Science.gov

Sample records for gas cleanup system

  1. Assessment of fuel-gas-cleanup systems. Final report

    SciTech Connect

    Robson, F.L.; Blecher, W.A.

    1980-11-01

    This report presents the results of a study to evaluate the performance, economics and emission characteristics of low-, medium-, and high-temperature fuel gas cleanup processes for use in coal gasification combined-cycle power plants based on high-temperature gas turbines. Processes considered were the Allied Chemical low-temperature Selexol process, METC medium-temperature iron oxide process and Conoco high-temperature half-calcined dolomite process. Process evaluations were carried out for twenty-four combinations of gasifiers and cleanup processes. Based upon the process evaluations, five combinations of gasifiers and cleanup process were selected for integration with an advanced, 2600 F gas turbine into an overall power system. Heat and mass balances and process schematics for these plants were prepared and the cost of electricity estimated. The results of the study indicate that medium- or high-temperature cleanup systems in combined-cycle power plants could meet or exceed EPA New Source Performance Standards. Performance and cost of the systems studied can be improved by high- and intermediate-temperature cleanup systems or by integration of developmental hot gas heat exchangers with suitable commercially available low-temperature cleanup systems. Unresolved problems in the use of medium- and high-temperature cleanup are efficient regeneration of iron oxide, particulate removal at high temperature and the fate of fuel bound nitrogen and trace metals that may appear in the hot fuel gas.

  2. Enhancement of mercury control in flue-gas cleanup systems

    SciTech Connect

    Livengood, C.D.; Huang, Hann S.; Mendelsohn, M.H.; Wu, Jiann M.

    1996-07-01

    This paper summarizes research at Argonne National Laboratory which is focused on techniques to enhance the capture of elemental mercury and integrate its control into existing flue-gas cleanup (FGC) systems. Both laboratory and field tests have shown that very little elemental mercury is captured in a wet scrubber system due to the low solubility of that species. To enhance the ability of wet scrubbers to capture mercury, Argonne has studied improved mass transfer through both mechanical and chemical means, as well as the conversion of elemental mercury into a more soluble species that can be easily absorbed. Current research is investigating the roles of several halogen species either alone or in combination with typical flue-gas components such as sulfur dioxide and nitric oxide in the oxidation of mercury to form compounds that are easily scrubbed from the flue gas.

  3. Gas stream cleanup

    SciTech Connect

    Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

    1990-08-01

    This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

  4. Gas cleanup for indirect liquefaction

    SciTech Connect

    Wham, R.M.

    1984-08-01

    Visual aids are presented describing various classes of primary gas cleanup. These are: (1) amine systems (MDEA Process); (2) alkali salt systems; (3) physical absorption systems (Selexol Process, Stretford Process); (4) mixed solvent systems; and (5) Claus Sulfur Recovery System. Flowsheets are also presented for the MDEA, Selexol and Stretford processes.

  5. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect

    Not Available

    1990-12-01

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  6. Development of hot gas clean-up system for IGCC

    SciTech Connect

    Hori, Tetsuya

    1999-07-01

    The syngas generated at the gasifier in the Integrated Gasification Combined Cycle (IGCC) is reductive gas, so the sulfur in the fuel is reduced to H{sub 2}S and COS. Many wet types of gas clear up systems using liquid solvents are commercially available. However, the authors have been developing the higher performance and efficient system using oxide metals sorbent, that they call Hot Gas Clean Up system (HGCU system) with fluidized bed reactors. Therefore, the authors have participated, in Yubari and Nakoso pilot plant projects as the national project to develop and establish the HGCU system and it's technology to realize lower environmental emission and high thermal efficiency. The test results of those pilot plants had a very good performance and the authors have confirmed that the HGCU system is applicable to IGCC plant. Those pilot plants have used the iron oxide (crashed iron ore) as the desulfurization sorbent. However, the iron oxide sorbent cannot get high desulfurization performance for the gas containing high moisture (about 10 vol% and over) and cannot reach environmental requirements of the near future. Thus, the authors have developed the HGCU system using zinc oxide sorbent that is expected to have higher desulfurization performance. They have carried out many tests at the Coal Gasification Test facility (CGT test plant). They achieved 20 ppmV total HGCU system has high performance and reliability.

  7. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    SciTech Connect

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J.

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  8. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1

    SciTech Connect

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J.

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

  9. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    SciTech Connect

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  10. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1996-06-01

    The objective of the research is to provide databases and design criteria to assist in the selection of optimum alloys for construction of components needed to contain process streams in advanced heat recovery and hot-gas cleanup systems. Typical components include: steam line piping and superheater tubing for low emission boilers (600 to 700{degrees}C), heat exchanger tubing for advanced steam cycles and topping cycle systems (650 to 800{degrees}C), foil materials for recuperators, on advanced turbine systems (700 to 750{degrees}C), and tubesheets for barrier filters, liners for piping, cyclones, and blowback system tubing for hot-gas cleanup systems (850 to 1000{degrees}C). The materials being examined fall into several classes, depending on which of the advanced heat recovery concepts is of concern. These classes include martensitic steels for service to 650{degrees}C, lean stainless steels and modified 25Cr-30Ni steels for service to 700{degrees}C, modified 25Cr-20Ni steels for service to 900{degrees}C, and high Ni-Cr-Fe or Ni-Cr-Co-Fe alloys for service to 1000{degrees}C.

  11. Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems

    SciTech Connect

    Jost Wendt; Sung Jun Lee; Paul Blowers

    2008-09-30

    The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

  12. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1996-08-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, modified alloy 800, and two sulfidation resistant alloys: HR160 and HR120. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700{degrees}C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925{degrees}C with good weldability and ductility.

  13. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1995-08-01

    Alloys for design and construction of structural components needed to contain process streams and provide internal structures in advanced heat recovery and hot gas cleanup systems were examined. Emphasis was placed on high-strength, corrosion-resistant alloys for service at temperatures above 1000 {degrees}F (540{degrees}C). Data were collected that related to fabrication, joining, corrosion protection, and failure criteria. Alloys systems include modified type 310 and 20Cr-25Ni-Nb steels and sulfidation-resistance alloys HR120 and HR160. Types of testing include creep, stress-rupture, creep crack growth, fatigue, and post-exposure short-time tensile. Because of the interest in relatively inexpensive alloys for high temperature service, a modified type 310 stainless steel was developed with a target strength of twice that for standard type 310 stainless steel.

  14. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    SciTech Connect

    Swindeman, R.W.

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  15. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  16. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  17. Landfill gas cleanup for fuel cells

    SciTech Connect

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  18. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    SciTech Connect

    Tortorelli, P.F.; DeVan, H.J.; Judkins, R.R.

    1995-06-01

    The product gas resulting from the partial oxidation of carboniferous materials in a gasifier consists predominantly of CO, CO{sub 2}, H{sub 2}, H{sub 2}O, CH{sub 4}, and, for air-blown units, N{sub 2} in various proportions at temperatures ranging from about 400 to 1000{degree}C. Depending on the source of the fuel, smaller concentrations of H{sub 2}S, COS, and NH{sub 3} can also be present. The gas phase is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials used in the gasifier can occur. Therefore, there are numerous concerns about materials performance in coal gasification systems, particularly at the present time when demonstration-scale projects are in or nearing the construction and operation phases. This study focused on the subset of materials degradation phenomena resulting from carbon formation and carburization processes, which are related to potential operating problems in certain gasification components and subsystems. More specifically, it examined the current state of knowledge regarding carbon deposition and a carbon-related degradation phemonenon known as metal dusting as they affect the long-term operation of the gas clean-up equipment downstream of the gasifier and addressed possible means to mitigate the degradation processes. These effects would be primarily associated with the filtering and cooling of coal-derived fuel gases from the gasifier exit temperature to as low as 400{degree}C. However, some of the consideratins are sufficiently general to cover conditions relevant to other parts of gasification systems.

  19. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  20. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  1. Design, construction, and operation of a life-cycle test system for the evaluation of flue gas cleanup processes

    SciTech Connect

    Pennline, H.W.; Yeh, James T.; Hoffman, J.S.; Longton, E.J.; Vore, P.A.; Resnik, K.P.; Gromicko, F.N.

    1995-12-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has designed, constructed, and operated a Life-Cycle Test Systems (LCTS) that will be used primarily for the investigation of dry, regenerable sorbent flue gas cleanup processes. Sorbent continuously cycles from an absorber reactor where the pollutants are removed from the flue gas, to a regenerator reactor where the activity of the spent sorbent is restored and a usable by-product stream of gas is produced. The LCTS will initially be used to evaluate the Moving-Bed Copper Oxide Process by determining the effects of various process parameters on SO{sub 2} and NO{sub x} removals. The purpose of this paper is to document the design rationale and details, the reactor/component/instrument installation, and the initial performance of the system. Although the Moving-Bed Copper Oxide Process will be investigated initially, the design of the LCTS evolved to make the system a multipurpose, versatile research facility. Thus, the unit can be used to investigate various other processes for pollution abatement of SO{sub 2}, NO{sub x}, particulates, air toxics, and/or other pollutants.

  2. Hot gas cleanup for molten carbonate fuel cells: A zinc reactor model

    NASA Astrophysics Data System (ADS)

    Steinfeld, G.

    1980-09-01

    Of the two near term options available for desulfurization of gasifier effluent, namely low temperature cleanup utilizing absorber/stripper technology, and hot gas cleanup utilizing metal oxides, there is a clear advantage to using hot gas cleanup. Since the MCFC will operate at 1200 F, and the gasifier effluent could be between 1200 to 1900 F, a hot gas cleanup system will require little or no change in process gas temperature, thereby contributing to a high overall system efficiency. Simulated operating characteristics to aid in system design and system simulations of gasifier/MCFC systems are described. The modeling of the ZnO reactor is presented.

  3. PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES

    SciTech Connect

    1999-02-26

    This quarterly report describes technical activities performed under Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under Task 1 of this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This report includes a description of a device developed to harden a filter cake on a filter element so that the element and cake can subsequently be encapsulated in epoxy and studied in detail. This report also reviews the status of the HGCU data base of ash and char characteristics. Task 1 plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy/Southern Company Services Power Systems Development Facility (PSDF), encapsulation of an intact filter cake from the PSDF, and completion and delivery of the HGCU data bank. Task 2 of this project concerns the testing and failure analyses of new and used filter elements and filter materials. Task 2 work during the past quarter consisted of hoop tensile and axial compressive stress-strain responses of McDermott ceramic composite and hoop tensile testing of Techniweave candle filters as-manufactured and after exposure to the gasification environment.

  4. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  5. Reactive carbon from life support wastes for incinerator flue gas cleanup-System Testing

    SciTech Connect

    Fisher, John W.; Pisharody, Suresh; Moran, Mark J.; Wignarajah, Kanapathipillai; Xu, X.H.; Shi, Yao; Chang, Shih-Ger

    2002-05-14

    This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO{sub x} and SO{sub 2} contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO{sub x} and SO{sub 2} in activated carbon made from biomass. Conversion of adsorbed NO{sub x} to nitrogen has also been observed.

  6. Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems

    DOEpatents

    Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

    1983-08-26

    A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

  7. Design and test of an exhaust gas clean-up system for power plants using high sulphur content fuels. Final report

    SciTech Connect

    Chang, C.N.

    1980-10-10

    This experimental program, initially designated to study an exhaust gas cleanup and water recovery system for a Cheng Cycle Dual-Fluid (CCDF) turbine power plant using sulfur rich fuels, has shown the potential of a general Flue Gas Desulfurization (FGD) system applicable to utility and industrial boilers as well. The process was studied both theoretically and experimentaly. Experiments were performed using a bench scale (25k equivalent) apparatus and a pilot scale (1Mw equivalent) apparatus. Data obtained indicated the IPT process potentially can out-perform the conventional FGD process with significant cost savings.

  8. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  9. Particulate Hot Gas Stream Cleanup Technical Issues

    SciTech Connect

    Dorchak, T.P.; Pontiu, D.H.; Snyder, T.R.

    1996-12-31

    The nature of the collected ash has been identified as an issue creating barriers to the commercialization of advanced particle control technologies. Since most of the emphasis and extended operation of Hot Gas Stream Cleanup (HGCU) facilities have been with ceramic candle filters, problems with ash characteristics can be understood in terms of their effects on these control devices. This project is designed to identify the ways ash characteristics affect advanced particle control technologies, to construct and maintain a data base of HGCU ashes and their measured characteristics, and to relate these characteristics to the operation and performance of these facilities. The key characteristics of the collected ash are the morphology of the overall ash aggregate (porosity, geometry of the pores, specific surface area, etc.), and the cohesivity of the aggregate. Our data base currently comprises 242 ash samples from 12 combustion and gasification (HGCU) sources.

  10. Hot gas cleanup for molten carbonate fuel cells. A zinc oxide reactor model, Final report

    SciTech Connect

    Steinfeld, G.

    1980-09-16

    Utilization of coal gasifiers to power MCFC requires a cleanup system to remove sulfur and particulates. Of the two near term options available for desulfurization of gasifier effluent, namely low temperature cleanup utilizing absorber/stripper technology, and hot gas cleanup utilizing metal oxides, there is a clear advantage to using hot gas cleanup. Since the MCFC will operate at 1200/sup 0/F, and the gasifier effluent could be between 1200 to 1900/sup 0/F, a hot gas cleanup system will require little or no change in process gas temperature, thereby contributing to a high overall system efficiency. A hot gas cleanup system will consist of FeO for bulk H/sub 2/S removal and ZnO for reduction of H/sub 2/S to sub ppM levels. Hot gas cleanup systems at present are not available commercially, and therefore it is the objective of this project to model the components of the system in order to help bring this technology closer to commercialization, by providing simulated operating characteristics to aid in system design, and system simulations of gasifier/MCFC systems. The modeling of the ZnO reactor is presented.

  11. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  12. Renewable Natural Gas Clean-up Challenges and Applications

    DTIC Science & Technology

    2011-01-13

    produced from digesters ─ Animal manure (dairy cows, swine) ─ Waste water treatment facilities > Methane from Landfills > RNG produced from...AGR used in process • Two stage + trim methanation reactor • Dehydration to achieve gas pipeline specifications ~ 70% conversion efficiency 21... digestion of agricultural waste for on-site electricity generation ─Altamont Landfill—Landfill gas (LFG) cleanup for production of liquefied natural gas

  13. Biomass Gas Cleanup Using a Therminator

    SciTech Connect

    Dayton, David C; Kataria, Atish; Gupta, Rabhubir

    2012-03-06

    The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a Therminator to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. We will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very

  14. The effect of IGFC warm gas cleanup system conditions on the gas–solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes

    SciTech Connect

    Trembly, J.P.; Gemmen, R.S.; Bayless, D.J.

    2007-01-01

    The U.S. Department of Energy is currently working on coupling coal gasification and high temperature fuel cell to produce electrical power in a highly efficient manner while being emissions free. Many investigations have already investigated the effects of major coal syngas species such as CO and H2S. However coal contains many trace species and the effect of these species on solid oxide fuel cell anode is not presently known.Warm gas cleanup systems are planned to be used with these advanced power generation systems for the removal of major constituents such as H2S and HCl but the operational parameters of such systems is not well defined at this point in time. This paper focuses on the effect of anticipated warm gas cleanup conditions has on trace specie partitioning between the vapor and condensed phase and the effects the trace vapor species have on the SOFC anode. Results show that Be, Cr, K, Na, V, and Z trace species will form condensed phases and should not effect SOFC anode performance since it is anticipated that the warm gas cleanup systems will have a high removal efficiency of particulate matter. Also the results show that Sb, As, Cd, Hg, Pb, P, and Se trace species form vapor phases and the Sb, As, and P vapor phase species show the ability to form secondary Ni phases in the SOFC anode.

  15. A new hot gas cleanup filter design methodology

    SciTech Connect

    VanOsdol, J.G.; Dennis, R.A.; Shaffer, F.D.

    1996-12-31

    The fluid dynamics of Hot Gas Cleanup (HGCU) systems having complex geometrical configurations are typically analyzed using computational fluid dynamics codes (CFD) or bench-scale laboratory test facilities called cold-flow models (CFM). At the present time, both CFD and CFM can be effectively used for simple flows limited to one or two characteristic length scales with well defined boundary conditions. This is not the situation with HGCU devices. These devices have very complex geometries, low Reynolds number, multi-phase flows that operate on multiple-length scales. For this reason, both CFD and CFM analysis cannot yet be considered as a practical engineering analysis tool for modeling the entire flow field inside HGCU systems. The thrust of this work is to provide an aerodynamic analysis methodology that can be easily applied to the complex geometries characteristic of HGCU filter vessels, but would not require the tedious numerical solution to the entire set of transport equations. The analysis methodology performs the following tasks: Predicts problem areas where ash deposition will most likely occur; Predicts residence times for particles at various locations inside the filter vessel; Lends itself quickly to major design changes; Provides a sound technical basis for more appropriate use of CFD and CFM analysis; and Provides CFD and CFM analysis in a more focused way where if is needed.

  16. Experimental evaluation of a small fusion fuel cleanup systems

    SciTech Connect

    Holtslander, W.J.; Johnson, R.E.; Gravelle, F.B.; Schultz, C.M.

    1986-01-01

    Small tritium-burning experimental tokamaks will require some means of handling and purifying the deuterium-tritium fuel. A simple purification system would allow reinjection of fuel, minimize tritium inventory on site, and reduce the number of shipments of tritium to and from the tokamak site. This could simplify the licensing and safety aspects for sites unsuited to large inventories of tritium. At the request of the Canadian Fusion Fuels Technology Project, a number of conceptual designs of fusion fuel cleanup systems were prepared. The preferred design consisted of a gas circulation loop comprising an expansion tank, a pump, and a number of purification units, a uranium bed, a zirconium-aluminum getter bed, and two catalyst beds, Pt/Pd and CuO/MnO/sub 2/. This paper summarizes an experimental evaluation of this system using hydrogen and nontriated impurities. Using the information generated in the first part of the study, a simplified cleanup system containing two alternative purification paths was built and tested. The first path was through two uranium beds in series operating at 25 and 400/sup 0/C. In the second path, a zirconium-aluminum getter bed at 700/sup 0/C replaced the hot uranium bed. Both systems were demonstrated to be effective in the cleanup of a multicomponent gas mixture. These results show it is possible to have a simple cleanup system that is effective for purification of hydrogen that is typical of a fusion fuel mixture. This system provides for tritium recovery from the impurities, as well as purification.

  17. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system

    SciTech Connect

    Renk, J.B. III

    1995-06-01

    This environmental assessment (EA) was prepared to evaluate the potential impacts of a proposed demonstration project to be cost-shared by DOE and NOXSO Corporation under the terms of Clean Coal Technology (CCT) Demonstration Program. The project would demonstrate the NOXSO flue gas treatment technology, which is designed to reduce sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions from existing coal-fired electric generating units. Its objective is to introduce advanced, efficient, reliable, and environmentally improved coal utilization technologies to the U.S. energy marketplace, in order to reduce or eliminate economic and environmental barriers to the continued use of coal as an energy source. This EA represents the third level of DOE`s NEPA strategy: the preparation and public distribution of NEPA documents for each project selected for financial assistance under the PON. It contains a site-specific environmental impact analysis of the proposed federal action, and will result in either a Finding of No Significant Impact, or a determination that significant impacts may occur, in which case an Environmental Impact Statement must be prepared. The sources of information for this EA include the technical proposal for the project submitted by NOXSO in response to the CCT Round III PON; discussions with NOXSO and their consultants; discussions with federal, state and local agencies; the April 1995 NOXSO Environmental Information Volume provided to DOE for the project; and visits to the proposed project sites.

  18. CRADA opportunities with METC`s gasification and hot gas cleanup facility

    SciTech Connect

    Galloway, E N; Rockey, J M; Tucker, M S

    1995-06-01

    Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}F and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.

  19. Hot particulate removal and desulfurization results from the METC integrated gasification and hot gas cleanup facility

    SciTech Connect

    Rockey, J.M.

    1995-06-01

    The Morgantown Energy Technology Center (METC) is conducting experimental testing using a 10-inch diameter fluid-bed gasifier (FBG) and modular hot gas cleanup rig (MGCR) to develop advanced methods for removing contaminants in hot coal gasifier gas streams for commercial development of integrated gasification combined-cycle (IGCC) power systems. The program focus is on hot gas particulate removal and desulfurization technologies that match the temperatures and pressures of the gasifier, cleanup system, and power generator. The purpose of this poster is to present the program objectives and results of the work conducted in cooperation with industrial users and vendors to meet the vision for IGCC of reducing the capital cost per kilowatt to $1050 and increasing the plant efficiency to 52% by the year 2010.

  20. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly report, April--June 1995

    SciTech Connect

    1995-08-01

    This quarterly technical progress report summarizes the work completed during the first quarter, April 1 through June 30, 1995. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasificafion and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel continued at a good pace during the quarter.

  1. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    SciTech Connect

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  2. Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995

    SciTech Connect

    1996-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

  3. Architecture synthesis basis for the Hanford Cleanup system: First issue

    SciTech Connect

    Holmes, J.J.

    1994-06-01

    This document describes a set of candidate alternatives proposed to accomplish the Hanford Cleanup system functions defined in a previous work. Development of alternatives is part of a sequence of system engineering activities which lead to definition of all the products which, when completed, accomplish the cleanup mission. The alternative set is developed to functional level four or higher depending on need.

  4. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 15, September 1, 1994--November 30, 1994

    SciTech Connect

    1997-01-01

    The objective of the NOXSO Demonstration Project (NDP), with cost-shared funding support from DOE, is to design, construct, and operate a commercial-scale flue gas cleanup system utilizing the NOXSO process. The NDP consists of the NOXSO plant and sulfur recovery unit, designed to remove SO{sub 2} and NO{sub x} from flue gas and produce elemental sulfur by-product, and the liquid SO{sub 2} plant and air separation unit, designed to process the elemental sulfur into liquid SO{sub 2}. The NOXSO plant and sulfur recovery unit will be constructed at ALCOA Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana, and will treat all of the flue gas from the 150-MW Unit 2 boiler. The elemental sulfur produced will be shipped to the Olin Charleston Plant in Charleston, Tennessee, for conversion into liquid SO{sub 2}.

  5. ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP

    SciTech Connect

    T.D. Wheelock; L.K. Doraiswamy; K.P. Constant

    2003-09-01

    The overall purpose of this project was to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas with the sorbent being in the form of small pellets made with a layered structure such that each pellet consists of a highly reactive lime core enclosed within a porous protective shell of strong but relatively inert material. The sorbent can be very useful for hot gas cleanup in advanced power generation systems where problems have been encountered with presently available materials. An economical method of preparing the desired material was demonstrated with a laboratory-scale revolving drum pelletizer. Core-in-shell pellets were produced by first pelletizing powdered limestone or other calcium-bearing material to make the pellet cores, and then the cores were coated with a mixture of powdered alumina and limestone to make the shells. The core-in-shell pellets were subsequently calcined at 1373 K (1100 C) to sinter the shell material and convert CaCO{sub 3} to CaO. The resulting product was shown to be highly reactive and a very good sorbent for H{sub 2}S at temperatures in the range of 1113 to 1193 K (840 to 920 C) which corresponds well with the outlet temperatures of some coal gasifiers. The product was also shown to be both strong and attrition resistant, and that it can be regenerated by a cyclic oxidation and reduction process. A preliminary evaluation of the material showed that while it was capable of withstanding repeated sulfidation and regeneration, the reactivity of the sorbent tended to decline with usage due to CaO sintering. Also it was found that the compressive strength of the shell material depends on the relative proportions of alumina and limestone as well as their particle size distributions. Therefore, an extensive study of formulation and preparation conditions was conducted to improve the performance of both the core and shell materials. It was subsequently determined that MgO tends to stabilize the high

  6. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996

    SciTech Connect

    1996-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

  7. Fixed-bed gasifier and cleanup system engineering summary report through Test Run No. 100

    SciTech Connect

    Pater, K. Jr.; Headley, L.; Kovach, J.; Stopek, D.

    1984-06-01

    The state-of-the-art of high-pressure, fixed-bed gasification has been advanced by the many refinements developed over the last 5 years. A novel full-flow gas cleanup system has been installed and tested to clean coal-derived gases. This report summarizes the results of tests conducted on the gasifier and cleanup system from its inception through 1982. Selected process summary data are presented along with results from complementary programs in the areas of environmental research, process simulation, analytical methods development, and component testing. 20 references, 32 figures, 42 tables.

  8. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    SciTech Connect

    Pennline, Henry W; Hoffman, James S

    2013-10-01

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  9. Hot Gas Cleanup Test Facility for gasification and pressurized combustion

    SciTech Connect

    Not Available

    1991-01-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The major emphasis during this reporting period was finishing the conceptual design for the test facility and discussions on the potential expansion of the test facility. Results are discussed for the following subtasks of conceptual design: design bases; quasifier/combustor and hot stream design; balance of plant designs; and particulate collection.

  10. An experimental evaluation of a small fusion fuel cleanup system

    SciTech Connect

    Holtslander, W.J.; Johnson, R.E.; Gravelle, F.B.; Schultz, C.M.

    1986-01-01

    Small tritium-burning experimental tokamaks will require some means of handling and purifying the deuterium-tritium fuel. A simple purification system would allow reinjection of fuel, minimize tritium inventory on site, and reduce the number of shipments of tritium to and from the tokamak site. This could simplify the licensing and safety aspects for sites unsuited to large inventories of tritium. At the request of the Canadian Fusion Fuels Technology Project, a number of conceptual designs of fusion fuel cleanup systems were prepared. These designs were based on handling 5000-Ci batches of fuel containing helium (2%), water (0.4%), oxygen and nitrogen (0.1% each), and carbon oxides and methane (0.5% each). The purified fuel was to have impurity concentrations no greater than 1% helium and 0.1% total for the remainder. Six conceptual designs were prepared and evaluated. In each of these, the fuel from the tokamak was diluted to {approximately}25% in helium prior to processing. The basis of the purification cycle was to dilute the fuel with helium as a carrier gas, remove all of the hydrogen and impurities, and regenerate pure fuel for reuse. The preferred design consisted of a gas circulation loop comprising an expansion tank, a pump, and a number of purification units, a uranium bed, a zirconium-aluminum getter bed, and two catalyst beds, Pt/Pd and CuO/MnO{sub 2}. This paper summarizes an experimental evaluation of this system using hydrogen and nontriated impurities. 1 ref.

  11. Process-information definition for evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants. Task A topical report

    SciTech Connect

    Vidt, E.J.

    1981-11-01

    This report satisfies the requirements for DOE contract DE-AC21-81MC16220 to list coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The process information and data necessary for this study were extracted from sources in the public domain, including reports from DOE, EPRI, and EPA; work sponsored in whole or in part by federal agencies; and from trade journals, MCFC developers, and manufacturers. The listings included data on the state of development, operating characteristics, effluents, and effectiveness of the gasifiers and coal gas cleanup systems, to the extent that such information is available in the public domain. Information available in the public domain on the effects of contaminants on MCFC performance and on the design constraints on heat recovery equipment used to adjust coal gas temperatures to levels appropriate for available cleanup systems was also provided. Cleanup systems not chosen by DOE's MCFC contractors, General Electric and United Technologies, Inc., for their MCFC power plant work, by virtue of the resource requirements of those systems for commercial development, were extensively characterized. Such characterization is included in Appendix B, principally for the hot gas cleanup processes listed therein. One of those processes, using zinc ferrite for coal gas desulfurization, is now under active development by METC and has the potential for effective use in MCFC power plants.

  12. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)

    SciTech Connect

    Quimby, J.M.; Kumar, K.S.

    1992-01-01

    The objective of this contract was to investigate the removal of SO[sub x] and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO[sub x] removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800[degrees] and 2500[degrees]F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

  13. A novel carbon-based process for flue gas cleanup

    SciTech Connect

    Gangwal, S.K. ); Silveston, P.L. )

    1992-04-01

    The objective of this project is to demonstrate the preliminary technical and economic feasibility of a novel carbon-based process for removal of at least 95% SO{sub 2} and at least 75% NO{sub x} coal combustion flue gas. In the process, flue gas leaving the electrostatic precipitator (ESP) is passed through a trickle bed of achieved carbon catalyst employing a periodic flush of low strength sulfuric acid. The SO{sub 2} is oxidized to SO{sub 3} and removed as medium strength sulfuric acid. The SO{sub 2}-free flue gas is then mixed with NH{sub 3}, and the NO{sub x} in the gas is subjected to selective catalytic reduction (SCR) to N{sub 2} over a fixed bed of activated carbon catalyst. The experimental work is divided between Research Triangle Institute (RTI) and the University of Waterloo (Waterloo). RTI will conduct the NO{sub x} removal studies, whereas Waterloo will conduct the SO{sub 2} removal studies. The ultimate goal of the project is to demonstrate that the process can be reduce the cost of electricity by 20% over conventional SCR/flue gas desulfurization (FGD) processes. In the present quarter, the continuous SO{sub 2} analyzer system at Waterloo was completed. The SO{sub 2} removal factorial experiments were begun Waterloo with the BPL carbon at 21{degrees}C. Also, SO{sub 2} removal was tested on two catalyst at RTI at 80{degrees}C. NO{sub x} conversion was tested on a variety of catalysts at RTI. It was shown that the BPL carbon could remove over 95% SO{sub 2} at 21{degrees}C but would required several beds at space velocity in each bed of abut 1,500 scc/(cc{center dot}h) to reduce SO{sub 2} from 2,500 ppm to 100 ppm. A modified carbon catalyst tested at RTI showed 99% SO{sub 2} removal at 80{degrees}C at 1,400 scc/(cc{center dot}h). Also, it was possible to produce nearly 9 normal H{sub 2}SO{sub 4} by periodic flushing of this catalyst. The modified carbon catalyst also demonstrated removal of more than 80% NO{sub x}. 7 refs., 7 figs., 4 tabs.

  14. Advanced separation technology for flue gas cleanup. Topical report

    SciTech Connect

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S.

    1995-01-01

    The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. The process will generate only marketable by-products. Our approach is to reduce the capital cost by using high-efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. Our novel chemistry for scrubbing NO{sub x} will consist of water-soluble phthalocyanine compounds invented by SRI as well as polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media. The final novelty of our approach is the arrangement of the absorbers in cassette (stackable) form so that the NO{sub x} absorber can be on top of the SO{sub x} absorber. This arrangement is possible only because of the high efficiency of the hollow fiber scrubbing devices, as indicated by our preliminary laboratory data. This arrangement makes it possible for the SO{sub 2} and NO{sub x} scrubbing chambers to be separate without incurring the large ducting and gas pressure drop costs necessary if a second conventional absorber vessel were used. Because we have separate scrubbers, we will have separate liquor loops and simplify the chemical complexity of simultaneous SO{sub 2}/NO{sub x} scrubbing.

  15. Visual system for waste tank cleanup

    SciTech Connect

    Millsap, W.J. ); Shimamoto, M.S.; Spain, E.H.; Smith, D.C. ); Evans, M.S. )

    1991-09-01

    The single-shell underground radioactive waste storage tanks at the US Department of Energy's Hanford Site are briefly described and their physical complexities discussed. The attributes of a remote visual system needed to work productively in this environment are reviewed. The vision subsystem of the Naval Ocean Systems Center's TeleOperator/telePresence System, which closely approaches the required attributes, is briefly described. The possibility and usefulness of overlaying the visual image of the tank and its contents with a virtual model are discussed.

  16. Visual system for waste tank cleanup

    SciTech Connect

    Millsap, W.J.; Shimamoto, M.S.; Spain, E.H.; Smith, D.C.; Evans, M.S.

    1991-09-01

    The single-shell underground radioactive waste storage tanks at the US Department of Energy`s Hanford Site are briefly described and their physical complexities discussed. The attributes of a remote visual system needed to work productively in this environment are reviewed. The vision subsystem of the Naval Ocean Systems Center`s TeleOperator/telePresence System, which closely approaches the required attributes, is briefly described. The possibility and usefulness of overlaying the visual image of the tank and its contents with a virtual model are discussed.

  17. Task 6.5 - Gas Separation and Hot-Gas Cleanup

    SciTech Connect

    Swanson, Michael L.; Ness Jr., Robert O.; Hurley, John P.; McCollor, Donald P.

