Science.gov

Sample records for gas density factors

  1. Critical density of a soliton gas

    NASA Astrophysics Data System (ADS)

    El, G. A.

    2016-02-01

    We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrödinger operator associated with the Korteweg-de Vries soliton gas dynamics. As a by-product of our derivation, we find the speed of sound in the soliton gas with Gaussian spectral distribution function.

  2. Photoionization and High Density Gas

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  3. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  4. A Universal Density Structure for Circumgalactic Gas

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Hennawi, Joseph F.; Prochaska, J. Xavier; Werk, Jessica K.

    2016-10-01

    We develop a new method to constrain the physical conditions in the cool (∼104 K) circumgalactic medium (CGM) from measurements of ionic column densities by assuming that the cool CGM spans a large range of gas densities and that small high-density clouds are hierarchically embedded in large low-density clouds. The new method combines the information available from different sightlines during the photoionization modeling, thus yielding tighter constraints on CGM properties compared to traditional methods that model each sightline individually. Applying this new technique to the COS Halos survey of low-redshift ∼L* galaxies, we find that we can reproduce all observed ion columns in all 44 galaxies in the sample, from the low ions to {{O}} {{VI}}, with a single universal density structure for the cool CGM. The gas densities span the range 50≲ ρ /{\\bar{ρ }}b≲ 5× {10}5 ({\\bar{ρ }}b is the cosmic mean), while the physical size of individual clouds scales as ∼ρ ‑1, from ≈35 kpc for the low-density {{O}} {{VI}} clouds to ≈6 pc for the highest-density low-ion clouds. The deduced cloud sizes are too small for this density structure to be driven by self-gravity; thus, its physical origin is unclear. The implied cool CGM mass within the virial radius is (1.3 ± 0.4) × 1010 {M}ȯ (∼1% of the halo mass), distributed rather uniformly over the 4 decades in density. The mean cool gas density profile scales as {R}-1.0+/- 0.3, where R is the distance from the galaxy center. We construct a 3D model of the cool CGM based on our results, which we argue provides a benchmark for the CGM structure in hydrodynamic simulations. Our results can be tested by measuring the coherence scales of different ions.

  5. Gravitational star formation thresholds and gas density in three galaxies

    NASA Technical Reports Server (NTRS)

    Oey, M. S.; Kennicutt, R. C., Jr.

    1990-01-01

    It has long been held that the star formation rate (SFR) may be described as a power law of the gas density, p(exp n), as given by Schmidt (1959). However, this relation has as yet remained poorly defined and is likewise poorly understood. In particular, most studies have been investigations of global gas and star formation properties of galaxies, due to lack of adequate high-resolution data for detailed studies of individual galaxies. The three spiral galaxies in this study have published maps of both H2 (as traced by CO), and HI, thereby enabling the authors to investigate the relationship between total gas surface density and SFR. The purpose of the present investigation is the comparison of spatially-resolved total surface gas density in three galaxies (NGC 6946, M51, and M83) to sigma sub c as given by the above model. CO, HI and H alpha data for NGC 6946 were taken from Tacconi-Garman (1988), and for M51 and M83 from Lord (1987). The authors used a CO-H2 conversion of N(H2)/I sub CO(exp cos i = 2.8 x 10(exp 20) atoms cm(-2)/(K kms(-1), and summed the H2 and HI data for each galaxy to obtain the total hydrogen gas density. This total was then multiplied by a factor of 1.36 to include the contribution of helium to the total surface gas density. The authors assumed distances to NGC 6946, M51, and M83 to be 6.0, 9.6, and 8.9 Mpc respectively, with inclination angles of 30, 20, and 26 degrees. H alpha flux was used as the measure of SFR for NGC 6946, and SFR for the remaining two galaxies was taken directly from Lord as computed from H alpha measurements. The results of these full-disk studies thus show a remarkable correlation between the total gas density and the threshold densities given by the gravitational stability criterion. In particular, the threshold density appears to mark a lower boundary to the range of gas densities in these galaxies, which may have consequence in determining appropriate models for star formation and gas dynamics. More evidence is

  6. Gas Density Discontinuities in Merging Clusters

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Markevitch, Maxim

    2005-01-01

    Chandra has discovered a new phenomenon in galaxy clusters, the sharp gas density edges. Depending on the sign of the temperature jump across the edge, these features may either be bow shocks or cold fronts. While bow shocks obviously are driven by merging sub-clusters, what causes cold fronts is not entirely clear, as they are observed both in mergers and in relaxed clusters. The purpose of the XMM study of A3376, an interesting cluster with density edges, is to understand the origin of cold fronts and to look for possible shocks. The XMM data for A3376 have been mostly analyzed (the X-ray edge turned out to be a cold front). Preliminary results have been shown at a conference and a paper is in preparation. We also have Chandra data for this cluster, and are comparing and combining the two datasets. In the course of analyzing the X-ray data for this cluster as well as several others, it has become apparent that we need the help of hydrodynamic simulations to study the precise mechanism by which cold fronts are formed, the main goal of the present project. A postdoc (Yago Ascasibar) is currently running SPH simulations of an idealized sub- cluster merger. These advanced simulations are nearing completion and two papers with their results are in preparation.

  7. THE MOLECULAR GAS DENSITY IN GALAXY CENTERS AND HOW IT CONNECTS TO BULGES

    SciTech Connect

    Fisher, David B.; Bolatto, Alberto; Drory, Niv; Combes, Francoise; Blitz, Leo; Wong, Tony

    2013-02-20

    In this paper we present gas density, star formation rate (SFR), stellar masses, and bulge-disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of the BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H{sub 2} conversion factors that depend on the CO surface brightness, and also that of correcting SFRs for diffuse emission from old stellar populations. We estimate that SFRs in bulges are typically lower by 20% when correcting for diffuse emission. Using the surface brightness dependent conversion factor, we find that over half of the galaxies in our sample have {Sigma}{sub mol} > 100 M {sub Sun} pc{sup -2}. Though our sample is not complete in any sense, our results are enough to rule out the assumption that bulges are uniformly gas-poor systems. We find a trend between gas density of bulges and bulge Sersic index; bulges with lower Sersic index have higher gas density. Those bulges with low Sersic index (pseudobulges) have gas fractions that are similar to that of disks. Conversely, the typical molecular gas fraction in classical bulges is more similar to that of an elliptical galaxy. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that classical bulges with low gas surface density can be barred as well. Our results suggest that understanding the connection between the central surface density of gas in disk galaxies and the presence of bars should also take into account the total gas content of the galaxy. Finally, we show that when using the corrected SFRs and gas densities, the correlation between SFR surface density and gas surface density of bulges is similar to that of disks. This implies that at the scale of the bulges the timescale for converting gas into stars is comparable to those results found in disks.

  8. The Molecular Gas Density in Galaxy Centers and how it Connects to Bulges

    NASA Astrophysics Data System (ADS)

    Fisher, David B.; Bolatto, Alberto; Drory, Niv; Combes, Francoise; Blitz, Leo; Wong, Tony

    2013-02-01

    In this paper we present gas density, star formation rate (SFR), stellar masses, and bulge-disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of the BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H2 conversion factors that depend on the CO surface brightness, and also that of correcting SFRs for diffuse emission from old stellar populations. We estimate that SFRs in bulges are typically lower by 20% when correcting for diffuse emission. Using the surface brightness dependent conversion factor, we find that over half of the galaxies in our sample have Σmol > 100 M ⊙ pc-2. Though our sample is not complete in any sense, our results are enough to rule out the assumption that bulges are uniformly gas-poor systems. We find a trend between gas density of bulges and bulge Sérsic index; bulges with lower Sérsic index have higher gas density. Those bulges with low Sérsic index (pseudobulges) have gas fractions that are similar to that of disks. Conversely, the typical molecular gas fraction in classical bulges is more similar to that of an elliptical galaxy. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that classical bulges with low gas surface density can be barred as well. Our results suggest that understanding the connection between the central surface density of gas in disk galaxies and the presence of bars should also take into account the total gas content of the galaxy. Finally, we show that when using the corrected SFRs and gas densities, the correlation between SFR surface density and gas surface density of bulges is similar to that of disks. This implies that at the scale of the bulges the timescale for converting gas into stars is comparable to those results found in disks.

  9. Development of a technology for pressing high-density products using gas-draining methods

    SciTech Connect

    Mamedov, A.T.

    1994-11-01

    The factors that hinder the formation of high-density compacts by cold-pressing of powders are considered. The main factors are the gases present in the charge and the technological lubricant introduced to facilitate the work of the press mold. A procedure has been developed for calculating the efficiency of gas drainage from a mold and the pressure in gas pores in the compacts. Recommendations are made for increasing the density of compacts from iron powders by a single cold pressing.

  10. Liquid polymorphism and density anomaly in a lattice gas model.

    PubMed

    Henriques, Vera B; Barbosa, Marcia C

    2005-03-01

    We present a simple model for an associating liquid in which polymorphism and density anomaly are connected. Our model combines a two dimensional lattice gas with particles interacting through a soft core potential and orientational degrees of freedom represented through thermal "ice variables." The competition between the directional attractive forces and the soft core potential leads to a phase diagram in which two liquid phases and a density anomaly are present. The coexistence line between the low density liquid and the high density liquid has a positive slope contradicting the surmise that the presence of a density anomaly implies that the high density liquid is more entropic than the low density liquid.

  11. Star-gas density waves in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen H.; Cowie, Lennox L.; Balbus, Steven A.

    1986-01-01

    The steady state dynamics of spiral galaxies is analyzed as a two-component system consisting of stars and gas within the framework of the WKB density wave theory. The gravitational influence of the gas is included for the first time in a steady state calculation. The full set of equations for a star-gas galaxy is presented, and the equations are analyzed for small-amplitude forcing. Wave properties near the solar circle are examined, and it is found that the large-scale gas shock disappears for gas content above 8 percent. Instead, gas density profiles change to highly symmetric shapes as a result of the action of the gas self-gravity. The stellar wave is damped by the torque exerted by the gas.

  12. Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard; Panda, Jayanta

    1999-01-01

    A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.

  13. Electron density and gas density measurements in a millimeter-wave discharge

    NASA Astrophysics Data System (ADS)

    Schaub, S. C.; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2016-08-01

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  14. Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas

    SciTech Connect

    Sanner, Christian; Su, Edward J.; Keshet, Aviv; Gommers, Ralf; Shin, Yong-il; Huang Wujie; Ketterle, Wolfgang

    2010-07-23

    We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations (atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed for probe volumes containing more than 10 000 atoms. Measuring the level of suppression provides sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly correlated many-body systems.

  15. The Magellanic Stream and the Density of Coronal Gas in the Galactic Halo.

    PubMed

    Murali

    2000-02-01

    The properties of the Magellanic Stream constrain the density of coronal gas in the distant Galactic halo. We show that motion through ambient gas can strongly heat Stream clouds, driving mass loss and causing evaporation. If the ambient gas density is too high, then evaporation occurs on unreasonably short timescales. Since heating dominates drag, tidal stripping appears to be responsible for producing the Stream. Requiring the survival of the cloud MS IV for 500 Myr sets an upper limit on the halo gas density of nh<10-5 cm -3 at 50 kpc, roughly a factor of 10 lower than that estimated from the drag model of Moore & Davis. Implications for models of the evolution of gas in galaxy halos are discussed.

  16. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  17. Low density gas dynamic wall boundary conditions

    NASA Technical Reports Server (NTRS)

    Collins, F. G.

    1986-01-01

    Low density nozzles or large expansion ratio nozzles used in space experience rarefaction effects near their exit in the form of velocity slip and temperature jump at the walls. In addition, the boundary layers become very thick and there is a very strong viscous/inviscid interaction. For these reasons no existing design technique has been found to accurately predict the nozzle flow properties up to the nozzle exit. The objective of this investigation was to examine the slip boundary conditions and formulate them in a form appropriate for use with a full Navier-Stokes numerical code. The viscous/inviscid interaction would automatically be accounted for by using a compressible Navier-Stokes code. Through examination of the interaction of molecules with solid surfaces, a model for the distribution function of the reflected molecules has been determined and this distribution function has been used to develop a new slip boundary condition that can be shown to yield more realistic surface boundary conditions.

  18. THE DEPENDENCE OF STAR FORMATION EFFICIENCY ON GAS SURFACE DENSITY

    SciTech Connect

    Burkert, Andreas; Hartmann, Lee E-mail: lhartm@umich.edu

    2013-08-10

    Studies by Lada et al. and Heiderman et al. have suggested that star formation mostly occurs above a threshold in gas surface density {Sigma} of {Sigma}{sub c} {approx} 120 M{sub Sun} pc{sup -2} (A{sub K} {approx} 0.8). Heiderman et al. infer a threshold by combining low-mass star-forming regions, which show a steep increase in the star formation rate per unit area {Sigma}{sub SFR} with increasing {Sigma}, and massive cores forming luminous stars which show a linear relation. We argue that these observations do not require a particular density threshold. The steep dependence of {Sigma}{sub SFR}, approaching unity at protostellar core densities, is a natural result of the increasing importance of self-gravity at high densities along with the corresponding decrease in evolutionary timescales. The linear behavior of {Sigma}{sub SFR} versus {Sigma} in massive cores is consistent with probing dense gas in gravitational collapse, forming stars at a characteristic free-fall timescale given by the use of a particular molecular tracer. The low-mass and high-mass regions show different correlations between gas surface density and the area A spanned at that density, with A {approx} {Sigma}{sup -3} for low-mass regions and A {approx} {Sigma}{sup -1} for the massive cores; this difference, along with the use of differing techniques to measure gas surface density and star formation, suggests that connecting the low-mass regions with massive cores is problematic. We show that the approximately linear relationship between dense gas mass and stellar mass used by Lada et al. similarly does not demand a particular threshold for star formation and requires continuing formation of dense gas. Our results are consistent with molecular clouds forming by galactic hydrodynamic flows with subsequent gravitational collapse.

  19. Gas density effect on dropsize of simulated fuel sprays

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1989-01-01

    Two-phase flow in pneumatic two-fluid fuel nozzles was investigated experimentally to determine the effect of atomizing-gas density and gas mass-flux on liquid-jet breakup in sonic-velocity gas-flow. Dropsize data were obtained for the following atomizing-gases: nitrogen; argon; carbon dioxide; and helium. They were selected to cover a gas molecular-weight range of 4 to 44. Atomizing-gas mass-flux ranged from 6 to 50 g/sq cm-sec and four differently sized two-fluid fuel nozzles were used having orifice diameters that varied from 0.32 to 0.56 cm. The ratio of liquid-jet diameter to SMD, D sub o/D sub 32, was correlated with aerodynamic and liquid-surface forces based on the product of the Weber and Reynolds number, We*Re, and gas-to-liquid density ratio, rho sub g/rho sub l. To correlate spray dropsize with breakup forces produced by using different atomizing-gases, a new molecular-scale dimensionless group was derived. The derived dimensionless group was used to obtain an expression for the ratio of liquid-jet diameter to SMD, D sub o/D sub 32. The mathematical expression of this phenomenon incorporates the product of the Weber and Reynolds number, liquid viscosity, surface tension, acoustic gas velocity, the RMS velocity of gas molecules, the acceleration of gas molecules due to gravity, and gas viscosity. The mathematical expression encompassing these parameters agrees well with the atomization theory for liquid-jet breakup in high velocity gas flow. Also, it was found that at the same gas mass-flux, helium was considerably more effective than nitrogen in producing small droplet sprays with SMD's in the order of 5 micrometers.

  20. Gas density effect on dropsize of simulated fuel sprays

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1989-01-01

    Two-phase flow in pneumatic two-fluid fuel nozzles was investigated experimentally to determine the effect of atomizing-gas density and gas mass-flux on liquid-jet breakup in sonic-velocity gas-flow. Dropsize data were obtained for the following atomizing-gases: nitrogen; argon; carbon dioxide; and helium. They were selected to cover a gas molecular-weight range of 4 to 44. Atomizing-gas mass-flux ranged from 6 to 50 g/sq cm-sec and four differently sized two-fluid fuel nozzles were used having orifice diameters that varied from 0.32 to 0.56 cm. The ratio of liquid-jet diameter to SMD, D sub o/D sub 32, was correlated with aerodynamic and liquid-surface forces based on the product of the Weber and Reynolds number, and gas-to-liquid density ratio, rho sub g/rho sub 1. To correlate spray dropsize with breakup forces produced by using different atomizing-gases, a new molecular-scale dimensionless group was derived. The derived dimensionless group was used to obtain an expression for the ratio of liquid-jet diameter to SMD, D sub o/D sub 32. The mathematical expression of this phenomenon incorporates the product of the Weber and Reynolds number, liquid viscosity, surface tension, acoustic gas velocity, the RMS velocity of gas molecules, the acceleration of gas molecules due to gravity, and gas viscosity. The mathematical expression encompassing these parameters agrees well with the atomization theory for liquid-jet breakup in high velocity gas flow. Also, it was found that at the same gas mass-flux, helium was considerably more effective than nitrogen in producing small droplet sprays with SMD's in the order of 5 micrometers.

  1. Suppression of density fluctuations in a quantum degenerate Fermi gas.

    PubMed

    Sanner, Christian; Su, Edward J; Keshet, Aviv; Gommers, Ralf; Shin, Yong-Il; Huang, Wujie; Ketterle, Wolfgang

    2010-07-23

    We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations (atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed for probe volumes containing more than 10 000 atoms. Measuring the level of suppression provides sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly correlated many-body systems.

  2. The ion composition of cooling, variable-density interstellar gas

    NASA Astrophysics Data System (ADS)

    Suchkov, A. A.; Shchekinov, Y. A.

    1986-06-01

    The ion composition of rarefied interstellar gas cooling from about one million K to about 10,000 K is calculated. The time dependence of logarithmic relative ion densities is determined in an isobaric-cooling model and in a model with an initial adiabatic expansion. It is shown that so long as T is greater than 10,000 K, the N(C IV)/N(O VI) ion density ratio may be used to test the origin of nonstable behavior.

  3. Density functionals not based on the electron gas: local-density approximation for a Luttinger liquid.

    PubMed

    Lima, N A; Silva, M F; Oliveira, L N; Capelle, K

    2003-04-11

    By shifting the reference system for the local-density approximation (LDA) from the electron gas to other model systems, one obtains a new class of density functionals, which by design account for the correlations present in the chosen reference system. This strategy is illustrated by constructing an explicit LDA for the one-dimensional Hubbard model. While the traditional ab initio LDA is based on a Fermi liquid (the three-dimensional interacting electron gas), this one is based on a Luttinger liquid. First applications to inhomogeneous Hubbard models, including one containing a localized impurity, are reported.

  4. Density functionals not based on the electron gas: local-density approximation for a Luttinger liquid.

    PubMed

    Lima, N A; Silva, M F; Oliveira, L N; Capelle, K

    2003-04-11

    By shifting the reference system for the local-density approximation (LDA) from the electron gas to other model systems, one obtains a new class of density functionals, which by design account for the correlations present in the chosen reference system. This strategy is illustrated by constructing an explicit LDA for the one-dimensional Hubbard model. While the traditional ab initio LDA is based on a Fermi liquid (the three-dimensional interacting electron gas), this one is based on a Luttinger liquid. First applications to inhomogeneous Hubbard models, including one containing a localized impurity, are reported. PMID:12731934

  5. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  6. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    SciTech Connect

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  7. Optical density and velocity measurements in cryogenic gas flows

    NASA Astrophysics Data System (ADS)

    Jensen, O. S.; Kunsch, J. P.; Rösgen, T.

    2005-07-01

    This paper presents the application of optical measurement techniques in dense-gas flows in a heavy-gas channel to determine planar two-component (2C) velocity profiles and two-dimensional (2D) temperature profiles. The experimental approach is rather new in this area, and represents progress compared with the traditional techniques based on thermocouple measurements. The dense-gas flows are generated by the evaporation of liquid nitrogen. The optical measurement of both the velocity and density profiles is accomplished by the implementation of particle image velocimetry (PIV) and background-oriented schlieren (BOS) systems. Supplemental thermocouple measurements are used as independent calibrations to derive temperatures from the density data measured with the BOS system. The results obtained with both systems are used to quantify the dilution behavior of the propagating cloud through a global entrainment parameter β. Its value agrees well with the results obtained by earlier studies.

  8. Density wave theory. [interstellar gas dynamics and galactic shock waves

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.

    1977-01-01

    The prospect that density waves and galactic shock waves are present on the large scale in disk shaped galaxies has received support in recent years from both theoretical and observational studies. Large-scale galactic shock waves in the interstellar gas are suggested to play an important governing role in star formation, molecule formation, and the degree of development of spiral structure. Through the dynamics of the interstellar gas and the galactic shock-wave phenomenon, a new insight into the physical basis underlying the morphological classification system of galaxies is suggested.

  9. Level density of a bose gas and extreme value statistics.

    PubMed

    Comtet, A; Leboeuf, P; Majumdar, Satya N

    2007-02-16

    We establish a connection between the level density of a gas of noninteracting bosons and the theory of extreme value statistics. Depending on the exponent that characterizes the growth of the underlying single-particle spectrum, we show that at a given excitation energy the limiting distribution function for the number of excited particles follows the three universal distribution laws of extreme value statistics, namely, the Gumbel, Weibull, and Fréchet distributions. Implications of this result, as well as general properties of the level density at different energies, are discussed.

  10. Measuring Protoplanetary Disk Gas Surface Density Profiles with ALMA

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; McPartland, Conor

    2016-10-01

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams & Best to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M gas = 0.048 M ⊙, and accretion disk characteristic size R c = 213 au and gradient γ = 0.39. The same parameters match the C18O 2–1 image and indicate an abundance ratio [12CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2–1 image library and fit simulated data. For disks with gas masses 3–10 M Jup at 150 pc, ALMA observations with a resolution of 0.″2–0.″3 and integration times of ∼20 minutes allow reliable estimates of R c to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  11. Shockwave compression of Argon gas at several initial densities

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Gustavsen, Richard; Lang, John; Aslam, Tariq; Sheffield, Stephen; Gibson, Lloyd; Morris, John; Los Alamos National Laboratory Team

    2015-06-01

    Experimental data of the principal Hugoniot locus of gas-phase noble gases are rare. The majority of Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of ionization, and dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target for gas gun-driven plate impact experiments on gases at initial pressures between 200-1000 psi. Using optical velocimetry, we directly determine shock and particle velocities on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. Using an impactor with higher impedance than the drive plate, we are able to achieve initial particle velocities well in excess of the impactor velocities. We will describe the results of plate impact experiments on Ar with initial densities between 0.02-0.05 g/cm3. By coupling optical fibers to the targets, we have measured the time-resolved optical emission, spectrally-resolved with a spectrometer coupled to an optical streak camera, and with a 5-color optical pyrometer for temperature determination. The experimental results are compared with hydrodynamic simulations using ideal gas and Sesame tabular equations of state.

  12. The effect of slot height and difference in gas densities for coaxial jets on jet mixing in constrained swirled flow

    NASA Astrophysics Data System (ADS)

    Shishkin, N. E.

    2015-07-01

    Experiments were conducted about the effect of height of annular slot on efficiency of film cooling in a tube flow. Nonisothermal nature of flows was modelled by mixing of jets with different densities: air with argon or with helium: the concentration of foreign gas on wall was measured. The influence of nearwall jet swirling and of proportions of densities of gas flows as key factors for laminarization of mixing was considered.

  13. Brightest Cluster Galaxies and Core Gas Density in REXCESS Clusters

    NASA Astrophysics Data System (ADS)

    Haarsma, Deborah B.; Leisman, Luke; Donahue, Megan; Bruch, Seth; Böhringer, Hans; Croston, Judith H.; Pratt, Gabriel W.; Voit, G. Mark; Arnaud, Monique; Pierini, Daniele

    2010-04-01

    We investigate the relationship between brightest cluster galaxies (BCGs) and their host clusters using a sample of nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey. The sample was imaged with the Southern Observatory for Astrophysical Research in R band to investigate the mass of the old stellar population. Using a metric radius of 12 h -1 kpc, we found that the BCG luminosity depends weakly on overall cluster mass as L BCG vprop M 0.18±0.07 cl, consistent with previous work. We found that 90% of the BCGs are located within 0.035 r 500 of the peak of the X-ray emission, including all of the cool core (CC) clusters. We also found an unexpected correlation between the BCG metric luminosity and the core gas density for non-cool-core (non-CC) clusters, following a power law of ne vprop L 2.7±0.4 BCG (where ne is measured at 0.008 r 500). The correlation is not easily explained by star formation (which is weak in non-CC clusters) or overall cluster mass (which is not correlated with core gas density). The trend persists even when the BCG is not located near the peak of the X-ray emission, so proximity is not necessary. We suggest that, for non-CC clusters, this correlation implies that the same process that sets the central entropy of the cluster gas also determines the central stellar density of the BCG, and that this underlying physical process is likely to be mergers.

  14. Momentum distribution function of the electron gas at metallic densities

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami; Yasuhara, H.

    1991-10-01

    The momentum distribution function n(k) of the electron gas is calculated in the effective-potential-expansion method at metallic densities. The recently established self-consistency relation between n(k) and the correlation energy [Y. Takada and T. Kita, J. Phys. Soc. Jpn. 60, 25 (1991)] is employed to check the accuracy of our results. This check shows that the effective-potential-expansion method provides probably the exact and at least more accurate results of n(k) than all the other methods that have given n(k) thus far.

  15. Superfluid density of a spin-orbit-coupled Bose gas

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Cai; Yu, Zeng-Qiang; Ng, Tai Kai; Zhang, Shizhong; Pitaevskii, Lev; Stringari, Sandro

    2016-09-01

    We discuss the superfluid properties of a uniform, weakly interacting Bose-Einstein condensed gas with spin-orbit coupling, realized recently in experiments. We find a finite normal fluid density ρn at zero temperature which turns out to be a function of the Raman coupling. In particular, the entire fluid becomes normal at the transition point from the zero momentum to the plane wave phase, even though the condensate fraction remains finite. We emphasize the crucial role played by the breaking of Galilean invariance and by the gapped branch of the elementary excitations whose contribution to various sum rules is discussed explicitly. Our predictions for the superfluid density are successfully compared with the available experimental results based on the measurement of the sound velocities.

  16. The Factors Affecting Bone Density in Cirrhosis

    PubMed Central

    Hajiabbasi, Asghar; Shafaghi, Afshin; Fayazi, Haniyeh Sadat; Shenavar Masooleh, Irandokht; Hedayati Emami, Mohammad Hassan; Ghavidel Parsa, Pooneh; Amir Maafi, Alireza

    2015-01-01

    Background: Bone loss is common in cirrhosis. However, the prevalence of osteopenia and osteoporosis has been heterogeneous in different reports. Reduction in bone formation with or without increase in bone resorption appears to be responsible for bone loss in these patients. Objectives: We aimed to investigate bone loss in patients with cirrhosis at different anatomical sites and key factors that might affect it. Patients and Methods: In this cross-sectional study, 97 patients with cirrhosis who were referred to Razi Hospital, Rasht, Iran, from 2008 to 2010, were studied. Cirrhosis was diagnosed using biopsy and/or clinical and paraclinical findings. Bone mineral densitometry was done in L2 through L4 lumbar spine (LS) and femoral neck (FN), using dual-energy X-ray absorptiometry (DEXA) (QDR 1000, Hologic DEXA Inc, Waltham, Massachusetts, the United States). Statistical analysis was performed using SPSS 18. A P value < 0.05 was considered statistically significant. Results: A total of 97 patients with cirrhosis (55.7% male) and the mean age of 51 ± 13 years and median body mass index (BMI) of 22.7 kg/m2 were recruited over a two-year period. Etiologies of cirrhosis were hepatitis C (40.2%), hepatitis B (26.8%), cryptogenic (21.6%), and other causes (11.4%). Child A, B, and C, were seen in 16.5%, 47.4%, and 36.1% of patients, respectively. The DEXA results were abnormal in 78.4% of our participants (osteopenia, 45.4%; osteoporosis, 33%). BMI and calculated glomerular filtration rate (GFRc) had moderate positive and Child score had moderate negative significant correlation with T score in both anatomical sites. There was no significant association between abnormal DEXA and the causes of cirrhosis. The univariate analysis showed that the risk of abnormal results in DEXA was significantly higher in those with low BMI, current smoking, higher Child score, and low GFRc; however, in multivariate analysis, the abnormal results were more frequent in those with lower

  17. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  18. Circum-Protostellar Environments. III. Gas Densities and Kinetic Temperatures

    NASA Astrophysics Data System (ADS)

    Moriarty-Schieven, G. H.; Wannier, P. G.; Mangum, J. G.; Tamura, M.; Olmsted, V. K.

    1995-12-01

    We have surveyed a complete, flux-limited, IRAS-selected sample of protostars in Taurus whose infrared through millimeter-wave properties indicate them to be younger than T Tauri stars. We have observed CS J = 3-2, 5-4, and 7-6, and H2CO JK-1K+1 = 303-202 and 322-221, toward the central positions of all 25 objects. CS traces the dense gas in the circumstellar envelope, while H2CO probes the kinetic temperature of the dense gas. Only three of the sources were detected in both transitions of H2CO, making it of limited use as a temperature probe of these objects. Combining the CS- and H2CO-derived properties with those previously derived from dust continuum emission, we have placed limits on the temperatures of the envelopes, typically 20 K ≃ TK ≃ 50 K. Derived envelope gas densities and CS column densities were typically a few × 106 cm-3 and a few × 1012 cm-2, respectively. Where CS 5-4 was detected (roughly half of the observed sources), the derived envelope masses were consistent with those derived from dust emission (assuming a CS/H2 abundance of 10-8). Since most of the embedded (i.e., not optically visible) sources were detected in CS 5-4, and most of the visible sources were not, this may mean either that the CS-emitting envelope has dissipated in the more evolved objects (confirming Ohashi et al. 1991), or CS has become depleted. L1551NE may have an asymmetric, double-peaked line profile like that of B335, suggestive of a collapsing envelope. L1551NE may be in transition from the much younger "class 0" protostar stage to the somewhat more evolved "class I" protostar stage. Several of the sources have broad CS line wings probably originating from dense gas in a molecular outflow. In at least one case, the kinetic temperature of the outflowing gas may be greater than that in the envelope.

  19. A high phase-space-density gas of polar molecules.

    PubMed

    Ni, K-K; Ospelkaus, S; de Miranda, M H G; Pe'er, A; Neyenhuis, B; Zirbel, J J; Kotochigova, S; Julienne, P S; Jin, D S; Ye, J

    2008-10-10

    A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, not only would enable explorations of a large class of many-body physics phenomena but also could be used for quantum information processing. We report on the creation of an ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules. Using a single step of STIRAP (stimulated Raman adiabatic passage) with two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential. The polar molecular gas has a peak density of 10(12) per cubic centimeter and an expansion-determined translational temperature of 350 nanokelvin. The polar molecules have a permanent electric dipole moment, which we measure with Stark spectroscopy to be 0.052(2) Debye (1 Debye = 3.336 x 10(-30) coulomb-meters) for the triplet rovibrational ground state and 0.566(17) Debye for the singlet rovibrational ground state.

  20. Technique for measuring gas conversion factors

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R. (Inventor)

    1985-01-01

    A method for determining hydrocarbon conversion factors for a flowmeter. A mixture of air, O2 and C sub x H sub y is burned and the partial paressure of O2 in the resulting gas is forced to equal the partial pressure of O2 in air. The flowrate of O2 flowing into the mixture is measured by flowmeter and the flowrate of C sub x H sub y flowing into the mixture is measured by the flowmeter conversion factor is to be determined. These measured values are used to calculate the conversion factor.

  1. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  2. Factors influencing the density of aerobic granular sludge.

    PubMed

    Winkler, M-K H; Kleerebezem, R; Strous, M; Chandran, K; van Loosdrecht, M C M

    2013-08-01

    In the present study, the factors influencing density of granular sludge particles were evaluated. Granules consist of microbes, precipitates and of extracellular polymeric substance. The volume fractions of the bacterial layers were experimentally estimated by fluorescent in situ hybridisation staining. The volume fraction occupied by precipitates was determined by computed tomography scanning. PHREEQC was used to estimate potential formation of precipitates to determine a density of the inorganic fraction. Densities of bacteria were investigated by Percoll density centrifugation. The volume fractions were then coupled with the corresponding densities and the total density of a granule was calculated. The sensitivity of the density of the entire granule on the corresponding settling velocity was evaluated by changing the volume fractions of precipitates or bacteria in a settling model. Results from granules originating from a Nereda reactor for simultaneous phosphate COD and nitrogen removal revealed that phosphate-accumulating organisms (PAOs) had a higher density than glycogen-accumulating organisms leading to significantly higher settling velocities for PAO-dominated granules explaining earlier observations of the segregation of the granular sludge bed inside reactors. The model showed that a small increase in the volume fraction of precipitates (1-5 %) strongly increased the granular density and thereby the settling velocity. For nitritation-anammox granular sludge, mainly granular diameter and not density differences are causing a segregation of the biomass in the bed. PMID:23064481

  3. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  4. Implementing an Inexpensive and Accurate Introductory Gas Density Activity with High School Students

    ERIC Educational Resources Information Center

    Cunningham, W. Patrick; Joseph, Christopher; Morey, Samantha; Santos Romo, Ana; Shope, Cullen; Strang, Jonathan; Yang, Kevin

    2015-01-01

    A simplified activity examined gas density while employing cost-efficient syringes in place of traditional glass bulbs. The exercise measured the density of methane, with very good accuracy and precision, in both first-year high school and AP chemistry settings. The participating students were tasked with finding the density of a gas. The…

  5. Pion transverse charge density from timelike form factor data

    SciTech Connect

    Gerald Miller, Mark Strikman, Christian Weiss

    2011-01-01

    The transverse charge density in the pion can be represented as a dispersion integral of the imaginary part of the pion form factor in the timelike region. This formulation incorporates information from e+e- annihilation experiments and allows one to reconstruct the transverse density much more accurately than from the spacelike pion form factor data alone. We calculate the transverse density using an empirical parametrization of the timelike pion form factor and estimate that it is determined to an accuracy of ~10% at a distance b ~ 0.1 fm, and significantly better at larger distances. The density is found to be close to that obtained from a zero-width rho meson pole over a wide range and shows a pronounced rise at small distances. The resulting two-dimensional image of the fast-moving pion can be interpreted in terms of its partonic structure in QCD. We argue that the singular behavior of the charge density at the center requires a substantial presence of pointlike configurations in the pion's partonic wave function, which can be probed in other high-momentum transfer processes.

  6. Molecular Gas in Starburts ARP 220 & NGC 6240: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, Nicholas; Sheth, Kartik

    2015-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present our observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  7. Molecular Gas in Local Mergers: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Sheth, K.

    2013-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging will allow multilevel excitation analysis of HCN, HCO+ and CS transitions which will be used to constrain the properties of the gas as a function of position and velocity (across line profiles). We aim to do an extensive multilevel excitation analysis of the merger as a function of radius which will enable in depth understanding of the gas dynamics and gas properties such as temperature and density. This will in turn probe the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will help assemble a more integrated picture of the merger process. We will probe the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  8. Molecular Gas in Starburts: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Walter, F.; Sheth, K.

    2014-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  9. Reproductive factors related to childbearing and mammographic breast density.

    PubMed

    Yaghjyan, Lusine; Colditz, Graham A; Rosner, Bernard; Bertrand, Kimberly A; Tamimi, Rulla M

    2016-07-01

    We investigated the associations of reproductive factors related to childbearing with percent breast density, absolute dense and nondense areas, by menopausal status. This study included 4110 cancer-free women within the Nurses' Health Study and Nurses' Health Study II cohorts. Percent breast density, absolute dense and nondense areas were measured from digitized mammography film images with computerized techniques. All density measures were square root-transformed in all the analyses to improve normality. The data on reproductive variables and other breast cancer risk factors were obtained from biennial questionnaires, at the time of the mammogram date. As compared to nulliparous women, parous postmenopausal women had lower percent density (β = -0.60, 95 % CI -0.84; -0.37), smaller absolute dense area (β = -0.66, 95 % CI -1.03; -0.29), and greater nondense area (β = 0.72, 95 % CI 0.27; 1.16). Among parous women, number of children was inversely associated with percent density in pre- (β per one child = -0.12, 95 % CI -0.20; -0.05) and postmenopausal women (β per one child = -0.07, 95 % CI -0.12; -0.02). The positive associations of breastfeeding with absolute dense and nondense areas were limited to premenopausal women, while the positive association of the age at first child's birth with percent density and the inverse association with nondense area were limited to postmenopausal women. Women with greater number of children and younger age at first child's birth have more favorable breast density patterns that could explain subsequent breast cancer risk reduction.

  10. Star Formation as a Function of Neutral Hydrogen Gas Density in Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Carlson, Erika K.; Madore, Barry F.; Freedman, Wendy L.

    2016-06-01

    We present a study of the efficiency and timescales of star formation as a function of local neutral hydrogen gas density in four Local Group galaxies: M33, NGC 6822, the LMC, and the SMC. In this work, we conceptualize the process of star formation as a cycle of two major phases - (1) a gas dynamics phase in which neutral hydrogen gas coalesces into clouds, and (2) a stellar phase in which stars have formed and interrupt further gas coalescence during their active lifetimes. By examining the spatial distribution and number densities of stars on maps of neutral hydrogen, we estimate the timescale of the gas coalescence phase relative to the timescale of the stellar phase and infer an efficiency of star formation as a function of neutral hydrogen gas density. From these timescales and efficiencies, we will calculate star formation rates as a function of neutral hydrogen gas density in these galaxies.

  11. Stealing the Gas: Giant Impacts and the Large Diversity in Exoplanet Densities

    NASA Astrophysics Data System (ADS)

    Inamdar, Niraj K.; Schlichting, Hilke E.

    2016-02-01

    Although current sensitivity limits are such that true solar system analogs remain challenging to detect, numerous planetary systems have been discovered that are very different from our own solar system. The majority of systems harbor a new class of planets, bodies that are typically several times more massive than the Earth but orbit their host stars well inside the orbit of Mercury. These planets frequently show evidence for large hydrogen and helium envelopes containing several percent of the planet’s mass and display a large diversity in mean densities. Here we show that this wide range can be achieved by one or two late giant impacts, which are frequently needed to achieve long-term orbital stability in multiple planet systems once the gas disk has disappeared. We demonstrate using hydrodynamical simulations that a single collision between similarly sized exoplanets can easily reduce the envelope-to-core-mass ratio by a factor of two and show that this leads to a corresponding increase in the observed mean density by factors of two to three. In addition, we investigate how envelope mass loss depends on envelope mass, planet radius, semimajor axis, and the mass distribution inside the envelope. We propose that a small number of giant impacts may be responsible for the large observed spread in mean densities, especially for multiple-planet systems that contain planets with very different densities and have not been significantly sculpted by photoevaporation.

  12. Linear Stability Analysis of Gravitational Effects on a Low-Density Gas Jet Injected into a High-Density Medium

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony L.; Parthasarathy, Ramkumar N.

    2005-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The Briggs-Bers criterion was combined with the spatio-temporal stability analysis to determine the nature of the absolute instability of the jet whether absolutely or convectively unstable. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the absolute instability of the jet were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be.

  13. Effects of Mean Flow Profiles on Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, Nanda Kishore

    2003-01-01

    The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.

  14. Modulation of tropical cyclone flash density by environmental factors

    NASA Astrophysics Data System (ADS)

    Lugo, A.; Abarca, S.; Kucienska, B.; Oropeza, F.; Raga, G.

    2012-12-01

    While lightning flash density has been successfully used to document azimuthal and radial distribution of convective activity in tropical cyclones, there have been less successful attempts to link flash density changes to storm intensity change. The latter efforts have been more often focused on major hurricanes and in isolation from environmental phenomena that modulate flash occurrence. Major hurricanes have more neutral vertical stratification than weaker storms and therefore, have fewer flashes. Other factors, such as the concentration of cloud condensation nuclei from continental origin, the diurnal cycle and sea surface temperature (SST), among others, will heavily modulate the lightning flash density. The Eastern Pacific basin is ideally located to study the effects of these different environmental modulators on tropical cyclones. The off-shore flow from Mexico results in a large variability of cloud condensation nuclei concentration and there is also a large range in sea surface temperatures. Note that most tropical cyclones in the basin dissipate as a result of the encounter of colder SSTs and drier air advected into the inner core . We present an analysis of lightning flash density in 96 tropical cyclones in the Eastern Pacific between 2005 and 2011. We use the best track dataset to determine location and intensity of the tropical cyclones, the World Wide Lightning Location Network to characterize flash density, MODIS (on board of the Terra and Aqua satellites) to determine the aerosol optical depth (as a proxy for cloud condensation nuclei content), and AMSR-E for sea surface temperatures. Preliminary results indicate a heavy modulation of flash density inside tropical cyclones by cloud condensation nuclei and a cap of the largest flash density as a function of sea surface temperatures.

  15. Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    NASA Astrophysics Data System (ADS)

    Den Harder, N.; Schram, D. C.; Goedheer, W. J.; De Blank, H. J.; Van de Sanden, M. C. M.; Van Rooij, G. J.

    2015-04-01

    The interaction of background molecular hydrogen with magnetized (0.4 T) high density (1-5 × 1020 m-3) low temperature (˜3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center, vibrational temperatures reached 1 eV. Rotational temperatures obtained from the Q(v = 1) branch were systematically ˜0.1 eV lower than the Q(v = 0) branch temperatures, which were in the range of 0.4-0.8 eV, typically 60% of the translational temperature (determined from the width of the same spectral lines). The latter is attributed to preferential excitation of translational degrees of freedom in collisions with ions on the timescale of their in-plasma residence time. Doppler shifts revealed co-rotation of the molecules with the plasma at an angular velocity an order of magnitude lower, confirming that the Fulcher emission connects to background molecules. A simple model estimated a factor of 90 rarefaction of the molecular density at the center of the plasma column compared to the residual gas density. Temperature and density information was combined to conclude that ion-conversion molecular assisted recombination dominates plasma recombination at a rate of 1 × 10-15 m3 s-1. The observations illustrate the general significance of rapid molecule heating in high density hydrogen plasma for estimating molecular processes and how this affects Fulcher spectroscopy.

  16. Density domains of a photo-excited electron gas on liquid helium

    NASA Astrophysics Data System (ADS)

    Monarkha, Yu. P.

    2016-06-01

    The Coulombic effect on the stability range of the photo-excited electron gas on liquid helium is shown to favor formation of domains of different densities. Domains appear to eliminate or greatly reduce regions with negative conductivity. An analysis of the density domain structure allows explaining remarkable observations reported recently for the photo-excited electron gas.

  17. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-04-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ∝ log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.

  18. Phase-field simulations of gas density within bubbles under irradiation

    SciTech Connect

    Paul C. Millett; Anter El-Azab; Michael Tonks

    2011-05-01

    Phase-field simulations are used to study the evolution of gas density within irradiation-induced bubbles. In our simulations, the dpa rate, gas production rate, and defect diffusivities are systematically varied to understand their effect on bubble nucleation rates, bubble densities, and the distribution of gas concentration within bubbles and in the solid regions. We find that gas densities within bubbles fluctuate drastically in the early nucleation stages, when growth rates are highest, but converge to steady-state values during the later coarsening stages. The steady-state gas densities within bubbles correspond with the ratio of total accumulated vacancy content divided by the total accumulated gas content, in agreement with a thermodynamic analysis concerning free-energy minimization.

  19. Comparing the equivalent particle number density distribution of gas and plasma flow fields.

    PubMed

    Chen, Yun-yun; Zhang, Ying-ying; Zhang, Cheng-yi; Li, Zhen-hua

    2013-04-20

    In this paper, the equivalent particle number density distribution of gas and plasma flow fields is investigated. For the purpose of facilitating comparison, argon gas and argon arc plasma are chosen as practical examples for experiment. The equivalent particle number density distributions of the argon gas and argon arc plasma are reconstructed from the experimentally measured refractive index distributions obtained by moiré tomography, while five cross sections, which are 7, 8.5, 10, 11.5, and 13 mm away from the jet nozzle are chosen for practical calculation and comparison. In experiment, the probe wavelength and the export pressure of argon gas and argon arc plasma are the same. The experimental results manifest that (1) the equivalent particle number density decreases with the distance away from the jet nozzle of the gas flow field, while (2) the equivalent particle number density of the plasma flow field has a different variation. Finally, the experimental results are theoretically explained and analyzed.

  20. Modeling of neutral gas dynamics in high-density plasmas

    NASA Astrophysics Data System (ADS)

    Canupp, Patrick Wellington

    This thesis describes a physical model of chemically reactive neutral gas flow and discusses numerical solutions of this model for the flow in an inductively coupled plasma etch reactor. To obtain these solutions, this research develops an efficient, implicit numerical method. As a result of the enhanced numerical stability of the scheme, large time steps advance the solution from initial conditions to a final steady state in fewer iterations and with less computational expense than simpler explicit methods. This method would incorporate suitably as a module in currently existing large scale plasma simulation tools. In order to demonstrate the accuracy of the numerical technique, this thesis presents results from two simulations of flows that possess theoretical solutions. The first case is the inviscid flow of a gas through a converging nozzle. A comparison of the numerical solution to isentropic flow theory shows that the numerical technique capably captures the essential flow features of this environment. The second case is the Couette flow of a gas between two parallel plates. The simulation results compare well with the exact solution for this flow. After establishing the accuracy of the numerical technique, this thesis discusses results for the flow of chemically reactive gases in a chlorine plasma etch reactor. This research examines the influence of the plasma on the neutral gas and the dynamics exhibited by the neutral gas in the reactor. This research finds that the neutral gas temperature strongly depends on the rate at which inelastic, electron-impact dissociation reactions occur and on atomic chlorine wall recombination rates. Additionally, the neutral gas Aow in the reactor includes a significant mass flux of etch product from the wafer surface. Resolution of these effects is useful for neutral gas simulation. Finally, this thesis demonstrates that continuum fluid models provide reasonable accuracy for these low pressure reactor flows due to the fact

  1. Neutron radiography of a static density gradient of 3He gas at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Wichmann, G.; Antognini, A.; Eggenberger, A.; Kirch, K.; Piegsa, F. M.; Soler, U.; Stahn, J.; Taqqu, D.

    2016-04-01

    We demonstrate a stationary helium gas density gradient which is needed for a proposed novel low-energy μ+ beam line. In a closed system with constant pressure the corresponding density gradient is only a function of the temperature. In a neutron radiography experiment two gas cells with different geometries were filled with 3He gas at constant pressures of about 10 mbar. Temperatures in the range from 6 K to 40 K were applied and density distributions with a maximum to minimum density ratio of larger than 3 were realized. The distribution was investigated employing the strongly neutron absorbing isotope 3He. A simple one-dimensional approach derived from Fourier's law describes the obtained gas density with a deviation < 2 %.

