate identification of compounds using common mass spectral libraries. In practice,we found thatlibraries favor mass spectra in which the M+ appears, thus Supersonic GC-MS produced better spectra for compound identification than standard GC-MS. To achieve even lower identification limits, the M+ plus a second major ion (still using full scan data) gives higher signal-to-chemical noise ratios than the traditional 3-ion approach. The replacement of two low-mass ions with the M+ (supersonic two-ions method) results in a significant reduction of matrix interference by a factor of up to 90. Another main advantage of Supersonic GC-MS is its exceptional suitability for fast GC-MS with high carrier gas flow-rate. Fast Supersonic GC-MS was able to analyze thermally labile pesticides, such as carbamates, that

  7. Cluster chemical ionization for improved confidence level in sample identification by gas chromatography/mass spectrometry.

    PubMed

    Fialkov, Alexander B; Amirav, Aviv

    2003-01-01

    Upon the supersonic expansion of helium mixed with vapor from an organic solvent (e.g. methanol), various clusters of the solvent with the sample molecules can be formed. As a result of 70 eV electron ionization of these clusters, cluster chemical ionization (cluster CI) mass spectra are obtained. These spectra are characterized by the combination of EI mass spectra of vibrationally cold molecules in the supersonic molecular beam (cold EI) with CI-like appearance of abundant protonated molecules, together with satellite peaks corresponding to protonated or non-protonated clusters of sample compounds with 1-3 solvent molecules. Like CI, cluster CI preferably occurs for polar compounds with high proton affinity. However, in contrast to conventional CI, for non-polar compounds or those with reduced proton affinity the cluster CI mass spectrum converges to that of cold EI. The appearance of a protonated molecule and its solvent cluster peaks, plus the lack of protonation and cluster satellites for prominent EI fragments, enable the unambiguous identification of the molecular ion. In turn, the insertion of the proper molecular ion into the NIST library search of the cold EI mass spectra eliminates those candidates with incorrect molecular mass and thus significantly increases the confidence level in sample identification. Furthermore, molecular mass identification is of prime importance for the analysis of unknown compounds that are absent in the library. Examples are given with emphasis on the cluster CI analysis of carbamate pesticides, high explosives and unknown samples, to demonstrate the usefulness of Supersonic GC/MS (GC/MS with supersonic molecular beam) in the analysis of these thermally labile compounds. Cluster CI is shown to be a practical ionization method, due to its ease-of-use and fast instrumental conversion between EI and cluster CI, which involves the opening of only one valve located at the make-up gas path. The ease-of-use of cluster CI is analogous

  8. Analysis of sediment-associated insecticides using ultrasound assisted microwave extraction and gas chromatography-mass spectrometry.

    PubMed

    Li, Huizhen; Wei, Yanli; You, Jing; Lydy, Michael J

    2010-11-15

    An ultrasound assisted microwave extraction (UAME) method was developed to simultaneously extract five organophosphate (OP) and eight pyrethroid insecticides from sediment. The optimized UAME conditions were to use 100ml of a mixture of hexane and acetone (1:1, v/v) solution as the extraction solvents, and extraction time, microwave and ultrasonic power settings of 6 min, 100 W and 50 W, respectively. Extracts were cleaned using solid phase extraction and analyzed by gas chromatography-mass spectrometry in negative chemical ionization mode and quantification was based on matrix-matched standard solutions along with internal standard calibration. At the spiked concentrations of 1, 5 and 20 ng/g dry weight (dw), recoveries of OPs were 77.6-122%, 65.2-128% and 75.6-141% with relative standard deviations (RSDs) of 10.6-18.1%, 3.1-12.5% and 8.0-35.3%, respectively, while recoveries of pyrethroids were 78.0-101%, 76.4-104% and 71.0-99.5% with RSDs of 10.3-23.5%, 4.7-17.6% and 8.8-18.7%, respectively. Method detection limits ranged from 0.31 to 0.45 ng/g dw for the OP insecticides and from 0.27 to 0.70 ng/g dw for the pyrethroid insecticides. The newly developed UAME method was validated by comparing it to Soxhlet and sonication extraction methods. Better recoveries were achieved for most OPs by the novel UAME method, whereas there was no significant difference in recoveries for most of the pyrethroids. Finally, the UAME method was used to quantify the target insecticides in field-contaminated sediment samples which were collected in Guangzhou, China. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Cerumen of Australian stingless bees ( Tetragonula carbonaria): gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties

    NASA Astrophysics Data System (ADS)

    Massaro, Flavia Carmelina; Brooks, Peter Richard; Wallace, Helen Margaret; Russell, Fraser Donald

    2011-04-01

    Cerumen, or propolis, is a mixture of plant resins enriched with bee secretions. In Australia, stingless bees are important pollinators that use cerumen for nest construction and possibly for colony's health. While extensive research attests to the therapeutic properties of honeybee ( Apis mellifera) propolis, the biological and medicinal properties of Australian stingless bee cerumen are largely unknown. In this study, the chemical and biological properties of polar extracts of cerumen from Tetragonula carbonaria in South East Queensland, Australia were investigated using gas chromatography-mass spectrometry (GC-MS) analyses and in vitro 5-lipoxygenase (5-LOX) cell-free assays. Extracts were tested against comparative (commercial tincture of A. mellifera propolis) and positive controls (Trolox and gallic acid). Distinct GC-MS fingerprints of a mixed diterpenic profile typical of native bee cerumen were obtained with pimaric acid (6.31 ± 0.97%, w/w), isopimaric acid (12.23 ± 3.03%, w/w), and gallic acid (5.79 ± 0.81%, w/w) tentatively identified as useful chemical markers. Characteristic flavonoids and prenylated phenolics found in honeybee propolis were absent. Cerumen extracts from T. carbonaria inhibited activity of 5-LOX, an enzyme known to catalyse production of proinflammatory mediators (IC50 19.97 ± 2.67 μg/ml, mean ± SEM, n = 4). Extracts had similar potency to Trolox (IC50 12.78 ± 1.82 μg/ml), but were less potent than honeybee propolis (IC50 5.90 ± 0.62 μg/ml) or gallic acid (IC50 5.62 ± 0.35 μg/ml, P < 0.001). These findings warrant further investigation of the ecological and medicinal properties of this stingless bee cerumen, which may herald a commercial potential for the Australian beekeeping industry.

  10. Screening for petrochemical contamination in seafood by headspace solid-phase microextraction gas chromatography-mass spectrometry.

    PubMed

    Bencsath, F Aladar; Benner, Ronald A; Abraham, Ann; Wang, Yuesong; El Said, Kathleen R; Jester, Edward L E; Plakas, Steven M

    2015-05-01

    A headspace solid-phase microextraction gas chromatography-mass spectrometry (SPME GC-MS) method is described, to screen seafood for volatile organic compounds (VOCs) associated with petrochemical taint. VOCs are extracted from the headspace of heated sample homogenates by adsorption onto a SPME fiber and desorbed for analysis by GC-MS. Targeted compounds are determined semi-quantitatively using representative calibration standards for the various classes (alkanes, alkylbenzenes, indanes/tetralins, and naphthalenes) of VOCs analyzed. Sample preparation is minimal, and the analyses are rapid and automated with a capacity of 50 samples per day. The method was optimized in terms of headspace temperature, sample heating time, extraction time, and desorption time using oyster samples fortified with target compounds. Calibrations for hydrocarbon components were linear in the range of 8.3-167 ng/g; the limit of detection ranged between 0.05 and 0.21 ng/g, and the limit of quantitation between 0.16 and 0.69 ng/g. Good precision (RSD < 10 % at 16.7 ng/g for individual VOCs) and accuracy (recovery range 89-118 % at 25 ng/g) were obtained in oyster, crab, shrimp, and finfish matrices. The trueness of the method was demonstrated by quantifying VOCs at 1-2-ppb levels in oyster fortified with certified reference material NIST SRM 1491a. Following single laboratory validation, the method was employed for the determination of VOCs in seafood exposed to oil contaminated seawater and for the determination of background VOC levels in seafood species from the Gulf of Mexico and local food stores. The method as described can be used to supplement human sensory testing for petrochemical taint in seafood.

  11. Hyphenated and comprehensive liquid chromatography × gas chromatography-mass spectrometry for the identification of Mycobacterium tuberculosis.

    PubMed

    Mourão, Marta P B; Denekamp, Ilse; Kuijper, Sjoukje; Kolk, Arend H J; Janssen, Hans-Gerd

    2016-03-25

    Tuberculosis is one of the world's most emerging public health problems, particularly in developing countries. Chromatography based methods have been used to tackle this epidemic by focusing on biomarker detection. Unfortunately, interferences from lipids in the sputum matrix, particularly cholesterol, adversely affect the identification and detection of the marker compounds. The present contribution describes the serial combination of normal phase liquid chromatography (NPLC) with thermally assisted hydrolysis and methylation followed by gas chromatography-mass spectrometry (THM-GC-MS) to overcome the difficulties of biomarker evaluation. The in-series combination consists of an LC analysis where fractions are collected and then transferred to the THM-GC-MS system. This was either done with comprehensive coupling, transferring all the fractions, or with hyphenated interfacing, i.e. off-line multi heart-cutting, transferring only selected fractions. Owing to the high sensitivity and selectivity of LC as a sample pre-treatment method, and to the high specificity of the MS as a detector, this analytical approach, NPLC × THM-GC-MS, is extremely sensitive. The results obtained indicate that this analytical set-up is able to detect down to 1 × 10(3) mycobacteria/mL of Mycobacterium tuberculosis strain 124, spiked in blank sputum samples. It is a powerful analytical tool and also has great potential for full automation. If further studies demonstrate its usefulness when applied blind in real sputum specimens, this technique could compete with the current smear microscopy in the early diagnosis of tuberculosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Rapid quantification of urinary 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid using fast gas chromatography-mass spectrometry.

    PubMed

    Jamerson, Matthew H; Welton, Robert M; Morris-Kukoski, Cynthia L; Klette, Kevin L

    2005-10-01

    Human urine specimens that were determined to be presumptively positive for metabolites of delta9-tetrahydrocannabinol by immunoassay screening were assayed using a novel fast gas chromatography-mass spectrometry (FGC-MS) analytical method to determine whether this method would improve the efficiency of specimen processing without diminishing the reliability of metabolite identification and quantification. Urine specimens were spiked with deuterated internal standard, subjected to solid-phase extraction, and derivatized using tetramethylammonium hydroxide and iodomethane. The methyl ester/methyl ether derivatives were identified and quantified using both a traditional GC-MS method and the newly developed FGC-MS method. The FGC-MS method was demonstrated to be linear between 3.8 and 1500 ng/mL 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (11-nor-delta-THC-COOH). The intrarun precision of 15 replicates of a 15 ng/mL control and the interrun precision of 161 sets of 7, 15, and 60 ng/mL controls were acceptable (coefficients of variation < 5.5%). The FGC-MS method was demonstrated to be specific for identifying 11-nor-delta9-THC-COOH and none of 43 tested substances interfered with identification and quantification of 11-nor-delta9-THC-COOH. Excellent data concordance (R2 > 0.993) was found for two specimen sets assayed using both methods. The FGC-MS method, when compared with a traditional GC-MS method, reduces total assay time by approximately 40% with no decrease in data quality.

  13. Analysis of halonitriles in drinking water using solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Kristiana, Ina; Joll, Cynthia; Heitz, Anna

    2012-02-17

    Halonitriles are a class of nitrogen-containing disinfection by-products (DBPs) that have been reported to be more toxic and carcinogenic than the regulated DBPs. While haloacetonitriles (HANs) are often measured in drinking waters, there is little information on the formation, characteristics, and occurrence of other, higher molecular weight halonitriles. Halopropionitriles and halobutyronitriles have been predicted to be highly toxic and carcinogenic, and may have sufficient potency and selectivity to account for epidemiological associations of chlorinated and chloraminated water with adverse health effects. This paper reports on the development, optimisation, and validation of a simple, robust, and sensitive analytical method for the determination of halonitriles in waters, as well as the application of the method to study the formation and characteristics of halonitriles. This is the first reported method development for analysis halopropionitriles and halobutyronitriles, and the first study on their formation and occurrence as DBPs in drinking waters. The new method uses headspace solid-phase microextraction to extract the halonitriles from water, which are then analysed using gas chromatography-mass spectrometry (HS SPME/GC-S). The method demonstrated good sensitivity (detection limits: 0.9-80 ng L⁻¹) and good precision (repeatability: 3.8-12%), and is linear over three orders of magnitude. Matrix effects from raw drinking water containing organic carbon (4.1 mg L⁻¹) were shown to be negligible in the analysis of halonitriles. The optimised method was used to study the stability and persistence of halonitriles in aqueous samples, and the formation and occurrence of halonitriles in waters. Results from laboratory-scale disinfection experiments showed that haloacetonitriles were formed in chlorinated and chloraminated samples, but 2,2-dichloropropionitrile was only measured in chloraminated samples. Results from surveys of several drinking water

  14. A simple and reliable procedure for the determination of psychoactive drugs in oral fluid by gas chromatography-mass spectrometry.