    1997-06-01

    Catalytic gasification of coal to produce H{sub 2}- and CH{sub 4}-rich gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inerts (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before they enter the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. One process currently under development by the Energy & Environmental Research Center (EERC) for accomplishing this gas separation and hot-gas cleanup involves gas separation membranes. These membranes are operated at temperatures as high as 800 C and pressures up to 300 psig. Some of these membranes can have very small pores (30-50 {angstrom}), which inefficiently separate the undesired gases by operating in the Knudsen diffusion region of mass transport. Other membranes with smaller pore sizes (<5 {angstrom}) operate in the molecular sieving region of mass transport phenomena, Dissolution of atomic hydrogen into thin metallic membranes made of platinum and palladium alloys is also being developed. Technological and economic issues that must be resolved before gas separation membranes are commercially viable include improved gas separation efficiency, membrane optimization, sealing of membranes in pressure vessels, high burst strength of the ceramic material, pore thermal stability, and material chemical stability. Hydrogen separation is dependent on the temperature, pressure, pressure ratio across the membrane, and ratio of permeate flow to total flow. For gas separation under Knudsen diffusion, increasing feed pressure and pressure ratio across the membrane should increase gas permeability; decreasing the temperature and the permeate-to-total flow

  18. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  19. Acoustic agglomeration of power plant fly ash for environmental and hot gas cleanup

    SciTech Connect

    Reethof, G.; Koopmann, G.H.

    1989-12-01

    This two year research program has the objectives of completing the several investigations associated with the use of high intensity acoustic energy to agglomerate micron and submicron sized particles in fly ash aerosols in order to provide the necessary scientific knowledge and design criteria for the specification of technically and economically viable intermediate flue gas treatment of coal fired power plants. Goals are to further the understanding of certain fundamental processes by means of theoretical and experimental investigations to include this knowledge in an advanced computerized model of the agglomeration processes. Tests with the acoustic agglomeration facilities available in Penn State's new High Intensity Acoustic Laboratory were to be used to verify the results from the acoustic agglomeration simulations. Research work continued on high power, high efficiency sirens with special emphasis on the nonlinear acoustic phenomena and novel means of significantly increasing siren efficiency. A study was carried out to evaluate the economics of conventional coal fired power plant clean-up systems using acoustic agglomeration as an intermediate flue gas treatment. 154 refs., 152 figs., 30 tabs.

  20. Engineering a new material for hot gas cleanup

    SciTech Connect

    Wheelock, T.D.; Doraiswamy, L.K.; Constant, K.

    2000-03-01

    The engineering development of a promising sorbent for desulfurizing hot coal gas was initiated and preliminary results are presented. The sorbent is calcium-based and is designed to be regenerated and reused repeatedly. It is prepared by pelletizing powdered limestone in a rotating drum pelletizer followed by the application of a coating which becomes a strong, porous shell upon further treatment. The resulting spherical pellets combine the high reactivity of lime with the strength of an inert protective shell. Preliminary work indicates that a satisfactory shell material is comprised of a mixture of ultrafine alumina powder, somewhat coarser alumina particles, and pulverized limestone which upon heating to 1,373 K (1,100 C) becomes a coherent solid through the mechanism of particle sintering. Several batches of core-in-shell pellets were prepared and tested with encouraging results.

  1. Granular flow in Dorfan Impingo filter for gas cleanup

    SciTech Connect

    Hsiau, S.S.; Smid, J.; Tsai, H.H.; Kuo, J.T.; Chou, C.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Drofan Impingo panel with transparent front and rear walls, the velocity fields of filter granules without gas cross flow were observed. The PE beads with diameter of 6 mm were used as filter granules. The filter bed was filled with beads continuously and circulated until the granular flows inside the panel reached the steady state condition. In the moving granular bed, there is a central fast flowing core of filter granules surrounded by large quasi-stagnant zones located close to the louver walls. The existence of quasi-stagnant zones may result in the dust plugging problems. The velocity fields of filter granules are plotted for three different louver geometries.

  2. Task 3.17 -- Hot-gas cleanup. Semi-annual report, July 1--December, 31, 1996

    SciTech Connect

    Timpe, R.C.; Mann, M.D.

    1997-08-01

    The programmatic goal in advanced power systems will be to develop advanced methods for gas stream cleanup in combustion and gasification systems, using in situ and back-end technologies. The characteristics of the fuel, its ash, and sorbents will be evaluated to determine their impact on overall performance, including the reduction of gas stream contaminants. Objectives for the work to be performed under this subtask include the following: identifying effective means for hot-gas cleanup and testing in-bed sorbents for accomplishing 99% alkali capture as well as effective capture of sulfur and chlorine during PFBC; developing catalysts and effective operating ranges for removing tar from gasification process streams. Accomplishments to date and conclusions from the literature survey, thermogravimetric testing, and bench-scale testing on the capture of alkali during PFBC using in-bed sorbents are described. In addition Englehard EMcat Elite S-3699 was tested for its ability to crack coal tar produced during steam gasification of bituminous coal. Preliminary results are described.

  3. Development of a Calicum-Based Sorbent for Hot Gas Cleanup.

    SciTech Connect

    Wheelock, T.W.; Constant, K.; Doraiswamy, L.K.; Akiti, T.; Zhu, J.; Amanda, A.; Roe, R.

    1997-09-01

    Further review of the technical literature has provided additional information which will support the development of a superior calcium-based sorbent for hot gas cleanup in IGCC systems. Two general methods of sorbent preparation are being investigated. One method involves impregnating a porous refractory substrate with calcium while another method involves pelletizing lime or other calcium containing materials with a suitable binder. Several potential substrates, which are made of alumina and are commercially available, have been characterized by various methods. The surface area and apparent density of the materials have been measured, and it has been shown that some of the high surface area materials (i.e., 200-400 m{sub 2}/g) undergo a large decrease in surface area when heated to higher temperatures. Some of the lower surface area materials (i.e., 1-30 m{sub 2}/g) have been successfully impregnated with calcium by soaking them in a calcium nitrate solution and then heat treating them to decompose the nitrate. Potentially useful sorbents have also been prepared by pelletizing type I Portland cement and mixtures of cement and lime.

  4. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect

    1995-09-01

    The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

  5. Production of activated char from Illinois coal for flue gas cleanup

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.; Kruse, C.W.

    1997-01-01

    Activated chars were produced from Illinois coal and tested in several flue gas cleanup applications. High-activity chars that showed excellent potential for both SO2 and NOx removal were prepared from an Illinois No. 2 bituminous coal. The SO2 (120 ??C) and NOx (25 ??C) removal performance of one char compared favorably with that of a commercial activated carbon (Calgon Centaur). The NOx removal performance of the same char at 120 ??C exceeded that of the Centaur carbon by more than 1 order of magnitude. Novel char preparation methods were developed including oxidation/thermal desorption and hydrogen treatments, which increased and preserved, respectively, the active sites for SO2 and NOx adsorption. The results of combined SO2/NOx removal tests, however, suggest that SO2 and NOx compete for similar adsorption sites and SO2 seems to be more strongly adsorbed than NO. A low-activity, low-cost char was also developed for cleanup of incinerator flue gas. A three-step method involving coal preoxidation, pyrolysis, and CO2 activation was used to produce the char from Illinois coal. Five hundred pounds of the char was tested on a slipstream of flue gas from a commercial incinerator in Germany. The char was effective in removing >97% of the dioxins and furans present in the flue gas; mercury levels were below detectable limits.

  6. Engineering analyses for evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants. Task C

    SciTech Connect

    Hamm, J.R.; Vidt, E.J.

    1982-02-01

    This report satisfies the Task C requirement for DOE contract DE-AC21-81MC16220 to provide engineering analyses of power systems utilizing coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The process information and data necessary for this study were extracted from sources in the public domain, including reports from DOE, EPRI, and EPA; work sponsored in whole or in part by Federal agencies; and from trade journals, MCFC developers, and manufacturers. The computer model used by Westinghouse, designated AHEAD, is proprietary and so is not provided in this report. The engineering analyses provide relative power system efficiency data for ten gasifier/gas cleanup fuel supply systems, including air- and oxygen-blown gasification, hot and cold desulfurization, and a range of MCFC operating pressure from 345 kPaa (50 psia) to 2069 kPaa (300 psia).

  7. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration). Draft final technical report

    SciTech Connect

    Quimby, J.M.; Kumar, K.S.

    1992-12-31

    The objective of this contract was to investigate the removal of SO{sub x} and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO{sub x} removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800{degrees} and 2500{degrees}F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

  8. Fuel cleanup system for the tritium systems test assembly: design and experiments

    SciTech Connect

    Kerr, E.C.; Bartlit, J.R.; Sherman, R.H.

    1980-01-01

    A major subsystem of the Tritium Systems Test Assembly is the Fuel Cleanup System (FCU) whose functons are to: (1) remove impurities in the form of argon and tritiated methane, water, and ammonia from the reactor exhaust stream and (2) recover tritium for reuse from the tritiated impurities. To do this, a hybrid cleanup system has been designed which utilizes and will test concurrently two differing technologies - one based on disposable, hot metal (U and Ti) getter beds and a second based on regenerable cryogenic asdorption beds followed by catalytic oxidation of impurities to DTO and stackable gases and freezout of the resultant DTO to recover essentially all tritium for reuse.

  9. Development of a calcium-based sorbent for hot gas cleanup. Semi-annual technical progress report, October 1, 1996--March 31, 1997

    SciTech Connect

    Wheelock, T.D.; Doraiswamy, L.K.; Constant, K.

    1997-03-01

    Work has started on the development of a superior calcium-based sorbent for use in hot gas cleanup in IGCC systems. The aim is to develop a sorbent which will remove H{sub 2}S and COS from hot coal gas and be capable of repeated loading and regeneration. Porous alumina pellets and other porous refractory materials will be impregnated with calcium to prepare sorbents for testing. A preliminary review of the literature suggests that such materials have not been investigated extensively for cleaning coal gas.

  10. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    SciTech Connect

    Chambon, Frederic; CIZEL, Jean-Pierre

    2013-07-01

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  11. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOEpatents

    Cole, Rossa W.; Zoll, August H.

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  12. Design of a second generation secondary enclosure clean-up system

    SciTech Connect

    Heics, A.G.; Shmayda, W.T.

    1995-10-01

    An upgraded version of a metal hydride based clean-up system for tritium gloveboxes has been recently designed. An earlier version of a prototypical, recirculating system has been under evaluation in tritium service at OHT for nearly 2 years. A metal getter alloy, Zr{sub 2}Fe, is used to remove tritium and trace impurities from inert and nitrogen glovebox cover gas. The second generation SEC system features several notable improvements over its predecessor in areas of gas conductance, process instrumentation for tritium and moisture detection, and operator interface. A second bed has been added to enhance the removal of tritium and impurities. The system is controlled by computer programmed to automatically maintain the glovebox pressure, temperature and the impurity level of the glovebox cover gas, and to respond effectively to upset conditions by corrective action and to alarm the off-normal condition. The lifetime of the metal alloy getter is affected by the presence of impurities, notably moisture, which dictates the need to ensure system leak tightness. For example, the tritium concentration at the bed outlet will rise by approximately one order of magnitude as a result of introducing a continuous moisture load of 5 ppmv for 6 months while maintaining a flow rate of 2 L/s. The second generation system will be commissioned with tritium during 1995. 9 refs., 3 figs.

  13. Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines

    SciTech Connect

    Barthelemy, N.M.; Lynn, S.

    1991-07-01

    This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

  14. DEVELOPMENT OF A CALCIUM-BASED SORBENT FOR HOT GAS CLEANUP

    SciTech Connect

    T.D. Wheelock; L.K. Doraiswamy; K. Constant

    1999-10-01

    The development and testing of potential calcium-based sorbents for hot gas cleanup continued. One of the most promising materials combines powdered limestone and a calcium aluminate cement by two step pelletization followed by steam curing. Reasonably strong pellets are produced with good adsorption characteristics by incorporating 20 wt.% cement in the core and 40 wt.% cement in the shell. The resulting 4.76 mm diameter pellets are capable of withstanding a crushing force approaching 11.5 N/mm before breaking and are also capable of removing H{sub 2}S from dilute, hot gas streams. The pellets are also regenerable and reusable. Another promising material combines calcium carbonate powder and finely ground calcined alumina in tablet form. The small tablets are prepared by mixing the materials with water to form a thick paste which is then molded and dried. The tablets are hardened by calcining at either 1000 to 1100 C. The resulting tablets are strong and capable of removing H{sub 2}S from a dilute, hot gas stream.

  15. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    SciTech Connect

    Harp, Benton; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the successful

  16. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 9, March 1--May 31, 1993

    SciTech Connect

    1993-12-31

    The NOXSO process is a dry, post-combustion flue gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from the flue gas of a coal-fired utility boiler. In the process, the SO{sub 2} is reduced to elemental sulfur and the NO{sub x} is reduced to nitrogen and oxygen. It is predicted that the process can economically remove 90% of the acid rain precursor gases from the flue gas stream in a retrofit or new facility. The objective of the NOXSO Demonstration Project is to design, construct, and operate a flue gas treatment system utilizing the NOXSO process at Ohio Edison`s Niles Plant Unit {number_sign}1. The effectiveness of the process will be demonstrated by achieving significant reductions in emissions of sulfur and nitrogen oxides. In addition, sufficient operating data will be obtained to confirm the process economics and provide a basis to guarantee performance on a commercial scale. Ohio Edison`s Niles Plant Unit {number_sign}1 generates 115 MW of electricity and 275,000 scfm of flue gas while burning 3.5% sulfur coal. The project is presently in the project definition and preliminary design phase. This phase was included in the project to allow completion of process studies and preliminary activities which could be conducted in parallel with NOXSO`s pilot plant project being conducted at Ohio Edison`s Toronto Power Plant.

  17. Evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants

    SciTech Connect

    Vidt, E.J.; Jablonski, G.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1981-12-01

    This interim report satisfies the Task B requirement to define process configurations for systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The configurations studied include entrained, fluidized-bed, gravitating-bed, and molten salt gasifiers, both air and oxygen blown. Desulfurization systems utilizing wet scrubbing processes, such as Selexol and Rectisol II, and dry sorbents, such as iron oxide and dolomite, were chosen for evaluation. Cleanup systems not chosen by DOE's MCFC contractors, General Electric and United Technologies, Inc., for their MCFC power plant work by virtue of the resource requirements of those systems for commercial development were chosen for detailed study in Tasks C and D of this contract. Such systems include Westinghouse fluidized-bed gasification, air and oxygen blown, Rockwell molten carbonate air-blown gasification, METC iron oxide desulfurization, and dolomitic desulfurization. In addition, for comparison, gasification systems such as the Texaco entrained and the British Gas/Lurgi slagging units, along with wet scrubbing by Rectisol II, have also been chosen for detailed study.

  18. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 10, June 1--August 31, 1993

    SciTech Connect

    1993-12-31

    The NOXSO process is a dry, post-combustion flue gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from the flue gas of a coal-fired utility boiler. In the process, the SO{sub 2} is reduced to sulfur by-product (elemental sulfur, sulfuric acid, or liquid SO{sub 2}) and the NO{sub x} is reduced to nitrogen and oxygen. It is predicted that the process can economically remove 90% of the acid rain precursor gases from the flue gas stream in a retrofit or new facility. The objective of the NOXSO Demonstration Project is to design, construct, and operate a flue gas treatment system utilizing the NOXSO process at Ohio Edison`s Niles Plant Unit {number_sign}1. The effectiveness of the process will be demonstrated by achieving significant reductions in emissions of sulfur and nitrogen oxides. In addition, sufficient operating data will be obtained to confirm the process economics and provide a basis to guarantee performance on a commercial scale. The project is presently in the project definition and preliminary design phase. Data obtained during pilot plant testing which was completed on July 30, 1993 is being incorporated in the design of the commercial size plant. A suitable host site to demonstrate the NOXSO process on a commercial scale is presently being sought.

  19. Emerging flue-gas cleanup technologies for combined control of SO{sub 2} and NO{sub x}

    SciTech Connect

    Livengood, C.D.; Markussen, J.M.

    1994-06-01

    Enactment of the 1990 Clean Air Act Amendments, as well as passage of legislation at the state level has raised the prospect of more stringent nitrogen oxides (NO{sub x}) emission regulations and has fueled research and development efforts on a number technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x} in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  20. Systems engineering functions and requirements for the Hanford cleanup mission. First issue, Addendum 2

    SciTech Connect

    Holmes, J.J.

    1994-01-01

    This addendum provides the technical detail of a systems engineering functional analysis for the Hanford cleanup mission. Details of the mission analysis including mission statement, scope, problem statement, initial state definition, and final state definition are provided in the parent document. The functional analysis consists of Input Computer Automated Manufacturing Definition (IDEFO) diagrams an definitions, which will be understood by systems engineers, but which may be difficult for others to comprehend. For a more complete explanation of this work, refer to the parent document. The analysis covers the total Hanford cleanup mission including the decomposition levels at which the various Hanford programs or integrated activities are encountered.

  1. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 12, December 1, 1993--February 28, 1994

    SciTech Connect

    1994-12-31

    The NOXSO process is a dry, post-combustion flue gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from the flue gas of a coal-fired utility boiler. In the process, the SO{sub 2} is reduced to sulfur by-product and the NO{sub x} is reduced to nitrogen and oxygen. It is predicted that the process can economically remove 90% of the acid rain precursor gases from the flue gas stream in a retrofit or new facility. The objective of the NOXSO Demonstration Project is to design, construct, and operate a flue gas treatment system utilizing the NOXSO process. The effectiveness of the process will be demonstrated by achieving significant reductions in emissions of sulfur and nitrogen oxides. In addition, sufficient operating data will be obtained to confirm the process economics and provide a basis to guarantee performance on a commercial scale. The project is presently in the project definition and preliminary design phase. Data obtained during pilot plant testing which was completed on July 30, 1993 is being incorporated in the design of the commercial size plant. A suitable host site to demonstrate the NOXSO process on a commercial scale is presently being sought. The plant general arrangement has been revised to incorporate principles used in the design of fluidized catalytic cracking (FCC) plants. A NOXSO plant availability analysis was prepared using operating experience from the recently completed pilot plant as a basis. The impact of water desorption in the sorbent heater and water adsorption in the sorbent cooler has been quantified and incorporated into the NOXSO process simulator. NOXSO process economics has been updated based on the present design. Capital cost for a 500 MW plant designed to remove 98% of the SO{sub 2} and 85% of the NO{sub x} is estimated at $247/kW.

  2. Hot gas cleanup and gas turbine aspects of an advanced PFBC power plant

    SciTech Connect

    Robertson, A. ); Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Bruck, G.J.; Smeltzer, E.E. . Science and Technology Center)

    1992-01-01

    The overall objective of the second-generation PFBC development program is to advance this concept to a commercial status. Three major objectives of the current Phase 2 program activities are to: Separately test key components of the second-generation PFBC power plant at sub-scale to ascertain their performance characteristics, Revise the commercial plant performance and economic predictions where necessary, Prepare for a 1.6 MWe equivalent Phase 3 integrated subsystem test of the key components. The key components of the plant, with respect to development risk, are the carbonizer, the circulating PFBC unit, the ceramic barrier filter, and the topping combustor. This paper reports on the development and testing of one key component -- the ceramic barrier filter for the carbonizer fuel gas. The objective of the Phase 2 carbonizer ceramic barrier filter testing has been to confirm filter performance and operability in the carbonizer fuel gas environment.

  3. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 16, December 1, 1994--February 28, 1995

    SciTech Connect

    1995-12-31

    The NOXSO process is a dry, post-combustion flue gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas. In the process, the SO{sub 2} is converted to a sulfur by- product (elemental sulfur, sulfuric acid, or liquid SO{sub 2}) and the NO{sub x} is converted to nitrogen and oxygen. The objective of the NOXSO Clean Coal Project is to design, construct, and operate a flue gas treatment system utilizing the NOXSO process at Alcoa Generating Corporation`s (AGC) Warrick Power Plant. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} from the flue gas from the 150-MW equivalent, unit 2 boiler. The by-product to be generated by the project is liquid SO{sub 2}. Sufficient construction cost and operating data will be obtained during the project to confirm the process economics and provide a basis to guarantee performance on a commercial scale. The project is in the Front End Engineering/Environmental Evaluation Phase. Engineering activities are approximately 20% complete and activities to update the project estimate based on completed engineering and equipment bids have been initiated. Process study activities include laboratory fluid-bed adsorber studies, regenerator computer model development and studies, fluid-flow modelling in fluid-bed vessels, and evaluations of SO{sub 2} production processes. The laboratory- scale, fluid-bed adsorber studies are being conducted to improve the accuracy of the removal efficiency predictions and study the impact of adding a third adsorber stage. The construction of the steel, multi-stage reactor is currently underway. The regenerator computer model was revised and is being used to study design options for improving the regenerator performance. Fluid-flow modelling has been conducted to study the effect of grid supports on the gas flow inside the fluid bed vessels.

  4. Multiresidue method for the gas chromatographic determination of pesticides in honey after solid-phase extraction cleanup.

    PubMed

    Jansson, C

    2000-01-01

    A new multiresidue method is described for the determination of pesticides in honey. The method involves dissolution of the honey in a methanol-water mixture, followed by solid-phase extraction cleanup and gas chromatographic determination. Twenty-six pesticides used on flowering field crops, on flowering fruit and vegetables, or as acaricides to control Varroa jacobsoni in beehives are determined by the method. Recoveries from honey, spiked at 0.02-1.6 mg/kg, ranged from 85 to 127% with a relative standard deviation (RSD) of 2-16%, except for the RSD of 27% for captan at 0.05 mg/kg.

  5. Multiple rate digital command detection system with range clean-up capability

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.; Butman, S. A. (Inventor)

    1977-01-01

    A multi-rate digital command system is disclosed which uses the composite signal of a mu-type ranging system as a subcarrier to transmit range codes and data from a station to a receiver where the range codes are sequentially phase modulated on a subcarrier of frequency by one of its own subharmonics and data is phase modulated on a selected ranging component. A range cleanup loop in a spacecraft locks the phase of a locally generated reference component to a received ranging component and retransmits the component to a ground station. When the inverse phase of a ranging component is received and detected, the cleanup loop is modified to demodulate phase modulated command symbols while continuing tracking the same ranging component. The command symbol rate is coherently related to the ranging signal component bit rate.

  6. OPERATION OF A TRITIUM GLOVEBOX CLEAN-UP SYSTEM USING ZIRCONIUM MANGANESE IRON AND ZIRCONIUM TWO IRON METAL GETTERS

    SciTech Connect

    E. LARSON; K. COOK

    2000-08-01

    A metal hydride-based tritium clean-up system has been successfully operated for more than four years on an 11 m{sup 3} helium/nitrogen glovebox which was used for handling metal tritide powders. The clean-up system consists of two beds: (1) a Zr-Mn-Fe (in a 10% by weight Al binder, SAES ST909) bed operating at 675 C followed by (2) a Zr{sub 2}Fe (SAES ST198) bed operating at 250 C. The Zr-Mn-Fe bed serves to condition the gas stream by cracking hydrogenous impurities (such as H{sub 2}O and hydrocarbons) and absorbing oxygen and carbon. The Zr{sub 2}Fe bed absorbs the hydrogen isotopes from the flowing stream by forming a solid hydride compound. These beds contain 3 kilograms of Zr{sub 2}Fe and have been loaded routinely with 230-250 STP liters of hydrogen isotopes in earlier trials. The Zr-Mn-Fe alloy exhibits an anomaly during activation, namely an exotherm upon initial exposure to nitrogen. The purpose of this work is to better understand this reaction. Nitrogen absorption studies were done in order to quantify the nitrogen taken up by the getter and to characterize the reaction kinetics. In addition, ST909 phases before and after the reaction were studied with x-ray diffraction.

  7. Systems engineering product description report for the Hanford Cleanup Mission: First issue

    SciTech Connect

    Holmes, J.J.; Bailey, K.B.; Collings, J.L.; Hubbard, A.B.; Niepke, T.M.

    1994-06-01

    This document describes the upper level physical and administrative (nonphysical) products that, when delivered, complete the Hanford Cleanup Mission. Development of product descriptions is a continuation of the Sitewide Systems Engineering work described in the Sitewide functional analysis, the architecture synthesis, and is consistent with guidance contained in the mission plan. This document provides a bridge between all three documents and the products required to complete the mission of cleaning up the Hanford Site.

  8. Systems Engineering functions and requirements for the Hanford Cleanup mission: First issue

    SciTech Connect

    Holmes, J.J.

    1994-01-01

    This report documents the top-level SE mission analysis, functions analysis, and requirements analysis for the Hanford Site cleanup mission. Because SE is an iterative process, this document will be continuously updated as the mission evolves. This first issue will be subject to change as lower-level work is conducted or primary system architecture is changed as a result of public involvement, NEPA processes, or changes in DOE/HQ direction.

  9. Nano-based systems for oil spills control and cleanup.

    PubMed

    Avila, Antonio F; Munhoz, Viviane C; de Oliveira, Aline M; Santos, Mayara C G; Lacerda, Glenda R B S; Gonçalves, Camila P

    2014-05-15

    This paper reports the development of superhydrophobic nanocomposite systems which are also oleophilic. As hydrophobicity is based on low energy surface and surface roughness, the electrospinning technique was selected as the manufacturing technique. N,N' dimethylformamide (DMF) was employed as the polystyrene (PS) solvent. The "Tea-bag" (T-B) nanocomposite system is based on exfoliated graphite surrounded by PS superhydrophobic membranes. The T-B systems were tested regarding its adsorption and absorption rates. To test these properties, it was employed three different water/oil emulsions, i.e., new and used motor oil, which have physical properties (viscosity and specific gravity) similar to heavy crude oil extracted in Brazil, and vacuum pump oil (which does not form oil/water emulsion). It was observed that oil adsorption rate is dependent on oil surface tension, while the absorption rate is mainly dependent on membrane/exfoliated graphite surface area. Experimental data show that oil absorption rates ranged between 2.5g/g and 40g/g, while the adsorption rate oscillated from 0.32g/g/min to 0.80g/g/min. Furthermore, T-B systems were tested as containment barriers and sorbent materials with good results including its recyclability.

  10. Proof of concept testing of the advanced NOXSO flue gas cleanup process

    SciTech Connect

    Gilbert, R.L.

    1990-01-01

    The objective of this project is to demonstrate the potential for application of the NOXSO Flue Gas Treatment (FGT) technology to coal-fired utility boilers in the 1990s. To accomplish this, the NOXSO team will design, construct, operate, and test a proof-of-concept scale NOXSO test facility at Ohio Edison's Toronto Station. The goal of the proof-of-concept test is to obtain the engineering data required to prepare a cost-effective design of a commercial scale NOXSO process module at an acceptable level of technical risk. A secondary goal of the test program is to optimize process performance, i.e., achieve 90% removal of SO{sub 2} and NO{sub x} from the flue gas at the lowest possible cost, while maintaining the high level of system reliability dictated by the utility market. Progress is reported. 5 figs.

  11. Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994

    SciTech Connect

    Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

    1994-04-01

    The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

  12. Development of Metallic Filters for Hot Gas Cleanup in Pressurized Fluidized Bed Combustion Applications

    SciTech Connect

    Anderson, I.E.; Gleeson, B.; Terpstra, R.L.

    2002-09-19

    Alternative alloys derived from the wide array of aerospace superalloys will be developed for hot gas filtration to improve on both ceramic filters and ''first-generation'' iron aluminide metallic filter materials. New high performance metallic filters should offer the benefits of non-brittle mechanical behavior at all temperatures, including ambient temperature, and improved resistance to thermal fatigue compared to ceramic filter elements, thus improving filter reliability. A new powder processing approach also will be established that results in lightweight metallic filters with high permeability and weldability for enhanced capability for filter system manufacturing.

  13. Advanced separation technology for flue gas cleanup. Final report, February 1998

    SciTech Connect

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Tagg, T.; Riggs, T.; Ventura, S.; Sirkar, K.K.; Majumdar, S.; Bhaumick, D.

    1998-06-01

    The objective of this work by SRI International was to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. High efficiency, hollow fiber contactors (HFCs) were proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system would be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process would generate only marketable by-products, if any (no waste streams are anticipated). The major cost item in existing technology is capital investment. Therefore, the approach was to reduce the capital cost by using high-efficiency, hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. The authors also introduced new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. The process and progress in its development are described.

  14. Test results from the Department of Energy`s Pressurized Fluidized Bed Combustion Hot Gas Cleanup Program

    SciTech Connect

    Dennis, R.A.

    1995-12-01

    Presented here is a summary of operations and conclusions from the last two test campaigns of the Department of Energy`s Pressurized Fluidized Bed Combustion Hot Gas Cleanup Program which was implemented by the American Electric Power Service Corporation. In these tests, the Westinghouse Advanced Particle Filter (APF) operated on a one-seventh flow from the Tidd 70-MWe Pressurized Fluidized Bed Combustor. During these tests, the filter operated as predicted with extremely high particulate removal. During the combined test periods, more than 2,800 hours of operation were accumulated -- two operational periods lasted more than 650 hours. The completion of this program brings the total coal fired operating time of the APF to 5,854 hours.

  15. Development and Implementation of the Waste Management Information System to Support Hanford's River Corridor Cleanup

    SciTech Connect

    Nolan, L. M.

    2006-07-01

    This paper describes the development of a Waste Information Management System (WMIS) to support the waste designation, transportation, and disposal processes used by Washington Closure Hanford, LLC to support cleanup of the Columbia River Corridor. This waste, primarily consisting of remediated burial sites and building demolition debris, is disposed at the Environmental Restoration Disposal Facility (ERDF), which is located in the center of the Hanford Site (an approximately 1460 square kilometers site). WMIS uses a combination of bar-code scanning, hand-held computers, and strategic employment of a radio frequency identification (RFID) tag system to track each waste shipment from waste generation to disposal. (authors)

  16. SUBTASK 3.12 – GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL

    SciTech Connect

    Stanislowski, Joshua; Curran, Tyler; Henderson, Ann

    2014-06-30

    The goal of this project was to evaluate the performance of Illinois No. 6 coal blended with biomass in a small-scale entrained-flow gasifier and demonstrate the production of liquid fuels under three scenarios. The first scenario used traditional techniques for cleaning the syngas prior to Fischer–Tropsch (FT) synthesis, including gas sweetening with a physical solvent. In the second scenario, the CO2 was not removed from the gas stream prior to FT synthesis. In the third scenario, only warm-gas cleanup techniques were used, such that the feed gas to the FT unit contained both moisture and CO2. The results of the testing showed that the liquid fuels production from the FT catalyst was significantly hindered by the presence of moisture and CO2 in the syngas. Further testing would be needed to determine if this thermally efficient process is feasible with other FT catalysts. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Illinois Clean Coal Institute.

  17. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  18. Flow regions of granules in Dorfan Impingo filter for gas cleanup

    SciTech Connect

    Kuo, J.T.; Smid, J.; Hsiau, S.S.; Tsai, S.S.; Chou, C.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Dorfan Impingo panel with transparent front and rear walls the flow region of filter granules without gas cross flow were observed. The white PE beads were used as filter granules. Colored PE beads served as tracers. Filter granules were discharged and circulated to the bed. The flow rate of filter medium was controlled by the belt conveyor. The image processing system including a Frame Grabber and JVC videocamera was used to record the granular flow. Every image of motion was digitized and stored in a file. The flow patterns and the quasi-stagnant zones history in the moving granular bed were evaluated. The experiment showed fast central moving region (flowing core) of filter granules and quasi-stagnant zones close to louver walls.

  19. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 15

    SciTech Connect

    Bhown, A.S.; Pakala, N.; Riggs, T.; Tagg, T.

    1996-02-01

    The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regeneration of spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub x} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process will make only marketable byproducts, if any (no waste streams). Our approach is to reduce the capital cost by using high efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. For example, we will extract the SO{sub 2} from the aqueous scrubbing liquor into an oligomer of dimethylaniline to avoid the problem of organic liquid losses in the regeneration of the organic liquid. Our novel chemistry for scrubbing NO{sub x} will consist of water soluble phthalocyanine compounds invented by SRI and also of polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media. Finally, the arrangement of the absorbers is in cassette (stackable) form so that the NO{sub x} absorber can be on top of the SO{sub x} absorber. This cassette (stacked) arrangement makes it possible for the SO{sub 2} and NO{sub x} scrubbing chambers to be separate without incurring the large ducting and gas pressure drop costs necessary if a second conventional absorber vessel were used.

  20. Advanced separation technology for flue gas cleanup: Quarterly technical report No. 16, January 1996--March 1996

    SciTech Connect

    Bhown, A.S.; Bahman, A.; Sirkar, K.K.; Majumdar, S.; Bhaumick, D.