  2. Gas pycnometry for density determination of plutonium parts

    SciTech Connect

    Collins, S.; Randolph, H.W.

    1997-08-19

    The traditional method for plutonium density determination is by measuring the weight loss of the component when it is immersed in a liquid of known density, Archimedes` Principle. The most commonly used heavy liquids that are compatible for plutonium measurement are freon and monobromobenzene, but these pose serious environmental and health hazards. The contaminated liquid is also a radiological waste concern with difficult disposition. A gaseous medium would eliminate these environmental and health concerns. A collaborative research effort between the Savannah River Technology Center and Los Alamos National Laboratory was undertaken to determine the feasibility of a gaseous density measurement process for plutonium hemishells.

  3. Stoichiometry control of magnetron sputtered Bi 2Sr 2Ca 1- xY xCu 2O y (0 ⩽ x ⩽ 0.5) thin film, composition spread libraries: Substrate bias and gas density factors

    NASA Astrophysics Data System (ADS)

    Sanderson, R. J.; Hewitt, K. C.

    2005-09-01

    A magnetron sputtering method for the production of thin-film libraries with a spatially varying composition, x, in Bi 2Sr 2Ca 1- xY xCu 2O y (0 ⩽ x ⩽ 0.5) has been developed. Two targets with a composition of Bi 2Sr 2YCu 2O 8.5+ δ and Bi 2Sr 2CaCu 2O 8+ δ are co-sputtered with appropriate masks. The target masks produce a linear variation in opposite, but co-linear radial direction, and the rotation speed of the substrate table is sufficient to intimately mix the atoms. EDS/WDS composition studies of the films show a depletion of Sr and Bi that is due to oxygen anion resputtering. The depletion is most pronounced at the centre of the film (i.e. on-axis with the target) and falls off symmetrically to either side of the 75 mm substrate. At either edge of the film the stoichiometry matches the desired ratios. Using a 12 mTorr process gas of argon and oxygen in a 2:1 ratio, the strontium depletion is corrected. The bismuth depletion is eliminated by employing a rotating carbon brush apparatus which supplies a -20 V DC bias to the sample substrate. The negative substrate bias has been used successfully with an increased chamber pressure to eliminate the resputtering effect across the film. The result is a thin film composition spread library with the desired stoichiometry.

  4. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  5. An enhancement of plasma density by neutral gas injection observed in SEPAC Spacelab-1 experiment

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Kubota, S.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.; Williamson, P. R.

    1985-01-01

    An enhancement of plasma density observed during a neutral gas injection in Space Experiments with Particle Accelerators by the Space Shuttle/Spacelab-1 is presented. When a plume of nitrogen gas was injected from the orbiter into space, a large amount of plasma was detected by an onboard plasma probe. The observed density often increased beyond the background plasma density and was strongly dependent on the attitude of the orbiter with respect to the velocity vector. This effect has been explained by a collisional interaction between the injected gas molecules and the ionospheric ions relatively drifting at the orbital speed.

  6. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    SciTech Connect

    Kato, S.; Seya, A.; Asano, A.

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  7. A CENSUS OF THE HIGH-DENSITY MOLECULAR GAS IN M82

    SciTech Connect

    Naylor, B. J.; Bradford, C. M.; Bock, J. J.; Nguyen, H. T.; Zmuidzinas, J.; Aguirre, J. E.; Earle, L.; Glenn, J.; Kamenetzky, J.; Maloney, P. R.; Inami, H.; Matsuhara, H.

    2010-10-10

    We present a three-pointing study of the molecular gas in the starburst nucleus of M82 based on 190-307 GHz spectra obtained with Z-Spec at the Caltech Submillimeter Observatory. We present intensity measurements, detections, and upper limits, for 20 transitions, including several new detections of CS, HNC, C{sub 2}H, H{sub 2}CO, and CH{sub 3}CCH lines. We combine our measurements with previously published measurements at other frequencies for HCN, HNC, CS, C{sup 34}S, and HCO{sup +} in a multi-species likelihood analysis constraining gas mass, density and temperature, and the species' relative abundances. We find some (1.7-2.7) x 10{sup 8} M{sub sun} of gas with n{sub H{sub 2}} between (1-6) x 10{sup 4} cm{sup -3} and T > 50 K. While the mass and temperature are comparable to values inferred from mid-J CO transitions, the thermal pressure is a factor of 10-20 greater. The molecular interstellar medium is largely fragmented and is subject to ultraviolet irradiation from the star clusters. It is also likely subject to cosmic rays and mechanical energy input from the supernovae, and is warmer on average than the molecular gas in the massive star formation (SF) regions in the Milky Way. The typical conditions in the dense gas in M82's central kiloparsec appear unfavorable for further SF; if any appreciable stellar populations are currently forming, they are likely biased against low-mass stars, producing a top-heavy initial mass function.

  8. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  9. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO

    SciTech Connect

    Pinte, C.; Ménard, F.

    2016-01-01

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.

  10. Dust and Gas in the Disk of HL Tauri: Surface Density, Dust Settling, and Dust-to-gas Ratio

    NASA Astrophysics Data System (ADS)

    Pinte, C.; Dent, W. R. F.; Ménard, F.; Hales, A.; Hill, T.; Cortes, P.; de Gregorio-Monsalvo, I.

    2016-01-01

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10-100 M⊕ in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M⊕ of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10-4. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO+ and CO emission is consistent with gas in Keplerian motion around a 1.7 M⊙ star at radii from ≤10-120 AU.

  11. Aerosol deposition in the human lung periphery is increased by reduced-density gas breathing.

    PubMed

    Peterson, Jonathan B; Prisk, G Kim; Darquenne, Chantal

    2008-06-01

    Aerosol mixing resulting from turbulent flows is thought to be a major mechanism of deposition in the upper respiratory tract (URT). Because turbulence levels are a function of gas density, the use of a low-density carrier gas should reduce deposition in the URT allowing the aerosol to reach more peripheral airways of the lung. We performed aerosol bolus tests on 11 healthy subjects to investigate the effect of reduced gas density on regional aerosol deposition in the human lung. Using both air and heliox (80% helium, 20% oxygen) as carrier gas, boluses of 1 and 2 microm-diameter particles were inhaled to five volumetric lung depths (V(p)) between 150 and 1200 mL during an inspiration from residual volume (RV) to 1 liter above functional residual capacity at a constant flow rate of approximately 0.50 L/sec, which was immediately followed by an expiration to RV at the same flow rate. Aerosol deposition and axial dispersion were calculated from aerosol concentration and flow rate measured at the mouth. For 1 microm-diameter particles, deposition was significantly reduced by 29 +/- 28% (mean +/- SD, p < 0.05) when breathing heliox instead of air at shallow V(p) (150 mL) and significantly increased by 11 +/- 9% at deep V(p) (1200 mL). For 2 microm-diameter particles, deposition was significantly higher at V(p) = 500 mL by 6 +/- 7% and the predicted V(p) to achieve 100% deposition was significantly lower with heliox (834 +/- 146 mL) compared to air (912 +/- 128 mL) (p < 0.05). Despite a decrease in deposition at shallow V(p), there was no change in axial dispersion, suggesting that other factors such as radial turbulent mixing result in decreased aerosol deposition. Our results suggested that heliox reduces upper airway deposition of 1 and 2 microm-diameter particles allowing more particles to penetrate and subsequently deposit in the peripheral lung.

  12. New applications for Coriolis flow and density measurement in the natural gas industry

    SciTech Connect

    Valentine, J.; Keilty, M.

    1995-11-01

    Simultaneous, highly accurate measurement of mass, density and temperature makes the Coriolis instrumentation ideal technology for a wide variety of natural gas applications. This paper describes the technology, discusses the benefits of using Coriolis instrumentation, and describes several applications related to the oil and gas production industries utilizing the Coriolis meter.

  13. Molecular gas temperature and density in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Wall, W. F.; Jaffe, D. T.; Bash, F. N.; Israel, F. P.; Maloney, P. R.; Baas, F.

    1993-01-01

    We combine beam-matched CO-13, CO-12 J = 3 yields 2 and J = 2 yields 1 line data to infer the molecular gas excitation conditions in the central 500 to 1600 pc diameters of a small sample of infrared-bright external galaxies: NGC253, IC342, M 83, Maffei 2, and NGC6946. Additional observations of the J = 1 yields 0 lines of C-18O and CO-13 set limits on the opacity of the CO-13 J = 1 yields 0 line averaged over the central kiloparsec of these spiral galaxies.

  14. Method For Enhanced Gas Monitoring In High Density Flow Streams

    DOEpatents

    Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu

    2005-09-13

    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  15. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    NASA Astrophysics Data System (ADS)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water

  16. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    PubMed Central

    Wang, Chengxiang; Yin, Longwei; Zhang, Luyuan; Xiang, Dong; Gao, Rui

    2010-01-01

    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above. PMID:22294916

  17. Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Belostotskiy, Sergey G.; Ouk, Tola; Donnelly, Vincent M.; Economou, Demetre J.; Sadeghi, Nader

    2010-03-01

    Optical emisssion spectroscopy was employed to study a high pressure (100 s of Torr), slot-type (600 μm interelectrode gap), argon dc microdischarge, with added traces of nitrogen. Spatially resolved gas temperature profiles were obtained by analyzing rovibrational bands of the N2 first positive system. The gas temperature peaked near the cathode and increased with current. The contribution of Stark broadening to the hydrogen Hβ emission lineshape was used to extract the electron density. The axial distribution of electron density as well as visual observation revealed that the microdischarge positive column was highly constricted. The electron density near the sheath edge increased with both pressure and current.

  18. Electron Density Measurements in UV-Preionized XeCl and CO2 Laser Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Takagi, Shigeyuki; Sato, Saburo; Goto, Tatsumi

    1989-11-01

    A Langmuir probe technique has been used to measure electron densities and temperatures in UV-preionized XeCl excimer and CO2 laser gas mixtures in a laser tube. For this experiment, only pin electrodes (preionization sparks) were operated with no discharge between the main electrodes. The measured electron densities were about 108 cm-3 in both the excimer and CO2 laser gases, compared with 1010 cm-3 in pure He gas. The electron density was found to increase due to the proximity of the main electrodes. The coefficients of absorption for excimer and CO2 laser gas were obtained from the characteristics of the electron densities vs the distance from the UV source. Based on the absorption coefficient for XeCl, 0.9 cm-1 atm-1, we propose pin-electrode arrangements for spatially uniform preionization.

  19. Background gas density and beam losses in NIO1 beam source.

    PubMed

    Sartori, E; Veltri, P; Cavenago, M; Serianni, G

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection. PMID:26932000

  20. Background gas density and beam losses in NIO1 beam source

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  1. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    A method for making density measurements in a compressible flow by using off resonance laser induced fluorescence is studied. The seed molecule chosen for study is the iodine molecule which is excited with the 514.5 nm line of the argon ion laser whose output is frequency tuned, by as much as 3 GHz, relative to a strong iodine transition using an intracavity etalon. The theory which was developed to analyze the effect will be used in conjunction with two experiments being conducted to further study the method an acoustic resonance tube in which controlled perturbations about a uniform state are produced, and a small supersonic jet in which the conditions of the flow vary widely from point to point.

  2. Finding the lost river gas field - Lineament density analysis in hydrocarbon exploration

    NASA Technical Reports Server (NTRS)

    Lang, H. R.

    1982-01-01

    A comparative trial analysis of lineament density in 1:500,000 Landsat and 1:48,000 aerial Landsat-simulator images of a gas-field region in West Virginia is presented. The high-contrast, band 4, 5, 7 color composite Landsat image was interpreted independently by two analysts. The slightly different lineament maps were evaluated in terms of lineament-density variation in 10 x 10-km areas, and the resulting areal-variation maps are found to be statistically equivalent. High lineament density is shown to be associated with productive gas wells. Comparison of ground-based substructural contour maps and lineament-density analyses of the Landsat-simulator images reveals good correlation between density maxima or isopleths and substructural features associated with hydrocarbon formations. A hydrocarbon-exploration strategy using both Landsat and aerial images is proposed.

  3. [Greenhouse gas emission from reservoir and its influence factors].

    PubMed

    Zhao, Xiao-jie; Zhao, Tong-qian; Zheng, Hua; Duan, Xiao-nan; Chen, Fa-lin; Ouyang, Zhi-yun; Wang, Xiao-ke

    2008-08-01

    Reservoirs are significant sources of emissions of the greenhouse gases. Discussing greenhouse gas emission from the reservoirs and its influence factors are propitious to evaluate emission of the greenhouse gas accurately, reduce gas emission under hydraulic engineering and hydropower development. This paper expatiates the mechanism of the greenhouse gas production, sums three approaches of the greenhouse gas emission, which are emissions from nature emission of the reservoirs, turbines and spillways and downstream of the dam, respectively. Effects of greenhouse gas emission were discussed from character of the reservoirs, climate, pH of the water, vegetation growing in the reservoirs and so on. Finally, it has analyzed the heterogeneity of the greenhouse gas emission as well as the root of the uncertainty and carried on the forecast with emphasis to the next research.

  4. Linear Temporal Stability Analysis of a Low-Density Round Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony L.; Parthasarathy, Ramkumar N.

    2002-01-01

    It has been observed in previous experimental studies that round helium jets injected into air display a repetitive structure for a long distance, somewhat similar to the buoyancy-induced flickering observed in diffusion flames. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis of a round helium jet injected into air was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. The temporal growth rates of the disturbances increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity.

  5. Solution of an associating lattice-gas model with density anomaly on a Husimi lattice

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago J.; Stilck, Jürgen F.; Barbosa, Marco Aurélio A.

    2010-11-01

    We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.

  6. Solution of an associating lattice-gas model with density anomaly on a Husimi lattice.

    PubMed

    Oliveira, Tiago J; Stilck, Jürgen F; Barbosa, Marco Aurélio A

    2010-11-01

    We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.

  7. Improving emissions factors for estimating urban natural gas leakage

    NASA Astrophysics Data System (ADS)

    Phillips, Nathan

    2013-04-01

    Emissions factors for pipeline natural gas leaks are in need of refinement. In addition to limitations from the small sample sizes of leaks that were initially used to develop emissions factors, a further limitation to emissions factors is lack of knowledge of characteristic statistical distributions of pipeline leak rates. For example, leaks were implicitly assumed to be normally distributed so that an average leak rate was used for pipelines of a given construction. Our natural gas leak data from Boston, USA, in which we found over 3,000 natural gas leaks, indicates that leaks rates are highly skewed, with relatively few leaks likely contributing disproportionately to the total. The long-tailed distribution of gas leak rates is mirrored by a similarly skewed distribution of surface methane concentrations in air. These data suggest that emissions factors should be based on correctly specified statistical distributions, and that fixing relatively few large leaks first may provide the most environmental benefit per cost.

  8. Human respiration at rest in rapid compression and at high pressures and gas densities

    NASA Technical Reports Server (NTRS)

    Gelfand, R.; Lambertsen, C. J.; Strauss, R.; Clark, J. M.; Puglia, C. D.

    1983-01-01

    The ventilation (V), end-tidal PCO2 (PACO2), and CO2 elimination rate were determined in men at rest breathing CO2-free gas over the pressure range 1-50 ATA and the gas density range 0.4-25 g/l, during slow and rapid compressions, at stable elevated ambient pressures and during slow decompressions. Progressive increase in pulmonary gas flow resistance due to elevation of ambient pressure and inspired gas density to the He-O2 equivalent of 5000 feet of seawater was found to produce a complex pattern of change in PACO2. It was found that as both ambient pressure and pulmonary gas flow resistance were progressively raised, PACO2 at first increased, went through a maximum, and then declined towards values near the 1 ATA level. It is concluded that this pattern of PACO2 change results from the interaction on ventilation of the increase in pulmonary resistance due to the elevation of gas density with the increase in respiratory drive postulated as due to generalized central nervous system excitation associated with exposure to high hydrostatic pressure. It is suggested that a similar interaction exists between increased gas flow resistance and the increase in respiratory drive related to nitrogen partial pressure and the resulting narcosis.

  9. Dominant factors in controlling marine gas pools in South China

    USGS Publications Warehouse

    Xu, S.; Watney, W.L.

    2007-01-01

    In marine strata from Sinian to Middle Triassic in South China, there develop four sets of regional and six sets of local source rocks, and ten sets of reservoir rocks. The occurrence of four main formation periods in association with five main reconstruction periods, results in a secondary origin for the most marine gas pools in South China. To improve the understanding of marine gas pools in South China with severely deformed geological background, the dominant control factors are discussed in this paper. The fluid sources, including the gas cracked from crude oil, the gas dissolved in water, the gas of inorganic origin, hydrocarbons generated during the second phase, and the mixed pool fluid source, were the most significant control factors of the types and the development stage of pools. The period of the pool formation and the reconstruction controlled the pool evolution and the distribution on a regional scale. Owing to the multiple periods of the pool formation and the reconstruction, the distribution of marine gas pools was complex both in space and in time, and the gas in the pools is heterogeneous. Pool elements, such as preservation conditions, traps and migration paths, and reservoir rocks and facies, also served as important control factors to marine gas pools in South China. Especially, the preservation conditions played a key role in maintaining marine oil and gas accumulations on a regional or local scale. According to several dominant control factors of a pool, the pool-controlling model can be constructed. As an example, the pool-controlling model of Sinian gas pool in Weiyuan gas field in Sichuan basin was summed up. ?? Higher Education Press and Springer-Verlag 2007.

  10. Technique for Measuring Gas Conversion Factors

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Technique for measuring calibration conversion factors for hydrocarbon mass flowmeters applied to widely used type of commercial thermal mass flowmeter for hydrocarbon gases. Values of conversion factors for two common hydrocarbons measured using this technique in good agreement with empirical values cited by manufacturer. Similar agreement expected for all other hydrocarbons. Technique based on Nernst theorem for matching partial pressure of oxygen in combustion product gases with that in normal air. Simple, quick, and relatively safe, particularly for toxic/poisonous hydrocarbons.

  11. A CORRELATION BETWEEN SURFACE DENSITIES OF YOUNG STELLAR OBJECTS AND GAS IN EIGHT NEARBY MOLECULAR CLOUDS

    SciTech Connect

    Gutermuth, R. A.; Pipher, J. L.; Megeath, S. T.; Allen, T. S.; Myers, P. C.; Allen, L. E.

    2011-10-01

    We report the discovery and characterization of a power-law correlation between the local surface densities of Spitzer-identified, dusty young stellar objects (YSOs) and the column density of gas (as traced by near-IR extinction) in eight molecular clouds within 1 kpc and with 100 or more known YSOs. This correlation, which appears in data smoothed over size scales of {approx}1 pc, varies in quality from cloud to cloud; those clouds with tight correlations, MonR2 and Ophiuchus, are fit with power laws of slope 2.67 and 1.87, respectively. The spread in the correlation is attributed primarily to local gas disruption by stars that formed there or to the presence of very young subregions at the onset of star formation. We explore the ratio of the number of Class II to Class I sources, a proxy for the star formation age of a region, as a function of gas column density; this analysis reveals a declining Class II to Class I ratio with increasing column density. We show that the observed star-gas correlation is consistent with a star formation law where the star formation rate per area varies with the gas column density squared. We also propose a simple picture of thermal fragmentation of dense gas in an isothermal, self-gravitating layer as an explanation for the power law. Finally, we briefly compare the star-gas correlation and its implied star formation law with other recent proposed of star formation laws at similar and larger size scales from nearby star-forming regions.

  12. Density-wave instability in a two-dimensional dipolar Fermi gas

    SciTech Connect

    Yamaguchi, Yasuhiro; Sogo, Takaaki; Ito, Toru; Miyakawa, Takahiko

    2010-07-15

    We consider a uniform dipolar Fermi gas in two dimensions (2D) where the dipole moments of fermions are aligned by an orientable external field. We obtain the ground state of the gas in the Hartree-Fock approximation and investigate random-phase-approximation stability against density fluctuations of finite momentum. It is shown that the density-wave instability takes place in a broad region where the system is stable against collapse. We also find that the critical temperature can be a significant fraction of Fermi temperature for a realistic system of polar molecules.

  13. Communication: Simple and accurate uniform electron gas correlation energy for the full range of densities

    NASA Astrophysics Data System (ADS)

    Chachiyo, Teepanis

    2016-07-01

    A simple correlation energy functional for the uniform electron gas is derived based on the second-order Moller-Plesset perturbation theory. It can reproduce the known correlation functional in the high-density limit, while in the mid-density range maintaining a good agreement with the near-exact correlation energy of the uniform electron gas to within 2 × 10-3 hartree. The correlation energy is a function of a density parameter rs and is of the form a * ln ( 1 + /b r s + /b rs 2 ) . The constants "a" and "b" are derived from the known correlation functional in the high-density limit. Comparisons to the Ceperley-Alder's near-exact Quantum Monte Carlo results and the Vosko-Wilk-Nusair correlation functional are also reported.

  14. Virial and high-density expansions for the Lee-Yang lattice gas.

    PubMed

    Ushcats, M V; Bulavin, L A; Sysoev, V M; Ushcats, S J

    2016-07-01

    On the basis of the recently established "hole-particle" symmetry of the lattice-gas Hamiltonian, the high-density equation of state has been derived in a form of pressure and density expansions in powers of activity. This equation is proposed as an alternative and complementary to the previously obtained pressure expansion in powers of density. For the well-known Lee-Yang lattice-gas model (a two-dimensional square lattice with a square-well interaction potential), the power coefficients (i.e., cluster and irreducible cluster integrals) up to the seventh order have been evaluated as accurate functions of temperature. The convergence of the expansions in powers of both density and activity to the exact Lee-Yang solution is investigated. PMID:27575112

  15. On global motions of a compressible barotropic and selfgravitating gas with density-dependent viscosities

    NASA Astrophysics Data System (ADS)

    Ducomet, Bernard; Nečasová, Šárka; Vasseur, Alexis

    2010-06-01

    We consider the Cauchy problem for the equations of selfgravitating motions of a barotropic gas with density-dependent viscosities μ( ρ), and λ( ρ) satisfying the Bresch-Desjardins condition, when the pressure P( ρ) is not necessarily a monotone function of the density. We prove that this problem admits a global weak solution provided that the adiabatic exponent γ associated with P( ρ) satisfies {γ > 4/3}.

  16. Observing the gas temperature drop in the high-density nucleus of L 1544

    NASA Astrophysics Data System (ADS)

    Crapsi, A.; Caselli, P.; Walmsley, M. C.; Tafalla, M.

    2007-07-01

    Context: The thermal structure of a starless core is crucial for our understanding of the physics in these objects and hence for our understanding of star formation. Theory predicts a gas temperature drop in the inner 5000 AU of the pre-stellar core L 1544, but there has been no observational proof of this. Aims: We performed VLA observations of the NH{3} (1, 1) and (2, 2) transitions towards L 1544 in order to measure the temperature gradient between the high density core nucleus and the surrounding core envelope. Our VLA observation for the first time provide measurements of gas temperature in a core with a resolution smaller than 1000 AU. We have also obtained high resolution Plateau de Bure observations of the 110 GHz 111-101 para-NH2D line in order to further constrain the physical parameters of the high density nucleus. Methods: We combine our interferometric NH{3} and NH2D observations with available single dish measurements in order to estimate the effects of flux loss from extended components upon our data. We have estimated the temperature gradient using a model of the source to fit our data in the u,v plane. As the NH{3}(1, 1) line is extremely optically thick, this also involved fitting a gradient in the NH{3} abundance. In this way, we also measure the [ NH2D] /[ NH{3}] abundance ratio in the inner nucleus. Results: We find that indeed the temperature decreases toward the core nucleus from 12 K down to 5.5 K resulting in an increase of a factor of 50% in the estimated density of the core from the dust continuum if compared with the estimates done with constant temperature of 8.75 K. Current models of the thermal equilibrium can describe consistently the observed temperature and density in this object, simultaneously fitting our temperature profile and the continuum emission. We also found a remarkably high abundance of deuterated ammonia with respect to the ammonia abundance (50% ± 20%), which proves the persistence of nitrogen bearing molecules at

  17. Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Koch, Stephan L.; Morgan, Benjamin J.; Passerini, Stefano; Teobaldi, Gilberto

    2015-11-01

    To explore the potential of molecular gas treatment of freshly cut lithium foils in non-electrolyte-based passivation of high-energy-density Li anodes, density functional theory (DFT) has been used to study the decomposition of molecular gases on metallic lithium surfaces. By combining DFT geometry optimization and Molecular Dynamics, the effects of atmospheric (N2, O2, CO2) and hazardous (F2, SO2) gas decomposition on Li(bcc) (100), (110), and (111) surfaces on relative surface energies, work functions, and emerging electronic and elastic properties are investigated. The simulations suggest that exposure to different molecular gases can be used to induce and control reconstructions of the metal Li surface and substantial changes (up to over 1 eV) in the work function of the passivated system. Contrary to the other considered gases, which form metallic adlayers, SO2 treatment emerges as the most effective in creating an insulating passivation layer for dosages ≤1 mono-layer. The substantial Li → adsorbate charge transfer and adlayer relaxation produce marked elastic stiffening of the interface, with the smallest change shown by nitrogen-treated adlayers.

  18. Maximization of ICRF power by SOL density tailoring with local gas injection

    NASA Astrophysics Data System (ADS)

    Jacquet, P.; Goniche, M.; Bobkov, V.; Lerche, E.; Pinsker, R. I.; Pitts, R. A.; Zhang, W.; Colas, L.; Hosea, J.; Moriyama, S.; Wang, S.-J.; Wukitch, S.; Zhang, X.; Bilato, R.; Bufferand, H.; Guimarais, L.; Faugel, H.; Hanson, G. R.; Kocan, M.; Monakhov, I.; Noterdaeme, J.-M.; Petrzilka, V.; Shaw, A.; Stepanov, I.; Sips, A. C. C.; Van Eester, D.; Wauters, T.; JET contributors, the; the ASDEX Upgrade Team; the DIII-D Team; ITPA ‘Integrated Operation Scenarios' members, the; experts

    2016-04-01

    Experiments have been performed under the coordination of the International Tokamak Physics Activity (ITPA) on several tokamaks, including ASDEX Upgrade (AUG), JET and DIII-D, to characterize the increased Ion cyclotron range of frequency (ICRF) antenna loading achieved by optimizing the position of gas injection relative to the RF antennas. On DIII-D, AUG and JET (with the ITER-Like Wall) a 50% increase in the antenna loading was observed when injecting deuterium in ELMy H-mode plasmas using mid-plane inlets close to the powered antennas instead of divertor injection and, with smaller improvement when using gas inlets located at the top of the machine. The gas injection rate required for such improvements (~0.7  ×  1022 el s-1 in AUG, ~1.0  ×  1022 el s-1 in JET) is compatible with the use of this technique to optimize ICRF heating during the development of plasma scenarios and no degradation of confinement was observed when using the mid-plane or top inlets compared with divertor valves. An increase in the scrape-off layer (SOL) density was measured when switching gas injection from divertor to outer mid-plane or top. On JET and DIII-D, the measured SOL density increase when using main chamber puffing is consistent with the antenna coupling resistance increase provided that the distance between the measurement lines of sight and the injection location is taken into account. Optimized gas injection was also found to be beneficial for reducing tungsten (W) sputtering at the AUG antenna limiters, and also to reduce slightly the W and nickel (Ni) content in JET plasmas. Modeling the specific effects of divertor/top/mid-plane injection on the outer mid-plane density was carried out using both the EDGE2D-EIRENE and EMC3-EIRENE plasma boundary code packages; simulations indeed indicate that outer mid-plane gas injection maximizes the density in the mid-plane close to the injection point with qualitative agreement with the AUG SOL density measurements

  19. Density fluctuations near the liquid-gas critical point of a confined fluid.

    PubMed

    Melnichenko, Y B; Wignall, G D; Cole, D R; Frielinghaus, H

    2004-05-01

    We report the results of an experimental study of the effect of a dilute silica network on liquid-gas critical phenomena in carbon dioxide (CO2). Using small-angle neutron scattering, we measured the correlation length of the density fluctuations in bulk (xi(bulk)) and confined CO2 (xi(conf)) as a function of temperature and average fluid density. We find that quenched disorder induced by an aerogel suppresses density fluctuations: xi(conf) loses the Ising model divergence characteristic of xi(bulk) and does not exceed the size of pores in the homogeneous region.

  20. Ionic fluids: charge and density correlations near gas-liquid criticality.

    PubMed

    Patsahan, Oksana; Mryglod, Ihor; Caillol, Jean-Michel

    2005-06-29

    The correlation functions of an ionic fluid with charge and size asymmetry are studied within the framework of the random phase approximation. The results obtained for the charge-charge correlation function demonstrate that the second-moment Stillinger-Lovett (SL) rule is satisfied away from the gas-liquid critical point (CP) but not, in general, at the CP. However, in the special case of a model without size asymmetry the SL rules are satisfied even at the CP. The expressions for the density-density and charge-density correlation functions valid far from and close to the CP are obtained explicitly.

  1. Improved parameterization of interatomic potentials for rare gas dimers with density-based energy decomposition analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Nengjie; Lu, Zhenyu; Wu, Qin; Zhang, Yingkai

    2014-06-01

    We examine interatomic interactions for rare gas dimers using the density-based energy decomposition analysis (DEDA) in conjunction with computational results from CCSD(T) at the complete basis set (CBS) limit. The unique DEDA capability of separating frozen density interactions from density relaxation contributions is employed to yield clean interaction components, and the results are found to be consistent with the typical physical picture that density relaxations play a very minimal role in rare gas interactions. Equipped with each interaction component as reference, we develop a new three-term molecular mechanical force field to describe rare gas dimers: a smeared charge multipole model for electrostatics with charge penetration effects, a B3LYP-D3 dispersion term for asymptotically correct long-range attractions that is screened at short-range, and a Born-Mayer exponential function for the repulsion. The resulted force field not only reproduces rare gas interaction energies calculated at the CCSD(T)/CBS level, but also yields each interaction component (electrostatic or van der Waals) which agrees very well with its corresponding reference value.

  2. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  3. Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas

    SciTech Connect

    Gao Xianlong; Rizzi, M.; Polini, Marco; Tosi, M. P.; Fazio, Rosario; Campo, V. L. Jr.; Capelle, K.

    2007-01-19

    The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern.

  4. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  5. Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas

    NASA Astrophysics Data System (ADS)

    Xianlong, Gao; Rizzi, M.; Polini, Marco; Fazio, Rosario; Tosi, M. P.; Campo, V. L., Jr.; Capelle, K.

    2007-01-01

    The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern.

  6. Investigation of density-dependent gas advection of trichloroethylene: Experiment and a model validation exercise

    NASA Astrophysics Data System (ADS)

    Lenhard, R. J.; Oostrom, M.; Simmons, C. S.; White, M. D.

    1995-07-01

    An experiment was conducted to evaluate whether vapor-density effects are significant in transporting volatile organic compounds (VOC's) with high vapor pressure and molecular mass through the subsurface. Trichloroethylene (TCE) was chosen for the investigation because it is a common VOC contaminant with high vapor pressure and molecular mass. For the investigation, a 2-m-long by 1-m-high by 7.5-cm-thick flow cell was constructed with a network of sampling ports. The flow cell was packed with sand, and a water table was established near the lower boundary. Liquid TCE was placed near the upper boundary of the flow cell in a chamber from which vapors could enter and migrate through the sand. TCE concentrations in the gas phase were measured by extracting 25-μl gas samples with an air-tight syringe and analyzing them with a gas chromatograph. The evolution of the TCE gas plume in the sand was investigated by examining plots of TCE concentrations over the domain for specific times and for particular locations as a function of time. To help in this analysis, a numerical model was developed that can predict the simultaneous movements of a gas, a nonaqueous liquid and water in porous media. The model also considers interphase mass transfer by employing the phase equilibrium assumption. The model was tested with one- and two-dimensional analytical solutions of fluid flow before it was used to simulate the experiment. Comparisons between experimental data and simulation results when vapor-density effects are considered were very good. When vapor-density effects were ignored, agreement was poor. These analyses suggest that vapor-density effects should be considered and that density-driven vapor advection may be an important mechanism for moving VOC's with high vapor pressures and molecular mass through the subsurface.

  7. Distribution of E/N and N/e/ in a cross-flow electric discharge laser. [electric field to neutral gas density and electron number density

    NASA Technical Reports Server (NTRS)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.

  8. The relation between atomic gas and star formation rate densities in faint dwarf irregular galaxies

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Sambit; Chengalur, Jayaram N.; Kaisin, Serafim S.; Karachentsev, Igor D.

    2014-12-01

    We use data for faint (MB > -14.5) dwarf irregular galaxies drawn from the Faint Irregular Galaxy GMRT Survey to study the correlation between the surface densities of atomic gasgas,atomic) and star formation rate (ΣSFR) in the galaxies. The estimated gas-phase metallicity of our sample galaxies is Z ˜ 0.1 Z⊙. Understanding star formation in such molecule-poor gas is of particular importance since it is likely to be of direct relevance to simulations of early galaxy formation. For about 20 per cent (9/43) of our sample galaxies, we find that the H I distribution is significantly disturbed, with little correspondence between the optical and H I distributions. We exclude these galaxies from the comparison. We also exclude galaxies with very low star formation rates, for which stochastic effects make it difficult to estimate the true star formation rates. For the remaining galaxies, we compute the Σgas,atomic and ΣSFR averaged over the entire star-forming disc of the galaxy. For these galaxies, we find a nearly linear relation between the star formation rate and the atomic gas density, namely {log Σ _{SFR} = 0.91^{+0.23}_{-0.25} log Σ _{gas,atomic} - 3.84^{+0.15}_{-0.19}}. The corresponding gas consumption time-scale is ˜10 Gyr, i.e. significantly smaller than the ˜100 Gyr estimated for the outer regions of spiral galaxies. We also estimate the gas consumption time-scale computed using the global gas content and the global star formation rate for all galaxies with a reliable measurement of the star formation rate, regardless of whether the H I distribution is disturbed or not. The mean gas consumption time-scale computed using this entire gas reservoir is ˜18 Gyr, i.e. still significantly smaller than that estimated for the outer parts of spirals. The gas consumption time-scale for dwarfs is intermediate between the values of ˜100 and ˜2 Gyr estimated for the outer molecule-poor and inner molecule-rich regions of spiral discs.

  9. Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics

    SciTech Connect

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; Bender, Ralf; Thomas, Jens; Van den Bosch, Remco C. E.; Van de Ven, Glenn; Barentine, John C.; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A. E-mail: jja439@gmail.com

    2014-07-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these

  10. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil.

    PubMed

    Wickramarachchi, Praneeth; Kawamoto, Ken; Hamamoto, Shoichiro; Nagamori, Masanao; Moldrup, Per; Komatsu, Toshiko

    2011-12-01

    Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, ρ(b), and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D(p)/D(o), ratio of gas diffusion coefficients in soil and free air) and air permeability (k(a)) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting ρ(b) values ranging from 1.40 to 2.10 g cm(-3). Results showed that D(p) and k(a) values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2mm) under variably-saturated conditions for a given soil-air content (ε), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D(p) and k(a) was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D(p)/D(f), the ratio of measured D(p) to D(p) in total porosity (f), (ii) for air permeability k(a)/k(a)(,pF4.1), the ratio of measured k(a) to k(a) at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content (ε) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D(p)(ε/f) and k(a)(ε/f) models were developed based on a single parameter (water blockage factor M for D(p) and P for k(a)). The water blockage factors, M and P, were found to be linearly correlated to ρ(b) values, and the effects of dry bulk density on D(p) and k(a) for both '+gravel' and '-gravel' fractions were well accounted for by the new models.

  11. Emission and afterglow properties of an expanding RF plasma with nonuniform neutral gas density

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2016-08-01

    We describe some notable aspects of the light emission and afterglow properties in pulsed, high-density ( 1018-1020 m-3 ) argon inductively coupled discharges initiated following fast gas injection. The plasma was created in a long, narrow discharge tube and then expanded downstream of the radiofrequency (RF) antenna into a large chamber. Fast camera images of the expanding plasma revealed a multi-phase time-dependent emission pattern that did not follow the ion density distribution. Dramatic differences in visible brightness were observed between discharges with and without an externally applied magnetic field. These phenomena were studied by tracking excited state populations using passive emission spectroscopy and are discussed in terms of the distinction between ionizing and recombining phase plasmas. Additionally, a method is presented for inferring the unknown neutral gas pressure in the discharge tube from the time-dependent visible and infrared emission measured by a simple photodiode placed near the antenna. In magnetized discharges created with fast gas injection, the downstream ion density rose by Δni˜1018 m-3 in the first ˜100 μs after the RF power was turned off. The conditions conducive to this afterglow density rise are investigated in detail, and the effect is tentatively attributed to pooling ionization.

  12. New stopping cell capabilities: RF carpet performance at high gas density and cryogenic operation

    NASA Astrophysics Data System (ADS)

    Ranjan, M.; Purushothaman, S.; Dickel, T.; Geissel, H.; Plass, W. R.; Schäfer, D.; Scheidenberger, C.; Van de Walle, J.; Weick, H.; Dendooven, P.

    2011-12-01

    We have developed a stopping cell to be used at the FRS and Super-FRS (Super-conducting FRagment Separator) at the GSI Helmholtz Centre for Heavy-Ion Research and the Facility for Antiproton and Ion Research (FAIR), both in Darmstadt, Germany. The cell has a stopping volume with a length of 1 m and a diameter of 25 cm. It is aimed at operation with high-density helium gas (up to 0.2 mg/cm3). Ours is the first realisation of a stopping cell in which the required purity of the helium stopping gas is ensured by operation at cryogenic temperatures. On the exit side, the ions are guided to the exit hole by an RF carpet with 4 electrodes per mm, operating at a frequency of 5.8 MHz. We present the first commissioning results of the cryogenic stopping cell. Using 219Rn ions emitted as alpha-decay recoils from a 223Ra source, a combined ion survival and extraction efficiency between 10 and 25% is measured for helium gas at a temperature of 85 K and with a density up to 0.07 mg/cm3 (equivalent to a pressure of 430 mbar at room temperature). This density is almost two times higher than demonstrated up to now for RF ion repelling structures in helium gas. Given the operational and design parameters of the system, it is projected that this technology is useful up to a helium gas density of at least 0.2 mg/cm3.

  13. Energy Factor Analysis for Gas Heat Pump Water Heaters

    SciTech Connect

    Gluesenkamp, Kyle R

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basis energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.

  14. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    SciTech Connect

    Chen, Guanglong; Xu, Yi; Cao, Yunjiu; Mi, Yiming; Zhang, Xiuli; Wang, Lili; Boldarev, A. S.; Geng, Xiaotao; Kim, Dong Eon

    2015-10-15

    The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized d{sub eq} in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  15. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    NASA Astrophysics Data System (ADS)

    Chen, Guanglong; Boldarev, A. S.; Geng, Xiaotao; Xu, Yi; Cao, Yunjiu; Mi, Yiming; Zhang, Xiuli; Wang, Lili; Kim, Dong Eon

    2015-10-01

    The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized deq in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  16. Investigating the Effect of Complexity Factors in Gas Law Problems

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Kirk, John; Pienta, Norbert J.; Tang, Hui

    2012-01-01

    Undergraduate students were asked to complete gas law questions using a Web-based tool as a first step in our understanding of the role of cognitive load in chemistry word questions and in helping us assess student problem-solving. Each question contained five different complexity factors, which were randomly assigned by the tool so that a…

  17. Demonstration of resonant backward Raman amplification in high-density gas-jet plasma

    NASA Astrophysics Data System (ADS)

    Wu, Z. H.; Zhou, K. N.; Zheng, X. M.; Wei, X. F.; Zhu, Q. H.; Su, J. Q.; Xie, N.; Jiao, Z. H.; Peng, H.; Wang, X. D.; Sun, L.; Li, Q.; Huang, Z.; Zuo, Y. L.

    2016-10-01

    Backward Raman amplification was observed in a 0.7 mm-long high-density gas jet plasma. The 800 nm 30 fs seed pulse was amplified by a factor  ∼28, with an output energy of 2.8 mJ. The output spectra showed that the waveband around 800 nm was significantly amplified. The experimental result demonstrated that the resonant Raman amplification can be realized in high-density plasma against strong plasma instability.

  18. Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime

    SciTech Connect

    Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan

    2011-11-15

    In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.

  19. Thermodynamics of the low-density excluded-volume hadron gas

    NASA Astrophysics Data System (ADS)

    Redlich, Krzysztof; Zalewski, Kacper

    2016-01-01

    We consider the thermodynamics of excluded-volume particles at finite temperature and chemical potential in the low-density approximation. We assume Boltzmann statistics and study the influence of the excluded volume on an ideal gas thermodynamics at the same temperature, pressure, and number of particles. We show that considering the change of the free enthalpy due to the excluded volume, and using the Maxwell identities, one can derive relevant thermodynamic functions and parameters of multicomponent gases. The derivation is quite general, because particles may have different sizes and shapes which can also depend on their momenta. Besides its simplicity and generality, our approach has the advantage of eliminating the transcendental equations occurring in earlier studies. A representative example of the excluded-volume thermodynamics is the single-component gas of hard spheres. For this case, using a virial expansion, the validity limits of the low-density approximation are also discussed.

  20. The effective density of randomly moving electrons and related characteristics of materials with degenerate electron gas

    NASA Astrophysics Data System (ADS)

    Palenskis, V.

    2014-04-01

    Interpretation of the conductivity of metals, of superconductors in the normal state and of semiconductors with highly degenerate electron gas remains a significant issue if consideration is based on the classical statistics. This study is addressed to the characterization of the effective density of randomly moving electrons and to the evaluation of carrier diffusion coefficient, mobility, and other parameters by generalization of the widely published experimental results. The generalized expressions have been derived for various kinetic parameters attributed to the non-degenerate and degenerate electron gas, by analyzing a random motion of the single type carriers in homogeneous materials. The values of the most important kinetic parameters for different metals are also systematized and discussed. It has been proved that Einstein's relation between the diffusion coefficient and the drift mobility of electrons is held for any level of degeneracy if the effective density of randomly moving carriers is properly taken into account.

  1. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet

  2. Testing the gas mass density profile of galaxy clusters with distance duality relation

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Biesiada, Marek; Zheng, Xiaogang; Zhu, Zong-Hong

    2016-03-01

    In this paper, assuming the validity of distance duality relation, η = DL(z)(1 + z)-2/DA(z) = 1, where DA(z) and DL(z) are the angular and the luminosity distance, respectively, we explore two kinds of gas mass density profiles of clusters: the isothermal β model and the non-isothermal double-β model. In our analysis, performed on 38 massive galaxy clusters observed by Chandra (within the redshift range of 0.14 < z < 0.89), we use two types of cluster gas mass fraction data corresponding to different mass density profiles fitted to the X-ray data. Using two general parameterizations of η(z) (phenomenologically allowing for distance duality violation), we find that the non-isothermal double-β model agrees better with the distance duality relation, while the isothermal β model tends to be marginally incompatible with the Etherington theorem at 68.3 per cent confidence level (CL). However, current accuracy of the data does not allow to distinguish between the two models for the gas-density distribution at a significant level.

  3. HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-09-15

    We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

  4. Density functional theory of gas-liquid phase separation in dilute binary mixtures.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-22

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas [Formula: see text] (the Gibbs energy of transfer) is considerably larger than the thermal energy [Formula: see text] for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by [Formula: see text], where [Formula: see text] is the solute density added in liquid. For [Formula: see text], phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  5. Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density

    SciTech Connect

    Surrey, Elizabeth; Porton, Michael

    2011-09-26

    The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D{sup -} beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.

  6. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil

    SciTech Connect

    Wickramarachchi, Praneeth; Kawamoto, Ken; Hamamoto, Shoichiro; Nagamori, Masanao; Moldrup, Per; Komatsu, Toshiko

    2011-12-15

    Highlights: > The effects of soil physical properties on gas transport parameters were investigated. > Higher values of D{sub p} and k{sub a} exhibited in the '+gravel' than the '-gravel' fraction at same soil-air content ({epsilon}). > Recent power law models for D{sub p} (WLR) and k{sub a} (RPL) were modified. > Model parameters were linearly related to easily measurable dry bulk density ({rho}{sub b}). - Abstract: Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, {rho}{sub b}, and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D{sub p}/D{sub o}, ratio of gas diffusion coefficients in soil and free air) and air permeability (k{sub a}) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting {rho}{sub b} values ranging from 1.40 to 2.10 g cm{sup -3}. Results showed that D{sub p} and k{sub a} values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2 mm) under variably-saturated conditions for a given soil-air content ({epsilon}), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D{sub p} and k{sub a} was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D{sub p}/D{sub f}, the ratio of measured D{sub p} to D{sub p} in total porosity (f), (ii) for air permeability k{sub a}/k{sub a,pF4.1}, the ratio of measured k{sub a} to k{sub a} at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content ({epsilon}) to total porosity (f) (air

  7. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. I. THE FLOCCULENT GALAXY M 33

    SciTech Connect

    Gonzalez-Lopezlira, Rosa A.; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2012-12-20

    We analyze the relationship between maximum cluster mass M{sub max} and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), and star formation rate ({Sigma}{sub SFR}) in the flocculent galaxy M 33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M{sub max}{proportional_to}{Sigma}{sup 4.7{+-}0.4}{sub gas}, M{sub max}{proportional_to}{Sigma}{sup 1.3{+-}0.1}{sub H{sub 2}}, and M{sub max}{proportional_to}{Sigma}{sup 1.0{+-}0.1}{sub SFR}. We rule out that these correlations result from the size of the sample; hence, the change of the maximum cluster mass must be due to physical causes.

  8. Microstructural analysis of mass transport phenomena in gas diffusion media for high current density operation in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Mukherjee, Partha P.

    2015-04-01

    Cost reduction is a key issue for commercialization of fuel cell electric vehicles (FCEV). High current density operation is a solution pathway. In order to realize high current density operation, it is necessary to reduce mass transport resistance in the gas diffusion media commonly consisted of gas diffusion layer (GDL) and micro porous layer (MPL). However, fundamental understanding of the underlying mass transport phenomena in the porous components is not only critical but also not fully understood yet due to the inherent microstructural complexity. In this study, a comprehensive analysis of electron and oxygen transport in the GDL and MPL is conducted experimentally and numerically with three-dimensional (3D) microstructural data to reveal the structure-transport relationship. The results reveal that the mass transport in the GDL is strongly dependent on the local microstructural variations, such as local pore/solid volume fractions and connectivity. However, especially in the case of the electrical conductivity of MPL, the contact resistance between carbon particles is the dominant factor. This suggests that reducing the contact resistance between carbon particles and/or the number of contact points along the transport pathway can improve the electrical conductivity of MPL.

  9. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus).