    PubMed

    Pujadas, Mitona; Pichini, Simona; Civit, Ester; Santamariña, Elena; Perez, Katherine; de la Torre, Rafael

    2007-06-28

    A simple and reliable gas chromatography-mass spectrometry method for identifying and quantifying psychoactive drugs in oral fluid is described. Substances under investigation were: psychostimulant drugs (amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxiamphetamine, 3,4-methylenedioxy-N-ethylamphetamine, phentermine), cocaine and metabolites (benzoylecgonine, cocaethylene, and ecgonine methyl esther), cannabinoids (delta-9-tetrahydrocannabinol, 11-nor-9-carboxy-delta-9-tetrahydrocannabinol, 11-hydroxy-delta-9-tetrahydrocannabinol, cannabinol and cannabidiol), opiates (6-monoacetylmorphine, morphine and codeine), hypnotics (flurazepam, flunitrazepam, dipotassium chlorazepate, alprazolam, diazepam and oxazepam), antidepressant drugs (amitryptiline, paroxetine and sertraline), antipsychotic drugs (haloperidol, chlorpromazine and fluphenazine) chlormethiazole, loratidine, hydroxyzine, diphenhydramine, valproic acid and gabapentin. After the addition of deuterated analogues of morphine, 3,4-methylenedioxymethamphetamine, (+/-)-11-nor-9-carboxy-delta-9-tetrahydrocannabinol and clonazepam as internal standards, all the compounds were simultaneously extracted from oral fluid by solid-phase extraction procedure. Acid compounds were eluted with acetone while basic and neutral compounds with dichloromethane:isopropanol:ammonium (80:20:2, v/v/v). Chromatography was performed on a methylsilicone capillary column and analytes, derivatized with N-Methyl-N-(trimethylsilyl)trifluoroacetamide, were determined in the selected-ion-monitoring (SIM) mode. Mean recovery ranged between 44.5 and 97.7 % and quantification limit between 0.9 and 44.2 ng/ml oral fluid for the different analytes. The developed analytical methodology was applied to investigate the presence of psychoactive drugs in oral fluid from injured individuals attending the emergency room (MACIUS project).

  15. A metabolomics study of cultivated potato (Solanum tuberosum) groups Andigena, Phureja, Stenotomum, and tuberosum using gas chromatography-mass spectrometry.

    PubMed

    Dobson, Gary; Shepherd, Tom; Verrall, Susan R; Griffiths, Wynne D; Ramsay, Gavin; McNicol, James W; Davies, Howard V; Stewart, Derek

    2010-01-27

    Phytochemical diversity was examined by gas chromatography-mass spectrometry in tubers of genotypes belonging to groups Andigena, Phureja, Stenotomum, and Tuberosum of the potato, Solanum tuberosum. Polar extracts (mainly amino acids, organic acids, sugars, and sugar alcohols) and nonpolar extracts (mainly fatty acids, fatty alcohols, and sterols) were examined. There was a large range in levels of metabolites, including those such as asparagine, fructose, and glucose, that are important to tuber quality, offering considerable scope for selecting germplasm for breeding programmes. There were significant differences in the levels of many metabolites among the groups. The metabolite profiles of genotypes belonging to Phureja and Stenotomum were similar and different from those of Tuberosum and the majority of Andigena genotypes. There was some agreement with the phylogeny of the groups in that Stenotomum is believed to be the ancestor of Phureja and they are both distinct from Tuberosum. Andigena genotypes could be partially distinguished according to geographical origin, Bolivian genotypes being particularly distinct from those from Ecuador. Biosynthetic links between metabolites were explored by performing pairwise correlations of all metabolites. The significance of some expected and unexpected strong correlations between many amino acids (e.g., between isoleucine, lysine, valine, and other amino acids) and between several nonpolar metabolites (e.g., between many fatty acids) is discussed. For polar metabolites, correlation analysis gave essentially similar results irrespective of whether the whole data set, only Andigena genotypes, or only Phureja genotypes were used. In contrast, for the nonpolar metabolites, Andigena only and Phureja only data sets resulted in weaker and stronger correlations, respectively, compared to the whole data set, and may suggest differences in the biochemistry of the two groups, although the interpretation should be viewed with some

  16. Development of a thermal desorption-gas chromatography-mass spectrometry method for determining personal care products in air.

    PubMed

    Ramírez, Noelia; Marcé, Rosa Maria; Borrull, Francesc

    2010-06-25

    This study describes the development of a new analytical method for determining 14 personal care products (PCPs) - nine synthetic musks, four parabens and one insect repellent - in air samples. The method is based on active sampling on sorbent tubes and thermal desorption-gas chromatography-mass spectrometry analysis, and is rapid, sensitive and drastically reduces the risk of sample contamination. Three kinds of tubes and traps were tested, those filled with Tenax TA being the most suitable for this study. Method validation showed good repeatability and reproducibility, low detection limits (between 0.03 ng m(-3) for DPMI and 12.5 ng m(-3) for propyl paraben) and good linearity for all compounds. Stability during storage indicated that samples must be kept refrigerated at 4 degrees C and analysed within 1 week of collection. The applicability of the technique to real samples was tested in different indoor and outdoor atmospheres. The total PCP values for indoor air ranged from 135 ng m(-3) in a pharmacy to 2838 ng m(-3) in a hairdresser's, whereas the values for outdoor air ranged from 14 ng m(-3) for a suburban environment to 26 ng m(-3) for an urban environment. In general, the most abundant synthetic musks were galaxolide (5.9-1256 ng m(-3)), musk xylene (1.6-766 ng m(-3)) and tonalide (1.1-138 ng m(-3)). Methyl and ethyl paraben (2.4-313 ng m(-3) and 1.8-117 ng m(-3), respectively) were the most abundant parabens. Although thermal desorption methods have been widely used for determining volatile organic compounds, they are rarely used with semi-volatile compounds. This study thus demonstrates that the thermal desorption method performs well with semi-volatile compounds and, for the first time, that it can be used for determining PCPs.

  17. Fuzzy C-means clustering for chromatographic fingerprints analysis: A gas chromatography-mass spectrometry case study.

    PubMed

    Parastar, Hadi; Bazrafshan, Alisina

    2016-03-18

    Fuzzy C-means clustering (FCM) is proposed as a promising method for the clustering of chromatographic fingerprints of complex samples, such as essential oils. As an example, secondary metabolites of 14 citrus leaves samples are extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The obtained chromatographic fingerprints are divided to desired number of chromatographic regions. Owing to the fact that chromatographic problems, such as elution time shift and peak overlap can significantly affect the clustering results, therefore, each chromatographic region is analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) to address these problems. Then, the resolved elution profiles are used to make a new data matrix based on peak areas of pure components to cluster by FCM. The FCM clustering parameters (i.e., fuzziness coefficient and number of cluster) are optimized by two different methods of partial least squares (PLS) as a conventional method and minimization of FCM objective function as our new idea. The results showed that minimization of FCM objective function is an easier and better way to optimize FCM clustering parameters. Then, the optimized FCM clustering algorithm is used to cluster samples and variables to figure out the similarities and dissimilarities among samples and to find discriminant secondary metabolites in each cluster (chemotype). Finally, the FCM clustering results are compared with those of principal component analysis (PCA), hierarchical cluster analysis (HCA) and Kohonon maps. The results confirmed the outperformance of FCM over the frequently used clustering algorithms. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Akyüz, Mehmet

    2008-05-01

    A gas chromatography-mass spectrometry (GC-MS) method has been proposed for the simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters (PMs). The method includes collection of the particulate matters (PM2.5 and PM10) using dichotomous Partisol 2025 sampler followed by extraction of the compounds into acidic solution, and pre-concentration of the compounds by percolating the air samples through the acidic solution, then ion-pair extraction of amines with bis-2-ethylhexylphosphate and derivatisation with isobutyl chloroformate prior to their GC-MS analysis in both electron impact and positive and negative ion chemical ionisation mode as their isobutyloxycarbonyl (isoBOC) derivatives. In the present study, ambient air and airborne particulate samples collected in Zonguldak province during summer and winter times of 2006-2007 were analysed for aliphatic and aromatic amines by the proposed method and the method was shown to be suitable for the simultaneous determination of these compounds at the levels of pg m-3 in air and airborne particulate samples. The seasonal distributions of bioactive amines in concentrations in ambient air and airborne PMs were evaluated as they are significant for the estimation of their effects on the environment and human health. The concentration levels of water soluble amines fluctuate significantly within a year with higher means and peak concentrations, probably due to the increased emissions from coal-fired domestic and central heating, in the winter times compared to the summer times. The results indicated that the relative amine content in particulates modulates with molecular mass and time of the year and the relative amine content especially in fine fractions of inhalable airborne particulates increases with the molecular mass of species but decreases with temperature.

  19. Determination of aromatic hydrocarbons in asphalt release agents using headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Tang, Bing; Isacsson, Ulf

    2005-04-01

    The possibility of quantitative analysis of aromatic hydrocarbons in oil-based asphalt release agents was investigated using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS). The target analytes studied were benzene, toluene, ethylbenzene, p-, m-, and o-xylene (BTEX) and 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. Experimental parameters influencing HS-SPME efficiency were studied (equilibration time between sample and headspace and between headspace and SPME fiber, sample amount and sample matrice effects). A HS-SPME method using hexadecane as a surrogate matrice was developed. The detection limit was estimated as 0.03-0.08 ppm (w/w) for the target analytes investigated. Good linearity was observed (R2 > 0.999) for all calibration curves at high, medium and low concentration level. The repeatability of the method (RSD, relative standard deviation) was found to be less than 10% (generally less than 5%) in triplicate samples and approximately 2% at eight consecutive tests on one and the same sample. The accuracy of the method given by recovery of spiked samples was between 85 and 106% (generally between 95 and 105%). The HS-SPME method developed was applied to four commercially available asphalt release agents. External calibration and standard addition approaches were investigated regarding accuracy. The results showed that standard addition generates higher accuracy than external calibration. The contents of target aromatic hydrocarbons in the asphalt release agents studied varied greatly from approximately 0.1-700 ppm. The method described looks promising, and could be a valuable tool for determination of aromatic hydrocarbons in different types of organic matrices.

  20. Improved ultrasonic-based sample treatment for the screening of anabolic steroids by gas chromatography/mass spectrometry.

    PubMed

    Galesio, M; Rial-Otero, R; Simal-Gándara, J; de la Torre, X; Botrè, F; Capelo-Martínez, J L

    2010-08-30

    A rapid sample treatment procedure for the gas chromatography/mass spectrometry (GC/MS) determination of anabolic steroids in human urine has been developed. The new procedure makes use of ultrasonic energy to reduce reaction times and increase the overall sensitivity. The following variables affecting the performance of the ultrasonic treatment were optimised: (i) time, (ii) device, (iii) frequency, and (iv) temperature. It was found that, under an ultrasonic field, the hydrolysis of conjugated steroids with beta-glucuronidase from Escherichia coli K12 was possible with a treatment time of 10 min. The accuracy and precision of the ultrasonic method were found to be in agreement with those achieved with the conventional thermal conductivity procedure (Student's t-test; p = 0.05, n = 10). After the enzymatic hydrolysis, the derivatisation of the target compounds with trimethylsilyl (TMS) reagent, methyl-N-trimethylsilyltrifluoroacetamide (MSTFA)/NH(4)I/dithioerythritol (DTE) (1000:2:4, v/w/w), was also accelerated using ultrasonic energy. In order to test the applicability of the use of ultrasonic energy in the acceleration of the derivatisation reaction with TMS, the classic method of thermal conductivity was applied for comparative purposes to a pool of 35 androgenic anabolic steroids (AAS) and/or their metabolites. The results demonstrated that after 3 min of sonication in a Sonoreactor device (50% amplitude), 19 of the 35 compounds studied showed similar reaction yield to those obtained with the classic procedure requiring 30 min (Student's t-test; p = 0.05, n = 5); 13 increased to higher silylation yields; and for the steroids 1-testosterone, danazol and etiocholanolone-D5, the same results were obtained using a sonication time of 5 min.The overall applicability of the ultrasonic-based sample treatment method is shown by the analysis of five urine samples. The results are similar to those achieved by the routine procedure. The new method is fast, robust, and

  1. Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy.

    PubMed

    Watson, Jonathan S; Sephton, Mark A; Sephton, Sarah V; Self, Stephen; Fraser, Wesley T; Lomax, Barry H; Gilmour, Iain; Wellman, Charles H; Beerling, David J

    2007-06-01

    Spore chemistry is at the centre of investigations aimed at producing a proxy record of harmful ultraviolet radiation (UV-B) through time. A biochemical proxy is essential owing to an absence of long-term (century or more) instrumental records. Spore cell material contains UV-B absorbing compounds that appear to be synthesised in variable amounts dependent on the ambient UV-B flux. To facilitate these investigations we have developed a rapid method for detecting variations in spore chemistry using combined thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy. Our method was tested using spores obtained from five populations of the tropical lycopsid Lycopodium cernuum growing across an altitudinal gradient (650-1981 m a.s.l.) in S.E. Asia with the assumption that they experienced a range of UV-B radiation doses. Thermochemolysis and subsequent pyrolysis liberated UV-B pigments (ferulic and para-coumaric acid) from the spores. All of the aromatic compounds liberated from spores by thermochemolysis and pyrolysis were active in UV-B protection. The various functional groups associated with UV-B protecting pigments were rapidly detected by micro-FTIR and included the aromatic C[double bond, length as m-dash]C absorption band which was exclusive to the pigments. We show increases in micro-FTIR aromatic absorption (1510 cm(-1)) with altitude that may reflect a chemical response to higher UV-B flux. Our results indicate that rapid chemical analyses of historical spore samples could provide a record ideally suited to investigations of a proxy for stratospheric O3 layer variability and UV-B flux over historical (century to millennia) timescales.

  2. Sorption-desorption behavior of phenanthrene elucidated by pyrolysis-gas chromatography-mass spectrometry studies of soil organic matter

    SciTech Connect

    Schultz, L.F.; Young, T.M.; Higashi, R.M.