    1996-06-01

    The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (a) a novel method for regeneration of spent SO{sub 2} scrubbing liquor and (b) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (BFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub x} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process will make only marketable byproducts, if any (no waste streams). The major cost item in existing technology is capital investment. Therefore, our approach is to reduce the capital cost by using high efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. For example, we will extract the SO{sub 2} from the aqueous scrubbing liquor into an oligomer of dimethylaniline to avoid the problem of organic liquid losses in the regeneration of the organic liquid. Our novel chemistry for scrubbing NO{sub x} will consist of water soluble plithalocyanine compounds invented by SRI and also of polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media described in the open literature. Our past work with the phthalocyanine compounds, used as sensors for NO and NO{sub 2} in flue gases, shows that these compounds bind NO and NO{sub 2} reversibly and with no interference from O{sub 2}, CO{sub 2}, SO{sub 2}, or other components of flue gas.

  1. Systems engineering product breakdown structure for the Hanford Cleanup Mission: First issue

    SciTech Connect

    Holmes, J.J.; Bailey, K.B.; Collings, J.L.; Hubbard, A.B.; Niepke, T.M.

    1994-08-01

    This document provides the product breakdown structure (PBS) for the upper level physical products that, when delivered, complete the Hanford Site Cleanup Mission. Development of the PBS is a continuation of the sitewide systems engineering work described in the sitewide functional analysis, the architecture synthesis, and the product description report and is generally consistent with guidance contained in the Hanford Mission Plan. The PBS presents the interrelationship of products produced by the functions that are necessary to perform the clean up mission from their initial source through interim products to final product disposition.

  2. Development of the JAERI (Japan Atomic Energy Research Institute) fuel cleanup system for tests at the Tritium Systems Test Assembly

    SciTech Connect

    Konishi, S.; Inoue, M.; Hayashi, T.; Okuno, K.; Naruse, Y. ); Barnes, J.W.; Anderson, J.L. )

    1990-01-01

    Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI) has developed the Fuel Cleanup System (FCU) which accepts simulated fusion reactor exhaust and produces pure hydrogen isotopes and tritium-free waste. The major components are: a palladium diffuser, a catalytic reactor, cold traps, a ceramic electrolysis cell, and zirconium-cobalt beds. In 1988, an integrated loop of the FCU process was installed in the TPL and a number of hot'' runs were performed to study the system characteristics and improve system performance. Under the US-Japan collaboration program, the JAERI Fuel Cleanup System'' (JFCU) was designed and fabricated by JAERI/TPL for testing at the Tritium Systems Test Assembly (TSTA) in Los Alamos National Laboratory as a major subsystem of the simulated fusion fuel cycle. The JFCU was installed in the TSTA in early 1990.

  3. Rapid multiplug filtration cleanup with multiple-walled carbon nanotubes and gas chromatography-triple-quadruple mass spectrometry detection for 186 pesticide residues in tomato and tomato products.

    PubMed

    Zhao, Pengyue; Huang, Baoyong; Li, Yanjie; Han, Yongtao; Zou, Nan; Gu, Kejia; Li, Xuesheng; Pan, Canping

    2014-04-30

    This study reports the development and validation of a novel rapid cleanup method based on multiple-walled carbon nanotubes in a packed column filtration procedure for analysis of pesticide residues followed by gas chromatography-triple-quadruple tandem mass spectrometry detection. The cleanup method was carried out by applying the streamlined procedure on a multiplug filtration cleanup column with syringes. The sorbent used for removing the interferences in the matrices is multiple-walled carbon nanotubes mixed with anhydrous magnesium sulfate. The proposed cleanup method is convenient and time-saving as it does not require any solvent evaporation, vortex, or centrifugation procedures. It was validated on 186 pesticides and 3 tomato product matrices spiked at two concentration levels of 10 and 100 μg kg(-1). Satisfactory recoveries and relative standard deviations are shown for most pesticides using the multiplug filtration cleanup method in tomato product samples. The developed method was successfully applied to the determination of pesticide residues in market samples.

  4. Plasma-assisted cleanup of flue gas. Technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Dhali, S.K.

    1994-06-01

    The authors have conclusively demonstrated that plasma chemistry alone is sufficient to convert SO{sub 2} to H{sub 2}SO{sub 4}, the plasma being produced by a dielectric-barrier discharge. They get nearly 80% removal of SO{sub 2} in a flue gas containing 775 ppm (parts per million) of SO{sub 2} and 99% for SO{sub 2} in concentrations of 300 ppm. A significant achievement during this period is the progress the authors have made with the wetting of the glass by the acid. They are using a simple and cheap method of coating the glass with Teflon (PTFE 30) to provide a hydrophobic surface. These films show chemical inertness to nearly all chemical and solvents and have low friction and antistick surfaces. The following important conclusions can be drawn from the results: (1) The percentage removal does not show saturation with the applied voltage. (2) The removal efficiency at an inlet temperature of 300 C is almost similar to 25 C at high voltages. (3) With longer electrodes the efficiency of removal increases. These results suggest that removal efficiency can be improved further by increasing the voltage and electrode length. The authors are yet to exploit the full range of parameters available. Therefore, it is likely that they will get much improved performance from the system.

  5. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    SciTech Connect

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this

  6. A novel carbon-based process for flue-gas cleanup. Final report

    SciTech Connect

    Gangwal, S.K.; Howe, G.B.; McMichael, W.J.; Spivey, J.J.

    1993-10-01

    A low-temperature process employing activated carbon-based catalysts and operating downstream of the electrostatic precipitator (ESP) was evaluated jointly by Research Triangle Institute (RTI) and the University of Waterloo (Waterloo). The RTI-Waterloo process was projected to be capable of removing more than 95% SO{sub 2} and 75% NO{sub x }from coal combustion flue gas. In the process, the flue gas leaving the ESP is first cooled to approximately 100{degree}C. The SO{sub 2} is then catalytically oxidized to SO{sub 3} which is removed as medium-strength sulfuric acid in a series of periodically flushed trickle-bed reactors containing an activated carbon-based catalyst. The SO{sub 2}-free gas is then reheated to approximately 150{degree}C and NH{sub 3} is injected into the gas stream. It is then passed over a fixed bed of another activated carbon-based catalyst to reduce the NO{sub x} to N{sub 2} and H{sub 2}O. The clean flue gas is then vented to the stack. The feasibility of the process has been demonstrated in laboratory-scale experiments using simulated flue gas. Catalysts have been identified that gave the required performance for SO{sub 2} and NO{sub x} removal with <25 ppM NH{sub 3} slip. Potential for producing up to 10 N sulfuric acid by periodically flushing the SO{sub 2} removal reactor and further concentration to industrial strength 93.17% sulfuric acid was also demonstrated. Using the results of the experimental work, an engineering evaluation was conducted. Cost for the RTI-Waterloo process was competitive with conventional selective catalytic reduction (SCR) -- flue gas desulfurization (FGD) process and other emerging combined SO{sub 2}/NO{sub x} removal processes.

  7. Proof-of concept testing of the advanced NOXSO flue gas cleanup process. Final report

    SciTech Connect

    Not Available

    1993-04-01

    The NOXSO Process uses a regenerable sorbent that removes SO{sub 2} and NO{sub x} simultaneously from flue gas. The sorbent is a stabilized {gamma}-alumina bed impregnated with sodium carbonate. The process was successfully tested at three different scales, equivalent to 0.017, 0.06 and 0.75 MW of flue gas generated from a coal-fired power plant. The Proof-of-Concept (POC) Test is the last test prior to a full-scale demonstration. A slip stream of flue gas equivalent to a 5 MW coal-fired power plant was used for the POC test. This paper summarizes the NOXSO POC plant and its test results.

  8. Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.

    1995-08-01

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

  9. Gas stream clean-up filter and method for forming same

    DOEpatents

    Mei, Joseph S.; DeVault, James; Halow, John S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

  10. Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

    NASA Technical Reports Server (NTRS)

    Fisher, J. W.; Pisharody, S.; Moran, M. J.; Wignarajah, K.; Shi, Y.

    2002-01-01

    This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO(sub x) and SO(sub 2) contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO(sub x) and SO(sub 2) in activated carbon made from biomass. Conversion of adsorbed NO(sub x) to nitrogen has also been observed.

  11. Plasma-assisted cleanup of flue gas. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Dhali, S.K.

    1994-09-01

    The experimental data reported in the last quarterly report were verified by repeating the experiments. It was consistently determined that there is nearly 80% removal of SO{sub 2} in a flue gas containing 775 ppm (parts per million) of SO{sub 2} and 99% for SO{sub 2} in concentrations of 300 ppm. The reduction increases with increasing electrode length. Also during this period, the removal studies for higher concentrations of SO{sub 2} (1400 ppm) were studied. For this a variable frequency power supply was used. It was found that the removal efficiency increased with frequency (in the range 60-400 Hz).

  12. DEVELOPMENT OF A CALCIUM-BASED SORBENT FOR HOT GAS CLEANUP

    SciTech Connect

    T.D. Wheelock; L.K. Doraiswamy; K. Constant

    1999-03-31

    The preparation and testing of potential sorbents for removing H{sub 2}S and COS from hot coal gas continued. Two preparation methods received the most consideration. Both methods involve pelletizing powders in a revolving drum under moist conditions followed either by heat treatment or steam curing to harden the pellets, depending on the particle bonding mechanism. One method was used to pelletize mixtures of calcium carbonate and either alumina or a calcium aluminate cement in a single step. Another method was used to pelletize powdered limestone in an initial step followed by the application of a coating consisting of both limestone and a hydraulic cement in a second step. By employing this method, an especially promising material was produced consisting of a limestone core surrounded by a shell consisting initially of 80 wt.% limestone and 20% wt.% calcium aluminate cement. The best material exhibited both an acceptable crushing strength and adsorption capacity for H{sub 2}S.

  13. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    DOEpatents

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  14. Hot gas cleanup using ceramic cross flow membrane filters. Final report

    SciTech Connect

    Ciliberti, D.F.; Smeltzer, E.E.; Alvin, M.A.; Keairns, D.L.; Bachovchin, D.M.

    1983-12-01

    The single unresolved technical issue in the commercialization of pressurized fluid-bed combustion (PPBC) for electric power production is the hot gas cleaning problem. In this technology, high-temperature and -pressure (HTHP), dust-laden flue gases from the combustor must be cleaned enough to reduce expansion turbine blade erosion to an economically acceptable level. Additionally, the level of particulate emission must be compatible with the New Source Performance Standards (NSPS) for environmental acceptability. The Department of Energy (DOE) has sponsored a wide range of research and development programs directed at the solution of this problem. These programs were divided into two classifications, one dealing with more advanced concepts where testing was to be done at relatively large scale and a second group of less advanced, novel concepts where the testing was to be carried out at a bench scale. The cross-flow ceramic membrane filter program described in this report is a member of the small-scale, novel concept group.

  15. CE IGCC repowering project hot gas clean up system

    SciTech Connect

    Not Available

    1993-09-01

    With sponsorship from the Department of Energy (DOE), and the state of Illinois, Combustion Engineering, Inc. is currently developing a design for a 60 Mw IGCC (Integrated Coal Gasification Combined Cycle) for City Water, Light & Power (CWL&P) in Springfield, Illinois. In addition, to DOE and the state of Illinois, Combustion Engineering, Inc. and CWL&P are contributing to the project. In order to obtain a high thermal efficiency, a hot gas cleanup system has been incorporated for product gas clean up. The cleanup system currently incorporated in the system design is one that is being developed by General Electric Environmental Services, Inc. (GEESI). This is a moving bed process which includes the regeneration of the sorbent material. Testing of the system is currently underway in GEESI`s pilot plant in Schenectady, New York. The hot gas clean up system will use a moving-bed of zinc titanate as an absorbent material to capture gaseous sulfur species in the gas. The cleanup system will be required to operate in a range of 850--1150{degree}F (454--621{degree}C) and under a pressure of 20 atmospheres. Results of the tests indicate that overall sulfur efficiency exceeds 95%, the zinc titanate can be regenerated, and produces an SO{sub 2}-rich tail gas suitable for conversion to sulfuric acid, elemental sulfur or disposable waste.

  16. Particulate hot gas stream cleanup technical issues: Task 1.0, Assessment of ash characteristics. Quarterly report, October-- December 1994

    SciTech Connect

    1995-03-01

    This is the first in a series of quarterly reports describing the activities performed under Task 1. The analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance presented in this report were designed to address the problems with filter operation that are apparently linked to the characteristics of the collected ash. This task is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APF`s) and to relate these ash properties to the operation and performance of these filters and their components. Observations of the filter assembly during site visits to the Tidd Demonstration Plant APF have led to the conclusion that that tenacious ash deposits that form in the APF apparently induce stresses that result in bent and/or broken ceramic candle filter elements. A site visit, was made to the Tidd APF on October 27, 1994 to collect ash samples from various locations in the filter vessel and to document the condition of the APF. A variety of laboratory analyses were performed on ash samples collected during this site visit to assess whether recent attempts to introduce larger particles into the ash deposits by derating the cyclone upstream of the APF have been successful. Some particles larger than 45 Jim were identified in various ash samples from the APF, but they account for less than 5 % of the mass of the ash. Although Scanning Electron Microscope EDX spectra and elemental maps lack the resolution to identify the bonds between particles in the ash agglomerates found in the APF, an excellent stereographic image of the structure of an ash nodule collected from the APF was generated with the Scanning Electron Microscope. The stereographic image was very enlightening as to the structure of the nodule.

  17. Plasma-assisted cleanup of flue gas. Technical report, September 1, 1993--November 30, 1993

    SciTech Connect

    Dhali, S.K.

    1993-12-31

    In this project period, the system for the removal of SO{sub 2} and NO{sub x} is being studied in the presence of water vapor. Typical-mixtures being tested consist of 500--1500 parts per million SO{sub 2}, 4--6% H{sub 2}Og, 7--15% O{sub 2}, and the balance is nitrogen. We have to date seen only a reduction in SO{sub 2} in the order of 40%. This is lower than the in dry air. At present this low reduction is attributed to arcing the discharge. A computer simulation is being performed to calculate the oxygen production rate in a dielectric-barrier discharge. The discharge is considered to be streamer like and from this the oxygen atom density can be calculated. This will give us an estimate of the amount of energy required to produce an oxygen atom. Eventually when this will be combined with a chemical code, we will get a cost estimate.

  18. Assessment of hot gas contaminant control

    SciTech Connect

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  19. Louisiana's statewide beach cleanup

    USGS Publications Warehouse

    Lindstedt, Dianne M.; Holmes, Joseph C.

    1989-01-01

    Litter along Lousiana's beaches has become a well-recognized problem. In September 1987, Louisiana's first statewide beach cleanup attracted about 3300 volunteers who filled 16,000 bags with trash collected along 15 beaches. An estimated 800,173 items were gathered. Forty percent of the items were made of plastic and 11% were of polystyrene. Of all the litter collected, 37% was beverage-related. Litter from the oil and gas, commercial fishing, and maritime shipping industries was found, as well as that left by recreational users. Although beach cleanups temporarily rid Louisiana beaches of litter, the real value of the effort is in public participation and education. Civic groups, school children, and individuals have benefited by increasing their awareness of the problems of trash disposal.

  20. A novel carbon-based process for flue gas cleanup. Fifth quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Gangwal, S.K.; Silveston, P.L.

    1992-10-01

    The objective of this project is to demonstrate the preliminary technical and economic feasibility of a novel carbon-based process for removal of at least 95% S0{sub 2} and at least 75 % NO{sub x}, from coal combustion flue gas. In the process, flue gas leaving the electrostatic precipitator (ESP) is passed through a trickle bed of activated carbon catalyst employing a periodic flush of low strength sulfuric acid. The S0{sub 2} is oxidized to S0{sub 3} and removed as medium strength sulfuric acid. The S0{sub 2}-free flue gas is then mixed with NH{sub 3}, and the NO{sub x} in the gas is subjected to selective catalytic reduction (SCR) to N{sub 2} over a fixed bed of activated carbon catalyst. In the previous four quarters, a detailed project management plan was prepared describing the experimental setup, work plan, and test plan. The experimental system was completed for SO{sub 2} conversion at Waterloo and for NO{sub x} conversion at Research Triangle Institute. Shakedown experiments were completed. The NO{sub x} removal performance of two additional modified carbon catalysts (MCCII and MCCIII) was studied. MCCII showed NO{sub 2} removal efficiency which was similar to that observed for MCCI. However, MCCIII was considerably less active for NO{sub x} removal. In the present quarter, further tests of MCCI were performed for SO{sub 2} removal with NO in the feed gas, except the reactor was operated at 130{degrees}C (instead of 80{degrees}C during previous tests). Tests were also performed with MCCII for NO removal with nominally 100 ppm SO{sub 2} in the feed gas.

  1. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly technical progress report, October 1--December 31, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The major emphasis during this reporting period was finishing the conceptual design for the test facility and discussions on the potential expansion of the test facility. Results are discussed for the following subtasks of conceptual design: design bases; quasifier/combustor and hot stream design; balance of plant designs; and particulate collection.

  2. Advanced separation technology for flue gas cleanup. Revised quarterly technical report No. 17, April--June 1996

    SciTech Connect

    Bhown, A.S.; Riggs, T.; Bahman, A.

    1996-10-01

    The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (a) a novel method for regeneration of spent SO{sub 2} scrubbing liquor and (b) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors, (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub x} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process will make only marketable byproducts, if any (no waste streams).

  3. Advanced fuel hydrocarbon remediation national test location - groundwater circulation well environmental cleanup systems

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    When a contaminant is treated in place on the original site it is termed in situ remediation. Bioremediation refers to cleanup effected by living organisms such as bacteria and fungi. Certain species of bacteria are able to consume pollutants as a food source, thus detoxifying these compounds. In situ bioremediation is being considered as a viable and practical solution for reducing petroleum contamination levels in groundwater.

  4. Comparison of two clean-up methodologies for the gas chromatographic/mass spectrometric determination of low nanogram/gram levels of polynuclear aromatic hydrocarbons in seafood.

    PubMed

    Nyman, P J; Perfetti, G A; Joe, F L; Diachenko, G W

    1993-01-01

    The March 1989 oil spill in Alaska prompted the Food and Drug Administration (FDA) to conduct a thorough investigation of clean-up methodologies aimed at determining low ng/g (ppb) levels of polynuclear aromatic hydrocarbons (PAHs) in seafood. The clean-ups from a modified FDA method and a National Marine Fisheries Service (NMFS) method were evaluated on the basis of the determination of 18 PAHs at levels ranging from 1 to 5 ppb by gas chromatography/mass spectrometry. In the modified FDA method, seafood extracts were purified by a liquid-liquid partition followed by a three-step elution through silica, alumina, and C18 solid-phase extraction cartridges. In the NMFS method, seafood extracts were purified by column chromatography through a deactivated silica gel/alumina column and a gel permeation high performance liquid chromatography column. Both methods quantitated 18 PAHs at levels ranging from 1 to 5 ppb. With the exception of naphthalene, average recoveries based on internal deuterated standards ranged from 73 to 144% for the modified FDA method and 63 to 106% for the NMFS method.

  5. Sample cleanup and reversed-phase high-performance liquid chromatographic analysis of polar aromatic compounds in groundwater samples from a former gas plant.

    PubMed

    Müller, M B; Zwiener, C; Frimmel, F H

    1999-11-12

    A method for the analysis of the polar aromatic compounds 1H-quinolin-4-one (Q), 10H-acridin-9-one (A), 5H-phenanthridin-6-one (P) and 9H-fluoren-9-one (F) in aqueous solutions has been developed. The method comprises steps for sample preparation (solid-phase extraction, cleanup) and analytical determination by means of reversed-phase high-performance liquid chromatography (RP-HPLC). For the cleanup step the suitability of two different sorbents (alternative A: silica gel, alternative B: LiChrolut EN) was investigated. Alternative B depicted several advantages, in particular higher sorbent capacity, faster and less complicated handling, higher recovery and better reproducibility. For Q, A and P, reproducibility of all method steps is better than 13%, with recovery rates ranging from 76% to 105% (n=3). Alternative B was applied to groundwater samples from a former gas plant. The analytes A and P could be detected at concentrations in the micro/l range.

  6. Automated Multiplug Filtration Cleanup for Pesticide Residue Analyses in Kiwi Fruit (Actinidia chinensis) and Kiwi Juice by Gas Chromatography-Mass Spectrometry.

    PubMed

    Qin, Yuhong; Zhang, Jingru; He, Yining; Han, Yongtao; Zou, Nan; Li, Yanjie; Chen, Ronghua; Li, Xuesheng; Pan, Canping

    2016-08-10

    To reduce labor-consuming manual operation workload in the cleanup steps, an automated multiplug filtration cleanup (m-PFC) method for QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. It could control the volume and speed of pulling and pushing cycles accurately. In this study, m-PFC was based on multiwalled carbon nanotubes (MWCNTs) mixed with primary-secondary amines (PSA) and anhydrous magnesium sulfate (MgSO4) in a packed column for analysis of pesticide residues followed by gas chromatography-mass spectrometry (GC-MS) detection. It was validated by analyzing 33 pesticides in kiwi fruit and kiwi juice matrices spiked at two concentration levels of 10 and 100 μg/kg. Salts, sorbents, m-PFC procedure, 4 mL of automated pulling and pushing volume, 6 mL/min automated pulling speed, and 8 mL/min pushing speed were optimized for each matrix. After optimization, spike recoveries were within 71-120% and <20% RSD for all analytes in kiwi fruit and kiwi juice. Matrix-matched calibrations were performed with the coefficients of determination >0.99 between concentration levels of 10 and 1000 μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples.

  7. In-cell clean-up pressurized liquid extraction and gas chromatography-tandem mass spectrometry determination of hydrophobic persistent and emerging organic pollutants in coastal sediments.

    PubMed

    Pintado-Herrera, Marina G; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2016-01-15

    The main goal of this work was to develop, optimize and validate a multi-residue method for the simultaneous determination of 97 contaminants, including fragrances, UV filters, repellents, endocrine disruptors, biocides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organophosphorus flame retardants, and several types of pesticides in marine sediment samples. Extraction and cleanup were integrated into the same step using pressurized liquid extraction (PLE) with in-cell clean-up (1g of alumina). The extraction was performed using dichloromethane at 100 °C, 1500 psi and 3 extraction cycles (5 min per cycle). Extracts were derivatized with N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) to improve the signal and sensitivity of some target compounds (i.e., triclosan, 2-hydroxybenzophenone). Separation, identification and quantification of analytes were carried out by gas chromatography (GC) coupled to tandem mass spectrometry. Under optimal conditions, the optimized protocol showed good recovery percentages (70-100%), linearity (>0.99) and limits of detection below 1 ng g(-1) for all compounds. Finally, the method was applied to the analysis of sediment samples from different coastal areas from Andalusia (Spain), where occurrence and distribution of emerging contaminants in sediments is very scarce. Twenty five compounds out of 98 were detected in all samples, with the endocrine disruptor nonylphenol and the fragrance galaxolide showing the highest concentrations, up to 377.6 ng g(-1) and 237.4 ng g(-1), respectively.

  8. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1992-10-20

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degree]F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  9. A novel carbon-based process for flue gas cleanup. Third quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Gangwal, S.K.; Silveston, P.L.

    1992-04-01

    The objective of this project is to demonstrate the preliminary technical and economic feasibility of a novel carbon-based process for removal of at least 95% SO{sub 2} and at least 75% NO{sub x} coal combustion flue gas. In the process, flue gas leaving the electrostatic precipitator (ESP) is passed through a trickle bed of achieved carbon catalyst employing a periodic flush of low strength sulfuric acid. The SO{sub 2} is oxidized to SO{sub 3} and removed as medium strength sulfuric acid. The SO{sub 2}-free flue gas is then mixed with NH{sub 3}, and the NO{sub x} in the gas is subjected to selective catalytic reduction (SCR) to N{sub 2} over a fixed bed of activated carbon catalyst. The experimental work is divided between Research Triangle Institute (RTI) and the University of Waterloo (Waterloo). RTI will conduct the NO{sub x} removal studies, whereas Waterloo will conduct the SO{sub 2} removal studies. The ultimate goal of the project is to demonstrate that the process can be reduce the cost of electricity by 20% over conventional SCR/flue gas desulfurization (FGD) processes. In the present quarter, the continuous SO{sub 2} analyzer system at Waterloo was completed. The SO{sub 2} removal factorial experiments were begun Waterloo with the BPL carbon at 21{degrees}C. Also, SO{sub 2} removal was tested on two catalyst at RTI at 80{degrees}C. NO{sub x} conversion was tested on a variety of catalysts at RTI. It was shown that the BPL carbon could remove over 95% SO{sub 2} at 21{degrees}C but would required several beds at space velocity in each bed of abut 1,500 scc/(cc{center_dot}h) to reduce SO{sub 2} from 2,500 ppm to 100 ppm. A modified carbon catalyst tested at RTI showed 99% SO{sub 2} removal at 80{degrees}C at 1,400 scc/(cc{center_dot}h). Also, it was possible to produce nearly 9 normal H{sub 2}SO{sub 4} by periodic flushing of this catalyst. The modified carbon catalyst also demonstrated removal of more than 80% NO{sub x}. 7 refs., 7 figs., 4 tabs.

  10. Gas chromatograph injection system

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Henderson, M. E.; Donaldson, R. W., Jr. (Inventor)

    1975-01-01

    An injection system for a gas chromatograph is described which uses a small injector chamber (available in various configurations). The sample is placed in the chamber while the chamber is not under pressure and is not heated, and there is no chance of leakage caused by either pressure or heat. It is injected into the apparatus by changing the position of a valve and heating the chamber, and is volatilized and swept by a carrier gas into the analysis apparatus.

  11. Hot gas cleanup using solid supported molten salt for integrated coal gasification/molten carbonate fuel cell power plants. Topical report, October 1982-December 1983

    SciTech Connect

    Lyke, S.E.; Sealock, L.J. Jr.; Roberts, G.L.

    1983-12-01

    Battelle, Pacific Northwest Laboratories is developing a solid supported molten salt (SSMS) hot gas cleanup process for integrated coal gasification/molten carbonate fuel cell (MCFC) power plants. Exploratory and demonstration experiments have been completed to select a salt composition and evaluate its potential for simultaneous hydrogen sulfide (H/sub 2/S) and hydrogen chloride (HCl) removal under the conditions projected for the MCFC plants. Results to date indicate that equilibrium capacity and removal efficiencies may be adequate for one step H/sub 2/S and HCl removal. Regeneration produced a lower H/sub 2/S concentration than expected, but one from which sulfur could be recovered. Bench scale experiments will be designed to confirm laboratory results, check carbonyl sulfide removal, refine dual cycle (sulfide-chloride) regeneration techniques and obtain data for engineering/economic evaluation and scale-up. 8 references, 24 figures, 7 tables.

  12. Pesticide residue analysis of a dietary ingredient by gas chromatography/selected-ion monitoring mass spectrometry using neutral alumina solid-phase extraction cleanup.

    PubMed

    Jeong, Mijeong Lee; Zahn, Michael; Trinh, Thao; Brooke, Fay A; Ma, Wenwen

    2008-01-01

    A sample cleanup procedure has been developed to remove coextractives that interfere with pesticide residue analysis of a dietary ingredient (Product B), an extract consisting of Scutellaria baicalensis and Acacia catechu. Samples were extracted using 1% acetic acid in acetonitrile, followed by solid-phase extraction and analysis by capillary gas chromatography with mass spectrometry in the selective-ion monitoring mode. Neutral alumina (alumina N) was found to be the most effective sorbent to remove coextractives from Product B; other materials that were tested but failed to remove interference were graphitized carbon black/primary-secondary amine (PSA), octadecylsilane (C18), Florisil, Oasis MCX, and strong anion exchange-PSA. The method was specifically developed for Product B, which was spiked with 41 organochlorine and organophosphorus pesticides, and resulted in the recovery of 80 to 120% at U.S. Pharmacopeia limits (0.06 to 4 microg/g) for the majority of the pesticides.

  13. Automated mini-column solid-phase extraction cleanup for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography – tandem mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...

  14. Gas cleaning system and method

    DOEpatents

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  15. Accelerating cleanup: Paths to closure

    SciTech Connect

    1998-06-01

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  16. U.S. EPA Settles with El Paso Natural Gas for Cleanup Costs at Abandoned Uranium Mines on Navajo Nation

    EPA Pesticide Factsheets

    SAN FRANCISCO - Today, the Environmental Protection Agency (EPA) and the Department of Justice announced a settlement worth more than $500,000 with El Paso Natural Gas Company LLC, (EPNG) to reimburse government costs related to 19 abandoned uranium

  17. Automated Gas Distribution System

    NASA Astrophysics Data System (ADS)

    Starke, Allen; Clark, Henry

    2012-10-01

    The cyclotron of Texas A&M University is one of the few and prized cyclotrons in the country. Behind the scenes of the cyclotron is a confusing, and dangerous setup of the ion sources that supplies the cyclotron with particles for acceleration. To use this machine there is a time consuming, and even wasteful step by step process of switching gases, purging, and other important features that must be done manually to keep the system functioning properly, while also trying to maintain the safety of the working environment. Developing a new gas distribution system to the ion source prevents many of the problems generated by the older manually setup process. This developed system can be controlled manually in an easier fashion than before, but like most of the technology and machines in the cyclotron now, is mainly operated based on software programming developed through graphical coding environment Labview. The automated gas distribution system provides multi-ports for a selection of different gases to decrease the amount of gas wasted through switching gases, and a port for the vacuum to decrease the amount of time spent purging the manifold. The Labview software makes the operation of the cyclotron and ion sources easier, and safer for anyone to use.

  18. An online automatic sample cleanup system for the quantitative detection of the benzene exposure biomarker S-phenylmercapturic acid in human urine by electrospray ionization tandem mass spectrometry.

    PubMed

    Liao, Pao-Chi; Li, Chien-Ming; Lin, Lung-Cheng; Hung, Chien-Wen; Shih, Tung-Sheng

    2002-01-01

    An online automatic sample cleanup system was developed for use with electrospray ionization tandem mass spectrometry (ESI-MS-MS) for the quantitative detection of the benzene exposure biomarker S-phenylmercapturic acid (S-PMA) in human urine. The sample clean-up system was constructed with an autosampling device, a reversed-phase C18 trap cartridge, a two-position switching valve, and controlling computer software and hardware. The sample cleanup system was interfaced directly with the ESI source of a triple-stage-quadrupole MS using multiple reaction monitoring of negative product ions derived from S-PMA and the internal standard as the detection mode. The calibration curve was linear using human urine spiked at concentrations from 0.23 to 100 mg/L S-PMA (R2 = 0.997). The detection limit of the analytical system for neat S-PMA standard solution was 0.04 microg/L, whereas the detection limit was estimated to be lower than 0.35 microg/L for a urine matrix containing trace amounts of S-PMA. Without tedious manual sample cleanup procedures, the analytical system is fully automatic and therefore useful for high-throughput urinary S-PMA determination. With the selectivity and the sensitivity provided by MS-MS detection, the analytical system can be used for high-throughput and accurate determination of S-PMA levels in human urinary samples as a biomarker for benzene exposure.

  19. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  20. Gas turbine premixing systems

    SciTech Connect

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  1. The Morgantown Energy Technology Center`s particulate cleanup program

    SciTech Connect

    Dennis, R.A.

    1995-12-01

    The development of integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) power systems has made it possible to use coal while still protecting the environment. Such power systems significantly reduce the pollutants associated with coal-fired plants built before the 1970s. This superior environmental performance and related high system efficiency is possible, in part, because particulate gas-stream cleanup is conducted at high-temperature and high-pressure process conditions. A main objective of the Particulate Cleanup Program at the Morgantown Energy Technology Center (METC) is to ensure the success of the CCT demonstration projects. METC`s Particulate Cleanup Program supports research, development, and demonstration in three areas: (1) filter-system development, (2) barrier-filter component development, and (3) ash and char characterization. The support is through contracted research, cooperative agreements, Cooperative Research And Development Agreements (CRADAs), and METC`s own in-house research. This paper describes METC`s Particulate Cleanup Program.

  2. Development and piloting of an exposure database and surveillance system for DOE cleanup operations. Department of Energy.

    PubMed

    LaMontagne, Anthony D; Van Dyke, Michael V; Martyny, John W; Simpson, Mark W; Holwager, Lee Ann; Clausen, Bret M; Ruttenber, A James

    2002-01-01

    An industrial hygiene exposure database and surveillance system was developed in partnership between National Institute for Occupational Safety and Health (NIOSH)-funded independent investigators and practicing industrial hygienists at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colo. RFETS is a former U.S. Department of Energy nuclear weapons plant that is now in cleanup phase. This project is presented as a case study in the development of an exposure database and surveillance system in terms that are generalizable to most other industries and work contexts. Steps include gaining organizational support; defining system purpose and scope; defining database elements and coding; planning practical and efficient analysis strategies; incorporating reporting capabilities; and anticipating communication strategies that maximize the probability that surveillance findings will feed back to preventive applications. For each of these topics, the authors describe both general considerations as well as the specific choices made for this system. An important feature of the system is a two-tier task-coding scheme comprising 33 categories of task groups. Examples of grouped analyses of exposure data captured during the system pilot period demonstrate applications to exposure control, medical surveillance, and other preventive measures.