    PubMed

    Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi

    2016-08-15

    Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg(-1), closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m(-3) at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m(-3), which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. PMID:27296044

  10. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus)

    PubMed Central

    Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi

    2016-01-01

    ABSTRACT Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg−1, closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m−3 at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m−3, which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. PMID:27296044

  11. In-Shell Bulk Density as an Estimator of Farmers Stock Grade Factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to determine whether or not bulk density can be used to accurately estimate farmer stock grade factors such as total sound mature kernels and other kernels. Physical properties including bulk density, pod size and kernel size distributions are measured as part of t...

  12. Molecular density functional theory for water with liquid-gas coexistence and correct pressure

    SciTech Connect

    Jeanmairet, Guillaume Levesque, Maximilien; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-04-21

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  13. Molecular density functional theory for water with liquid-gas coexistence and correct pressure.

    PubMed

    Jeanmairet, Guillaume; Levesque, Maximilien; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-04-21

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  14. Optimizing the hohlraum gas density for better symmetry control of indirect drive implosion experiments

    NASA Astrophysics Data System (ADS)

    Izumi, Nobuhiko; Hall, G. N.; Nagel, S. R.; Khan, S.; Rygg, R. R.; MacKinnon, A. J.; Ho, D. D.; Berzak Hopkins, L.; Jones, O. S.; Town, R. P. J.; Bradley, D. K.

    2014-10-01

    To achieve a spherically symmetric implosion, control of drive uniformity is essential. Both the ablation pressure and the mass ablation rate on the capsule surface should be made as uniform as possible for the duration of the drive. For an indirect drive implosion, the drive uniformity changes during the pulse because of: (1) the dynamic movement of the laser spots due to blow-off of the hohlraum wall, and (2) cross-beam energy transfer caused by laser-plasma interaction in the hohlraum. To tamp the wall blow-off, we use gas filled hohlraums. The cross-beam energy transfer can be controlled by applying a wave length separation between the cones of the laser beams. However, both of those dynamic effects are sensitive to the initial density of the hohlraum gas fill. To assess this, we performed implosion experiments with different hohlraum gas densities and tested the effect on drive asymmetry. The uniformity of the acceleration was measured by in-flight x-ray backlit imaging of the capsule. The uniformity of the core assembly was observed by imaging the self emission x-ray from the core. We will report on the experimental results and compare them to hydrodynamic simulations. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-626372.

  15. The dependence of the IMF on the density- temperature relation of pre-stellar gas

    NASA Astrophysics Data System (ADS)

    Kitsionas, S.; Whitworth, A. P.; Klessen, R. S.; Jappsen, A.-K.

    It has been recently shown by several authors that fragmentation of pre-stellar gas (i.e. at densities from 10^4 to 10^10 particles cm^-3 and temperatures of order 10-30K) depends on the gas thermodynamics much more than it was anticipated in earlier studies, in which only an isothermal behaviour has been assumed for the gas. We shall review the results of a number of numerical hydrodynamic simulations (e.g. Li et al. 2003, Jappsen et al. 2005, Bonnell et al. 2006) in which departure from isothermality has been attempted by employing a polytropic equation of state (eos) with exponent different from unity. In particular, in these studies it has been shown that the dominant fragmentation scale of pre-stellar gas, and hence the peak of the initial mass function (IMF), depends on a polytropic exponent that changes value at a critical density. Furthermore, this critical density depends on the gas metallicity and fundamental constants rather than on initial conditions, thus allowing for the first time to infer theoretically the notion of a universal IMF (at least for its low-mass end). We shall subsequently present two test cases in which such an equation of state has been used in the context of smoothed particle hydrodynamic (SPH) numerical simulations. In the first case star formation is triggered by means of low-mass clump collisions. These calculations have shown that clump collisions can be a relatively efficient mechanism for the formation of solar mass protostars and their lower mass companions (efficiency greater or of order 20%; Kitsionas & Whitworth 2006). In the second case, the use of a polytropic eos with an exponent varying according to the metallicity of starburst regions (Spaans & Silk 2000, 2005) is shown to be sufficient to obtain a top heavy IMF similar to that observed e.g. in the Galactic centre (Klessen, Spaans & Jappsen 2006). These are preliminary results in the direction of revisiting earlier calculations that were resolving the opacity limit for

  16. Mapping the dimensionality, density and topology of data: the growing adaptive neural gas.

    PubMed

    Cselényi, Zsolt

    2005-05-01

    Self-organized maps are commonly applied for tasks of cluster analysis, vector quantization or interpolation. The artificial neural network model introduced in this paper is a hybrid model of the growing neural gas model introduced by Fritzke (Fritzke, in Advances in Neural Information Processing Systems 7, MIT Press, Cambridge MA, 1995) and the adaptive resolution clustering modification for self-organized maps proposed by Firenze (Firenze et al., in International Conference on Artificial Neural Networks, Springer-Verlag, London, 1994). The hybrid model is capable of mapping the distribution, dimensionality and topology of the input data. It has a local performance measure that enables the network to terminate growing in areas of the input space that is mapped by units reaching a performance goal. Therefore the network can accurately map clusters of data appearing on different scales of density. The capabilities of the algorithm are tested using simulated datasets with similar spatial spread but different local density distributions, and a simulated multivariate MR dataset of an anatomical human brain phantom with mild multiple sclerosis lesions. These tests demonstrate the advantages of the model compared to the growing neural gas algorithm when adaptive mapping of areas with low sample density is desirable. PMID:15848269

  17. Validity of power functionals for a homogeneous electron gas in reduced-density-matrix-functional theory

    NASA Astrophysics Data System (ADS)

    Putaja, A.; Eich, F. G.; Baldsiefen, T.; Räsänen, E.

    2016-03-01

    Physically valid and numerically efficient approximations for the exchange and correlation energy are critical for reduced-density-matrix-functional theory to become a widely used method in electronic structure calculations. Here we examine the physical limits of power functionals of the form f (n ,n') =(nn')α for the scaling function in the exchange-correlation energy. To this end we obtain numerically the minimizing momentum distributions for the three- and two-dimensional homogeneous electron gas, respectively. In particular, we examine the limiting values for the power α to yield physically sound solutions that satisfy the Lieb-Oxford lower bound for the exchange-correlation energy and exclude pinned states with the condition n (k )<1 for all wave vectors k . The results refine the constraints previously obtained from trial momentum distributions. We also compute the values for α that yield the exact correlation energy and its kinetic part for both the three- and two-dimensional electron gas. In both systems, narrow regimes of validity and accuracy are found at α ≳0.6 and at rs≳10 for the density parameter, corresponding to relatively low densities.

  18. Simulations of gas puff effects on edge density and ICRF coupling in ASDEX upgrade using EMC3-Eirene

    SciTech Connect

    Zhang, W.; Lunt, T.; Bobkov, V.; Coster, D.; Brida, D.; Noterdaeme, J.-M.; Jacquet, P.; Feng, Y.

    2015-12-10

    Simulations were carried out with the 3D plasma transport code EMC3-EIRENE, to study the deuterium gas (D{sub 2}) puff effects on edge density and the coupling of Ion Cyclotron Range of Frequency (ICRF) power in ASDEX Upgrade. Firstly we simulated an inter-ELM phase of an H-mode discharge with a moderate (1.2 × 10{sup 22} electrons/s) lower divertor gas puff. Then we changed the gas source positions to the mid-plane or top of machine while keeping other conditions the same. Cases with different mid-plane or top gas valves are investigated. Our simulations indicate that compared to lower divertor gas puffing, the mid-plane gas puff can enhance the local density in front of the antennas most effectively, while a rather global (toroidally uniform) but significantly smaller enhancement is found for top gas puffing. Our results show quantitative agreement with the experiments.

  19. The factors controlling species density in herbaceous plant communities: An assessment

    USGS Publications Warehouse

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  20. Enhanced gas adsorption on graphitic substrates via defects and local curvature: A density functional theory study

    DOE PAGESBeta

    Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; Ayappa, K. Ganapathy; Narasimhan, Shobhana

    2014-03-24

    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces inmore » buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are similar, although CO2 binding is generally stronger by ~4 to 5 kJ mol–1. Furthermore, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gas-selective sensors.« less

  1. Effects of the neutral gas density distribution in a DPF neutron yield

    SciTech Connect

    Milanese, M.; Moroso, R.; Pouzo, J.

    1996-12-31

    The dense plasma gives an average neutron yield Y = 2 {times} 10{sup 8} when it is operated using D{sub 2} at an homogeneous pressure p = 1.5 mb in the discharge chamber, in this p-static operation, the frequency of good shots (Y > 10{sup 7}) is f {approx} 50%. In this work the authors show the results on Y and f when PACO is operated in gas-puff way with two different modalities: (1) A gas cloud is injected into the vacuum, from a set of holes distributed in a diameter of the inner electrode near the Pyrex insulator. The gas is introduced from the back of the hollow inner electrode by means of a fast valve. The cloud expands in the interelectrode space, and reaches the extreme of the coaxial cavity in some hundreds of microseconds from the valve aperture instant. In this way of operation the value of Y remains similar to the p-static operation, but the frequency f is improved up to f {approx} 80%. (2) With a relative low value of p in the discharge chamber a jet of high density D{sub 2} is injected along the axis from the inner electrode just in the focus zone. The jet is produced with a nozzle designed in order to obtain subsonic velocity, and the gas is injected through the same fast valve. In this jet operation mode the PACO performance was improved, reaching f {approx} 70% and Y {approx} 10{sup 9}.

  2. Dust and gas density evolution at a radial pressure bump in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Taki, Tetsuo; Fujimoto, Masaki; Ida, Shigeru

    2016-06-01

    We investigate the simultaneous evolution of dust and gas density profiles at a radial pressure bump located in a protoplanetary disk. If dust particles are treated as test particles, a radial pressure bump traps dust particles that drift radially inward. As the dust particles become more concentrated at the gas pressure bump, however, the drag force from dust to gas (back-reaction), which is ignored in a test-particle approach, deforms the pressure bump. We find that the pressure bump is completely deformed by the back-reaction when the dust-to-gas mass ratio reaches ~ 1 for a slower bump restoration. The direct gravitational instability of dust particles is inhibited by the bump destruction. In the dust-enriched region, the radial pressure support becomes ~ 10-100 times lower than the global value set initially. Although the pressure bump is a favorable place for streaming instability (SI), the flattened pressure gradient inhibits SI from forming large particle clumps corresponding to 100-1000 km sized bodies, which has been previously proposed. If SI occurs there, the dust clumps formed would be 10-100 times smaller, that is, of about 1-100 km.

  3. Enhanced gas adsorption on graphitic substrates via defects and local curvature: A density functional theory study

    SciTech Connect

    Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; Ayappa, K. Ganapathy; Narasimhan, Shobhana

    2014-03-24

    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are similar, although CO2 binding is generally stronger by ~4 to 5 kJ mol–1. Furthermore, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gas-selective sensors.

  4. Spontaneous separation of large-spin Fermi gas in the harmonic trap: a density functional study.

    PubMed

    Sun, Zongli; Gu, Qiang

    2016-01-01

    The component separation of the trapped large-spin Fermi gas is studied within density functional theory. The ground state and ferromagnetic transition in the gas, with and without the spin mixing collision, are calculated. In the absence of spin mixing, two patterns of separation are observed as the interaction between atoms increases, whereas only one of them corresponds to a ferromagnetic transition. The phase diagram suggests that the pattern which the system chooses depends on the interaction strength in the collision channels. With the presence of spin mixing, the distribution of phase region changes because of the interplay between different collision channels. Specifically, the spin exchange benefits the FM transition, while it suppresses the component separation of CS-II pattern. PMID:27549012

  5. Spontaneous separation of large-spin Fermi gas in the harmonic trap: a density functional study

    NASA Astrophysics Data System (ADS)

    Sun, Zongli; Gu, Qiang

    2016-08-01

    The component separation of the trapped large-spin Fermi gas is studied within density functional theory. The ground state and ferromagnetic transition in the gas, with and without the spin mixing collision, are calculated. In the absence of spin mixing, two patterns of separation are observed as the interaction between atoms increases, whereas only one of them corresponds to a ferromagnetic transition. The phase diagram suggests that the pattern which the system chooses depends on the interaction strength in the collision channels. With the presence of spin mixing, the distribution of phase region changes because of the interplay between different collision channels. Specifically, the spin exchange benefits the FM transition, while it suppresses the component separation of CS-II pattern.

  6. Spontaneous separation of large-spin Fermi gas in the harmonic trap: a density functional study

    PubMed Central

    Sun, Zongli; Gu, Qiang

    2016-01-01

    The component separation of the trapped large-spin Fermi gas is studied within density functional theory. The ground state and ferromagnetic transition in the gas, with and without the spin mixing collision, are calculated. In the absence of spin mixing, two patterns of separation are observed as the interaction between atoms increases, whereas only one of them corresponds to a ferromagnetic transition. The phase diagram suggests that the pattern which the system chooses depends on the interaction strength in the collision channels. With the presence of spin mixing, the distribution of phase region changes because of the interplay between different collision channels. Specifically, the spin exchange benefits the FM transition, while it suppresses the component separation of CS-II pattern. PMID:27549012

  7. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    PubMed

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  8. Liquid polymorphism and density anomaly in a three-dimensional associating lattice gas.

    PubMed

    Girardi, Mauricio; Balladares, Aline L; Henriques, Vera B; Barbosa, Marcia C

    2007-02-14

    The authors investigate the phase diagram of a three-dimensional associating lattice gas (ALG) model. This model combines orientational icelike interactions and "van der Waals" that might be repulsive, representing, in this case, a penalty for distortion of hydrogen bonds. These interactions can be interpreted as two competing distances, making the connection between this model and continuous isotropic soft-core potentials. The authors present Monte Carlo studies of the ALG model showing the presence of two liquid phases, two critical points, and density anomaly.

  9. Two-Dimensional Plasma Density Distributions in Low-Pressure Gas Discharges

    SciTech Connect

    Berlin, E.V.; Dvinin, S.A.; Mikheev, V.V.; Omarov, M.O.; Sviridkina, V. S.

    2004-12-15

    The plasma density distribution in a two-dimensional nonuniform positive column of a low-pressure gas discharge is studied in the hydrodynamic approximation with allowance for ion inertia. Exact solutions are derived for discharges in a rectangular and a cylindrical chamber. Asymptotic solutions near the coordinate origin and near the critical surface are considered. It is shown that, for potential plasma flows, the flow velocity component normal to the plasma boundary is equal to the ion acoustic velocity. The results obtained can be used to analyze the processes occurring in low-pressure plasmochemical reactors.

  10. High-density limit of quasi-two-dimensional dipolar Bose gas

    NASA Astrophysics Data System (ADS)

    Pastukhov, Volodymyr

    2016-09-01

    We consider a simple model of the quasi-two-dimensional dipolar Bose gas confined in the one-dimensional square well potential. All dipoles are assumed to be oriented along the confining axis. By means of hydrodynamic approach it is shown that the general structure of the low-lying excitations can be analyzed exactly. We demonstrate that the problem significantly simplifies in the high-density limit for which the density profile in the confined direction as well as the leading-order contribution to the ground-state energy and spectrum of elementary excitations are calculated. The low-temperature result for the damping rate of the phonon mode is also presented.

  11. The application of laser Rayleigh scattering to gas density measurements in hypersonic helium flows

    NASA Technical Reports Server (NTRS)

    Hoppe, J. C.; Honaker, W. C.

    1979-01-01

    Measurements of the mean static free-stream gas density have been made in two Langley Research Center helium facilities, the 3-inch leg of the high-Reynolds-number helium complex and the 22-inch hypersonic helium tunnel. Rayleigh scattering of a CW argon ion laser beam at 514.5 nm provided the basic physical mechanism. The behavior of the scattered signal was linear, confirmed by a preliminary laboratory study. That study also revealed the need to introduce baffles to reduce stray light. A relatively simple optical system and associated photon-counting electronics were utilized to obtain data for densities from 10 to the 23rd to 10 to the 25th per cu m. The major purpose, to confirm the applicability of this technique in the hypersonic helium flow, was accomplished.

  12. Ultrafast Spin Density Wave Transition in Chromium Governed by Thermalized Electron Gas

    NASA Astrophysics Data System (ADS)

    Nicholson, C. W.; Monney, C.; Carley, R.; Frietsch, B.; Bowlan, J.; Weinelt, M.; Wolf, M.

    2016-09-01

    The energy and momentum selectivity of time- and angle-resolved photoemission spectroscopy is exploited to address the ultrafast dynamics of the antiferromagnetic spin density wave (SDW) transition photoexcited in epitaxial thin films of chromium. We are able to quantitatively extract the evolution of the SDW order parameter Δ through the ultrafast phase transition and show that Δ is governed by the transient temperature of the thermalized electron gas, in a mean field description. The complete destruction of SDW order on a sub-100 fs time scale is observed, much faster than for conventional charge density wave materials. Our results reveal that equilibrium concepts for phase transitions such as the order parameter may be utilized even in the strongly nonadiabatic regime of ultrafast photoexcitation.

  13. The high density phase of the k-NN hard core lattice gas model

    NASA Astrophysics Data System (ADS)

    Nath, Trisha; Rajesh, R.

    2016-07-01

    The k-NN hard core lattice gas model on a square lattice, in which the first k next nearest neighbor sites of a particle are excluded from being occupied by another particle, is the lattice version of the hard disc model in two dimensional continuum. It has been conjectured that the lattice model, like its continuum counterpart, will show multiple entropy-driven transitions with increasing density if the high density phase has columnar or striped order. Here, we determine the nature of the phase at full packing for k up to 820 302 . We show that there are only eighteen values of k, all less than k  =  4134, that show columnar order, while the others show solid-like sublattice order.

  14. Density functional theory of gas-liquid phase separation in dilute binary mixtures

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-01

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas Δ {μ\\text{s}} (the Gibbs energy of transfer) is considerably larger than the thermal energy {{k}\\text{B}}T for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by {{k}\\text{B}}Tn2\\ell\\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right) , where n2\\ell is the solute density added in liquid. For \\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right)\\gg 1 , phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  15. Accurate ab initio potential for the krypton dimer and transport properties of the low-density krypton gas.

    PubMed

    Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo

    2015-05-28

    A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range.

  16. Accurate ab initio potential for the krypton dimer and transport properties of the low-density krypton gas.

    PubMed

    Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo

    2015-05-28

    A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range. PMID:26026447

  17. Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration.

    PubMed

    Christophersen, M; Kjeldsen, P

    2001-12-01

    Field experiments investigating lateral gas transport in soil adjacent to an old landfill in Denmark during a one-year period were conducted. A significant seasonal variation, with low concentrations of methane and high concentrations of carbon dioxide in the summer, caused by methane oxidation was observed. There was a good correlation between pressure above the barometric pressure and the methane concentration in the soil, indicating that advective flow was the controlling process. This was confirmed by calculations. Diurnal measurement during a drop in barometric pressure showed that lateral migration of landfill gas was a very dynamic system and the concentrations of LFG at a specific place and depth changed dramatically within a very short time. The experiments showed that change in barometric pressure was an important factor affecting gas migration at the Skellingsted landfill in Denmark.

  18. Gas Transport and Density Control in the HYLIFE Heavy-Ion Beam Lines

    SciTech Connect

    Debonnel, Christophe S.; Welch, Dale R.; Rose, David V.; Lawrence, Simon S.Yu; Peterson, Per F

    2003-05-15

    The effective propagation and focusing of heavy-ion beams in the final-focus magnet region of inertial fusion target chambers require controlling the background gas density and pressure in the beam tubes. Liquid vortexes will coat the inside of the tubes next to the beam ports and will help eliminate the need for mechanical shutters to mitigate the venting of target chamber background gas into the final-focus magnet region. Before the neutralizing region, the beam space charge is high, and ablation and target debris deposition in the final-focus magnet region may cause voltage breakdown. Previous studies focused on evaluating the amount of target chamber debris reaching the entrance of the beam ports. The TSUNAMI code has now been used to assess the density, temperature, and velocity of the vortex debris transported {approx}3 m up the beam tubes and reaching the final-focus magnet region, assuming that the liquid vortexes are perfectly absorbing surfaces. To further mitigate debris deposition in the final-focus magnet region, and prevent voltage breakdown, a 'magnetic shutter' has been envisaged to divert the debris out of the final-focus region. This shutter will prevent the hot ablation debris from reaching the magnet region and, coupled to some ionizing scheme, will conveniently suppress early ingression of debris into the final-focus magnet region.

  19. Dispersed-phase structure of pressure-atomized sprays at various gas densities

    NASA Astrophysics Data System (ADS)

    Tseng, L.-K.; Wu, P.-K.; Faeth, G. M.

    1992-01-01

    The dispersed-phase structure of the dense-spray region of pressure-atomized sprays was studied for atomization breakup conditions, considering large-scale (9.5 mm initial diameter) water jets in still air at ambient pressures of 1, 2, and 4 atm., with both fully-developed turbulent pipe flow and nonturbulent slug flow at the jet exit. Drop sizes and velocities, and liquid volume fractions and fluxes, were measured using holography. Measurements were compared with predictions based on the locally-homogeneous flow approximation as well as recent correlations of drop sizes after primary breakup of turbulent and nonturbulent liquids. The dispersed-flow region beyond the liquid surface was relatively dilute (liquid volume fractions less than 0.1 percent), with significant separated-flow effects throughout, and evidence of near-limit secondary breakup and drop deformation near the liquid surface. Turbulent primary breakup predictions were satisfactory at atmospheric pressure, where the correlation was developed, but failed to predict observed trends of decreasing drop sizes with increasing gas density due to aerodynamic effects; in contrast, the laminar primary breakup predictions successfully treated the relatively small effects of gas density for this breakup mechanism. Effects of liquid turbulence at the jet exit were qualitatively similar to single-phase flows, yielding faster mixing rates with increased turbulence levels even though drop sizes tended to increase as well.

  20. Very high-density planets: a possible remnant of gas giants.

    PubMed

    Mocquet, A; Grasset, O; Sotin, C

    2014-04-28

    Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets. PMID:24664925

  1. High-speed digital holography for neutral gas and electron density imaging.

    PubMed

    Granstedt, E M; Thomas, C E; Kaita, R; Majeski, R; Baylor, L R; Meitner, S J; Combs, S K

    2016-05-01

    An instrument was developed using digital holographic reconstruction of the wavefront from a CO2 laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1-25 μs pulses from a continuous-wave CO2 laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations. PMID:27250423

  2. Very high-density planets: a possible remnant of gas giants.

    PubMed

    Mocquet, A; Grasset, O; Sotin, C

    2014-04-28

    Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets.

  3. Level density of a Fermi gas and integer partitions: A Gumbel-like finite-size correction

    SciTech Connect

    Roccia, Jerome; Leboeuf, Patricio

    2010-04-15

    We investigate the many-body level density of a gas of noninteracting fermions. We determine its behavior as a function of the temperature and the number of particles. As the temperature increases, and beyond the usual Sommerfeld expansion that describes the degenerate gas behavior, corrections due to a finite number of particles lead to Gumbel-like contributions. We discuss connections with the partition problem in number theory, extreme value statistics, and differences with respect to the Bose gas.

  4. Flowing afterglow measurements of the density dependence of gas-phase ion-ion mutual neutralization reactions

    SciTech Connect

    Shuman, Nicholas S.; Viggiano, Albert A.; Johnsen, Rainer

    2013-05-28

    We have studied the dependence of several ion-ion mutual neutralization (MN) reactions on helium density in the range from 1.6 Multiplication-Sign 10{sup 16} to 1.5 Multiplication-Sign 10{sup 17} cm{sup -3} at 300 K, using the Variable Electron and Neutral Density Attachment Mass Spectrometry method. The rate coefficients of the reactions Ar{sup +}+ Br{sub 2}{sup -}, Ar{sup +}+ SF{sub 6}{sup -}, and Ar{sup +}+ C{sub 7}F{sub 14}{sup -} were found to be independent of gas density over the range studied, in disagreement with earlier observations that similar MN reactions are strongly enhanced at the same gas densities. The cause of the previous enhancement with density is traced to the use of 'orbital-motion-limit' theory to infer ion densities from the currents collected by ion-attracting Langmuir probes in a region where it is not applicable.

  5. Gas dynamics in barred spirals - Gaseous density waves and galactic shocks

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.; Van Albada, G. D.; Huntley, J. M.

    1979-01-01

    Steady-state gasdynamical studies, previously limited to tightly wound normal spiral galaxies, are extended to models of barred spirals with a 5% to 10% perturbing potential. The models show that a strong wave manifestation is an important constituent of the bar structure in many barred spirals and that a density-wave shock wave can form a bar structure as pronounced as the narrow bars often evident in optical photographs of barred spirals. The dark narrow dust lanes often observed along the leading edges of bar structures are identified as tracers of shocks, and it is found that strong shocks along a bar structure during even a small part of a galaxy's lifetime might easily deplete a large enough proportion of the gas to cause a lack of gas in the inner annuli encompassing the bar by the time of the present epoch. It is emphasized that even moderate-amplitude barlike perturbations in the disk can drive large noncircular gas motions, typically 50 to 150 km/s.

  6. Technical Factors Influencing Cone Packing Density Estimates in Adaptive Optics Flood Illuminated Retinal Images

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Lombardo, Giuseppe

    2014-01-01

    Purpose To investigate the influence of various technical factors on the variation of cone packing density estimates in adaptive optics flood illuminated retinal images. Methods Adaptive optics images of the photoreceptor mosaic were obtained in fifteen healthy subjects. The cone density and Voronoi diagrams were assessed in sampling windows of 320×320 µm, 160×160 µm and 64×64 µm at 1.5 degree temporal and superior eccentricity from the preferred locus of fixation (PRL). The technical factors that have been analyzed included the sampling window size, the corrected retinal magnification factor (RMFcorr), the conversion from radial to linear distance from the PRL, the displacement between the PRL and foveal center and the manual checking of cone identification algorithm. Bland-Altman analysis was used to assess the agreement between cone density estimated within the different sampling window conditions. Results The cone density declined with decreasing sampling area and data between areas of different size showed low agreement. A high agreement was found between sampling areas of the same size when comparing density calculated with or without using individual RMFcorr. The agreement between cone density measured at radial and linear distances from the PRL and between data referred to the PRL or the foveal center was moderate. The percentage of Voronoi tiles with hexagonal packing arrangement was comparable between sampling areas of different size. The boundary effect, presence of any retinal vessels, and the manual selection of cones missed by the automated identification algorithm were identified as the factors influencing variation of cone packing arrangements in Voronoi diagrams. Conclusions The sampling window size is the main technical factor that influences variation of cone density. Clear identification of each cone in the image and the use of a large buffer zone are necessary to minimize factors influencing variation of Voronoi diagrams of the cone

  7. A Herschel-SPIRE survey of the Mon R2 giant molecular cloud: analysis of the gas column density probability density function

    NASA Astrophysics Data System (ADS)

    Pokhrel, R.; Gutermuth, R.; Ali, B.; Megeath, T.; Pipher, J.; Myers, P.; Fischer, W. J.; Henning, T.; Wolk, S. J.; Allen, L.; Tobin, J. J.

    2016-09-01

    We present a far-IR survey of the entire Mon R2 giant molecular cloud (GMC) with Herschel-Spectral and Photometric Imaging REceiver cross-calibrated with Planck-High Frequency Instrument data. We fit the spectral energy distributions of each pixel with a greybody function and an optimal beta value of 1.8. We find that mid-range column densities obtained from far-IR dust emission and near-IR extinction are consistent. For the entire GMC, we find that the column density histogram, or column density probability distribution function (N-PDF), is lognormal below ˜1021 cm-2. Above this value, the distribution takes a power law form with an index of -2.15. We analyse the gas geometry, N-PDF shape, and young stellar object (YSO) content of a selection of subregions in the cloud. We find no regions with pure lognormal N-PDFs. The regions with a combination of lognormal and one power-law N-PDF have a YSO cluster and a corresponding centrally concentrated gas clump. The regions with a combination of lognormal and two power-law N-PDF have significant numbers of typically younger YSOs but no prominent YSO cluster. These regions are composed of an aggregate of closely spaced gas filaments with no concentrated dense gas clump. We find that for our fixed scale regions, the YSO count roughly correlates with the N-PDF power-law index. The correlation appears steeper for single power-law regions relative to two power-law regions with a high column density cut-off, as a greater dense gas mass fraction is achieved in the former. A stronger correlation is found between embedded YSO count and the dense gas mass among our regions.

  8. Effects of density stratification in driving zonal flow in gas giants

    NASA Astrophysics Data System (ADS)

    Gastine, T.; Wicht, J.

    2011-12-01

    The banded structures at the surfaces of Jupiter and Saturn are associated with prograde and retrograde zonal flows. The depth of these jets remains however poorly known. Theoretical scenarios range from ``shallow models'', that assume that zonal flows are restricted to a very thin layer close to the surface; to ``deep models'' that suppose that the jets involve the whole molecular shell (typically 104 kms). The latter idea was supported by fully 3-D numerical simulations (e.g. Heimpel, 2005) using the Boussinesq approximation, meaning that the background properties (temperature, density, ...) are constant with radius (Christensen, 2002). While this approximation is suitable for liquid iron cores of planets, it is more questionable in the envelopes of gas giants, where density increases by several orders of magnitude (Guillot, 1999). The anelastic approximation provides a more realistic framework to simulate the dynamics of zonal flows as it allows compressibility effects, while filtering out fast acoustic waves (Lantz & Fan, 1999). Recent anelastic simulations suggest that including compressibility effects yields interesting differences to Boussinesq approaches (Jones, 2009; Showman et al., 2011). Here, we therefore adopt an anelastic formulation to simulate 3-D compressible flows in rapidly rotating shells. We have conducted a systematic parametric study on the effects of background density stratification and analysed the influences on both convective flows and zonal jets. Despite the strong dependence of convection on the density stratification (i.e. the typical lengthscale of convective flows decreases when compressibility increases), the comparison between Boussinesq and anelastic simulations reveals striking common features: the latitudinal extent, the amplitude and the number of zonal jets is found to be nearly independent of the density stratification, provided convection is strongly driven. Mass-weighted properties of the flow (and notably a mass

  9. Current-density functional theory of the friction of ions in an interacting electron gas.

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Pitarke, J. M.; Takada, Y.; Vignale, G.; Chang, Y.-C.

    2007-03-01

    Recently [1], the dynamical contribution to the friction coefficient of an electron gas for ions has been obtained quite generally in terms of the exchange and correlation (xc) kernel of the time-dependent density-functional theory (TDDFT). To implement this approach practically, an efficient approximation, like the local-density approximation (LDA), is needed for the dynamical xc kernel. It is, however, known that the scalar xc kernel of the TDDFT is a nonlocal quantity for which the LDA is not only inaccurate, but also contradictory [2]. Here we recast the theory into the terms of the tensorial xc kernel of the current-density functional theory [3] in which form the LDA can be applied. Our numerical results are in a considerably better agreement with the experimental stopping power of Al than it has been the case within the LDA to the TDDFT. [1] V.U.Nazarov et al., Phys. Rev. B71, 121106 (2005). [2] G.Vignale, Phys. Lett. A209, 206 (1995). [3] G.Vignale and W.Kohn, Phys. Rev. Lett. 77, 2037 (1996).

  10. Dynamical correlation effects on structure factor of spin-polarized two-dimensional electron gas

    SciTech Connect

    Singh, Gurvinder; Moudgil, R. K.; Kumar, Krishan; Garg, Vinayak

    2015-06-24

    We report a theoretical study on static density structure factor S(q) of a spin-polarized two-dimensional electron gas over a wide range of electron number density r{sub s}. The electron correlations are treated within the dynamical version of the self-consistent mean-field theory of Singwi, Tosi, Land, and Sjolander, the so-called qSTLS approach. The calculated S(q) exhibits almost perfect agreement with the quantum Monte Carlo simulation data at r{sub s}=1. However, the extent of agreement somewhat diminishes with increasing r{sub s}, particularly for q around 2k{sub F}. Seen in conjunction with the success of qSTLS theory in dealing with correlations in the unpolarized phase, our study suggests that the otherwise celebrated qSTLS theory is not that good in treating the like-spin correlations.

  11. Strong cylindrical shock wave in a self-gravitating rotational axisymmetric dusty gas with density varying exponentially

    NASA Astrophysics Data System (ADS)

    Nath, Gorakh

    2016-07-01

    The propagation of a strong cylindrical shock wave in a self-gravitating and rotational axisymmetric dusty gas, having variable azimuthal and axial fluid velocities is investigated. The dusty gas is assumed to be a mixture of small solid particles and perfect gas. The equilibrium flow conditions are assumed to be maintained. The density of the mixture and the fluid velocities in the ambient medium are assumed to be varying and obeying an exponential law. The shock wave moves with variable velocity and the total energy of the wave is non-constant. Non-similarity solutions are obtained and the effects of variation of the mass concentration of solid particles in the mixture, the ratio of the density of solid particles to the initial density of the gas, and the gravitational parameter on the flow variables in the region behind the shock are investigated at a given time. Also, a comparison between the isothermal and adiabatic flow is made.

  12. Microstructural factors influencing critical-current densities of high-temperature superconductors

    SciTech Connect

    Suenaga, M.

    1992-01-01

    Microstructural defects are the primary determining factors for the values of critical current densities in superconductors. A review is made to assess, (1) what would be the maximum achievable critical-current density in the oxide superconductors if nearly ideal pinning sites were introduced and (2) what types of pinning defects are currently introduced in these superconductors and how effective are these in pinning the vortices Only the case where the applied field is parallel to the c-axis is considered here.

  13. Microstructural factors influencing critical-current densities of high-temperature superconductors

    SciTech Connect

    Suenaga, M.

    1992-12-31

    Microstructural defects are the primary determining factors for the values of critical current densities in superconductors. A review is made to assess, (1) what would be the maximum achievable critical-current density in the oxide superconductors if nearly ideal pinning sites were introduced? and (2) what types of pinning defects are currently introduced in these superconductors and how effective are these in pinning the vortices? Only the case where the applied field is parallel to the c-axis is considered here.

  14. Synchrotron powder diffraction of silicon: high-quality structure factors and electron density.

    PubMed

    Wahlberg, Nanna; Bindzus, Niels; Bjerg, Lasse; Becker, Jacob; Dippel, Ann Christin; Iversen, Bo Brummerstedt

    2016-01-01

    Crystalline silicon is an ideal compound to test the current state of experimental structure factors and corresponding electron densities. High-quality structure factors have been measured on crystalline silicon with synchrotron powder X-ray diffraction. They are in excellent agreement with benchmark Pendellösung data having comparable accuracy and precision, but acquired in far less time and to a much higher resolution (sin θ/λ < 1.7 Å(-1)). The extended data range permits an experimental modelling of not only the valence electron density but also the core deformation in silicon, establishing an increase of the core density upon bond formation in crystalline silicon. Furthermore, a physically sound procedure for evaluating the standard deviation of powder-derived structure factors has been applied. Sampling statistics inherently account for contributions from photon counts as well as the limited number of diffracting particles, where especially the latter are particularly difficult to handle. PMID:26697864

  15. Spatial association between dissection density and environmental factors over the entire conterminous United States

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Jasiewicz, Jaroslaw; Stepinski, Tomasz; Wang, Jinfeng; Xu, Chengdong; Cang, Xuezhi

    2016-01-01

    Previous studies of land dissection density (D) often find contradictory results regarding factors controlling its spatial variation. We hypothesize that the dominant controlling factors (and the interactions between them) vary from region to region due to differences in each region's local characteristics and geologic history. We test this hypothesis by applying a geographical detector method to eight physiographic divisions of the conterminous United States and identify the dominant factor(s) in each. The geographical detector method computes the power of determinant (q) that quantitatively measures the affinity between the factor considered and D. Results show that the factor (or factor combination) with the largest q value is different for physiographic regions with different characteristics and geologic histories. For example, lithology dominates in mountainous regions, curvature dominates in plains, and glaciation dominates in previously glaciated areas. The geographical detector method offers an objective framework for revealing factors controlling Earth surface processes.

  16. Factors Affecting the Incidence of Angel Wing in White Roman Geese: Stocking Density and Genetic Selection

    PubMed Central

    Lin, M. J.; Chang, S. C.; Lin, T. Y.; Cheng, Y. S.; Lee, Y. P.; Fan, Y. K.

    2016-01-01

    The present study investigated stocking density and genetic lines, factors that may alter the severity and incidence of angel wing (AW), in White Roman geese. Geese (n = 384) from two genetically selected lines (normal- winged line, NL, and angel-winged line, AL, respectively) and one commercial line (CL) were raised in four pens. Following common commercial practice, low-stocking-density (LD), medium-stocking-density, and high-stocking-density treatments were respectively administered to 24, 32, and 40 geese per pen at 0 to 3 weeks (1.92 m2/pen) and 4 to 6 weeks (13.2 m2/pen) of age and to 24, 30, and 36 geese at 7 to 14 weeks (20.0 m2/pen) of age. The results revealed that stocking density mainly affected body weight gain in geese younger than 4 weeks, and that geese subjected to LD had a high body weight at 2 weeks of age. However, the effect of stocking density on the severity score of AW (SSAW) and incidence of AW (IAW) did not differ significantly among the treatments. Differences were observed among the genetic stocks; that is, SSAW and IAW were significantly higher in AL than in NL and CL. Genetic selection generally aggravates AW, complicating its elimination. To effectively reduce IAW, stocking density, a suspected causal factor, should be lower than that presently applied commercially. PMID:26954185

  17. Factors Affecting the Incidence of Angel Wing in White Roman Geese: Stocking Density and Genetic Selection.

    PubMed

    Lin, M J; Chang, S C; Lin, T Y; Cheng, Y S; Lee, Y P; Fan, Y K

    2016-06-01

    The present study investigated stocking density and genetic lines, factors that may alter the severity and incidence of angel wing (AW), in White Roman geese. Geese (n = 384) from two genetically selected lines (normal- winged line, NL, and angel-winged line, AL, respectively) and one commercial line (CL) were raised in four pens. Following common commercial practice, low-stocking-density (LD), medium-stocking-density, and high-stocking-density treatments were respectively administered to 24, 32, and 40 geese per pen at 0 to 3 weeks (1.92 m(2)/pen) and 4 to 6 weeks (13.2 m(2)/pen) of age and to 24, 30, and 36 geese at 7 to 14 weeks (20.0 m(2)/pen) of age. The results revealed that stocking density mainly affected body weight gain in geese younger than 4 weeks, and that geese subjected to LD had a high body weight at 2 weeks of age. However, the effect of stocking density on the severity score of AW (SSAW) and incidence of AW (IAW) did not differ significantly among the treatments. Differences were observed among the genetic stocks; that is, SSAW and IAW were significantly higher in AL than in NL and CL. Genetic selection generally aggravates AW, complicating its elimination. To effectively reduce IAW, stocking density, a suspected causal factor, should be lower than that presently applied commercially.

  18. Measurement of gas density and temperature distributions in strongly rotating UF/sub 6/ using laser-induced fluorescence

    SciTech Connect

    Gentry, R.A.; Caldwell, S.E.; White, R.W.

    1981-01-01

    A new technique for using Laser Induced Fluorescence (LIF) signals to measure the distribution of gas density and temperature in strongly rotating UF/sub 6/ gas is presented. An external pulsed laser is used to excite the rotating UF/sub 6/ gas, producing an exponentially decaying fluorescence signal. A multi-channel fiber optics system simultaneously collects the fluorescence signals emanating from a number of points in the gas. The signals from each optical channel are digitized and processed to determine the fluorescence signal intensity and decay lifetime at each of the points of observation by means of a least squares fitting process. Gas densities and temperatures are then determined from the intensity and lifetime data. A recently constructed LIF probe system is described and an analysis of the unfolding techniques necessary to process the signal data is presented. Preliminary data, obtained in tests of the probe system in a laboratory rotor, are presented.

  19. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    SciTech Connect

    Gonzalez-Lopezlira, Rosa A.; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2013-06-20

    We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet

  20. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOEpatents

    Hagans, Karla; Berzins, Leon; Galkowski, Joseph; Seng, Rita

    1996-01-01

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer's law.

  1. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOEpatents

    Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

    1996-08-27

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

  2. [An analysis on the forearm bone mass density of rural female and the environmental risk factors].

    PubMed

    Hong, X; Lü, H; Yang, J; Li, Z

    2001-07-01

    The distribution of distal and proximal forearm bone mass densities (BMD) with age was discribed and the environmental risk factors of rural female analyzed. A group of 1432 rural female aged 15 and over were sellected. Their demographic characteristics, living and eating habit were obtained by standardized questionnaire. The distal and proximal forearm bone mass density were measured by peripheral dual-energy X ray absorptionmetry (pDEXA). The results showed that the distal and proximal forearm BMDs were increased with age before age 25 and 30 respectively, and reached the peak value at age 30-35. The distal forearm bone density decreased significantly at age 40 while the proximal forearm BMD decreased at age 45. Bone loss rate of the two bone sites was increased significantly at age 50 and reached the peak value at age 55-60. Only the the density of proximal forearm bone, and the year of menopause was the main cause of low bone density. Body weight was the positive factor for bone density at age less than 60. Height only positively affected the proximal forearm bone of those at age 30-45. More ever, drinking tea, parity and educational status may affect distal forearm bone in certain age group while parity, educational status, occupation and marital status were possible risk factors of proximal forearm BMD. It is concluded that environmental risk factors of BMD varied with bone site and age. The prevention of low BMD must rely on subject's age and bone site. The surveillance of low bone density must put the emphasis on spony bone.

  3. Gas-phase reactions of pd with acetone: A theoretical investigation using density functional theory

    NASA Astrophysics Data System (ADS)

    Dai, Guo-Liang; Wang, Chuan-Feng

    2012-12-01

    The gas-phase reaction of palladium atom with acetone is investigated using density functional theory. Geometries and energies of the reactants, intermediates, and products involved are calculated. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of an η2-CH3COCH3-metal complex, followed by C-O, C-H, and C-C activation. These reactions can lead to four different products (PdO + C3H6, PdCH2COCH3 + H, PdCH2 + CH3CHO, and PdCOCH2 + CH4). The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.

  4. Polynomial approximations of thermodynamic properties of arbitrary gas mixtures over wide pressure and density ranges

    NASA Technical Reports Server (NTRS)

    Allison, D. O.

    1972-01-01

    Computer programs for flow fields around planetary entry vehicles require real-gas equilibrium thermodynamic properties in a simple form which can be evaluated quickly. To fill this need, polynomial approximations were found for thermodynamic properties of air and model planetary atmospheres. A coefficient-averaging technique was used for curve fitting in lieu of the usual least-squares method. The polynomials consist of terms up to the ninth degree in each of two variables (essentially pressure and density) including all cross terms. Four of these polynomials can be joined to cover, for example, a range of about 1000 to 11000 K and 0.00001 to 1 atmosphere (1 atm = 1.0133 x 100,000 N/m sq) for a given thermodynamic property. Relative errors of less than 1 percent are found over most of the applicable range.

  5. Diagnosis of gas temperature, electron temperature, and electron density in helium atmospheric pressure plasma jet

    SciTech Connect

    Chang Zhengshi; Zhang Guanjun; Shao Xianjun; Zhang Zenghui

    2012-07-15

    The optical emission spectra of helium atmospheric pressure plasma jet (APPJ) are captured with a three grating spectrometer. The grating primary spectrum covers the whole wavelength range from 200 nm to 900 nm, with the overlapped grating secondary spectrum appearing from 500 nm to 900 nm, which has a higher resolution than that of the grating primary spectrum. So the grating secondary spectrum of OH (A{sup 2}{Sigma} {sup +}({upsilon} Prime = 0) {yields} X{sup 2}{Pi}({upsilon} Double-Prime = 0)) is employed to calculate the gas temperature (T{sub g}) of helium APPJ. Moreover, the electron temperature (T{sub e}) is deduced from the Maxwellian electron energy distribution combining with T{sub g}, and the electron density (n{sub e}) is extracted from the plasma absorbed power. The results are helpful for understanding the physical property of APPJs.

  6. Infrared and density functional theory studies of formic acid hydrate clusters in noble gas matrices

    NASA Astrophysics Data System (ADS)

    Ito, Fumiyuki

    2016-08-01

    Infrared absorption spectra of formic acid hydrate clusters (HCOOH)m(H2O)n have been measured in noble gas matrices (Ar and Kr). The concentration dependence of the spectra and the comparison with a previous experimental study on HCOOH(H2O) and HCOOH(H2O)2 [Geoge et al., Spectrochim. Acta, Part A 60 (2004) 3225] led to the identification of large clusters. Density functional theory calculations at the B3LYP-DCP/6-31+G(2d,2p) level were carried out to determine the anharmonic vibrational properties of the clusters, enabling a consistent assignment of the observed vibrational peaks to specific clusters.

  7. Shear-viscosity to entropy-density ratio of a relativistic hadron gas.

    PubMed

    Demir, Nasser; Bass, Steffen A

    2009-05-01

    Ultrarelativistic heavy-ion collisions at the Brookhaven National Laboratory Relativistic Heavy Ion Collider (RHIC) are thought to have produced a state of matter called the quark-gluon plasma, characterized by a very small shear-viscosity to entropy-density ratio eta/s, near the lower bound predicted for that quantity by anti-de Sitter space/conformal field theory methods. As the produced matter expands and cools, it evolves through a phase described by a hadron gas with rapidly increasing eta/s. We calculate eta/s as a function of temperature in this phase both in and out of chemical equilibrium and find that its value poses a challenge for viscous relativistic hydrodynamics, which requires small values of eta/s in order to successfully describe the collective flow observables at the RHIC. We therefore conclude that the origin of the low viscosity matter at the RHIC must be in the partonic phase of the reaction.

  8. The Carina Nebula and Gum 31 molecular complex - I. Molecular gas distribution, column densities, and dust temperatures

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Burton, Michael; Green, Anne; Braiding, Catherine; Molinari, Sergio; Wong, Graeme; Blackwell, Rebecca; Elia, Davide; Schisano, Eugenio

    2016-03-01

    We report high-resolution observations of the 12CO(1-0) and 13CO(1-0) molecular lines in the Carina Nebula and the Gum 31 region obtained with the 22-m Mopra telescope as part of The Mopra Southern Galactic Plane CO Survey. We cover 8 deg2 from l = 285° to 290°, and from b = -1.5° to +0.5°. The molecular gas column density distributions from both tracers have a similar range of values. By fitting a grey-body function to the observed infrared spectral energy distribution from Herschel maps, we derive gas column densities and dust temperatures. The gas column density has values in the range from 6.3 × 1020 to 1.4 × 1023 cm-2, while the dust temperature has values in the range from 17 to 43 K. The gas column density derived from the dust emission is approximately described by a lognormal function for a limited range of column densities. A high-column-density tail is clearly evident for the gas column density distribution, which appears to be a common feature in regions with active star formation. There are regional variations in the fraction of the mass recovered by the CO emission lines with respect to the total mass traced by the dust emission. These variations may be related to changes in the radiation field strength, variation of the atomic to molecular gas fraction across the observed region, differences in the CO molecule abundance with respect to H2, and evolutionary stage differences of the molecular clouds that compose the Carina Nebula-Gum 31 complex.