    1999-08-01

    Commonly used partitioning models of hydrophobic organic contaminant sorption in soil, which treat all soil organic matter (SOM) as having identical structure, are unable to explain differences in organic carbon-normalized sorption coefficients (K{sub OC}) among sorbents, isotherm nonlinearity, and sorption-desorption hysteresis. This study relates one index of SOM composition, structural fragments quantified by pyrolysis-gas chromatography-mass spectrometry, to aqueous and supercritical carbon dioxide (SC CO{sub 2}) sorption-desorption parameters. Results show positive correlations between aqueous K{sub OC}s and hydrocarbon fragment peak areas and negative correlation to N- and O-containing peaks, which is consistent with hypotheses attributing sorption of phenanthrene to hydrophobic sorbent domains. Positive correlation between Freundlich n values in SC CO{sub 2} and hydrocarbon fragments with negative correlation to N- and O-containing fragments suggests that energetic heterogeneity of polar environments controls nonlinearity in this solvent of limited polarity. Aqueous sorption-desorption hysteresis appears to be suppressed by N- and O-containing moieties and correlates with decreased thermal desorption of phenanthrene at 800 C. The SC CO{sub 2} extraction efficiency and, to a lesser degree, the desorption response when methanol is added as a cosolvent indicate that polar functional groups play a role in retarding phenanthrene desorption during SC CO{sub 2} extraction. Organic matter pyrolysis under varying time and temperature conditions indicates that pyrolysis fragments that do not significantly correlated with functional trends likely evolve by a different pyrolytic mechanism and are generally poorly correlated with sorption-desorption properties. The level of structural detail utilized in structure-function correlations in this work exceeds previous efforts to relate sorption behavior to sorbent structure. However, the work reveals that certain sorption

  3. Accelerated solvent extraction method for the quantification of polycyclic aromatic hydrocarbons in cocoa beans by gas chromatography-mass spectrometry.

    PubMed

    Belo, Renata França Cassimiro; Figueiredo, Júlia Pereira; Nunes, Carolina Mariana; Pissinatti, Rafael; Souza, Scheilla Vitorino Carvalho de; Junqueira, Roberto Gonçalves

    2017-05-15

    An accelerated solvent extraction (ASE) procedure for use with gas chromatography-mass spectrometry (GC-MS) was optimized for the determination of eight polycyclic aromatic hydrocarbons (PAHs) in cocoa beans. Plackett-Burman and rotatable central composite design (RCCD) indicated that three variables affected the recoveries of PAHs during the extraction and purification steps: agitation time in the second liquid-liquid partition, weight of silica gel in the column, and volume of hexane for PAH elution from the column. After obtaining the optimal conditions, a single laboratory method validation was performed. Linearity was demonstrated for benzo[a]pyrene in the concentration range from 0.5 to 8.0mgkg(-1) of sample, corresponding to 1.25-20.0μgkg(-1) of cocoa on a fat basis. For the other analytes, linearity was observed from 0.75 to 8.0μgkg(-1) of sample (1.88-20.0μgkg(-1) of cocoa on a fat basis). Significant matrix effects were found for chrysene and benzo[b]fluoranthene. The precision of the method was verified with relative standard deviations (RSDs) ranging from 2.57 to 14.13% and from 4.36 to 19.77% under repeatability and intermediate precision conditions, respectively. The average recoveries of the eight PAHs ranged from 74.99 to 109.73%. These parameters, limits and measurement uncertainties met the performance criteria established by European Union regulations, except for the theoretical limit of detection for chrysene. The method was applied to the analysis of samples of Brazilian cocoa beans, and only one sample was found to have a PAH content above the maximum limit defined by the European Union legislation. This optimized and validated method is intended to be used as part of the official Brazilian monitoring programs investigating contaminants and residues in food. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Accurate analysis of trace earthy-musty odorants in water by headspace solid phase microextraction gas chromatography-mass spectrometry.

    PubMed

    Ma, Kang; Zhang, Jin Na; Zhao, Min; He, Ya Juan

    2012-06-01

    A simple and sensitive method was developed for the simultaneous separation and determination of trace earthy-musty compounds including geosmin, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, and 2,3,6-trichloroanisole in water samples. This method combined headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry and used naphthalene-d(8) as internal standard. A divinylbenzene/carboxen/polydimethylsiloxane fiber exposing at 90°C for 30 min provided effective sample enrichment in HS-SPME. These compounds were separated by a DB-1701MS capillary column and detected in selected ion monitoring mode within 12 min. The method showed a good linearity from 1 to 100 ng L(-1) and detection limits within (0.25-0.61 ng L(-1)) for all compounds. Using naphthalene-d(8) as the internal standard, the intra-day relative standard deviation (RSD) was within (2.6-3.4%), while the inter-day RSD was (3.5-4.9%). Good recoveries were obtained for tap water (80.5-90.6%), river water (81.5-92.4%), and lake water (83.5-95.2%) spiked at 10 ng L(-1). Compared with other methods using HS-SPME for determination of odor compounds in water samples, this present method had more analytes, better precision, and recovery. This method was successfully applied for analysis of earthy-musty odors in water samples from different sources. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cerumen of Australian stingless bees (Tetragonula carbonaria): gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties.

    PubMed

    Massaro, Flavia Carmelina; Brooks, Peter Richard; Wallace, Helen Margaret; Russell, Fraser Donald

    2011-04-01

    Cerumen, or propolis, is a mixture of plant resins enriched with bee secretions. In Australia, stingless bees are important pollinators that use cerumen for nest construction and possibly for colony's health. While extensive research attests to the therapeutic properties of honeybee (Apis mellifera) propolis, the biological and medicinal properties of Australian stingless bee cerumen are largely unknown. In this study, the chemical and biological properties of polar extracts of cerumen from Tetragonula carbonaria in South East Queensland, Australia were investigated using gas chromatography-mass spectrometry (GC-MS) analyses and in vitro 5-lipoxygenase (5-LOX) cell-free assays. Extracts were tested against comparative (commercial tincture of A. mellifera propolis) and positive controls (Trolox and gallic acid). Distinct GC-MS fingerprints of a mixed diterpenic profile typical of native bee cerumen were obtained with pimaric acid (6.31 ± 0.97%, w/w), isopimaric acid (12.23 ± 3.03%, w/w), and gallic acid (5.79 ± 0.81%, w/w) tentatively identified as useful chemical markers. Characteristic flavonoids and prenylated phenolics found in honeybee propolis were absent. Cerumen extracts from T. carbonaria inhibited activity of 5-LOX, an enzyme known to catalyse production of proinflammatory mediators (IC₅₀ 19.97 ± 2.67 μg/ml, mean ± SEM, n = 4). Extracts had similar potency to Trolox (IC₅₀ 12.78 ± 1.82 μg/ml), but were less potent than honeybee propolis (IC₅₀ 5.90 ± 0.62 g/ml) or gallic acid (IC₅₀ 5.62 ± 0.35 μg/ml, P < 0.001). These findings warrant further investigation of the ecological and medicinal properties of this stingless bee cerumen, which may herald a commercial potential for the Australian beekeeping industry.

  6. Selective pressurized liquid extraction of estrogenic compounds in soil and analysis by gas chromatography-mass spectrometry.

    PubMed

    Zhang, Zulin; Rhind, Stewart M; Kerr, Christine; Osprey, Mark; Kyle, Carol E

    2011-01-24

    A selective pressurized liquid extraction (SPLE) method, followed by gas chromatography-mass spectrometry (GC-MS), for the simultaneous extraction and clean-up of estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), estriol (E3) and bisphenol A (BPA) from soil samples is described. The on-line clean-up of soil by SPLE was achieved using different organic matter retainers, including silica, alumina and Florisil, the most effective being silica. Thus, different amounts of silica, in conjunction with different extraction solvents (acetone, ethyl acetate, isohexane and dichloromethane), either alone or in combination, were used to extract the target chemicals from spiked soil samples. It was shown that 3g silica resulted in satisfactory rates of recovery of target compounds and acetone:dichloromethane (1:3, v/v) was efficient in extracting and eluting estrogenic compounds for SPLE. Variables affecting the SPLE efficiency, including temperature and pressure were studied; the optimum parameters were 60°C and 1500 psi, respectively. The limits of detection (LODs) of the proposed method were 0.02-0.37 ng g(-1) for the different estrogenic chemicals studied. The outputs using the proposed method were linear over the range from 0.1 to 120 ng g(-1) for E1, E2, EE2, 0.2-120 ng g(-1) for E3, and 0.5-120 ng g(-1) for BPA. The optimized method was further verified by performing spiking experiments in natural soil matrices; good rates of recovery and reproducibility were achieved for all selected compounds and the method was successfully applied to soil samples from Northeast Scotland, for the determination of the target compounds.

  7. Determination of alkyl amines in atmospheric aerosol particles: a comparison of gas chromatography-mass spectrometry and ion chromatography approaches

    NASA Astrophysics Data System (ADS)

    Huang, R.-J.; Li, W.-B.; Wang, Y.-R.; Wang, Q. Y.; Ho, K.-F.; Cao, J. J.; Wang, G. H.; Chen, X.; Haddad, I. EI; Zhuang, Z. X.; Wang, X. R.; Prévôt, A. S. H.; O'Dowd, C. D.; Hoffmann, T.

    2014-03-01

    In recent years low molecular weight alkyl amines have been recognized to play an important role in particle formation and growth in the lower atmosphere. However, major uncertainties are associated with their atmospheric processes, sources and sinks, mostly due to the lack of ambient measurements and the difficulties in accurate quantification of alkyl amines at trace level. In this study, we present the evaluation and optimization of two analytical approaches, i.e., gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC), for the determination of alkyl amines in aerosol particles. Alkyl amines were converted to carbamates through derivatization with isobutyl chloroformate for GC-MS determination. A set of parameters affecting the analytical performances of the GC-MS approach, including reagent amount, reaction time and pH value, was evaluated and optimized. The accuracy is 84.3-99.1%, and the limits of detection obtained are 1.8-3.9 pg. For the IC approach, a solid phase extraction (SPE) column was used to separate alkyl amines from interfering cations before IC analysis. 1-2% (v/v) of acetone (or 2-4% (v/v) of acetonitrile) was added to the eluent to improve the separation of alkyl amines on the IC column. The limits of detection obtained are 2.1-15.9 ng and the accuracy is 55.1-103.4%. The lower accuracy can be attributed to evaporation losses of amines during the sample concentration procedure. Measurements of ambient aerosol particle samples collected in Hong Kong show that the GC-MS approach is superior to the IC approach for the quantification of primary and secondary alkyl amines due to its lower detection limits and higher accuracy.

  8. Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatography-mass spectrometry and ion chromatography approaches

    NASA Astrophysics Data System (ADS)

    Huang, R.-J.; Li, W.-B.; Wang, Y.-R.; Wang, Q. Y.; Jia, W. T.; Ho, K.-F.; Cao, J. J.; Wang, G. H.; Chen, X.; Haddad, I. EI; Zhuang, Z. X.; Wang, X. R.; Prévôt, A. S. H.; O'Dowd, C. D.; Hoffmann, T.

    2014-07-01

    In recent years low molecular weight alkylamines have been recognized to play an important role in particle formation and growth in the lower atmosphere. However, major uncertainties are associated with their atmospheric processes, sources and sinks, mostly due to the lack of ambient measurements and the difficulties in accurate quantification of alkylamines at trace level. In this study, we present the evaluation and optimization of two analytical approaches, i.e., gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC), for the determination of alkylamines in aerosol particles. Alkylamines were converted to carbamates through derivatization with isobutyl chloroformate for GC-MS determination. A set of parameters affecting the analytical performances of the GC-MS approach, including reagent amount, reaction time and pH value, was evaluated and optimized. The accuracy is 84.3-99.1%, and the limits of detection obtained are 1.8-3.9 pg (or 0.02-0.04 ng m-3). For the IC approach, a solid-phase extraction (SPE) column was used to separate alkylamines from interfering cations before IC analysis. 1-2% (v/v) of acetone (or 2-4% (v/v) of acetonitrile) was added to the eluent to improve the separation of alkylamines on the IC column. The limits of detection obtained are 2.1-15.9 ng (or 0.9-6.4 ng m-3), and the accuracy is 55.1-103.4%. The lower accuracy can be attributed to evaporation losses of amines during the sample concentration procedure. Measurements of ambient aerosol particle samples collected in Hong Kong show that the GC-MS approach is superior to the IC approach for the quantification of primary and secondary alkylamines due to its lower detection limits and higher accuracy.

  9. Non-invasive ethylene quantification in attached fruit headspace at 1 ppb by gas chromatography - mass spectrometry.

    PubMed

    Pereira, Lara; Pujol, Marta; Garcia-Mas, Jordi; Phillips, Michael A

    2017-03-28

    Ethylene is a gaseous plant hormone involved in defense, adaptations to environmental stress, and fruit ripening. Its relevance to the latter makes its detection highly useful to physiologists interested in ripening onset. Produced as a sharp peak during the respiratory burst, ethylene is biologically active at tens of nL·L(-1) . Reliable quantification at such concentrations generally requires specialized instrumentation. Here we present a rapid, high sensitivity method for detecting ethylene in attached fruit using a conventional gas chromatography - mass spectrometry (GC-MS) system and in situ headspace collection chambers. We apply this method to melon (Cucumis melo L.), a unique species consisting of climacteric and non-climacteric varieties, with a high variation in the climacteric phenotype among climacteric types. Using a population of recombinant inbred lines (RILs) derived from highly climacteric ("Védrantais", cantalupensis type) and non-climacteric ("Piel de sapo", inodorus type) parental lines, we observed a significant variation for the intensity, onset, and duration of the ethylene burst during fruit ripening. Our method does not require concentration, sampling times over 1 h, or fruit harvest. We achieved a limit of detection of 0.41 ± 0.04 nL·L(-1) and a limit of quantification of 1.37 ± 0.13 nL·L(-1) with an analysis time of 2.6 min per sample. Validation of the analytical method indicated that linearity (>98%), precision (CV ≤ 2%), and sensitivity compared favorably with dedicated optical sensors. This study adds to evidence of the characteristic climacteric ethylene burst as a complex trait whose intensity in our RIL population lies along a continuum in addition to two extremes. This article is protected by copyright. All rights reserved.