  3. Optimization of solid-phase-extraction cleanup and validation of quantitative determination of eugenol in fish samples by gas chromatography-tandem mass spectrometry.

    PubMed

    Li, Jincheng; Zhang, Jing; Liu, Yang

    2015-08-01

    This paper describes a rapid and sensitive method for the determination of eugenol in fish samples, based on solid-phase extraction (SPE) and gas chromatography-tandem mass spectrometry (GC-MS-MS). Samples were extracted with acetonitrile, and then cleanup was performed using C18 solid-phase extraction (SPE). The determination of eugenol was achieved using an electron-ionization source (EI) in multiple-reaction-monitoring (MRM) mode. Under optimized conditions, the average recoveries of eugenol were in the range 94.85-103.61 % and the relative standard deviation (RSD) was lower than 12.0 %. The limit of detection (LOD) was 2.5 μg kg(-1) and the limit of quantification (LOQ) was 5.0 μg kg(-1). This method was applied to an exposure study of eugenol residue in carp muscle tissues. The results revealed that eugenol was nearly totally eliminated within 96 h. Graphical Abstract Flow diagram for sample pretreatment.

  4. Polytetrafluoroethylene physisorption-assisted emulsification microextraction as a cleanup and preconcentration step in the gas chromatography determination of aliphatic hydrocarbons in marine sediment samples.

    PubMed

    Molaei, Saeideh; Saleh, Abolfazl; Ghoulipour, Vanik; Seidi, Shahram

    2017-02-01

    For the first time, the application of polytetrafluoroethylene powder as an extractant phase collector or holder in liquid-phase microextraction has been developed. For this purpose, the analytical performances of two different ways of applying polytetrafluoroethylene powder in microextraction methods including polytetrafluoroethylene physisorption-assisted emulsification microextraction and dispersive liquid-phase microextraction via polytetrafluoroethylene extractant phase holders have been compared for analysis of aliphatic hydrocarbons in aqueous phases. Under the same conditions, the former showed better extraction efficiencies over the latter and as a result, it was applied as preconcentration and cleanup step in the analysis of aliphatic hydrocarbons in sediment samples followed by gas chromatography analysis. The linearity of the polytetrafluoroethylene physisorption-assisted emulsification microextraction method was obtained over a range of 3.7 and 2000 ng/g (R(2) > 0.993). The relative standard deviations were less than 6.5% (n = 3). The limits of detection and quantification obtained by this method were 1.1-9.0 and 3.7-30 ng/g, respectively, indicating that satisfactory results were achieved by the procedure.

  5. Development of a simple extraction and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography-tandem mass spectrometry.

    PubMed

    Rashid, A; Nawaz, S; Barker, H; Ahmad, I; Ashraf, M

    2010-04-23

    A procedure based on QuEChERS extraction and a simultaneous liquid-liquid partition clean-up was developed. The procedure involved extraction of hydrated soil samples using acetonitrile and clean-up by liquid-liquid partition into n-hexane. The hexane extracts produced were clean and suitable for determination using gas chromatography-tandem mass spectrometry (GC-MS/MS). The method was validated by analysis of soil samples, spiked at five levels between 1 and 200 microg kg(-1). The recovery values were generally between 70 and 100% and the relative standard deviation values (%RSDs) were at or below 20%. The procedure was validated for determination of 19 organochlorine (OC) pesticides. These were hexachlorobenzene (HCB), alpha-HCH, beta-HCH, gamma-HCH, heptachlor, heptachlor epoxide (trans), aldrin, dieldrin, chlordane (trans), chlordane (cis), oxychlordane, alpha-endosulfan, beta-endosulfan, endosulfan sulfate, endrin, p,p'-DDT, o,p'-DDT, p,p'-DDD and p,p'-DDE. The method achieved low limits of detection (LOD; typically 0.3 microg kg(-1)) and low limits of quantification (LOQ; typically 1.0 microg kg(-1)). The method performance was also assessed using five fortified soil samples with different physico-chemical properties and the method performance was consistent for the different types of soil samples. The proposed method was compared with an established procedure based on Soxtec extraction. This comparison was carried out using six soil samples collected from regions of Pakistan with a history of intensive pesticide use. The results of this comparison showed that the two procedures produced results with good agreement. The proposed method produced cleaner extracts and therefore led to lower limits of quantification. The proposed method was less time consuming and safer to use. The six samples tested during this comparison showed that soils from cotton growing regions contained a number of persistent OC residues at relatively low levels (<10 microg kg(-1)). These

  6. Hot-gas cleanup for molten carbonate fuel cells-dechlorination and soot formation. Final report, May 19, 1981-July 19, 1983

    SciTech Connect

    Ham, D.; Gelb, A.; Lord, G.; Simons, G.

    1984-01-01

    Two separate aspects of hot-gas conditioning for molten carbonate fuel cells (MCFC) were investigated under this contract: potential high temperature chloride sorbent materials were sreened and tested and carbon deposition on MCFC components was studied experimentally to determine guidelines for maximizing MCFC efficiency while avoiding carbon fouling. Natural minerals containing sodium carbonate were identified as the most promising candidates for economical removal of chlorides from coal gasifier effluents at temperatures of about 800 K (980/sup 0/F). The mineral Shortite was tested in a fixed bed and found to perform remarkably well with no calcination. Using Shortite we were able to achieve the program goal of less than 1 ppmV chlorides at 800 K. Shortite is an abundant mineral with no competing commercial demand, so it should provide an economical chloride cleanup sorbent. Measurements showed that carbon deposition can occur in the equilibrium carbon freee region because of the relative rates of the relevant reactions. On all surfaces tested, the Boudouard carbon formation reaction is much faster than the water-gas shift reaction which is much faster than the methanation reaction. This means that the normal practice of adding steam to prevent carbon formation will only succeed if flows are slow enough for the water shift reaction to go substantially to completion. More direct suppression of carbon formation can be achieved by CO/sub 2/ addition through anode recycle to force the Boudouard reaction backward. Addition of steam or CO/sub 2/ must be minimized to attain the highest possible MCFC efficiency. 28 references, 31 figures, 22 tables.

  7. Determination of pesticide residues in fish tissues by modified QuEChERS method and dual-d-SPE clean-up coupled to gas chromatography-mass spectrometry.

    PubMed

    Molina-Ruiz, Juan Manuel; Cieslik, Ewa; Cieslik, Iwona; Walkowska, Izabela

    2015-01-01

    The aim of this research was to modify the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method for the determination of organochlorine and organophosphate pesticides in fatty animal matrices such as fish muscle tissues of carp and sturgeon collected from Carp Valley, Lesser Poland. Pesticides extraction effectiveness was evaluated at 0.030 mg kg(-1) spiking level and efficiency of the dispersive-solid-phase extraction (d-SPE) clean-up step was evaluated by comparison testing two different d-SPE clean-up stages, first the addition of the d-SPE sorbent combination (PSA + SAX + NH2), and secondly the addition of C18 after extracts enrichment with the d-SPE sorbent combination (PSA + SAX + NH2), introducing a novel concept of clean-up named dual-d-SPE clean-up. Analysis of pesticide residues was performed by Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS) working in selected-ion monitoring (SIM) mode. Linear relation was observed from 0 to 200 ng mL(-1) and determination coefficient R(2) > 0.997 in all instances for all target analytes. Better recoveries and cleanliness of extracts in both samples, carp and sturgeon tissues, were obtained after C18 addition during the dual-d-SPE clean-up step. Recoveries were in the range 70-120%, with relative standard deviation lower than 10% at 0.030 mg kg(-1) spiking level for most pesticides. LODs ranged 0.001-0.003 mg kg(-1), while LOQs ranged 0.004-0.009 mg kg(-1). The proposed method was successfully applied analyzing pesticide residues in real carp and sturgeon muscle samples; detectable pesticide residues were observed, but in all of the cases contamination level was lower than the default maximum residue levels (MRLs) set by the European Union (EU), Regulation (EC) N 396/2005.

  8. Development of regenerable copper-based sorbents for hot gas cleanup. Technical report, September 1, 1995--November 30, 1995

    SciTech Connect

    Abbasian, J.; Slimane, R.B.; Hill, A.H.

    1995-12-31

    The overall objective of this study is to determine the effectiveness of the copper-chromite sorbent (developed in previous ICCI-funded projects) for longer duration application under optimum conditions in the temperature range of 550{degrees}-650{degrees}C to minimize sorbent reduction and degradation during the cyclic process. To achieve this objective, several formulations of copper chromite sorbents are prepared. These sorbent formulations are screened for their desulfurization and regeneration capability at predetermined temperatures and gas residence times. The durability of the best sorbent formulation identified in the screening tests is evaluated in ``long-term`` durability tests conducted at the optimum operating conditions. This includes testing the sorbent in pellet and granular forms in packed- and fluidized-bed reactors. During this quarter, twenty one copper chromite-based sorbent formulations were prepared. Two sorbent formulations that have acceptable crush strength, designated as CuCr-10 and CuCr-21, were tested over 5 and 6 cycles respectively. The results indicate that both sorbents are reactive toward H{sub 2}S at 650{degrees}C and that the reactivity of the sorbents are relatively constant over the first 5 to 6 cycles. The H{sub 2}S prebreakthrough concentrations were generally about 20 to 30 ppm, making them suitable for IGCC application.

  9. Plasma-assisted cleanup of flue gas. Final technical report, 1 September, 1992--31 August, 1993

    SciTech Connect

    Dhali, S.K.

    1993-12-31

    The objective of the proposed research is to design and implement a novel scheme for the combined removal of SO{sub 2} and NO{sub x} using a dielectric-barrier discharge in conjunction with UV irradiation. This investigation requires the design of a dielectric-barrier reactor and testing the proposed scheme under different conditions that exist in a flue gas. A reactor has been designed and electrical tests have been performed. The voltage characteristics of the plasma reactor has been studied. The authors have found that a discharge can be sustained at atmospheric pressures with a large inner electrode in the coaxial configuration. The testing of the uniformity of the discharge with UV irradiation has been very successful. The details are provided in this report and have been submitted to the Applied Physics Letter. Also both experimental and simulation work were carried out on the removal of SO{sub 2} and NO{sub x}. With the improved reactor, they have achieved a conversions of SO{sub 2} up to 85%. The simulation studies indicate that complete removal of NO{sub x} is possible at reduced electric fields (E/N) of above 100 Td.

  10. Gas turbine cooling system

    DOEpatents

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  11. Major weapon system environmental life-cycle cost estimating for Conservation, Cleanup, Compliance and Pollution Prevention (C3P2)

    NASA Technical Reports Server (NTRS)

    Hammond, Wesley; Thurston, Marland; Hood, Christopher

    1995-01-01

    The Titan 4 Space Launch Vehicle Program is one of many major weapon system programs that have modified acquisition plans and operational procedures to meet new, stringent environmental rules and regulations. The Environmental Protection Agency (EPA) and the Department of Defense (DOD) mandate to reduce the use of ozone depleting chemicals (ODC's) is just one of the regulatory changes that has affected the program. In the last few years, public environmental awareness, coupled with stricter environmental regulations, has created the need for DOD to produce environmental life-cycle cost estimates (ELCCE) for every major weapon system acquisition program. The environmental impact of the weapon system must be assessed and budgeted, considering all costs, from cradle to grave. The Office of the Secretary of Defense (OSD) has proposed that organizations consider Conservation, Cleanup, Compliance and Pollution Prevention (C(sup 3)P(sup 2)) issues associated with each acquisition program to assess life-cycle impacts and costs. The Air Force selected the Titan 4 system as the pilot program for estimating life-cycle environmental costs. The estimating task required participants to develop an ELCCE methodology, collect data to test the methodology and produce a credible cost estimate within the DOD C(sup 3)P(sup 2) definition. The estimating methodology included using the Program Office weapon system description and work breakdown structure together with operational site and manufacturing plant visits to identify environmental cost drivers. The results of the Titan IV ELCCE process are discussed and expanded to demonstrate how they can be applied to satisfy any life-cycle environmental cost estimating requirement.

  12. Gas-Recovery System

    DOEpatents

    Heckman, R. A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  13. Gas-recovery system

    DOEpatents

    Heckman, R.A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  14. Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments

    SciTech Connect

    David Burnett; Harold Vance

    2007-08-31

    The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texas A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.

  15. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  16. Cleanup MAC and MBA code ATP

    SciTech Connect

    Russell, V.K.

    1994-10-17

    The K Basins Materials Accounting (MAC) and Material Balance (MBA) database system had some minor code cleanup performed to its code. This ATP describes how the code was to be tested to verify its correctness.

  17. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  18. Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104

    SciTech Connect

    Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.

    2012-07-01

    This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera arm will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the

  19. Gas Flow Detection System

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  20. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  1. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  2. Gas storage and recovery system

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  3. Gas storage and recovery system

    NASA Astrophysics Data System (ADS)

    Cook, Joseph S.

    1993-03-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  4. Gas storage and recovery system

    NASA Astrophysics Data System (ADS)

    Cook, Joseph S., Jr.

    1994-11-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  5. Mold: Cleanup and Remediation

    MedlinePlus

    ... Issues Resources Quick Links Air Pollution & Respiratory Health Air Quality Asthma Mold What's New National Center for Environmental ... prevention ... more Fact Sheet: Flood Cleanup - Avoiding Indoor Air Quality Problems Flooding in a home or building can ...

  6. Cleanup and Prevention Programs

    EPA Pesticide Factsheets

    EPA takes strides to prevent and cleanup contamination and contaminated sites located on or near Tribal lands. Our programs work hand-in-hand with tribes to ensure we protect their health and the environment.

  7. High performance solid-phase extraction cleanup method coupled with gas chromatography-triple quadrupole mass spectrometry for analysis of polychlorinated naphthalenes and dioxin-like polychlorinated biphenyls in complex samples.

    PubMed

    Li, Fang; Jin, Jing; Tan, Dongqin; Xu, Jiazhi; Dhanjai; Ni, Yuwen; Zhang, Haijun; Chen, Jiping

    2016-05-27

    A solid-phase extraction (SPE) cleanup method was developed to purify the sample extracts for the analysis of polychlorinated naphthalenes (PCNs) and dioxin-like polychlorinated biphenyls (dl-PCBs). Monodisperse magnesium oxide (MgO) microspheres and basic alumina were used as SPE adsorbents. Important parameters of the SPE procedure were optimized, including the amount of basic alumina and the type and volume of the washing and elution solvents. The optimized SPE cleanup method exhibited excellent purification performance for the removal of organochlorinated compounds, lipid compounds, sulfur, and pigments. Additionally, it was found that the retention activities of congeners differed with the number and position of the chlorine substituents in PCNs. In this study, an analytical method based on a combination of accelerated solvent extraction (ASE) coupled with SPE cleanup and gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) is proposed for the analysis of PCNs and dl-PCBs in complex samples (sediment, pine needle, and scallop samples). The analytical method demonstrates good linearity, acceptable recovery (63-148%) and precision (relative standard deviations less than 26%). The limits of detection (LODs) of PCN and dl-PCB congeners were in the range of 0.6-19.1pgg(-1) and 0.4-8.6pgg(-1), respectively. The PCNs and dl-PCBs levels in these samples ranged from 0.16 to 3.07ngg(-1) dry weight (dw) and from undetectable to 0.07ngg(-1) dw, respectively.

  8. Code regenerative clean-up loop transponder for a mu-type ranging system

    NASA Technical Reports Server (NTRS)

    Hurd, W. J. (Inventor)

    1973-01-01

    A loop transponder for regenerating the code of a mu type ranging system is disclosed. It includes a phase locked loop, a code generator, and a loop detector. The function of the phase locked loop is to provide phase lock between a received component wk of the range signal and a replica rafter wk of the received component, provided by the code generator. The code generator also provides a replica of the next component rafter w(w+1). The loop detector responds to wk rafler wk and rafter w(k+1) to determine when the next component w(k+1) is received and controls the code generator to supply w(k+1) to the phase locked loop and to generate a replica rafter w(k+2) of the next component.

  9. System of treating flue gas

    DOEpatents

    Ziegler, D.L.

    1975-12-01

    A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas.

  10. Advanced hot gas cleaning system for coal gasification processes

    NASA Astrophysics Data System (ADS)

    Newby, R. A.; Bannister, R. L.

    1994-04-01

    The United States electric industry is entering a period where growth and the aging of existing plants will mandate a decision on whether to repower, add capacity, or do both. The power generation cycle of choice, today, is the combined cycle that utilizes the Brayton and Rankine cycles. The combustion turbine in a combined cycle can be used in a repowering mode or in a greenfield plant installation. Today's fuel of choice for new combined cycle power generation is natural gas. However, due to a 300-year supply of coal within the United States, the fuel of the future will include coal. Westinghouse has supported the development of coal-fueled gas turbine technology over the past thirty years. Working with the U.S. Department of Energy and other organizations, Westinghouse is actively pursuing the development and commercialization of several coal-fueled processes. To protect the combustion turbine and environment from emissions generated during coal conversion (gasification/combustion) a gas cleanup system must be used. This paper reports on the status of fuel gas cleaning technology and describes the Westinghouse approach to developing an advanced hot gas cleaning system that contains component systems that remove particulate, sulfur, and alkali vapors. The basic process uses ceramic barrier filters for multiple cleaning functions.

  11. Process gas chromatography study of a Selexol acid gas removal system. Final report Mar-Sep 82

    SciTech Connect

    Williams, W.A.

    1984-01-01

    The report gives results of continuous compositional monitoring by process gas chromatography (GC) for three gas streams associated with the Selexol acid gas removal system at the Bi-Gas pilot plant in Homer City, PA. Data were obtained from the inlet and outlet streams of the Selexol system during tests in April and May 1982. Product gas composition data were logged for 55 hours of plant operation. The Bi-Gas pilot plant, utilizing a two-stage, entrained-bed, high-pressure slagging gasifier, produces a product gas that is low in tars and heavy oils. This gas stream required very little cleanup prior to instrumental analysis. However, some problems were encountered in the analysis of the Selexol acid gas stream due to the presence of high levels of naphthalene. The process gas chromatographs performed well and remained very stable during the tests. Material balances based on GC analyses and process flow rate data show a high degree of material accountability. The H/sub 2/S removal efficiency of the Selexol absorber was about 99% during the tests.

  12. Unconventional shallow biogenic gas systems

    USGS Publications Warehouse

    Shurr, G.W.; Ridgley, J.L.

    2002-01-01

    Unconventional shallow biogenic gas falls into two distinct systems that have different attributes. Early-generation systems have blanketlike geometries, and gas generation begins soon after deposition of reservoir and source rocks. Late-generation systems have ringlike geometries, and long time intervals separate deposition of reservoir and source rocks from gas generation. For both types of systems, the gas is dominantly methane and is associated with source rocks that are not thermally mature. Early-generation biogenic gas systems are typified by production from low-permeability Cretaceous rocks in the northern Great Plains of Alberta, Saskatchewan, and Montana. The main area of production is on the southeastern margin of the Alberta basin and the northwestern margin of the Williston basin. The huge volume of Cretaceous rocks has a generalized regional pattern of thick, non-marine, coarse clastics to the west and thinner, finer grained marine lithologies to the east. Reservoir rocks in the lower part tend to be finer grained and have lower porosity and permeability than those in the upper part. Similarly, source beds in the units have higher values of total organic carbon. Patterns of erosion, deposition, deformation, and production in both the upper and lower units are related to the geometry of lineament-bounded basement blocks. Geochemical studies show that gas and coproduced water are in equilibrium and that the fluids are relatively old, namely, as much as 66 Ma. Other examples of early-generation systems include Cretaceous clastic reservoirs on the southwestern margin of Williston basin and chalks on the eastern margin of the Denver basin. Late-generation biogenic gas systems have as an archetype the Devonian Antrim Shale on the northern margin of the Michigan basin. Reservoir rocks are fractured, organic-rich black shales that also serve as source rocks. Although fractures are important for production, the relationships to specific geologic structures are

  13. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.

    2002-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.

  14. Optimization of an online heart-cutting multidimensional gas chromatography clean-up step for isotopic ratio mass spectrometry and simultaneous quadrupole mass spectrometry measurements of endogenous anabolic steroid in urine.

    PubMed

    Casilli, Alessandro; Piper, Thomas; de Oliveira, Fábio Azamor; Padilha, Monica Costa; Pereira, Henrique Marcelo; Thevis, Mario; de Aquino Neto, Francisco Radler

    2016-11-01

    Measuring carbon isotope ratios (CIRs) of urinary analytes represents a cornerstone of doping control analysis and has been particularly optimized for the detection of the misuse of endogenous steroids. Isotope ratio mass spectrometry (IRMS) of appropriate quality, however, necessitates adequate purities of the investigated steroids, which requires extensive pre-analytical sample clean-up steps due to both the natural presence of the target analytes and the high complexity of the matrix. In order to accelerate the sample preparation and increase the automation of the process, the use of multidimensional gas chromatography (MDGC) prior to IRMS experiments, was investigated. A well-established instrumental configuration based on two independent GC ovens and one heart-cutting device was optimized. The first dimension (1D) separation was obtained by a non-polar column which assured high efficiency and good loading capacity, while the second dimension (2D), based on a mid-polar stationary phase, provided good selectivity. A flame ionization detector monitored the 1D, and the 2D was simultaneously recorded by isotope ratio and quadrupole mass spectrometry. The assembled MDGC set-up was applied for measuring testosterone, 5α- and 5β-androstanediol, androsterone, and etiocholanolone as target compounds and pregnanediol as endogenous reference compound. The urine sample were pretreated by conventional sample preparation steps comprising solid-phase extraction, hydrolysis, and liquid-liquid extraction. The extract obtained was acetylated and different aliquots were injected into the MDGC system. Two high performance liquid chromatography steps, conventionally adopted prior to CIR measurements, were replaced by the MDGC approach. The obtained values were consistent with the conventional ones. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  16. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  17. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  18. Optical fibre gas detections systems

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian

    2016-05-01

    This tutorial review covers the principles of and prospects for fibre optic sensor technology in gas detection. Many of the potential benefits common to fibre sensor technology also apply in the context of gas sensing - notably long distance - many km - access to multiple remote measurement points; invariably intrinsic safety; access to numerous important gas species and often uniquely high levels of selectivity and/or sensitivity. Furthermore, the range of fibre sensor network architectures - single point, multiple point and distributed - enable unprecedented flexibility in system implementation. Additionally, competitive technologies and regulatory issues contribute to final application potential.

  19. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twentieth quarterly status report, July--September 1992

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1992-10-20

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  20. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  1. Environmental compliance and cleanup

    SciTech Connect

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed.

  2. The Anaesthesia Gas Supply System

    PubMed Central

    Das, Sabyasachi; Chattopadhyay, Subhrajyoti; Bose, Payel

    2013-01-01

    The anaesthesia gas supply system is designed to provide a safe, cost-effective and convenient system for the delivery of medical gases at the point of-use. The doctrine of the anaesthesia gas supply system is based on four essential principles: Identity, continuity, adequacy and quality. Knowledge about gas supply system is an integral component of safe anaesthetic practice. Mishaps involving the malfunction or misuse of medical gas supply to operating theatres have cost many lives. The medical gases used in anaesthesia and intensive care are oxygen, nitrous oxide, medical air, entonox, carbon dioxide and heliox. Oxygen is one of the most widely used gases for life-support and respiratory therapy besides anaesthetic procedures. In this article, an effort is made to describe the production, storage and delivery of anaesthetic gases. The design of anaesthesia equipment must take into account the local conditions such as climate, demand and power supply. The operational policy of the gas supply system should have a backup plan to cater to the emergency need of the hospital, in the event of the loss of the primary source of supply. PMID:24249882

  3. Fuel cell gas management system

    DOEpatents

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  4. Multi-channel gas-delivery system

    SciTech Connect

    Rozenzon, Yan; Trujillo, Robert T.; Beese, Steven C.

    2016-09-13

    One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gases to a corresponding gas channel.

  5. Risk-based cleanup standards

    SciTech Connect

    Kennedy, W.E. Jr.

    1992-06-01

    The problems encountered during facility or land cleanup operations will provide challenges both to technology and regulatory agencies. Inevitably, the decisions of the federal agencies regulating cleanup activities have been controversial. The major dilemma facing government and industry is how to accomplish cleanup in a cost-effective manner while minimizing the risks to workers and the public.

  6. Automated clean-up, separation and detection of polycyclic aromatic hydrocarbons in particulate matter extracts from urban dust and diesel standard reference materials using a 2D-LC/2D-GC system.

    PubMed

    Ahmed, Trifa M; Lim, Hwanmi; Bergvall, Christoffer; Westerholm, Roger

    2013-10-01

    A multidimensional, on-line coupled liquid chromatographic/gas chromatographic system was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs). A two-dimensional liquid chromatographic system (2D-liquid chromatography (LC)), with three columns having different selectivities, was connected on-line to a two-dimensional gas chromatographic system (2D-gas chromatography (GC)). Samples were cleaned up by combining normal elution and column back-flush of the LC columns to selectively remove matrix constituents and isolate well-defined, PAH enriched fractions. Using this system, the sequential removal of polar, mono/diaromatic, olefinic and alkane compounds from crude extracts was achieved. The LC/GC coupling was performed using a fused silica transfer line into a programmable temperature vaporizer (PTV) GC injector. Using the PTV in the solvent vent mode, excess solvent was removed and the enriched PAH sample extract was injected into the GC. The 2D-GC setup consisted of two capillary columns with different stationary phase selectivities. Heart-cutting of selected PAH compounds in the first GC column (first dimension) and transfer of these to the second GC column (second dimension) increased the baseline resolutions of closely eluting PAHs. The on-line system was validated using the standard reference materials SRM 1649a (urban dust) and SRM 1975 (diesel particulate extract). The PAH concentrations measured were comparable to the certified values and the fully automated LC/GC system performed the clean-up, separation and detection of PAHs in 16 extracts in less than 24 h. The multidimensional, on-line 2D-LC/2D-GC system eliminated manual handling of the sample extracts and minimised the risk of sample loss and contamination, while increasing accuracy and precision.

  7. 48 CFR 49.105-4 - Cleanup of construction site.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Cleanup of construction site. 49.105-4 Section 49.105-4 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.105-4 Cleanup of construction site....

  8. Simultaneous determination of multiresidual phenyl acetanilide pesticides in different food commodities by solid-phase cleanup and gas chromatography-mass spectrometry.

    PubMed

    Li, Yongjun; Wang, Meiling; Yan, Hongfei; Fu, Shanliang; Dai, Hua

    2013-03-01

    An efficient and sensitive multiresidue method has been developed for quantification and confirmation of 25 phenyl acetanilide pesticides in a wide variety of food commodities including maize, spinach, mushroom, apple, soybean, chestnut, tea, beef, cattle liver, chicken, fish, and milk. Analytes were extracted with acetone-n-hexane (1:2, v/v) followed by cleanup using SPE. Several types of adsorbents were evaluated. Neutral aluminum and graphitized carbon black cartridge showed good cleanup efficiency. The extract was determined by GC-MS in the selected ion monitoring mode using one target and two qualitative ions for each analyte. The limits of detection were 0.01 mg/kg for all analytes. The average recoveries ranged from 66.9 to 110.6% (mean 88.8%) and RSDs were in the range 2.0-19% (mean 10.5%) across three fortification levels. The proposed method was successfully applied to real samples in routine analysis and a satisfactory result was obtained.

  9. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  10. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  12. Advanced gas turbine systems program

    SciTech Connect

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  13. 46 CFR 121.240 - Gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... gas (LPG) and compressed natural gas (CNG) must meet the following requirements: (a) The design... testing of each CNG system must meet ABYC A-22, “Marine Compressed Natural Gas (CNG) Systems,” Chapter 6... 46 Shipping 4 2012-10-01 2012-10-01 false Gas systems. 121.240 Section 121.240 Shipping...

  14. Solar-gas systems impact analysis study

    NASA Astrophysics Data System (ADS)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  15. An improved dispersive solid-phase extraction clean-up method for the gas chromatography-negative chemical ionisation tandem mass spectrometric determination of multiclass pesticide residues in edible oils.

    PubMed

    Deme, Pragney; Azmeera, Tirupathi; Prabhavathi Devi, B L A; Jonnalagadda, Padmaja R; Prasad, R B N; Vijaya Sarathi, U V R

    2014-01-01

    An improved sample preparation using dispersive solid-phase extraction clean-up was proposed for the trace level determination of 35 multiclass pesticide residues (organochlorine, organophosphorus and synthetic pyrethroids) in edible oils. Quantification of the analytes was carried out by gas chromatography-mass spectrometry in negative chemical ionisation mode (GC-NCI-MS/MS). The limit of detection and limit of quantification of residues were in the range of 0.01-1ng/g and 0.05-2ng/g, respectively. The analytes showed recoveries between 62% and 110%, and the matrix effect was observed to be less than 25% for most of the pesticides. Crude edible oil samples showed endosulfan isomers, p,p'-DDD, α-cypermethrin, chlorpyrifos, and diazinon residues in the range of 0.56-2.14ng/g. However, no pesticide residues in the detection range of the method were observed in refined oils.

  16. 46 CFR 184.240 - Gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the following... design, installation and testing of each CNG system must meet ABYC A-22, “Marine Compressed Natural Gas... 46 Shipping 7 2014-10-01 2014-10-01 false Gas systems. 184.240 Section 184.240 Shipping...

  17. [Phylogeny of gas exchange systems].

    PubMed

    Jürgens, K D; Gros, G

    2002-04-01

    Several systems of gas transport have developed during evolution, all of which are able to sufficiently supply oxygen to the tissues and eliminate the CO2 produced by the metabolism, in spite of great distances between the environment and the individual cells of the tissues. Almost all these systems utilize a combination of convection and diffusion steps. Convection achieves an efficient transport of gas over large distances, but requires energy and cannot occur across tissue barriers. Diffusion, on the other hand, achieves gas transport across barriers, but requires optimization of diffusion paths and diffusion areas. When two convectional gas flows are linked via a diffusional barrier (gas/fluid in the case of the avian lung, fluid/fluid in the case of gills), the directions in which the respective convectional movements pass each other are important determinants of gas exchange efficiency (concurrent, countercurrent and cross-current systems). The tracheal respiration found in insects has the advantage of circumventing the convective gas transport step in the blood, thereby avoiding the high energy expenditure of circulatory systems. This is made possible by a system of tracheae, ending in tracheoles, that reaches from the body surface to every cell within the body. The last step of gas transfer in these animals occurs by diffusion from the tracheoles ("air capillaries") to the mitochondria of cells. The disadvantage is that the tracheal system occupies a substantial fraction of body volume and that, due to limited mechanical stability of tracheal walls, this system would not be able to operate under conditions of high hydrostatic pressures, i. e. in large animals. Respiration in an "open" system, i. e. direct exposure of the diffusional barrier to the environmental air, eliminates the problem of bringing the oxygen to the barrier by convection, as is necessary in the avian and mammalian lung, in the insects' tracheal system and in the gills. An open system is

  18. Gas sampling system for a mass spectrometer

    DOEpatents

    Taylor, Charles E; Ladner, Edward P

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  19. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cinke, Martin; Li, Jing; Chen, Bin; Wignarajah, Kanapathipillai; Pisharody, Suresh A.; Fisher, John W.; Delzeit, Lance; Meyyappan, Meyya; Partridge, Harry; Clark, Kimberlee

    2003-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT's.

  20. Gas characterization system software acceptance test report

    SciTech Connect

    Vo, C.V.

    1996-03-28

    This document details the results of software acceptance testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

  1. Design considerations for divers' breathing gas systems

    NASA Technical Reports Server (NTRS)

    Hansen, O. R.

    1972-01-01

    Some of the design methods used to establish the gas storage, mixing, and transfer requirements for existing deep dive systems are discussed. Gas mixing systems appear essential to provide the low oxygen concentration mixtures within the converging tolerance range dictated by applications to increasing depths. Time related use of gas together with the performance of the gas transfer system insures a reasonable time frame for systems application.

  2. Integrated Low Emissions Cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-fifth quarterly report, October--December 1993

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1993-12-31

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been reconfigured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the twenty-fifth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  3. Gas loading system for LANL two-stage gas guns

    NASA Astrophysics Data System (ADS)

    Gibson, Lee; Bartram, Brian; Dattelbaum, Dana; Lang, John; Morris, John

    2015-06-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez and Teflon. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system, and example data from the plate impact experiments will be shown. LA-UR-15-20521

  4. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  5. Texas Coastal Cleanup Report, 1986.