  9. Evolution and Instability of Galactic Gas Disks inresponse to A Spiral Density-wave Potential

    NASA Astrophysics Data System (ADS)

    Yuan, Chi; Yen, D. C.; Wang, H. H.

    2006-12-01

    We revisit the classic problem of the response of the gas in a galactic disk to an imposed spiral density-wave potential of stellar origin. The results show the distinct difference between waves generated by resonance excitation and forced oscillation. To avoid the confusion of mixing these two types of waves, we systematically reduce the strength of the spiral potential or the force near the primary Lindblad resonances. So we can study the original problem of shock formation and star formation problem formulated by Roberts (1969). For the cases without self-gravitation of the gas disk, in addition to the primary doubly periodic shocks, the presence of the branch-like structures which correspond to the ultra-harmonic resonances is pronounced. On the other hand, once the self-gravitation is included, unlike the work of Chakrabarti et al. (2003), the sub-structures associated with the ultra-harmonics are not necessarily enhanced by the self-gravity. Their growth may be deteriorated by the growth of the primary shocks. Sub-structures other than those identified with the ultra-harmonics may result from shear instability of Rayleigh's kind or gravitational instability of Toomre's kind. They are responsible for the branches, feathers or chaotic sub-structures observed in nearby galaxies in far infra-red. The work is in parts supported by a grant from National Science Council, Taiwan NSC95-2752-M-001-009-PAE.

  10. Unequal density effect on static structure factor of coupled electron layers

    SciTech Connect

    Saini, L. K. Nayak, Mukesh G.

    2014-04-24

    In order to understand the ordered phase, if any, in a real coupled electron layers (CEL), there is a need to take into account the effect of unequal layer density. Such phase is confirmed by a strong peak in a static structure factor. With the aid of quantum/dynamical version of Singwi, Tosi, Land and Sjölander (so-called qSTLS) approximation, we have calculated the intra- and interlayer static structure factors, S{sub ll}(q) and S{sub 12}(q), over a wide range of density parameter r{sub sl} and interlayer spacing d. In our present study, the sharp peak in S{sub 22}(q) has been found at critical density with sufficiently lower interlayer spacing. Further, to find the resultant effect of unequal density on intra- and interlayer static structure factors, we have compared our results with that of the recent CEL system with equal layer density and isolated single electron layer.

  11. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    DOE PAGESBeta

    Zhang, Lipeng; Xu, Haixuan; Kent, Paul R. C.; Ganesh, Panchapakesan; Cooper, Valentino R.; Zhuang, Houlong L.

    2016-05-06

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO over layers. This insulator-to-metal transition can be explained through the polar catastrophe mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first principles calculations indicate that for nanowire heterostructuremore » geometries a one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity in LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density will decay laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier behavior between 1D and 2D conductivity. Furthermore, our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.« less

  12. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    PubMed Central

    Zhuang, Houlong L.; Zhang, Lipeng; Xu, Haixuan; Kent, P. R. C.; Ganesh, P.; Cooper, Valentino R.

    2016-01-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO layers. This insulator to-metal transition can be explained through the “polar catastrophe” mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified “polar catastrophe” model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first-principles calculations indicate that for nanowire heterostructures a robust one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity at LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density decays laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier dimensionality between 1D and 2D conductivity. Our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases. PMID:27151049

  13. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Zhang, Lipeng; Xu, Haixuan; Kent, P. R. C.; Ganesh, P.; Cooper, Valentino R.

    2016-05-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO layers. This insulator to-metal transition can be explained through the “polar catastrophe” mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified “polar catastrophe” model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first-principles calculations indicate that for nanowire heterostructures a robust one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity at LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density decays laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier dimensionality between 1D and 2D conductivity. Our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.

  14. Diagrammatic expansion for positive density-response spectra: Application to the electron gas

    NASA Astrophysics Data System (ADS)

    Uimonen, A.-M.; Stefanucci, G.; Pavlyukh, Y.; van Leeuwen, R.

    2015-03-01

    In a recent paper [Phys. Rev. B 90, 115134 (2014), 10.1103/PhysRevB.90.115134] we put forward a diagrammatic expansion for the self-energy which guarantees the positivity of the spectral function. In this work we extend the theory to the density-response function. We write the generic diagram for the density-response spectrum as the sum of "partitions." In a partition the original diagram is evaluated using time-ordered Green's functions on the left half of the diagram, antitime-ordered Green's functions on the right half of the diagram, and lesser or greater Green's function gluing the two halves. As there exists more than one way to cut a diagram in two halves, to every diagram corresponds more than one partition. We recognize that the most convenient diagrammatic objects for constructing a theory of positive spectra are the half-diagrams. Diagrammatic approximations obtained by summing the squares of half-diagrams do indeed correspond to a combination of partitions which, by construction, yield a positive spectrum. We develop the theory using bare Green's functions and subsequently extend it to dressed Green's functions. We further prove a connection between the positivity of the spectral function and the analytic properties of the polarizability. The general theory is illustrated with several examples and then applied to solve the long-standing problem of including vertex corrections without altering the positivity of the spectrum. In fact already the first-order vertex diagram, relevant to the study of gradient expansion, Friedel oscillations, etc., leads to spectra which are negative in certain frequency domain. We find that the simplest approximation to cure this deficiency is given by the sum of the zeroth-order bubble diagram, the first-order vertex diagram, and a partition of the second-order ladder diagram. We evaluate this approximation in the three-dimensional homogeneous electron gas and show the positivity of the spectrum for all frequencies and

  15. Lyα EMISSION FROM GREEN PEAS: THE ROLE OF CIRCUMGALACTIC GAS DENSITY, COVERING, AND KINEMATICS

    SciTech Connect

    Henry, Alaina; Scarlata, Claudia; Martin, Crystal L.; Erb, Dawn

    2015-08-10

    We report Hubble Space Telescope/Cosmic Origins Spectrograph observations of the Lyα emission and interstellar absorption lines in a sample of 10 star-forming galaxies at z ∼ 0.2. Selected on the basis of high equivalent width optical emission lines, the sample, dubbed “Green Peas,” make some of the best analogs for young galaxies in an early universe. We detect Lyα emission in all ten galaxies, and 9/10 show double-peaked line profiles suggestive of low H i column density. We measure Lyα/Hα flux ratios of 0.5–5.6, implying that 5%–60% of Lyα photons escape the galaxies. These data confirm previous findings that low-ionization metal absorption (LIS) lines are weaker when Lyα escape fraction and equivalent width are higher. However, contrary to previously favored interpretations of this trend, increased Lyα output cannot be the result of a varying H i covering: the Lyman absorption lines (Lyβ and higher) show a covering fraction near unity for gas with N{sub H} {sub i} ≳ 10{sup 16} cm{sup −2}. Moreover, we detect no correlation between Lyα escape and the outflow velocity of the LIS lines, suggesting that kinematic effects do not explain the range of Lyα/Hα flux ratios in these galaxies. In contrast, we detect a strong anticorrelation between the Lyα escape fraction and the velocity separation of the Lyα emission peaks, driven primarily by the velocity of the blue peak. As this velocity separation is sensitive to H i column density, we conclude that Lyα escape in these Green Peas is likely regulated by the H i column density rather than outflow velocity or H i covering fraction.

  16. Form factor dispersion at La M5,4 edges and average density of resonant atoms.

    PubMed

    Smadici, S; Lee, J C T; Logvenov, G; Bozovic, I; Abbamonte, P

    2014-01-15

    Resonant soft x-ray scattering on complex oxide superlattices shows very large variations in the superlattice reflection position and intensity near La M5,4 edges. Resonant dispersion of the La x-ray form factor describes the observations well. We determine the average density of resonant La atoms and the thickness of superlattice layers. PMID:24318961

  17. Dust-to-gas ratio, XCO factor and CO-dark gas in the Galactic anticentre: an observational study

    NASA Astrophysics Data System (ADS)

    Chen, B.-Q.; Liu, X.-W.; Yuan, H.-B.; Huang, Y.; Xiang, M.-S.

    2015-04-01

    We investigate the correlation between extinction and H I and CO emission at intermediate and high Galactic latitudes (|b| > 10°) within the footprint of the Xuyi Schmidt Telescope Photometric Survey of the Galactic anticentre (XSTPS-GAC) on small and large scales. In Paper I, we present a three-dimensional (3D) dust extinction map within the footprint of XSTPS-GAC, covering a sky area of over 6000 deg2 at a spatial angular resolution of 6 arcmin. In the current work, the map is combined with data from gas tracers, including H I data from the Galactic Arecibo L-band Feed Array H I survey and CO data from the Planck mission, to constrain the values of dust-to-gas ratio DGR = AV/N(H) and CO-to-H2 conversion factor XCO = N(H2)/WCO for the entire GAC footprint excluding the Galactic plane, as well as for selected star-forming regions (such as the Orion, Taurus and Perseus clouds) and a region of diffuse gas in the northern Galactic hemisphere. For the whole GAC footprint, we find DGR = (4.15 ± 0.01) × 10-22 mag cm2 and XCO = (1.72 ± 0.03) × 1020 cm- 2 (K km s- 1)- 1. We have also investigated the distribution of `CO-dark' gas (DG) within the footprint of GAC and found a linear correlation between the DG column density and the V-band extinction: N(DG) ˜eq 2.2 × 10^{21} (A_V - AcV) cm^{-2}. The mass fraction of DG is found to be fDG ˜ 0.55 towards the Galactic anticentre, which is respectively about 23 and 124 per cent of the atomic and CO-traced molecular gas in the same region. This result is consistent with the theoretical work of Papadopoulos et al. but much larger than that expected in the H2 cloud models by Wolfire et al.

  18. Estimated uncertainty of calculated liquefied natural gas density from a comparison of NBS and Gaz de France densimeter test facilities

    SciTech Connect

    Siegwarth, J.D.; LaBrecque, J.F.; Roncier, M.; Philippe, R.; Saint-Just, J.

    1982-12-16

    Liquefied natural gas (LNG) densities can be measured directly but are usually determined indirectly in custody transfer measurement by using a density correlation based on temperature and composition measurements. An LNG densimeter test facility at the National Bureau of Standards uses an absolute densimeter based on the Archimedes principle, while a test facility at Gaz de France uses a correlation method based on measurement of composition and density. A comparison between these two test facilities using a portable version of the absolute densimeter provides an experimental estimate of the uncertainty of the indirect method of density measurement for the first time, on a large (32 L) sample. The two test facilities agree for pure methane to within about 0.02%. For the LNG-like mixtures consisting of methane, ethane, propane, and nitrogen with the methane concentrations always higher than 86%, the calculated density is within 0.25% of the directly measured density 95% of the time.

  19. Impact of density and environmental factors on population fluctuations in a migratory passerine.

    PubMed

    Pasinelli, Gilberto; Schaub, Michael; Häfliger, Guido; Frey, Monika; Jakober, Hans; Müller, Mathis; Stauber, Wolfgang; Tryjanowski, Piotr; Zollinger, Jean-Luc; Jenni, Lukas

    2011-01-01

    1. Populations of plants and animals typically fluctuate because of the combined effects of density-dependent and density-independent processes. The study of these processes is complicated by the fact that population sizes are typically not known exactly, because population counts are subject to sampling variance. Although the existence of sampling variance is broadly acknowledged, relatively few studies on time-series data have accounted for it, which can result in wrong inferences about population processes. 2. To increase our understanding of population dynamics, we analysed time series from six Central European populations of the migratory red-backed shrike Lanius collurio by simultaneously assessing the strength of density dependence, process and sampling variance. In addition, we evaluated hypotheses predicting effects of factors presumed to operate on the breeding grounds, at stopover sites in eastern Africa during fall and spring migration and in the wintering grounds in southern Africa. We used both simple and state-space formulations of the Gompertz equation to model population size. 3. Across populations and modelling approaches, we found consistent evidence for negative density-dependent population regulation. Further, process variance contributed substantially to variation in population size, while sampling variance did not. Environmental conditions in eastern and southern Africa appear to influence breeding population size, as rainfall in the Sahel during fall migration and in the south African wintering areas were positively related to population size in the following spring in four of six populations. In contrast, environmental conditions in the breeding grounds were not related to population size. 4. Our findings suggest negative density-dependent regulation of red-backed shrike breeding populations and are consistent with the long-standing hypothesis that conditions in the African staging and wintering areas influence population numbers of species

  20. Gas density does not affect pulmonary acoustic transmission in normal men.

    PubMed

    Mahagnah, M; Gavriely, N

    1995-03-01

    Fremitus, the transmission of sound and vibration from the mouth to the chest wall, has long been used clinically to examine the pulmonary system. Recently, modern technology has become available to measure the acoustic transfer function (TF) and transit times (TT) of the pulmonary system. Because sound speed is inversely proportional to the square root of gas density in free gas, but not in porous media, we measured the effect of air and Heliox (80% He-20% O2) breathing on pulmonary sound transmission in six healthy subjects to investigate the mechanism of sound transmission. Wide-band noise (75-2,000 Hz) was "injected" into the mouth and picked up over the trachea and chest wall. The averaged power spectra, TF, phase, and coherence were calculated using a fast Fourier transform-based algorithm. The phase data were used to calculate TT as a function of frequency. TF was found to consist of a low-pass filter property with essentially flat transmitted energy to 300 Hz and exponential decline to 600 Hz at the anterior right upper lobe (CR) and flat transmission to 100 Hz with exponential decline to 150 Hz at the right posterior base (BR). TF was not affected by breathing Heliox. The average TT values, calculated from the slopes of the averaged phase, were 1.5 +/- 0.5 ms for trachea to CR and 5.2 +/- 0.5 ms for trachea to BR transmission during air breathing. During Heliox breathing, the values of TT were 1.5 +/- 0.5 ms and 4.9 +/- 0.5 ms from the trachea to CR and from the trachea to BR locations, respectively. These results suggest that sound transmission in the respiratory system is dominated by wave propagation through the parenchymal porous structure. PMID:7775338

  1. Brief Communication: Reproductive and lifestyle risk factors and mammographic density in Mexican women

    PubMed Central

    Rice, Megan S.; Bertrand, Kimberly A.; Lajous, Martin; Tamimi, Rulla M.; Torres, Gabriela; López-Ridaura, Ruy; Romieu, Isabelle

    2016-01-01

    Purpose Several breast cancer risk factors have been consistently associated with mammographic density (MD); however, data are limited for Hispanic women. Methods We examined data from 1007 premenopausal and 600 postmenopausal women in the Mexican Teachers’ Cohort (MTC). Multivariable linear regression was used to estimate associations between risk factors and MD. Results Among premenopausal women, age, current body mass index (BMI), BMI at age 18, and weight change since age 18 were inversely associated with percent MD, whereas benign breast disease (BBD), alcohol intake, and breastfeeding ≥12 months were associated with higher percent MD. Among postmenopausal women, age, current BMI, BMI at age 18, weight change since age 18, and speaking/having parents who speak an indigenous language were inversely associated with percent MD, while BBD and greater age at natural menopause, were positively associated with percent MD. Other breast cancer risk factors, such as age at menarche, parity, and age at first pregnancy, were not significantly associated with density in either premenopausal or postmenopausal women. Conclusion Results from the MTC are generally consistent with predictors of mammographic density observed in primarily non-Hispanic white populations; however, certain risk factors (e.g., parity) were not significantly associated with MD. PMID:26475982

  2. Oscillation spectrum of an electron gas with a small density fraction of ions

    SciTech Connect

    Yeliseyev, Yu. N.

    2010-07-15

    The problem is solved of the stability of a nonneutral plasma that completely fills a waveguide and consists of magnetized cold electrons and a small density fraction of ions produced by ionization of the atoms of the background gas. The ions are described by an anisotropic distribution function that takes into account the characteristic features of their production in crossed electric and magnetic fields. By solving a set of Vlasov-Poisson equations analytically, a dispersion equation is obtained that is valid over the entire range of allowable electric and magnetic field strengths. The solutions to the dispersion equation for the m = +1 main azimuthal mode are found numerically. The plasma oscillation spectrum consists of the families of Trivelpiece-Gould modes at frequencies equal to the frequencies of oblique Langmuir oscillations Doppler shifted by the electron rotation and also of the families of 'modified' ion cyclotron (MIC) modes at frequencies close to the harmonics of the MIC frequency (the frequencies of radial ion oscillations in crossed fields). It is shown that, over a wide range of electric and magnetic field strengths, Trivelpiece-Gould modes have low frequencies and interact with MIC modes. Trivelpiece-Gould modes at frequencies close to the harmonics of the MIC frequency with nonnegative numbers are unstable. The lowest radial Trivelpiece-Gould mode at a frequency close to the zeroth harmonic of the MIC frequency has the fastest growth rate. MIC modes are unstable over a wide range of electric and magnetic field strengths and grow at far slower rates. For a low ion density, a simplified dispersion equation is derived perturbatively that accounts for the nonlocal ion contribution, but, at the same time, has the form of a local dispersion equation for a plasma with a transverse current and anisotropic ions. The solutions to the simplified dispersion equation are obtained analytically. The growth rates of the Trivelpiece-Gould modes and the behavior

  3. Oscillation spectrum of an electron gas with a small density fraction of ions

    NASA Astrophysics Data System (ADS)

    Yeliseyev, Yu. N.

    2010-07-01

    The problem is solved of the stability of a nonneutral plasma that completely fills a waveguide and consists of magnetized cold electrons and a small density fraction of ions produced by ionization of the atoms of the background gas. The ions are described by an anisotropic distribution function that takes into account the characteristic features of their production in crossed electric and magnetic fields. By solving a set of Vlasov-Poisson equations analytically, a dispersion equation is obtained that is valid over the entire range of allowable electric and magnetic field strengths. The solutions to the dispersion equation for the m = +1 main azimuthal mode are found numerically. The plasma oscillation spectrum consists of the families of Trivelpiece-Gould modes at frequencies equal to the frequencies of oblique Langmuir oscillations Doppler shifted by the electron rotation and also of the families of “modified” ion cyclotron (MIC) modes at frequencies close to the harmonics of the MIC frequency (the frequencies of radial ion oscillations in crossed fields). It is shown that, over a wide range of electric and magnetic field strengths, Trivelpiece-Gould modes have low frequencies and interact with MIC modes. Trivelpiece-Gould modes at frequencies close to the harmonics of the MIC frequency with nonnegative numbers are unstable. The lowest radial Trivelpiece-Gould mode at a frequency close to the zeroth harmonic of the MIC frequency has the fastest growth rate. MIC modes are unstable over a wide range of electric and magnetic field strengths and grow at far slower rates. For a low ion density, a simplified dispersion equation is derived perturbatively that accounts for the nonlocal ion contribution, but, at the same time, has the form of a local dispersion equation for a plasma with a transverse current and anisotropic ions. The solutions to the simplified dispersion equation are obtained analytically. The growth rates of the Trivelpiece-Gould modes and the

  4. Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array.

    PubMed

    Wei, Shuhua; Zheng, Mengjie; Xiang, Quan; Hu, Hailong; Duan, Huigao

    2016-09-01

    Low-cost surface-enhanced Raman scattering (SERS) substrate with the largest possible enhancement factor is highly desirable for SERS-based sensing applications. In this work, we systematically investigated how the density of plasmonic nanostructures affects the intensity of SERS signal. By directly depositing of metallic layer on electron-beam-lithography defined dielectric nanoposts, plasmonic structures array with different densities were reliably fabricated for SERS measurements. Two main experimental phenomena were obtained: (1) the SERS intensity did not increase monotonically when increasing the density of plasmonic structures, and (2) these ultra-dense plasmonic structures resulted in the maximal SERS intensity. These results could be well explained based on finite-difference time domain (FDTD) simulations and provide robust experimental evidences to guide the design of the best possible SERS substrate. PMID:27607665

  5. Departures from local thermodynamic equilibrium in cutting arc plasmas derived from electron and gas density measurements using a two-wavelength quantitative Schlieren technique

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2011-03-15

    A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.

  6. Noble gas adsorption in two-dimensional zeolites: a combined experimental and density functional theory study

    NASA Astrophysics Data System (ADS)

    Wang, Mengen; Zhong, Jianqiang; Boscoboinik, Jorge Anibal; Lu, Deyu

    Zeolites are important industrial catalysts with porous three-dimensional structures. The catalytically active sites are located inside the pores, thus rendering them inaccessible for surface science measurements. We synthesized a two-dimensional (2D) zeolite model system, consisting of an (alumino)silicate bilayer weakly bound to a Ru (0001) surface. The 2D zeolite is suitable for surface science studies; it allows a detailed characterization of the atomic structure of the active site and interrogation of the model system during the catalytic reaction. As an initial step, we use Ar adsorption to obtain a better understanding of the atomic structure of the 2D zeolite. In addition, atomic level studies of rare gas adsorption and separation by zeolite are important for its potential application in nuclear waste sequestration. Experimental studies found that Ar atoms can be trapped inside the 2D-zeolite, raising an interesting question on whether Ar atoms are trapped inside the hexagonal prism nano-cages or at the interface between the (alumino)silicate bilayer and Ru(0001), or both. DFT calculations using van der Waals density functionals were carried out to determine the preferred Ar adsorption sites and the corresponding adsorption energies. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  7. Novelty detection by multivariate kernel density estimation and growing neural gas algorithm

    NASA Astrophysics Data System (ADS)

    Fink, Olga; Zio, Enrico; Weidmann, Ulrich

    2015-01-01

    One of the underlying assumptions when using data-based methods for pattern recognition in diagnostics or prognostics is that the selected data sample used to train and test the algorithm is representative of the entire dataset and covers all combinations of parameters and conditions, and resulting system states. However in practice, operating and environmental conditions may change, unexpected and previously unanticipated events may occur and corresponding new anomalous patterns develop. Therefore for practical applications, techniques are required to detect novelties in patterns and give confidence to the user on the validity of the performed diagnosis and predictions. In this paper, the application of two types of novelty detection approaches is compared: a statistical approach based on multivariate kernel density estimation and an approach based on a type of unsupervised artificial neural network, called the growing neural gas (GNG). The comparison is performed on a case study in the field of railway turnout systems. Both approaches demonstrate their suitability for detecting novel patterns. Furthermore, GNG proves to be more flexible, especially with respect to dimensionality of the input data and suitability for online learning.

  8. Stereolithography based method of creating custom gas density profile targets for high intensity laser-plasma experiments.

    PubMed

    Jolly, S W; He, Z; McGuffey, C; Schumaker, W; Krushelnick, K; Thomas, A G R

    2012-07-01

    Laser based stereolithography methods are shown to be useful for production of gas targets for high intensity laser-plasma interaction experiments. A cylindrically symmetric nozzle with an opening of approximately 100 μm and a periodic attachment of variable periodicity are outlined in detail with associated density profile characterization. Both components are durable within the limits of relevant experiments.

  9. Freeze-out temperature and density in heavy-ion collisions at liquid-gas phase transition

    SciTech Connect

    Shlomo, Shalom

    2010-08-04

    The study of properties of hot nuclei and the search for liquid-gas phase transition in nuclei have been the subjects of many investigations in recent decades. We present a short and limited review of the theoretical and experimental status of determining the temperature and density of the disassembling nucleus from ratios of the yields of emitted fragments.

  10. Density Functional Computations and Mass Spectrometric Measurements. Can this Coupling Enlarge the Knowledge of Gas-Phase Chemistry?

    NASA Astrophysics Data System (ADS)

    Marino, T.; Russo, N.; Sicilia, E.; Toscano, M.; Mineva, T.

    A series of gas-phase properties of the systems has been investigated by using different exchange-correlation potentials and basis sets of increasing size in the framework of Density Functional theory with the aim to determine a strategy able to give reliable results with reasonable computational efforts.

  11. The absorption jump factor of effective atomic number and electronic density for some barium compounds

    NASA Astrophysics Data System (ADS)

    Polat, Recep; Yalçın, Zeynel; İçelli, Orhan

    2011-02-01

    Some photonic energy absorption parameters such as the mass attenuation coefficient μt, the molecular σM, atomic σA, the electronic cross-sections σE, the effective atomic number Zeff and the electron density NE have been calculated and measured. We have gained the terms jump factor of effective atomic number JZeff and jump factor of electronic density JNE to literature with the help of these fundamental parameters. Also, we want to obtain both XAFS effect and the applicability of mixture rule. The most interesting finding in this study is that the trend of the total molecular, atomic and electronic cross-sections is getting beyond the measure by the absorption edge and these cross-sections are affected in the region of absorption edge. The obtained results have been compared with some other theoretical values given earlier.

  12. Evaluation of the effect of cola drinks on bone mineral density and associated factors.

    PubMed

    Ogur, Recai; Uysal, Bulent; Ogur, Torel; Yaman, Halil; Oztas, Emin; Ozdemir, Aysegul; Hasde, Metin

    2007-05-01

    The aim of the study was to determine bone mineral density changes caused by consumption of cola drinks and the associated factors. Thirty Sprague-Dawley rats were divided into four groups. Groups 1 and 2, consisting of 10 male and 10 female rats, respectively, were provided with as much food, water and cola drinks as they wanted. Groups 3 and 4, consisting of five rats each, received only rat chow and water. The bone mineral density of the rats was measured using dual energy X-ray absorptiometry at the end of 30 days. The blood values and weights of the animals were also determined. The oesophagus and kidneys were removed for histopathological examination. The weight gain was higher in the groups consuming cola drinks than the control group rats (P < 0.05). Water consumption decreased 5.9 times while total fluid consumption increased 1.6-1.9 times in the group consuming cola drinks. No significant change was detected in the blood calcium levels. There was a significant decrease in the bone mineral density of test groups when compared to the control groups (P < 0.05). While we did not detect any pathological oesophageal changes in the rats consuming cola drinks, examination of the kidneys revealed general glomerular congestion and intertubular bleeding. We suggest that the decrease in bone mineral density might be related to the renal damage caused by cola drinks in addition to other related factors. PMID:17448120

  13. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  14. Transverse-Momentum Parton Densities:. Gauge Links, Divergences and Soft Factor

    NASA Astrophysics Data System (ADS)

    Cherednikov, I. O.; Stefanis, N. G.

    2011-02-01

    We discuss the state-of-the-art of the theory of transverse-momentum dependent parton densities (TMDs), paying special attention to their renormalization properties, the structure of the gauge links in the operator definition, and the role of the soft factor in the factorization formula within the TMD approach to the semi-inclusive processes. We argue that the use of the lightcone axial gauge offers certain advantages for a consistent definition of TMDs as compared to the off-the-light-cone gauges, or covariant gauges with off-the-lightcone gauge links.

  15. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    USGS Publications Warehouse

    Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.

    1997-01-01

    Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.

  16. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    NASA Astrophysics Data System (ADS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-11-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm-3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source-target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  17. [Relationship of dengue fever epidemic to aedes density changed by climate factors in Guangdong Province].

    PubMed

    Yi, Bintang; Zhang, Zhiying; Xu, Dezhong; Xi, Yunzhen

    2003-03-01

    In order to explore and quantify the relation between probability of dengue episode and aedes density, and climate factors, and also, to provide scientific approach for prevention and supervision of dengue fever, data on dengue fever cases, aedes vector's supervision and climate factors such as average air temperature, lowest air temperature, highest air temperature, sunlight, rainfall and relative humidity were collected and, were analyzed by correlation analysis, stepwise regression and logistic regression method. The results showed that the logistic regression equation: p (1) = 1/[1 + e-(-7.750 + 0.391 BI)], indicating that meteorology parameter correlating with breteau index(BI) were rainfall, sunlight, average air temperature, lowest average air temperature and relative humidity; by stepwise regression analysis, the regression equation: viz.: YBI = 24.800 + 0.826 X1 + 0.020 X2 - 0.418X3, X1 representing lowest average air temperature, and X2 representing rainfall and X3 representing relative humidity. It is suggested that the influence of climate factor on vector aedes density is complicated. But its primary influence factors are lowest average air temperature, rainfall and relative humidity. The primary influence factors of dengue episode are breteau index.

  18. Positive feedback loops for factor V and factor VII activation supply sensitivity to local surface tissue factor density during blood coagulation.

    PubMed

    Balandina, A N; Shibeko, A M; Kireev, D A; Novikova, A A; Shmirev, I I; Panteleev, M A; Ataullakhanov, F I

    2011-10-19

    Blood coagulation is triggered not only by surface tissue factor (TF) density but also by surface TF distribution. We investigated recognition of surface TF distribution patterns during blood coagulation and identified the underlying molecular mechanisms. For these investigations, we employed 1), an in vitro reaction-diffusion experimental model of coagulation; and 2), numerical simulations using a mathematical model of coagulation in a three-dimensional space. When TF was uniformly immobilized over the activating surface, the clotting initiation time in normal plasma increased from 4 min to >120 min, with a decrease in TF density from 100 to 0.7 pmol/m(2). In contrast, surface-immobilized fibroblasts initiated clotting within 3-7 min, independently of fibroblast quantity and despite a change in average surface TF density from 0.5 to 130 pmol/m(2). Experiments using factor V-, VII-, and VIII-deficient plasma and computer simulations demonstrated that different responses to these two TF distributions are caused by two positive feedback loops in the blood coagulation network: activation of the TF-VII complex by factor Xa, and activation of factor V by thrombin. This finding suggests a new role for these reactions: to supply sensitivity to local TF density during blood coagulation.

  19. Low density of sympathetic nerve fibres and increased density of brain derived neurotrophic factor positive cells in RA synovium

    PubMed Central

    Weidler, C; Holzer, C; Harbuz, M; Hofbauer, R; Angele, P; Scholmerich, J; Straub, R

    2005-01-01

    Objective: To investigate the correlation between density of nerve fibres and the presence of BDNF+ cells. Methods: Densities of nerve fibres and BDNF+ cells were detected by quantitative immunohistochemistry in fresh synovial tissue from 52 patients with RA, 59 with OA, and 26 controls (Co). BDNF was also detected by in situ hybridisation. Results: Sympathetic nerve fibre density was similar in Co and OA but markedly reduced in RA (p = 0.002), whereas density of substance P positive (SP+) sensory nerve fibres was lower in OA than in Co and RA (p = 0.002). The ratio of sympathetic/SP+ sensory nerve fibre density was highest in OA and Co, followed by RA. The correlation between density of sympathetic nerve fibres and SP+ sensory nerve fibres in OA (R = 0.425, p = 0.001) was strongly positive, had a positive trend in Co (R = 0.243, NS), but was negative in RA (R = –0.292, p = 0.040). In RA and OA tissue the density of BDNF+ cells was high in sublining areas but markedly lower in Co (p = 0.001). BDNF+ cell density correlated positively with the ratio of sympathetic/SP+ sensory nerve fibre density in Co (R = 0.433, p = 0.045) and in OA (R = 0.613, p = 0.015), but not in RA (R = 0.101, NS). Immunohistochemical double staining demonstrated that some macrophages and fibroblasts were positive for BDNF. Conclusions: The correlation of density of SP+ sensory with sympathetic nerve fibres was positive in Co and OA but negative in RA. BDNF may have a stimulatory role on growth of sympathetic in relation to SP+ sensory nerve fibres in Co and OA, but not in RA. PMID:15608299

  20. Scaling of stomatal size and density optimizes allocation of leaf epidermal space for gas exchange in angiosperms

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo Jan; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2015-04-01

    Stomata on plant leaves are key traits in the regulation of terrestrial fluxes of water and carbon. The basic morphology of stomata consists of a diffusion pore and two guard cells that regulate the exchange of CO2 and water vapour between the leaf interior and the atmosphere. This morphology is common to nearly all land plants, yet stomatal size (defined as the area of the guard cell pair) and stomatal density (the number of stomata per unit area) range over three orders of magnitude across species. Evolution of stomatal sizes and densities is driven by selection pressure on the anatomical maximum stomatal conductance (gsmax), which determines the operational range of leaf gas exchange. Despite the importance of stomata traits for regulating leaf gas exchange, a quantitative understanding of the relation between adaptation of gsmax and the underlying co-evolution of stomatal sizes and densities is still lacking. Here we develop a theoretical framework for a scaling relationship between stomatal sizes and densities within the constraints set by the allocation of epidermal space and stomatal gas exchange. Our theory predicts an optimal scaling relationship that maximizes gsmax and minimizes epidermal space allocation to stomata. We test whether stomatal sizes and densities reflect this optimal scaling with a global compilation of stomatal trait data on 923 species reflecting most major clades. Our results show optimal scaling between stomatal sizes and densities across all species in the compiled data set. Our results also show optimal stomatal scaling across angiosperm species, but not across gymnosperm and fern species. We propose that the evolutionary flexibility of angiosperms to adjust stomatal sizes underlies their optimal allocation of leaf epidermal space to gas exchange.

  1. The density factor in the synthesis of carbon nanotube forest by injection chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Call, R. W.; Read, C. G.; Mart, C.; Shen, T.-C.

    2012-12-01

    Beneath the seeming straight-forwardness of growing carbon nanotube (CNT) forests by the injection chemical vapor deposition (CVD) method, control of the forest morphology on various substrates is yet to be achieved. Using ferrocene dissolved in xylene as the precursor, we demonstrate that the concentration of ferrocene and the injection rate of the precursor dictate the CNT density of these forests. However, CNT density will also be affected by the substrates and the growth temperature which determine the diffusion of the catalyst adatoms. The CNT growth rate is controlled by the temperature and chemical composition of the gases in the CVD reactor. We show that the final height of the forest is diffusion limited, at least in the conditions of our experiments. Because of the proximity and entanglement of the CNTs in a forest, the growing CNTs can lift-up the inactive CNTs resulting in reduced density toward the base of the forest unless the nucleation rate of the new catalyst particles is sufficiently high to replenish the inactive catalyst particles. Significant loss of CNT attachment by the lift-up effect reduces the adhesion of the forest to the substrate. Optimizing the ferrocene concentration in the precursor, precursor injection rate, gas mixture, substrate, and temperature is necessary to achieve desired forest morphology for specific applications.

  2. 40 CFR Table W - 1A of Subpart W-Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Onshore Petroleum and Natural Gas Production W Table W Protection of Environment... Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-1A Table W-1A of Subpart W—Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production Onshore petroleum...

  3. SPIRAL DENSITY WAVES IN M81. II. HYDRODYNAMIC SIMULATIONS OF THE GAS RESPONSE TO STELLAR SPIRAL DENSITY WAVES

    SciTech Connect

    Wang, Hsiang-Hsu; Lee, Wing-Kit; Taam, Ronald E.; Feng, Chien-Chang; Lin, Lien-Hsuan

    2015-02-20

    The gas response to the underlying stellar spirals is explored for M81 using unmagnetized hydrodynamic simulations. Constrained within the uncertainty of observations, 18 simulations are carried out to study the effects of self-gravity and to cover the parameter space comprising three different sound speeds and three different arm strengths. The results are confronted with the data observed at wavelengths of 8 μm and 21 cm. In the outer disk, the ring-like structure observed in the 8 μm image is consistent with the response of cold neutral medium with an effective sound speed 7 km s{sup –1}. For the inner disk, the presence of spiral shocks can be understood as a result of 4:1 resonances associated with the warm neutral medium with an effective sound speed 19 km s{sup –1}. Simulations with a single effective sound speed alone cannot simultaneously explain the structures in the outer and inner disks. Instead this justifies the coexistence of cold and warm neutral media in M81. The anomalously high streaming motions observed in the northeast arm and the outward shifted turning points in the iso-velocity contours seen along the southwest arm are interpreted as signatures of interactions with companion galaxies. The level of simulated streaming motions narrows down the uncertainty of the observed arm strength toward larger amplitudes.

  4. Calculation of correction factors for ionization chamber measurements with small fields in low-density media.

    PubMed

    Pisaturo, O; Pachoud, M; Bochud, F O; Moeckli, R

    2012-07-21

    The quantity of interest for high-energy photon beam therapy recommended by most dosimetric protocols is the absorbed dose to water. Thus, ionization chambers are calibrated in absorbed dose to water, which is the same quantity as what is calculated by most treatment planning systems (TPS). However, when measurements are performed in a low-density medium, the presence of the ionization chamber generates a perturbation at the level of the secondary particle range. Therefore, the measured quantity is close to the absorbed dose to a volume of water equivalent to the chamber volume. This quantity is not equivalent to the dose calculated by a TPS, which is the absorbed dose to an infinitesimally small volume of water. This phenomenon can lead to an overestimation of the absorbed dose measured with an ionization chamber of up to 40% in extreme cases. In this paper, we propose a method to calculate correction factors based on the Monte Carlo simulations. These correction factors are obtained by the ratio of the absorbed dose to water in a low-density medium □D(w,Q,V1)(low) averaged over a scoring volume V₁ for a geometry where V₁ is filled with the low-density medium and the absorbed dose to water □D(w,QV2)(low) averaged over a volume V₂ for a geometry where V₂ is filled with water. In the Monte Carlo simulations, □D(w,QV2)(low) is obtained by replacing the volume of the ionization chamber by an equivalent volume of water, according to the definition of the absorbed dose to water. The method is validated in two different configurations which allowed us to study the behavior of this correction factor as a function of depth in phantom, photon beam energy, phantom density and field size.

  5. Percent Mammographic Density and Dense Area as Risk Factors for Breast Cancer.

    PubMed

    Rauh, C; Hack, C C; Häberle, L; Hein, A; Engel, A; Schrauder, M G; Fasching, P A; Jud, S M; Ekici, A B; Loehberg, C R; Meier-Meitinger, M; Ozan, S; Schulz-Wendtland, R; Uder, M; Hartmann, A; Wachter, D L; Beckmann, M W; Heusinger, K

    2012-08-01

    Purpose: Mammographic characteristics are known to be correlated to breast cancer risk. Percent mammographic density (PMD), as assessed by computer-assisted methods, is an established risk factor for breast cancer. Along with this assessment the absolute dense area (DA) of the breast is reported as well. Aim of this study was to assess the predictive value of DA concerning breast cancer risk in addition to other risk factors and in addition to PMD. Methods: We conducted a case control study with hospital-based patients with a diagnosis of invasive breast cancer and healthy women as controls. A total of 561 patients and 376 controls with available mammographic density were included into this study. We describe the differences concerning the common risk factors BMI, parital status, use of hormone replacement therapy (HRT) and menopause between cases and controls and estimate the odds ratios for PMD and DA, adjusted for the mentioned risk factors. Furthermore we compare the prediction models with each other to find out whether the addition of DA improves the model. Results: Mammographic density and DA were highly correlated with each other. Both variables were as well correlated to the commonly known risk factors with an expected direction and strength, however PMD (ρ = -0.56) was stronger correlated to BMI than DA (ρ = -0.11). The group of women within the highest quartil of PMD had an OR of 2.12 (95 % CI: 1.25-3.62). This could not be seen for the fourth quartile concerning DA. However the assessment of breast cancer risk could be improved by including DA in a prediction model in addition to common risk factors and PMD. Conclusions: The inclusion of the parameter DA into a prediction model for breast cancer in addition to established risk factors and PMD could improve the breast cancer risk assessment. As DA is measured together with PMD in the process of computer-assisted assessment of PMD it might be considered to include it as one additional breast

  6. Propagation of a strong spherical shock wave in a gravitating or non-gravitating dusty gas with exponentially varying density

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2016-06-01

    The propagation of a strong spherical shock wave in a dusty gas with or without self-gravitational effects is investigated in the case of isothermal and adiabatic flows. The dusty gas is assumed to be a mixture of small solid particles and perfect gas. The equilibrium flow conditions are assumed to be maintained, and the density of the mixture is assumed to be varying and obeying an exponential law. Non-similarity solutions are obtained and the effects of variations of the mass concentration of solid particles in the mixture and the ratio of the density of solid particles to the initial density of the gas, and the presence of self-gravitational field on the flow variables are investigated at given times. Our analysis reveals that after inclusion of gravitational field effects surprisingly the shock strength increases and remarkable differences are found in the distribution of flow variables. An increase in time also, increases the shock strength. Further, it is investigated that the consideration of isothermal flow increases the shock strength, and removes the singularity in the density distribution. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the inner contact surface and the shock surface is reduced. The shock waves in self-gravitating dusty gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, star formation and shocks in stellar explosion, nuclear explosion, in industry, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry of vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating media. The obtained solutions are applicable for

  7. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    NASA Astrophysics Data System (ADS)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    A characteristic feature of permafrost soils in the Arctic is widespread intra-permafrost unfrozen brine lenses - cryopegs. They are often found in permafrost horizons in the north part of Western Siberia, in particular, on the Yamal Peninsula. Cryopegs depths in permafrost zone can be tens and hundreds of meters from the top of frozen strata. The chemical composition of natural cryopegs is close to sea waters, but is characterized by high mineralization. They have a sodium-chloride primary composition with a minor amount of sulphate. Mineralization of cryopegs brine is often hundreds of grams per liter, and the temperature is around -6…-8 °C. The formation of cryopegs in permafrost is associated with processes of long-term freezing of sediments and cryogenic concentration of salts and salt solutions in local areas. The cryopegs' formation can take place in the course of permafrost evolution at the sea transgressions and regressions during freezing of saline sea sediments. Very important feature of cryopegs in permafrost is their transformation in the process of changing temperature and pressure conditions. As a result, the salinity and chemical composition are changed and in addition the cryopegs' location can be changed during their migration. The cryopegs migration violates the thermodynamic conditions of existence intra-permafrost gas hydrate formations, especially the relic gas hydrates deposits, which are situated in the shallow permafrost up to 100 meters depth in a metastable state [1]. The interaction cryopegs with gas hydrates accumulations can cause decomposition of intra-permafrost hydrates. Moreover, the increasing of salt and unfrozen water content in sedimentary rocks sharply reduce the efficiency of gas hydrates self-preservation in frozen soils. It is confirmed by experimental investigations of interaction of frozen gas hydrate bearing sediments with salt solutions [2]. So, horizons with elevated pressure can appear, as a result of gas hydrate

  8. Self-absorption Effects In Experimental Methods Used To Determine Electron Density And Gas Temperature In An Argon Microwave Plasma (SWP) Generated At Atmospheric Pressure

    SciTech Connect

    Santiago, I.; Munoz, J.; Calzada, M. D.

    2008-10-22

    In this work a procedure was applied to verify that self-absorption does not affect the spectral lines used in the experimental determination of the electron density and the gas temperature in surface wave discharges at atmospheric pressure. Therefore, the values of electron density and gas temperature obtained are not perturbed by this phenomenon.

  9. NO density and gas temperature measurements in atmospheric pressure nanosecond repetitively pulsed (NRP) discharges by Mid-IR QCLAS

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Stancu, Gabi-Daniel; Laux, Christophe

    2014-10-01

    Nitric oxide is a key species for many processes: in combustion, in human skin physiology... Recently, NO-ground state absolute density measurements produced by atmospheric pressure NRP discharges were carried out in air as a function of the discharge parameters, using Quantum Cascade Laser Absorption Spectroscopy. These measurements were space averaged and performed in the post-discharge region in a large gas volume. Here we present radial profiles of NO density and temperature measured directly in the discharge for different configurations. Small plasma volume and species densities, high temperature and EM noise environment make the absorption diagnostic challenging. For this purpose the QCLAS sensitivity was improved using a two-detector system. We conducted lateral absorbance measurements with a spatial resolution of 300 μm for two absorption features at 1900.076 and 1900.517 cm-1. The radial temperature and NO density distributions were obtained from the Abel inverted lateral measurements. Time averaged NO densities of about 1.E16 cm-3 and gas temperature of about 1000K were obtained in the center of the discharge. PLASMAFLAME Project (Grant No ANR-11-BS09-0025).

  10. Environmental Factors Associated with High Fly Densities and Diarrhea in Vellore, India

    PubMed Central

    Collinet-Adler, Stefan; Babji, Sudhir; Francis, Mark; Kattula, Deepthi; Premkumar, Prasanna Samuel; Sarkar, Rajiv; Mohan, Venkat Ragava; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar

    2015-01-01

    Diarrhea causes significant morbidity and mortality in Indian children under 5 years of age. Flies carry enteric pathogens and may mediate foodborne infections. In this study, we characterized fly densities as a determinant of infectious diarrhea in a longitudinal cohort of 160 urban and 80 rural households with 1,274 individuals (27% under 5 years of age) in Vellore, India. Household questionnaires on living conditions were completed at enrollment. Fly abundance was measured during the wet and dry seasons using fly ribbons placed in kitchens. PCRs for enteric bacteria, viruses, and protozoa were performed on 60 fly samples. Forty-three (72%) fly samples were positive for the following pathogens: norovirus (50%), Salmonella spp. (46.7%), rotavirus (6.7%), and Escherichia coli (6.7%). Ninety-one episodes of diarrhea occurred (89% in children under 5 years of age). Stool pathogens isolated in 24 of 77 (31%) samples included E. coli, Shigella spp., Vibrio spp., Giardia, Cryptosporidium, and rotavirus. Multivariate log-linear models were used to explore the relationships between diarrhea and fly densities, controlling for demographics, hygiene, and human-animal interactions. Fly abundance was 6 times higher in rural than urban sites (P < 0.0001). Disposal of garbage close to homes and rural living were significant risk factors for high fly densities. The presence of latrines was protective against high fly densities and diarrhea. The adjusted relative risks of diarrheal episodes and duration of diarrhea, associated with fly density at the 75th percentile, were 1.18 (95% confidence interval [CI], 1.03 to 1.34) and 1.15 (95% CI, 1.02 to 1.29), respectively. Flies harbored enteric pathogens, including norovirus, a poorly documented pathogen on flies. PMID:26116684

  11. Environmental Factors Associated with High Fly Densities and Diarrhea in Vellore, India.

    PubMed

    Collinet-Adler, Stefan; Babji, Sudhir; Francis, Mark; Kattula, Deepthi; Premkumar, Prasanna Samuel; Sarkar, Rajiv; Mohan, Venkat Ragava; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N

    2015-09-01

    Diarrhea causes significant morbidity and mortality in Indian children under 5 years of age. Flies carry enteric pathogens and may mediate foodborne infections. In this study, we characterized fly densities as a determinant of infectious diarrhea in a longitudinal cohort of 160 urban and 80 rural households with 1,274 individuals (27% under 5 years of age) in Vellore, India. Household questionnaires on living conditions were completed at enrollment. Fly abundance was measured during the wet and dry seasons using fly ribbons placed in kitchens. PCRs for enteric bacteria, viruses, and protozoa were performed on 60 fly samples. Forty-three (72%) fly samples were positive for the following pathogens: norovirus (50%), Salmonella spp. (46.7%), rotavirus (6.7%), and Escherichia coli (6.7%). Ninety-one episodes of diarrhea occurred (89% in children under 5 years of age). Stool pathogens isolated in 24 of 77 (31%) samples included E. coli, Shigella spp., Vibrio spp., Giardia, Cryptosporidium, and rotavirus. Multivariate log-linear models were used to explore the relationships between diarrhea and fly densities, controlling for demographics, hygiene, and human-animal interactions. Fly abundance was 6 times higher in rural than urban sites (P < 0.0001). Disposal of garbage close to homes and rural living were significant risk factors for high fly densities. The presence of latrines was protective against high fly densities and diarrhea. The adjusted relative risks of diarrheal episodes and duration of diarrhea, associated with fly density at the 75th percentile, were 1.18 (95% confidence interval [CI], 1.03 to 1.34) and 1.15 (95% CI, 1.02 to 1.29), respectively. Flies harbored enteric pathogens, including norovirus, a poorly documented pathogen on flies.