  10. Comparison of four extraction methods for the determination of fungicide residues in grapes through gas chromatography-mass spectrometry.

    PubMed

    Lagunas-Allué, L; Sanz-Asensio, J; Martínez-Soria, M T

    2012-12-28

    Four different methods for simultaneous extraction of vinclozolin, dichlofluanid, penconazole, captan, quinoxyfen, fluquinconazol, boscalid and pyraclostrobin from grapes were optimized and further tested. Microwave assisted extraction (MAE), matrix solid-phase dispersion (MSPD), solid-liquid extraction (SLE) and QuEChERS were compared in terms of their limits of detection and quantification and recoveries. For MAE, MSPD and ethyl acetate extraction, the optimal conditions were optimized by using experimental designs. The analysis was performed using gas chromatography-mass spectrometry in the selected ion monitoring mode (GC-MS, SIM). The proposed methods showed good sensitivity, limits of quantification were lower than MRLs and precision (expressed as relative standard deviation) ranged from 2.9 to 11.1%. The recoveries obtained from MAE, MSPD, SLE and QuEChERS were in the range 78-100%, 66-102%, 58-88% and 68-96%, respectively. In addition, the four methods were compared in two ways: by means of calibration curves obtained with 10 fortified samples in the studied range of concentrations and by the application of statistical tests such as Levene's test (to study variance homogeneity), ANOVA and Tukey's test (in case of Levene's test was satisfactory) for the assessment of the information obtained in the analysis of real samples. Both ways of comparison led to the same results: no differences between the four methods for the extraction of vinclozolin, dichofluanid, quinoxyfen, fluquinconazol and pyraclostrobin were found. However, there were differences for the analysis of captan, boscalid and penconazole. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Estimation of D-Arabinose by Gas Chromatography/Mass Spectrometry as Surrogate for Mycobacterial Lipoarabinomannan in Human Urine

    PubMed Central

    De, Prithwiraj; Amin, Anita G.; Valli, Eloise; Perkins, Mark D.; McNeil, Michael; Chatterjee, Delphi

    2015-01-01

    Globally, tuberculosis is slowly declining each year and it is estimated that 37 million lives were saved between 2000 and 2013 through effective diagnosis and treatment. Currently, diagnosis relies on demonstration of the bacteria, Mycobacterium tuberculosis (Mtb), in clinical specimens by serial sputum microscopy, culture and molecular testing. Commercial immunoassay lateral flow kits developed to detect Mtb lipoglycan lipoarabinomannan (LAM) in urine as a marker of active TB exhibit poor sensitivity, especially in immunocompetent individuals, perhaps due to low abundance of the analyte. Our present study was designed to develop methods to validate the presence of LAM in a quantitative fashion in human urine samples obtained from culture-confirmed TB patients. Herein we describe, a consolidated approach for isolating LAM from the urine and quantifying D-arabinose as a proxy for LAM, using Gas Chromatography/Mass Spectrometry. 298 urine samples obtained from a repository were rigorously analyzed and shown to contain varying amounts of LAM-equivalent ranging between ~10–40 ng/mL. To further substantiate that D-arabinose detected in the samples originated from LAM, tuberculostearic acid, the unique 10-methyloctadecanoic acid present at the phosphatidylinositol end of LAM was also analyzed in a set of samples and found to be present confirming that the D-arabinose was indeed derived from LAM. Among the 144 samples from culture-negative TB suspects, 30 showed presence of D-arabinose suggesting another source of the analyte, such as disseminated TB or from non-tuberculosis mycobacterium. Our work validates that LAM is present in the urine samples of culture-positive patients in small but readily detectable amounts. The study further substantiates LAM in urine as a powerful biomarker for active tuberculosis. PMID:26633829

  12. Extraction and identification of bioactive components in Sida cordata (Burm.f.) using gas chromatography-mass spectrometry.

    PubMed

    Ganesh, Mani; Mohankumar, Murugan

    2017-09-01

    Sida cordata (Burm.f.) is a pineal tropical plant in the family Malvaceae that is found throughout India and used to treat various diseases and ailments in many complementary and alternative medicine systems. This study identified the bioactive components present in whole-plant ethanol extracts of S. cordata using gas chromatography-mass spectrometry (GC-MS). Based on their retention times (RT) and mass-to-charge ratios (m/z), 29 bioactive compounds were identified: nonanoic acid, vitamin D3, 3-trifluroacetoxypentadecane, α-d-glucopyranoside, O-α-d-glucopyranosyl-(1.fwdarw.3)-α-d-fructofuranosyl,3,7,11,15-tetramethyl-2-hexadecan-1-ol, octadecanoic acid, ethyl ester, phytol, 9,12-octadecadienoic acid, methyl ester (E,E), 9,12,15-octadecadienoic acid, methyl ester (Z,Z,Z), oleic acid, 1,2-15,16-diepoxyhexadecane, 3-hexadecyloxycarbonyl-5-(2-hydroxyethyl)-4-methylimidazolium ion, methoxyacetic acid, 4-tetradecyl ester, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-iodo-2-methylundecane, dodecane, 2,6,10-trimethyl-, 2-piperidinone-N-[4-bromo-n-butyl]-, squalene, octadecane-1-(ethenyloxy)-, Z,Z-2,5-pentadecadien-1-ol, 1-hexadecanol, 2-methyl-, spiro[androst-5ene-17,1'-cyclobutan]-2'-one-3-hydroxy-, (3a,17a)-, diethylene glycol monododecyl ether, vitamin E, cholestan-3-ol, 2-methylene-, (3a,5a)-, 2H-pyran, 2-(7-heptadecynyloxy)tetrahydro-, and cis-Z-α-bisabolene epoxide. The presence of various bioactive compounds justifies the use of this plant for treating various ailments by traditional practitioners.

  13. Development and validation of a gas chromatography/mass spectrometry method for the assessment of genomic DNA methylation.

    PubMed

    Rossella, Federica; Polledri, Elisa; Bollati, Valentina; Baccarelli, Andrea; Fustinoni, Silvia

    2009-09-01

    A method for the determination of DNA global methylation, taken as the ratio (%) of 5-methylcytosine (5mCyt) versus the sum of cytosine (Cyt) and 5mCyt, via gas chromatography/mass spectrometry (GC/MS), was developed and validated. DNA (2.5 microg) was hydrolyzed with aqueous formic acid 88%, spiked with cytosine-2,4-(13)C(2),(15)N(3) and 5-methyl-(2)H(3)-cytosine-6-(2)H(1) as internal standards, and derivatized with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide and 1% tert-butyldimethylchlorosilane, in the presence of acetonitrile and pyridine. GC/MS, operating in single ion monitoring mode, separated and specifically detected all nucleobases as tert-butyldimethylsilyl derivatives, without interferences, with the exception of guanosine. The method was linear throughout the range of clinical interest and had good sensitivity, with a limit of quantification of 3.2 pmol for Cyt and 0.056 pmol for 5mCyt, the latter corresponding to a methylation level of 0.41%. Intra- and inter-day precision and accuracy were below 4.0% for both analytes and methylation. The matrix absolute effect, process efficiency and coefficient of variation ranged from 96.5 to 101.2%. The matrix relative effect was below 1%. The method was applied to the analysis of different human DNAs, including: nonmethylated DNA from PCR (methylation 0.00%), hypermethylated DNA prepared using M.SssI CpG methyltransferase (methylation 18.05%), DNA from peripheral blood leukocytes of healthy subjects (N = 6, median methylation 5.45%), DNA from bone marrow of leukemia patients (N = 5, 3.58%) and DNA from myeloma cell lines (N = 4, 2.74%).

  14. [Serum metabolome by gas chromatography-mass spectrometry (GC-MS) in patients with ulcerative colitis and celiac disease].

    PubMed

    Sitkin, S I; Tkachenko, E I; Vakhitov, T Ia; Oreshko, L S; Zhigalova, T N

    2013-01-01

    Metabolomics is the emerging science of measurement and analysis of metabolome--the complete set of low molecular weight compounds in a cell, tissue, organ or whole organism. One of the aims of metabolomics is to research the response of an organism to a pathophysiological insult by measuring the concentrations of small molecule metabolites in biofluids and tissues and its dynamics. Intestinal microbiota is most probably involved in the development and maintenance of autoimmune inflammation in ulcerative colitis and celiac disease. Gas chromatography-mass spectrometry (GC - MS) of serum generates comprehensive metabolic profiles, reflecting integrated human (systemic) and gut microbial metabolism which may be altered in disease states. The aim of this study was to investigate GC - MS-based serum metabolomic profiles in UC and CD patients. Serum metabolic profiles were collected from 75 individuals: 20 patients with mild-moderate active UC, 35 CD patients, and 20 healthy controls (HC). We characterized 84 serum metabolites by use GC-MS. 18 metabolites at least have a combined (human + microbial) origin. In serum of UC patients, phenylacetic acid (PAA), 4-hydroxyphenylacetic acid (4-HPAA), 3-indolylacetic acid (IAA), succinic acid (SA) and fumaric acid (FA) were the metabolites most prominently increased, whereas 3-phenylpropionic acid (PPA) was significantly decreased. Serum of CD patients showed significant increases in IAA, 3-indolepropionic acid (IPA), SA and FA. Increased serum levels of succinic acid suggest its possible damaging effect on intestinal mucosa especially in ulcerative colitis. Orally administered butyrate + inulin as supplement to mesalazine in UC or gluten free diet in CD was effective in reducing disease activity with a marked improvement of serum metabolomic profiles (including SA reduction) and gut microbiota in both diseases. There were no any adverse events.

  15. Determination of organochlorine pesticides in water samples by dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Cortada, Carol; Vidal, Lorena; Pastor, Raul; Santiago, Noemi; Canals, Antonio

    2009-09-07

    A rapid and simple dispersive liquid-liquid microextraction (DLLME) has been developed to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples prior to analysis by gas chromatography-mass spectrometry (GC-MS). The studied variables were extraction solvent type and volume, disperser solvent type and volume, aqueous sample volume and temperature. The optimum experimental conditions of the proposed DLLME method were: a mixture of 10 microL tetrachloroethylene (extraction solvent) and 1 mL acetone (disperser solvent) exposed for 30 s to 10 mL of the aqueous sample at room temperature (20 degrees C). Centrifugation of cloudy solution was carried out at 2300 rpm for 3 min to allow phases separation. Finally, 2 microL of extractant was recovered and injected into the GC-MS instrument. Under the optimum conditions, the enrichment factors ranged between 46 and 316. The calculated calibration curves gave a high-level linearity for all target analytes with correlation coefficients ranging between 0.9967 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5% and 15% (n=8), and the detection limits were in the range of 1-25 ng L(-1). The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA methods 525.2 and 625. Analysis of spiked real water samples revealed that the matrix had no effect on extraction for river, surface and tap waters; however, urban wastewater sample shown a little effect for five out of eighteen analytes.

  16. Simultaneous assay of cocaine, heroin and metabolites in hair, plasma, saliva and urine by gas chromatography-mass spectrometry.

    PubMed

    Wang, W L; Darwin, W D; Cone, E J

    1994-10-14

    As part of an ongoing research program on the development of drug detection methodology, we developed an assay for the simultaneous measurement of cocaine, heroin and metabolites in plasma, saliva, urine and hair by solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS). The analytes that could be measured by this assay were the following: anhydroecgonine methyl ester; ecgonine methyl ester;. ecgonine ethyl ester; cocaine; cocaethylene; benzoylecgonine; cocaethylene; norcocaethylene; benzoylnorecgonine; codeine; morphine; norcodeine; 6-acetylmorphine; normorphine; and heroin. Liquid specimens were diluted, filtered and then extracted by SPE. Additional handling steps were necessary for the analysis of hair samples. An initial wash procedure was utilized to remove surface contaminants. Washed hair samples were extracted with methanol overnight at 40 degrees C. Both wash and extract fractions were collected, evaporated and purified by SPE. All extracts were evaporated, derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) and analyzed by GC-MS. The limit of detection (LOD) for cocaine, heroin and metabolites in biological specimens was approximately 1 ng/ml with the exception of norcodeine, normorphine and benzoylnorecgonine (LOD = 5 ng/ml). The LOD for cocaine, heroin and metabolites in hair was approximately 0.1 ng/mg of hair with the exception of norcodeine (LOD = 0.3 ng/mg) and normorphine and benzoylnorecgonine (LOD = 0.5 ng/mg). Coefficients of variation ranged from 3 to 26.5% in the hair assay. This assay has been successfully utilized in research on the disposition of cocaine, heroin and metabolites in hair, plasma, saliva and urine and in treatment studies.

  17. Quantitative solid phase microextraction--gas chromatography mass spectrometry analysis of five megastigmatrienone isomers in aged wine.

    PubMed

    Slaghenaufi, Davide; Perello, Marie-Claire; Marchand-Marion, Stéphanie; Tempere, Sophie; de Revel, Gilles

    2014-02-27

    Megastigmatrienone is a key flavor compound in tobacco. It has also been detected in wine, where it may contribute to a tobacco/incense aroma, but its importance and concentration in wines had never previously been evaluated. A method was developed and validated for quantifying the five megastigmatrienone isomers in red and white wines. Megastigmatrienone isomers were extracted by headspace solid-phase microextraction (HS-SPME), with a 65 μm film thickness polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber and analyzed using gas chromatography-mass spectrometry (GC/MS) in selected ion monitoring mode (SIM). Several parameters affecting the length of the adsorption process (i.e., adding salt, extraction time and extraction temperature) were tested. The optimum analytical conditions were established. The LOQ were between 0.06 μg L(-1) and 0.49 μg L(-1) for white wine and 0.11 μg L(-1) and 0.98 μg L(-1) for red wine, repeatability in both types of wine was less than 10% and recovery ranged from 96% for white wine to 94% for red wine. The five isomers of megastigmatrienone were quantified in red and white wines for the first time. Concentrations ranged from 2 μg L(-1) to 41 μg L(-1) in both red and white wines. Initial results revealed a link between wine aging and megastigmatrienone levels, indicating that megastigmatrienone may be a component in wine "bouquet". Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Determination of nitrogen mustard hydrolysis products, ethanolamines by gas chromatography-mass spectrometry after tert-butyldimethylsilyl derivatization.