    ERIC Educational Resources Information Center

    O'Hara, Kathryn; And Others

    During the 1986 Coastweek, a national event dedicated to improvement of the marine environment, a large beach cleanup was organized on the Texas coast. The goals of the cleanup were to create public awareness of the problems caused by marine debris, and to collect data on the types and quantities of debris found on the Texas coastline. The…

  6. Flammable Gas Detection for the D-Zero Gas System

    SciTech Connect

    Spires, L.D.; Foglesong, J.; /Fermilab

    1991-02-11

    The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the

  7. Mercury sorbent delivery system for flue gas

    DOEpatents

    Klunder; ,Edgar B.

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  8. LNG delivery system for gas powered vehicles

    SciTech Connect

    Nesser, T.A.; Hedegard, K.W.

    1992-07-07

    This patent describes a natural gas delivery system. It comprises a first vehicle mounted tank for storing liquid natural gas and natural gas vapor; a second vehicle mounted tank for storing liquid natural gas and natural gas vapor; a use line connected to the first and second tanks for receiving natural gas from the first and second tanks and delivering natural gas vapor to the use device on the vehicle and means for pressurizing the natural gas in the use line; means for selecting one of the first or second tanks to deliver natural gas to the use line; and means for overriding the selecting means to deliver natural gas vapor to the use line from either of the tanks in response to detecting a pressure rise therein which exceeds a preselected maximum.

  9. Copper clean-up procedure for ultrasonic extraction and analysis of pyrethroid and phenylpyrazole pesticides in sediments by gas chromatography-electron capture detection.

    PubMed

    Wu, Jun; Lin, Youjian; Lu, Jian; Wilson, Chris

    2011-08-15

    A rapid ultrasonic extraction method coupled with a heated-copper clean-up procedure for removing interfering constituents was developed for analyzing pyrethroid and phenylpyrazole pesticides in sediments. Incubation of the 60 mL extract with 12 g copper granules at 60 °C for 2h was determined to be the optimal conditions for removing the interfering constituents. Eleven pyrethroid and phenylpyrazole pesticides were spiked into sediment samples to determine the effectiveness of the ultrasonic extraction method. The average recoveries of pyrethroids and phenylpyrazoles in sediment at 4 °C storage on day 0, 1, 7, 14, and 21 ranged from 98.6 to 120.0%, 79.2 to 116.0%, 85.0 to 119.7%, 93.6 to 118.7%, and 92.1 to 118.2%, respectively, with all percent relative standard deviations less than 10% (most <6%). This illustrated the stability of pyrethroids and phenylpyrazoles in sediment during sediment aging at 4 °C. Recoveries of the pesticides ranged from 98.6% to 120.0% for lowest fortification level (2-16 μg kg⁻¹), from 97.8% to 117.9% for middle fortification level (10-80 μg kg⁻¹), and from 94.3% to 118.1% for highest fortification level (20-160 μg kg⁻¹). Relative standard deviations of pesticide recoveries were usually less than 7%. Method detection limits of target pesticides ranged from 0.22 μg kg⁻¹ to 3.72 μg kg⁻¹. Furthermore, field sediment samples collected from four residential lakes during a three-month monitoring period were analyzed to evaluate the effectiveness of this method. Bifenthrin was detected in all of sediment samples (highest concentration 260.33±41.71 μg kg⁻¹, lowest concentration 5.68±0.38 μg kg⁻¹, and fipronil sulfone was detected at least once in sediment samples collected from three sites with concentrations ranging from 1.73±0.53 to 7.53±0.01 μg kg⁻¹.

  10. Bioventing reduces soil cleanup costs

    SciTech Connect

    Leahy, M.C.; Erickson, G.P.

    1995-08-01

    An offshoot technology from soil venting, bioventing offers a win-win solution for soils contaminated with volatile organic compounds (VOCs) and nonvolatile contaminants such as diesel and fuel oil. Using low air flowrates through permeable soils, bioventing injects sufficient oxygen to support naturally-occurring bacteria, which biodegraded the VOCs and other contaminants into benign byproducts. Waste gas can be directly discharged to atmosphere without further treatment. This results in no offgas treatment required. Bioventing is a cost-effective alternative to traditional soil-venting techniques. Soil venting uses air to volatilize organic-compound contamination from the vadose zone, the unsaturated soil layer above groundwater. Unfortunately, this simple-and-fast approach creates a waste offgas that requires further treatment before discharge, thus adding significantly to overall project costs. In contrast, bioventing uses low air flowrates, which require lower capital and operating costs. No offgas treatment further reduces equipment and operating costs and often eliminates air permitting. As in all treatment strategies, the process must meet the cleanup objectives. Bioventing is an alternative technique making inroads into refining and petrochemical soil-remediation applications.

  11. Report: EPA Needs to Track Compliance with Superfund Cleanup Requirements

    EPA Pesticide Factsheets

    Report #08-P-0141, April 28, 2008. According to EPA’s Superfund information system, there were 3,397 active Superfund enforcement instruments to ensure cleanups at National Priorities List sites as of September 30, 2007.

  12. SUPERFUND CLEANUPS AND INFANT HEALTH.

    PubMed

    Currie, Janet; Greenstone, Michael; Moretti, Enrico

    2011-05-01

    We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989-2003 in five large states. Our "difference in differences" approach compares birth outcomes before and after a site clean-up for mothers who live within 2,000 meters of the site and those who live between 2,000- 5,000 meters of a site. We find that proximity to a Superfund site before cleanup is associated with a 20 to 25% increase in the risk of congenital anomalies.

  13. Argentine gas system underway for Gas del Estado

    SciTech Connect

    Bosch, H.

    1980-10-01

    Gas del Estado's giant 1074-mile Centro-Oeste pipeline project - designed to ultimately transport over 350 million CF/day of natural gas from the Neuquen basin to the Campo Duran-Buenos Aires pipeline system - is now underway. The COGASCO consortium of Dutch and Argentine companies awarded the construction project will also operate and maintain the system for 15 years after its completion. In addition to the 30-in. pipelines, the agreement calls for a major compressor station at the gas field, three intermediate compressor stations, a gas-treatment plant, liquids-recovery facilities, and the metering, control, communications, and maintenance equipment for the system. Fabricated in Holland, the internally and externally coated pipe will be double-jointed to 80-ft lengths after shipment to Argentina; welders will use conventional manual-arc techniques to weld the pipeline in the field.

  14. Technical reviews of cleanup and R and D results. Final technical progress report, March 15, 1982-December 30, 1983

    SciTech Connect

    Stopek, D.J.

    1984-01-16

    SAI reviewed for METC several reports on hot gas cleanup of flue gas, flue gas desulfurization methods and on materials and research programs on heat engines. The work done is listed here without technical discussion. (LTN)

  15. Trivalent copper chelate-luminol chemiluminescence system for highly sensitive CE detection of dopamine in biological sample after clean-up using SPE.

    PubMed

    Wang, Lin; Liu, Ying; Xie, Haoyue; Fu, Zhifeng

    2012-06-01

    A transition metal chelate unstable at a high oxidation state, diperiodatocuprate (III) (K₅[Cu(HIO₆)₂], DPC), was synthesized and applied in the luminol-based chemiluminescence (CL) system for highly sensitive CE end-column detection of dopamine (DA). This method was based on the fact that DA enhanced the CL emission resulting from the reaction between luminol and DPC in alkaline medium. The DPC-luminol-DA CL system showed very intensive emission and very fast kinetic characteristics, thus resulting in a high sensitivity in flow-through detection mode for CE. Under optimal conditions, the linear range was 1.0 × 10⁻⁸-5.0 × 10⁻⁵ g/mL (R² = 0.9984) with a limit of detection of 6.0 × 10⁻⁹ g/mL (S/N = 3). The RSDs of the peak height and the migration time were about 4.2 and 2.4% for a standard sample at 3.0 × 10⁻⁶ g/mL (n = 5), respectively. The presented method has been successfully used for the determination of DA in commercial preparation and human urine samples after clean-up using SPE.

  16. Adaptive control system for gas producing wells

    SciTech Connect

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  17. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  18. System and method for detecting gas

    DOEpatents

    Chow, Oscar Ken; Moulthrop, Lawrence Clinton; Dreier, Ken Wayne; Miller, Jacob Andrew

    2010-03-16

    A system to detect a presence of a specific gas in a mixture of gaseous byproducts comprising moisture vapor is disclosed. The system includes an electrochemical cell, a transport to deliver the mixture of gaseous byproducts from the electrochemical cell, a gas sensor in fluid communication with the transport, the sensor responsive to a presence of the specific gas to generate a signal corresponding to a concentration of the specific gas, and a membrane to prevent transmission of liquid moisture, the membrane disposed between the transport and the gas sensor.

  19. 46 CFR 184.240 - Gas systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Gas systems. 184.240 Section 184.240 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.240 Gas systems. Cooking...

  20. 46 CFR 184.240 - Gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Gas systems. 184.240 Section 184.240 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.240 Gas systems. Cooking...

  1. 46 CFR 184.240 - Gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Gas systems. 184.240 Section 184.240 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.240 Gas systems. Cooking...

  2. Getting the gas out - developing gas networks in magmatic systems

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine; Rust, Alison; Oppenheimer, Julie; Belien, Isolde

    2015-04-01

    Volcanic eruption style, and explosive potential, are strongly controlled by the pre-eruptive history of the magmatic volatiles: specifically, the more efficient the gas loss prior to eruption, the lower the likelihood of primary (magmatic) explosive activity. Commonly considered gas loss mechanisms include separated flow, where individual bubbles (or bubble clouds) travel at a rate that is faster than the host magma, and permeable flow, where gas escapes through permeable (connected) pathways developed within a (relatively) static matrix. Importantly, gas loss via separated flow is episodic, while gas loss via permeable flow is likely to be continuous. Analogue experiments and numerical models on three phase (solid-liquid-gas) systems also suggest a third mechanism of gas loss that involves the opening and closing of 'pseudo fractures'. Pseudo fractures form at a critical crystallinity that is close to the maximum particle packing. Fractures form by local rearrangement of solid particles and liquid to form a through-going gas fracture; gas escape is episodic, and modulated by the available gas volume and the rate of return flow of interstitial liquid back into the fracture. In all of the gas escape scenarios described above, a fundamental control on gas behaviour is the melt viscosity, which affects the rate of individual bubble rise, the rate of bubble expansion, the rate of film thinning (required for bubble coalescence), and the rate of melt flow into gas-generated fractures. From the perspective of magma degassing, rates of gas expansion and film thinning are key to the formation of an interconnected (permeable) gas pathway. Experiments with both analogue and natural materials show that bubble coalescence is relatively slow, and, in particle-poor melts, does not necessarily create permeable gas networks. As a result, degassing efficiency is modulated by the time scales required either (1) to produce large individual bubbles or bubble clouds (in low viscosity

  3. Flue Gas Cleanup at Temperatures about 1400 C for a Coal Fired Combined Cycle Power Plant: State and Perspectives in the Pressurized Pulverized Coal Combustion (PPCC) Project

    SciTech Connect

    Foerster, M.E.C.; Oeking, K.; Hannes, K.

    2002-09-18

    The PPCC technology, a combined cycle, requires comprehensive cleaning of the flue gases because coal contains a large variety of minerals and other substances. This would lead to fast destruction of the gas turbine blades due to erosion and corrosion. The present specifications of the turbine manufacturers for the required flue gas quality are at a maximum particulate content of 5 mg/m3 s.t.p., diameter of < 5 {micro}m, and a maximum alkali content < 0.01 mg/m3 s.t.p. The PPCC project is aimed at cleaning the flue gases of pressurized coal combustion. This method will be applied at temperature ranges where the ash is in a liquid state and which will be thus cleaned from coarse particulate material by agglomeration and inertial force separators. Appropriate separating methods are also being investigated and developed for the hazardous gaseous contents, e.g. alkali compounds, which are released during the coal combustion process. The following companies are working on the development within the scope of a collaborative project to find a feasible technical solution: Babcock-Borsig-Power Env. GmbH (BBP Env.), E.ON Kraftwerke GmbH, SaarEnergie GmbH, Siemens AG, and Steag AG.

  4. Central Plateau Cleanup at DOE's Hanford Site - 12504

    SciTech Connect

    Dowell, Jonathan

    2012-07-01

    The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all other unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring

  5. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  6. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, Don D.

    1985-01-01

    A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  7. Comparative study of different clean-up techniques for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with electron capture detection.

    PubMed

    Muhamad, Halimah; Zainudin, Badrul Hisyam; Abu Bakar, Nor Kartini

    2012-10-15

    Solid phase extraction (SPE) and dispersive solid-phase extraction (d-SPE) were compared and evaluated for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with an electron capture detector (GC-ECD). Several SPE sorbents such as graphitised carbon black (GCB), primary secondary amine (PSA), C(18), silica, and florisil were tested in order to minimise fat residues. The results show that mixed sorbents using GCB and PSA obtained cleaner extracts than a single GCB and PSA sorbents. The average recoveries obtained for each pesticide ranged between 81% and 114% at five fortification levels with the relative standard deviation of less than 7% in all cases. The limits of detection for these pesticides were ranged between 0.025 and 0.05 μg/g. The proposed method was applied successfully for the residue determination of both λ-cyhalothrin and cypermethrin in crude palm oil samples obtained from local mills throughout Malaysia.

  8. Innovative technologies for soil cleanup

    SciTech Connect

    Yow, J.L. Jr.

    1992-09-01

    These notes provide a broad overview of current developments in innovative technologies for soil cleanup. In this context, soil cleanup technologies include site remediation methods that deal primarily with the vadose zone and with relatively shallow, near-surface contamination of soil or rock materials. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in soil cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the sits-specific technical challenges presented by each sold contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After cataloging a representative selection of these technologies, one of the new technologies, Dynamic Underground Stripping, is discussed in more detail to highlight a promising soil cleanup technology that is now being field tested.

  9. PHENIX Muon Tracking Detector Gas System

    NASA Astrophysics Data System (ADS)

    Kotchenda, L.; Kravtsov, P.; Pisani, R. P.; Tretiakov, G.; Trofimov, V.

    2007-07-01

    The Muon Tracking Detector Gas System was designed and fabricated to supply Ar+30% CO 2+20% CF 4 mixture to the PHENIX [K. Adcox, S.S. Adler, M. Aizam, et al., Nucl. Instr. and Meth. A 499 (2003) 669.] [1]. Muon Tracking (MuTr) chambers located at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Nation Lab (BNL). The gas system purpose is to provide gas at the requested mixture at a constant controlled pressure and at various flow rates. The system can do this while monitoring the mixture's temperature, pressure, flow rate, and CO 2, oxygen, and moisture content. A custom computer data acquisition system collects and logs the gas system operating parameters. This system can also be alarmed to provide automatic responses to undesired system conditions.

  10. Hand-held multiple system gas chromatograph

    DOEpatents

    Yu, Conrad M.

    2001-01-01

    A multiple parallel hand-held gas chromatograph (GC) system which includes several independent GCs. Each independent GC has its own injector, separation column, detector and oven and the GCs are mounted in a light weight hand-held assembly. Each GC operates independently and simultaneously. Because of different coatings in different separation columns, different retention times for the same gas will be measured. Thus, for a GC system with multiple parallel GCs, the system can measure, in a short period, different retention times and provide a cross-reference in the determination of the measured gas and to become a two-dimensional system for direct field use.

  11. The Effect of Bacillus-based Feed Additive on Growth Performance, Nutrient Digestibility, Fecal Gas Emission, and Pen Cleanup Characteristics of Growing-finishing Pigs.

    PubMed

    Upadhaya, S D; Kim, S C; Valientes, R A; Kim, I H

    2015-07-01

    Bacillus-based feed additive was evaluated for its efficacy on growth performance, nutrient digestibility, fecal gas emission, and the consumption of time and amount of water for cleaning the pen of growing finishing pigs. A total of 120 growing pigs (23.59±1.41 kg) were used in a 16-wk feeding trial. Pigs were randomly distributed into 1 of 2 treatments on the basis of body weight and sex. There were 12 replicate pens per treatment, with 5 pigs (3 barrows and 2 gilts) per pen. Dietary treatments were CON which was basal diet, and T1 which was CON+62.5 ppm microbial feed additive that provided 1.47×10(8) cfu of Bacillus organisms per gram of supplement. During the weeks 0 to 6, average daily gain (ADG) in T1 treatment was higher (p<0.05) than CON, but no improvement in average daily feed intake (ADFI) and feed efficiency (G:F) was noted. During 6 to 16 weeks, no difference (p>0.05) was noted in growth performance. However, ADG was improved (p<0.05) and overall ADFI tended (p = 0.06) to improve in T1 compared with CON. At week 6, the co-efficient of apparent total tract digestibility (CATTD) of dry matter (DM) nitrogen (N) was increased (p<0.05) in T1 compared with CON. Fecal NH3 emission was decreased (p<0.05) in T1 compared with CON, at the end of 6th and 15th weeks. The time and water consumed for washing the pens were decreased (p<0.05) in T1 compared with CON. In conclusion, supplementation with Bacillus-based feed additive could improve the overall growth performances, increase the CATTD of DM and decrease the fecal NH3 content and the time and water consumed in washing the pens for growing-finishing pigs.

  12. The Effect of Bacillus-based Feed Additive on Growth Performance, Nutrient Digestibility, Fecal Gas Emission, and Pen Cleanup Characteristics of Growing-finishing Pigs

    PubMed Central

    Upadhaya, S. D.; Kim, S. C.; Valientes, R. A.; Kim, I. H.

    2015-01-01

    Bacillus-based feed additive was evaluated for its efficacy on growth performance, nutrient digestibility, fecal gas emission, and the consumption of time and amount of water for cleaning the pen of growing finishing pigs. A total of 120 growing pigs (23.59±1.41 kg) were used in a 16-wk feeding trial. Pigs were randomly distributed into 1 of 2 treatments on the basis of body weight and sex. There were 12 replicate pens per treatment, with 5 pigs (3 barrows and 2 gilts) per pen. Dietary treatments were CON which was basal diet, and T1 which was CON+62.5 ppm microbial feed additive that provided 1.47×108 cfu of Bacillus organisms per gram of supplement. During the weeks 0 to 6, average daily gain (ADG) in T1 treatment was higher (p<0.05) than CON, but no improvement in average daily feed intake (ADFI) and feed efficiency (G:F) was noted. During 6 to 16 weeks, no difference (p>0.05) was noted in growth performance. However, ADG was improved (p<0.05) and overall ADFI tended (p = 0.06) to improve in T1 compared with CON. At week 6, the co-efficient of apparent total tract digestibility (CATTD) of dry matter (DM) nitrogen (N) was increased (p<0.05) in T1 compared with CON. Fecal NH3 emission was decreased (p<0.05) in T1 compared with CON, at the end of 6th and 15th weeks. The time and water consumed for washing the pens were decreased (p<0.05) in T1 compared with CON. In conclusion, supplementation with Bacillus-based feed additive could improve the overall growth performances, increase the CATTD of DM and decrease the fecal NH3 content and the time and water consumed in washing the pens for growing-finishing pigs. PMID:26104405

  13. SUPERFUND CLEANUPS AND INFANT HEALTH

    PubMed Central

    Currie, Janet; Greenstone, Michael; Moretti, Enrico

    2013-01-01

    We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989–2003 in five large states. Our “difference in differences” approach compares birth outcomes before and after a site clean-up for mothers who live within 2,000 meters of the site and those who live between 2,000– 5,000 meters of a site. We find that proximity to a Superfund site before cleanup is associated with a 20 to 25% increase in the risk of congenital anomalies. PMID:25152535

  14. Stakeholder Workshop Presentations: EPA Greenhouse Gas Data on Petroleum and Natural Gas Systems

    EPA Pesticide Factsheets

    View the summary and presentations from the November 2015 stakeholder workshop on greenhouse gas data on petroleum and natural gas systems from the Greenhouse Gas Reporting Program and U.S. Greenhouse Gas Inventory of Emissions and Sinks.

  15. Evaluation of gasification and gas cleanup processes for use in molten-carbonate fuel-cell power plants. Task B interim report

    SciTech Connect

    Not Available

    1981-12-01

    This interim report satisfies the Task B requirement for DOE Contract DE-AC21-81MC16220 to define process configurations for systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The information and data necessary for this study were extracted from sources in the public domain, including reports from DOE, EPRI, and EPA; work sponsored in whole or in part by Federal agencies; and from trade journals, MCFC developers, and manufacturers. The configurations include entrained, fluidized-bed, gravitating-bed, and molten salt gasifiers, both air and oxygen blown. Desulfurization systems utilizing wet scrubbing processes, such as Selexol and Rectisol II, and dry sorbents, such as iron oxide and dolomite, were chosen for evaluation.

  16. World Record Earned Value Management System Certification for Cleanup of the East Tennessee Technology Park, Oak Ridge, Tennessee, USA - 13181

    SciTech Connect

    Haynes, Ray; Hirschy, Anita

    2013-07-01

    On projects that require Earned Value Management (EVMS) Certification, it is critical to quickly prepare for and then successfully obtain certification. This is especially true for government contracts. Projects that do poorly during the review are subject to financial penalties to their company and they lose creditability with their customer creating problems with the project at the outset. At East Tennessee Technology Park (ETTP), we began preparing for Department of Energy (DOE) certification early during proposal development. Once the contract was awarded, while still in transition phase from the previous contractor to our new company, we immediately began reviewing the project controls systems that were in place on the project and determined if any replacements needed to be made immediately. The ETTP contract required the scheduling software to be upgraded to Primavera P6 and we determined that no other software changes would be done prior to certification. Next, preparation of the Project Controls System Description (PCSD) and associated procedures began using corporate standards as related to the project controls systems. During the transition phase, development was started on the Performance Measurement Baseline which is the resource loaded schedule used to measure our performance on the project and which is critical to good Earned Value Management of the project. Early on, and throughout the baseline review, there was positive feedback from the Department of Energy that the quality of the new baseline was good. Having this superior baseline also contributed to our success in EVMS certification. The combined companies of URS and CH2M Hill had recent experience with certifications at other Department of Energy sites and we were able to capitalize on that knowledge and experience. Generic PCSD and procedures consistent with our co-operations approach to Earned Value Management were available to us and were easily tailorable to the specifics of our contract

  17. Integrated operation of a pressurized gasifier, hot gas desulfurization system and turbine simulator

    SciTech Connect

    Bevan, S.; Najewicz, D.; Gal, E.; Furman, A.H.; Ayala, R.; Feitelberg, A.

    1994-10-01

    The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. This technology will ultimately be incorporated into advanced Integrated Gasification Combined Cycle (IGCC) power generation systems. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at F conditions (2,350 F rotor inlet temperature) and (2) to quantify the combustion characteristics and emissions of such a combustor. Testing of the GE HGCU system has been underway since December 1990. The two most recent tests, Test 5 and Test 6, represent the latest advancements in regenerator configuration, type of sorbent, and chloride control systems. Test 5 was based on the use of zinc titanate sorbent and included a revised regenerator configuration and a sodium bicarbonate injection system for chloride control. Test 6 incorporated the use of Z-Sorb, a chloride guard in the regenerator recycle loop, and further modifications to the regenerator internal configuration. This report describes the test conditions in detail and discusses the test results.

  18. The use of the Karl sub-scale laser for Raman beam clean-up experiments

    NASA Astrophysics Data System (ADS)

    Dudas, Alan J.; Burris, Harris R.

    1987-03-01

    The two X-ray preionized discharge pumped front end lasers for the Raman Beam Clean-up Experiment (LARBC) have been examined both optically and electrically in an effort to increase the optical and temporal quality of the injection locked beam produced. The KARL subscale has been successfully injection locked by the front end lasers and preliminary studies of the stability of the injection locking begun. An isolator system has been designed and constructed to prevent damage to system optics from energy moving the wrong way in the system. A gas processing system was tested to remove contaminants in the laser gas. Additional units have been purchased for use on all lasers in the system. Diagnostics for the experiment will be coordinated through the WP3202 digitizing system.

  19. Startup is cleanup, says energy

    SciTech Connect

    Nelson, E.

    1993-12-01

    The 42-year-old plutonium finishing plant (PFP) at the Hanford Nuclear Reservation was put on stand-by in 1989 after reports of numerous safety violations. Energy Department official John Hunter said the plant was shut down simply because it ran out of plutonium to process. His statement is ironic considering that since 1989 the Energy Department has wanted to restart the plant to process the reactive plutonium left inside. This article describes the safety concerns at the PFP. Cleanup options are also discussed. The opinions of several Hanford watchdog groups concerning PFP safety and cleanup possibilities are reviewed.

  20. Diesel exhaust-gas purification system

    SciTech Connect

    Doherty, B.J.

    1982-07-01

    The design of a diesel exhaust gas purification system is presented. It will provide 2000 scfm of dry, anerobic gas (essentially nitrogen) for use in air drilling operations where drill pipe corrosion is a problem, such as geothermal applications. The system is operable in the field and may be transported via highways. It will operate at ambient temperatures up to 110/sup 0/F and requires no water - diesel fuel is used to combust excess oxygen and to generate electricity for the system. Gas production costs, including capital amortization, operations, fuel and maintenance (for reasonable utilization) are about $1.50/1000 scf.

  1. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  2. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, Frank A.; Townsend, Carl W.

    1989-01-01

    An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

  3. Accelerated cleanup risk reduction

    SciTech Connect

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    period in which the well was `capped`. Our results show the formation of an inclined gas phase during injection and a fast collapse of the steam zone within an hour of terminating steam injection. The majority of destruction occurs during the collapse phase, when contaminant laden water is drawn back towards the well. Little to no noncondensible gasses are created in this process, removing any possibility of sparging processes interfering with contaminant destruction. Our models suggest that the thermal region should be as hot and as large as possible. To have HPO accepted, we need to demonstrate the in situ destruction of contaminants. This requires the ability to inexpensively sample at depth and under high temperatures. We proved the ability to implies monitoring points at depths exceeding 150 feet in highly heterogeneous soils by use of cone penetrometry. In addition, an extractive system has been developed for sampling fluids and measuring their chemistry under the range of extreme conditions expected. We conducted a collaborative field test of HPO at a Superfund site in southern California where the contaminant is mainly creosote and pentachlorophenol. Field results confirm the destruction of contaminants by HPO, validate our field design from simulations, demonstrate that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells (and minimal capital cost) and yield reliable cost estimates for future commercial application. We also tested the in situ microbial filter technology as a means to intercept and destroy the accelerated flow of contaminants caused by the injection of steam. A series of laboratory and field tests revealed that the selected bacterial species effectively degrades trichloroethene in LLNL Groundwater and under LLNL site conditions. In addition, it was demonstrated that the bacteria effectively attach to the LLNL subsurface media. An in-well treatability study indicated that the bacteria

  4. Gas hydrate cool storage system

    DOEpatents

    Ternes, Mark P.; Kedl, Robert J.

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  5. Hot gas filter and system assembly

    DOEpatents

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  6. Hot gas filter and system assembly

    DOEpatents

    Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael

    1999-01-01

    A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

  7. Voluntary Guidelines for Methamphetamine Laboratory Cleanup - Document

    EPA Pesticide Factsheets

    provides technical guidance for state and local personnel responsible for meth lab cleanup, based on an extensive review of the best available science and practices, and addresses general cleanup activities, specific items/materials, sampling.

  8. Revamping AK-Ashland gas cleaning system

    SciTech Connect

    Brandes, H.; Koerbel, R.; Haberkamp, K.; Keeton, S.

    1995-07-01

    AK Steel`s (formerly Armco) BOF shop was using a static precipitator for the primary collection. The system was designed for full combustion in the gas collecting hoods. No secondary dust collection was in place. A detailed study on alternative solutions led to a completely different system in 1990, and an order was awarded to Mannesmann Demag Corp. (MDC) in Dec. 1990. The new gas collection system is using suppressed combustion with the capability to collect Co at a later stage. The gas cleaning uses the Mannesmann Demag Baumco scrubber with a venturi throat for gas flow control. All auxiliary components, water treatment plant, electric substations and sludge handling were designed and supplied by MDC. The secondary dust collection covers the hot metal and scrap charging into the BOF`s, reladling, desulfurization and deslagging by a pulse jet baghouse. All emission limits set by the EPA and guaranteed by MDC have been met by the systems installed.

  9. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  10. Army Environmental Cleanup Strategic Plan

    DTIC Science & Technology

    2009-05-01

    Serves an enduring document to guide future strategic plans – Establishes ISO 14001 framework for cleanup; complies w/GPRA  Army Environmental...follow ISO 14001 – Plan - Complete the FY10-11 Strategic Plan – Do - Implement Activities According to the Plan – Check - Evaluate Progress Against the

  11. Development of Sic Gas Sensor Systems

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Okojie, R. S.; Beheim, G. M.; Thomas, V.; Chen, L.; Lukco, D.; Liu, C. C.; Ward, B.; Makel, D.

    2002-01-01

    Silicon carbide (SiC) based gas sensors have significant potential to address the gas sensing needs of aerospace applications such as emission monitoring, fuel leak detection, and fire detection. However, in order to reach that potential, a range of technical challenges must be overcome. These challenges go beyond the development of the basic sensor itself and include the need for viable enabling technologies to make a complete gas sensor system: electrical contacts, packaging, and transfer of information from the sensor to the outside world. This paper reviews the status at NASA Glenn Research Center of SiC Schottky diode gas sensor development as well as that of enabling technologies supporting SiC gas sensor system implementation. A vision of a complete high temperature microfabricated SiC gas sensor system is proposed. In the long-term, it is believed that improvements in the SiC semiconductor material itself could have a dramatic effect on the performance of SiC gas sensor systems.

  12. Gas Control System for HEAO-B

    NASA Technical Reports Server (NTRS)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  13. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas system... the cargo area meeting paragraph (a) of this section; (c) Automatic and manual inert gas...

  14. Integrated operation of a pressurized fixed-bed gasifier, hot gas desulfurization system, and turbine simulator

    SciTech Connect

    Bevan, S.; Ayala, R.E.; Feitelberg, A.; Furman, A.

    1995-11-01

    The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. The HGCU Program is based on the design and demonstration of the HGCU system in a test facility made up of a pilot-scale fixed bed gasifier, a HGCU system, and a turbine simulator in Schenectady, NY, at the General Electric Research and Development Center. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at 2,350 F rotor inlet temperature and (2) to quantify the combustion characteristics and emissions on low-Btu fuel gas. The turbine simulator program also includes the development and operation of experimental combustors based on the rich-quench-lean concept (RQL) to minimize the conversion of ammonia and other fuel-bound nitrogen species to NO{sub x} during combustion. The HGCU system and turbine simulator have been designed to process approximately 8,000 lb/hr of low heating value fuel gas produced by the GE fixed bed gasifier. The HGCU system has utilized several mixed metal oxide sorbents, including zinc ferrite, zinc titanate, and Z-Sorb, with the objective of demonstrating good sulfur removal and mechanical attrition resistance as well as economic cost characteristics. Demonstration of halogen removal and the characterization of alkali and trace metal concentrations in the fuel gas are subordinate objectives of the overall program. This report describes the results of several long-duration pilot tests.

  15. Integrated Cryogenic System for CO2 Separation and Lng Production from Landfill Gas

    NASA Astrophysics Data System (ADS)

    Chang, H. M.; Chung, M. J.; Park, S. B.

    2010-04-01

    An integrated cryogenic system to separate carbon dioxide (CO2) and produce LNG from landfill gas is investigated and designed. The main objective of this design is to eliminate the requirement of a standard CO2 removal process in the liquefaction system such distillation or (temperature or pressure) swing adsorption, and to directly separate carbon dioxide as frost at the liquefying channel of methane. Two identical sets of heat exchangers are installed in parallel and switched alternatively with a time period so that one is in separation-liquefaction mode while the other is in CO2 clean-up mode. A thermal regeneration scheme is presented for the purpose of saving energy and avoiding the stoppage of LNG production followed by the flow switching. The switching period is determined from results of a combined heat and mass transfer analysis on the CO2 freeze-out process.