  12. Environmental Factors Associated with High Fly Densities and Diarrhea in Vellore, India.

    PubMed

    Collinet-Adler, Stefan; Babji, Sudhir; Francis, Mark; Kattula, Deepthi; Premkumar, Prasanna Samuel; Sarkar, Rajiv; Mohan, Venkat Ragava; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N

    2015-09-01

    Diarrhea causes significant morbidity and mortality in Indian children under 5 years of age. Flies carry enteric pathogens and may mediate foodborne infections. In this study, we characterized fly densities as a determinant of infectious diarrhea in a longitudinal cohort of 160 urban and 80 rural households with 1,274 individuals (27% under 5 years of age) in Vellore, India. Household questionnaires on living conditions were completed at enrollment. Fly abundance was measured during the wet and dry seasons using fly ribbons placed in kitchens. PCRs for enteric bacteria, viruses, and protozoa were performed on 60 fly samples. Forty-three (72%) fly samples were positive for the following pathogens: norovirus (50%), Salmonella spp. (46.7%), rotavirus (6.7%), and Escherichia coli (6.7%). Ninety-one episodes of diarrhea occurred (89% in children under 5 years of age). Stool pathogens isolated in 24 of 77 (31%) samples included E. coli, Shigella spp., Vibrio spp., Giardia, Cryptosporidium, and rotavirus. Multivariate log-linear models were used to explore the relationships between diarrhea and fly densities, controlling for demographics, hygiene, and human-animal interactions. Fly abundance was 6 times higher in rural than urban sites (P < 0.0001). Disposal of garbage close to homes and rural living were significant risk factors for high fly densities. The presence of latrines was protective against high fly densities and diarrhea. The adjusted relative risks of diarrheal episodes and duration of diarrhea, associated with fly density at the 75th percentile, were 1.18 (95% confidence interval [CI], 1.03 to 1.34) and 1.15 (95% CI, 1.02 to 1.29), respectively. Flies harbored enteric pathogens, including norovirus, a poorly documented pathogen on flies. PMID:26116684

  13. Quantum-mechanical calculations of residual current density excited during gas ionisation by an intense two-colour laser pulse

    NASA Astrophysics Data System (ADS)

    Vvedenskii, N. V.; Romanov, A. A.; Silaev, A. A.

    2016-05-01

    By solving analytically and numerically the three-dimensional time-dependent Schrödinger equation, we have studied the excitation of a residual current density during gas ionisation by a two-colour laser pulse containing a field at the fundamental frequency and an additional field at the doubled frequency. We have found the dependences of the residual current density on the phase shift between the components of the field and on the intensity of the fundamental harmonic. It is shown that the strong-field approximation taking into account the interaction of freed electrons with the parent ion yields a good quantitative agreement with the results of direct numerical simulation.

  14. Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards

    PubMed Central

    Díez, Concepción M.; Moral, Juan; Cabello, Diego; Morello, Pablo; Rallo, Luis; Barranco, Diego

    2016-01-01

    Super high-density (SHD) olive orchards are rapidly expanding since the first plantation was set up in Spain in the 1990s. Because there are no long-term studies characterizing these systems, it is unknown if densities above a certain threshold could trigger competition among fully-grown trees, compromising their development. Over 14 years we have evaluated the performance of the major olive cultivars currently planted in SHD systems (“Arbequina,” Arbequina IRTA-i·18, “Arbosana,” “Fs-17,” and “Koroneiki”) and nine SHD designs ranging from 780 to 2254 trees ha−1 for the cultivar “Arbequina.” Remarkably, the accumulated fruit and oil production of the five cultivars increased linearly over time. Our data indicated the favorable long-term performance of the evaluated cultivars with an average annual oil production of 2.3 t ha−1. Only “Fs-17” did not perform well to the SHD system in our conditions and it yielded about half (1.2 t ha−1) of the other cultivars. In the density trial for “Arbequina,” both fruit and oil accumulated production increased over time as a function of tree density. Thus, the accumulated oil yield ranged from 16.1 t ha−1 for the lowest density (780 trees ha−1) to 29.9 t ha−1 for the highest (2254 trees ha−1). In addition, we note that the accumulated production per surface unit showed a better correlation with the hedgerow length than the tree density. Thus, the current planting designs of SHD olive orchards can be further improved taking this parameter into account. Despite observations that some irregular patterns of crop distribution have arisen, our olive hedgerows are still fully productive after 14 years of planting. This result contradicts previous experiences that showed declines in production 7 or 8 years after planting due to high vigor, shading, and limited ventilation.

  15. Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards.

    PubMed

    Díez, Concepción M; Moral, Juan; Cabello, Diego; Morello, Pablo; Rallo, Luis; Barranco, Diego

    2016-01-01

    Super high-density (SHD) olive orchards are rapidly expanding since the first plantation was set up in Spain in the 1990s. Because there are no long-term studies characterizing these systems, it is unknown if densities above a certain threshold could trigger competition among fully-grown trees, compromising their development. Over 14 years we have evaluated the performance of the major olive cultivars currently planted in SHD systems ("Arbequina," Arbequina IRTA-i·18, "Arbosana," "Fs-17," and "Koroneiki") and nine SHD designs ranging from 780 to 2254 trees ha(-1) for the cultivar "Arbequina." Remarkably, the accumulated fruit and oil production of the five cultivars increased linearly over time. Our data indicated the favorable long-term performance of the evaluated cultivars with an average annual oil production of 2.3 t ha(-1). Only "Fs-17" did not perform well to the SHD system in our conditions and it yielded about half (1.2 t ha(-1)) of the other cultivars. In the density trial for "Arbequina," both fruit and oil accumulated production increased over time as a function of tree density. Thus, the accumulated oil yield ranged from 16.1 t ha(-1) for the lowest density (780 trees ha(-1)) to 29.9 t ha(-1) for the highest (2254 trees ha(-1)). In addition, we note that the accumulated production per surface unit showed a better correlation with the hedgerow length than the tree density. Thus, the current planting designs of SHD olive orchards can be further improved taking this parameter into account. Despite observations that some irregular patterns of crop distribution have arisen, our olive hedgerows are still fully productive after 14 years of planting. This result contradicts previous experiences that showed declines in production 7 or 8 years after planting due to high vigor, shading, and limited ventilation. PMID:27602035

  16. The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella.

    PubMed

    Liang, Fang; Du, Kui; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2015-12-28

    To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m(2); temperature: 30°C; pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R(2) = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

  17. Assessment of age and risk factors on bone density and bone turnover in healthy premenopausal women.

    PubMed

    Hansen, M A

    1994-05-01

    The influence of age and risk factors on bone density and bone turnover was evaluated in 249 healthy premenopausal women. Risk factors were assessed by standardized questionnaires and included reproductive history and lifestyle factors (intake of calcium and vitamin D supplements, consumption of caffeine, smoking habits and physical activity). Bone mineral density (BMD) measurements were obtained in the distal forearm, the lumbar spine and the proximal femur. Bone turnover were assessed by plasma bone Gla proteins (pBGP) and fasting urinary hydroxyproline corrected for creatinine (fUHPr/Cr). Peak bone density seems to be achieved before the age of 30 years, whereafter we found no appreciable bone loss at any skeletal site. Accordingly, the levels of pBGP and fUHPr/Cr were increased before the age of 30, whereafter the values stabilized at a lower level. A dairy calcium intake above 660 mg/day significantly increased BMD in the spine and proximal femur by 3%-5%. Physical activity alone had no influence on BMD, but in combination with calcium intake an additive effect was observed. Women who had an active lifestyle (corresponding to at least 1 h of daily walking) and a dairy calcium intake above 660 mg/day had a 3%-7% increase in BMD compared with more sedentary women with a calcium intake below this limit. Vitamin D supplements, caffeine, smoking and reproductive history did not consistently influence BMD or bone turnover. Only pBGP was selectively reduced by smoking and current use of oral contraceptives, respectively. We conclude that there is no appreciable change in BMD before the menopause once skeletal maturity has been reached.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Rigorous investigation of the reduced density matrix for the ideal Bose gas in harmonic traps by a loop-gas-like approach

    SciTech Connect

    Beau, Mathieu; Savoie, Baptiste

    2014-05-15

    In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. For such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.

  19. Vascular density, angiogenesis and pro-angiogenic factors in uterine fibroids.

    PubMed

    Sajewicz, Marek; Konarska, Monika; Wrona, Anna Natalia; Aleksandrovych, Veronika; Bereza, Tomasz; Komnata, Kinga; Solewski, Bernard; Maleszka, Aleksandra; Depukat, Paweł; Warchoł, Łukasz

    2016-01-01

    Angiogenesis is a process of development of new vessels from the preexisting vascular network of a host. This is process which is seen in many physiological situations but it accompanies also a development of different lesions, i.e. neoplasms. Uterine fibroids are one of the most frequent lesions which affect human internal female genital tracts. Authors briefly review most important pro-angiogenic factors, based on their own observation as well as reviewing current literature. They pay much attention to vascular density which is significantly changed in the uterine tumors. PMID:27513836

  20. Clinical and Microbiological Factors Associated with High Nasopharyngeal Pneumococcal Density in Patients with Pneumococcal Pneumonia

    PubMed Central

    Alpkvist, Helena; Athlin, Simon; Nauclér, Pontus; Herrmann, Björn; Abdeldaim, Guma; Slotved, Hans-Christian; Hedlund, Jonas; Strålin, Kristoffer

    2015-01-01

    Background We aimed to study if certain clinical and/or microbiological factors are associated with a high nasopharyngeal (NP) density of Streptococcus pneumoniae in pneumococcal pneumonia. In addition, we aimed to study if a high NP pneumococcal density could be useful to detect severe pneumococcal pneumonia. Methods Adult patients hospitalized for radiologically confirmed community-acquired pneumonia were included in a prospective study. NP aspirates were collected at admission and were subjected to quantitative PCR for pneumococcal DNA (Spn9802 DNA). Patients were considered to have pneumococcal etiology if S. pneumoniae was detected in blood culture and/or culture of respiratory secretions and/or urinary antigen test. Results Of 166 included patients, 68 patients had pneumococcal DNA detected in NP aspirate. Pneumococcal etiology was noted in 57 patients (84%) with positive and 8 patients (8.2%) with negative test for pneumococcal DNA (p<0.0001). The median NP pneumococcal density of DNA positive patients with pneumococcal etiology was 6.83 log10 DNA copies/mL (range 1.79–9.50). In a multivariate analysis of patients with pneumococcal etiology, a high pneumococcal density was independently associated with severe pneumonia (Pneumonia Severity Index risk class IV-V), symptom duration ≥2 days prior to admission, and a medium/high serum immunoglobulin titer against the patient’s own pneumococcal serotype. NP pneumococcal density was not associated with sex, age, smoking, co-morbidity, viral co-infection, pneumococcal serotype, or bacteremia. Severe pneumococcal pneumonia was noted in 28 study patients. When we studied the performance of PCR with different DNA cut-off levels for detection of severe pneumococcal pneumonia, we found sensitivities of 54–82% and positive predictive values of 37–56%, indicating suboptimal performance. Conclusions Pneumonia severity, symptom duration ≥2 days, and a medium/high serum immunoglobulin titer against the patient

  1. Factors regulating circulating vascular endothelial growth factor (VEGF): association with bone mineral density (BMD) in post-menopausal osteoporosis.

    PubMed

    Costa, Nikola; Paramanathan, Sophia; Mac Donald, Dorothy; Wierzbicki, Anthony S; Hampson, Geeta

    2009-06-01

    Vascular endothelial growth factor (VEGF) plays an important role in bone health. We investigated the factors which influence circulating VEGF and their association with bone mineral density (BMD). Two hundred and fifty two post-menopausal women aged 64.5 [9.2] years were studied. BMD was determined at the lumbar spine (LS), femoral neck (FN) and total hip (TH). Serum oestradiol and VEGF were measured. Subjects were genotyped for two polymorphic variants in the 5' untranslated region of the VEGF gene; G(634)C and C(936)T. Positive correlations were seen between circulating VEGF and BMI (r=0.2, p<0.02) and oestradiol (r=0.25, p<0.001). Following multi-linear regression analysis, serum VEGF was associated with the G(634) polymorphism (p=0.08) and dietary calcium intake (p=0.02). The association with calcium intake may be mediated by PTH as suggested by the in vitro studies. Following correction for confounders, there was no association between circulating VEGF and BMD at any site. Both VEGF polymorphisms were significant predictors of LS BMD G(634)C: p=0.017 and C(936)T: p=0.05. Circulating VEGF may be influenced by genetic, environmental and endocrine factors. Polymorphic variants in the VEGF gene are associated with spine BMD. Further larger studies are needed. PMID:19394248

  2. A new equation of state for better liquid density prediction of natural gas systems

    NASA Astrophysics Data System (ADS)

    Nwankwo, Princess C.

    Equations of state formulations, modifications and applications have remained active research areas since the success of van der Waal's equation in 1873. The need for better reservoir fluid modeling and characterization is of great importance to petroleum engineers who deal with thermodynamic related properties of petroleum fluids at every stage of the petroleum "life span" from its drilling, to production through the wellbore, to transportation, metering and storage. Equations of state methods are far less expensive (in terms of material cost and time) than laboratory or experimental forages and the results are interestingly not too far removed from the limits of acceptable accuracy. In most cases, the degree of accuracy obtained, by using various EOS's, though not appreciable, have been acceptable when considering the gain in time. The possibility of obtaining an equation of state which though simple in form and in use, could have the potential of further narrowing the present existing bias between experimentally determined and popular EOS estimated results spurred the interest that resulted in this study. This research study had as its chief objective, to develop a new equation of state that would more efficiently capture the thermodynamic properties of gas condensate fluids, especially the liquid phase density, which is the major weakness of other established and popular cubic equations of state. The set objective was satisfied by a new semi analytical cubic three parameter equation of state, derived by the modification of the attraction term contribution to pressure of the van der Waal EOS without compromising either structural simplicity or accuracy of estimating other vapor liquid equilibria properties. The application of new EOS to single and multi-component light hydrocarbon fluids recorded far lower error values than does the popular two parameter, Peng-Robinson's (PR) and three parameter Patel-Teja's (PT) equations of state. Furthermore, this research

  3. Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: a density functional theory study.

    PubMed

    Zhang, Xiaoxing; Chen, Qinchuan; Tang, Ju; Hu, Weihua; Zhang, Jinbin

    2014-01-01

    The detection of partial discharge by analyzing the components of SF6 gas in gas-insulated switchgears is important to the diagnosis and assessment of the operational state of power equipment. A gas sensor based on anatase TiO2 is used to detect decomposed gases in SF6. In this paper, first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2, the primary decomposition by-products of SF6 under partial discharge, on anatase (101) and (001) surfaces. Simulation results show that the perfect anatase (001) surface has a stronger interaction with the three gases than that of anatase (101), and both surfaces are more sensitive and selective to SO2 than to SOF2 and SO2F2. The selection of a defect surface to SO2, SOF2, and SO2F2 differs from that of a perfect surface. This theoretical result is corroborated by the sensing experiment using a TiO2 nanotube array (TNTA) gas sensor. The calculated values are analyzed to explain the results of the Pt-doped TNTA gas sensor sensing experiment. The results imply that the deposited Pt nanoparticles on the surface increase the active sites of the surface and the gas molecules may decompose upon adsorption on the active sites. PMID:24755845

  4. Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Chen, Qinchuan; Tang, Ju; Hu, Weihua; Zhang, Jinbin

    2014-04-01

    The detection of partial discharge by analyzing the components of SF6 gas in gas-insulated switchgears is important to the diagnosis and assessment of the operational state of power equipment. A gas sensor based on anatase TiO2 is used to detect decomposed gases in SF6. In this paper, first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2, the primary decomposition by-products of SF6 under partial discharge, on anatase (101) and (001) surfaces. Simulation results show that the perfect anatase (001) surface has a stronger interaction with the three gases than that of anatase (101), and both surfaces are more sensitive and selective to SO2 than to SOF2 and SO2F2. The selection of a defect surface to SO2, SOF2, and SO2F2 differs from that of a perfect surface. This theoretical result is corroborated by the sensing experiment using a TiO2 nanotube array (TNTA) gas sensor. The calculated values are analyzed to explain the results of the Pt-doped TNTA gas sensor sensing experiment. The results imply that the deposited Pt nanoparticles on the surface increase the active sites of the surface and the gas molecules may decompose upon adsorption on the active sites.

  5. Comments on the critical issues for a high-density gas-embedded Z-pinch CTR reactor concept

    NASA Astrophysics Data System (ADS)

    Ekdahl, C. A.

    1981-02-01

    The issues considered critical for the realization of a CTR reactor are discussed for the high density gas embedded z pinch concept. A simple model of the pinch reactor is presented that gives estimates for Q in substantial agreement with elaborate computer studies. An attempt is made to identify such critical points that are amenable to exploratory experiments. There appears to be no fatal flaw in the issues covered that would preclude a viable reactor based on this concept.

  6. Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci

    PubMed Central

    Thompson, Wesley K.; McEvoy, Linda K.; Schork, Andrew J.; Zuber, Verena; LeBlanc, Marissa; Bettella, Francesco; Mills, Ian G.; Desikan, Rahul S.; Djurovic, Srdjan; Gautvik, Kaare M.; Dale, Anders M.; Andreassen, Ole A.

    2015-01-01

    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity. PMID:26695485

  7. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    PubMed

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength. PMID:27652082

  8. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    PubMed

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.

  9. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    DOE PAGESBeta

    Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; Hansen, Stephanie B.; Jones, Brent Manley; Harvey-Thompson, Adam James; Jobe, Marc Ronald Lee; Reneker, Joseph; Rochau, Gregory A.; Cuneo, Michael Edward; et al

    2015-05-18

    Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiativemore » output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.« less

  10. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    SciTech Connect

    Jennings, C. A.; Ampleford, D. J.; Lamppa, D. C.; Hansen, S. B.; Jones, B.; Harvey-Thompson, A. J.; Jobe, M.; Strizic, T.; Reneker, J.; Rochau, G. A.; Cuneo, M. E.

    2015-05-15

    Large diameter multi-shell gas puffs rapidly imploded by high current (∼20 MA, ∼100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ∼13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.

  11. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    SciTech Connect

    Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; Hansen, Stephanie B.; Jones, Brent Manley; Harvey-Thompson, Adam James; Jobe, Marc Ronald Lee; Reneker, Joseph; Rochau, Gregory A.; Cuneo, Michael Edward; Strizic, T.

    2015-05-18

    Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.

  12. Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards

    PubMed Central

    Díez, Concepción M.; Moral, Juan; Cabello, Diego; Morello, Pablo; Rallo, Luis; Barranco, Diego

    2016-01-01

    Super high-density (SHD) olive orchards are rapidly expanding since the first plantation was set up in Spain in the 1990s. Because there are no long-term studies characterizing these systems, it is unknown if densities above a certain threshold could trigger competition among fully-grown trees, compromising their development. Over 14 years we have evaluated the performance of the major olive cultivars currently planted in SHD systems (“Arbequina,” Arbequina IRTA-i·18, “Arbosana,” “Fs-17,” and “Koroneiki”) and nine SHD designs ranging from 780 to 2254 trees ha−1 for the cultivar “Arbequina.” Remarkably, the accumulated fruit and oil production of the five cultivars increased linearly over time. Our data indicated the favorable long-term performance of the evaluated cultivars with an average annual oil production of 2.3 t ha−1. Only “Fs-17” did not perform well to the SHD system in our conditions and it yielded about half (1.2 t ha−1) of the other cultivars. In the density trial for “Arbequina,” both fruit and oil accumulated production increased over time as a function of tree density. Thus, the accumulated oil yield ranged from 16.1 t ha−1 for the lowest density (780 trees ha−1) to 29.9 t ha−1 for the highest (2254 trees ha−1). In addition, we note that the accumulated production per surface unit showed a better correlation with the hedgerow length than the tree density. Thus, the current planting designs of SHD olive orchards can be further improved taking this parameter into account. Despite observations that some irregular patterns of crop distribution have arisen, our olive hedgerows are still fully productive after 14 years of planting. This result contradicts previous experiences that showed declines in production 7 or 8 years after planting due to high vigor, shading, and limited ventilation. PMID:27602035

  13. Factors in Daily Physical Activity Related to Calcaneal Mineral Density in Men

    NASA Technical Reports Server (NTRS)

    Hutchinson, Teresa M.; Whalen, Robert T.; Cleek, Tammy M.; Vogel, John M.; Arnaud, Sara B.

    1995-01-01

    To determine the factors in daily physical activity that influence the mineral density of the calcaneus, we recorded walking steps and the type and duration of exercise in 43 healthy 26-to 51-yr-old men. Areal (g/sq cm) calcaneal bone mineral density (CBMD) was measured by single energy x-ray densitometry. Subjects walked a mean (+/- SD) of 7902(+/-2534) steps per day or approximately 3.9(+/-1.2) miles daily. Eight subjects reported no exercise activities. The remaining 35 subjects spent 143(2-772) (median and range) min/wk exercising. Twenty-eight men engaged in exercise activities that generate single leg peak vertical ground reaction forces (GRF(sub z)) of 2 or more body weights (high loaders, HL), and 15 reported exercise or daily activities that typically generate GRF(sub z) less than 1.5 body weights (low loaders, LL). CBMD was 12% higher in HL than LL (0.668 +/- 0.074 g/sq cm vs 0.597 +/- 0.062 g/sq cm, P less than 0.004). In the HL group, CBMD correlated to reported minutes of high load exercise (r = 0.41, P less than 0.03). CBMD was not related to the number of daily walking steps (N = 43, r = 0.03, NS). The results of this study support the concept that the dominant factor in daily physical activity relating to bone mineral density is the participation in site specific high loading activities, i.e., for the calcaneus, high calcaneal loads.

  14. Highly underexpanded jets in the presence of a density jump between an ambient gas and a jet.

    PubMed

    Belan, Marco; De Ponte, Sergio; Tordella, Daniela

    2010-08-01

    An experimental research concerning highly underexpanded jets made of different gases from the surrounding ambient is here described. By selecting different species of gases, it was possible to vary the jet-to-ambient density ratio in the 0.04-12 range and observe its effect on the jet morphology. By adjusting the stagnation and ambient pressures, it has been possible to select the Mach number of the jets, independently from the density ratio. Each jet is therefore characterized by its maximum Mach number, ranging from 10 to 50. The Reynolds number range of the nozzle is 10(3)-5×10(4). The spatial evolution of the jets was observed over a much larger scale than the nozzle diameter. The gas densities were evaluated from the light emission induced by an electron beam and the gas concentrations were obtained by analyzing the color of the emitted light. The results have shown that the morphology of the jets depends to a greater extent on the density ratio. Jets that are lighter than the ambient exhibit a more intense jet-ambient mixing than jets that are heavier than the ambient, while the effects of changing the jet Mach number do not seem to be too large in the explored range. These results can be expressed by means of two simple scaling laws relevant to the near field (pre-Mach-disk) and the mid-long term field (post-Mach-disk), respectively.

  15. Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density.

    PubMed

    Jones, Christopher; Kammen, Daniel M

    2014-01-21

    Which municipalities and locations within the United States contribute the most to household greenhouse gas emissions, and what is the effect of population density and suburbanization on emissions? Using national household surveys, we developed econometric models of demand for energy, transportation, food, goods, and services that were used to derive average household carbon footprints (HCF) for U.S. zip codes, cities, counties, and metropolitan areas. We find consistently lower HCF in urban core cities (∼ 40 tCO2e) and higher carbon footprints in outlying suburbs (∼ 50 tCO2e), with a range from ∼ 25 to >80 tCO2e in the 50 largest metropolitan areas. Population density exhibits a weak but positive correlation with HCF until a density threshold is met, after which range, mean, and standard deviation of HCF decline. While population density contributes to relatively low HCF in the central cities of large metropolitan areas, the more extensive suburbanization in these regions contributes to an overall net increase in HCF compared to smaller metropolitan areas. Suburbs alone account for ∼ 50% of total U.S. HCF. Differences in the size, composition, and location of household carbon footprints suggest the need for tailoring of greenhouse gas mitigation efforts to different populations.

  16. Manifestly Hermitian semiclassical expansion for the one-particle density matrix of a two-dimensional Fermi gas

    NASA Astrophysics Data System (ADS)

    Bencheikh, K.; van Zyl, B. P.; Berkane, K.

    2016-08-01

    The semiclassical ℏ expansion of the one-particle density matrix for a two-dimensional Fermi gas is calculated within the Wigner transform method of B. Grammaticos and A. Voros [Ann. Phys. (N.Y.) 123, 359 (1979), 10.1016/0003-4916(79)90343-9], originally developed in the context of nuclear physics. The method of Grammaticos and Voros has the virtue of preserving both the Hermiticity and idempotency of the density matrix to all orders in the ℏ expansion. As a topical application, we use our semiclassical expansion to go beyond the local-density approximation for the construction of the total dipole-dipole interaction energy functional of a two-dimensional, spin-polarized dipolar Fermi gas. We find a finite, second-order gradient correction to the Hartree-Fock energy, which takes the form ɛ (∇ρ ) 2/√{ρ } , with ɛ being small (|ɛ |≪1 ) and negative. We test the quality of the corrected energy by comparing it with the exact results available for harmonic confinement. Even for small particle numbers, the gradient correction to the dipole-dipole energy provides a significant improvement over the local-density approximation.

  17. Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density.

    PubMed

    Jones, Christopher; Kammen, Daniel M

    2014-01-21

    Which municipalities and locations within the United States contribute the most to household greenhouse gas emissions, and what is the effect of population density and suburbanization on emissions? Using national household surveys, we developed econometric models of demand for energy, transportation, food, goods, and services that were used to derive average household carbon footprints (HCF) for U.S. zip codes, cities, counties, and metropolitan areas. We find consistently lower HCF in urban core cities (∼ 40 tCO2e) and higher carbon footprints in outlying suburbs (∼ 50 tCO2e), with a range from ∼ 25 to >80 tCO2e in the 50 largest metropolitan areas. Population density exhibits a weak but positive correlation with HCF until a density threshold is met, after which range, mean, and standard deviation of HCF decline. While population density contributes to relatively low HCF in the central cities of large metropolitan areas, the more extensive suburbanization in these regions contributes to an overall net increase in HCF compared to smaller metropolitan areas. Suburbs alone account for ∼ 50% of total U.S. HCF. Differences in the size, composition, and location of household carbon footprints suggest the need for tailoring of greenhouse gas mitigation efforts to different populations. PMID:24328208

  18. Geochemical and geologic factors effecting the formulation of gas hydrate: Task No. 5, Final report

    SciTech Connect

    Kvenvolden, K.A.; Claypool, G.E.

    1988-01-01

    The main objective of our work has been to determine the primary geochemical and geological factors controlling gas hydrate information and occurrence and particularly in the factors responsible for the generation and accumulation of methane in oceanic gas hydrates. In order to understand the interrelation of geochemical/geological factors controlling gas hydrate occurrence, we have undertaken a multicomponent program which has included (1) comparison of available information at sites where gas hydrates have been observed through drilling by the Deep Sea Drilling Project (DSDP) on the Blake Outer Ridge and Middle America Trench; (2) regional synthesis of information related to gas hydrate occurrences of the Middle America Trench; (3) development of a model for the occurrence of a massive gas hydrate as DSDP Site 570; (4) a global synthesis of gas hydrate occurrences; and (5) development of a predictive model for gas hydrate occurrence in oceanic sediment. The first three components of this program were treated as part of a 1985 Department of Energy Peer Review. The present report considers the last two components and presents information on the worldwide occurrence of gas hydrates with particular emphasis on the Circum-Pacific and Arctic basins. A model is developed to account for the occurrence of oceanic gas hydrates in which the source of the methane is from microbial processes. 101 refs., 17 figs., 6 tabs.

  19. Temperature, density, and composition in the disturbed thermosphere from Esro 4 gas analyzer measurements - A global model

    NASA Technical Reports Server (NTRS)

    Jacchia, L. G.; Slowey, J. W.; Von Zahn, U.

    1977-01-01

    An analysis of density measurements of Ar, N2, O, and He made at 280 km with the gas analyzer aboard the polar-orbiting satellite Esro 4 has yielded a global model of the variations in temperature, density, and composition that occur in the disturbed thermosphere. In the model the increase of temperature over quiet conditions is a nonlinear function of the planetary geomagnetic index, its latitude profile being approximated by a fourth-power sin phi law, where phi is the 'invariant' magnetic latitude. A density wave proceeding from high latitudes is approximated by a fourth power cos phi law. A strong nonlinearity in the relation between the temperature variations and the variations in the height of the homopause explains a previously found behavioral difference in the variation of atomic oxygen during magnetic storms and during periods of sustained geomagnetic activity.

  20. Effects of solvent density on retention in gas-liquid chromatography. I. Alkanes solutes in polyethylene glycol stationary phases.

    PubMed

    González, F R; Pérez-Parajón, J; García-Domínguez, J A

    2002-04-12

    Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.

  1. A Method to Simulate Linear Stability of Impulsively Accelerated Density Interfaces in Ideal-MHD and Gas Dynamics

    SciTech Connect

    Ravi Samtaney

    2009-02-10

    We present a numerical method to solve the linear stability of impulsively accelerated density interfaces in two dimensions such as those arising in the Richtmyer-Meshkov instability. The method uses an Eulerian approach, and is based on an unwind method to compute the temporally evolving base state and a flux vector splitting method for the perturbations. The method is applicable to either gas dynamics or magnetohydrodynamics. Numerical examples are presented for cases in which a hydrodynamic shock interacts with a single or double density interface, and a doubly shocked single density interface. Convergence tests show that the method is spatially second order accurate for smooth flows, and between first and second order accurate for flows with shocks.

  2. Pollutant-emission factors for gas stoves: a literature survey. Final report, June 1985-May 1986

    SciTech Connect

    Davidson, C.I.; Borrazzo, J.E.; Hendrickson, C.T.

    1987-02-01

    Published emission factors for CO, NO, NO/sub 2/, and NOx are summarized. In a statistical analysis of the available data, stove differences and type of combustion are the most important factors in explaining the observed variance in emission factors. Limited data also suggest that CO and NO/sub 2/ emission factors vary considerably with gas flow rate. It is concluded that the influence of stove design, gas flow rate, and characteristics of stove use are key factors that merit further study.

  3. From slant column densities to trace gas profiles: Post processing data from the new MAX-DOAS network in Mexico City

    NASA Astrophysics Data System (ADS)

    Friedrich, M. M.; Stremme, W.; Rivera, C. I.; Arellano, E. J.; Grutter, M.

    2014-12-01

    The new MAX-DOAS network in Mexico City provides results of O4, HCHO and NO2 slant column densities (SCD). Here, we present a new numerical code developed to retrieve gas profiles of NO2 and HCHO using radiative transfer simulations. We present first results of such profiles from the MAX-DOAS station located at UNAM campus. The code works in two steps: First, the O4 slant column density information is used to retrieve an aerosol profile. As an a-priori aerosol profile, we use averaged ceilometer data measured at UNAM and scaled to the total optical depth provided by the Aeronet data base. In the second step, the retrieved aerosol profile information is used together with the trace gas (HCHO or NO2) SCDs to retrieve the trace gas profiles. The inversion is based on a gauss-newton iteration scheme and uses constrained least square fitting with either optimal estimation or Tihkonov regularization. For the latter, the regulation matrix is currently constructed from the discrete first derivative operator. The forward model uses the radiative transfer code VLIDORT. The inputs to VLIDORT are calculated using temperature and pressure information from daily radiosounde measurements and aerosol single scattering optical depths and asymmetry factors from the Aeronet data base for Mexico City. For the gas absorption cross sections we use the same values as were used for the SCD calculation from the recorded spectra using QDOAS. Besides demonstrating the functionality of the algorithm showing profile retrievals of simulated SCDs with added random noise, we present HCHO and NO2 profiles retrieved from SCDs calculated from the MAX-DOAS measurements at UNAM campus at selected days.

  4. Non-linear optics and local-field factors in liquid chloroform: A time-dependent density-functional theory study

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.; Andrade, Xavier; Rubio, Angel; Louie, Steve G.

    2009-03-01

    Chloroform is often used as a solvent and reference when measuring non-linear optical properties of organic molecules. We calculate directly the non-linear susceptibilities of liquid chloroform at optical frequencies, using molecular dynamics and the Sternheimer equation in time-dependent density-functional theory [X. Andrade et al., J. Chem. Phys. 126, 184106 (2007)]. We compare the results to those of chloroform in the gas and solid phases, and experimental values, and make an ab initio calculation of the local-field factors which are needed to extract molecular properties from liquid calculations and experimental measurements.

  5. Factors Influencing Density-Dependent Groundwater Flow in the Michigan Basin

    NASA Astrophysics Data System (ADS)

    Sykes, J. F.; Normani, S. D.; Yin, Y.

    2010-12-01

    Regional-scale density-dependent groundwater flow is analyzed in an approximately 18000 sq km domain of the Michigan basin centered on a site at Tiverton Ontario near the shore of Lake Huron for a proposed deep geologic repository (DGR) for low and intermediate level nuclear waste. Flow was also analyzed in an approximately 600 km west-to-east cross-section through the center of the basin. Both domains extend from the Precambrian basement to the surface and include minimal upscaling of the complex stratigraphy in the basin. The model FRAC3DVS-OPG was used for all analyses. The hydraulic gradients across the basin are small as both Lake Huron and Lake Michigan have the same water surface elevation. As a result, groundwater flow in the basin is expected to be stagnant. Hydrogeologic parameters for the models were developed from borehole and petrophysics data from the DGR site for units from the Cambrian sandstone to the Devonian. Literature data were used for the shallower units in Michigan. Excluding the surficial drift, the hydraulic conductivity in the basin ranges from 3x10e-6 m/s in the Cambrian to less than 10e-14 m/s in the Ordovician sediments. Groundwater flow is sensitive to the distribution of total dissolved solids concentration with concentrations ranging up to 384 g/L in the Guelph formation in the Silurian. Both TDS data from porewater and groundwater at the DGR site and literature data for TDS versus depth were assigned to the sedimentary rock. The TDS distribution with depth for the Precambrian rock was assigned using both data for the Canadian Shield and a literature based model. Data at the DGR site indicates that the Cambrian is overpressured with respect to the surface while the Ordovician sediments are underpressured. It is hypothesized that the underpressures are the result of the presence of a gas phase in the units. The steps in determining a converged solution for saturated density-dependent flow were as follows: (1) solve steady state

  6. Risk Factors for Low Bone Mineral Density in Individuals Residing in a Facility for the People with Intellectual Disability

    ERIC Educational Resources Information Center

    Jaffe, J. S.; Timell, A. M.; Elolia, R.; Thatcher, S. S.

    2005-01-01

    Background: Individuals with intellectual disability (ID) are known to have a high prevalence of both low bone mineral density (BMD) and fractures with significant attendant morbidity. Effective strategies aimed at reducing fractures will be facilitated by the identification of predisposing risk factors. Methods: Bone mineral density was measured…

  7. Factors associated with arrival densities of grasshopper sparrow (Ammodramus Savannarum) and baird's sparrow (A. Bairdii) in the upper great plains

    USGS Publications Warehouse

    Ahlering, M.A.; Johnson, D.H.; Faaborg, J.

    2009-01-01

    Although critical to habitat and population management, the proximate cues that birds use to establish territories are largely unknown. Understanding these cues is important for birds, such as many grassland birds, that exhibit high annual variability in population density and make new habitat-selection decisions annually. Identifying the actual cues used is difficult in the field, but the factors associated with the arrival densities of birds can help uncover variables that are involved in or correlated with cues used for selection. During the summers of 2002-2004, we investigated how weather and local vegetation factors were related to arrival densities of Grasshopper Sparrows (Ammodramus savannarum) and Baird's Sparrows (A. bairdii) at three locations across North Dakota and Saskatchewan. Spring densities of Grasshopper Sparrows were positively correlated with concurrent May precipitation, whereas densities of Baird's Sparrows were negatively correlated with the previous winter's snowfall. We used a model-selection approach to evaluate the vegetation characteristics associated with arrival densities of birds. Grasshopper Sparrow densities showed a strong negative relationship to woody cover, and Baird's Sparrow densities showed a negative relationship to vegetation height and vegetation density near the ground. Our results provide a first detailed look at habitat and weather associations immediately after arrival in spring and an important first step in uncovering factors that may be involved in habitat selection in two grassland species. Received 13 August 2008, accepted 20 April 2009. ?? The American Ornithologists' Union, 2009.

  8. Computational study of the influence of some systematic factors on the fuel temperature in a very high temperature gas-cooled reactor with prismatic fuel assemblies

    SciTech Connect

    Sedov, A. A.; Frolov, A. A.

    2011-12-15

    The influence of the main systematic factors of overheating (such as nonuniformity of power density and cold leaks of coolant) on the fuel temperatures in a very high temperature gas-cooled reactor NGNP (Next Generation Nuclear Plant) with prismatic fuel blocks is studied. The results of computations show a high sensitivity of the fuel temperatures to systematic factors of overheating. This circumstance indicates the necessity of high-precision three-dimensional modeling of the gas dynamics and heat transfer in the core when designing this type of reactor.

  9. Risk Factors for Low Bone Mineral Density in Institutionalized Individuals with Developmental Disabilities

    PubMed Central

    Vice, Michael A.; Nahar, Vinayak K.; Ford, M. Allison; Bass, Martha A.; Johnson, Andrea K.; Davis, Ashton B.; Biviji-Sharma, Rizwana

    2015-01-01

    Background: Persons with intellectual/developmental disabilities (IDD) are exposed to several factors, which have been determined as risks for osteoporosis. Many of these individuals are non-ambulatory, resulting in lack of weight bearing activity, which is well established as a major contributor to bone loss. The purpose of this study was to investigate risk factors for low bone mineral density (BMD) in persons with IDD residing in residential facilities. Methods: This cross-sectional study was conducted at an Intermediate Care Facility for individuals with Intellectual and Developmental Disabilities (ICF/IDD). Medical records data were used from 69 individuals, including heal scan T-scores, nutritional, pharmacologic and other risk factors. Chi-Square analysis was used to determine relationships between the variables. Results: BMD measures were not significantly associated with age, gender, height, weight, or BMI for this population (P > 0.05). The association between BMD diagnoses and DSM-IV classification of mental retardation approached significance (P = 0.063). A significant association was found with anti-seizure medication (P = 0.009). Conclusion: Follow-up studies should focus on how supplementation and medication changes may or may not alter BMD. Persons with IDD are experiencing longer life expectancies, and therefore, studies ascertaining information on diseases associated with this aging population are warranted. PMID:26290830

  10. Some Properties of Weight Factors arising in Low-Density Series Expansion for Percolation Models

    NASA Astrophysics Data System (ADS)

    Bhatti, Faqir M; Abu, Nur Azman

    2002-01-01

    Let F(G) be any additive property of a simple graph such that F(G)=F(G1)+F(G2), where G is the series combination of graphs G1 and G2. The weight factor W(G) which is based on F(G) arises in the low-density series expansion techniques for percolation models as W(G)=\\sumG\\prime\\subseteq G(-1)e-e^{\\prime}F(G\\prime)η(G\\prime), where η(G\\prime) is the indicator that G\\prime cover-able sub-graph or without dangling ends. The purpose of this paper is to prove the weight factor formula for additive property of F as W(G)=d(G2)W(G1)+d(G1)W(G2), where d(G1) are d(G2) the d-weight for graphs G1 and G2 respectively. This result will be more simplified in the case of Directed Percolation Models using Mobius function property. A new few formulas for the resistive weight factors are also derived for a graph, which is parallel combination of n edges.

  11. Fluorocarbon seal replaces metal piston ring in low density gas environment

    NASA Technical Reports Server (NTRS)

    Morath, W. D.; Morgan, N. E.

    1967-01-01

    Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.

  12. FACTORS INFLUENCING THE DEPOSITION OF A COMPOUND THAT PARTITIONS BETWEEN GAS AND PARTICULATE PHASES

    EPA Science Inventory

    How will atmospheric deposition behave for a compound when it reversibly sorbs between gas and atmospheric particulate phases? Two factors influence the answer. What physical mechanisms occur in the sorption process? What are the concentration and composition of atmospheric par...

  13. THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Zhuravleva, I.; Allen, S. W.; Churazov, E. M.; Gaspari, M.; Schekochihin, A. A.; Lau, E. T.; Nagai, D.; Nelson, K.; Parrish, I. J.

    2014-06-10

    We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρ{sub k}/ρ){sup 2}=η{sub 1}{sup 2}(V{sub 1,k}/c{sub s}){sup 2}, where δρ {sub k}/ρ is the spectral amplitude of the density perturbations at wavenumber k, V{sub 1,k}{sup 2}=V{sub k}{sup 2}/3 is the mean square component of the velocity field, c{sub s} is the sound speed, and η{sub 1} is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η{sub 1} ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales.

  14. Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling.

    PubMed

    Wang, Jing; Boriskina, Svetlana V; Wang, Hongyun; Reinhard, Björn M

    2011-08-23

    Filopodia have been hypothesized to act as remote sensors of the cell environment, but many details of the sensor function remain unclear. We investigated the distribution of the epidermal growth factor (EGF) receptor (EGFR) density on filopodia and on the dorsal cell membrane of A431 human epidermoid carcinoma cells using a nanoplasmonic enabled imaging tool. We targeted cell surface EGFR with 40 nm diameter Au nanoparticles (NPs) using a high affinity multivalent labeling strategy and determined relative NP binding affinities spatially resolved through plasmon coupling. Distance-dependent near-field interactions between the labels generated a NP density (ρ)-dependent spectral response that facilitated a spatial mapping of the EGFR density distribution on subcellular length scales in an optical microscope in solution. The measured ρ values were significantly higher on filopodia than on the cellular surface, which is indicative of an enrichment of EGFR on filopodia. A detailed characterization of the spatial distribution of the NP immunolabels through scanning electron microscopy (SEM) confirmed the findings of the all-optical plasmon coupling studies and provided additional structural details. The NPs exhibited a preferential association with the sides of the filopodia. We calibrated the ρ-dependent spectral response of the Au immunolabels through correlation of optical spectroscopy and SEM. The experimental dependence of the measured plasmon resonance wavelength (λ(res)) of the interacting immunolabels on ρ was well described by the fit λ(res) = 595.0 nm - 46.36 nm exp(-ρ/51.48) for ρ ≤ 476 NPs/μm(2). The performed correlated spectroscopic/SEM studies pave the way toward quantitative immunolabeling studies of EGFR and other important cell surface receptors in an optical microscope. PMID:21761914

  15. Estimates of density, detection probability, and factors influencing detection of burrowing owls in the Mojave Desert

    USGS Publications Warehouse

    Crowe, D.E.; Longshore, K.M.

    2010-01-01

    We estimated relative abundance and density of Western Burrowing Owls (Athene cunicularia hypugaea) at two sites in the Mojave Desert (200304). We made modifications to previously established Burrowing Owl survey techniques for use in desert shrublands and evaluated several factors that might influence the detection of owls. We tested the effectiveness of the call-broadcast technique for surveying this species, the efficiency of this technique at early and late breeding stages, and the effectiveness of various numbers of vocalization intervals during broadcasting sessions. Only 1 (3) of 31 initial (new) owl responses was detected during passive-listening sessions. We found that surveying early in the nesting season was more likely to produce new owl detections compared to surveying later in the nesting season. New owls detected during each of the three vocalization intervals (each consisting of 30 sec of vocalizations followed by 30 sec of silence) of our broadcasting session were similar (37, 40, and 23; n 30). We used a combination of detection trials (sighting probability) and double-observer method to estimate the components of detection probability, i.e., availability and perception. Availability for all sites and years, as determined by detection trials, ranged from 46.158.2. Relative abundance, measured as frequency of occurrence and defined as the proportion of surveys with at least one owl, ranged from 19.232.0 for both sites and years. Density at our eastern Mojave Desert site was estimated at 0.09 ?? 0.01 (SE) owl territories/km2 and 0.16 ?? 0.02 (SE) owl territories/km2 during 2003 and 2004, respectively. In our southern Mojave Desert site, density estimates were 0.09 ?? 0.02 (SE) owl territories/km2 and 0.08 ?? 0.02 (SE) owl territories/km 2 during 2004 and 2005, respectively. ?? 2010 The Raptor Research Foundation, Inc.

  16. 40 CFR Table W - 5 of Subpart W-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment ENVIRONMENTAL... Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  17. Affinity Density: a novel genomic approach to the identification of transcription factor regulatory targets

    PubMed Central

    Hazelett, Dennis J.; Lakeland, Daniel L.; Weiss, Joseph B.