    PubMed

    Ohsawa, Isaac; Seto, Yasuo

    2006-07-28

    A method for determining N-ethyldiethanolamine (EDEA), N-methyldiethanolamine (MDEA) and triethanolamine (TEA), hydrolysis products of nitrogen mustards, in water, urine and blood samples using gas chromatography-mass spectrometry (GC-MS) after derivatization by tert-butyldimethylsilylation (TBDMS) is described. The sample solution was evaporated to dryness, and reacted with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) at 60 degrees C for 1h. The TBDMS derivatives were separated on a DB-5 column and detected by electron-ionization MS. The quantitation of EDEA, MDEA and TEA was performed by measuring the respective peak areas on the extracted ion chromatograms of m/z 216, m/z 202 and m/z 346, respectively, using nonadecane (C19), the peak area of which was measured at m/z 268, as an internal standard. When the water sample was initially analyzed, considerable loss of EDEA, MDEA and TEA occurred by evaporation. The addition of hydrochloric acid (HCl) to the water sample (final 1 mM), however, permitted quantitative recoveries to be achieved (88%, 88% and 79% for EDEA-(TBDMS)2, MDEA-(TBDMS)2 and TEA-(TBDMS)3, respectively). The limits of detections (LODs, scan mode, S/N = 3) were 2.5, 2.5 and 10 ng/ml for EDEA, MDEA and TEA, respectively. Ethanolamines could be also determined in urine samples (volume 0.1 ml), with reasonable recoveries of 72-100% by the addition of HCl (final 1 mM). For the analysis of serum samples, the sample was precipitated by the addition of perchloric acid (final 3.2%), and the resulting supernatant was neutralized with potassium carbonate, and then acidified by the addition of HCl. The recovery of TBDMS derivatives of ethanolamines was found to rather low (7-31%).

  19. [Determination of 10 sedative-hypnotics in human plasma using pulse splitless injection technique and gas chromatography-mass spectrometry].

    PubMed

    Chang, Qing; Ma, Hongying; Wang, Fangjie; Ou, Honglian; Zou, Ming

    2011-11-01

    A simple, precise and sensitive gas chromatography-mass spectrometry (GC-MS) method coupled with pulse splitless injection technique was developed for the determination of 10 sedative-hypnotics (barbital, amobarbital, phenobarbital, oxazepam, diazepam, nitrazepam, clonazepam, estazolam, alprazolam, triazolam) in human plasma. The drugs spiked in plasma were extracted with ethyl acetate after alkalization with 0.1 mol/L NaOH solution. The organic solvent was evaporated under nitrogen stream, and the residues were redissolved by ethyl acetate. The separation was performed on an HP-5MS column (30 m x 250 microm x 0.25 microm). The analytes were determined and identified using selected ion monitoring (SIM) mode and scan mode, respectively. The internal standard method was used for the determination. The target analytes were well separated from each other on their SIM chromatograms and also on the total ion current (TIC) chromatograms. The blank extract from human plasma gave no peaks that interfered with all the analytes on the chromatogram. The calibration curves for 10 sedative-hypnotics showed excellent linearity. The correlation coefficients of all the drugs were higher than 0.9954. The recoveries of the drugs spiked in human plasma ranged from 92.28% to 111.7%, and the relative standard deviations (RSDs) of intra-day and inter-day determinations were from 4.09% to 14.26%. The detection limits ranged from 2 to 20 microg/L. The method is simple, reliable, rapid and sensitive for the determination and the quantification of 10 sedative-hypnotics in human plasma and seems to be useful in the practice of clinical toxicological cases.

  20. Diagnosis of inborn errors of metabolism using filter paper urine, urease treatment, isotope dilution and gas chromatography-mass spectrometry.

    PubMed

    Kuhara, T

    2001-07-05

    This review will be concerned primarily with a practical yet comprehensive diagnostic procedure for the diagnosis or even mass screening of a variety of metabolic disorders. This rapid, highly sensitive procedure offers possibilities for clinical chemistry laboratories to extend their diagnostic capacity to new areas of metabolic disorders. The diagnostic procedure consists of the use of urine or filter paper urine, preincubation of urine with urease, stable isotope dilution, and gas chromatography-mass spectrometry. Sample preparation from urine or filter paper urine, creatinine determination, stable isotope-labeled compounds used, and GC-MS measurement conditions are described. Not only organic acids or polar ones but also amino acids, sugars, polyols, purines, pyrimidines and other compounds are simultaneously analyzed and quantified. In this review, a pilot study for screening of 22 target diseases in newborns we are conducting in Japan is described. A neonate with presymptomatic propionic acidemia was detected among 10,000 neonates in the pilot study. The metabolic profiles of patients with ornithine carbamoyl transferase deficiency, fructose-1,6-bisphosphatase deficiency or succinic semialdehyde dehydrogenase deficiency obtained by this method are presented as examples. They were compared to those obtained by the conventional solvent extraction methods or by the tandem mass spectrometric method currently done with dried filter blood spots. The highly sensitive, specific and comprehensive features of our procedure are also demonstrated by its use in establishing the chemical diagnosis of pyrimidine degradation defects in order to prevent side effects of pyrimidine analogs such as 5-flurouracil, and the differential diagnosis of three types of homocystinuria, orotic aciduria, uraciluria and other urea cycle disorders. Evaluation of the effects of liver transplantation or nutritional conditions such as folate deficiency in patients with inborn errors of

  1. Analytic validation of a gas chromatography-mass spectrometry method for quantification of six amino acids in canine serum samples.

    PubMed

    Lopes, Rosana; Grützner, Niels; Berghoff, Nora; Lidbury, Jonathan A; Suchodolski, Jan S; Steiner, Jörg M

    2015-12-01

    To analytically validate a gas concentration of chromatography-mass spectrometry (GC-MS) method for measurement of 6 amino acids in canine serum samples and to assess the stability of each amino acid after sample storage. Surplus serum from 80 canine samples submitted to the Gastrointestinal Laboratory at Texas A&M University and serum samples from 12 healthy dogs. GC-MS was validated to determine precision, reproducibility, limit of detection, and percentage recovery of known added concentrations of 6 amino acids in surplus serum samples. Amino acid concentrations in serum samples from healthy dogs were measured before (baseline) and after storage in various conditions. Intra- and interassay coefficients of variation (10 replicates involving 12 pooled serum samples) were 13.4% and 16.6% for glycine, 9.3% and 12.4% for glutamic acid, 5.1% and 6.3% for methionine, 14.0% and 15.1% for tryptophan, 6.2% and 11.0% for tyrosine, and 7.4% and 12.4% for lysine, respectively. Observed-to-expected concentration ratios in dilutional parallelism tests (6 replicates involving 6 pooled serum samples) were 79.5% to 111.5% for glycine, 80.9% to 123.0% for glutamic acid, 77.8% to 111.0% for methionine, 85.2% to 98.0% for tryptophan, 79.4% to 115.0% for tyrosine, and 79.4% to 110.0% for lysine. No amino acid concentration changed significantly from baseline after serum sample storage at -80°C for ≤ 7 days. GC-MS measurement of concentration of 6 amino acids in canine serum samples yielded precise, accurate, and reproducible results. Sample storage at -80°C for 1 week had no effect on GC-MS results.

  2. Urine analysis of 3,4-methylenedioxypyrovalerone in opioid-dependent patients by gas chromatography-mass spectrometry.

    PubMed

    Ojanperä, Ilkka Antero; Heikman, Pertti Kalevi; Rasanen, Ilpo Juhani

    2011-04-01

    A gas chromatography-mass spectrometry (GCMS) procedure was developed for the quantitative analysis of the new designer drug methylenedioxypyrovalerone (MDPV) in urine together with the common stimulants amphetamine, methamphetamine, and methylenedioxymethamphetamine (MDMA). The procedure involved electron ionization (EI) GCMS in the selected ion monitoring (SIM) mode after liquid-liquid extraction with toluene and derivatization with heptafluorobutyric acid anhydride. All MDPV findings were confirmed by positive chemical ionization GCMS in SIM mode. Positive chemical ionization-GCMS allowed the protonated molecule M+H+ m/z 276 to be used as a target ion with 3 abundant fragments as qualifier ions. By electron ionization-GCMS, the limit of quantification (LOQ) for MDPV was 0.02 mg/L; and for amphetamine, methamphetamine, and MDMA, the LOQ was 0.05 mg/L. The method was applied to monitoring urine samples from opioid-dependent patients undergoing opioid substitution treatment. Nine of the 34 urine samples (26%) analyzed were MDPV positive by the GCMS procedure. The positive samples were obtained from 2 female and 7 male patients with a mean age of 31 years. The median (range) MDPV concentration was 0.16 mg/L (0.04-3.9 mg/L) based on the 7 samples for which a numeric value was obtained, whereas the concentration was below the LOQ but above the limit of detection in 2 samples. The method revealed amphetamine in approximately 40% of the cases, and there was no statistical difference between the MDPV-positive and MDPV-negative groups. Urine amphetamine concentrations were on average 10 times higher than those of MDPV. The opioid-dependent patients used MDPV mainly as a substitute for amphetamine, judging from the laboratory findings of this study and the information from our patients.

  3. Using Ramped Pyrolysis - Gas Chromatography - Mass Spectrometry to Evaluate Petroleum Hydrocarbons Following the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Evans, M.; Rosenheim, B. E.; Bacosa, H. P.; Liu, J.; Liu, Z.

    2016-02-01

    In summer of 2010, the Deepwater Horizon oil spill polluted hundreds of miles of coastline along the Gulf of Mexico. A combination of human-mediated and natural weathering processes then altered the chemical composition (i.e. toxicity) of this spilled crude oil over time and space. One of the most important, yet challenging, aspects of oil spill science is to quantify these chemical changes in natural environments. In this study, we develop ramped pyrolysis - gas chromatography - mass spectrometry (Py-GC-MS) to address this challenge. In this technique, 0.1mg of freeze-dried sample is pyrolyzed over a gradual temperature ramp (50-650°C). The eluded gas is cold-trapped over different thermal ranges (a.k.a. thermal slicing) and each range is individually analyzed via GC-MS, yielding quantifiable, compound-specific results. Py-GC-MS with thermal slicing has never been used for petroleum hydrocarbon analysis, but it has many advantages - it uses minimal sample, is time efficient and does not require sample preparation (minimizing compound loss and increasing the analytical window). During development of this method, we analyzed oiled sediments and tar collected on Grand Isle, Louisiana from 2010-2012. We quantified n-alkane (C10-C38), polycyclic aromatic hydrocarbon (PAH) and hopane content and confirmed these results with traditional solvent extraction, silica gel fractionation and mass spectrometry. Overall, we found rapid depletion of n-alkanes and PAHs (>90% depletion) in all samples within one year of Deepwater Horizon. After this, n-alkanes were almost 100% depleted by 2012, while PAH degradation continued to a maximum total degradation of 99% and 98% in sediment and tar, respectively. This not only describes the fate of petroleum compounds in salt marshes and beach deposits over time, but also complements previous radiocarbon studies of the same samples showing different rates of degradation in different micro-environments. In addition, the results presented

  4. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  5. Impurity analysis of pure aldrin using heart-cut multi-dimensional gas chromatography-mass spectrometry.

    PubMed

    Li, Xiaomin; Dai, Xinhua; Yin, Xiong; Li, Ming; Zhao, Yingchen; Zhou, Jian; Huang, Ting; Li, Hongmei

    2013-02-15

    Identification and quantification of related-structure impurity is a research focus in the purity assessment of organic compounds. Determination of the purity value and uncertainty assessment are also important in the metrological research. A method for the determination of related-structure impurity in pure aldrin sample has been developed by using heart-cut multi-dimensional gas chromatography-mass spectrometry (MDGC/MS). Compared to the traditional one-dimensional (1-D) GC system, the two separated columns in the MDGC/MS system can effectively reduce co-elution, enhance separation capability, and thus improve detectability of the trace-level impurities. In addition, MDGC/MS system was simultaneously equipped with flame ionization detector (FID) or electron capture detector (ECD) in the first GC unit and mass spectrometry (MS) detector in the second GC unit. Therefore, accurate quantitative results of the trace-level impurities can be easily achieved by isolation of principal component to the second dimension column using "heart-cut" process. The mass fraction of related-structure impurities in aldrin samples obtained using MDGC/MS system ranged from 6.8×10⁻³ mg g⁻¹ to 26.47 mg g⁻¹ with five orders of magnitude, which is hard to be realized by mean of the 1-D GC. Excellent linearity with correlation coefficients of above 0.999 was achieved for each impurity analysis over a wide range of concentrations. Limits of quantification (LOQ) varied from 250 ng g⁻¹ to 330 ng g⁻¹ for FID, and from 1.0 ng g⁻¹ to 2.0 ng g⁻¹ detected by ECD. The combined standard uncertainty (u(c)) was lower than 0.37 mg g⁻¹ and 0.040 mg g⁻¹ detected using FID and ECD, respectively. Therefore, performance characterization of MDGC/MS used in the study is fit for quantification analysis of trace-level impurity. These results demonstrate that the MDGC/MS is extremely suitable for the purity assessment of organic compounds with medium structural complexity and low

  6. Comparison of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry with electron ionization for determination of N-nitrosamines in environmental water.