  16. Cleanup of Nuclear Licensed Facility 57

    SciTech Connect

    Jeanjacques, Michel; Bremond, Marie Pierre; Marchand, Carole; Poyau, Cecile; Viallefont, Cecile; Gautier, Laurent; Masure, Frederic

    2008-01-15

    necessary methods of analysis for monitoring it were also developed. The research and development program finally ended on 30 June 1995. The NLF 57 cleanup program was intended to reduce the nuclear and conventional hazards and minimize the quantities of HLW and MLW during the subsequent dismantling work. To facilitate the organization of the cleanup work, it was divided into categories by type: - treatment and removal of nuclear material, - removal of radioactive sources, - treatment and removal of aqueous liquid waste, - treatment and removal of organic effluents, - treatment and removal of solid waste, - pumping out of the PETRUS tank, - flushing and decontamination of the tanks, - cleanup of Buildings 18 and 91/54. To estimate the cost of the operations and to monitor the progress of the work, an indicator system was put in place based on work units representative of the operation. The values of the work units were periodically updated on the basis of experience feedback. The cleanup progress is now 92% complete (06/12/31): - treatment and removal of nuclear material: 100%, - removal of radioactive sources: 100%, - treatment and removal of aqueous liquid waste: 64%, - treatment and removal of organic effluents: 87%, - treatment and removal of solid waste: 99%, - pumping out of the PETRUS tank: 69%, - flushing and decontamination of tank: 75%, - section cleaning of Buildings 18 and 91/: 90%. The DRSN/SAFAR is the delegated Project Owner for cleanup and dismantling operations. It is also the prime contractor for the cleanup and dismantling operations. SAFAR itself is responsible for operations relating to the CEA activity and those with technical risks (Removal of nuclear materials, Removal of radioactive sources, Pumping out plutonium and transuranic contaminated solvent and Flushing and decontamination of tanks and pipes). All other operations are sub-contracted to specialist companies. The NLF57 cleanup program as executed is capable of attaining activity levels

  17. Magnetic bearing systems for gas turbine engines

    SciTech Connect

    Iannello, V.

    1995-12-31

    As the thrust-to-weight ratio for next generation gas turbine engines is increased, engine designers are requiring lower weight, higher temperature lubrication systems. Magnetic bearing systems are under development to meet these needs. This paper describes some of the advanced features of these systems.

  18. Estimation of cleanup time in layered soils by vapor extraction

    NASA Astrophysics Data System (ADS)

    Kaleris, Vassilios; Croisé, Jean

    1999-02-01

    Soil vapor extraction (SVE) is a standard remediation technique for cleaning up soils contaminated by volatile organic compounds (VOCs). A key parameter for planning SVE operations is the time required to reach the desired cleanup standard. In this paper, an approximate analytical solution is developed, which allows the fast estimation of cleanup times in layered unsaturated zones. The contaminants are assumed to be dissolved in the pore water, sorbed on the soil matrix and mixed with the soil air. Liquid organic phase is absent. For partitioning between gas and water and water and solid, local-equilibrium is assumed. The analytical solution is based on the well mixed reservoir model and on the plug flow model. It is shown that, for a number of scenario cases, the results of the analytical solution are, for practical purposes, in reasonable agreement with a numerical solution of the partial differential equations for the local-equilibrium advection-dispersion model of mass transport in porous media by Fickian diffusion and Darcian air flow. The results are displayed in terms of Peclet number of molecular diffusion (PNMD). In the analytical solution three different approximations are used. The PNMD range is divided into three intervals, representing different transport regimes. At low PNMD, molecular diffusion dominates transport in both layers. In this interval cleanup time is estimated by the average of the plug flow time for one pore volume through the layer of higher permeability, and the cleanup time estimated by the mixed reservoir model. At intermediate PNMD values, advective transport dominates in the more permeable layer and molecular diffusion in the less permeable. Consequently, cleanup time is limited by diffusive mass transfer from the less to the more permeable layer. In this interval, the estimation of cleanup time is entirely based on the mixed reservoir model. At high PNMD values, transport is governed in both layers by advection. Here, cleanup time

  19. Dynamic gas temperature measurement system, volume 1

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine engine combustor was developed. A review of available technologies which could attain this objective was done. The most promising method was identified as a two wire thermocouple, with a compensation method based on the responses of the two different diameter thermocouples to the fluctuating gas temperature field. In a detailed design of the probe, transient conduction effects were identified as significant. A compensation scheme was derived to include the effects of gas convection and wire conduction. The two wire thermocouple concept was tested in a laboratory burner exhaust to temperatures of about 3000 F and in a gas turbine engine to combustor exhaust temperatures of about 2400 F. Uncompensated and compensated waveforms and compensation spectra are presented.

  20. Development of Bio-GAS systems

    NASA Technical Reports Server (NTRS)

    Takayanagi, M.; Kitamura, S.; Nemoto, H.; Kimura, T.; Zaiki, Y.; Kitakohji, T.; Fujita, S.; Kameda, M.; Noda, M.; Kawasaki, Y.

    1988-01-01

    Four experiment systems which have fundamental significance in the field of biotechnology are developed for the Get Away Special (GAS). Unique considerations were necessary to develop the systems which carry out biotechnological experiments under GAS's restricted conditions: delicate thermal control, fluid handling and protection from contamination. All experimental processes are controlled by internal sequencers and results of the experiments are recorded as images and numerical data within the systems. The systems are standardized in order to enable repeated use with a variety of experiments by replacement of the experiment modules and modification of experiment sequencing programs.

  1. Gas storage and transmission systems

    SciTech Connect

    Creed, M.R.; Gilmour, R.B.

    1982-02-16

    According to this scheme, associated gas that has been liquefied on an offshore platform or barge and transported under pressure (to reduce cooling requirements) could be received by a land terminal for storage under atmospheric pressure and subsequent vaporization. The pressurized LNG, having a temperature above its ambient-pressure bubble point, passes from the carrier through a heat exchanger where it cools to its ambient-pressure liquefaction temperature; it then flows through a pressure-reduction valve before entering the storage tank. Meanwhile, LNG from the storage tank is pumped up to pipeline pressure and passed through a second heat exchanger for warming before entering the baseload vaporizer. A nitrogen refrigerant circuit acts as the heat-exchange medium between the two exchangers.

  2. TEST RESULTS FOR FUEL-CELL OPERATION ON LANDFILL GAS

    EPA Science Inventory

    Test results from a demonstration of fuel-cell (FC) energy recovery and control of landfill gas emissions are presented. The project addressed two major issues: (i) the design, construction, and testing of a landfill-gas cleanup system; and (ii) a field test of a commercial phos...

  3. Automated Hydrogen Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Gencorp Aerojet Automated Hydrogen Gas Leak Detection System was developed through the cooperation of industry, academia, and the Government. Although the original purpose of the system was to detect leaks in the main engine of the space shuttle while on the launch pad, it also has significant commercial potential in applications for which there are no existing commercial systems. With high sensitivity, the system can detect hydrogen leaks at low concentrations in inert environments. The sensors are integrated with hardware and software to form a complete system. Several of these systems have already been purchased for use on the Ford Motor Company assembly line for natural gas vehicles. This system to detect trace hydrogen gas leaks from pressurized systems consists of a microprocessor-based control unit that operates a network of sensors. The sensors can be deployed around pipes, connectors, flanges, and tanks of pressurized systems where leaks may occur. The control unit monitors the sensors and provides the operator with a visual representation of the magnitude and locations of the leak as a function of time. The system can be customized to fit the user's needs; for example, it can monitor and display the condition of the flanges and fittings associated with the tank of a natural gas vehicle.

  4. Cleanup/stimulation of a horizontal wellbore using propellants

    SciTech Connect

    Rougeot, J.E.; Lauterbach, K.A.

    1993-01-01

    This report documents the stimulation/cleanup of a horizontal well bore (Wilson 25) using propellants. The Wilson 25 is a Bartlesville Sand well located in the Flatrock Field, Osage County, Oklahoma. The Wilson 25 was drilled to determine if horizontal drilling could be used as a means to economically recover primary oil that had been left in place in a mostly abandoned oil field because of the adverse effects of water coning. Pump testing of the Wilson 25 horizontal well bore before cleanup or stimulation produced 6 barrels of oil and .84 barrels of water per day. The high percentage of daily oil production to total daily fluid production indicated that the horizontal well bore had accessed potentially economical oil reserves if the fluid production rate could be increased by performing a cleanup/stimulation treatment. Propellants were selected as an inexpensive means to stimulate and cleanup the near well bore area in a uniform manner. The ignition of a propellant creates a large volume of gas which penetrates the formation, creating numerous short cracks through which hydrocarbons can travel into the well bore. More conventional stimulation/cleanup techniques were either significantly more expensive, less likely to treat uniformly, or could not be confined to the near well bore area. Three different propellant torpedo designs were tested with a total of 304' of horizontal well bore being shot and producible. The initial test shot caused 400' of the horizontal well bore to become plugged off, and subsequently it could not be production tested. The second and third test shots were production tested, with the oil production being increased 458% and 349%, respectively, on a per foot basis. The Wilson 25 results indicate that a propellant shot treatment is an economically viable means to cleanup/stimulate a horizontal well bore.

  5. Modelling magmatic gas scrubbing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Di Napoli, Rossella; Aiuppa, Alessandro; Valenza, Mariano; Bergsson, Baldur; Ilyinskaya, Evgenia; Pfeffer, Melissa Anne; Rakel Guðjónsdóttir, Sylvía

    2015-04-01

    In volcano-hosted hydrothermal systems, the chemistry of deeply rising magmatic gases is extensively modified by gas-water-rock interactions taking place within the hydrothermal reservoir, and/or at shallow groundwaters conditions. These reactions can scrub reactive, water-soluble species (S, halogens) from the magmatic gas phase, so that their quantitative assessment is central to understanding the chemistry of surface gas manifestations, and brings profound implications to the interpretation of volcanic-hydrothermal unrests. Here, we present the results of numerical simulations of magmatic gas scrubbing, in which the reaction path modelling approach (Helgeson, 1968) is used to reproduce hydrothermal gas-water-rock interactions at both shallow (temperature up to 109°C; low-T model runs) and deep reservoir (temperature range: 150-250 °C; high-T model runs) conditions. The model was built based upon the EQ3/6 software package (Wolery and Daveler, 1992), and consisted into a step by step addition of a high-temperature magmatic gas to an initial meteoric water, in the presence of a dissolving aquifer rock. The model outputted, at each step of gas addition, the chemical composition of a new aqueous solution formed after gas-water-rock interactions; which, upon reaching gas over-pressuring (PgasTOT > Psat(H2O) at run T), is degassed (by single-step degassing) to separate a scrubbed gas phase. As an application of the model results, the model compositions of the separated gases are finally compared with compositions of natural gas emissions from Hekla volcano (T< 100°C) and from Krisuvik geothermal system (T> 100°C), resulting into an excellent agreement. The compositions of the model solutions are also in fair agreement with compositions of natural thermal water samples. We conclude that our EQ3/6-based reaction path simulations offer a realistic representation of gas-water-rock interaction processes occurring underneath active magmatic-hydrothermal systems

  6. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-12-31

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  7. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-01-01

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  8. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  9. AGT 100 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Helms, H. E. G.

    1982-01-01

    General Motors is developing an automotive gas turbine system that can be an alternate powerplant for future automobiles. Work sponsored by DOE and administered by NASA Lewis Research Center is emphasizing small component aerodynamics and high-temperature structural ceramics. Reliability requirements of the AGT 100 turbine system include chemical and structural ceramic component stability in the gas turbine environment. The power train system, its configuration and schedule are presented, and its performance tested. The aerodynamic component development is reviewed with discussions on the compressor, turbine, regenerator, interturbine duct and scroll, and combustor. Ceramic component development is also reviewed, and production cost and required capital investment are taken into consideration.

  10. Accelerating cleanup: Paths to closure

    SciTech Connect

    Edwards, C.

    1998-06-30

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

  11. Keeping landfill gas systems in tune

    SciTech Connect

    Blackman, L.; Myers, L.; Bjerkin, L.; Freemon, P.

    1998-01-01

    The efficiency of LFG recovery systems is influenced by many complex and interrelated factors including atmospheric conditions and LFG dynamics. In order to balance the operation of a LFG system, the factors that influence the system, such as the effects of atmospheric conditions must be understood and taken into consideration. The dynamics include: typical, daily diurnal changes in barometric pressure and the temperature and density of the ambient air due to local meteorological conditions; major changes in barometric pressure and the temperature and density of ambient air due to transient high and low pressure systems related to weather conditions; dynamics of the biochemical activity within the landfill; and dynamics of the LFG flowing through the gas extraction system pipe lines. These factors dramatically influence LFG density, mass flow, quantity, and quality. They also influence the ability of a well designed gas collection system to effectively control gas migration and to provide a reasonably high gas product for energy recovery. Thus, an efficient LFG extraction system must attempt to compensate for these varying and uncontrollable conditions.

  12. Computer systems and software description for gas characterization system

    SciTech Connect

    Vo, C.V.

    1997-04-01

    The Gas Characterization System Project was commissioned by TWRS management with funding from TWRS Safety, on December 1, 1994. The project objective is to establish an instrumentation system to measure flammable gas concentrations in the vapor space of selected watch list tanks, starting with tank AN-105 and AW-101. Data collected by this system is meant to support first tank characterization, then tank safety. System design is premised upon Characterization rather than mitigation, therefore redundancy is not required.

  13. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, F.A.; Townsend, C.W.

    1989-09-12

    An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.

  14. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  15. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  16. Oil Spill Cleanup

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Petroleum Remediation Product (PRP) is a new way of cleaning up oil spills. It consists of thousands of microcapsules, tiny balls of beeswax with hollow centers, containing live microorganisms and nutrients to sustain them. As oil flows through the microcapsule's shell, it is consumed and digested by the microorganisms. Pressure buildup causes the PRP to explode and the enzymes, carbon dioxide and water are released into the BioBoom used in conjunction with PRP, preventing contaminated water from spreading. The system incorporates technology originally developed at the Jet Propulsion Laboratory and Marshall Space Flight Center.

  17. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-Disconnect” Device (d) Gas pipe sizing. Gas piping systems shall be sized so that the pressure drop to any... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Gas piping systems. 3280.705... Systems § 3280.705 Gas piping systems. (a) General. The requirements of this section shall govern...

  18. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-Disconnect” Device (d) Gas pipe sizing. Gas piping systems shall be sized so that the pressure drop to any... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Gas piping systems. 3280.705... Systems § 3280.705 Gas piping systems. (a) General. The requirements of this section shall govern...

  19. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: Do Not Use Tools To Separate the “Quick-Disconnect” Device (d) Gas pipe sizing. Gas piping systems... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Gas piping systems. 3280.705... Systems § 3280.705 Gas piping systems. Link to an amendment published at 78 FR 73987, Dec. 9, 2013....

  20. Power Systems Development Facility. Quarterly report, July 1--September 30, 1996

    SciTech Connect

    1996-12-31

    This quarterly technical progress report summarizes the work completed during the third quarter of a project entitled Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phase expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  1. Supersonic gas-liquid cleaning system

    NASA Astrophysics Data System (ADS)

    Caimi, Raoul E. B.; Thaxton, Eric A.

    1994-02-01

    A system to perform cleaning and cleanliness verification is being developed to replace solvent flush methods using CFC 113 for fluid system components. The system is designed for two purposes: internal and external cleaning and verification. External cleaning is performed with the nozzle mounted at the end of a wand similar to a conventional pressure washer. Internal cleaning is performed with a variety of fixtures designed for specific applications. Internal cleaning includes tubes, pipes, flex hoses, and active fluid components such as valves and regulators. The system uses gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the object to be cleaned. Compressed air or any inert gas may be used to provide the conveying medium for the liquid. The converging-diverging nozzles accelerate the gas-liquid mixture to supersonic velocities. The liquid being accelerated may be any solvent including water. This system may be used commercially to replace CFC and other solvent cleaning methods widely used to remove dust, dirt, flux, and lubricants. In addition, cleanliness verification can be performed without the solvents which are typically involved. This paper will present the technical details of the system, the results achieved during testing at KSC, and future applications for this system.

  2. Supersonic gas-liquid cleaning system

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E. B.; Thaxton, Eric A.

    1994-01-01

    A system to perform cleaning and cleanliness verification is being developed to replace solvent flush methods using CFC 113 for fluid system components. The system is designed for two purposes: internal and external cleaning and verification. External cleaning is performed with the nozzle mounted at the end of a wand similar to a conventional pressure washer. Internal cleaning is performed with a variety of fixtures designed for specific applications. Internal cleaning includes tubes, pipes, flex hoses, and active fluid components such as valves and regulators. The system uses gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the object to be cleaned. Compressed air or any inert gas may be used to provide the conveying medium for the liquid. The converging-diverging nozzles accelerate the gas-liquid mixture to supersonic velocities. The liquid being accelerated may be any solvent including water. This system may be used commercially to replace CFC and other solvent cleaning methods widely used to remove dust, dirt, flux, and lubricants. In addition, cleanliness verification can be performed without the solvents which are typically involved. This paper will present the technical details of the system, the results achieved during testing at KSC, and future applications for this system.

  3. 46 CFR 153.500 - Inert gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas systems. 153.500 Section 153.500 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.500 Inert gas systems. When Table 1 refers to this section, a cargo containment system...

  4. 46 CFR 153.500 - Inert gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas systems. 153.500 Section 153.500 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.500 Inert gas systems. When Table 1 refers to this section, a cargo containment system...

  5. 46 CFR 153.500 - Inert gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas systems. 153.500 Section 153.500 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.500 Inert gas systems. When Table 1 refers to this section, a cargo containment system...

  6. 49 CFR 192.11 - Petroleum gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Petroleum gas systems. 192.11 Section 192.11... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS General § 192.11 Petroleum gas systems. (a) Each plant that supplies petroleum gas by pipeline to a natural gas distribution system must meet the...

  7. 49 CFR 192.11 - Petroleum gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Petroleum gas systems. 192.11 Section 192.11... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS General § 192.11 Petroleum gas systems. (a) Each plant that supplies petroleum gas by pipeline to a natural gas distribution system must meet the...

  8. 49 CFR 192.11 - Petroleum gas systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Petroleum gas systems. 192.11 Section 192.11... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS General § 192.11 Petroleum gas systems. (a) Each plant that supplies petroleum gas by pipeline to a natural gas distribution system must meet the...

  9. 49 CFR 192.11 - Petroleum gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Petroleum gas systems. 192.11 Section 192.11... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS General § 192.11 Petroleum gas systems. (a) Each plant that supplies petroleum gas by pipeline to a natural gas distribution system must meet the...

  10. 49 CFR 192.11 - Petroleum gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Petroleum gas systems. 192.11 Section 192.11... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS General § 192.11 Petroleum gas systems. (a) Each plant that supplies petroleum gas by pipeline to a natural gas distribution system must meet the...

  11. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    SciTech Connect

    BERGMAN TB

    2011-01-14

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by

  12. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the

  13. Supersonic Gas-Liquid Cleaning System

    NASA Technical Reports Server (NTRS)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  14. Needs for Risk Informing Environmental Cleanup Decision Making - 13613

    SciTech Connect

    Zhu, Ming; Moorer, Richard

    2013-07-01

    This paper discusses the needs for risk informing decision making by the U.S. Department of Energy (DOE) Office of Environmental Management (EM). The mission of the DOE EM is to complete the safe cleanup of the environmental legacy brought about from the nation's five decades of nuclear weapons development and production and nuclear energy research. This work represents some of the most technically challenging and complex cleanup efforts in the world and is projected to require the investment of billions of dollars and several decades to complete. Quantitative assessments of health and environmental risks play an important role in work prioritization and cleanup decisions of these challenging environmental cleanup and closure projects. The risk assessments often involve evaluation of performance of integrated engineered barriers and natural systems over a period of hundreds to thousands of years, when subject to complex geo-environmental transformation processes resulting from remediation and disposal actions. The requirement of resource investments for the cleanup efforts and the associated technical challenges have subjected the EM program to continuous scrutiny by oversight entities. Recent DOE reviews recommended application of a risk-informed approach throughout the EM complex for improved targeting of resources. The idea behind this recommendation is that by using risk-informed approaches to prioritize work scope, the available resources can be best utilized to reduce environmental and health risks across the EM complex, while maintaining the momentum of the overall EM cleanup program at a sustainable level. In response to these recommendations, EM is re-examining its work portfolio and key decision making with risk insights for the major sites. This paper summarizes the review findings and recommendations from the DOE internal reviews, discusses the needs for risk informing the EM portfolio and makes an attempt to identify topics for R and D in integrated

  15. Inert gas spraying device aids in repair of hazardous systems

    NASA Technical Reports Server (NTRS)

    Teleha, S.

    1965-01-01

    Inert gas spraying device aids in safely making mechanical repairs to a cryogenic fluid system without prior emptying of the system. This method can be applied to any natural or bottled gas system and with modifications to gasoline transports.

  16. LNG systems for natural gas propelled ships

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.

    2015-12-01

    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  17. 46 CFR 153.500 - Inert gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas systems. 153.500 Section 153.500 Shipping... Requirements § 153.500 Inert gas systems. When Table 1 refers to this section, a cargo containment system must have a permanent inert gas system that: (a) Maintains the vapor space of the containment system in...

  18. Second Greenhouse Gas Information System Workshop

    NASA Astrophysics Data System (ADS)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  19. Proper battery system design for GAS experiments

    NASA Technical Reports Server (NTRS)

    Calogero, Stephen A.

    1992-01-01

    The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.

  20. Water-saving liquid-gas conditioning system

    DOEpatents

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  1. Gas exchange measurements in natural systems

    SciTech Connect

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes /sup 14/C, /sup 222/Rn and /sup 3/He. The distribution of natural radiocarbon has yielded the average rate of CO/sub 2/ exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The /sup 222/Rn to /sup 226/Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess /sup 3/He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with /sup 226/Ra and /sup 3/H in order to allow the use of the /sup 222/Rn and /sup 3/He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO/sub 2/ exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables.

  2. Development of a risk-based approach to Hanford Site cleanup

    SciTech Connect

    Hesser, W.A.; Daling, P.M.; Baynes, P.A.

    1995-06-01

    In response to a request from Mr. Thomas Grumbly, Assistant Secretary of Energy for Environmental Management, the Hanford Site contractors developed a conceptual set of risk-based cleanup strategies that (1) protect the public, workers, and environment from unacceptable risks; (2) are executable technically; and (3) fit within an expected annual funding profile of 1.05 billion dollars. These strategies were developed because (1) the US Department of Energy and Hanford Site budgets are being reduced, (2) stakeholders are dissatisfied with the perceived rate of cleanup, (3) the US Congress and the US Department of Energy are increasingly focusing on risk and riskreduction activities, (4) the present strategy is not integrated across the Site and is inconsistent in its treatment of similar hazards, (5) the present cleanup strategy is not cost-effective from a risk-reduction or future land use perspective, and (6) the milestones and activities in the Tri-Party Agreement cannot be achieved with an anticipated funding of 1.05 billion dollars annually. The risk-based strategies described herein were developed through a systems analysis approach that (1) analyzed the cleanup mission; (2) identified cleanup objectives, including risk reduction, land use, and mortgage reduction; (3) analyzed the existing baseline cleanup strategy from a cost and risk perspective; (4) developed alternatives for accomplishing the cleanup mission; (5) compared those alternatives against cleanup objectives; and (6) produced conclusions and recommendations regarding the current strategy and potential risk-based strategies.

  3. AGT101 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.

  4. Technologies for in situ cleanup of contaminated sites.

    PubMed

    Udell, K S; Grubb, D G; Sitar, N

    1995-05-01

    Groundwater contamination by non-aqueous phase liquids (NAPLs) and denser than water non-aqueous phase liquids (DNAPLs) poses one of the greatest remedial challenges in the field of environmental engineering. Due to low water solubilities and aqueous diffusivities, conventional pump-and-treat technologies have a poor record of success in remediation of DNAPL contaminated aquifers. Better success has been found with the removal of volatile LNAPLs due to higher gaseous diffusivities, propensity for aerobic biodegradation, and ease of pumping and handling large quantities of gas. An evaluation of in situ cleanup technologies on the basis of their applicability to in situ treatment of NAPL contaminated aquifers is presented. Emphasis is placed on treatment of the separate phase occurring in the saturated zone. Soil washing, air sparging, biodegradation, electro-osmosis, enhanced steam extraction, stabilization/solidification, treatment walls, radio frequency heating, and containment systems and barriers are among the in situ technologies reviewed. In the context of the governing contaminant fate and transport processes, the relative merits of each technology are assessed on the basis of its theoretical background, field implementability, level of demonstration and performance, waste, technical and site applicability/limitations, commercial availability, and cost and residuals management.

  5. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2001-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  6. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2000-05-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in the quarterly report. As this program administers research, we have included all program activity herein within the past quarter dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  7. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Liquefied petroleum gas systems. 393.69 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for...

  8. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Liquefied petroleum gas systems. 393.69 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for...

  9. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Liquefied petroleum gas systems. 393.69 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for...

  10. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Liquefied petroleum gas systems. 393.69 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for...

  11. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Liquefied petroleum gas systems. 393.69 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for...

  12. Bioavailability: implications for science/cleanup policy

    SciTech Connect

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  13. Westinghouse hot gas filter system development

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Alvin, M.A.; Newby, R.A.

    1998-12-31

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements for these applications. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: 4,246 hours of testing that has now been completed at the Foster Wheeler 10 MW PCFB facility located in Karhula, Finland; operation of the W-APF in conjunction with the Foster Wheeler Advanced HIPPS Test Program being conducted at their Livingston, New Jersey site; approximately 2,100 hours of operation of the W-APF at the SCS/PSDF site on the MWK transport reactor test loop; the design, installation and startup status of the W-APF unit supplied to the 95 MW Pinon Pine IGCC Clean Coal Demonstration, Reno, Nevada; and the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation. Results reported include operating history, operating characteristics and filter performance. Schedules and objectives for future testing are summarized. The status of the 200 MWe PCFB Clean Coal Demonstration Project, City of Lakeland Florida and 75 MW(e) Minnesota Agriculture Biomass Power Project are summarized.

  14. Exhaust gas recirculation system for an internal combustion engine

    SciTech Connect

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  15. Neural net controlled tag gas sampling system for nuclear reactors

    DOEpatents

    Gross, Kenneth C.; Laug, Matthew T.; Lambert, John D. B.; Herzog, James P.

    1997-01-01

    A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

  16. Neural net controlled tag gas sampling system for nuclear reactors

    DOEpatents

    Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.

    1997-02-11

    A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.

  17. Power control system for a hot gas engine

    DOEpatents

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  18. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns

    PubMed Central

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-01-01

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis. PMID:27834896

  19. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns.

    PubMed

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-11-10

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.

  20. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  1. Buying time: Franchising hazardous and nuclear waste cleanup

    SciTech Connect

    Hale, D.R.

    1997-05-01

    This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government. In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.

  2. All metal valve structure for gas systems

    DOEpatents

    Baker, Ray W.; Pawlak, Donald A.; Ramey, Alford J.

    1984-11-13

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  3. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  4. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    SciTech Connect

    Jeffrey W. Portzer; Santosh K. Gangwal

    1998-12-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs.

  5. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas system: Controls. 154.904 Section 154.904... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas...

  6. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas system: Controls. 154.904 Section 154.904... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas...

  7. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Exhaust gas analytical system. 86.511... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.511-90 Exhaust gas analytical system. (a) Schematic drawings. Figure F90-3 is a schematic drawing of the exhaust gas analytical system for analysis...

  8. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas analytical system. 86.511... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.511-90 Exhaust gas analytical system. (a) Schematic drawings. Figure F90-3 is a schematic drawing of the exhaust gas analytical system for analysis...

  9. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas system: Controls. 154.904 Section 154.904... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas...

  10. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The... following are maintained in each cargo tank being crude oil washed: (i) A gas or a mixture of gases with an... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Use of inert gas system....

  11. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The... following are maintained in each cargo tank being crude oil washed: (i) A gas or a mixture of gases with an... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Use of inert gas system....

  12. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The... following are maintained in each cargo tank being crude oil washed: (i) A gas or a mixture of gases with an... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Use of inert gas system....

  13. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The... following are maintained in each cargo tank being crude oil washed: (i) A gas or a mixture of gases with an... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Use of inert gas system....

  14. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The... following are maintained in each cargo tank being crude oil washed: (i) A gas or a mixture of gases with an... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Use of inert gas system....

  15. Gas Main Sensor and Communications Network System

    SciTech Connect

    Hagen Schempf

    2006-05-31

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

  16. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Exhaust gas analysis system....

  17. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Exhaust gas analysis system....

  18. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas analysis system....

  19. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas sampling system....

  20. TRU Drum Headspace Gas Analysis System

    SciTech Connect

    Collins, S.

    1998-10-27

    The Savannah River Site (SRS) has approximately 10,000 Transuranic (TRU) waste drums whose final disposition is the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. Each drum, prior to shipment to WIPP, must be inspected and tested to certify that is meets the WIPP requirements for acceptance. One, of many requirements, is the analysis of the TRU drum vapor space for hydrogen, methane, and volatile organic compounds (VOCs). The DOE Carlsbad Area Office has published two documents specifying the analytical methodologies and the quality assurance requirements for analyzing TRU drum vapor space.The Savannah River Technology Center (SRTC) was contracted by the Solid Waste Division of SRS to specify, assemble, and test a system that would satisfy the WIPP requirements for drum headspace gas analysis. Since no single vendor supplies a complete system, analytical instrumentation and supporting components were integrated into a configuration that performed that required analyses. This required both software and hardware design and modifications. The major goal of the design team was to integrate commercially available instrumentation and equipment into a seamless production process. The final output of the process is an analytical report formatted to the specifications outlined in the WIPP Quality Assurance Program Plan (QAPP). SRTC has assembled the necessary analytical instrumentation and installed it in a mobile trailer to perform the TRU drum vapor space analyses. This mobile trailer had previously housed instrumentation for reactor tank inspections. As a cost savings it was decided to renovate and install the instrumentation in this trailer to eliminate the need of building or modifying permanent structures. This also allows for portability to meet future analytical needs on or off site.This task was divided into three sub tasks: headspace gas sampling, gas analysis and system component integration, and sample canister cleaning. The following sections

  1. Handheld chemiresistive gas sensor readout system

    NASA Astrophysics Data System (ADS)

    Joubert, Trudi-Heleen; du Toit, Jurie; Mkwakikunga, Bonex; Bosscha, Peter

    2016-02-01

    Low-cost and non-invasive diabetes diagnosis is increasingly important [1], and this paper presents a handheld readout system for chemiresistive gas sensors in a breath acetone diagnostic application. The sensor contains reference and detection devices, used for the detection of gas concentration. Fabrication is by dropcasting a metaloxide nanowire solution onto gold interdigitated electrodes, which had been manufactured on silicon. The resulting layer is a wide bandgap n-type semiconductor material sensitive to acetone, producing a change in resistance between the electrode terminals [2]. Chemiresistive sensors typically require temperatures of 300-500 °C, while variation of sensing temperature is also employed for selective gas detection. The nano-structured functional material requires low temperatures due to large surface area, but heating is still required for acceptable recovery kinetics. Furthermore, UV illumination improves the sensor recovery [3], and is implemented in this system. Sensor resistances range from 100 Ω to 50 MΩ, while the sensor response time require a sampling frequency of 10Hz. Sensor resistance depends on temperature, humidity, and barometric pressure. The GE CC2A23 temperature sensor is used over a range of -10°C to 60°C, the Honeywell HIH5031 humidity sensor operates up to 85% over this temperature range, and the LPS331AP barometric pressure sensor measures up to 1.25 bar. Honeywell AWM43300V air flow sensors monitor the flow rate up to 1000 sccm. An LCD screen displays all the sensor data, as well as real time date and time, while all measurements are also logged in CSV-format. The system operates from a rechargeable battery.

  2. Investigations of new potentiometric gas sensing systems

    SciTech Connect

    Yim, Hyoung-Sik

    1992-01-01

    Research concerning the development of new and/or improved potentiometric gas sensing systems is described. Studies relating to the development of reversible potentiometric oxygen sensors based on polymeric and metallic film electrodes are presented. In addition, the design and analytical utility of a novel differential ion-selective membrane electrode-based potentiometric gas sensing cell with enhanced sensitivity is documented. The performance of a reversible potentiometric oxygen gas sensor based on a polymeric membrane doped with cobalt-complexes is described. For such sensors, the potentiometric oxygen response is attributed to a mixed potential originating from the underlying platinum electrode surface as well as the Co(II)-tetren doped film. This leads to a short term oxygen response of nearly the theoretical slope value of 118 mV/decade, below 10% O[sub 2]. In the presence of the Co(II)-tetren/PVC film, an analytically useful response is observed for approx. 6-8 days. Thin films of metallic copper, electrochemically deposited on platinum and sputtered on a single crystal silicon wafer, are also examined for reversible potentiometric oxygen sensing. The long-term reversibility and potentiometric stability of such copper film-based sensors is enhanced (up to one month) by preventing the formation of cuprous oxide on the surfaces via the application of an external non-polarizing cathodic current through the working electrode, or by specifically using sputtered copper films that have [100] crystal structures as determined by X-ray diffraction. Finally, the development and application of a differential ion-selective membrane electrode-based potentiometric gas sensing cell is described. The prospects of fabricating differential detection arrangements for CO[sub 2], NO[sub 2], and SO[sub 2], NH[sub 3] are also discussed.