    2009-01-01

    Methods: A new method was developed for identifying novel transcription factor regulatory targets based on calculating Local Affinity Density. Techniques from the signal-processing field were used, in particular the Hann digital filter, to calculate the relative binding affinity of different regions based on previously published in vitro binding data. To illustrate this approach, the complete genomes of Drosophila melanogaster and D.pseudoobscura were analyzed for binding sites of the homeodomain proteinc Tinman, an essential heart development gene in both Drosophila and Mouse. The significant binding regions were identified relative to genomic background and assigned to putative target genes. Valid candidates common to both species of Drosophila were selected as a test of conservation. Results: The new method was more sensitive than cluster searches for conserved binding motifs with respect to positive identification of known Tinman targets. Our Local Affinity Density method also identified a significantly greater proportion of Tinman-coexpressed genes than equivalent, optimized cluster searching. In addition, this new method predicted a significantly greater than expected number of genes with previously published RNAi phenotypes in the heart. Availability: Algorithms were implemented in Python, LISP, R and maxima, using MySQL to access locally mirrored sequence data from Ensembl (D.melanogaster release 4.3) and flybase (D.pseudoobscura). All code is licensed under GPL and freely available at http://www.ohsu.edu/cellbio/dev_biol_prog/affinitydensity/. Contact: hazelett@ohsu.edu PMID:19401399

  18. Unique Features of High-Density Lipoproteins in the Japanese: In Population and in Genetic Factors

    PubMed Central

    Yokoyama, Shinji

    2015-01-01

    Despite its gradual increase in the past several decades, the prevalence of atherosclerotic vascular disease is low in Japan. This is largely attributed to difference in lifestyle, especially food and dietary habits, and it may be reflected in certain clinical parameters. Plasma high-density lipoprotein (HDL) levels, a strong counter risk for atherosclerosis, are indeed high among the Japanese. Accordingly, lower HDL seems to contribute more to the development of coronary heart disease (CHD) than an increase in non-HDL lipoproteins at a population level in Japan. Interestingly, average HDL levels in Japan have increased further in the past two decades, and are markedly higher than in Western populations. The reasons and consequences for public health of this increase are still unknown. Simulation for the efficacy of raising HDL cholesterol predicts a decrease in CHD of 70% in Japan, greater than the extent by reducing low-density lipoprotein cholesterol predicted by simulation or achieved in a statin trial. On the other hand, a substantial portion of hyperalphalipoproteinemic population in Japan is accounted for by genetic deficiency of cholesteryl ester transfer protein (CETP), which is also commonly unique in East Asian populations. It is still controversial whether CETP mutations are antiatherogenic. Hepatic Schistosomiasis is proposed as a potential screening factor for historic accumulation of CETP deficiency in East Asia. PMID:25849946

  19. High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow

    SciTech Connect

    Li, Tingwen

    2011-05-01

    High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to the different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.

  20. Importance of network density of nanotube: Effect on nitrogen dioxide gas sensing by solid state resistive sensor

    NASA Astrophysics Data System (ADS)

    Mishra, Prabhash; Grachyova, D. V.; Moskalenko, A. S.; Shcherbak, M. A.; Pavelyev, V. S.

    2016-04-01

    Dispersion of single-walled carbon nanotubes (SWCNTs) is an established fact, however, its effect on toxic gas sensing for the development of solid state resistive sensor was not well reported. In this report, the dispersion quality of SWCNTs has been investigated and improved, and this well-dispersed SWCNTs network was used for sensor fabrication to monitor nitrogen dioxide gas. Ultraviolet (UV)-visible spectroscopic studies shows the strength of SWNTs dispersion and scanning electron microscopy (SEM) imaging provides the morphological properties of the sensor device. In this gas sensor device, two sets of resistive type sensors were fabricated that consisting of a pair of interdigitated electrodes (IDEs) using dielectrophoresis technique with different SWCNTs network density. With low-density SWCNTs networks, this fabricated sensor exhibits a high response for nitrogen dioxide sensing. The sensing of nitrogen dioxide is mainly due to charge transfer from absorbed molecules to sidewalls of nanotube and tube-tube screening acting a major role for the transport properties of charge carriers.

  1. A pressure gauge based on gas density measurement from analysis of the thermal noise of an atomic force microscope cantilever

    SciTech Connect

    Seo, Dongjin; Ducker, William A.; Paul, Mark R.

    2012-05-15

    We describe a gas-density gauge based on the analysis of the thermally-driven fluctuations of an atomic force microscope (AFM) cantilever. The fluctuations are modeled as a ring-down of a simple harmonic oscillator, which allows fitting of the resonance frequency and damping of the cantilever, which in turn yields the gas density. The pressure is obtained from the density using the known equation of state. In the range 10-220 kPa, the pressure readings from the cantilever gauge deviate by an average of only about 5% from pressure readings on a commercial gauge. The theoretical description we use to determine the pressure from the cantilever motion is based upon the continuum hypothesis, which sets a minimum pressure for our analysis. It is anticipated that the cantilever gauge could be extended to measure lower pressures given a molecular theoretical description. Alternatively, the gauge could be calibrated for use in the non-continuum range. Our measurement technique is similar to previous AFM cantilever measurements, but the analysis produces improved accuracy.

  2. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam.

    PubMed

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-01-01

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m³), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively. PMID:26402682

  3. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam

    PubMed Central

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-01-01

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m3), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively. PMID:26402682

  4. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam.

    PubMed

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-09-22

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m³), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively.

  5. Relative contribution of biotic and abiotic factors to the population density of the cassava green mite, Mononychellus tanajoa (Acari: Tetranychidae).

    PubMed

    Rêgo, Adriano S; Teodoro, Adenir V; Maciel, Anilde G S; Sarmento, Renato A

    2013-08-01

    The cassava green mite, Mononychellus tanajoa, is a key pest of cassava, Manihot esculenta Crantz (Euphorbiaceae), and it may be kept in check by naturally occurring predatory mites of the family Phytoseiidae. In addition to predatory mites, abiotic factors may also contribute to regulate pest mite populations in the field. Here, we evaluated the population densities of both M. tanajoa and the generalist predatory mite Euseius ho DeLeon (Acari: Phytoseiidae) over the cultivation cycle (11 months) of cassava in four study sites located around the city of Miranda do Norte, Maranhão, Brazil. The abiotic variables rainfall, temperature and relative humidity were also recorded throughout the cultivation cycle of cassava. We determined the relative importance of biotic (density of E. ho) and abiotic (rainfall, temperature and relative humidity) factors to the density of M. tanajoa. The density of M. tanajoa increased whereas the density of E. ho remained constant throughout time. A hierarchical partitioning analysis revealed that most of the variance for the density of M. tanajoa was explained by rainfall and relative humidity followed by E. ho density and temperature. We conclude that abiotic factors, especially rainfall, were the main mechanisms driving M. tanajoa densities.

  6. [Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China].

    PubMed

    Zhu, Xiang-cheng; Zhang, Zhen-ping; Zhang, Jun; Deng, Ai-xing; Zhang, Wei-jian

    2016-02-01

    The traditional rice growing practice has to change to save resource and protect environment, and it' s necessary to develop new technology in rice cultivation. Therefore, a two-year field experiment of Japonica rice (Liaoxing 1) was conducted in Northeast China in 2012 and 2013 to investigate the integrated effects of dense planting with less basal nitrogen (N) and unchanged top-dressing N (IR) on rice yield, N use efficiency (NUE) and greenhouse gas emissions. Compared with traditional practice (CK), we increased the rice seedling density by 33.3% and reduced the basal N rate by 20%. The results showed that the average N agronomy efficiency and partial factor productivity were improved by 49.6% (P<0.05) and 20.4% (P<0.05), respectively, while the area and yield-scaled greenhouse gas emissions were reduced by 9.9% and 12.7% (P<0.05), respectively. Although IR cropping mode decreased panicle number and biomass production, it significantly enhanced rice seed setting rate and harvest index, resulting in an unchanged or even highei yield. NH4+-N and NO3(-)-N concentrations in rice rhizosphere soil were reduced, resulting in an increment of N recovery efficiency. Generally, proper dense planting with less basal N applicatior could be a good approach for the trade-off between rice yield, NUE and greenhouse gas emission. PMID:27396117

  7. [Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China].

    PubMed

    Zhu, Xiang-cheng; Zhang, Zhen-ping; Zhang, Jun; Deng, Ai-xing; Zhang, Wei-jian

    2016-02-01

    The traditional rice growing practice has to change to save resource and protect environment, and it' s necessary to develop new technology in rice cultivation. Therefore, a two-year field experiment of Japonica rice (Liaoxing 1) was conducted in Northeast China in 2012 and 2013 to investigate the integrated effects of dense planting with less basal nitrogen (N) and unchanged top-dressing N (IR) on rice yield, N use efficiency (NUE) and greenhouse gas emissions. Compared with traditional practice (CK), we increased the rice seedling density by 33.3% and reduced the basal N rate by 20%. The results showed that the average N agronomy efficiency and partial factor productivity were improved by 49.6% (P<0.05) and 20.4% (P<0.05), respectively, while the area and yield-scaled greenhouse gas emissions were reduced by 9.9% and 12.7% (P<0.05), respectively. Although IR cropping mode decreased panicle number and biomass production, it significantly enhanced rice seed setting rate and harvest index, resulting in an unchanged or even highei yield. NH4+-N and NO3(-)-N concentrations in rice rhizosphere soil were reduced, resulting in an increment of N recovery efficiency. Generally, proper dense planting with less basal N applicatior could be a good approach for the trade-off between rice yield, NUE and greenhouse gas emission.

  8. Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2011-01-01

    The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.

  9. Gedanken densities and exact constraints in density functional theory

    SciTech Connect

    Perdew, John P.; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  10. Mammographic breast density and breast cancer risk: interactions of percent density, absolute dense, and non-dense areas with breast cancer risk factors.

    PubMed

    Yaghjyan, Lusine; Colditz, Graham A; Rosner, Bernard; Tamimi, Rulla M

    2015-02-01

    We investigated if associations of breast density and breast cancer differ according to the level of other known breast cancer risk factors, including body mass index (BMI), age at menarche, parity, age at first child's birth, age at menopause, alcohol consumption, a family history of breast cancer, a history of benign breast disease, and physical activity. This study included 1,044 postmenopausal incident breast cancer cases diagnosed within the Nurses' Health Study cohort and 1,794 matched controls. Percent breast density, absolute dense, and non-dense areas were measured from digitized film images with computerized techniques. Information on breast cancer risk factors was obtained prospectively from biennial questionnaires. Percent breast density was more strongly associated with breast cancer risk in current postmenopausal hormone users (≥50 vs. 10 %: OR 5.34, 95 % CI 3.36-8.49) as compared to women with past (OR 2.69, 95 % CI 1.32-5.49) or no hormone history (OR 2.57, 95 % CI 1.18-5.60, p-interaction = 0.03). Non-dense area was inversely associated with breast cancer risk in parous women, but not in women without children (p-interaction = 0.03). Associations of density with breast cancer risk did not differ by the levels of BMI, age at menarche, parity, age at first child's birth, age at menopause, alcohol consumption, a family history of breast cancer, a history of benign breast disease, and physical activity. Women with dense breasts, who currently use menopausal hormone therapy are at a particularly high risk of breast cancer. Most breast cancer risk factors do not modify the association between mammographic breast density and breast cancer risk.

  11. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model.

    PubMed

    Fitzgerald, James E; Robinson, Robert L; Gasem, Khaled A M

    2006-11-01

    The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO2 sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO2 on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO2 on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties. PMID:17073487

  12. Development and evaluation of probability density functions for a set of human exposure factors

    SciTech Connect

    Maddalena, R.L.; McKone, T.E.; Bodnar, A.; Jacobson, J.

    1999-06-01

    The purpose of this report is to describe efforts carried out during 1998 and 1999 at the Lawrence Berkeley National Laboratory to assist the U.S. EPA in developing and ranking the robustness of a set of default probability distributions for exposure assessment factors. Among the current needs of the exposure-assessment community is the need to provide data for linking exposure, dose, and health information in ways that improve environmental surveillance, improve predictive models, and enhance risk assessment and risk management (NAS, 1994). The U.S. Environmental Protection Agency (EPA) Office of Emergency and Remedial Response (OERR) plays a lead role in developing national guidance and planning future activities that support the EPA Superfund Program. OERR is in the process of updating its 1989 Risk Assessment Guidance for Superfund (RAGS) as part of the EPA Superfund reform activities. Volume III of RAGS, when completed in 1999 will provide guidance for conducting probabilistic risk assessments. This revised document will contain technical information including probability density functions (PDFs) and methods used to develop and evaluate these PDFs. The PDFs provided in this EPA document are limited to those relating to exposure factors.

  13. Supernova matter at subnuclear densities as a resonant Fermi gas: enhancement of neutrino rates.

    PubMed

    Bartl, A; Pethick, C J; Schwenk, A

    2014-08-22

    At low energies nucleon-nucleon interactions are resonant and therefore supernova matter at subnuclear densities has many similarities to atomic gases with interactions dominated by a Feshbach resonance. We calculate the rates of neutrino processes involving nucleon-nucleon collisions and show that these are enhanced in mixtures of neutrons and protons at subnuclear densities due to the large scattering lengths. As a result, the rate for neutrino pair bremsstrahlung and absorption is significantly larger below 10(13) g cm(-3) compared to rates used in supernova simulations.

  14. The influence of the temperature and density of an electron gas on beta processes in a quantum magnetic field

    NASA Astrophysics Data System (ADS)

    Rodionov, V. N.; Starcheus, S. G.; Tasev, M. A.; Ternov, I. M.

    1988-01-01

    Beta processes occurring upon variation of the temperature and density of an electron gas in a wide range are investigated by accounting for the effect of a strong magnetic field on the motion of charged particles. The study is performed in the Furry framework. Inherent to the case considered is that, for certain relationships between the main parameters of the problem, the probabilities of beta processes and the neutrino luminosities caused by them exhibit an oscillatory behavior. In the degeneracy case, the interference effects reflecting the nonanalyticity of the expressions upon field vanishing exceed the contributions from perturbation theory. The results are of interest in connection with the collapse of massive stellar nuclei.

  15. Key factors for assessing climate benefits of natural gas versus coal electricity generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochun; Myhrvold, Nathan P.; Caldeira, Ken

    2014-11-01

    Assessing potential climate effects of natural gas versus coal electricity generation is complicated by the large number of factors reported in life cycle assessment studies, compounded by the large number of proposed climate metrics. Thus, there is a need to identify the key factors affecting the climate effects of natural gas versus coal electricity production, and to present these climate effects in as clear and transparent a way as possible. Here, we identify power plant efficiencies and methane leakage rates as the factors that explain most of the variance in greenhouse gas emissions by natural gas and coal power plants. Thus, we focus on the role of these factors in determining the relative merits of natural gas versus coal power plants. We develop a simple model estimating CO2 and CH4 emissions from natural gas and coal power plants, and resulting temperature change. Simple underlying physical changes can be obscured by abstract evaluation metrics, thus we focus our analysis on the time evolution of global mean temperature. We find that, during the period of plant operation, if there is substantial methane leakage, natural gas plants can produce greater near-term warming than coal plants with the same power output. However, if methane leakage rates are low and power plant efficiency is high, natural gas plants can produce some reduction in near-term warming. In the long term, natural gas power plants produce less warming than would occur with coal power plants. However, without carbon capture and storage natural gas power plants cannot achieve the deep reductions that would be required to avoid substantial contribution to additional global warming.

  16. Risk factors for transient dysfunction of gas exchange after cardiac surgery

    PubMed Central

    Rodrigues, Cristiane Delgado Alves; Moreira, Marcos Mello; Lima, Núbia Maria Freire Vieira; de Figueirêdo, Luciana Castilho; Falcão, Antônio Luis Eiras; Petrucci, Orlando; Dragosavac, Desanka

    2015-01-01

    Objective A retrospective cohort study was preformed aiming to verify the presence of transient dysfunction of gas exchange in the postoperative period of cardiac surgery and determine if this disorder is linked to cardiorespiratory events. Methods We included 942 consecutive patients undergoing cardiac surgery and cardiac procedures who were referred to the Intensive Care Unit between June 2007 and November 2011. Results Fifteen patients had acute respiratory distress syndrome (2%), 199 (27.75%) had mild transient dysfunction of gas exchange, 402 (56.1%) had moderate transient dysfunction of gas exchange, and 39 (5.4%) had severe transient dysfunction of gas exchange. Hypertension and cardiogenic shock were associated with the emergence of moderate transient dysfunction of gas exchange postoperatively (P=0.02 and P=0.019, respectively) and were risk factors for this dysfunction (P=0.0023 and P=0.0017, respectively). Diabetes mellitus was also a risk factor for transient dysfunction of gas exchange (P=0.03). Pneumonia was present in 8.9% of cases and correlated with the presence of moderate transient dysfunction of gas exchange (P=0.001). Severe transient dysfunction of gas exchange was associated with patients who had renal replacement therapy (P=0.0005), hemotherapy (P=0.0001), enteral nutrition (P=0.0012), or cardiac arrhythmia (P=0.0451). Conclusion Preoperative hypertension and cardiogenic shock were associated with the occurrence of postoperative transient dysfunction of gas exchange. The preoperative risk factors included hypertension, cardiogenic shock, and diabetes. Postoperatively, pneumonia, ventilator-associated pneumonia, renal replacement therapy, hemotherapy, and cardiac arrhythmia were associated with the appearance of some degree of transient dysfunction of gas exchange, which was a risk factor for reintubation, pneumonia, ventilator-associated pneumonia, and renal replacement therapy in the postoperative period of cardiac surgery and cardiac

  17. System and Method for Determining Gas Optical Density Changes in a Non-Linear Measurement Regime

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Rana, Mauro (Inventor)

    2007-01-01

    Each of two sensors, positioned to simultaneously detect electromagnetic radiation absorption along a path, is calibrated to define a unique response curve associated therewith that relates a change in voltage output for each sensor to a change in optical density. A ratio-of-responses curve is defined by a ratio of the response curve associated with the first sensor to the response curve associated with the second sensor. A ratio of sensor output changes is generated using outputs from the sensors. An operating point on the ratio-of-responses curve is established using the ratio of sensor output changes. The established operating point is indicative of an optical density. When the operating point is in the non-linear response region of at least one of the sensors, the operating point and optical density corresponding thereto can be used to establish an actual response of at least one of the sensors whereby the actual sensor output can be used in determining changes in the optical density.

  18. THE PHYSICAL ORIGINS OF THE MORPHOLOGY-DENSITY RELATION: EVIDENCE FOR GAS STRIPPING FROM THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Van der Wel, Arjen; Bell, Eric F.; Skibba, Ramin A.; Rix, Hans-Walter; Holden, Bradford P.

    2010-05-10

    We provide a physical interpretation and explanation of the morphology-density relation for galaxies, drawing on stellar masses, star formation rates, axis ratios, and group halo masses from the Sloan Digital Sky Survey. We first re-cast the classical morphology-density relation in more quantitative terms, using low star formation rate (quiescence) as a proxy for early-type morphology and dark matter halo mass from a group catalog as a proxy for environmental density: for galaxies of a given stellar mass the quiescent fraction is found to increase with increasing dark matter halo mass. Our novel result is that-at a given stellar mass-quiescent galaxies are significantly flatter in dense environments, implying a higher fraction of disk galaxies. Supposing that the denser environments differ simply by a higher incidence of quiescent disk galaxies that are structurally similar to star-forming disk galaxies of similar mass, explains simultaneously and quantitatively these quiescence-environment and shape-environment relations. Our findings add considerable weight to the slow removal of gas as the main physical driver of the morphology-density relation, at the expense of other explanations.

  19. Correlation Energy of 3D Spin-Polarized Electron Gas: A Single Interpolation Between High- and Low-Density Limits

    NASA Astrophysics Data System (ADS)

    Sun, Jianwei; Perdew, John; Seidl, Michael

    2008-03-01

    We present an analytic model for the correlation energy per electron ec(rs,ζ) in the three-dimensional (3D) uniform electron gas, covering the full range 0<=rs<∞ and 0<=ζ<=1 of the density parameter rs and the relative spin polarization ζ. An interpolation is made between the exactly known high-density (rs->0) and low-density (rs->∞) limits, using a formula which (unlike previous ones) has the right analytic structures in both limits. We find that there is almost enough information available from these limits to determine the correlation energy over the full range. By minimal fitting to numerical quantum Monte Carlo data, we predict the value of b1(ζ) at ζ=0 close to the theoretical value [1], where b1(ζ) is the coefficient of the rsterm in the high-density expansion. The model finds correlation energies for the unpolarized (ζ=0) and fully polarized (ζ=1) cases in excellent agreement with Monte Carlo data. [1] T. Endo, M. Horiuchi, Y. Takada and H. Yasuhara, Phys. Rev. B 59, 7367 (1999)

  20. A Lagrangian-Eulerian approach to modeling homogeneous condensation in high density gas expansions.

    PubMed

    Jansen, Ryan; Gimelshein, Natalia; Gimelshein, Sergey; Wysong, Ingrid

    2011-03-14

    A computational approach to homogeneous nucleation is proposed based on Eulerian description of the gas phase expansion coupled with a Lagrangian approach to the cluster formation. A continuum, Euler/Navier-Stokes solver versatile advection code is used to model the gas transport, and a kinetic particle solver is developed in this work to simulate cluster nucleation and growth. Parameters in the new model were adjusted so as to match the known theoretical dimer formation equilibrium constants for the two gases under consideration, argon and water. Reasonable agreement between computed and available experimental data was found in terminal cluster size distributions for nozzle water expansions in a wide range of stagnation pressures. The proposed approach was found to be orders of magnitude faster than a comparable approach based on the direct simulation Monte Carlo method.

  1. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Wang, Shicong; Wendt, Amy E.; Culver, Cody; Radovanov, Svetlana; Persing, Harold

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  2. Risk factors in oil and gas lending; New financing alternatives

    SciTech Connect

    David, A.; Kipp, J.M.

    1991-12-01

    This paper reports that with the increasing internationalization of the petroleum industry, lenders to the industry must understand and overcome several new credit risk factors. As a result, new financial products are now available to reserve-based borrowers. Traditional project financing now also may include futures hedging, swaps, and collar elements.

  3. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus.

    PubMed

    Landi, G T; Romero, S A; Santos, A D

    2010-03-01

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  4. Optical gas sensing responses in transparent conducting oxides with large free carrier density

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Andio, M.; Wang, C.

    2014-07-01

    Inherent advantages of optical-based sensing devices motivate a need for materials with useful optical responses that can be utilized as thin film functional sensor layers. Transparent conducting metal oxides with large electrical conductivities as typified by Al-doped ZnO (AZO) display attractive properties for high temperature optical gas sensing through strong optical transduction of responses conventionally monitored through changes in measured electrical resistivity. An enhanced optical sensing response in the near-infrared and ultraviolet/visible wavelength ranges is demonstrated experimentally and linked with characteristic modifications to the dielectric constant due to a relatively high concentration of free charge carriers. The impact of light scattering on the magnitude and wavelength dependence of the sensing response is also discussed highlighting the potential for tuning the optical sensing response by controlling the surface roughness of a continuous film or the average particle size of a nanoparticle-based film. The physics underpinning the optical sensing response for AZO films on planar substrates yields significant insight into the measured sensing response for optical fiber-based evanescent wave absorption spectroscopy sensors employing an AZO sensing layer. The physics of optical gas sensing discussed here provides a pathway towards development of sensing materials for extreme temperature optical gas sensing applications. As one example, preliminary results are presented for a Nb-doped TiO2 film with sufficient stability and relatively large sensing responses at sensing temperatures greater than 500 °C.

  5. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    SciTech Connect

    Landi, G. T.; Romero, S. A.; Santos, A. D.

    2010-03-15

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  6. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    SciTech Connect

    Maddalena, Randy

    2011-08-20

    Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that provide elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter

  7. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.

  8. Greenhouse Gas Emissions of Indianapolis using a High-Density Surface Tower Network and an Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Lauvaux, T.; Miles, N. L.; Davis, K. J.; Richardson, S.; Deng, A.; Sarmiento, D. P.; Wu, K.; Sweeney, C.; Karion, A.; Hardesty, R. M.; Brewer, A.; Turnbull, J. C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Patarasuk, R.; Cambaliza, M. O. L.; Shepson, P. B.; Whetstone, J. R.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) was designed to develop and evaluate methods of detection and attribution of greenhouse gas fluxes from urban environments. Determination of greenhouse gas fluxes and uncertainty bounds is essential for the evaluation of the effectiveness of mitigation strategies. Indianapolis is intended to serve as a test bed for these methods; the results will inform efforts at measuring emissions from urban centers worldwide, including megacities. The generally accepted method for determining urban greenhouse gas emissions is inventories, which are compiled from records of land use and human activity. Atmospheric methods, in which towers are instrumented with sensors to measure greenhouse gas mole fractions and these data are used in an inversion model, have the potential to provide independent determination of emissions. The current INFLUX observation network includes twelve in-situ tower-based, continuous measurements of CO2. A subset of five towers additionally measure CH4, and a different subset measure CO. The subset measuring CO also include weekly flask samples of a wide variety of trace gases including 14CO2. Here we discuss the observed urban spatial and temporal patterns in greenhouse gas mole fraction in Indianapolis, with the critical result being the detectability of city emissions with this high-density network. We also present the first atmospheric inversion results for both CO2 and CH4, compare these results to inventories, and discuss the effects of critical assumptions in the inversion framework. The construction of unbiased atmospheric modeling systems and well-defined prior errors remains an important step in atmospheric emissions monitoring over urban areas. In order to minimize transport model errors, we developed a WRF-Chem FDDA modeling system ingesting surface and profile measurements of horizontal mean wind, temperature, and moisture. We demonstrate the impact of the meteorological data assimilation system on

  9. Monte Carlo modeling of electron density in hypersonic rarefied gas flows

    SciTech Connect

    Fan, Jin; Zhang, Yuhuai; Jiang, Jianzheng

    2014-12-09

    The electron density distribution around a vehicle employed in the RAM-C II flight test is calculated with the DSMC method. To resolve the mole fraction of electrons which is several orders lower than those of the primary species in the free stream, an algorithm named as trace species separation (TSS) is utilized. The TSS algorithm solves the primary and trace species separately, which is similar to the DSMC overlay techniques; however it generates new simulated molecules of trace species, such as ions and electrons in each cell, basing on the ionization and recombination rates directly, which differs from the DSMC overlay techniques based on probabilistic models. The electron density distributions computed by TSS agree well with the flight data measured in the RAM-C II test along a decent trajectory at three altitudes 81km, 76km, and 71km.

  10. Monte Carlo modeling of electron density in hypersonic rarefied gas flows

    NASA Astrophysics Data System (ADS)

    Fan, Jin; Zhang, Yuhuai; Jiang, Jianzheng

    2014-12-01

    The electron density distribution around a vehicle employed in the RAM-C II flight test is calculated with the DSMC method. To resolve the mole fraction of electrons which is several orders lower than those of the primary species in the free stream, an algorithm named as trace species separation (TSS) is utilized. The TSS algorithm solves the primary and trace species separately, which is similar to the DSMC overlay techniques; however it generates new simulated molecules of trace species, such as ions and electrons in each cell, basing on the ionization and recombination rates directly, which differs from the DSMC overlay techniques based on probabilistic models. The electron density distributions computed by TSS agree well with the flight data measured in the RAM-C II test along a decent trajectory at three altitudes 81km, 76km, and 71km.

  11. Endocan-expressing microvessel density as a prognostic factor for survival in human gastric cancer

    PubMed Central

    Chang, Yuan; Niu, Wei; Lian, Pei-Long; Wang, Xian-Qiang; Meng, Zhi-Xin; Liu, Yi; Zhao, Rui

    2016-01-01

    AIM: To investigate the expression of endocan in tumour vessels and the relationships between endocan and the expression of vascular endothelial growth factor (VEGF) and prognosis in gastric cancer. METHODS: This study included 142 patients with confirmed gastric cancer in a single cancer centre between 2008 and 2009. Clinicopathologic features were determined, and an immunohistochemical analysis of endocan-expressing microvessel density (MVD) (endocan-MVD), VEGF and vascular endothelial growth factor receptor 2 (VEGFR2) was performed. Potential relationships between endocan-MVD and clinicopathological variables were assessed using a Student’s t-test or an analysis of variance test. Spearman’s rank correlation was applied to evaluate the relationship between endocan-MVD and the expression of VEGF/VEGFR2. Long-term survival of these patients was analysed using univariate and multivariate analyses. RESULTS: Positive staining of endocan was observed in most of the gastric cancer tissues (108/142) and in fewer of the normal gastric tissues. Endocan-MVD was not associated with gender or histological type (P > 0.05), while endocan-MVD was associated with tumour size, Borrmann type, tumour differentiation, tumour invasion, lymph node metastasis and TNM stage (P < 0.05). According to the Spearman’s rank correlation analysis, endocan-MVD had a positive correlation with VEGF (r = 0.167, P = 0.047) and VEGFR2 (r = 0.410, P = 0.000). The univariate analysis with a log-rank test indicated that the patients with a high level of endocan-MVD had a significantly poorer overall survival rate than those with a low level of endocan-MVD (17.9% vs 64.0%, P = 0.000). The multivariate analysis showed that a high level of endocan-MVD was a valuable prognostic factor. CONCLUSION: Endocan-MVD significantly correlates with the expression of VEGF and VEGFR2 and is a valuable prognostic factor for survival in human gastric cancer. PMID:27340359

  12. Measurement of viscosity, density, and gas solubility of refrigerant blends in selected synthetic lubricants. Final report

    SciTech Connect

    Cavestri, R.C.

    1995-05-15

    The lubricants tested in this project were chosen based on the results of liquid/liquid miscibility tests. EMKARATE RL32S and Emery 2968A were selected. The Vapor Liquid Equilibrium (VLE) viscosity reduction and gas fractionation of each was measured with three different refrigerant blends: (1) R-404A; (2) R-507; and (3) R-407C. In addition, the four single refrigerants that make up the blends, HFC-32, HFC-125, HFC-134a, and HFC-143a, were also measured. Lubricants found to have the lowest liquid/liquid miscibilities had nearly equal viscosity reduction profiles as did the more miscible lubricants. Analytical methodology consisted of maintaining equally both the composition of the head space vapor above the lubricant/refrigerant mixture, and the composition of the liquid blend refrigerant. Blends with large temperature glides were re-evaluated in order to test the concept of head space quality and a vented piston hydraulic cylinder assembly was developed to perform this task. Fluid property data, above critical temperature and pressure conditions, is presented for the two lubricants with HFC-32, HFC-125, HFC-143a refrigerants. This research shows that the lubricant EMKARATE RL32S, which had the lowest (poorest) liquid/liquid miscibilities with the selected refrigerants, also had nearly equal viscosity reduction profiles to the more miscible Emery 2968A lubricant. The analytical methodology consisted of maintaining the composition of the refrigerant gas above the lubricant to be equal in composition to that of the pure liquid refrigerant blend being introduced into the lubricant. Refrigerant blends with large temperature glides were re-evaluated in order to validate the concept of the importance of the composition of the gas over the lubricant. To do perform this task, a special vented piston hydraulic cylinder assembly was developed. Fluid property data is also presented for HFC-32, HFC-125, and HFC-143a above the critical temperature and pressure of each.

  13. 40 CFR Table W - 4 of Subpart W-Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false 4 of Subpart W-Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage W Table W Protection of Environment... Total Hydrocarbon Emission Factors for Underground Natural Gas Storage Underground natural gas...

  14. 40 CFR Table W - 2 of Subpart W-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false 2 of Subpart W-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing W Table W Protection of Environment... Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing Onshore natural gas...

  15. Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state

    NASA Astrophysics Data System (ADS)

    Hamidian, M. H.; Edkins, S. D.; Kim, Chung Koo; Davis, J. C.; MacKenzie, A. P.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E.-A.; Sachdev, S.; Fujita, K.

    2016-02-01

    Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic `pseudogap’ phenomenon and the more recently investigated density wave state. This state is generally characterized by a wavevector Q parallel to the planar Cu-O-Cu bonds along with a predominantly d-symmetry form factor (dFF-DW). To identify the microscopic mechanism giving rise to this state, one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle-hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomena throughout the phase diagram. Here we use energy-resolved sublattice visualization of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the `pseudogap’ energy Δ1. Moreover, we demonstrate that the dFF-DW modulations at E = -Δ1 (filled states) occur with relative phase π compared to those at E = Δ1 (empty states). Finally, we show that the conventionally defined dFF-DW Q corresponds to scattering between the `hot frontier’ regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist. These data indicate that the cuprate dFF-DW state involves particle-hole interactions focused at the pseudogap energy scale and between the four pairs of `hot frontier’ regions in momentum space where the pseudogap opens.

  16. Bone Mineral Density in the Noninstitutionalized Elderly: Influence of Sociodemographic and Anthropometric Factors

    PubMed Central

    Cristina de Sousa e Silva Araujo, Ellen; Pagotto, Valéria; Silveira, Erika Aparecida

    2016-01-01

    Objective. Analysis of bone mineral density (BMD) in the elderly and its associated factors according to sex. Methods. A cross-sectional study is presented herein, with a random sample of 132 noninstitutionalized elderly people. Individuals who did not use diuretics were excluded. BMD was obtained from examination of total body densitometry and its association with sociodemographic variables, lifestyle, anthropometric, and body composition was verified. Results. Mean BMD for men was 1.17 ± 0.12 g/cm2 and for women was 1.04 ± 0.11 g/cm2. Higher education was associated with higher BMD values in men (p < 0.05). There was a reduction in BMD in the age group 75–79 years of age in women and over 80 years of age in men (p < 0.05). Underweight was associated with significantly low BMD for both sexes (p < 0.01), while normal weight was associated with low BMD in women (p < 0.001). Discussion. The elderly with low schooling and in older age groups are more probable to also present low BMD. Lower levels of body mass index also indicated towards low BMD. PMID:27127504

  17. Non-high density lipoprotein cholesterol versus low density lipoprotein cholesterol as a discriminating factor for myocardial infarction

    PubMed Central

    2012-01-01

    Background Serum total cholesterol (TC) and LDL cholesterol (LDL-C) have been used as major laboratory measures in clinical practice to assess cardiovascular risk in the general population and disease management as well as prognosis in patients. However, some studies have also reported the use of non-HDL cholesterol (non-HDL-C). As non-HDL-C can be calculated by subtracting HDL-C from TC, both of which do not require fasting blood sample in contrast to LDL-C which requires fasting blood sample, we aimed to compare non-HDL-C with LDL-C as a predictor of myocardial infarction (MI). Methods This hospital based cross sectional study was undertaken among 51 cases of MI and equal number of controls. MI was diagnosed based on the clinical history, ECG changes and biochemical parameters. 5 mL of fasting blood sample was collected from each research participant for the analysis of lipid profile. Non-HDL-C was calculated by using the equation; Non-HDL-C = TC – HDL-C. Statistical analysis was performed using SPSS 14.0. Results 42 MI cases were dyslipidemic in contrast to 20 dyslipidemic subjects under control group. The differences in the median values of each lipid parameter were statistically significant between MI cases and controls. The lipid risk factors most strongly associated with MI were HDL-C (OR 5.85, 95% CI 2.41-14.23, P value = 0.000) followed by non-HDL-C (OR 3.77, 95% CI 1.64-8.66, P value = 0.002), LDL-C/HDL-C (OR 3.38, 95% CI 1.44-7.89, P value = 0.005), TC/HDL-C (OR 2.93, 95% CI 1.36-7.56, P value = 0.026), LDL-C (OR 2.70, 95% CI 1.20-6.10, P value = 0.017), TC (OR 2.68, 95% CI 1.04-6.97, P value = 0.042) and Tg (OR 2.54, 95% CI 1.01-6.39, P value = 0.047). Area under the receiver operating curve was greater for non-HDL-C than for LDL-C. Non-HDL-C was also found to be more sensitive and specific than LDL-C for MI. Conclusions HDL-C and non-HDL-C are better discriminating parameters than LDL-C for MI. Thus, we can simply

  18. Density-dependent interference of aphids with caterpillar-induced defenses in Arabidopsis: involvement of phytohormones and transcription factors.

    PubMed

    Kroes, Anneke; van Loon, Joop J A; Dicke, Marcel

    2015-01-01

    In nature, plants are exposed to attacks by multiple herbivore species at the same time. To cope with these attacks, plants regulate defenses with the production of hormones such as salicylic acid (SA) and jasmonic acid (JA). Because herbivore densities are dynamic in time, this may affect plant-mediated interactions between different herbivores attacking at the same time. In Arabidopsis thaliana, feeding by Brevicoryne brassicae aphids interferes with induced defenses against Plutella xylostella caterpillars. This is density dependent: at a low aphid density, the growth rate of P. xylostella was increased, whereas caterpillars feeding on plants colonized by aphids at a high density have a reduced growth rate. Growth of P. xylostella larvae was unaffected on sid2-1 or on dde2-2 mutant plants when feeding simultaneously with a low or high aphid density. This shows that aphid interference with caterpillar-induced defenses requires both SA and JA signal transduction pathways. Transcriptional analysis revealed that simultaneous feeding by caterpillars and aphids at a low density induced the expression of the SA transcription factor gene WRKY70 whereas expression of WRKY70 was lower in plants induced with both caterpillars and a high aphid density. Interestingly, the expression of the JA transcription factor gene MYC2 was significantly higher in plants simultaneously attacked by aphids at a high density and caterpillars. These results indicate that a lower expression level of WRKY70 leads to significantly higher MYC2 expression through SA-JA cross-talk. Thus, plant-mediated interactions between aphids and caterpillars are density dependent and involve phytohormonal cross-talk and differential activation of transcription factors.

  19. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    SciTech Connect

    Ma, H. J. Harsan E-mail: ariando@nus.edu.sg; Zeng, S. W.; Annadi, A.; Ariando E-mail: ariando@nus.edu.sg; Huang, Z.; Venkatesan, T.

    2015-08-15

    The two-dimensional electron gas (2DEG) formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO{sub 3} (LAO) and non-polar SrTiO{sub 3} (STO). Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La{sub 0.5}Sr{sub 0.5}TiO{sub 3} (LSTO) layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  20. Hysteresis phenomena of the two dimensional electron gas density in lattice-matched InAlN/GaN heterostructures

    SciTech Connect

    Sang, Ling; Yang, Xuelin Cheng, Jianpeng; Guo, Lei; Hu, Anqi; Xiang, Yong; Yu, Tongjun; Xu, Fujun; Tang, Ning; Jia, Lifang; He, Zhi; Wang, Maojun; Wang, Xinqiang; Shen, Bo; Ge, Weikun

    2015-08-03

    High-temperature transport properties in high-mobility lattice-matched InAlN/GaN heterostructures have been investigated. An interesting hysteresis phenomenon of the two dimensional electron gas (2DEG) density is observed in the temperature-dependent Hall measurements. After high-temperature thermal cycles treatment, the reduction of the 2DEG density is observed, which is more serious in thinner InAlN barrier samples. This reduction can then be recovered by light illumination. We attribute these behaviors to the shallow trap states with energy level above the Fermi level in the GaN buffer layer. The electrons in the 2DEG are thermal-excited when temperature is increased and then trapped by these shallow trap states in the buffer layer, resulting in the reduction and hysteresis phenomenon of their density. Three trap states are observed in the GaN buffer layer and C{sub Ga} may be one of the candidates responsible for the observed behaviors. Our results provide an alternative approach to assess the quality of InAlN/GaN heterostructures for applications in high-temperature electronic devices.

  1. Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium

    NASA Technical Reports Server (NTRS)

    Erickson, Wayne D.

    1960-01-01

    The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.

  2. Liquid-gas coexistence versus energy minimization with respect to the density profile in the inhomogeneous inner crust of neutron stars

    NASA Astrophysics Data System (ADS)

    Martin, Noël; Urban, Michael

    2015-07-01

    We compare two approaches to describe the inner crust of neutron stars: On the one hand, the simple coexistence of a liquid (clusters) and a gas phase, and on the other hand, the energy minimization with respect to the density profile, including Coulomb and surface effects. We find that the phase-coexistence model gives a reasonable description of the densities in the clusters and in the gas, but the precision is not high enough to obtain the correct proton fraction at low baryon densities. We also discuss the surface tension and neutron skin obtained within the energy minimization.

  3. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments.

    PubMed

    Herrmann, H W; Kim, Y H; Young, C S; Fatherley, V E; Lopez, F E; Oertel, J A; Malone, R M; Rubery, M S; Horsfield, C J; Stoeffl, W; Zylstra, A B; Shmayda, W T; Batha, S H

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds. PMID:25430303

  4. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

    SciTech Connect

    Herrmann, H. W. Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.

    2014-11-15

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  5. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments.

    PubMed

    Herrmann, H W; Kim, Y H; Young, C S; Fatherley, V E; Lopez, F E; Oertel, J A; Malone, R M; Rubery, M S; Horsfield, C J; Stoeffl, W; Zylstra, A B; Shmayda, W T; Batha, S H

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  6. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experimentsa)

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.; Batha, S. H.

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ˜400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  7. Behavior of a plasma in a high-density gas-embedded Z-pinch configuration

    SciTech Connect

    Shlachter, J.S.

    1982-05-01

    The theoretical analysis of a high density Z-pinch (HDZP) begins with an examination of the steady state energy balance between ohmic heating and bremsstrahlung radiation losses for a plasma column in pressure equilibrium. The model is then expanded to include the time-varying internal energy and results in a quasi-equilibrium prescription for the load current through a constant radius plasma channel. This set of current waveforms is useful in the design of experimental systems. The behavior of a plasma for physically realizable conditions is first examined by allowing adiabatic changes in the column radius. A more complete model is then developed by incorporating inertial effects into the momentum equation, and the resultant global MHD computational model is compared with more sophisticated, and costly, one- and two-dimensional computer simulations. These comparisons demonstrate the advantages of the global MHD description over previously developed zero-dimensional models.

  8. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Griffin, D. W.; Yep, T. W.; Agrawal, A. K.

    2005-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2- second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. The global jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes change in gravity in the drop tower.

  9. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)

    2001-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.

  10. Star formation laws in the Andromeda galaxy: gas, stars, metals and the surface density of star formation

    NASA Astrophysics Data System (ADS)

    Rahmani, S.; Lianou, S.; Barmby, P.

    2016-03-01

    We use hierarchical Bayesian regression analysis to investigate star formation laws in the Andromeda galaxy (M31) in both local (30, 155 and 750 pc) and global cases. We study and compare the well-known Kennicutt-Schmidt law, the extended Schmidt law and the metallicity/star formation correlation. Using a combination of Hα and 24 μm emission, a combination of far-ultraviolet and 24 μm, and the total infrared emission, we estimate the total star formation rate (SFR) in M31 to be between 0.35 ± 0.04 and 0.4 ± 0.04 M⊙ yr-1. We produce a stellar mass surface density map using IRAC 3.6 μm emission and measured the total stellar mass to be 6.9 × 1010 M⊙. For the Kennicutt-Schmidt law in M31, we find the power-law index N to be between 0.49 and 1.18; for all the laws, the power-law index varies more with changing gas tracer than with SFR tracer. The power-law index also changes with distance from the centre of the galaxy. We also applied the commonly used ordinary least-squares fitting method and showed that using different fitting methods leads to different power-law indices. There is a correlation between the surface density of SFR and the stellar mass surface density, which confirms that the Kennicutt-Schmidt law needs to be extended to consider the other physical properties of galaxies. We found a weak correlation between metallicity, the SFR and the stellar mass surface density.

  11. Factors that control gas flow in tight sandstone

    SciTech Connect

    Randolph, P.L.; Chowdiah, P.

    1983-01-01

    More than 1100 m (3700 ft) of 0.1 m (4 inch) diameter core were cut from the Mesa Verde Formation penetrated by the first two wells of the DOE Multi-Well Experiment (MWX) in Garfield County, Colorado. Thirty two pieces of sandstone core, each about 0.15 m (0.5 ft) long were selected for analysis in IGT's Computer Operated Rock Analysis Laboratory (CORAL). The stream-bed deposition characteristic of the fluvial environment is characterized by a wide variation of porosity, permeability, and pore volume compressibility. Porosity of paludal samples was higher than coastal samples and pore volume compressibility was lower. The blanket marine sands exhibited a smaller range of porosities and permeabilities than the other three environments, but their pore volume compressibility was as great as the costal samples. Differences in pore volume compressibility correlated with effects of pressure on permeability. The pore openings that limit flow through tight sandstones were more than a factor of 10 smaller than openings observed in published scanning electron microscope pictures of bridging Illite clays common in tight sands.

  12. High density lipoprotein cholesterol as a determinant factor in coronary heart disease in Africans.

    PubMed Central

    Adebonojo, S. A.; Ogunnaike, H. O.

    1989-01-01

    A study of the lipid profile of 200 normal Nigerian subjects (Group A) shows a steady increase in the total cholesterol and triglyceride values with increasing age in both sexes, while the high density lipoprotein (HDL) cholesterol and percent HDL cholesterol values show a steady decrease with increasing age in both sexes. A similar study of 160 patients with high-risk factors (Group B), ie, patients with hypertension, diabetes mellitus, cigarette smokers, and obese patients, shows significantly higher values of mean triglyceride than in the normal subjects (P less than 0.001). The HDL cholesterol and percent HDL cholesterol values are significantly lower in the high risk patients than in the normal subjects (P less than 0.001). A study of the lipid profile of 15 Nigerian patients with coronary heart disease (CHD) (Group C) shows significantly lower in the high-risk patients than in the percent HDL cholesterol than normal subjects (P less than 0.001). These values were also found to be significantly lower in Group C patients than in Group B patients (P less than 0.01). A comparison of the lipid profile of normal Nigerian subjects with those of black Americans shows that the total cholesterol values of normal black Americans are significantly higher than those of normal Nigerians of comparable age and sex (P less than 0.001). Although there is no significant difference in the HDL cholesterol values of both black American and Nigerian males and females, the values of the percent HDL cholesterol of black Americans are significantly lower (P less than 0.01) than those of Nigerians of comparable age and sex.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2746678

  13. Novel bayes factors that capture expert uncertainty in prior density specification in genetic association studies.

    PubMed

    Spencer, Amy V; Cox, Angela; Lin, Wei-Yu; Easton, Douglas F; Michailidou, Kyriaki; Walters, Kevin

    2015-05-01

    Bayes factors (BFs) are becoming increasingly important tools in genetic association studies, partly because they provide a natural framework for including prior information. The Wakefield BF (WBF) approximation is easy to calculate and assumes a normal prior on the log odds ratio (logOR) with a mean of zero. However, the prior variance (W) must be specified. Because of the potentially high sensitivity of the WBF to the choice of W, we propose several new BF approximations with logOR ∼N(0,W), but allow W to take a probability distribution rather than a fixed value. We provide several prior distributions for W which lead to BFs that can be calculated easily in freely available software packages. These priors allow a wide range of densities for W and provide considerable flexibility. We examine some properties of the priors and BFs and show how to determine the most appropriate prior based on elicited quantiles of the prior odds ratio (OR). We show by simulation that our novel BFs have superior true-positive rates at low false-positive rates compared to those from both P-value and WBF analyses across a range of sample sizes and ORs. We give an example of utilizing our BFs to fine-map the CASP8 region using genotype data on approximately 46,000 breast cancer case and 43,000 healthy control samples from the Collaborative Oncological Gene-environment Study (COGS) Consortium, and compare the single-nucleotide polymorphism ranks to those obtained using WBFs and P-values from univariate logistic regression.