    PubMed

    Chen, Wenwen; Li, Xiaoshui; Huang, Huanfang; Zhu, Xuetao; Jiang, Xiaoyu; Zhang, Yuan; Cen, Kuang; Zhao, Lunshan; Liu, Xiuli; Qi, Shihua

    2017-02-01

    N-nitrosamines are trace organic contaminants of environmental concern when present in groundwater and river water due to their potent carcinogenicity. Therefore, N-nitrosamine analysis is increasingly in demand. Gas chromatography-mass spectrometry (GC-MS) and GC-tandem mass spectrometry (GC-MS/MS), both with electron ionization (EI), were compared for analysis of nine N-nitrosamines extracted from environmental water matrices. A total of 20 fishpond water, river water, and groundwater samples from Sihui and Shunde, China were collected for a survey of N-nitrosamine concentrations in real water samples. Various solid-phase extraction (SPE) conditions and GC conditions were first examined for the pre-concentration and separation steps. The analysis of N-nitrosamines in environmental waters demonstrated that their quantification with GC-MS poses a challenge due to the occurrence of co-eluting interferences. Conversely, the use of GC-MS/MS increased selectivity because of the fragmentation generated from precursor ions in the 'multiple reaction monitoring' (MRM) mode, which is expected to extract target analytes from the environmental water matrix. Thus, the high performance of GC-MS/MS with EI was used to quantify nine N-nitrosamines in environmental waters with detection limits of 1.1-3.1 ng L(-1). N-nitrosodimethylamine (NDMA) concentrations were in the range of N.D. to 258 ng L(-1). Furthermore, other N-nitrosamines, except N-nitrosomethylethylamine (NMEA), N-nitroso-di-n-propylamine (NDPA) and N-nitrosopiperidine (NPIP), were also detected. Our findings suggest that GC-MS/MS with EI would be widely applicable in identifying N-nitrosamines in environmental waters and can be used for routine monitoring of these chemicals.

  7. EPA Air Method, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Pesticide Factsheets

    Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.

  8. Full evaporation dynamic headspace and gas chromatography-mass spectrometry for uniform enrichment of odor compounds in aqueous samples.

    PubMed

    Ochiai, Nobuo; Sasamoto, Kikuo; Hoffmann, Andreas; Okanoya, Kazunori

    2012-06-01

    A method for analysis of a wide range of odor compounds in aqueous samples at sub-ng mL⁻¹ to μg mL⁻¹ levels was developed by full evaporation dynamic headspace (FEDHS) and gas chromatography-mass spectrometry (GC-MS). Compared to conventional DHS and headspace solid phase microextraction (HS-SPME), FEDHS provides more uniform enrichment over the entire polarity range for odor compounds in aqueous samples. FEDHS at 80°C using 3 L of purge gas allows complete vaporization of 100 μL of an aqueous sample, and trapping and drying it in an adsorbent packed tube, while providing high recoveries (85-103%) of the 18 model odor compounds (water solubility at 25°C: log0.54-5.65 mg L⁻¹, vapor pressure at 25°C: 0.011-3.2 mm Hg) and leaving most of the low volatile matrix behind. The FEDHS-GC-MS method showed good linearity (r²>0.9909) and high sensitivity (limit of detection: 0.21-5.2 ng mL⁻¹) for the model compounds even with the scan mode in the conventional MS. The feasibility and benefit of the method was demonstrated with analyses of key odor compounds including hydrophilic and less volatile characteristics in beverages (whiskey and green tea). In a single malt whiskey sample, phenolic compounds including vanillin could be determined in the range of 0.92-5.1 μg mL⁻¹ (RSD<7.4%, n=6). For a Japanese green tea sample, 48 compounds including 19 potent odorants were positively identified from only 100 μL of sample. Heat-induced artifact formation for potent odorants was also examined and the proposed method does not affect the additional formation of thermally generated compounds. Eighteen compounds including 12 potent odorants (e.g. coumarin, furaneol, indole, maltol, and pyrazine congeners) were determined in the range of 0.21-110 ng mL⁻¹ (RSD<10%, n=6).

  9. Application of Solid Phase Microextraction Coupled with Gas Chromatography/Mass Spectrometry as a Rapid Method for Field Sampling and Analysis of Chemical Warfare Agents and Toxic Industrial Chemicals

    DTIC Science & Technology

    2003-01-01

    PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS...4. TITLE AND SUBTITLE APPLICATION OF SOLID PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 iii ABSTRACT APPLICATION OF SOLID PHASE MICROEXTRACTION COUPLED WITH

  10. Determination of parts-per-billion concentrations of dioxane in water and soil by purge and trap gas chromatography/mass spectrometry or charcoal tube enrichment gas chromatography

    SciTech Connect

    Epstein, P.S.; Mauer, T.; Wagner, M.; Chase, S.; Giles, B.

    1987-08-01

    Two methods for the determination of 1,4-dioxane in water have been studied. The first method is a heated purge and trap gas chromatography/mass spectrometry system following salting out with sodium sulfate. The second method is an adsorption on coconut-shell charcoal and solvent desorption with carbon disulfide/methanol followed by analysis of the desorbate by gas chromatography with flame ionization detection. The first method is also successful for the determination of 1,4-dioxane in solids and sediments. The second method is shown to be successful for 2-butanone, 4-methyl-2-pentanone, and butoxyethanol in water. The two methods are compared by analyzing 15 samples by both methods and achieving similar results.

  11. Characterization of aroma-active compounds in three Chinese Moutai liquors by gas chromatography-olfactometry, gas chromatography-mass spectrometry and sensory evaluation.

    PubMed

    Niu, Yunwei; Chen, Xiaomei; Xiao, Zuobing; Ma, Ning; Zhu, Jiancai

    2017-04-01

    The aroma-active compounds in three Chinese Moutai liquors, aged 1 year, 15 years and 30 years were investigated in this study. The aroma compounds were analysed by gas chromatography-olfactometry (GC-O) coupled with gas chromatography-mass spectrometry (GC-MS). A total of 79 aroma compounds were identified. Aroma extract dilution analysis (AEDA) was further employed to identify the aroma-active compounds. A total of 35 aroma-active compounds with flavour dilution (FD) values ≧ 64 simultaneously in three Chinese Moutai liquors were quantitated. Among them, ethyl acetate, ethyl lactate and acetic acid appeared with the highest concentrations. They were all >1000 mg/L. Then, the relationships between the aroma-active compounds and seven sensory attributes were studied.

  12. Dealing with the ubiquity of phthalates in the laboratory when determining plasticizers by gas chromatography/mass spectrometry and PARAFAC.

    PubMed

    Oca, M L; Rubio, L; Sarabia, L A; Ortiz, M C

    2016-09-16

    Determining plasticizers and other additives migrated from plastic materials becomes a hard task when these substances are already present in the laboratory environment. This work dealt with this drawback in the multiresidue determination of four plasticizers (2,6-di-tert-butyl-4-methyl-phenol (BHT), diisobutyl phthalate (DiBP), bis(2-ethylhexyl) adipate (DEHA) and diisononyl phthalate (DiNP)) and a UV stabilizer (benzophenone (BP)) by gas chromatography/mass spectrometry (GC/MS) using DiBP-d4 as internal standard. The ubiquity of DiBP by a non-constant leaching process in the laboratory was detected, which could not guarantee the achievement of a trustworthy quantification. To handle this, the assessment of the level of DiBP in solvent blanks having fixed the probabilities of false non-compliance (α) and false compliance (β) at 0.01 was performed. On the other hand, another special case was that of DiNP, in whose chromatogram finger peaks appear because of an array of possible C9 isomers. PARAFAC, used for the identification and quantification of all the substances, is a useful chemometric tool that enabled a more reliable determination of this analyte since no peak areas were considered but chromatographic and spectral loadings. Since phthalates may migrate from rubber latex items, an evaluation of the existence of matrix effects on the determination of the five analytes was conducted prior to an extraction with hexane from a dummy for infants. As matrix effects were present, the quantification of the compounds under study was performed following the standard addition method using PARAFAC sample loadings as response variable. As a result, the presence of BHT was confirmed, being its concentration equal to 37.87μgL(-1). Calibrations based on PARAFAC yielded the following values for the decision limit (CCα): 1.16μgL(-1) for BHT, 1.34μgL(-1) for BP, 1.84μgL(-1) for DEHA and 51.42μgL(-1) for DiNP(for α=0.05 and two replicates).

  13. Seasonal variations of particle-associated nitrosamines by gas chromatography-mass spectrometry in the atmospheric environment of Zonguldak, Turkey.

    PubMed

    Akyüz, Mehmet; Ata, Şevket

    2013-10-01

    A gas chromatography-mass spectrometry method has been proposed for the determination of low-level mutagenic and carcinogenic nitrosamines in particulate matter. The method includes the collection of particulate matters (PM2.5 and PM10) using a dichotomous Partisol 2025 sampler and extraction of the compounds from aqueous solution with dichloromethane/2-propanol after sonication with a slightly basic water solution prior to their GC-MS analysis in electron impact mode. The obtained recoveries of nitrosamines ranged from 92.4 to 99.2 %, and the precision of this method, as indicated by the relative standard deviations, was within the range of 0.95-2.46 %. The detection limits obtained from calculations using the GC-MS results based on S/N=3 were found within the range from 4 to 22 pg/m(3). The predominant nitrosamines determined in particulate matter were N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodibutylamine and N-nitrosomorpholine. Furthermore, N-mono- and dinitrosopiperazine and N-nitrosoethylbutylamine were also determined. N-dinitrosopiperazine was detected in PM2.5 samples at the highest concentrations of up to 22.85 ng/m(3) and in PM2.5-10 samples at concentrations up to 7.60 ng/m(3) in winter, whereas it was found in PM2.5 samples up to 5.15 ng/m(3) and in PM2.5-10 samples up to 3.12 ng/m(3) in summer. The total concentrations of nitrosamines were up to 161.4 ng/m(3) in fine and 53.90 ng/m(3) in coarse fractions in winter, whereas in summer were up to 35.24 and 12.60 ng/m(3), respectively. The concentration levels of nitrosamines fluctuated significantly within a year, with higher means and peak concentrations in the winter compared to that in the summertime. The seasonal variations of particle-associated nitrosamine concentrations were investigated together with their relationships with meteorological parameters using Pearson's correlation analysis in the winter and summer periods. Analysis of variance was used to determine which

  14. Monitoring the ripening process of Cheddar cheese based on hydrophilic component profiling using gas chromatography-mass spectrometry.

    PubMed

    Ochi, H; Sakai, Y; Koishihara, H; Abe, F; Bamba, T; Fukusaki, E

    2013-01-01

    We proposed an application methodology that combines metabolic profiling with multiple appropriate multivariate analyses and verified it on the industrial scale of the ripening process of Cheddar cheese to make practical use of hydrophilic low-molecular-weight compound profiling using gas chromatography-mass spectrometry to design optimal conditions and quality monitoring of the cheese ripening process. Principal components analysis provided an overview of the effect of sodium chloride content and kind of lactic acid bacteria starter on the metabolic profile in the ripening process of Cheddar cheese and orthogonal partial least squares-discriminant analysis unveiled the difference in characteristic metabolites. When the sodium chloride contents were different (1.6 and 0.2%) but the same lactic acid bacteria starter was used, the 2 cheeses were classified by orthogonal partial least squares-discriminant analysis from their metabolic profiles, but were not given perfect discrimination. Not much difference existed in the metabolic profile between the 2 cheeses. Compounds including lactose, galactose, lactic acid, 4-aminobutyric acid, and phosphate were identified as contents that differed between the 2 cheeses. On the other hand, in the case of the same salt content of 1.6%, but different kinds of lactic acid bacteria starter, an excellent distinctive discrimination model was obtained, which showed that the difference of lactic acid bacteria starter caused an obvious difference in metabolic profiles. Compounds including lactic acid, lactose, urea, 4-aminobutyric acid, galactose, phosphate, proline, isoleucine, glycine, alanine, lysine, leucine, valine, and pyroglutamic acid were identified as contents that differed between the 2 cheeses. Then, a good sensory prediction model for "rich flavor," which was defined as "thick and rich, including umami taste and soy sauce-like flavor," was constructed based on the metabolic profile during ripening using partial least

  15. Analysis of polysulfides in drinking water distribution systems using headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Kristiana, Ina; Heitz, Anna; Joll, Cynthia; Sathasivan, Arumugam

    2010-09-17

    Sulfide and polysulfides are strong nucleophiles and reducing agents that participate in many environmentally significant processes such as the formation of sulfide minerals and volatile organic sulfur compounds. Their presence in drinking water distribution systems are of particular concern and need to be assessed, since these species consume disinfectants and dissolved oxygen, react with metal ions to produce insoluble metal sulfides, and cause taste and odour problems. The analysis of sulfide and polysulfides in drinking water distribution systems is challenging due to their low concentrations, thermal instability and their susceptibility to undergo oxidation and disproportionation reactions. This paper reports on the development and optimisation of a rapid, simple, and sensitive method for the determination of sulfide and polysulfides in drinking water distribution systems. The method uses methyl iodide to derivatize sulfide and polysulfides into their corresponding dimethyl(poly)sulfides, which are then extracted using solid-phase microextraction in the headspace mode and analysed by gas chromatography-mass spectrometry. Good sensitivity was achieved for the analysis of dimethyl(poly)sulfides, with detection limits ranging from 50 to 240 ng L(-1). The method also demonstrated good precision (repeatability: 3-7%) and good linearity over two orders of magnitude. Matrix effects from raw drinking water containing organic carbon (3.8 mg L(-1)) and from sediment material from a drinking water distribution system were shown to have no interferences in the analysis of dimethyl(poly)sulfides. The method provides a rapid, robust, and reliable mean to analyse trace levels of sulfides and polysulfides in aqueous systems. The new method described here is more accessible and user-friendly than methods based on closed-loop stripping analysis, which have been traditionally used for the analysis of these compounds. The optimised method was used to analyse samples collected

  16. Determination of nine hydroxylated polybrominated diphenyl ethers in water by precolumn derivatization-gas chromatography-mass spectrometry.