  3. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    SciTech Connect

    Hagen Schempf, Ph.D.

    2003-02-27

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

  4. Inherently safe passive gas monitoring system

    SciTech Connect

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  5. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for the reporting period October 1, 2002 to December 31, 2002 are described in this quarterly report. No new membership, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, six research progress reports were received (3 final reports and 3 semi-annual reports). The University of Central Florida contract SR080 was terminated during this period, as UCF was unable to secure research facilities. AGTSR now projects that it will under spend DOE obligated funds by approximately 340-350K$.

  6. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    SciTech Connect

    Hagen Schempf

    2004-09-30

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

  7. A simple flow analysis of diffuser-getter-diffuser systems

    SciTech Connect

    Klein, J. E.; Howard, D. W.

    2008-07-15

    Tritium clean-up systems typically deploy gas processing technologies between stages of palladium-silver (Pd/Ag) diffusers/permeators. The number of diffusers positioned before and after a gas clean-up process to obtain optimal system performance will vary with feed gas inert composition. A simple method to analyze optimal diffuser configuration is presented. The method assumes equilibrium across the Pd/Ag tubes and system flows are limited by diffuser vacuum pump speeds preceding or following the clean-up process. A plot of system feed as a function of inert feed gas composition for various diffuser configuration allows selection of a diffuser configuration for maximum throughput based on feed gas composition. (authors)

  8. FLOW ANALYSIS OF DIFFUSER-GETTER-DIFFUSER SYSTEMS

    SciTech Connect

    Klein, J; Dave W. Howard, D

    2007-07-24

    Tritium clean-up systems typically deploy gas processing technologies between stages of palladium-silver (Pd/Ag) diffusers/permeators. The number of diffusers positioned before and after a gas clean-up process to obtain optimal system performance will vary with feed gas inert composition. A simple method to analyze optimal diffuser configuration is presented. The method assumes equilibrium across the Pd/Ag tubes and system flows are limited by diffuser vacuum pump speeds preceding or following the clean-up process. A plot of system feed as a function of inert feed gas composition for various diffuser configuration allows selection of a diffuser configuration for maximum throughput based on feed gas composition.

  9. System for controlling the flow of gas into and out of a gas laser

    DOEpatents

    Alger, Terry; Uhlich, Dennis M.; Benett, William J.; Ault, Earl R.

    1994-01-01

    A modularized system for controlling the gas pressure within a copper vapor or like laser is described herein. This system includes a gas input assembly which serves to direct gas into the laser in a controlled manner in response to the pressure therein for maintaining the laser pressure at a particular value, for example 40 torr. The system also includes a gas output assembly including a vacuum pump and a capillary tube arrangement which operates within both a viscous flow region and a molecular flow region for drawing gas out of the laser in a controlled manner.

  10. GTRAN- TRANSIENT ANALYSIS OF GAS PIPING SYSTEMS

    NASA Technical Reports Server (NTRS)

    TROVILLION T A

    1994-01-01

    The GTRAN program was developed to solve transient, as well as steady state, problems for gas piping systems. GTRAN capabilities allow for the analysis of a variety of system configurations and components. These include: multiple pipe junctions; valves that change position with time; fixed restrictions (orifices, manual valves, filters, etc.); relief valves; constant pressure sources; and heat transfer for insulated piping and piping subjected to free or forced convection. In addition, boundary conditions can be incorporated to simulate specific components. The governing equations of GTRAN are the one-dimensional transient gas dynamic equations. The three equations for pressure, velocity, and density are reduced to numerical equations using an implicit Crank-Nicholson finite difference technique. Input to GTRAN includes a description of the piping network, the initial conditions, and any events (e.g. valve closings) occuring during the period of analysis. Output includes pressure, velocity, and density versus time. GTRAN is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX series computer. GTRAN was developed in 1983.

  11. Interfacial phenomena in gas hydrate systems.

    PubMed

    Aman, Zachary M; Koh, Carolyn A

    2016-03-21

    Gas hydrates are crystalline inclusion compounds, where molecular cages of water trap lighter species under specific thermodynamic conditions. Hydrates play an essential role in global energy systems, as both a hinderance when formed in traditional fuel production and a substantial resource when formed by nature. In both traditional and unconventional fuel production, hydrates share interfaces with a tremendous diversity of materials, including hydrocarbons, aqueous solutions, and inorganic solids. This article presents a state-of-the-art understanding of hydrate interfacial thermodynamics and growth kinetics, and the physiochemical controls that may be exerted on both. Specific attention is paid to the molecular structure and interactions of water, guest molecules, and hetero-molecules (e.g., surfactants) near the interface. Gas hydrate nucleation and growth mechanics are also presented, based on studies using a combination of molecular modeling, vibrational spectroscopy, and X-ray and neutron diffraction. The fundamental physical and chemical knowledge and methods presented in this review may be of value in probing parallel systems of crystal growth in solid inclusion compounds, crystal growth modifiers, emulsion stabilization, and reactive particle flow in solid slurries.

  12. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dew point at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49...

  13. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dewpoint at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49...

  14. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dewpoint at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49...

  15. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dewpoint at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49...

  16. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dewpoint at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49...

  17. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a fixed... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable gas detection system. 154.1350 Section...

  18. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a fixed... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable gas detection system. 154.1350 Section...

  19. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a fixed... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or... 46 Shipping 5 2013-10-01 2013-10-01 false Flammable gas detection system. 154.1350 Section...

  20. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  1. Power systems development facility. Quarterly report, January 1995--March 1995

    SciTech Connect

    1995-05-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs.

  2. GHGRP Petroleum and Natural Gas Systems Sector Industrial Profile

    EPA Pesticide Factsheets

    EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. These profiles contain detailed analyses for Petroleum and Natural Gas Systems.

  3. Detail exterior view looking southwest of gas cooling system. Engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail exterior view looking southwest of gas cooling system. Engine house is shown in right background. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  4. Pressure Systems Energy Release Protection (Gas Pressurized Systems)

    NASA Technical Reports Server (NTRS)

    Brown, S. J. (Editor)

    1986-01-01

    A survey of studies into hazards associated with closed or pressurized system rupture and preliminary guidelines for the performance design of primary, secondary, and protective receptors of these hazards are provided. The hazards discussed in the survey are: blast, fragments, ground motion, heat radiation, biological, and chemical. Performance guidelines for receptors are limited to pressurized systems that contain inert gas. The performance guidelines for protection against the remaining unaddressed degenerative hazards are to be covered in another study.

  5. The Great Oil Spill Cleanup Contest.

    ERIC Educational Resources Information Center

    Hampton, Elaine

    1993-01-01

    Presents an exciting way to acquaint students with current methods to clean up oil spills. Students also have the freedom to create new clean-up methods as they think through the problem and experiment to find effective solutions. (PR)

  6. Wetland PCB Remediation Cleanup Proposal | Parker Street ...

    EPA Pesticide Factsheets

    2017-04-10

    In the following documents available on this page, EPA is providing the City's wetlands cleanup proposal to ensure that residents of New Bedford and other interested parties have the opportunity to access this information.

  7. Streamlining Site Cleanup in New York City

    EPA Pesticide Factsheets

    This joint effort, supported by the New York State Department of Environmental Conservation (NYS DEC), advances the environmental cleanup goals of PlaNYC 2030, the city's comprehensive sustainability plan.

  8. Increased leukemia risk in Chernobyl cleanup workers

    Cancer.gov

    A new study found a significantly elevated risk for chronic lymphocytic leukemia among workers who were engaged in recovery and clean-up activities following the Chernobyl power plant accident in 1986.

  9. Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  10. A Citizen's Guide to Drycleaner Cleanup

    EPA Pesticide Factsheets

    The State Coalition for Remediation of Drycleaners (SCRD) has prepared an easy-to-read guide explaining the drycleaner cleanup process and describing the technologies that are most commonly used to clean up contaminated drycleaner sites.

  11. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is

  12. HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP

    SciTech Connect

    Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

    2003-02-27

    The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

  13. Intergenerational equity and environmental restoration cleanup levels.

    SciTech Connect

    Hocking, E. K.; Environmental Assessment

    2001-01-01

    The United States Department of Energy environmental restoration program faces difficult decisions about the levels of cleanup to be achieved at its many contaminated sites and has acknowledged the need for considering intergenerational equity in its decision making. Intergenerational equity refers to the fairness of access to resources across generations. Environmental restoration cleanup levels can have unintended and unfair consequences for future generations access to resources. The potentially higher costs associated with using low, non-risk-based cleanup levels for remediation may divert funding from other activities that could have a greater beneficial impact on future generations. Low, non-risk-based cleanup levels could also result in more damage to the nation's resources than would occur if a higher cleanup level were used. The loss or impairment of these resources could have an inequitable effect on future generations. However, intergenerational inequity could arise if sites are not completely restored and if access to and use of natural and cultural resources are unfairly limited as a result of residual contamination. In addition to concerns about creating possible intergenerational inequities related to selected cleanup levels, the tremendous uncertainties associated with sites and their restoration can lead site planners to rely on stewardship by default. An ill-conceived stewardship program can contribute to intergenerational inequity by limiting access to resources while passing on risks to future generations and not preparing them for those risks. This paper presents a basic model and process for designing stewardship programs that can achieve equity among generations.

  14. Resource-assessment perspectives for unconventional gas systems

    USGS Publications Warehouse

    Schmoker, J.W.

    2002-01-01

    Concepts are described for assessing those unconventional gas systems that can also be defined as continous accumulations. Continuous gas accumulations exist more or less independently of the water column and do not owe their existence directly to the bouyancy of gas in water. They cannot be represented in terms of individual, countable fields or pools delineated by downdip water contacts. For these reasons, traditional resource-assessment methods based on estimating the sizes and numbers of undiscovered discrete fields cannot not be applied to continuous accumulations. Specialized assessment methods are required. Unconventional gas systems that are also continous accumulations include coalbed methane, basin-centered gas, so-called tight gas, fractured shale (and chalk) gas, and gas hydrates. Deep-basin and bacterial gas systems may or may not be continuous accumulations, depending on their geologic setting. Two basic resource-assessment approaches have been employed for continous accumulations. The first approach is based on estimates of gas in place. A volumetric estimate of total gas in place is commonly coupled with an overall recovery factor to narrow the assessment scope from a treatment of gas volumes residing in sedimentary strata to a prediction of potential additions to reserves. The second approach is based on the production performance of continous gas reservoirs, as shown empirically by wells and reservoir-simulation models. In these methods, production characteristics (as opposed to gas in place) are the foundation for forecasts of potential additions to reserves.

  15. Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography-mass spectrometry.

    PubMed

    Xu, Fuchao; García-Bermejo, Ángel; Malarvannan, Govindan; Gómara, Belén; Neels, Hugo; Covaci, Adrian

    2015-07-03

    A multi-residue analytical method was developed for the determination of a range of flame retardants (FRs), including polybrominated diphenyl ethers (PBDEs), emerging halogenated FRs (EFRs) and organophosphate FRs (PFRs), in food matrices. An ultrasonication and vacuum assisted extraction (UVAE), followed by a multi-stage clean-up procedure, enabled the removal of up to 1g of lipid from 2.5 g of freeze-dried food samples and significantly reduce matrix effects. UVAE achieves a waste factor (WF) of about 10%, while the WFs of classical QuEChERS methods range usually between 50 and 90%. The low WF of UVAE leads to a dramatic improvement in the sensitivity along with saving up to 90% of spiking (internal) standards. Moreover, a two-stage clean-up on Florisil and aminopropyl silica was introduced after UVAE, for an efficient removal of pigments and residual lipids, which led to cleaner extracts than normally achieved by dispersive solid phase extraction (d-SPE). In this way, the extracts could be concentrated to low volumes, e.g. <100 μL and the equivalent matrix concentrations were up to 100g ww/mL. The final analysis of PFRs was performed on GC-EI-MS, while PBDEs and EFRs were measured by GC-ECNI-MS. Validation tests were performed with three food matrices (lean beef, whole chicken egg and salmon filet), obtaining acceptable recoveries (66-135%) with good repeatability (RSD 1-24%, mean 7%). Method LOQs ranged between 0.008 and 0.04 ng/g dw for PBDEs, between 0.08 and 0.20 ng/g dw for EFRs, and between 1.4 and 3.6 ng/g dw for PFRs. The method was further applied to eight types of food samples (including meat, eggs, fish, and seafood) with lipid contents ranging from 0.1 to 22%. Various FRs were detected above MLOQ levels, demonstrating the wide-range applicability of our method. To the best of our knowledge, this is the first method reported for simultaneous analysis of brominated and organophosphate FRs in food matrices.

  16. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading. No new memberships, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, nine subcontractor reports were received (5 final reports and 4 semi-annual reports). The report technology distribution is as follows: 3--aero-heat transfer, 2--combustion and 4--materials. AGTSR continues to project that it will under spend DOE obligated funds by approximately $329K.

  17. Document image cleanup and binarization

    NASA Astrophysics Data System (ADS)

    Wu, Victor; Manmatha, Raghaven

    1998-04-01

    Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.

  18. CAIS standard manual. System number 24. Natural gas distribution system

    SciTech Connect

    1995-04-28

    At this installation the list of facilities to be surveyed, including infrastructure, will be addressed on the basis of 32 unique systems that form the CAIS Engineering Deficiency Standards and Inspection Methods document. Each system deals with a specific technical aspect of the facility to be surveyed. Within each system a further breakdown is made to subsystems, each having a related list of components. Detailed observations of the listed defects are provided so as to allow the entry of observed quantification data. A DOD CAIS manual is provided for each of the 32 systems with an internal organization. The System Tree is a graphical representation of the Work Breakdown Structure, showing system, subsystem and component relationships for the Natural Gas Distribution System.

  19. Handbook of gasifiers and gas-treatment systems. [39 gasification processes and 40 gas processing systems

    SciTech Connect

    Parekh, R.D.

    1982-09-01

    In February 1976, the Energy Research and Development Administration (ERDA) published the Handbook of Gasifiers and Gas Treatment Systems. The intent of this handbook was to provide a ready reference to systems that are or may be applicable to coal conversion technology. That handbook was well received by users and was subsequently reprinted many times. The Department of Energy (successor agency to the ERDA) expands, revises and updates the Handbook in this volume. This new Handbook is not intended as a comparative evaluation, but rather as an impartial reference on recent and current technology. The Handbook now presents 39 gasification technologies and 40 gas processing systems that are or may be applicable to coal conversion technology. The information presented has been approved or supplied by the particular licensor/developer.

  20. Cleanup of a jet fuel spill

    NASA Astrophysics Data System (ADS)

    Fesko, Steve

    1996-11-01

    Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.

  1. Detection of multiple steroidal compounds in synthetic urine using comprehensive gas chromatography-mass spectrometry (GC×GC-MS) combined with a molecularly imprinted polymer clean-up protocol.

    PubMed

    Zulfiqar, Adnan; Morgan, Geraint; Turner, Nicholas W

    2014-10-07

    A method capable of screening for multiple steroids in urine has been developed, using a series of twelve structurally similar, and commercially relevant compounds as target analytes. A molecularly imprinted solid phase extraction clean-up step was used to make the sample suitable for injection onto a GC×GC-MS setup. Significant improvements compared to a commercially available C-18 material were observed. Each individual steroid was able to be separated and identified, using both the retention profile and diagnostic fragmentation ion monitoring abilities of the comprehensive chromatographic-mass spectrometry method. Effective LODs of between 11.7 and 27.0 pg were calculated for individual steroids, effectively equivalent to concentration levels of between 0.234 and 0.540 ng mL(-1) in urine, while the application of multiple screen was demonstrated using a 10 ng mL(-1) mixed sample. The nature of this study also removes the need for sample derivitisation which speeds up the screening process.

  2. Development and validation of multiresidue analytical method in cotton and groundnut oil for 87 pesticides using low temperature and dispersive cleanup on gas chromatography and liquid chromatography-tandem mass spectrometry.

    PubMed

    Chawla, Suchi; Patel, Hemlatta K; Vaghela, Kiran M; Pathan, Firoz Khan; Gor, Hetal N; Patel, Anil R; Shah, Paresh G

    2016-01-01

    A method was developed and validated for the analysis of 87 pesticides in cotton and groundnut oil by GC with ECD and FPD detectors and LC-MS/MS. The extraction procedure based on QuEChERS followed by low-temperature freezing and dispersive cleanup steps was validated in two oil matrices for 87 pesticides of different classes. Linearity, expressed as coefficient of variation, was within the acceptable range. Of those tested, 77-83 and 77-89% pesticides showed recoveries within the acceptable range of 70-120% on LC-MS/MS in cottonseed oil and groundnut oil, respectively, at different spiking levels. In case of GC analysis, 63-65 and 53-82% pesticides showed recoveries within the acceptable range of 70-120% on GC in cottonseed oil and groundnut oil, respectively, at different spiking levels. The exceptions to these recoveries were the few organochlorines which consistently gave lower recoveries. Recovery factors can be employed while analysing these pesticides by this method as the results obtained were consistent in both oils. RSD was less than 20% for most of the pesticides. The calculated limit of quantitation (LOQ) for most of the pesticides satisfies the maximum residue level (MRL) requirements as per European Union (EU) guidelines and Food Safety and Standards Authority of India (FSSAI).

  3. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Exhaust gas analysis system....

  4. System and method for producing substitute natural gas from coal

    DOEpatents

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  5. Superfund expenditures and cleanup priorities: Distributive politics or the public interest

    SciTech Connect

    Hird, J.A.

    1990-01-01

    Using data on all final National Priorities List (NPL) sites, this study employs an integrated model of distributive and public interest politics to determine whether the overall pace of cleanup efforts and funding of the $8.5 billion Superfund program over the past eight years reflects self-interested congressional influence or public interest objectives. Despite the fact that both EPA and Congress have substantial incentives to promote the Superfund program, the results indicate that once a site is on the final NPL, there is lettle committee-based congressional influence over the distribution of site cleanup or funding, although evidence exists that legislators can hasten a site's transition from proposed to final status on the NPL. The chief determinants of cleanup pace and level of funding are the site's Hazard Ranking System (HRS) scores, whether federal funds are financing the cleanup, and whether the site is designated as a state priority.

  6. System and method for cooling a combustion gas charge

    DOEpatents

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  7. Instrumentation of dynamic gas pulse loading system

    SciTech Connect

    Mohaupt, H.

    1992-04-14

    The overall goal of this work is to further develop and field test a system of stimulating oil and gas wells, which increases the effective radius of the well bore so that more oil can flow into it, by recording pressure during the gas generation phase in real time so that fractures can be induced more predictably in the producing formation. Task 1: Complete the laboratory studies currently underway with the prototype model of the instrumentation currently being studied. Task 2: Perform field tests of the model in the Taft/Bakersfield area, utilizing operations closest to the engineers working on the project, and optimize the unit for various conditions encountered there. Task 3: Perform field test of the model in DGPL jobs which are scheduled in the mid-continent area, and optimize the unit for downhole conditions encountered there. Task 4: Analyze and summarize the results achieved during the complete test series, documenting the steps for usage of downhole instrumentation in the field, and compile data specifying use of the technology by others. Task 5: Prepare final report for DOE, and include also a report on the field tests completed. Describe and estimate the probability of the technology being commercialized and in what time span. The project has made substantial technical progress, though we are running about a month behind schedule. Expenditures are in line with the schedule. Increased widespread interest in the use of DGPL stimulation has kept us very busy. The computer modeling and test instrumentation developed under this program is already being applied to commercial operations.

  8. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas analytical system. 86.211... analytical system. The provisions of § 86.111-94 apply to this subpart, except that the NOX analyzer is optional. The exhaust gas analytical system must contain components necessary to determine...

  9. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas analytical system. 86.211... analytical system. The provisions of § 86.111-94 apply to this subpart, except that the NOX analyzer is optional. The exhaust gas analytical system must contain components necessary to determine...

  10. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas analytical system. 86.211... analytical system. The provisions of § 86.111-94 apply to this subpart, except that the NOX analyzer is optional. The exhaust gas analytical system must contain components necessary to determine...

  11. Gas stream cleaning system and method

    DOEpatents

    Kunchal, S. Kumar; Erck, Louis J.; Harris, Harry A.

    1979-04-13

    An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

  12. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    SciTech Connect

    Unknown

    2001-12-05

    Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as to how they could serve multiple applications

  13. Cleanup of TMI-2 demineralizer resins

    SciTech Connect

    Bond, W.D.; King, L.J.; Knauer, J.B.; Hofstetter, K.J.; Thompson, J.D.

    1985-01-01

    Radiocesium is being removed from Demineralizers A and B (DA and DB by a process that was developed from laboratory tests on small samples of resin from the demineralizers. The process was designed to elute the radiocesium from the demineralizer resins and then to resorb it onto the zeolite ion exchangers contained in the Submerged Demineralizer System (SDS). The process was also required to limit the maximum cesium activities in the resin eluates (SDS feeds) so that the radiation field surrounding the pipelines would not be excessive. The process consists of 17 stages of batch elution. In the initial stage, the resin is contacted with 0.18 M boric acid. Subsequent stages subject the resin to increasing concentrations of sodium in NaH/sub 2/BO/sub 3/-H/sub 3/BO/sub 3/ solution (total B = 0.35 M) and then 1 M sodium hydroxide in the final stages. Results on the performance of the process in the cleanup of the demineralizers at TMI-2 are compared to those obtained from laboratory tests with small samples of the DA and DB resins. To date, 15 stages of batch elution have been completed on the demineralizers at TMI-2 which resulted in the removal of about 750 Ci of radiocesium from DA and about 3300 Ci from DB.

  14. Glass melter off-gas system

    DOEpatents

    Jantzen, Carol M.

    1997-01-01

    Apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

  15. Glass melter off-gas system

    SciTech Connect

    Jantzen, C.M.

    1992-12-31

    This invention is comprised of an apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

  16. Problems and limitations of voluntary cleanup programs

    SciTech Connect

    Johnson, S.F.

    1995-12-31

    At least a dozen states have already implemented voluntary cleanup programs (VCPs). Provisions to promote state VCPs were prominent in the EPA`s 1994 proposed revisions to CERCLA and in current legislative initiatives. Under the VCP, property owners voluntarily enroll to investigate and remediate contaminated sites with the aegis of a state agency and thus avoid involvement with the federal Superfund program. When the state agency is satisfied with the condition of the site, it issues a certificate to the owner. The VCP is meant to mitigate unintended consequences of CERCLA such as the economic abandonment of urban industrial sites in favor of unpolluted suburban sites. The VCP concept has been combined with other reforms including cleanup standards, financial incentives, and independent action. The effectiveness of voluntary cleanup programs is limited by the costs of investigation and cleanup relative to the value of the property in question. It is also limited when property has environmental problems outside the traditional focus of state Superfund agencies on soil and groundwater contamination. VCPs also have potential unintended consequences of their own. The VCP concept is consistent with a 15 year trend of increasing government attention and involvement with sites of diminishing health and environmental significance. VCP may reinforce the perception of liability and unwittingly raise the standard of due diligence in property assessments, especially if combined with generic cleanup standard.

  17. Power systems development facility. Quarterly technical progress report, July 1, 1994--September 30, 1994

    SciTech Connect

    1995-07-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  18. Ductwork: Materials of construction for flue gas desulfurization systems

    SciTech Connect

    O`Donnell, R.J.; Khederian, J.C.; Martin, J.E.; Watson, W.K.

    1995-09-01

    This paper identifies the ductwork materials required for the various service conditions in the wet limestone flue gas desulfurization system (FGDS) at Indianapolis Power and Light Company`s (IPL) Petersburg Units 1 and 2. This project was initiated by IPL in response to the Clean Air Act Amendments (CAAA) of 1990 and is intended to treat the flue gas from two base-loaded units with a combined capacity of approximately 700 MW gross electrical output. The flue gas conditions include hot unscrubbed gas (bypass), hot unscrubbed gas mixed with cool ambient air (normal), a mixing zone of gas only/air only associated with an open bypass system (no damper), and cool, wet scrubbed gas (outlet ducts). In addition, there are upset conditions associated with the loss of an air preheater. This system is somewhat unique, in that each unit has its own separate open or undampered bypass system, including separate stack liners. While a separate bypass system eliminates the extremely severe corrosion problems associated with mixing unscrubbed gas and scrubbed gas in a common bypass flue, it does create potential problems mixing cool ambient air with hot flue gas.

  19. Expert system technology for natural gas resource development

    SciTech Connect

    Munro, R.G.

    1997-12-31

    Materials data are used in all aspects of the development of natural gas resources. Unconventional gas resources require special attention in their development and may benefit from heuristic assessments of the materials data, geological site conditions, and the knowledge base accumulated from previous unconventional site developments. Opportunities for using expert systems in the development of unconventional natural gas resources are discussed. A brief introduction to expert systems is provided in a context that emphasizes the practical nature of their service. The discussion then focuses on the development of unconventional gas reserves. Whenever possible, the likelihood of success in constructing useful expert systems for gas resource development is indicated by comparisons to existing expert systems that perform comparable functions in other industries. Significant opportunities are found for applications to site assessment, the interpretation of well log data, and the monitoring and optimization of gas processing in small-scale recovery operations.

  20. Two-tank working gas storage system for heat engine

    DOEpatents

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  1. Process and system for removing impurities from a gas

    SciTech Connect

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  2. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1991-09-01

    The combustion system discussed here incorporates a modular three- stage slagging combustor concept. Fuel-rich conditions inhibit NO{sub x} formation from fuel nitrogen in the first stage; also in the first stage, sulfur is captured with sorbent; coal ash and sulfated sorbent are removed from the combustion gases by inertial means in the second stage by the use of an impact separator and slagging cyclone separator in series. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The objective of this contract is to establish the technology required for subsequent commercial development and application by the private sector of utility-size direct coal-fueled gas turbines. Emissions from these units are to meet or be lower than the Environment Protection Agency's (EPA's) New Source Performance Standards (NSPS) for a pulverized coal-=fired steam turbine generator plant.

  3. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  4. Upton bill offers clean-up incentives

    SciTech Connect

    Black, B.

    1994-07-01

    Like castor oil, the Superfund law can be difficult medicine to swallow, and no one wants to volunteer for a dose. Indeed, the law`s harsh and unbending liability scheme sometimes hinders the cleanup of contaminated property. Confronted with the choice of redeveloping an old {open_quotes}brownfield{close_quotes} urban industrial site or building at a pristine new {open_quotes}greenfield{close_quotes} location, most companies opt for the latter. The brownfield problem is especially troubling because the law often prevents voluntary cleanups at relatively low priority sites that usually don`t get caught up in the Superfund program. This paper describes the Upton Bill which would require the US EPA to establish cleanup standards for hazrdous substances, allow for public comment on a proposed response plan, and require a voluntary party to submit detailed annual reports and maintain records.

  5. Electrical swing adsorption gas storage and delivery system

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  6. Electrical swing adsorption gas storage and delivery system

    DOEpatents

    Judkins, R.R.; Burchell, T.D.

    1999-06-15

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

  7. A gas-loading system for LANL two-stage gas guns

    SciTech Connect

    Gibson, Lloyd Lee; Bartram, Brian Douglas; Dattelbaum, Dana Mcgraw; Lang, John Michael; Morris, John Scott

    2015-09-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures.The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.

  8. A gas-loading system for LANL two-stage gas guns

    NASA Astrophysics Data System (ADS)

    Gibson, L. L.; Bartram, B. D.; Dattelbaum, D. M.; Lang, J. M.; Morris, J. S.

    2017-01-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.

  9. Determination of gas volume trapped in a closed fluid system

    NASA Technical Reports Server (NTRS)

    Hunter, W. F.; Jolley, J. E.

    1971-01-01

    Technique involves extracting known volume of fluid and measuring system before and after extraction, volume of entrapped gas is then computed. Formula derived from ideal gas laws is basis of this method. Technique is applicable to thermodynamic cycles and hydraulic systems.

  10. Simple gas chromatographic system for analysis of microbial respiratory gases

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  11. Benefit assessment of solar-augmented natural gas systems

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; French, R. L.; Sohn, R. L.

    1980-01-01

    Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

  12. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  13. Gas transmitters in female reproductive system.

    PubMed

    Gao, Lu; Wu, Tian-Wen; Ni, Xin

    2016-10-25

    Nitric oxide, carbon monoxide and hydrogen sulfide synthesized endogenously in living organisms produce an array of disparate biological effects, so as to be considered as gas transmitters. These three gaseous molecules play important roles in many physiological and pathological processes in the bodies, such as the regulation of vascular tone and inflammatory responses as well as reproductive function. This review mainly focuses on the distribution and biological functions of these three gas transmitters in female reproductive tissues.

  14. Optical fiber gas sensing system based on FBG filtering

    NASA Astrophysics Data System (ADS)

    Wang, Shutao

    2008-10-01

    An optical fiber gas sensing system based on the law of Beer-Lambert is designed to determine the concentration of gas. This technique relies on the fact that the target gas has a unique, well-defined absorption characteristic within the infrared region of electromagnetic spectrum. The narrow-band filtering characteristic of optical fiber Bragg grating is used to produce the narrow spectrum light signal. An aspheric objective optical fiber collimator is used in the system as an optical fiber gas sensing detector to improve the sensitivity and stability. Experimental results show there is a high measuring sensitivity at 0.01%, and the measuring range goes beyond 5%.

  15. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    SciTech Connect

    Biraud, S. C.; Reichl, K.

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  16. Spark gap switch system with condensable dielectric gas

    DOEpatents

    Thayer, III, William J.

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  17. Sustainable Materials Management in Site Cleanup

    EPA Pesticide Factsheets

    In 2006, the management of materials accounted for 42 of the United States’ greenhouse gas (GHG) emissions, based on a systems analysis (U.S. EPA; 2009). The systems view of materials management represents U.S. emissions related to the...

  18. The National LUST Cleanup Backlog: A Study of Opportunities

    EPA Pesticide Factsheets

    To understand the makeup of UST releases remaining and why the pace of cleanups is slowing, EPA undertook a two-phase, data-driven analysis of the cleanups remaining as of 2006 (Phase 1) and 2009 (Phase 2).

  19. 76 FR 28326 - Pipeline Safety: National Pipeline Mapping System Data Submissions and Submission Dates for Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Systems and Liquefied Natural Gas Annual Reports AGENCY: Pipeline and Hazardous Materials Safety... operators of gas transmission and gathering systems and Liquefied Natural Gas (LNG) facilities that they... to Pipeline and Liquefied Natural Gas Reporting Requirements'' (One Rule). This rulemaking...

  20. VESTA - gas distribution system for tomorrow and today

    SciTech Connect

    Huebler, J.; Rush, B.

    1983-01-01

    By combining hardware that has been developed for electronic games and home computers with straightforward modifications to currently used gas distribution equipment, it is possible to design a practical, cost-effective ''gas industry dream system'' with capabilities that include automatic meter reading and shut-off, simple buried pipe location, automatic leak location and repair without excavation, and remote pressure monitoring. The Institute of Gas Technology calls the System ''VESTA'', an acronym for Versatile Energy System Total Approach, whose two essential features are the total approach to problem solving and its distributed intelligence electronics. The authors describe current designs and costs of the VESTA system. 2 figures.

  1. Hantavirus Prevention: Cleanup of Rodent Contamination

    DTIC Science & Technology

    2008-09-01

    Hantaviruses in the Americas may cause human disease involving the lungs, hence the name " hantavirus pulmonary syndrome" (HPS). Since May 1993, a...humans are also found in other rodents, but the number of cases stemming from these hantaviruses is small when compared to SNV. Hantavirus is shed in... HANTAVIRUS PREVENTION: CLEANUP OF RODENT CONTAMINATION Technical Information Paper 18-001-0306

  2. Environmental Cleanup: Defense Indemnification for Contractor Operations.

    DTIC Science & Technology

    1994-11-25

    The Comprehensive Environmental Response and Liability Act ( CERCLA ) as amended, commonly known as Superfund (42 U.S.C. 9601-75), imposes liability... CERCLA , DoD is included among parties responsible for environmental cleanup of its facilities. If DoD pays cleaup costs related to a contractor’s

  3. Assessment of synfuel spill cleanup options

    SciTech Connect

    Petty, S.E.; Wakamiya, W.; English, C.J.; Strand, J.A.; Mahlum, D.D.