  14. Serum LDL (Low Density Lipoprotein) As a Risk Factor for Ischemic Stroke.

    PubMed

    Biswas, N; Sangma, M A

    2016-07-01

    Atherosclerosis is the main risk factor of ischaemic stroke. Dyslipidaemia is the main cause of atherosclerosis. High levels of LDL, also called "bad" cholesterol, seem to provoke stroke. This case control study was conducted in Mymensingh Medical College Hospital during the period of January 2012 to December 2012. The study was carried out to measure the level of serum LDL (Low Density Lipoprotein) of ischaemic stroke patients admitted in Medicine wards of Mymensingh Medical College Hospital and the result of this study was compared with the level of LDL cholesterol in age matched controls. Sample size was 384 which had been selected by inclusion and exclusion criteria. Out of 384 samples 192 were cases and 192 were controls. Mean age ±SD was 57.0±10.85 years in cases and 57.43±10.64 years in controls. Elderly people are the most vulnerable group for developing stroke. LDL cholesterol level was more than 130mg/dl was found 88.54% among cases and 33.85% among controls, the difference was statistically significant (p<0.05). Mean LDL level ±SD were 145±13.59mg/dl in cases and 125.01±10.73mg/dl in controls. Odds ratio of LDL cholesterol were 15.0979 and 95% confidence limits were 8.8396 to 25.7869 among cases and controls. This study explored study population with higher LDL cholesterol was over fifteen times more likely to developed ischaemic stroke. Early detection of high LDL cholesterol in the way to prevent ischaemic stroke and thereby reduced the morbidity and mortality of ischaemic stroke. PMID:27612886

  15. Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state

    SciTech Connect

    M. H. Hamidian; Kim, Chung Koo; Edkins, S. D.; Davis, J. C.; Mackenzie, A. P.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E. -A.; Sachdev, S.; Fujita, K.

    2015-10-26

    Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic ‘pseudogap’ phenomenon1, 2 and the more recently investigated density wave state3–13. This state is generally characterized by a wavevector Q parallel to the planar Cu–O–Cu bonds 4–13 along with a predominantly d-symmetry form factor 14–17 (dFF-DW). To identify the microscopic mechanism giving rise to this state 18–30, one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle–hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomena throughout the phase diagram. Here we use energy-resolved sublattice visualization14 of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the ‘pseudogap’ energy Δ1. Moreover, we demonstrate that the dFF-DW modulations at E = –Δ1 (filled states) occur with relative phase π compared to those at E = Δ1 (empty states). Lastly, we show that the conventionally defined dFF-DW Q corresponds to scattering between the ‘hot frontier’ regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist30–32. These data indicate that the cuprate dFF-DW state involves particle–hole interactions focused at the pseudogap energy scale and between the four pairs of ‘hot frontier’ regions in momentum space where the pseudogap opens.

  16. Low bone mineral density and associated risk factors in HIV-infected patients

    PubMed Central

    Chiţu-Tișu, Cristina-Emilia; Barbu, Ecaterina-Constanţa; Lazăr, Mihai; Ion, Daniela Adriana; Bădărău, Ioana Anca

    2016-01-01

    Background Aging of persons with human immunodeficiency virus (HIV) resulted in high rates of osteopenia and osteoporosis. Multiple cohort studies have reported an increased prevalence of bone demineralization among HIV-infected individuals. The aim of this study was to evaluate bone mineral density (BMD) and risk factors for osteopenia/osteoporosis among HIV-positive patients attending the National Institute for Infectious Diseases “Prof.Dr. Matei Balș”, Bucharest, Romania. Methods We performed a cross-sectional study that enrolled 60 patients with HIV. The association between BMD and lifestyle habits (smoking), body mass index (BMI), nadir cluster of differentiation 4 (CD4) cell count, current CD4 cell count, HIV viral load and history of combination antiretroviral therapy (cART) were investigated. The BMD was measured at the lumbar spine, hips and total body using dual-energy X-ray absorptiometry (DEXA). Results In the present study, DEXA evaluation showed an overall prevalence of osteoporosis of 16.66% (ten patients) and a prevalence of osteopenia of 48.33% (29 patients). In men, low BMI and cigarette smoking showed significant association with the diagnosis of lumbar spine demineralization (p=0.034 and p=0.041, respectively). Duration of exposure to cART classes in relation to BMD was also evaluated. The use of non-nucleoside reverse-transcriptase inhibitors (NNRTIs) was associated with low lumbar spine BMD in all patients (p=0.015). Reduced BMD was significantly associated with protease inhibitors (PIs)-containing treatment (p=0.043) in women. Conclusion At lumbar spine DEXA, male gender was statistically associated with reduced BMD. At the left hip Ward’s area, decreased BMD T scores were significantly associated with aging. The reduced BMD was higher in patients receiving PI- or NNRTI-containing regimens. PMID:27482514

  17. Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state

    DOE PAGESBeta

    M. H. Hamidian; Kim, Chung Koo; Edkins, S. D.; Davis, J. C.; Mackenzie, A. P.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E. -A.; Sachdev, S.; et al

    2015-10-26

    Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic ‘pseudogap’ phenomenon1, 2 and the more recently investigated density wave state3–13. This state is generally characterized by a wavevector Q parallel to the planar Cu–O–Cu bonds 4–13 along with a predominantly d-symmetry form factor 14–17 (dFF-DW). To identify the microscopic mechanism giving rise to this state 18–30, one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle–hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomenamore » throughout the phase diagram. Here we use energy-resolved sublattice visualization14 of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the ‘pseudogap’ energy Δ1. Moreover, we demonstrate that the dFF-DW modulations at E = –Δ1 (filled states) occur with relative phase π compared to those at E = Δ1 (empty states). Lastly, we show that the conventionally defined dFF-DW Q corresponds to scattering between the ‘hot frontier’ regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist30–32. These data indicate that the cuprate dFF-DW state involves particle–hole interactions focused at the pseudogap energy scale and between the four pairs of ‘hot frontier’ regions in momentum space where the pseudogap opens.« less

  18. Corticotropin-releasing factor receptor densities vary with photoperiod and sociality.

    PubMed

    Beery, Annaliese K; Vahaba, Daniel M; Grunberg, Diana M

    2014-11-01

    Life in social groups relies on prosocial behaviors as well as on reduction of antisocial behaviors such as aggression and territoriality. The mechanisms supporting variation in behaviors that give rise to group living (sociality) are largely unknown. Female meadow voles exhibit natural seasonal variation in sociality: females are aggressive and territorial in summer, while in winter they share burrows and nest in mixed-sex groups. This behavioral shift is paralleled in the lab by day length-dependent variation in partner preference formation and social huddling. We exploit natural variation in meadow vole sociality in order to examine changes in neural pathways that coincide with environmental and behavioral variations. Mounting evidence suggests that the corticotropin-releasing factor system, encompassing multiple peptides and two receptor subtypes (CRF1 and CRF2), may play an important role in regulating social behaviors. We report day-length dependent variation in CRF1 and CRF2 receptor binding in female meadow voles, and relate these findings to previously collected oxytocin receptor (OTR) binding data and behavioral data for the same individuals. CRF1 receptor binding was greater in summer-like long day lengths (LD), particularly in the hippocampus, while CRF2 receptor binding was greater in winter-like short day lengths (SD) in the cingulate cortex and hippocampus. OTR varied with day length in the bed nucleus of the stria terminalis, nucleus accumbens, and hippocampus. SD voles huddled more extensively than LD voles, and greater huddling time was associated with more CRF1 receptor binding and less CRF2 receptor binding in subregions of the lateral septum. CRF2 receptor associations with behavior mirrored those of OTR in the lateral septum. Finally, estradiol treatment affected density of CRF receptors in multiple brain regions. CRF receptors and their ligands are promising candidates for enhancing understanding of the regulation of non-sexual social

  19. ALMA OBSERVATIONS OF A HIGH-DENSITY CORE IN TAURUS: DYNAMICAL GAS INTERACTION AT THE POSSIBLE SITE OF A MULTIPLE STAR FORMATION

    SciTech Connect

    Tokuda, Kazuki; Onishi, Toshikazu; Saigo, Kazuya; Kawamura, Akiko; Fukui, Yasuo; Inutsuka, Shu-ichiro; Tachihara, Kengo; Matsumoto, Tomoaki; Machida, Masahiro N.; Tomida, Kengo

    2014-07-01

    Starless dense cores eventually collapse dynamically, forming protostars inside them, and the physical properties of the cores determine the nature of the forming protostars. We report ALMA observations of dust continuum emission and molecular rotational lines toward MC27 or L1521F, which is considered to be very close to the first protostellar core phase. We found a few starless high-density cores, one of which has a very high density of ∼10{sup 7} cm{sup –3}, within a region of several hundred AU around a very low-luminosity protostar detected by Spitzer. A very compact bipolar outflow with a dynamical timescale of a few hundred years was found toward the protostar. The molecular line observation shows several cores with an arc-like structure, possibly due to the dynamical gas interaction. These complex structures revealed in the present observations suggest that the initial condition of star formation is highly dynamical in nature, which is considered to be a key factor in understanding fundamental issues of star formation such as the formation of multiple stars and the origin of the initial mass function of stars.

  20. High-precision absolute (true) density measurements on hygroscopic powders by gas pycnometry: application to determining effects of formulation and process on free volume of lyophilized products.

    PubMed

    Kikuchi, Takayuki; Wang, Bingquan Stuart; Pikal, Michael J

    2011-07-01

    As density (free volume) of the amorphous solids should be related to mobility and stability, an attempt was made to develop a simple, sensitive, and reproducible method to evaluate free volume via high-precision gas pycnometry density measurements, and to apply this methodology to study the variation of free volume with formulation and thermal history (i.e., annealing). Annealed samples were prepared either by heating the product after freeze drying (postannealing) or drying at higher temperature in secondary drying than normal (in-process annealing). Density was measured using a gas pycnometer. We find that the key to high-precision density measurements is isolation of the instrument from atmospheric moisture; accordingly, all operations were carried out in a dry box. With suitable care, densities of amorphous freeze-dried products can be measured with a precision of better than 0.5% in a series of independent but nominally identical samples. Density decreased with increasing molecular weight of dextran, but density of proteins was independent of molecular weight. Small but significant increases in density upon annealing were observed for several formulations. Thus, we conclude that accurate density measurements may be made by carefully controlling residual moisture. Density may be a useful parameter to predict long-term stability.

  1. Density Functional Theory and Reaction Kinetics Studies of the Water–Gas Shift Reaction on Pt–Re Catalysts

    SciTech Connect

    Carrasquillo-Flores, Ronald; Gallo, Jean Marcel R.; Hahn, Konstanze; Dumesic, James A.; Mavrikakis, Manos

    2013-11-05

    Periodic, self-consistent density functional theory calculations (DFT-GGA-PW91) on Pt(111) and Pt3Re(111) surfaces, reaction kinetics measurements, and microkinetic modeling are employed to study the mechanism of the water–gas shift (WGS) reaction over Pt and Pt–Re catalysts. The values of the reaction rates and reaction orders predicted by the model are in agreement with the ones experimentally determined; the calculated apparent activation energies are matched to within 6% of the experimental values. The primary reaction pathway is predicted to take place through adsorbed carboxyl (COOH) species, whereas formate (HCOO) is predicted to be a spectator species. We conclude that the clean Pt(111) is a good representation of the active site for the WGS reaction on Pt catalysts, whereas the active sites on the Pt–Re alloy catalyst likely contain partially oxidized metal ensembles.

  2. How well do static electronic dipole polarizabilities from gas-phase experiments compare with density functional and MP2 computations?

    SciTech Connect

    Thakkar, Ajit J. Wu, Taozhe

    2015-10-14

    Static electronic dipole polarizabilities for 135 molecules are calculated using second-order Møller-Plesset perturbation theory and six density functionals recently recommended for polarizabilities. Comparison is made with the best gas-phase experimental data. The lowest mean absolute percent deviations from the best experimental values for all 135 molecules are 3.03% and 3.08% for the LC-τHCTH and M11 functionals, respectively. Excluding the eight extreme outliers for which the experimental values are almost certainly in error, the mean absolute percent deviation for the remaining 127 molecules drops to 2.42% and 2.48% for the LC-τHCTH and M11 functionals, respectively. Detailed comparison enables us to identify 32 molecules for which the discrepancy between the calculated and experimental values warrants further investigation.

  3. How well do static electronic dipole polarizabilities from gas-phase experiments compare with density functional and MP2 computations?

    PubMed

    Thakkar, Ajit J; Wu, Taozhe

    2015-10-14

    Static electronic dipole polarizabilities for 135 molecules are calculated using second-order Møller-Plesset perturbation theory and six density functionals recently recommended for polarizabilities. Comparison is made with the best gas-phase experimental data. The lowest mean absolute percent deviations from the best experimental values for all 135 molecules are 3.03% and 3.08% for the LC-τHCTH and M11 functionals, respectively. Excluding the eight extreme outliers for which the experimental values are almost certainly in error, the mean absolute percent deviation for the remaining 127 molecules drops to 2.42% and 2.48% for the LC-τHCTH and M11 functionals, respectively. Detailed comparison enables us to identify 32 molecules for which the discrepancy between the calculated and experimental values warrants further investigation. PMID:26472374

  4. A van der Waals density functional built upon the electron-gas foundation

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Berland, Kristian; Schröder, Elsebeth

    2015-03-01

    The vdW-DF method is designed to be a systematic extension of the constraint-based generalized-gradient approximation (GGA) and can therefore serve as general purpose density functional [PRB 90, 075148 (2014)]. Yet the early versions can have issues both with bulk systems and with weak chemisorption. We present a recent nonempirical version, vdW-DF-cx [J. Chem. Phys. 140, 18A539 (2014), PRB 89, 035412 (2014)], that resolves these issues. The version is designed to have a consistent combination of exchange and correlation. We show that it performs well for inter-molecular binding and that it can even be better than PBE for describing cohesion and structure of molecules and solids. These results validate the robustness of the vdW-DF plasmon-pole model, which we show is closed linked to the exchange correlation hole of constraint-based GGA. The work was supported by the Swedish Research Council (VR), by the Chalmers Areas of Advance: Materials, and by the Swedish National Infrastructure for Computing.

  5. Direct observation of many-body charge density oscillations in a two-dimensional electron gas.

    PubMed

    Sessi, Paolo; Silkin, Vyacheslav M; Nechaev, Ilya A; Bathon, Thomas; El-Kareh, Lydia; Chulkov, Evgueni V; Echenique, Pedro M; Bode, Matthias

    2015-01-01

    Quantum interference is a striking manifestation of one of the basic concepts of quantum mechanics: the particle-wave duality. A spectacular visualization of this effect is the standing wave pattern produced by elastic scattering of surface electrons around defects, which corresponds to a modulation of the electronic local density of states and can be imaged using a scanning tunnelling microscope. To date, quantum-interference measurements were mainly interpreted in terms of interfering electrons or holes of the underlying band-structure description. Here, by imaging energy-dependent standing-wave patterns at noble metal surfaces, we reveal, in addition to the conventional surface-state band, the existence of an 'anomalous' energy band with a well-defined dispersion. Its origin is explained by the presence of a satellite in the structure of the many-body spectral function, which is related to the acoustic surface plasmon. Visualizing the corresponding charge oscillations provides thus direct access to many-body interactions at the atomic scale. PMID:26498368

  6. Direct observation of many-body charge density oscillations in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Sessi, Paolo; Silkin, Vyacheslav M.; Nechaev, Ilya A.; Bathon, Thomas; El-Kareh, Lydia; Chulkov, Evgueni V.; Echenique, Pedro M.; Bode, Matthias

    2015-10-01

    Quantum interference is a striking manifestation of one of the basic concepts of quantum mechanics: the particle-wave duality. A spectacular visualization of this effect is the standing wave pattern produced by elastic scattering of surface electrons around defects, which corresponds to a modulation of the electronic local density of states and can be imaged using a scanning tunnelling microscope. To date, quantum-interference measurements were mainly interpreted in terms of interfering electrons or holes of the underlying band-structure description. Here, by imaging energy-dependent standing-wave patterns at noble metal surfaces, we reveal, in addition to the conventional surface-state band, the existence of an `anomalous' energy band with a well-defined dispersion. Its origin is explained by the presence of a satellite in the structure of the many-body spectral function, which is related to the acoustic surface plasmon. Visualizing the corresponding charge oscillations provides thus direct access to many-body interactions at the atomic scale.

  7. THE SPACE DENSITY OF EXTENDED ULTRAVIOLET (XUV) DISKS IN THE LOCAL UNIVERSE AND IMPLICATIONS FOR GAS ACCRETION ONTO GALAXIES

    SciTech Connect

    Lemonias, Jenna J.; Schiminovich, David; Thilker, David; Bianchi, Luciana; Wyder, Ted K.; Martin, D. Christopher; Seibert, Mark; Madore, Barry F.; Treyer, Marie A.; Heckman, Timothy M.; Rich, R. Michael

    2011-06-01

    We present results of the first unbiased search for extended ultraviolet (XUV)-disk galaxies undertaken to determine the space density of such galaxies. Our sample contains 561 local (0.001 < z < 0.05) galaxies that lie in the intersection of available Galaxy Evolution Explorer (GALEX) deep imaging (exposure time >1.5 x 10{sup 4} s) and Sloan Digital Sky Survey DR7 footprints. We explore modifications to the standard classification scheme for our sample that includes both disk- and bulge-dominated galaxies. Visual classification of each galaxy in the sample reveals an XUV-disk frequency of up to 20% for the most nearby portion of our sample. On average over the entire sample (out to z = 0.05) the frequency ranges from a hard limit of 4%-14%. The GALEX imaging allows us to detect XUV disks beyond 100 Mpc. The XUV regions around XUV-disk galaxies are consistently bluer than the main bodies. We find a surprisingly high frequency of XUV emission around luminous red (NUV-r > 5) and green valley (3 < NUV-r < 5) galaxies. The XUV-disk space density in the local universe is >(1.5-4.2) x 10{sup -3} Mpc{sup -3}. Using the XUV emission as an indicator of recent gas accretion, we estimate that the cold gas accretion rate onto these galaxies is >(1.7-4.6) x 10{sup -3} M{sub sun} Mpc{sup -3} yr{sup -1}. The number of XUV disks in the green valley and the estimated accretion rate onto such galaxies points to the intriguing possibility that 7%-18% of galaxies in this population are transitioning away from the red sequence.

  8. Beyond cultural factors to understand immigrant mental health: Neighborhood ethnic density and the moderating role of pre-migration and post-migration factors.

    PubMed

    Arévalo, Sandra P; Tucker, Katherine L; Falcón, Luis M

    2015-08-01

    Pre-migration and post-migration factors may influence the health of immigrants. Using a cross-national framework that considers the effects of the sending and receiving social contexts, we examined the extent to which pre-migration and post-migration factors, including individual and neighborhood level factors, influence depressive symptoms at a 2-year follow-up time point. Data come from the Boston Puerto Rican Health Study, a population-based prospective cohort of Puerto Ricans between the ages of 45 and 75 y. The association of neighborhood ethnic density with depressive symptomatology at follow-up was significantly modified by sex and level of language acculturation. Men, but not women, experienced protective effects of ethnic density. The interaction of neighborhood ethnic density with language acculturation had a non-linear effect on depressive symptomatology, with lowest depressive symptomatology in the second highest quartile of language acculturation, relative to the lowest and top two quartiles among residents of high ethnic density neighborhoods. Results from this study highlight the complexity, and interplay, of a number of factors that influence the health of immigrants, and emphasize the significance of moving beyond cultural variables to better understand why the health of some immigrant groups deteriorates at faster rates overtime. PMID:26057720

  9. Beyond cultural factors to understand immigrant mental health: Neighborhood ethnic density and the moderating role of pre-migration and post-migration factors.

    PubMed

    Arévalo, Sandra P; Tucker, Katherine L; Falcón, Luis M

    2015-08-01

    Pre-migration and post-migration factors may influence the health of immigrants. Using a cross-national framework that considers the effects of the sending and receiving social contexts, we examined the extent to which pre-migration and post-migration factors, including individual and neighborhood level factors, influence depressive symptoms at a 2-year follow-up time point. Data come from the Boston Puerto Rican Health Study, a population-based prospective cohort of Puerto Ricans between the ages of 45 and 75 y. The association of neighborhood ethnic density with depressive symptomatology at follow-up was significantly modified by sex and level of language acculturation. Men, but not women, experienced protective effects of ethnic density. The interaction of neighborhood ethnic density with language acculturation had a non-linear effect on depressive symptomatology, with lowest depressive symptomatology in the second highest quartile of language acculturation, relative to the lowest and top two quartiles among residents of high ethnic density neighborhoods. Results from this study highlight the complexity, and interplay, of a number of factors that influence the health of immigrants, and emphasize the significance of moving beyond cultural variables to better understand why the health of some immigrant groups deteriorates at faster rates overtime.

  10. Beyond Cultural Factors to Understand Immigrant Mental Health: Neighborhood Ethnic Density and the Moderating Role of Pre-migration and Post-migration Factors

    PubMed Central

    Arévalo, Sandra P.; Tucker, Katherine L; Falcón, Luis M

    2015-01-01

    Pre-migration and post-migration factors may influence the health of immigrants. Using a cross-national framework that considers the effects of the sending and receiving social contexts, we examined the extent to which pre-migration and post-migration factors, including individual and neighborhood level factors, influence depressive symptoms at a 2-year follow-up time point. Data come from the Boston Puerto Rican Health Study, a population-based prospective cohort of Puerto Ricans between the ages of 45 and 75 y. The association of neighborhood ethnic density with depressive symptomatology at follow-up was significantly modified by sex and level of language acculturation. Men, but not women, experienced protective effects of ethnic density. The interaction of neighborhood ethnic density with language acculturation had a non-linear effect on depressive symptomatology, with lowest depressive symptomatology in the second highest quartile of language acculturation, relative to the lowest and top two quartiles among residents of high ethnic density neighborhoods. Results from this study highlight the complexity, and interplay, of a number of factors that influence the health of immigrants, and emphasize the significance of moving beyond cultural variables to better understand why the health of some immigrant groups deteriorates at faster rates overtime. PMID:26057720

  11. (51)V NMR parameters of VOCl(3): static and dynamic density functional study from the gas phase to the bulk.

    PubMed

    Bjornsson, Ragnar; Früchtl, Herbert; Bühl, Michael

    2011-01-14

    (51)V NMR parameters have been calculated for VOCl(3), the reference compound in (51)V NMR spectroscopy, in order to capture environmental effects in both the neat liquid and the solid state. Using a combination of periodic geometry optimizations and Car-Parrinello molecular dynamics simulations with embedded cluster NMR calculations, we are able to test the ability of current computational approaches to reproduce (51)V NMR properties (isotropic shifts, anisotropic shifts and quadrupole coupling constants) in the gas, liquid and solid states, for direct comparison with liquid and solid-state experimental data. The results suggest that environmental effects in the condensed phases can be well captured by an embedded cluster approach and that the remaining discrepancy with experiment may be due to the approximate density functionals in current use. The predicted gas-to-liquid shift on the isotropic shielding constant is small, validating the common practice to use a single VOCl(3), molecule as reference in (51)V NMR computations.

  12. Femtosecond few-hundreds-of-keV electron pulses from direct laser acceleration in a low-density gas

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Marceau, Vincent; Brabec, Thomas; Piché, Michel

    2014-05-01

    Subrelativistic electrons are a valuable tool for high-resolution atomic and molecular imaging. In particular, electron pulses with energies ranging from 50 to 300 keV have been successfully used in time-resolved ultrafast electron diffraction (UED) experiments to probe physical phenomena on a subpicosecond time scale. Laser-driven electron acceleration has been proposed as an alternative to the static accelerator technology currently in use. In principle, it has several advantages: (i) the short wavelength of the accelerating field may lead to electron bunches with duration of the order of 10 fs or less; (ii) there is an intrinsic synchronization between the electron probe and the laser pump; and (iii) using a gas medium, the electron source is self-regenerating and could be used for UED experiments at high repetition rates. Using three-dimensional particle-in-cell simulations, we showed that 240-keV electron pulses with 1-fs initial duration and 5% energy spread could be produced by radially polarized laser pulses focused in a low-density hydrogen gas [Marceau et al., Phys. Rev. Lett. 111, 224801 (2013)]. The latest results suggest that 100-500 keV energy with similar duration is within reach of the actual laser technology.

  13. Unsteady isothermal flow behind a magnetogasdynamic shock wave in a self-gravitating gas with exponentially varying density

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2014-06-01

    The propagation of spherical (or cylindrical) shock wave in an ideal gas with or without gravitational effects in the presence of a constant azimuthal magnetic field is investigated. Non-similarity solutions are obtained for isothermal flow between the shock and the piston. The numerical solutions are obtained using the Runge-Kutta method of the fourth order. The density of the gas is assumed to be varying and obeying an exponential law. The shock wave moves with variable velocity, and the total energy of the wave is non-constant and varies with time. The effects of variation of the Alfven-Mach number, gravitational parameter and time are obtained. It is investigated that the presence of gravitational field reduces the effect of the magnetic field. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and, therefore, the distance between the inner contact surface and the shock surface is reduced. The shock waves in conducting perfect gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating medium with or without magnetic field. The obtained solutions are applicable for arbitrary values of time.

  14. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    SciTech Connect

    Traynor, G.W.; Apte, M.G.; Chang, G.-M.

    1996-08-01

    There is a need to reduce air pollutant emissions in some U.S. urban regions to meet federal and state air quality guidelines. Opportunities exist for reducing pollutant emissions from natural gas appliances in the residential sector. A cost-benefit analysis on various pollutant-reducing strategies is needed to evaluate these opportunities. The effectiveness of these pollutant-reducing strategies (e.g., low-emission burners, energy conservation) can then be ranked among themselves and compared with other pollutant-reducing strategies available for the region. A key step towards conducting a cost-benefit analysis is to collect information on pollutant emissions from existing residential natural gas appliances. An extensive literature search was conducted to collect data on residential natural-gas-appliance pollutant emission factors. The literature primarily describes laboratory tests and may not reflect actual emission factor distributions in the field. Pollutant emission factors for appliances operated at over 700 test conditions are summarized for nitrogen oxides, carbon monoxide, fine particulate matter, formaldehyde, and methane. The appliances for which pollutant emissions are summarized include forced-air furnaces; stand-alone space heaters (vented and unvented); water heaters; cooking range burners, ovens, and broilers; and pilot lights. The arithmetic means of the nitrogen oxides and fine particulate matter emission factor distributions agree well with the Environmental Protection Agency published emission factor values for domestic gas appliances (in report AP-42). However, the carbon monoxide and methane distribution means are much higher than the relevant AP-42 values. Formaldehyde emission factors are not addressed in AP-42, but the emission factor mean for formaldehyde is comparable to the AP-42 emission factor value for total hydrocarbon emissions.

  15. Equilibrium and Transport Properties of Gas Mixtures at Low Density: Eleven Polyatomic Gases and Five Noble Gases

    NASA Astrophysics Data System (ADS)

    Bzowski, J.; Kestin, J.; Mason, E. A.; Uribe, F. J.

    1990-09-01

    This paper uses results from statistical-mechanical theory, applied through a combination of an extended principle of corresponding states with some knowledge of intermolecular potentials, to the calculation of the transport and equilibrium properties of gas mixtures at low density. The gases involved are: N2, O2, NO, CO, CO2, N2O, CH4, CF4, SF6, C2H4, C2H6, and He, Ar, Ne, Kr, Xe. The properties included are: second virial coefficient, viscosity, diffusion, and thermal diffusion, but not thermal conductivity. The calculations are internally, thermodynamically consistent and the resulting algorithms, which are fully programmable, operate in an entirely predictive mode by means of validated combination rules. This paper is a sequel to one on the five noble gases and all their possible mixtures and a second on the above eleven polyatomic gases. The paper contains ten tables (mainly intended for the checking of computer codes) and 201 graphs of deviation and comparison plots. An additional 98 tables have been deposited with the Physics Auxiliary Publication Service (PAPS) of the AIP. The algorithms presented in this paper, together with those mentioned above, make it possible to program calculations for a wide range of low-density equilibrium and transport properties of 16 gases and of all possible multicomponent mixtures formed with them, for a total of 65,535 systems. For each system, the program would cover the full range of compositions.

  16. Temperature and density relaxation close to the liquid-gas critical point: an analytical solution for cylindrical cells.

    PubMed

    Carlès, Pierre; Zhong, Fang; Weilert, Mark; Barmatz, M

    2005-04-01

    We present a study of the temperature and density equilibration near the liquid-gas critical point of a composite system consisting of a thin circular disk of near-critical fluid surrounded by a copper wall. This system is a simplified model for a proposed space experiment cell that would have 60 thin fluid layers separated by perforated copper plates to aid in equilibration. Upper and lower relaxation time limits that are based on radial and transverse diffusion through the fluid thickness are shown to be too significantly different for a reasonable estimate of the time required for the space experiment. We therefore have developed the first rigorous analytical solution of the piston effect in two dimensions for a cylindrically symmetric three-dimensional cell, including the finite conductivity of the copper wall. This solution covers the entire time evolution of the system after a boundary temperature step, from the early piston effect through the final diffusive equilibration. The calculation uses a quasistatic approximation for the copper and a Laplace-transform solution to the piston effect equation in the fluid. Laplace inversion is performed numerically. The results not only show that the equilibration is divided into three temporal regimes but also give an estimate of the amplitudes of the remaining temperature and density inhomogeneity in each regime. These results yield characteristic length scales for each of the regimes that are used to estimate the expected relaxation times in the one- and two-phase regions near the critical point.

  17. A Desorbed Gas Molecular Ionization Mechanism for Arcing Onset in Solar Arrays Immersed in a Low-Density Plasma

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.; Degroot, W.

    2002-01-01

    Previous experimental studies have hypothesized that the onset of Solar Array Arc (SAA) initiation in low-density space plasmas is caused by a desorbed gas molecular ionization mechanism. Indeed past investigations performed at the NASA Glenn Plasma Interaction Facility tend to not only support the desorbed gas molecular ionization mechanism, but have gone as far as identifying the crucial molecular species that must be present for molecular ion dominated process to occur. When electrical breakdown occurs at a triple junction site on a solar array panel, a quasi-neutral plasma cloud is ejected. Assuming the main component of the expelled plasma cloud by weight is due to water vapor, the fastest process available is due to HO molecules and OH(+) ions, or more succinctly, dissociative molecular-ion dominated recombination processes: H2O(+) + e(-) yields H* + OH*. Recently published spectroscopic observations of solar array arc spectra in ground tests have revealed the well-known molecular OH band (302 to 309nm), as well as the molecular SiH band (387nm peak), and the molecular CH band (432nm peak). Note that the OH band is observed in emission arcs where water vapor is present. Strong atomic lines were also observed for H(sub beta) at 486nm and H(sub alpha) at 656.3nm in prior ground testing. Independent supporting evidence of desorbed gas molecular ionization mechanisms also come from measurements of arc current pulse widths at different capacitances. We will revisit an earlier first order approximation demonstrating the dependence of arc current pulse widths on the square root of the capacitance. The simple arc current pulse width model will be then be used to estimate the temperature of the arc plasma (currently believed to be somewhere in the range of 3 to 5 eV). The current paper then seeks to extend the outlined work by including numerous vacuum chamber measurements obtained with a quadrupole mass spectrometer. A small solar array was mounted inside the vacuum

  18. Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum.

    PubMed

    White, T G; Richardson, S; Crowley, B J B; Pattison, L K; Harris, J W O; Gregori, G

    2013-10-25

    Here, we report orbital-free density-functional theory (OF DFT) molecular dynamics simulations of the dynamic ion structure factor of warm solid density aluminum at T=0.5 eV and T=5 eV. We validate the OF DFT method in the warm dense matter regime through comparison of the static and thermodynamic properties with the more complete Kohn-Sham DFT. This extension of OF DFT to dynamic properties indicates that previously used models based on classical molecular dynamics may be inadequate to capture fully the low frequency dynamics of the response function.

  19. Digging for answers: contributions of density- and frequency-dependent factors on ectoparasite burden in a social mammal.

    PubMed

    Archer, Elizabeth K; Bennett, Nigel C; Faulkes, Chris G; Lutermann, Heike

    2016-02-01

    Due to the density-dependent nature of parasite transmission parasites are generally assumed to constrain the evolution of sociality. However, evidence for a correlation between group size and parasite burden is equivocal, particularly for mammals. Host contact rates may be modified by mobility of the host and parasite as well as social barriers. In the current study, we used the common mole-rat (Cryptomys hottentotus hottentotus), a social subterranean rodent, as a model system to investigate the effect of host density and frequency of contact rates on ectoparasite burdens. To address these factors we used a study species that naturally varies in population densities and intergroup contact rates across its geographic range. We found that ectoparasite prevalence, abundance and species richness decreased with increasing host density at a regional scale. At the same time, measures of parasite burden increased with intergroup contact rates. Ectoparasite burdens decreased with colony size at the group level possibly as a result of increased grooming rates. Equating group size with population density might be too simplistic an approach when assessing parasite distributions in social mammals. Our data suggest that frequency-dependent mechanisms may play a much greater role at a population level than density-dependent mechanisms in determining parasite distributions in social species. We suggest that future studies should explicitly consider behavioural mechanisms that may affect parasite distribution.

  20. Rare human nerve growth factor-β mutation reveals relationship between C-afferent density and acute pain evaluation.

    PubMed

    Perini, Irene; Tavakoli, Mitra; Marshall, Andrew; Minde, Jan; Morrison, India

    2016-08-01

    The rare nerve growth factor-β (NGFB) mutation R221W causes a selective loss of thinly myelinated fibers and especially unmyelinated C-fibers. Carriers of this mutation show altered pain sensation. A subset presents with arthropathic symptoms, with the homozygous most severely affected. The aim of the present study was to investigate the relationship between peripheral afferent loss and pain evaluation by performing a quantification of small-fiber density in the cornea of the carriers, relating density to pain evaluation measures. In vivo corneal confocal microscopy (CCM) was used to quantify C-fiber loss in the cornea of 19 R221W mutation carriers (3 homozygous) and 19 age-matched healthy control subjects. Pain evaluation data via the Situational Pain Questionnaire (SPQ) and the severity of neuropathy based on the Neuropathy Disability Score (NDS) were assessed. Homozygotes, heterozygotes, and control groups differed significantly in corneal C-nerve fiber density, with the homozygotes showing a significant afferent reduction. Importantly, peripheral C-fiber loss correlated negatively with pain evaluation, as revealed by SPQ scores. This study is the first to investigate the contribution of small-fiber density to the perceptual evaluation of pain. It demonstrates that the lower the peripheral small-fiber density, the lower the degree of reported pain intensity, indicating a functional relationship between small-fiber density and higher level pain experience. PMID:27146986

  1. Influence of density and environmental factors on decomposition kinetics of amorphous polylactide - Reactive molecular dynamics studies.

    PubMed

    Mlyniec, A; Ekiert, M; Morawska-Chochol, A; Uhl, T

    2016-06-01

    In this work, we investigate the influence of the surrounding environment and the initial density on the decomposition kinetics of polylactide (PLA). The decomposition of the amorphous PLA was investigated by means of reactive molecular dynamics simulations. A computational model simulates the decomposition of PLA polymer inside the bulk, due to the assumed lack of removal of reaction products from the polymer matrix. We tracked the temperature dependency of the water and carbon monoxide production to extract the activation energy of thermal decomposition of PLA. We found that an increased density results in decreased activation energy of decomposition by about 50%. Moreover, initiation of decomposition of the amorphous PLA is followed by a rapid decline in activation energy caused by reaction products which accelerates the hydrolysis of esters. The addition of water molecules decreases initial energy of activation as well as accelerates the decomposition process. Additionally, we have investigated the dependency of density on external loading. Comparison of pressures needed to obtain assumed densities shows that this relationship is bilinear and the slope changes around a density equal to 1.3g/cm(3). The conducted analyses provide an insight into the thermal decomposition process of the amorphous phase of PLA, which is particularly susceptible to decomposition in amorphous and semi-crystalline PLA polymers.

  2. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    SciTech Connect

    Gubler, Philipp; Yamamoto, Naoki; Hatsuda, Tetsuo; Nishida, Yusuke

    2015-05-15

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  3. Alcohol Outlet Density, Drinking Contexts and Intimate Partner Violence: A Review of Environmental Risk Factors

    PubMed Central

    Mair, Christina; Todd, Michael

    2015-01-01

    Alcohol use is a robust predictor of intimate partner violence (IPV). A critical barrier to progress in preventing alcohol-related IPV is that little is known about how an individual’s specific drinking contexts (where, how often, and with whom one drinks) are related to IPV, or how these contexts are affected by environmental characteristics, such as alcohol outlet density and neighborhood disadvantage. The putative mechanism is the social environment in which drinking occurs that may promote or strengthen aggressive norms. Once these contexts are known, specific prevention measures can be put in place, including policy-oriented (e.g., regulating outlet density) and individually-oriented (e.g., brief interventions to reduce risk for spousal aggression) measures targeting at-risk populations. This paper reviews applicable theories and empirical research evidence that links IPV to drinking contexts and alcohol outlet density, highlights research gaps, and make recommendations for future research. PMID:25725018

  4. Alcohol outlet density, drinking contexts and intimate partner violence: a review of environmental risk factors.

    PubMed

    Cunradi, Carol B; Mair, Christina; Todd, Michael

    2014-01-01

    Alcohol use is a robust predictor of intimate partner violence (IPV). A critical barrier to progress in preventing alcohol-related IPV is that little is known about how an individual's specific drinking contexts (where, how often, and with whom one drinks) are related to IPV, or how these contexts are affected by environmental characteristics, such as alcohol outlet density and neighborhood disadvantage. The putative mechanism is the social environment in which drinking occurs that may promote or strengthen aggressive norms. Once these contexts are known, specific prevention measures can be put in place, including policy-oriented (e.g., regulating outlet density) and individually oriented (e.g., brief interventions to reduce risk for spousal aggression) measures targeting at-risk populations. This paper reviews applicable theories and empirical research evidence that links IPV to drinking contexts and alcohol outlet density, highlights research gaps, and makes recommendations for future research.

  5. Breast density and parenchymal texture measures as potential risk factors for estrogen-receptor positive breast cancer

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina

    2014-03-01

    Accurate assessment of a woman's risk to develop specific subtypes of breast cancer is critical for appropriate utilization of chemopreventative measures, such as with tamoxifen in preventing estrogen-receptor positive breast cancer. In this context, we investigate quantitative measures of breast density and parenchymal texture, measures of glandular tissue content and tissue structure, as risk factors for estrogen-receptor positive (ER+) breast cancer. Mediolateral oblique (MLO) view digital mammograms of the contralateral breast from 106 women with unilateral invasive breast cancer were retrospectively analyzed. Breast density and parenchymal texture were analyzed via fully-automated software. Logistic regression with feature selection and was performed to predict ER+ versus ER- cancer status. A combined model considering all imaging measures extracted was compared to baseline models consisting of density-alone and texture-alone features. Area under the curve (AUC) of the receiver operating characteristic (ROC) and Delong's test were used to compare the models' discriminatory capacity for receptor status. The density-alone model had a discriminatory capacity of 0.62 AUC (p=0.05). The texture-alone model had a higher discriminatory capacity of 0.70 AUC (p=0.001), which was not significantly different compared to the density-alone model (p=0.37). In contrast the combined density-texture logistic regression model had a discriminatory capacity of 0.82 AUC (p<0.001), which was statistically significantly higher than both the density-alone (p<0.001) and texture-alone regression models (p=0.04). The combination of breast density and texture measures may have the potential to identify women specifically at risk for estrogen-receptor positive breast cancer and could be useful in triaging women into appropriate risk-reduction strategies.

  6. Black carbon particulate matter emission factors for buoyancy-driven associated gas flares.

    PubMed

    McEwen, James D N; Johnson, Matthew R

    2012-03-01

    Flaring is a technique used extensively in the oil and gas industry to burn unwanted flammable gases. Oxidation of the gas can preclude emissions of methane (a potent greenhouse gas); however, flaring creates other pollutant emissions such as particulate matter (PM) in the form of soot or black carbon (BC). Currently available PM emissionfactors for flares were reviewed and found to be questionably accurate, or based on measurements not directly relevant to open-atmosphere flares. In addition, most previous studies of soot emissions from turbulent diffusion flames considered alkene or alkyne based gaseous fuels, and few considered mixed fuels in detail and/or lower sooting propensity fuels such as methane, which is the predominant constituent of gas flared in the upstream oil and gas industry. Quantitative emission measurements were performed on laboratory-scale flares for a range of burner diameters, exit velocities, and fuel compositions. Drawing from established standards, a sampling protocol was developed that employed both gravimetric analysis of filter samples and real-time measurements of soot volume fraction using a laser-induced incandescence (LII) system. For the full range of conditions tested (burner inner diameter [ID] of 12.7-76.2 mm, exit velocity 0.1-2.2 m/sec, 4- and 6-component methane-based fuel mixtures representative of associated gas in the upstream oil industry), measured soot emission factors were less than 0.84 kg soot/10(3) m3 fuel. A simple empirical relationship is presented to estimate the PM emission factor as a function of the fuel heating value for a range of conditions, which, although still limited, is an improvement over currently available emission factors. PMID:22482289

  7. 40 CFR Table W - 4 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Underground Natural Gas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false 4 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage W Table W Protection of... of Part 98—Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage...

  8. 40 CFR Table W - 3 of Subpart W-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Transmission...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false 3 of Subpart W-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Transmission Compression W Table W Protection of...—Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Transmission Compression...

  9. 40 CFR Table W - 2 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false 2 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing W Table W Protection of... of Part 98—Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing...

  10. 40 CFR Table W - 4 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Underground Natural Gas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false 4 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage W Table W Protection of... of Part 98—Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage...

  11. 40 CFR Table W - 2 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false 2 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing W Table W Protection of... of Part 98—Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing...

  12. Strong optical and UV intermediate-width emission lines in the quasar SDSS J232444.80-094600.3: dust-free and intermediate-density gas at the skin of dusty torus?

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Zhen; Zhou, Hong-Yan; Hao, Lei; Wang, Shu-Fen; Ji, Tuo; Liu, Bo

    2016-09-01

    Emission lines from the broad emission line region (BELR) and the narrow emission line region (NELR) of active galactic nuclei (AGNs) have been extensively studied. However, emission lines are rarely detected between these two regions. We present a detailed analysis of quasar SDSS J232444.80-094600.3 (SDSS J2324-0946), which is remarkable for its strong intermediate-width emission lines (IELs) with FWHM ≈ 1800 km s-1. The IEL component is present in different emission lines, including the permitted lines Lyα λ1216, CIV λ1549, semiforbidden line [CIII] λ1909, and forbidden lines [OIII] λλ4959, 5007. With the aid of photo-ionization models, we found that the IELs are produced by gas with a hydrogen density of nH ˜ 106.2 ˜ 106.3 cm-3, a distance from the central ionizing source of R ˜ 35 - 50 pc, a covering factor of ˜ 6%, and a dust-to-gas ratio of ≤ 4% that of the SMC. We suggest that the strong IELs of this quasar are produced by nearly dust-free and intermediate-density gas located at the skin of the dusty torus. Such strong IELs, which serve as a useful diagnostic, can provide an avenue to study the properties of gas between the BELR and the NELR.

  13. Strong optical and UV intermediate-width emission lines in the quasar SDSS J232444.80–094600.3: dust-free and intermediate-density gas at the skin of dusty torus?

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Zhen; Zhou, Hong-Yan; Hao, Lei; Wang, Shu-Fen; Ji, Tuo; Liu, Bo

    2016-09-01

    Emission lines from the broad emission line region (BELR) and the narrow emission line region (NELR) of active galactic nuclei (AGNs) have been extensively studied. However, emission lines are rarely detected between these two regions. We present a detailed analysis of quasar SDSS J232444.80–094600.3 (SDSS J2324–0946), which is remarkable for its strong intermediate-width emission lines (IELs) with FWHM ≈ 1800 km s‑1. The IEL component is present in different emission lines, including the permitted lines Lyα λ1216, CIV λ1549, semiforbidden line [CIII] λ1909, and forbidden lines [OIII] λλ4959, 5007. With the aid of photo-ionization models, we found that the IELs are produced by gas with a hydrogen density of nH ∼ 106.2 ∼ 106.3 cm‑3, a distance from the central ionizing source of R ∼ 35 – 50 pc, a covering factor of ∼ 6%, and a dust-to-gas ratio of ≤ 4% that of the SMC. We suggest that the strong IELs of this quasar are produced by nearly dust-free and intermediate-density gas located at the skin of the dusty torus. Such strong IELs, which serve as a useful diagnostic, can provide an avenue to study the properties of gas between the BELR and the NELR.

  14. Strong optical and UV intermediate-width emission lines in the quasar SDSS J232444.80–094600.3: dust-free and intermediate-density gas at the skin of dusty torus?

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Zhen; Zhou, Hong-Yan; Hao, Lei; Wang, Shu-Fen; Ji, Tuo; Liu, Bo

    2016-09-01

    Emission lines from the broad emission line region (BELR) and the narrow emission line region (NELR) of active galactic nuclei (AGNs) have been extensively studied. However, emission lines are rarely detected between these two regions. We present a detailed analysis of quasar SDSS J232444.80–094600.3 (SDSS J2324–0946), which is remarkable for its strong intermediate-width emission lines (IELs) with FWHM ≈ 1800 km s‑1. The IEL component is present in different emission lines, including the permitted lines Lyα λ1216, CIV λ1549, semiforbidden line [CIII] λ1909, and forbidden lines [OIII] λλ4959, 5007. With the aid of photo-ionization models, we found that the IELs are produced by gas with a hydrogen density of nH ˜ 106.2 ˜ 106.3 cm‑3, a distance from the central ionizing source of R ˜ 35 – 50 pc, a covering factor of ˜ 6%, and a dust-to-gas ratio of ≤ 4% that of the SMC. We suggest that the strong IELs of this quasar are produced by nearly dust-free and intermediate-density gas located at the skin of the dusty torus. Such strong IELs, which serve as a useful diagnostic, can provide an avenue to study the properties of gas between the BELR and the NELR.

  15. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect

    Nibur, Kevin A.

    2010-11-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  16. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros; Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  17. Fracture angle and strain-energy-density-factor of a crack at hole at an arbitrary angle

    NASA Technical Reports Server (NTRS)

    Hsu, Y. C.; Forman, R. G.

    1975-01-01

    For both the maximum stress criterion and strain-energy-density-factor (S) theory, fracture angle (the initial angle of crack growth) is predicted by using opening and sliding mode stress intensity factors. These theoretical predictions are consistent with experimental fracture angles. For the S theory, the crack spreads in the direction of the negative fracture angle in a plane for which S is a minimum. This quantity was obtained analytically. The experimental data of the critical S on plexiglass fracture specimens remains essentially constant.