    PubMed

    Yu, Boqu; Zhang, Ruirui; Liu, Pengyan; Zhang, Yajing; Zhang, Yanna; Bai, Yang

    2015-11-06

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs), acting as emerging endocrine disruptors, have aroused more and more concern recently. Produced from natural source or metabolism of PBDEs, OH-PBDEs are more toxic than their parent compounds. However, few analytical methods are available for sensitive determination of these compounds especially in water. In this study, a method of determination of nine OH-PBDEs in lake, reservoir, river and sewage treatment plant effluent was established using N,O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) as derivatization reagent combined with gas chromatography-mass spectrometry (GC-MS). Optimal extraction solvent and derivatization factors such as the amount of BSTFA, time, temperature and dissolution solvent were determined experimentally. After extracted by hexane-dichloromethane (1:1, v/v), extracts were evaporated to almost dry, then BSTFA was added to the residue and heated at 90°C for 30min. The remains were dried under a stream of nitrogen and redissolved in hexane. The solution was separated in DB-35MS column, then determined by GC-MS in selected ion mode and full scan monitoring mode, and quantified by external standard method. The working curves were obtained using sample matrix in order to eliminate the matrix interference. Linear range was from 0.02μgL(-1) to 30μgL(-1). Limits of detection and quantification ranged from 0.0039μgL(-1) to 0.0220μgL(-1) and 0.0130μgL(-1) to 0.0733μgL(-1), respectively. Two different spiked levels were measured with 5 parallel tests for each level. The results indicated that the relative standard deviations were less than 14.08%. The method has been applied to lake water, reservoir water, river water and sewage treatment plant effluent. Five OH-PBDEs including 2'-OH-BDE3, 3'-OH-BDE7, 2'-OH-BDE28, 4'-OH-BDE17 and 5'-OH-BDE99 were detected in all the samples collected in Baoding, China. This method is simple, high sensitive, and suitable for simultaneous determination of

  17. Determination of five abused drugs in nitrite-adulterated urine by immunoassays and gas chromatography-mass spectrometry.

    PubMed

    Tsai, S C; ElSohly, M A; Dubrovsky, T; Twarowska, B; Towt, J; Salamone, S J

    1998-10-01

    The adulteration of urine specimens with nitrite ion hasseen shown to mask the gas chromatography-mass spectrometry (GC-MS) confirmation testing of marijuana use. This study was designed to further investigate the effect of nitrite adulteration on the detection of five commonly abused drugs by immunoassay screening and GC-MS analysis. The drugs tested are cocaine metabolite (benzoylecgonine), morphine, 11-nor-delta-tetrahydrocannabinol-9-carboxylic acid (THCCOOH), amphetamine, and phencyclidine. The immunoassays evaluated included the instrument-based Abuscreen ONLINE assays, the on-site Abuscreen ONTRAK assays, and the one-step ONTRAK TESTCUP-5 assay. Multianalyte standards containing various levels of drugs were used to test the influence of both potassium and sodium nitrite. In the ONLINE immunoassays, the presence of up to 1.0M nitrite in the multianalyte standards had no significant effect for benzoylecgonine, morphine, and phencyclidine assays. With a high concentration of nitrite, ONLINE became more sensitive for amphetamine (detected more drug than what was expected) and less sensitive for THCCOOH (detected less drug than what was expected). No effects of nitrite were observed on the results of the Abuscreen ONTRAK assays. Similarly, no effects were observed on the absolute qualitative results of the TESTCUP-5 when testing the nitrite-adulterated standards. However, the produced intensities of the signals that indicate the negative test results were slightly lowered in the THC and phencyclidine assays. The presence of 1.0M of nitrite did not show dramatic interference with the GC-MS analysis of benzoylecgonine, morphine, amphetamine, and phencyclidine. In contrast, nitrite ion significantly interfered with the detection of THCCOOH by GC-MS. The presence of 0.03M of nitrite ion resulted in significant loss in the recovery of THCCOOH and its internal standard by GC-MS. The problem of nitrite adulteration could be alleviated by sodium bisulfite treatment even

  18. A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments

    PubMed Central

    Robinson, Mark D; De Souza, David P; Keen, Woon Wai; Saunders, Eleanor C; McConville, Malcolm J; Speed, Terence P; Likić, Vladimir A

    2007-01-01

    Background Gas chromatography-mass spectrometry (GC-MS) is a robust platform for the profiling of certain classes of small molecules in biological samples. When multiple samples are profiled, including replicates of the same sample and/or different sample states, one needs to account for retention time drifts between experiments. This can be achieved either by the alignment of chromatographic profiles prior to peak detection, or by matching signal peaks after they have been extracted from chromatogram data matrices. Automated retention time correction is particularly important in non-targeted profiling studies. Results A new approach for matching signal peaks based on dynamic programming is presented. The proposed approach relies on both peak retention times and mass spectra. The alignment of more than two peak lists involves three steps: (1) all possible pairs of peak lists are aligned, and similarity of each pair of peak lists is estimated; (2) the guide tree is built based on the similarity between the peak lists; (3) peak lists are progressively aligned starting with the two most similar peak lists, following the guide tree until all peak lists are exhausted. When two or more experiments are performed on different sample states and each consisting of multiple replicates, peak lists within each set of replicate experiments are aligned first (within-state alignment), and subsequently the resulting alignments are aligned themselves (between-state alignment). When more than two sets of replicate experiments are present, the between-state alignment also employs the guide tree. We demonstrate the usefulness of this approach on GC-MS metabolic profiling experiments acquired on wild-type and mutant Leishmania mexicana parasites. Conclusion We propose a progressive method to match signal peaks across multiple GC-MS experiments based on dynamic programming. A sensitive peak similarity function is proposed to balance peak retention time and peak mass spectra similarities

  19. Understanding the cholesterol metabolism-perturbing effects of docosahexaenoic acid by gas chromatography-mass spectrometry targeted metabonomic profiling.

    PubMed

    Bahety, Priti; Van Nguyen, Thi Hai; Hong, Yanjun; Zhang, Luqi; Chan, Eric Chun Yong; Ee, Pui Lai Rachel

    2017-02-01

    Over the past few decades, docosahexaenoic acid (DHA) has gained special attention for management of cholesterol-associated metabolic disorders and neurodegenerative diseases such as Alzheimer's disease (AD) owing to its neuroprotective, anti-inflammatory and hypolipidemic properties. Several epidemiological studies have reported the effect of DHA in reducing the risk of developing AD by lowering cholesterol. Hypercholesterolemia is a pro-amyloidogenic factor influencing the enzymatic processing of amyloid-β precursor protein (AβPP) to toxic β-amyloid. However, the mechanism by which DHA modulates the cholesterol pathway has not been established. Thus, the objective of this study was to investigate the mechanism of regulation of cholesterol metabolism by DHA in an AβPP695 overexpressing AD cell model. A gas chromatography/mass spectrometry method was developed and validated for the targeted profiling of 11 cholesterol metabolites in DHA-treated Chinese hamster ovary wild-type (CHO-wt) and AβPP695 overexpressing (CHO-AβPP695) cells. The differential metabolite profiles between DHA- and vehicle-treated groups were further analyzed using fold change values of the ratio of concentration of metabolites in CHO-AβPP695 to CHO-wt cells. Effect of DHA on key rate-limiting enzymatic activities within the cholesterol pathway was established using biochemical assays. Our results showed that DHA reduced the levels of key cholesterol anabolites and catabolites in CHO-AβPP695 cells as compared to CHO-wt cells. Further enzymatic studies revealed that the cholesterol-lowering effect of DHA was mediated by regulating HMG-CoA reductase and squalene epoxidase enzyme activities. We demonstrate for the first time the dual effects of DHA in inhibiting HMG-CoA reductase and squalene epoxidase and modulating the sterol biosynthesis axis of the cholesterol pathway in AβPP695 overexpressing AD. Our novel findings underscore the potential of DHA as a multi-target hypocholesterolemic

  20. Pressurized liquid extraction-gas chromatography-mass spectrometry analysis of fragrance allergens, musks, phthalates and preservatives in baby wipes.

    PubMed

    Celeiro, Maria; Lamas, J Pablo; Garcia-Jares, Carmen; Llompart, Maria

    2015-03-06

    Baby wipes and wet toilet paper are specific hygiene care daily products used on newborn and children skin. These products may contain complexes mixtures of harmful chemicals. A method based on pressurized liquid extraction (PLE) followed by gas chromatography-mass spectrometry (GC-MS) has been developed for the simultaneous determination of sixty-five chemical compounds (fragrance allergens, preservatives, musks, and phthalates) in wipes and wet toilet paper for children. These compounds are legislated in Europe according Regulation EC No 1223/2009, being twelve of them banned for their use in cosmetics, and one of them, 3-iodo-2-propynyl butylcarbamate (IPBC), is banned in products intended for children under 3 years. Also, propyl-, and butylparaben will be prohibited in leave-on cosmetic products designed for application on the nappy area of children under 3 years from April 2015. PLE is a fast, simple, easily automated technique, which permits to integrate a clean-up step during the extraction process reducing analysis time and stages. The proposed PLE-based procedure was optimized on real non-spiked baby wipe samples by means of experimental design to study the influence on extraction of parameters such as extraction solvent, temperature, extraction time, and sorbent type. Under the selected conditions, the method was validated showing satisfactory linearity, and intra-day, and inter-day precision. Recoveries were between 80-115% for most of the compounds with relative standard deviations (RSD) lower than 15%. Finally, twenty real samples were analyzed. Thirty-six of the target analytes were detected, highlighting the presence of phenoxyethanol in all analyzed samples at high concentration levels (up to 0.8%, 800μgg(-1)). Methyl paraben (MeP), and ethyl paraben (EtP) were found in 40-50% of the samples, and the recently banned isobutyl paraben (iBuP) and isopropyl paraben (iPrP), were detected in one and seven samples, respectively, at concentrations between

  1. Trimethylsilyl speciations of cathine, cathinone and norephedrine followed by gas chromatography mass spectrometry: Direct sample preparation and analysis of khatamines.

    PubMed

    Molnár, Borbála; Fodor, Blanka; Boldizsár, Imre; Molnár-Perl, Ibolya

    2016-04-01

    A literature criticism is given on methods using currently gas chromatography mass spectrometry (GC/MS) to determine cathine (CAT), cathinone (CTN) and norephedrine (NE), jointly khatamines. In this study, khatamines' oximation, trimethylsilylation and mass fragmentation properties-applying N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), its trimethyliodosilane (TMIS) catalyst containing version (MSTFA(TMIS)), N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and hexamethyldisilazane (HMDS)-was highlighted, at first. Derivatization, mass fragmentation and quantitation related, optimized model investigations have been carried out as a function of the reaction times and conditions. Special emphasis was put (i) on the stability of the primarily formed (CAT-2TMS, NE-2TMS, CTN-TMS(TMS-oximes)1,2), then transformed, fully derived (CAT-3TMS, NE-3MTS, CTN-2TMS(TMS-oximes)1,2) species, and, (ii) on the proportionally formed stable products, suitable to selective quantitation of all three natural amines, simultaneously. Results, as novelty to the field confirmed that (i) TMIS catalyzed trimethylsilyation triggers to form fully derivatized species unfortunately, in part only; while, (ii) khatamines' simultaneous quantitation needs to be carried out in a two steps derivatization process consisting of oximation (1st step, hydroxylamine in pyridine) and trimethylsilylation (2nd step, MSTFA), to the CAT-2TMS, NE-2TMS, CTN-TMS(TMS-oximes)1,2. These species were characterized with their retention, mass fragmentation and analytical performance properties, in model solutions and in the presence of plant tissues, as well: R(2), limit of quantitation (LOQ) data, expressed in pg/1μL injection basis, proved to be 62.5pg (CAT), 20pg (NE) and 62.5pg (CTN), respectively. The practical utility of proposal was enormously enhanced by the novel, direct sample preparation method. In this process, the freshly harvested, freeze-dried, then pulverized leaves of Catha edulis FORKS were

  2. Validation of a gas chromatography/mass spectrometry method for the quantification of aerosolized Jet Propellant 8.

    PubMed

    Dietzel, Katherine D; Campbell, Jerry L; Bartlett, Michael G; Witten, Mark L; Fisher, Jeffrey W

    2005-11-04

    Jet Propellant 8 (JP-8) jet fuel is a kerosene-based fuel containing hundreds of hydrocarbons used by the military in NATO countries. Previous rodent inhalation studies carried out with aerosolized JP-8 never evaluated the exposure chamber atmosphere. For this reason, our laboratory developed an analytical method, with an accuracy of better than 80% and precision of better than 20%, for JP-8 aerosol and vapor samples using gas chromatography/mass spectrometry (GC/MS). A method was developed for quantification of selected individual components of JP-8 and for the total amount of JP-8 in aerosolized fuel. A 34 component surrogate hydrocarbon mixture (SHM) was developed and used for simultaneous analysis of the individual components. Three separate runs containing a standard curve and five replicates each at the selected concentrations were analyzed for both the SHM and neat JP-8. The resulting interday accuracy (100-percent relative error) and precision (relative standard deviation) values for the SHM were 86.5% or better and 8.0% or better, respectively. The intraday accuracy and precision values ranged from 99.29% to 84.50% and 0.97% to 12.4%, respectively. For the total amount of JP-8 in aerosol and vapor, the interday accuracy was 83.7% or better and interday precision was 7.0% or better. The intraday accuracy and precision values ranged from 94.8% to 80.4% and 2.4% to 10.5%, respectively. We then used this method to analyze samples collected from an inhalation chamber. From the data obtained, we are able to account for approximately 40-44% of the mass of the aerosol portion and 68-70% of the mass of the vapor portion. The aerosol represented 6-10% of the total mass of the aerosolized JP-8 fuel with the remaining portion being the vapor. From these experiments individual components were identified for further in vivo and in vitro toxicological testing.