    1982-04-01

    Existing petroleum-spill cleanup technologies are reviewed and their limitations, should they be used to mitigate the effects of synfuels spills, are discussed. The six subsections of this report address the following program goals: synfuels production estimates to the year 2000; possible sources of synfuel spills and volumes of spilled fuel to the year 2000; hazards of synfuels spills; assessment of existing spill cleanup technologies for oil spills; assessment of cleanup technologies for synfuel spills; and disposal of residue from synfuel spill cleanup operations. The first goal of the program was to obtain the most current estimates on synfuel production. These estimates were then used to determine the amount of synfuels and synfuel products likely to be spilled, by location and by method of transportation. A review of existing toxicological studies and existing spill mitigation technologies was then completed to determine the potential impacts of synthetic fuel spills on the environment. Data are presented in the four appendixes on the following subjects: synfuel production estimates; acute toxicity of synfuel; acute toxicity of alcohols.

  4. Flood Cleanup to Protect Indoor Air Quality

    EPA Pesticide Factsheets

    During a flood cleanup, the indoor air quality in your home or office may appear to be the least of your problems. However, failure to remove contaminated materials and to reduce moisture and humidity can present serious long-term health risks.

  5. US nuclear cleanup shows signs of progress

    SciTech Connect

    Renner, R.

    1997-03-01

    The U.S. Department of Energy`s program for dealing with the radioactive and hazardous wastes at its former nuclear weapons production sites and at the national laboratories has been criticized for its expense and slow pace of cleanup. The largest environmental restoration and waste management program in the world faces formidable technical and scientific problems and these, according to numerous investigative committees and commissions, have been compounded by poor management, misuse of technology, and failure to appreciate the need for new basic scientific knowledge to solve many of the cleanup problems. In the past three years, DOE`s Office of Environmental Management (EM), often spurred by congressional action, has begun to trim costs and accomplish more. New measures have been introduced to improve contract efficiency, better utilize existing remediation technologies, renegotiate compliance agreements, and begin basic research. Environmental Management Assistant Undersecretary Alvin Alm, appointed in May 1996, is seeking to solidify these changes into an ambitious plan to clean up most of DOE`s 130 sites by 2006. But there are widespread doubts that EM has the money, skill, and will to turn itself around. There are also concerns that, in the name of efficiency and economy, EM may be negotiating lower cleanup standards and postponing some difficult cleanup tasks. This article discusses these issues. 7 refs.

  6. Transuranium-element-contaminated soil cleanup

    SciTech Connect

    Bramlitt, E.T.

    1987-01-01

    Johnston Atoll (JA) is a small (270-ha), but strategic, US possession in the Pacific Ocean, which was previously used in nuclear weapons testing. Nuclear devices were launched by missile for detonations at very high altitudes. In 1962, one missile failed on the launch pad and two failed overhead. The devices were destructed without nuclear yield, but transuranium (TRU) elements were dispersed. Cleanup was swift and incomplete. A 2-ha area was placed under radiological controls and restricted from use due to residual contamination. Planning was begun in 1983 for a total JA cleanup to provide additional (unrestricted) land to meet future requirements. A TRUe soil cleanup is programmed to begin at JA in 1988 utilizing a full-scale mining plant. The plant should be able to process all contaminated soil by 1992 and produce less than approx. 2000 m/sup 3/ of concentrated waste. This cleanup will increase the amount of land available for unrestricted use and provide a source of usable soil, which presently must be imported to JA.

  7. Sunlight supply and gas exchange systems in microalgal bioreactor

    NASA Technical Reports Server (NTRS)

    Mori, K.; Ohya, H.; Matsumoto, K.; Furune, H.

    1987-01-01

    The bioreactor with sunlight supply system and gas exchange systems presented has proved feasible in ground tests and shows much promise for space use as a closed ecological life support system device. The chief conclusions concerning the specification of total system needed for a life support system for a man in a space station are the following: (1) Sunlight supply system - compactness and low electrical consumption; (2) Bioreactor system - high density and growth rate of chlorella; and (3) Gas exchange system - enough for O2 production and CO2 assimilation.

  8. Pressure-Sensitive System for Gas-Temperature Control

    NASA Technical Reports Server (NTRS)

    Cesaro, Richard S; Matz, Norman

    1948-01-01

    A thermodynamic relation is derived and simplified for use as a temperature-limiting control equation involving measurement of gas temperature before combustion and gas pressures before and after combustion. For critical flow in the turbine nozzles of gas-turbine engines, the control equation is further simplified to require only measurements upstream of the burner. Hypothetical control systems are discussed to illustrate application of the control equations.

  9. Fast-Track Cleanup at Closing DoD Installations

    EPA Pesticide Factsheets

    The Fast-Track Cleanup program strives to make parcels available for reuse as quickly as possible by the transfer of uncontaminated or remediated parcels, the lease of contaminated parcels where cleanup is underway, or the 'early transfer' of contaminated property undergoing cleanup.

  10. Highly Compressed Free Gas in Deep-Water Natural Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    Barth, G. A.

    2006-12-01

    Natural gas, predominantly methane, is stored in a highly compact form within solid gas hydrate. The large volume of free gas that can be liberated by dissociation of hydrate (at standard surface conditions) is a prominent aspect of this potential energy resource. In contrast, the highly compressed state of free gas under pressure-temperature conditions found in deep-water marine settings is rarely noted. To facilitate comparison of gas quantities present within and below the hydrate stability zone in marine gas hydrate systems, particularly those in the deep-water Bering Sea basins, a suite of volume expansion ratios for 100% methane gas have been calculated. These ratios relate free gas volume under in-situ pressure (P) and temperature (T) conditions to free gas volume at standard surface conditions. The volume calculation is routine, using the Peng-Robinson equation of state (Peng and Robinson, 1976). Because most geophysical field studies aim to resolve the quantities of solid hydrate or free gas as a volume fraction of bulk rock in-situ, whereas gas resource volumes are reported as volume of free gas at STP, results here are presented as free gas volume ratios describing expansion between depth and surface conditions. This presentation also allows direct comparison with free gas yield of solid hydrate. Volume expansion ratio is presented for general reference for the pressure range 1 to 60 MPa and temperature range 0° to 80°C. (See USGS Open File Report 05-1451 online.) For pressures in the range 30 to 52 MPa and temperatures from 4° to 80°C, a more detailed evaluation of the P (water depth) and T (geotherm) effects on gas volumes has been undertaken. Ideal gas deviation factors, or z-factors, are also included. For free methane gas near the base of the hydrate stability zone at 360 m below seafloor in the Bering Sea, under conditions of 3,600 m water depth, 4°C seafloor temperature and 60°C/km geothermal gradient, the ratio of gas volume at standard

  11. Recent progress on gas tungsten arc welding of vanadium alloys

    SciTech Connect

    Grossbeck, M.L.; King, J.F.; Alexander, D.J.

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  12. Noble gas storage and delivery system for ion propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)

    2001-01-01

    A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.

  13. Natural Gas Pipeline and System Expansions

    EIA Publications

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  14. 9. VIEW OF THE BEAM SYSTEM OF SARATOGA GAS LIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF THE BEAM SYSTEM OF SARATOGA GAS LIGHT COMPANY GASHOLDER NO. 2 HOUSE, LOOKING EAST. WHITE (PAINTED) CAST IRON TIE PLATES ARE VISIBLE ON BASE OF ROOF TRUSSES. - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY

  15. Development of a gas systems analysis model (GSAM)

    SciTech Connect

    Godec, M.L.

    1995-04-01

    The objectives of developing a Gas Systems Analysis Model (GSAM) are to create a comprehensive, non-proprietary, PC based model of domestic gas industry activity. The system is capable of assessing the impacts of various changes in the natural gas system within North America. The individual and collective impacts due to changes in technology and economic conditions are explicitly modeled in GSAM. Major gas resources are all modeled, including conventional, tight, Devonian Shale, coalbed methane, and low-quality gas sources. The modeling system asseses all key components of the gas industry, including available resources, exploration, drilling, completion, production, and processing practices, both for now and in the future. The model similarly assesses the distribution, storage, and utilization of natural gas in a dynamic market-based analytical structure. GSAM is designed to provide METC managers with a tool to project the impacts of future research, development, and demonstration (RD&D) benefits in order to determine priorities in a rapidly changing, market-driven gas industry.

  16. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    ERIC Educational Resources Information Center

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  17. Compact Laser Multi-gas Spectral Sensors for Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Tittel, Frank K.

    1997-01-01

    The objective of this research effort has been the development of a new gas sensor technology to meet NASA requirements for spacecraft and space station human life support systems for sensitive selective and real time detection of trace gas species in the mid-infrared spectral region.

  18. Thermochemically recuperated and steam cooled gas turbine system

    DOEpatents

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  19. Thermochemically recuperated and steam cooled gas turbine system

    DOEpatents

    Viscovich, Paul W.; Bannister, Ronald L.

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  20. Method for nonlinear optimization for gas tagging and other systems

    DOEpatents

    Chen, T.; Gross, K.C.; Wegerich, S.

    1998-01-06

    A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.

  1. Method for nonlinear optimization for gas tagging and other systems

    DOEpatents

    Chen, Ting; Gross, Kenny C.; Wegerich, Stephan

    1998-01-01

    A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.

  2. Investigation of post hydraulic fracturing well cleanup physics in the Cana Woodford Shale

    NASA Astrophysics Data System (ADS)

    Lu, Rong

    Hydraulic fracturing was first carried out in the 1940s and has gained popularity in current development of unconventional resources. Flowing back the fracturing fluids is critical to a frac job, and determining well cleanup characteristics using the flowback data can help improve frac design. It has become increasingly important as a result of the unique flowback profiles observed in some shale gas plays due to the unconventional formation characteristics. Computer simulation is an efficient and effective way to tackle the problem. History matching can help reveal some mechanisms existent in the cleanup process. The Fracturing, Acidizing, Stimulation Technology (FAST) Consortium at Colorado School of Mines previously developed a numerical model for investigating the hydraulic fracturing process, cleanup, and relevant physics. It is a three-dimensional, gas-water, coupled fracture propagation-fluid flow simulator, which has the capability to handle commonly present damage mechanisms. The overall goal of this research effort is to validate the model on real data and to investigate the dominant physics in well cleanup for the Cana Field, which produces from the Woodford Shale in Oklahoma. To achieve this goal, first the early time delayed gas production was explained and modeled, and a simulation framework was established that included all three relevant damage mechanisms for a slickwater fractured well. Next, a series of sensitivity analysis of well cleanup to major reservoir, fracture, and operational variables was conducted; five of the Cana wells' initial flowback data were history matched, specifically the first thirty days' gas and water producing rates. Reservoir matrix permeability, net pressure, Young's modulus, and formation pressure gradient were found to have an impact on the gas producing curve's shape, in different ways. Some moderately good matches were achieved, with the outcome of some unknown reservoir information being proposed using the

  3. IHI in-line type flue gas desulfurization system

    SciTech Connect

    Yamaguchi, F.; Kanamori, A.; Fujino, Y.

    1995-06-01

    Desulfurization systems are indispensable for reducing air pollution caused by flue gas from power plants. It is essential that the cost for constructing and operating such systems is low. IHI has developed such a system based on its expertise gathered over the years. The test results and outline of the system are presented in this paper.

  4. Gas migration in the Terrebonne Basin gas hydrate system, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Cook, A.; Hillman, J. I. T.; Sawyer, D.

    2015-12-01

    The Terrebonne Basin is a salt bounded mini-basin in the northeast section of the Walker Ridge protraction area in the Gulf of Mexico (water depth ~2 km), where the Gas Hydrate Joint Industry Project Leg 2 identified gas hydrate via logging-while-drilling in 2009. The Terrebonne Basin is infilled by gently dipping mud-rich sedimentary sequences with several sand units. Gas hydrate was detected in two significant reservoir sands 10s of meters in thickness, a number of thin 1 to 3 meter-thick sands, and in thick, 10-100 meter intervals of marine muds with gas hydrate in near-vertical fractures. In this research, we combine 3D seismic mapping with wavelet and travel time analysis to interpret gas migration mechanisms in each hydrate-bearing sand. Our analyses suggest that the Orange sand, a main reservoir unit, is sourced from below the gas hydrate stability zone and, the 2.5 meter-thick Red sand (also called 'Unit A'), is sourced locally. Our primary evidence is from seismic amplitudes across the two sands that show distinctly different patterns. The Orange sand has distinct high amplitudes within the gas hydrate stability zone and negative amplitudes suggesting free gas below the gas hydrate stability zone. The Red sand, in contrast, has no free gas source below the stability zone and the hydrate distribution as described by high amplitudes suggests that hydrate distribution is spotty. This may imply that gas generation is occurring sporadically in the surrounding marine mud units; this matches with a model of the Red sand that suggests it is sourced locally. These preliminary observations require further refinement but they indicate that fundamentally different migration mechanisms are occurring within a single hydrate system.

  5. Cleanup/stimulation of a horizontal wellbore using propellants. Final report

    SciTech Connect

    Rougeot, J.E.; Lauterbach, K.A.

    1993-01-01

    This report documents the stimulation/cleanup of a horizontal well bore (Wilson 25) using propellants. The Wilson 25 is a Bartlesville Sand well located in the Flatrock Field, Osage County, Oklahoma. The Wilson 25 was drilled to determine if horizontal drilling could be used as a means to economically recover primary oil that had been left in place in a mostly abandoned oil field because of the adverse effects of water coning. Pump testing of the Wilson 25 horizontal well bore before cleanup or stimulation produced 6 barrels of oil and .84 barrels of water per day. The high percentage of daily oil production to total daily fluid production indicated that the horizontal well bore had accessed potentially economical oil reserves if the fluid production rate could be increased by performing a cleanup/stimulation treatment. Propellants were selected as an inexpensive means to stimulate and cleanup the near well bore area in a uniform manner. The ignition of a propellant creates a large volume of gas which penetrates the formation, creating numerous short cracks through which hydrocarbons can travel into the well bore. More conventional stimulation/cleanup techniques were either significantly more expensive, less likely to treat uniformly, or could not be confined to the near well bore area. Three different propellant torpedo designs were tested with a total of 304` of horizontal well bore being shot and producible. The initial test shot caused 400` of the horizontal well bore to become plugged off, and subsequently it could not be production tested. The second and third test shots were production tested, with the oil production being increased 458% and 349%, respectively, on a per foot basis. The Wilson 25 results indicate that a propellant shot treatment is an economically viable means to cleanup/stimulate a horizontal well bore.

  6. A Frequency Transfer and Cleanup System for Ultra-High Stability at Both Long and Short Times for the Cassini Ka-Band Experiment

    NASA Technical Reports Server (NTRS)

    Calhoun, M. D.; Dick, G. J.; Wang, R. T.

    1999-01-01

    New radio science experiments, including a gravitational wave search and several atmospheric occultation studies, are planned for the Cassini Ka-band experiment. These experiments are made possible by reduced solar-induced phase fluctuations at the high-frequency (32 GHZ) of the radio link between the earth and the spacecraft. In order to match the improved link performance, a significant upgrade is under way to improve the frequency stability capabilities of NASA's Deep Space Network (DSN). Significant improvements are being undertaken in many areas, including antenna vibration and (wet) tropospheric calibration, in addition to frequency generation and distribution. We describe here the design and development of a system to provide a reference signal with the highest possible frequency stability for both long-term, short-term, and phase noise, at an antenna (DSS 25) that is remote from the frequency standards room at SPC-10 at the Goldstone site. The new technologies were developed in order to meet the very tight requirements. They are: 1) a Stabilized Fiber-Optic Distribution Assembly (SFODA) that includes active compensation of thermal variations to transfer long-term stability over 16 km of ordinary fiber-optic cable, and 2) a Compensated Sapphire Oscillator (CSO) that provides short-term performance in a cryocooled sapphire oscillator with ultra-high short-term stability and low phase noise.

  7. Detection system for a gas chromatograph

    DOEpatents

    Hayes, John M.; Small, Gerald J.

    1984-01-01

    A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam.

  8. Gas Conversion Systems Reclaim Fuel for Industry

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A human trip to Mars will require astronauts to utilize resources on the Red Planet to generate oxygen and fuel for the ride home, among other things. Lakewood, Colorado-based Pioneer Energy has worked under SBIR agreements with Johnson Space Center to develop technology for those purposes, and now uses a commercialized version of the technology to recover oil and gas that would otherwise be wasted at drilling sites.

  9. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    SciTech Connect

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  10. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... flammable gas detection system that has sampling points in: (1) Each cargo pump room; (2) Each cargo compressor room; (3) Each motor room for cargo handling machinery; (4) Each cargo control station that is...

  11. Advanced Gas Turbine (AGT) powertrain system development for automotive applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Compressor development, turbine, combustion, regenerator system, gearbox/transmission, ceramic material and component development, foil gas bearings, bearings and seals, rotor dynamics development, and controls and accessories are discussed.

  12. World Energy Projection System Plus Model Documentation: Natural Gas Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  13. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., carbon monoxide, carbon dioxide, methane, and formaldehyde. The exhaust gas analytical system is not... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  14. Computers bail out groundwater cleanup

    SciTech Connect

    Harte, R.

    1997-01-01

    Using computers to automate groundwater remediation systems can increase efficiency and improve record keeping. This article uses an example of leakage of petroleum products from a petroleum storage facility which is mitigated within a 17 acre area. The Mistic computer center is a stand-alone processing unit that receives status inputs from each piece of equipment, interprets the condition of the system and then instructs the equipment how to respond. 1 fig.

  15. New mud gas monitoring system aboard D/V Chikyu

    NASA Astrophysics Data System (ADS)

    Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki

    2013-04-01

    Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.

  16. Design validation and performance of closed loop gas recirculation system

    NASA Astrophysics Data System (ADS)

    Kalmani, S. D.; Joshi, A. V.; Majumder, G.; Mondal, N. K.; Shinde, R. R.

    2016-11-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m2, with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C2H2F4), isobutane (iC4H10) and sulphur hexafluoride (SF6) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  17. Offshore LNG (liquefied natural gas) production and storage systems

    SciTech Connect

    Barden, J.K.

    1982-01-01

    A barge, outfitted with gas liquefaction processing equipment and liquefied natural gas (LNG) storage tanks, is suggested as a possible way to exploit remote offshore gas production. A similar study with a barge-mounted methanol plant was conducted several years ago, also using remote offshore feed gas. This barge-mounted, LNG system is bow-moored to a single point mooring through which feed gas is piped via seafloor pipeline from a nearby gas production facility. The barge is arranged with personnel accommodation forward, LNG storage midships, and gas liquefaction processing equipment aft. A flare boom is cantilevered off the barge's stern. The basis of design stipulates feed gas properties, area environmental data, gas liquefaction process, LNG storage tank type plus other parameters desirable in a floating process plant. The latter were concerned with safety, low maintenance characteristics, and the fact that the process barge also would serve as an offshore port where LNG export tankers would moor periodically. A brief summary of results for a barge-mounted methanol plant from an earlier study is followed then by a comparison of LNG and methanol alternatives.

  18. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, Cape Canaveral Air Station, several studies are under way for groundwater cleanup of trichloroethylene at the site. Shown here is monitoring equipment for one of the methods, potassium permanganate oxidation. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program in the 60s. The environmental research project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA, who formed the Interagency NDAPL Consortium (IDC), to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies for representatives from environmental and federal agencies.

  19. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, the Six-Phase Soil Heating site that is involved in a groundwater cleanup project can be seen. The project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six-Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background is the block house for the complex. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  20. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, representatives from environmental and Federal agencies head for the block house during presentations about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  1. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, Greg Beyke, with Current Environmental Solutions, talks to representatives from environmental and federal agencies about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  2. Stakeholder Workshop on EPA GHG Data on Petroleum and Natural Gas Systems

    EPA Pesticide Factsheets

    This page describes EPA's November 2015 stakeholder workshop on greenhouse gas data on petroleum and natural gas systems from the Greenhouse Gas Reporting Program and U.S. Greenhouse Gas Inventory of Emissions and Sinks.

  3. Observations on gas exchange and element recycle within a gas-closed algal-mouse system

    NASA Technical Reports Server (NTRS)

    Smernoff, D. T.; Wharton, R. A., Jr.; Averner, M. M.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Algae are potentially useful for a variety of Closed Ecological Life Support System (CELSS) functions including the revitalization of atmospheres, production of food and for nitrogen fixation. The results of experiments conducted with a gas-closed algal-mouse system designed to investigate gas exchange phenomena under varying algal environmental conditions, and the ability of algae to utilize oxidized mouse solid waste are reported. Inherent instabilities exist between the uptake and release of carbon dioxide (CO2) and oxygen (O2) by the mouse and algae in a gas-closed system. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable short-term steady-state concentrations of atmospheric CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations were examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system.

  4. Advanced Gas Turbine (AGT) powertrain system

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Kaufeld, J.; Kordes, R.

    1981-01-01

    A 74.5 kW(100 hp) advanced automotive gas turbine engine is described. A design iteration to improve the weight and production cost associated with the original concept is discussed. Major rig tests included 15 hours of compressor testing to 80% design speed and the results are presented. Approximately 150 hours of cold flow testing showed duct loss to be less than the design goal. Combustor test results are presented for initial checkout tests. Turbine design and rig fabrication is discussed. From a materials study of six methods to fabricate rotors, two have been selected for further effort. A discussion of all six methods is given.

  5. Determining Cleanup Standards for Hazardous Waste Sites

    DTIC Science & Technology

    1991-04-01

    CERCLA ) 8 was designed to deal with so-called Superfund sites like Love Canal. Among other things, Section 121 of that Act 9 describes, the cleanup...the "big stick" for cleaning up dangerous environmental sites falls under the broad 17 scope of CERCLA and the Superfund . The fundamental difference...as wastes under RCRA but are still 43 considered "hazardous" for CERCLA regulation. Furthermore, CERCLA , as amended by the Superfund Amendment and

  6. Helium Gas Regulation System for the Light-Ion Guide Gas Cell

    NASA Astrophysics Data System (ADS)

    Frazier, Bryan; Clark, Henry; Chen, Lixin

    2013-10-01

    This is a proof-of-concept project to show that it is possible to construct a cost-effective helium gas regulation system for TAMU Cyclotron Institute's light-ion guide gas cell, using store ordered components. By purchasing the individual necessary parts, we designed and constructed a system that was less expensive than purchasing a pre-constructed system from a manufacturer, and could easily be scaled larger or smaller to accommodate any number of gas bottles. Utilizing LabVIEW software, I was able to write a program that allows the system to be controlled remotely, and an automation program that causes the system to change immediately between bottles, whenever one is almost empty, allowing the system to supply a constant flow of helium gas for several days. Although both the construction and the programming of the system can be seen as rough and unrefined, due to the time-restraints placed on me, the project adequately proves that the concept is valid and entirely possible, as the system is fully functional and able to fulfill its intended purpose. Funded by DOE and NSF-REU Program.

  7. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  8. Gas dilution system results and application to acid rain utilities

    SciTech Connect

    Jolley-Souders, K.; Geib, R.; Dunn, C.

    1997-12-31

    In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.

  9. Cleanup standards and pathways analysis methods

    SciTech Connect

    Devgun, J.S.

    1993-09-01

    Remediation of a radioactively contaminated site requires that certain regulatory criteria be met before the site can be released for unrestricted future use. Since the ultimate objective of remediation is to protect the public health and safety, residual radioactivity levels remaining at a site after cleanup must be below certain preset limits or meet acceptable dose or risk criteria. Release of a decontaminated site requires proof that the radiological data obtained from the site meet the regulatory criteria for such a release. Typically release criteria consist of a composite of acceptance limits that depend on the radionuclides, the media in which they are present, and federal and local regulations. In recent years, the US Department of Energy (DOE) has developed a pathways analysis model to determine site-specific soil activity concentration guidelines for radionuclides that do not have established generic acceptance limits. The DOE pathways analysis computer code (developed by Argonne National Laboratory for the DOE) is called RESRAD (Gilbert et al. 1989). Similar efforts have been initiated by the US Nuclear Regulatory Commission (NRC) to develop and use dose-related criteria based on genetic pathways analyses rather than simplistic numerical limits on residual radioactivity. The focus of this paper is radionuclide contaminated soil. Cleanup standards are reviewed, pathways analysis methods are described, and an example is presented in which RESRAD was used to derive cleanup guidelines.

  10. Power Systems Development Facility. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-10-01

    The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: 1. Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. 2. Hot Gas Cleanup Units to mate to all gas streams. 3. Combustion Gas Turbine. 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility, finalizing the selection for the Carbonizer/Transport and the circulating pressurized fluidized-bed combustor (CPFBC) particulate control devices (PCDs), drafting the air permit for the facility and continue the installation of the transport reactor development unit (TRDU). The detailed design of the PSDF continued to refine interface points to streamline the design of the facility.

  11. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  12. Evaluation of containment failure and cleanup time for Pu shots on the Z machine.

    SciTech Connect

    Darby, John L.

    2010-02-01

    Between November 30 and December 11, 2009 an evaluation was performed of the probability of containment failure and the time for cleanup of contamination of the Z machine given failure, for plutonium (Pu) experiments on the Z machine at Sandia National Laboratories (SNL). Due to the unique nature of the problem, there is little quantitative information available for the likelihood of failure of containment components or for the time to cleanup. Information for the evaluation was obtained from Subject Matter Experts (SMEs) at the Z machine facility. The SMEs provided the State of Knowledge (SOK) for the evaluation. There is significant epistemic- or state of knowledge- uncertainty associated with the events that comprise both failure of containment and cleanup. To capture epistemic uncertainty and to allow the SMEs to reason at the fidelity of the SOK, we used the belief/plausibility measure of uncertainty for this evaluation. We quantified two variables: the probability that the Pu containment system fails given a shot on the Z machine, and the time to cleanup Pu contamination in the Z machine given failure of containment. We identified dominant contributors for both the time to cleanup and the probability of containment failure. These results will be used by SNL management to decide the course of action for conducting the Pu experiments on the Z machine.

  13. Cryogenic Transport of High-Pressure-System Recharge Gas

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

    2010-01-01

    A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near

  14. Design and Testing of a Cold Gas System

    NASA Astrophysics Data System (ADS)

    Hashem, A. A.

    2004-10-01

    Cold gas propulsion systems are relatively low-tech cheap devices. Total system mass disadvantage may be limited for low total impulse systems. Mission analysis of a cold gas system was conducted for the two binding extremes of isothermal and isentropic propellant expansion within the tank. Nozzle performance was initially modeled using empirical relations; subsequently two-dimensional axisymmetric, turbulent Navier-Stocks model was used. The results were in close agreement. For specified total impulse and average thrust a preliminary design analysis was conducted. The impact of hardware characteristics on optimum design configuration is discussed. An experimental dual thrust cold gas system, with a turn down ratio of 10 was designed. Test results include high and low thrust pulses and the effects of varying the pressure regulators set pressure. Close agreement with specified design values was achieved.

  15. On-Board Hydrogen Gas Production System For Stirling Engines

    DOEpatents

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  16. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    SciTech Connect

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  17. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  18. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... AGENCY 40 CFR Parts 98 Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY..., 2010 EPA promulgated Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule... outlined for calculating greenhouse gas emissions for the petroleum and natural gas systems source...

  19. Exhaust gas purification system for lean burn engine

    DOEpatents

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  20. Plug-to-plug gas transfer system

    DOEpatents

    Poindexter, Allan M.

    1978-01-01

    A system for conducting a fluid from one component to another component of a nuclear reactor wherein at least one such component is a rotatable closure head plug capable of movement relative to the other component. The conducting system utilizes the annulus located between the components as a connecting passageway for the fluid.

  1. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Environmental information volume

    SciTech Connect

    1998-12-31

    The Clean Coal Technology (CCT) Demonstration Program is a $5 billion technology demonstration program that was legislated by Congress to be funded jointly by the federal government and industrial or other sector participants. The goal of the Program is to make available to the U.S. energy marketplace a number of advanced, more efficient, reliable, and environmentally responsive coal utilization and environmental control technologies. These technologies are intended to reduce or eliminate the economic and environmental impediments that limit the full consideration of coal as a future energy resource. Over the next decade, the Program will advance the technical, environmental and economic performance of these advanced technologies to the point where the private sector will be able to introduce them into the commercial marketplace. Each of these demonstrations is in a scale large enough to generate sufficient design, construction and operation data for the private sector to judge the technology`s commercial potential and to make informed confident decisions on its commercial readiness. The strategy being implemented to achieve the goal of the CCT Demonstration Program is to conduct a multi-phase effort consisting of at least five separate solicitations for projects, each with individual objectives that, when integrated, will make technology options available on a schedule consistent with the demands of the energy market and responsive to the relevant environmental considerations. This paper describes a commercial demonstration project to be fielded in support of this program.

  2. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  3. Development of gas turbine steam injection water recovery (SIWR) system

    SciTech Connect

    Nguyen, H.B.; Otter, A. den )

    1994-01-01

    This paper describes and discusses a closed-loop'' steam injection water recovery (SIWR) cycle that was developed for steam-injected gas turbine applications. This process is needed to support gas turbine steam injection especially in areas where water cannot be wasted and complex water treatment is discouraged. The development of the SIWR was initiated by NOVA in an effort to reduce the environmental impact of operating gas turbines and to find suitable solution for its expanding gas transmission system to meet further air emission restrictions. While turbine steam injection provides many benefits, it has not been considered for remote, less supported environments such as gas transmission applications due to its high water consumption. The SIWR process can alleviate this problem regardless of the amount of injection required. The paper also covers conceptual designs of a prototype SIWR system on a small gas turbine unit. However, because of relatively high costs, it is generally believed that the system is more attractive to larger size turbines and especially when it is used in conjunction with cogeneration or combined cycle applications.

  4. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1978-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  5. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1979-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  6. Slag processing system for direct coal-fired gas turbines

    DOEpatents

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  7. Steam cooling system for a gas turbine

    DOEpatents

    Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  8. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector. The analysis for formaldehyde is performed using high pressure liquid chromatography (HPLC) of...

  9. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector. The analysis for formaldehyde is performed using high pressure liquid chromatography (HPLC) of...

  10. Specialized Gas Chromatography--Mass Spectrometry Systems for Clinical Chemistry.

    ERIC Educational Resources Information Center

    Gochman, Nathan; And Others

    1979-01-01

    A discussion of the basic design and characteristics of gas chromatography-mass spectrometry systems used in clinical chemistry. A comparison of three specific systems: the Vitek Olfax IIA, Hewlett-Packard HP5992, and Du Pont DP-102 are included. (BB)

  11. Compressive stress system for a gas turbine engine

    DOEpatents

    Hogberg, Nicholas Alvin

    2015-03-24

    The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket attached to a rotor, a second bucket attached to the rotor, the first and the second buckets defining a shank pocket therebetween, and a compressive stress spring positioned within the shank pocket.

  12. Monolithic natural gas storage delivery system based on sorbents

    DOEpatents

    Hornbostel, Marc; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-09-27

    The invention provides methods for producing a strong, light, sorbent-based storage/dispenser system for gases and fuels. The system comprises a porous monolithic material with an adherent strong impervious skin that is capable of storing a gas under pressure in a safe and usable manner.

  13. 75 FR 18607 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...EPA is proposing a supplemental rule to require reporting of greenhouse gas (GHG) emissions from petroleum and natural gas systems. Specifically, the proposed supplemental rulemaking would require emissions reporting from the following industry segments: Onshore petroleum and natural gas production, offshore petroleum and natural gas production, natural gas processing, natural gas transmission......

  14. 49 CFR 191.15 - Transmission systems; gathering systems; and liquefied natural gas facilities: Incident report.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... liquefied natural gas facilities: Incident report. 191.15 Section 191.15 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Incident report. (a) Transmission or...

  15. 49 CFR 191.15 - Transmission systems; gathering systems; and liquefied natural gas facilities: Incident report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquefied natural gas facilities: Incident report. 191.15 Section 191.15 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Incident report. (a) Transmission or...

  16. 49 CFR 191.15 - Transmission systems; gathering systems; and liquefied natural gas facilities: Incident report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquefied natural gas facilities: Incident report. 191.15 Section 191.15 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Incident report. (a) Transmission or...

  17. 49 CFR 191.17 - Transmission systems; gathering systems; and liquefied natural gas facilities: Annual report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquefied natural gas facilities: Annual report. 191.17 Section 191.17 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Annual report. (a) Transmission or Gathering....

  18. 49 CFR 191.15 - Transmission systems; gathering systems; and liquefied natural gas facilities: Incident report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquefied natural gas facilities: Incident report. 191.15 Section 191.15 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Incident report. (a) Transmission or...

  19. 49 CFR 191.17 - Transmission systems; gathering systems; and liquefied natural gas facilities: Annual report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquefied natural gas facilities: Annual report. 191.17 Section 191.17 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Annual report. (a) Transmission or Gathering....

  20. 49 CFR 191.17 - Transmission systems; gathering systems; and liquefied natural gas facilities: Annual report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquefied natural gas facilities: Annual report. 191.17 Section 191.17 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Annual report. (a) Transmission or Gathering....