  3. Determination of "new psychoactive substances" in postmortem matrices using microwave derivatization and gas chromatography-mass spectrometry.

    PubMed

    Margalho, Cláudia; Castanheira, Alice; Real, Francisco Corte; Gallardo, Eugenia; López-Rivadulla, Manuel

    2016-05-01

    Despite worldwide efforts aiming to ban the marketing and subsequent abuse of psychoactive substances such as synthetic cathinones and phenethylamines, there has been an alarming growth of both in recent years. Different compounds similar to those already existing are continuously appearing in the market in order to circumvent the legislation. An analytical methodology has been validated for qualitative and quantitative determinations of D-cathine (D-norpseudoehedrine), ephedrine, methcathinone, 1-(4-methoxyphenyl)-propan-2-amine (PMA), mephedrone, methedrone, 2,5-dimethoxy-4-methylamphetamine (DOM), 4-bromo-2,5-dimethoxyamphetamine (DOB), 2,5-dimethoxyphenethylamine (2C-H), 4-bromo-2,5-dimethoxyphenethylamine (2C-B), 4-iodo-2,5-dimethoxyphenethylamine (2C-I), 2-[2,5-dimethoxy-4-(ethylthio)phenyl]ethanamine (2C-T-2), 2,5-dimethoxy-4-isopropylthiophenethylamine (2C-T-4) and 2-[2,5-dimethoxy-4-(propylthio)phenyl]ethanamine (2C-T-7), in low volumes of vitreous humor (100 μL), pericardial fluid (250 μL) and whole blood (250 μL), using deutered amphetamine, ephedrine and mephedrone as internal standards. The validation parameters included selectivity, linearity and limits of detection and quantification, intra- and interday precision and trueness, recovery and stability. The method included mixed-mode solid phase extraction, followed by microwave fast derivatization and analysis by gas chromatography-mass spectrometry operated in selected ion monitoring mode. The procedure was linear between 5 and 600 ng/mL, with determination coefficients higher than 0.99 for all analytes. Intra- and interday precision ranged from 0.1 to 13.6%, while accuracy variability was within 80-120% interval from the nominal concentration at all studied levels. The extraction efficiencies ranged from 76.6 to 112.8%. Stability was considered acceptable for all compounds in the studied matrices. The developed assay was applied to authentic samples of the Laboratory of Chemistry and Forensic

  4. Quantification of aroma compounds in Parmigiano Reggiano cheese by a dynamic headspace gas chromatography-mass spectrometry technique and calculation of odor activity value.

    PubMed

    Qian, Michael; Reineccius, G A

    2003-03-01

    Potentially important aroma compounds in Parmigiano Reggiano cheese were quantified. Free fatty acids were isolated with ion-exchange chromatography and quantified by gas chromatography. Neutral aroma compounds were quantified with a purge-trap/gas chromatography-mass spectrometry with selective mass ion technique. Odor activity values were calculated based on sensory thresholds reported in literature. The calculated odor activity values suggest that 3-methylbutanal, 2-methylpropanal, 2-methylbutanal, dimethyl trisulfide, diacetyl, methional, phenylacetaldehyde, ethyl butanoate, ethyl hexanoate, ethyl octanoate, acetic, butanoic, hexanoic, and octanoic acids are the most important aroma contributors to Parmigiano Reggiano cheese.

  5. Use of greatly-reduced gas flows in flow-modulated comprehensive two-dimensional gas chromatography-mass spectrometry.

    PubMed

    Tranchida, Peter Q; Franchina, Flavio A; Dugo, Paola; Mondello, Luigi

    2014-09-12

    The present research is specifically based on the use of greatly-reduced gas flows, in flow-modulator (FM) comprehensive two-dimensional gas chromatography systems. In particular, focus of the present research is directed to FM devices characterized by an accumulation stage, and a much briefer re-injection step. It has been widely accepted that the operation of such FM systems requires high gas flows (≥20mL/min), to re-inject the gas-phase contents of sample (or accumulation) loops, onto the second column. On the contrary, it will be herein demonstrated that much lower gas flows (≈ 6-8mL/min) can efficiently perform the modulation step of re-injection. The possibility of using such improved operational conditions is given simply by a fine optimization of the processes of accumulation and re-injection. The application of lower gas flows not only means that second-dimension separations are carried out under better analytical conditions, but, even more importantly, greatly reduces problems which arise when using mass spectrometry (i.e., sensitivity and instrumental pumping capacity).

  6. Comprehensive characterisation of flame retardants in textile furnishings by ambient high resolution mass spectrometry, gas chromatography-mass spectrometry and environmental forensic microscopy.

    PubMed

    Ionas, Alin C; Ballesteros Gómez, Ana; Uchida, Natsuyo; Suzuki, Go; Kajiwara, Natsuko; Takata, Kyoko; Takigami, Hidetaka; Leonards, Pim E G; Covaci, Adrian

    2015-10-01

    The presence and levels of flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (PFRs), was determined in textile home furnishings, such as carpets and curtains from stores in Belgium. A comprehensive characterisation of FRs in textile was done by ambient high resolution mass spectrometry (qualitative screening), gas chromatography-mass spectrometry (GC-MS) (quantitation), and environmental forensic microscopy (surface distribution). Ambient ionisation coupled to a time-of-flight (TOF) high resolution mass spectrometer (direct probe-TOF-MS) was investigated for the rapid screening of FRs. Direct probe-TOF-MS proved to be useful for a first screening step of textiles to detect FRs below the levels required to impart flame retardancy and to reduce, in this way, the number of samples for further quantitative analysis. Samples were analysed by GC-MS to confirm the results obtained by ambient mass spectrometry and to obtain quantitative information. The levels of PBDEs and PFRs were typically too low to impart flame retardancy. Only high levels of BDE-209 (11-18% by weight) were discovered and investigated in localised hotspots by employing forensic microscopy techniques. Most of the samples were made of polymeric materials known to be inherently flame retarded to some extent, so it is likely that other alternative and halogen-free FR treatments/solutions are preferred for the textiles on the Belgian market.

  7. Analysis of pharmaceutical and other organic wastewater compounds in filtered and unfiltered water samples by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.

    2014-01-01

    Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample

  8. [Feasibility investigation of hydrogen instead of helium as carrier gas in the determination of five organophosphorus pesticides by gas chromatography-mass spectrometry].

    PubMed

    Liu, Zhenxue; Zhou, Shixue

    2015-01-01

    Helium is almost the only choosable carrier gas used in gas chromatography-mass spectrometry (GC-MS). A mixed standard solution of five organophosphorus pesticides was analyzed by using GC-MS, and hydrogen or helium as carrier gas, so as to study the feasibility of hydrogen instead of helium as carrier gas for the determination of organophosphorus pesticides. Combining a mass spectrum database built by ourselves, the results were deconvolved and identified by Automated Mass Spectral Deconvolution & Identification System (AMDIS32), a software belonging to the workstation of the instrument. Then, the statistical software, IBM SPSS Statistics 19.0 was used for the clustering analysis of the data. The results indicated that when hydrogen was used as carrier gas, the peaks of the pesticides detected were slightly earlier than those when helium used as carrier gas, but the resolutions of the chromatographic peaks were lower, and the fraction good indices (Frac. Good) were lower, too. When hydrogen was used as carrier gas, the signals of the pesticides were unstable, the measuring accuracies of the pesticides were reduced too, and even more, some compounds were undetectable. Therefore, considering the measuring accuracy, the signal stability, and the safety, etc., hydrogen should be cautiously used as carrier gas in the determination of organophosphorus pesticides by GC-MS.

  9. Titan's Organic Aerosols : Molecular Composition And Structure Inferred From Systematic Pyrolysis Gas Chromatography Mass Spectrometry Analysis of Analogues

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Buch, Arnaud; Carrasco, Nathalie; Gautier, Thomas

    2015-04-01

    In spite of numerous studies carried out to characterize the chemical composition of laboratory analogues of Titan aerosols (tholins), their molecular composition as well as their structuration are still little known. If Pyrolysis gas chromatography mass spectrometry (Pyr-GCMS) has been used for years to give clues about this composition, the highly disparate results obtained show that they can be attributed to the analytical conditions used, to differences in the nature of the analogues studied, or both. In order to have a better description of Titan's tholins molecular composition, we led a systematic analysis of these materials by pyr-GCMS, exploring the analytical parameters to estimate the biases this technique can induce. With this aim, we used the PAMPRE experiment, a capacitively coupled RF cold plasma reactor (Szopa et al. 2006), to synthetize tholins with 2%, 5% and 10% of CH4 in N2. The three samples were systematically pyrolyzed in the temperature range 200-600°C with a 100°C step. The evolved gases were then injected into a GC-MS device for molecular identification. This systematic pyr-GC-MS analysis had two major objectives: (i) optimizing all the analytical parameters for the detection of a wide range of compounds and thus a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio on the tholins molecular structure. About a hundred of molecules have been identified in the pyrolysis products. Although an identical major pattern of nitriles and ethylene appears clearly for the three samples, some discriminant signatures were highlighted. The samples mainly differ by the number of released compounds. The results show especially an increase in the hydrocarbonaceous chains when the CH4 ratio increases. At the opposite, the formation of poly-nitrogenous compounds seems to be easier for lower CH4 ratios. We also performed a semi-quantitative study on the best represented chemical family in

  10. Metabolomics study with gas chromatography-mass spectrometry for predicting valproic acid-induced hepatotoxicity and discovery of novel biomarkers in rat urine.

    PubMed

    Lee, Min Sun; Jung, Byung Hwa; Chung, Bong Chul; Cho, Sung Hee; Kim, Ki Young; Kwon, Oh Seoung; Nugraha, Boya; Lee, Young-Joo

    2009-01-01

    Three different doses of valproic acid (20, 100, and 500 mg/kg/d) are administered orally to Sprague-Dawley rats for 5 days, and the feasibility of metabolomics with gas chromatography-mass spectrometry as a predictor of the hepatotoxicity of valproic acid is evaluated. Body weight is found to decrease with the 100-mg/kg/d dose and significantly decrease with the 500-mg/kg/d dose. Mean excreted urine volume is lowest in the 500-mg/kg/d group among all groups. The plasma level of alpha-glutathione-S-transferase, a sensitive and earlier biomarker for hepatotoxicity, increases significantly with administration of 100 and 500 mg/kg/d; however, there is not a significant difference in alpha-glutathione-S-transferase plasma levels between the control and 20-mg/kg/d groups. Clusters in partial least squares discriminant analysis score plots show similar patterns, with changes in physiological conditions and plasma levels of alpha-glutathione-S-transferase; the cluster for the control and 20-mg/kg/d groups does not clearly separate, but the clusters are separate for 100- and 500-mg/kg/d groups. A biomarker of hepatotoxicity, 8-hydroxy-2'-deoxyguanosine and octanoylcarnitine, is identified from nontargeted and targeted metabolic profiling. These results validate that metabolic profiling using gas chromatography-mass spectrometry could be a useful tool for finding novel biomarkers. Thus, a nontargeted metabolic profiling method is established to evaluate the hepatotoxicity of valproic acid and demonstrates proof-of-concept that metabolomic approach with gas chromatography-mass spectrometry has great potential for predicting valproic acid-induced hepatotoxicity and discovering novel biomarkers.

  11. Determination of heat purgeable and ambient purgeable volatile organic compounds in water by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Rose, Donna L.; Sandstrom, Mark W.; Murtagh, Lucinda K.

    2016-09-08

    Two new analytical methods have been developed by the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) that allow the determination of 37 heat purgeable volatile organic compounds (VOCs) (USGS Method O-4437-16 [NWQL Laboratory Schedule (LS) 4437]) and 49 ambient purgeable VOCs (USGS Method O-4436-16 [NWQL LS 4436]) in unfiltered water. This report documents the procedures and initial performance of both methods. The compounds chosen for inclusion in the methods were determined as having high priority by the USGS National Water-Quality Assessment (NAWQA) Program. Both methods use a purge-and-trap technique with gas chromatography/mass spectrometry. The compounds are extracted from the sample by bubbling helium through a 25-milliliter sample. For the polar and less volatile compounds, the sample is heated at 60 degrees Celsius, whereas the less polar and more volatile compounds are purged using a separate analytical procedure at ambient temperature. The compounds are trapped on a sorbent trap, desorbed into a gas chromatograph/mass spectrometer for separation, and then identified and quantified. Sample preservation is recommended for both methods by adding a 1:1 solution of hydrochloric acid (HCl [1:1]) to water samples to adjust the pH to 2. Analysis within 14 days from sampling is recommended.The heat purgeable method (USGS Method O-4437-16) operates with the mass spectrometer in the simultaneous full scan/selected ion monitoring mode. This method supersedes USGS Method O-4024-03 (NWQL LS 4024). Method detection limits (MDLs) for fumigant compounds 1,2-dibromoethane, 1,2-dichloropropane, 1,2,3-trichloropropane, chloropicrin, and 1,2-dibromo-3-chloropropane range from 0.002 to 0.010 microgram per liter (µg/L). The MDLs for all remaining heat purgeable VOCs range from 0.006 µg/L for tert-butyl methyl ether to 3 µg/L for alpha-terpineol. Calculated holding times indicate that 36 of the 37 heat purgeable VOCs are stable for a minimum of 14 days

  12. Chapter 3. Determination of semivolatile organic compounds and polycyclic aromatic hydrocarbons in solids by