  18. ALMA Observations of a High-density Core in Taurus: Dynamical Gas Interaction at the Possible Site of a Multiple Star Formation

    NASA Astrophysics Data System (ADS)

    Tokuda, Kazuki; Onishi, Toshikazu; Saigo, Kazuya; Kawamura, Akiko; Fukui, Yasuo; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro; Machida, Masahiro N.; Tomida, Kengo; Tachihara, Kengo

    2015-08-01

    It is crucially important to observe dense cores in order to investigate the initial condition of star formation since protostars are formed via dynamical collapse of dense cores, inhering the physical properties from their natal dense cores. Here we present the results of ALMA Cycle 0 and Cycle 1 observations of dust continuum emission and molecular rotational lines toward a dense core, MC27 (aka L1521F), which is considered to be very close to the first protostellar core phase.The Cycle 0 observations revealed complex structures at the center. We found a few starless high-density cores, one of which (MMS2) has a very high density of ~107 cm-3, around the very low-luminousity protostar detected by Spitzer. A very compact bipolar outflow with a dynamical timescale of a few hundred years was found toward the protostar. The HCO+ (3-2) observation shows several cores associated with an arc-like structure whose length is ~2000 AU, possibly due to the dynamical gas interaction. These complex structures suggest that the initial condition of star formation is highly dynamical in nature, which is considered to be a key factor in understanding fundamental issues of star formation such as origins of the stellar multiplicity and the initial mass function. These initial Cycle 0 results were published by Tokuda et al. (2014). Matsumoto et al. (2015) investigated the arc-like structures by performing numerical simulations.Detailed column density distribution with the size from ~100 to ~10000 AU scale are revealed by combining the 12m array data with the 7m array data of the ALMA Compact Array as well as with the single dish MAMBO data. Our preliminary analysis shows that the averaged radial column density distribution of the inner part (r < 2000 AU) is N(H2)~r-0.4, clearly flatter than that of the outer part, ~r-1.3. We detected the above-mentioned complex structure inside the inner flatter region, which may reflect the dynamical status of the dense core. The Cycle 1

  19. Human factors engineering in oil and gas--a review of industry guidance.

    PubMed

    Robb, Martin; Miller, Gerald

    2012-01-01

    Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This

  20. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. PMID:25532672

  1. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments.

  2. Homogeneous catalysis on the gas-phase dehydration reaction of tertiary alcohols by hydrogen bromide. Density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Maldonado, Alexis; Rosas, Felix; Mora, Jose R.; Brusco, Yannely; Córdova-Sintjago, Tania C.; Chuchani, Gabriel

    2015-02-01

    The gas-phase thermal dehydration mechanism of tert-butanol, 2-methyl-2-butanol, 2-methyl-2-pentanol and 2,3-dimethyl-2-butanol by homogeneous catalysis of hydrogen bromide was examined by density functional theory calculations with the hybrid functionals: M062X, CAMB3LYP and WB97XD. Reasonable agreements were found between theoretical and experimental enthalpy values at the WB97XD/6-311++G(d,p) level. The dehydration mechanism of tert-butanol with and without catalysis was evaluated in order to examine the catalyst effect on the mechanism. The elimination reaction without catalysis involves a four-membered transition state (TS), while the reaction with catalysis involves a six-membered TS. The mechanism without catalysis has enthalpy activation over 150 kJ mol-1 greater than the catalysed reaction. In all these reactions, the elongation of the C-O bond is significant in the TS. The un-catalysed reaction is controlled by breaking of C-O bond, and it was found to be more synchronous (Sy ≈ 0.91) than the hydrogen bromide catalysed reactions (Sy ≈ 0.75-0.78); the latter reactions are dominated by the three reaction coordinates associated with water formation. No significant effect on the enthalpies of activation was observed when the size of the alkyl chain was increased.

  3. Transfer-matrix study of a hard-square lattice gas with two kinds of particles and density anomaly.

    PubMed

    Oliveira, Tiago J; Stilck, Jürgen F

    2015-09-01

    Using transfer matrix and finite-size scaling methods, we study the thermodynamic behavior of a lattice gas with two kinds of particles on the square lattice. Only excluded volume interactions are considered, so that the model is athermal. Large particles exclude the site they occupy and its four first neighbors, while small particles exclude only their site. Two thermodynamic phases are found: a disordered phase where large particles occupy both sublattices with the same probability and an ordered phase where one of the two sublattices is preferentially occupied by them. The transition between these phases is continuous at small concentrations of the small particles and discontinuous at larger concentrations, both transitions are separated by a tricritical point. Estimates of the central charge suggest that the critical line is in the Ising universality class, while the tricritical point has tricritical Ising (Blume-Emery-Griffiths) exponents. The isobaric curves of the total density as functions of the fugacity of small or large particles display a minimum in the disordered phase.

  4. [Low-density solvent-based solvent demulsification dispersive liquid-liquid microextraction combined with gas chromatography for determination of polycyclic aromatic hydrocarbons in water samples].

    PubMed

    Zhu, Benqiong; Chen, Hao; Li, Shengqing

    2012-02-01

    A novel method of low-density solvent-based solvent demulsification dispersive liquid-liquid microextraction (SD-DLLME) was developed for the determination of eight polycyclic aromatic hydrocarbons (PAHs) in water samples by gas chromatography-flame ionization detection (GC-FID). Conventional DLLME methods usually employ organic solvents heavier than water as the extraction solvents and achieve the phase separation through centrifugation. On the contrary, in this proposed extraction procedure, a mixture of low-density extraction solvent (toluene) and dispersive solvent (acetone) was injected into the aqueous sample solution to form an emulsion. A demulsification solvent (acetonitrile) was then injected into the aqueous solution to break up the emulsion, which turned clear quickly and was separated into two layers. The upper layer (toluene) was collected and analyzed by GC. No centrifugation was required in this procedure. Factors affecting the extraction efficiency such as the type and volume of dispersive solvent, extraction solvent and de-emulsifier were investigated in detail. Under the optimized conditions, the proposed method provided a good linearity in the range of 20 - 500 microg/L (r2 = 0.994 2 - 0.999 9). The limits of detection (S/N = 3) were in the range of 0.52 - 5.11 microg/L. The relative standard deviations (RSDs) for the determination of 40 microg/L PAHs were in the range of 2.2% - 13.6% (n = 5). The proposed method is fast, efficient and convenient. It has been successfully applied to the determination of PAHs in natural water samples with the spiked recoveries of 80.2% - 115.1%.

  5. Longitudinal bone mineral content and density in Rett syndrome and their contributing factors.

    PubMed

    Jefferson, Amanda; Fyfe, Sue; Downs, Jenny; Woodhead, Helen; Jacoby, Peter; Leonard, Helen

    2015-05-01

    Bone mass and density are low in females with Rett syndrome. This study used Dual energy x-ray absorptiometry to measure annual changes in z-scores for areal bone mineral density (aBMD) and bone mineral content (BMC) in the lumbar spine and total body in an Australian Rett syndrome cohort at baseline and then after three to four years. Bone mineral apparent density (BMAD) was calculated in the lumbar spine. Annual changes in lean tissue mass (LTM) and bone area (BA) were also assessed. The effects of age, genotype, mobility, menstrual status and epilepsy diagnosis on these parameters were also investigated. The baseline sample included 97 individuals who were representative of the total live Australian Rett syndrome population under 30years in 2005 (n=274). Of these 74 had a follow-up scan. Less than a quarter of females were able to walk on their own at follow-up. Bone area and LTM z-scores declined over the time between the baseline and follow-up scans. Mean height-standardised z-scores for the bone outcomes were obtained from multiple regression models. The lumbar spine showed a positive mean annual BMAD z-score change (0.08) and a marginal decrease in aBMD (-0.04). The mean z-score change per annum for those 'who could walk unaided' was more positive for LS BMAD (p=0.040). Total body BMD mean annual z-score change from baseline to follow-up was negative (-0.03). However this change was positive in those who had achieved menses prior to the study (0.03, p=0,040). Total body BMC showed the most negative change (-0.60), representing a decrease in bone mineral content over time. This normalised to a z-score change of 0.21 once adjusted for the reduced lean tissue mass mean z-score change (-0.21) and bone area mean z-score change (-0.14). Overall, the bone mineral content, bone mineral density, bone area and lean tissue mass z-scores for all outcome measures declined, with the TB BMC showing significant decreases. Weight, height and muscle mass appear to have

  6. Factors affecting mercury control in utility flue gas using sorbent injection

    SciTech Connect

    Carey, T.R.; Hargrove, O.W. Jr.; Richardson, C.F.; Chang, R.; Meserole, F.B.

    1997-12-31

    Mercury continues to be considered for possible regulation in the electric power industry under Title 3 of the Clean Air Act Amendments of 1990. This possibility has generated interest in assessing whether cost-effective technologies exist for removing mercury from fossil-fired flue gas. One promising approach involves the direct injection of mercury sorbents, such as activated carbon, into the flue gas. Although this method has been effective at removing mercury in municipal waste incinerators, tests conducted to date on utility fossil-fired boilers show that mercury removal is much more difficult in utility flue gas. EPRI is conducting research to investigate mercury removal using sorbents. Bench-scale and pilot-scale tests have been conducted to determine the ability of different sorbents to remove mercury in simulated and actual flue gas streams. Bench-scale tests have investigated the effect of various sorbent and flue gas parameters on sorbent performance. These data are being used to develop a theoretical model for predicting mercury removal by sorbents at different conditions. The possibility of regenerating and recycling sorbents is also being evaluated. This paper describes the results of parametric bench-scale and pilot-scale tests investigating the removal of mercuric chloride and elemental mercury by activated carbon. Results obtained to date indicate that the adsorption capacity of a given sorbent is dependent on many factors, including the type of mercury being adsorbed, flue gas composition, and adsorption temperature. These data provide insight into potential mercury adsorption mechanisms and suggest that the removal of mercury involves both physical and chemical mechanisms. Understanding these effects is important since the performance of a given sorbent could vary significantly from site-to-site depending on coal- or gas-matrix composition.

  7. An annular gas seal analysis using empirical entrance and exit region friction factors

    NASA Technical Reports Server (NTRS)

    Elrod, D. A.; Childs, D. W.; Nelson, C. C.

    1990-01-01

    Wall shear stress results from stationary-rotor flow tests of five annular gas seals are used to develop entrance and exit region friction factor models. The friction factor models are used in a bulk-flow seal analysis which predicts leakage and rotor-dynamic coefficients. The predictions of the analysis are compared to experimental results and to the predictions of Nelson's analysis (1985). The comparisons are for smooth-rotor seals with smooth and honeycomb-stators. The present analysis predicts the destabilizing cross-coupled stiffness of a seal better than Nelson's analysis. Both analyses predict direct damping well and direct stiffness poorly.

  8. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  9. Intramolecular vibrational energy redistribution and intermolecular energy transfer of benzene in supercritical CO 2: measurements from the gas phase up to liquid densities

    NASA Astrophysics Data System (ADS)

    von Benten, R.; Charvat, A.; Link, O.; Abel, B.; Schwarzer, D.

    2004-03-01

    Femtosecond pump probe spectroscopy was employed to measure intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) of benzene in the gas phase and in supercritical (sc) CO 2. We observe two IVR time scales the faster of which proceeds within τ IVR(1)<0.5 ps. The slower IVR component has a time constant of τ IVR(2)=(48±5) ps in the gas phase and in scCO 2 is accelerated by interactions with the solvent. At the highest CO 2 density it is reduced to τ IVR(2)=(6±1) ps. The corresponding IVR rate constants show a similar density dependence as the VET rate constants. Model calculations suggest that both quantities correlate with the local CO 2 density in the immediate surrounding of the benzene molecule.

  10. Effect of environmental conditions on radon concentration-track density calibration factor of solid-state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    El-Sersy, A.; Mansy, M.; Hussein, A.

    2004-04-01

    In this work, the effect of environmental conditions viz., temperature (T) and relative humidity (RH) on the track density--radon concentrations calibration factor (K) has been studied for CR-39 and LR-115 track detectors. The factor K was determined using a reference radon chamber in the National Institute for Standards (NIS) in Egypt. Track detectors were etched at the recommended optimum etching conditions. It is found that, the calibration factor K varies with both T and RH, so they should be considered for the sake of uncertainty reduction. Good agreement is found between the calculated and measured values of K and the compatibility between them is in the range of experimental uncertainty.

  11. Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cells in culture.

    PubMed

    Gospodarowicz, D; Hirabayashi, K; Giguère, L; Tauber, J P

    1981-06-01

    Low density vascular smooth muscle (VSM) cell cultures maintained on extracellular-matrix(ECM)-coated dishes and plated in the presence of either plasma or serum will proliferate actively when serum-containing medium is replaced by a synthetic medium supplemented with three factors: high density lipoprotein (HDL, 250 micrograms protein/ml); insulin (2.5 micrograms/ml) or somatomedin C (10 ng/ml); and fibroblast growth factor (FGF, 100 ng/ml) or epidermal growth factor (EGF, 50 ng/ml). The omission of any of these three factors from the synthetic medium results in a lower growth rate of the cultures, as well as in a lower final cell density once cultures reach confluence. When cells are plated in the total absence of serum, transferrin (10 micrograms/ml) is also required to induce optimal cell growth. The effects of the substrate and medium supplements on the life span of VSM cultures have also been analyzed. Cultures maintained on plastic and exposed to medium supplemented with 5% bovine serum underwent 15 generations. However, when maintained on ECM-coated dishes the serum-fed cultures had a life span of at least 88 generations. Likewise, when cultures were maintained in a synthetic medium supplemented with HDL and either FGF or EGF, an effect on the tissue culture life span by the substrate was observed. Cultures maintained on plastic underwent 24 generations, whereas those maintained on ECM-coated dishes could be passaged repeatedly for 58 generations. These experiments demonstrate the influence of the ECM-substrate only in promoting cell growth but also in increasing the longevity of the cultures.

  12. Translationally invariant calculations of form factors, nucleon densities and momentum distributions for finite nuclei with short-range correlations included

    NASA Astrophysics Data System (ADS)

    Shebeko, A. V.; Grigorov, P. A.; Iurasov, V. S.

    2012-11-01

    Relying upon our previous treatment of the density matrices for nuclei (in general, nonrelativistic self-bound finite systems) we are studying a combined effect of center-of-mass motion and short-range nucleon-nucleon correlations on the nucleon density and momentum distributions in light nuclei (4He and 16O). Their intrinsic ground-state wave functions are constructed in the so-called fixed center-of-mass approximation, starting with mean-field Slater determinants modified by some correlator ( e.g., after Jastrow or Villars). We develop the formalism based upon the Cartesian or boson representation, in which the coordinate and momentum operators are linear combinations of the creation and annihilation operators for oscillatory quanta in the three different space directions, and get the own "Tassie-Barker" factors for each distribution and point out other model-independent results. After this separation of the center-of-mass motion effects we propose additional analytic means in order to simplify the subsequent calculations ( e.g., within the Jastrow approach or the unitary correlation operator method). The charge form factors, densities and momentum distributions of 4He and 16O evaluated by using the well-known cluster expansions are compared with data, our exact (numerical) results and microscopic calculations.

  13. Inhibition of myogenesis by transforming growth factor β is density-dependent and related to the translocation of transcription factor MEF2 to the cytoplasm

    PubMed Central

    De Angelis, Luciana; Borghi, Serena; Melchionna, Roberta; Berghella, Libera; Baccarani-Contri, Miranda; Parise, Flavia; Ferrari, Stefano; Cossu, Giulio

    1998-01-01

    Transforming growth factor β (TGF-β) was found to inhibit differentiation of myogenic cells only when they were grown to high density. Inhibition also occurred when myogenic cells were cocultured with other types of mesenchymal cells but not when they were cocultured with epithelial cells. It is therefore possible that some density-dependent signaling mediates the intracellular response to TGF-β. Within 30 min of treatment, TGF-β induced translocation of MEF2, but not MyoD, myogenin, or p21, to the cytoplasm of myogenic cells grown to high density. Translocation was reversible on withdrawal of TGF-β. By using immune electron microscopy and Western blot analysis on subcellular fractions, MEF2 was shown to be tightly associated with cytoskeleton membrane components. To test whether MEF2 export from the nucleus was causally related to the inhibitory action of TGF-β, we transfected C2C12 myoblasts with MEF2C containing the nuclear localization signal of simian virus 40 large T antigen (nlsSV40). Myogenic cells expressing the chimerical MEF2C/nlsSV40, but not wild-type MEF2C, retained this transcription factor in the nucleus and were resistant to the inhibitory action of TGF-β. We propose a mechanism in which the inhibition of myogenesis by TGF-β is mediated through MEF2 localization to the cytoplasm, thus preventing it from participating in an active transcriptional complex. PMID:9770491

  14. Coupled Monte Carlo Probability Density Function/ SPRAY/CFD Code Developed for Modeling Gas-Turbine Combustor Flows

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The success of any solution methodology for studying gas-turbine combustor flows depends a great deal on how well it can model various complex, rate-controlling processes associated with turbulent transport, mixing, chemical kinetics, evaporation and spreading rates of the spray, convective and radiative heat transfer, and other phenomena. These phenomena often strongly interact with each other at disparate time and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. Turbulence manifests its influence in a diffusion flame in several forms depending on how turbulence interacts with various flame scales. These forms range from the so-called wrinkled, or stretched, flamelets regime, to the distributed combustion regime. Conventional turbulence closure models have difficulty in treating highly nonlinear reaction rates. A solution procedure based on the joint composition probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices such as extinction, blowoff limits, and emissions predictions because it can handle the nonlinear chemical reaction rates without any approximation. In this approach, mean and turbulence gas-phase velocity fields are determined from a standard turbulence model; the joint composition field of species and enthalpy are determined from the solution of a modeled PDF transport equation; and a Lagrangian-based dilute spray model is used for the liquid-phase representation with appropriate consideration of the exchanges of mass, momentum, and energy between the two phases. The PDF transport equation is solved by a Monte Carlo method, and existing state-of-the-art numerical representations are used to solve the mean gasphase velocity and turbulence fields together with the liquid-phase equations. The joint composition PDF

  15. The Penetration Behavior of an Annular Gas-Solid Jet Impinging on a Liquid Bath: The Effects of the Density and Size of Solid Particles

    NASA Astrophysics Data System (ADS)

    Chang, J. S.; Sohn, H. Y.

    2012-08-01

    Top-blow injection of a gas-solid jet through a circular lance is used in the Mitsubishi Continuous Smelting Process. One problem associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than the circular jet was designed in this laboratory. With this new configuration, the solid particles fed through the center tube leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different from that with a circular lance where the solid particles leave the lance at the same high velocity as the gas. In previous cold-model investigations in this laboratory, the effects of the gas velocity, particle feed rate, lance height of the annular lance, and the cross-sectional area of the gas jet were studied and compared with the circular lance. This study examined the effect of the density and size of the solid particles on the penetration behavior of the annular gas-solid jet, which yielded some unexpected results. The variation in the penetration depth with the density of the solid particles at the same mass feed rate was opposite for the circular lance and the annular lance. In the case of the circular lance, the penetration depth became shallower as the density of the solid particles increased; on the contrary, for the annular lance, the penetration depth became deeper with the increasing density of particles. However, at the same volumetric feed rate of the particles, the density effect was small for the circular lance, but for the annular lance, the jets with higher density particles penetrated more deeply. The variation in the penetration depth with the particle diameter was also different for the circular and the annular lances. With the circular lance, the penetration depth became deeper as the particle size decreased for all the feed rates, but with the annular lance, the effect of the particle size was

  16. Determination of thermodynamic properties of isotactic poly(1-butene) at infinite dilution using density and inverse gas chromatography.

    PubMed

    Kozłowska, Marta Karolina; Domańska, Urszula; Lempert, Małgorzata; Rogalski, Marek

    2005-03-18

    The partial molar volumes, V1(M), and the molar volume of isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, V1, have been calculated from the measured density of {iPBu-1 + solvent (n-hexane, n-heptane, n-nonane, n-decane, p-xylene, cyclohexane and chloroform)} systems. Some of the thermodynamic quantities were also obtained for the iPBu-1 with eight hydrocarbons (n-octane, n-decane, n-undecane, n-dodecane, n-tridecane, o-xylene, m-xylene, p-xylene) by the method of inverse gas chromatography at various temperatures. The weight fraction activity coefficients of the solvent at infinite dilution, omega2(infinity) and the Flory-Huggins thermodynamic interaction parameters, chi21(infinity), between polymer and solvents were determined. The partial molar free energy, deltaG2(infinity), the partial molar heat of mixing, deltaH2(infinity), at infinite dilution and the polymer solubility parameter, delta1, were calculated. Additionally, the (solid + liquid) binary mixtures equilibria, SLE, of iPBu-1 with three hydrocarbons (n-octane, n-decane and m-xylene) were studied by a dynamic method. By performing these experiments over a large concentration range, the T-x phase diagrams of the polymer-solvent systems were constructed. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase. The omega2(infinity) were determined from the solubility measurements and were predicted by using the UNIFAC FV model.

  17. Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2014-10-15

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system and B{sup 2}Δ−X{sup 2}Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF{sub 2}, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

  18. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.

    PubMed

    Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon

    2016-08-25

    This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects. PMID:27434184

  19. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.

    PubMed

    Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon

    2016-08-25

    This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects.

  20. Dynamic density functional theory with hydrodynamic interactions: Theoretical development and application in the study of phase separation in gas-liquid systems

    SciTech Connect

    Kikkinides, E. S.; Monson, P. A.

    2015-03-07

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.

  1. Thermal instability explanation of similar density limits in gas fueled, DIII-D H-mode shots with different operating conditions

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.; Petrie, T. W.; Leonard, A. W.

    2002-03-01

    Recent experiments on DIII-D [J. L. Luxon, F. Batty, C. Baxi et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] examined the effect of different operating conditions ("open" and "closed" divertor geometry, active pumping, fueling location) on the maximum achievable density in gas fueled H-mode (high confinement mode) discharges. Several phenomena observed at these higher densities (≈0.8 the Greenwald density)—degradation in energy confinement, detachment of the core plasma from the divertor plate, multifaceted asymmetric radiation from edge formation—are found to be correlated with the predicted onset of various thermal instabilities in the plasma edge or divertor regions. The similarity of the maximum achievable densities under the different operating conditions can be related to a similarity of edge thermal instability characteristics.

  2. Dynamic density functional theory with hydrodynamic interactions: theoretical development and application in the study of phase separation in gas-liquid systems.

    PubMed

    Kikkinides, E S; Monson, P A

    2015-03-01

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.

  3. Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches.

    PubMed

    Heaney, Christopher D; Exum, Natalie G; Dufour, Alfred P; Brenner, Kristen P; Haugland, Richard A; Chern, Eunice; Schwab, Kellogg J; Love, David C; Serre, Marc L; Noble, Rachel; Wade, Timothy J

    2014-11-01

    Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches - Fairhope Beach, AL and Goddard Beach, RI - with nearby publicly-owned treatment works (POTWs) outfalls. F(+) coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand-water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand. The views expressed in this paper are those of the authors and do

  4. The influence of socioeconomic factors on the densities of high-value cross-border species, the African elephant

    PubMed Central

    Slotow, Rob; Di Minin, Enrico

    2016-01-01

    Unprecedented poaching levels triggered by demand for ivory in Far East Asia are threatening the persistence of African elephant Loxodonta africana. Southern African countries make an important contribution to elephant conservation and could soon become the last stronghold of elephant conservation in Africa. While the ecological factors affecting elephant distribution and densities have extensively been accounted for, there is a need to understand which socioeconomic factors affect elephant numbers in order to prevent conflict over limited space and resources with humans. We used elephant count data from aerial surveys for seven years in a generalized linear model, which accounted for temporal correlation, to investigate the effect of six socioeconomic and ecological variables on the number of elephant at the country level in the Greater Mapungubwe Transfrontier Conservation Area (GMTFCA). Important factors in predicting elephant numbers were the proportion of total land surface under cultivation, human population density and the number of tourists visiting the country. Specifically, elephant numbers were higher where the proportion of total land surface under cultivation was the lowest; where population density was the lowest and where tourist numbers had increased over the years. Our results confirm that human disturbance is affecting elephant numbers, but highlight that the benefits provided by ecotourism could help enhance elephant conservation. While future studies should include larger areas and more detailed data at the site level, we stress that the development of coordinated legislation and policies to improve land-use planning are needed to reduce the impact of increasing human populations and agriculture on elephant. PMID:27812404

  5. Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches

    PubMed Central

    Heaney, Christopher D.; Exum, Natalie G.; Dufour, Alfred P.; Brenner, Kristen P.; Haugland, Richard A.; Chern, Eunice; Schwab, Kellogg J.; Love, David C.; Serre, Marc L.; Noble, Rachel; Wade, Timothy J.

    2015-01-01

    Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches — Fairhope Beach, AL and Goddard Beach, RI — with nearby publicly-owned treatment works (POTWs) outfalls. F+ coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand–water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand. The views expressed in this paper are those of the authors

  6. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density

    NASA Astrophysics Data System (ADS)

    Sadygov, Z.; Ahmadov, F.; Khorev, S.; Sadigov, A.; Suleymanov, S.; Madatov, R.; Mehdiyeva, R.; Zerrouk, F.

    2016-07-01

    Presented is a new model describing development of the avalanche process in time, taking into account the dynamics of electric field within the depleted region of the diode and the effect of parasitic capacitance shunting individual quenching micro-resistors on device parameters. Simulations show that the effective capacitance of a single pixel, which defines the multiplication factor, is the sum of the pixel capacitance and a parasitic capacitance shunting its quenching micro-resistor. Conclusions obtained as a result of modeling open possibilities of improving the pixel gain in micropixel avalanche photodiodes with high pixel density (or low pixel capacitance).

  7. Bone mineral density distribution in the proximal femur and its relationship to morphologic factors in progressed unilateral hip osteoarthritis.

    PubMed

    Kobayashi, Naomi; Inaba, Yutaka; Yukizawa, Yohei; Takagawa, Shu; Ike, Hiroyuki; Kubota, So; Naka, Takuma; Saito, Tomoyuki

    2015-07-01

    Although an adverse relationship between osteoporosis and osteoarthritis (OA) has been reported, it remains controversial. In most previous reports of OA, bone mineral density (BMD) changes in the subtrochanteric region have not been clarified, whilst BMD of the femoral neck and trochanteric region has been well investigated. In our current study, we investigated the BMD ratio compared to the contralateral side in the whole proximal femurs of hip OA patients. We aimed to clarify the morphologic factor that may influence these BMD ratios. We performed dual energy X-ray absorptiometry (DEXA) analysis of 69 hip joints from unilateral progressed OA cases. The minimum joint space, center edge angle, Sharp angle, acetabular head index, neck-shaft angle, and leg length discrepancy were also measured as radiographic factors. The correlation between BMD ratio and radiographic morphologic factors was then evaluated by logistic regression. The BMD ratio was higher in the femoral neck than in the distal region. In terms of radiographic factors, the neck-shaft angle was revealed to influence the decreased BMD ratio in the distal subtrochanteric part, whilst the leg length discrepancy and Sharp angle showed a relationship with the increased BMD ratio in the proximal neck region. The discrepancy in the BMD ratio between the femoral neck and the distal subtrochanteric region in the proximal femur is influenced by several morphologic factors.

  8. Modulatory factors in the effect of energy density on energy intake.

    PubMed

    Westerterp-Plantenga, M S

    2004-08-01

    The effect of energy density (ED) on energy intake (EI) has been assessed in short-term and long-term experiments. In the short term, it was found that ED affects EI directly in situations when the subjects cannot estimate the ED of the food; then subjects mainly monitor the weight of the food ingested. In the long term, the effects of ED on EI are modulated. Average daily EI appears to be related to ED of the food and drinks when ED is determined by specific macronutrients, but not when ED is only determined by the weight of water. Thus, the short-term effect ED has on EI cannot be extrapolated to the long term, because a possible dominating effect of the weight of water determining ED undoes the relationship of ED with EI. Moreover, in the long-term portion sizes are used to compensate for correctly estimated ED, resulting in less variation in EI than ED alone would imply. Finally, dietary restraint compensates for the effect of a relatively high ED on daily EI, whereas dietary unrestraint compensates for the effect of relatively low ED on daily EI. We conclude that the short-term effect of ED on EI is modulated by the effect of water on ED, and compensated for by the effect of dietary restraint and adapted portion sizes. PMID:15384321

  9. Vascular endothelial growth factor (VEGF) expression and microvascular density in salivary gland tumours.

    PubMed

    Faur, Alexandra Corina; Lazar, Elena; Cornianu, Marioara

    2014-05-01

    This study investigates whether salivary tumours with different morphology and evolution also differ in terms of neovascularization and VEGF expression and the prognostic value of the results. Surgical specimens from 45 patients - 8 pleomorphic adenomas (PA), 7 Warthin tumours (WT), 5 basal cell adenomas (BA), 6 carcinomas ex-pleomorphic adenoma (CEPA), 6 mucoepidermoid carcinomas (MEC), 5 acinic cell carcinomas (AC), 4 adenoid cystic carcinomas (ACC) and 4 adenocarcinomas not otherwise specified (ADK NOS) - were immunostained. In malignant salivary tumours, the following mean microvascular density (MVD) values were recorded (± SD = Standard Deviation): 27.61 (SD ± 2.27) in cases with CEPA, 27.08 (DS ± 7.81) in AC and 32.93 (SD ± 7.76) in ADK NOS, with lower values for MEC 24.31(SD ± 2.88) and for ACC 22.13 (SD ± 5.44). For benign tumours, an MVD of 35.71 (SD ± 2.09) was recorded in WT and lower average values in PA (MVD = 14.84; SD ± 4.86) and in BA (MVD = 23.96; SD ± 9.13). MVD did not correlate with the investigated clinicopathological parameters. The VEGF expression is significantly more important (p = 0.001) in malignant salivary tumours as compared with benign ones. The VEGF expression and the microvascularization in salivary gland tumours are important elements to be considered when formulating a diagnosis and assessing case evolutions in patients with such tumours.

  10. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys

    SciTech Connect

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan; Contescu, Cristian I; Chen, Wei; Lim, Yong Chae; Peter, William H; Feng, Zhili

    2013-01-01

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  11. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    USGS Publications Warehouse

    Flores, R.M.; Rice, C.A.; Stricker, G.D.; Warden, A.; Ellis, M.S.

    2008-01-01

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C1/(C2 + C3) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane ??13C and ??D, carbon dioxide ??13C, and water ??D values indicate gas was generated primarily from microbial CO2 reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO2 reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane ??13C is distributed along the basin margins where ??D is also depleted, indicating that both CO2-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and decrease of methane composition of the coal-bed gas. Other geologic factors, such as

  12. Airflow limitation as a risk factor for low bone mineral density and hip fracture

    PubMed Central

    Herland, Trine; Apalset, Ellen M; Eide, Geir Egil; Tell, Grethe S; Lehmann, Sverre

    2016-01-01

    Aim To investigate whether airflow limitation is associated with bone mineral density (BMD) and risk of hip fractures. Methods A community sample of 5,100 subjects 47–48 and 71–73 years old and living in Bergen was invited. Participants filled in questionnaires and performed a post-bronchodilator spirometry measuring forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC). All attendants were invited to have a BMD measurement of the hip. During 10 years of follow-up, information on death was collected from the Norwegian Cause of Death Registry, and incident hip fractures were registered from regional hospital records of discharge diagnoses and surgical procedure codes. Results The attendance rate was 69% (n=3,506). The prevalence of chronic obstructive pulmonary disease (COPD) (FEV1/FVC<0.7) was 9%. In multiple logistic regression, the lowest quartile of BMD versus the three upper was significantly predicted by FEV1/FVC<0.7 and FEV1% predicted (odds ratio [OR]: 1.58, 95% confidence interval [CI]: 1.11 to 2.25, and OR per increase of 10%: 0.92, 95% CI: 0.86 to 0.99, respectively). Hip fracture occurred in 126 (4%) participants. In a Cox regression analysis, FEV1% predicted was associated with a lowered risk of hip fracture (hazard ratio per increase of 10%: 0.89, 95% CI: 0.79 to 0.997). Conclusion Airflow limitation is positively associated with low BMD and risk of hip fracture in middle-aged and elderly. PMID:27733234

  13. Fracture density as a controlling factor of postglacial fluvial incision rate, Granite Range, Alaska.

    NASA Astrophysics Data System (ADS)

    Champagnac, J.-D.; Sternai, P.; Herman, F.; Guralnik, B.; Beaud, F.

    2012-04-01

    The relations between lithosphere and atmosphere to shape the landscape are disputed since the last two decades. The classical "chicken or egg" problem raised the idea that erosion can promote creation of topography thanks to isostatic compensation of eroded material and subsequent positive feedback. Quaternary glaciations and high erosion rates are supposed to be the main agent of such process. More recently, "tectonic activity" has been considered not only as a rock uplift agent, but also as a rock crusher, that in turn promote erosion, thanks to the reduction of size of individual rock elements, more easily transported. The Granite Range in Alaska presents a contrasted morphology: its western part shows preserved glacial landscape, whereas its eastern part presents a strong fluvial / hillslope imprint, and only a few relicts of glacial surfaces. We quantify these differences by 1) qualitative appreciation of the landscape, 2) quantification of post-glacial erosion, and 3) hypsometric quantification of the landscape. On the field, the eastern part appears to be highly fractured, with many, large, penetrative faults, associated with km-thick fault gouges and cataclasites. The westernmost part shows massive bedrock, with minor, localised faults. Remote-sensed fracture mapping confirms this: fracture density is much higher to the east, where hypsometric parameters (HI and HIP) display anomalies, and where high post-glacial incision (up to 600m) is observed. We provide here an impressive case study for tectonic-erosion interactions through rock crushing effect, and document that half of the sediments coming out of the range come from the ~10% of the most fractured area, all other being equal. This challenges the usual view of tectonic "driving" rock uplift, while erosion removes material: In our case, tectonics is the main erosional agent, rivers and glaciers being (efficient) transport agents.

  14. Flying-fox species density--a spatial risk factor for Hendra virus infection in horses in eastern Australia.

    PubMed

    Smith, Craig; Skelly, Chris; Kung, Nina; Roberts, Billie; Field, Hume

    2014-01-01

    Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran's I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging 'footprint' of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors.

  15. Flying-fox species density--a spatial risk factor for Hendra virus infection in horses in eastern Australia.

    PubMed

    Smith, Craig; Skelly, Chris; Kung, Nina; Roberts, Billie; Field, Hume

    2014-01-01

    Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran's I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging 'footprint' of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors. PMID:24936789

  16. Flying-Fox Species Density - A Spatial Risk Factor for Hendra Virus Infection in Horses in Eastern Australia

    PubMed Central

    Smith, Craig; Skelly, Chris; Kung, Nina; Roberts, Billie; Field, Hume

    2014-01-01

    Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors. PMID:24936789

  17. Apolipoprotein modulation of streptococcal serum opacity factor activity against human plasma high-density lipoproteins.

    PubMed

    Rosales, Corina; Gillard, Baiba K; Courtney, Harry S; Blanco-Vaca, Francisco; Pownall, Henry J

    2009-08-25

    Human plasma HDL are the target of streptococcal serum opacity factor (SOF), a virulence factor that clouds human plasma. Recombinant (r) SOF transfers cholesteryl esters (CE) from approximately 400,000 HDL particles to a CE-rich microemulsion (CERM), forms a cholesterol-poor HDL-like particle (neo HDL), and releases lipid-free (LF) apo A-I. Whereas the rSOF reaction requires labile apo A-I, the modulation effects of other apos are not known. We compared the products and rates of the rSOF reaction against human HDL and HDL from mice overexpressing apos A-I and A-II. Kinetic studies showed that the reactivity of various HDL species is apo-specific. LpA-I reacts faster than LpA-I/A-II. Adding apos A-I and A-II inhibited the SOF reaction, an effect that was more profound for apo A-II. The rate of SOF-mediated CERM formation was slower against HDL from mice expressing human apos A-I and A-II than against WT mice HDL and slowest against HDL from apo A-II overexpressing mice. The lower reactivity of SOF against HDL containing human apos is due to the higher hydropathy of human apo A-I, particularly its C-terminus relative to mouse apo A-I, and the higher lipophilicity of human apo A-II. The SOF-catalyzed reaction is the first to target HDL rather than its transporters and receptors in a way that enhances reverse cholesterol transport (RCT). Thus, effects of apos on the SOF reaction are highly relevant. Our studies show that the "humanized" apo A-I-expressing mouse is a good animal model for studies of rSOF effects on RCT in vivo.

  18. X-RAY SCALING RELATION IN EARLY-TYPE GALAXIES: DARK MATTER AS A PRIMARY FACTOR IN RETAINING HOT GAS

    SciTech Connect

    Kim, Dong-Woo; Fabbiano, Giuseppina

    2013-10-20

    We have revisited the X-ray scaling relations of early-type galaxies (ETG) by investigating, for the first time, the L{sub X,Gas}-M{sub Total} relation in a sample of 14 ETGs. In contrast to the large scatter (a factor of 10{sup 2}-10{sup 3}) in the L{sub X,Total}-L{sub B} relation, we found a tight correlation between these physically motivated quantities with an rms deviation of a factor of three in L{sub X,Gas} = 10{sup 38}-10{sup 43} erg s{sup –1} or M{sub Total} = a few × 10{sup 10} to a few × 10{sup 12} M{sub ☉}. More striking, this relation becomes even tighter with an rms deviation of a factor of 1.3 among the gas-rich galaxies (with L{sub X,Gas} > 10{sup 40} erg s{sup –1}). In a simple power-law form, the new relation is (L{sub X,Gas}/10{sup 40} erg s{sup –1}) = (M{sub Total}/3.2 × 10{sup 11} M{sub ☉}){sup 3}. This relation is also consistent with the steep relation between the gas luminosity and temperature, L{sub X,Gas} ∼ T{sub Gas} {sup 4.5}, identified by Boroson et al., if the gas is virialized. Our results indicate that the total mass of an ETG is the primary factor in regulating the amount of hot gas. Among the gas-poor galaxies (with L{sub X,Gas} < a few × 10{sup 39} erg s{sup –1}), the scatter in the L{sub X,Gas}-M{sub Total} (and L{sub X,Gas}-T{sub Gas}) relation increases, suggesting that secondary factors (e.g., rotation, flattening, star formation history, cold gas, environment, etc.) may become important.

  19. 40 CFR Table W - 5 of Subpart W of Part 98-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methane Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment... Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W of Part 98—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  20. 40 CFR Table W - 5 of Subpart W of Part 98-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment... Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W of Part 98—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  1. Soil biotransformation of thiodiglycol, the hydrolysis product of mustard gas: understanding the factors governing remediation of mustard gas contaminated soil.

    PubMed

    Li, Hong; Muir, Robert; McFarlane, Neil R; Soilleux, Richard J; Yu, Xiaohong; Thompson, Ian P; Jackman, Simon A

    2013-02-01

    Thiodiglycol (TDG) is both the precursor for chemical synthesis of mustard gas and the product of mustard gas hydrolysis. TDG can also react with intermediates of mustard gas degradation to form more toxic and/or persistent aggregates, or reverse the pathway of mustard gas degradation. The persistence of TDG have been observed in soils and in the groundwater at sites contaminated by mustard gas 60 years ago. The biotransformation of TDG has been demonstrated in three soils not previously exposed to the chemical. TDG biotransformation occurred via the oxidative pathway with an optimum rate at pH 8.25. In contrast with bacteria isolated from historically contaminated soil, which could degrade TDG individually, a consortium of three bacterial strains isolated from the soil never contaminated by mustard gas was able to grow on TDG in minimal medium and in hydrolysate derived from an historical mustard gas bomb. Exposure to TDG had little impacts on the soil microbial physiology or on community structure. Therefore, the persistency of TDG in soils historically contaminated by mustard gas might be attributed to the toxicity of mustard gas to microorganisms and the impact to soil chemistry during the hydrolysis. TDG biodegradation may form part of a remediation strategy for mustard gas contaminated sites, and may be enhanced by pH adjustment and aeration. PMID:22752796

  2. Soil biotransformation of thiodiglycol, the hydrolysis product of mustard gas: understanding the factors governing remediation of mustard gas contaminated soil.

    PubMed

    Li, Hong; Muir, Robert; McFarlane, Neil R; Soilleux, Richard J; Yu, Xiaohong; Thompson, Ian P; Jackman, Simon A

    2013-02-01

    Thiodiglycol (TDG) is both the precursor for chemical synthesis of mustard gas and the product of mustard gas hydrolysis. TDG can also react with intermediates of mustard gas degradation to form more toxic and/or persistent aggregates, or reverse the pathway of mustard gas degradation. The persistence of TDG have been observed in soils and in the groundwater at sites contaminated by mustard gas 60 years ago. The biotransformation of TDG has been demonstrated in three soils not previously exposed to the chemical. TDG biotransformation occurred via the oxidative pathway with an optimum rate at pH 8.25. In contrast with bacteria isolated from historically contaminated soil, which could degrade TDG individually, a consortium of three bacterial strains isolated from the soil never contaminated by mustard gas was able to grow on TDG in minimal medium and in hydrolysate derived from an historical mustard gas bomb. Exposure to TDG had little impacts on the soil microbial physiology or on community structure. Therefore, the persistency of TDG in soils historically contaminated by mustard gas might be attributed to the toxicity of mustard gas to microorganisms and the impact to soil chemistry during the hydrolysis. TDG biodegradation may form part of a remediation strategy for mustard gas contaminated sites, and may be enhanced by pH adjustment and aeration.

  3. Competition among native and invasive Impatiens species: the roles of environmental factors, population density and life stage.

    PubMed

    Čuda, Jan; Skálová, Hana; Janovský, Zdeněk; Pyšek, Petr

    2015-04-01

    Many invasive species are considered competitively superior to native species, with the strongest competition expected in species with similar niches and/or in closely related species. However, competition outcome is strongly context-dependent as competitive strength varies along environmental gradients, and life stages, and also depends on abundances. To explore the importance of these factors, we examined competition effects in an experiment with three Impatiens species (Balsaminaceae) widespread in central Europe and sharing similar life-history characteristics and habitats: the native I. noli-tangere, and two invasive species, I. parviflora and I. glandulifera. We compared their competitive strength and reciprocal impacts under two levels of water and light availability, two overall planting densities and three competitor densities. We assessed species performance (ability to complete the life-cycle, biomass and fecundity) and temporal competition dynamics in a garden pot experiment. Environmental variables had lower explanatory power than overall planting and competitor density, which indicates the importance of competitive interactions when evaluating plant performance and potential invasion success. Despite poor and delayed germination, the invasive I. glandulifera attained dominance even at a high competitor density and was competitively superior across all treatments, exceeding the height of both congeners. Impatiens parviflora was competitively weakest, having a negligible impact on both native I. noli-tangere and invasive I. glandulifera. The intermediate competitive strength of the native I. noli-tangere probably results from its intermediate height, and good germination rate and timing. The difference in height among species increased during the experiment when I. glandulifera was involved; this species continues growing until autumn, enhancing its competitive superiority. The results provide a mechanistic understanding for the competitive exclusion of

  4. Competition among native and invasive Impatiens species: the roles of environmental factors, population density and life stage

    PubMed Central

    Čuda, Jan; Skálová, Hana; Janovský, Zdeněk; Pyšek, Petr

    2015-01-01

    Many invasive species are considered competitively superior to native species, with the strongest competition expected in species with similar niches and/or in closely related species. However, competition outcome is strongly context-dependent as competitive strength varies along environmental gradients, and life stages, and also depends on abundances. To explore the importance of these factors, we examined competition effects in an experiment with three Impatiens species (Balsaminaceae) widespread in central Europe and sharing similar life-history characteristics and habitats: the native I. noli-tangere, and two invasive species, I. parviflora and I. glandulifera. We compared their competitive strength and reciprocal impacts under two levels of water and light availability, two overall planting densities and three competitor densities. We assessed species performance (ability to complete the life-cycle, biomass and fecundity) and temporal competition dynamics in a garden pot experiment. Environmental variables had lower explanatory power than overall planting and competitor density, which indicates the importance of competitive interactions when evaluating plant performance and potential invasion success. Despite poor and delayed germination, the invasive I. glandulifera attained dominance even at a high competitor density and was competitively superior across all treatments, exceeding the height of both congeners. Impatiens parviflora was competitively weakest, having a negligible impact on both native I. noli-tangere and invasive I. glandulifera. The intermediate competitive strength of the native I. noli-tangere probably results from its intermediate height, and good germination rate and timing. The difference in height among species increased during the experiment when I. glandulifera was involved; this species continues growing until autumn, enhancing its competitive superiority. The results provide a mechanistic understanding for the competitive exclusion of

  5. Neutral gas temperature measurements of high-power-density fluorocarbon plasmas by fitting swan bands of C{sub 2} molecules

    SciTech Connect

    Bai Bo; Sawin, Herbert H.; Cruden, Brett A.

    2006-01-01

    The neutral gas temperature of fluorocarbon plasmas in a remote toroidal transformer-coupled source was measured to be greater than 5000 K, under the conditions of a power density greater than 15 W/cm{sup 3} and pressures above 2 torr. The rovibrational bands of C{sub 2} molecules (swan bands, d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) were fitted to obtain the rotational temperature that was assumed to equal the translational temperature. This rotational-translational temperature equilibrium assumption was supported by the comparison with the rotational temperature of second positive system of added N{sub 2}. For the same gas mixture, the neutral gas temperature is nearly a linear function of plasma power, since the conduction to chamber wall and convection are the major energy-loss processes, and they are both proportional to neutral gas temperature. The dependence of the neutral gas temperature on O{sub 2} flow rate and pressure can be well represented through the power dependence, under the condition of constant current operation. An Arrhenius type of dependence between the etching rate of oxide film and the neutral gas temperature is observed, maybe indicating the importance of the pyrolytic dissociation in the plasma formation process when the temperature is above 5000 K.

  6. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    SciTech Connect

    Uwe, Greife

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  7. Molecular gas in low-metallicity starburst galaxies:. Scaling relations and the CO-to-H2 conversion factor

    NASA Astrophysics Data System (ADS)

    Amorín, R.; Muñoz-Tuñón, C.; Aguerri, J. A. L.; Planesas, P.

    2016-04-01

    Context. Tracing the molecular gas-phase in low-mass star-forming galaxies becomes extremely challenging due to significant UV photo-dissociation of CO molecules in their low-dust, low-metallicity ISM environments. Aims: We aim to study the molecular content and the star-formation efficiency of a representative sample of 21 blue compact dwarf galaxies (BCDs), previously characterized on the basis of their spectrophotometric properties. Methods: We present CO (1-0) and (2-1) observations conducted at the IRAM-30m telescope. These data are further supplemented with additional CO measurements and multiwavelength ancillary data from the literature. We explore correlations between the derived CO luminosities and several galaxy-averaged properties. Results: We detect CO emission in seven out of ten BCDs observed. For two galaxies these are the first CO detections reported so far. We find the molecular content traced by CO to be correlated with the stellar and Hi masses, star formation rate (SFR) tracers, the projected size of the starburst, and its gas-phase metallicity. BCDs appear to be systematically offset from the Schmidt-Kennicutt (SK) law, showing lower average gas surface densities for a given ΣSFR, and therefore showing extremely low (≲0.1 Gyr) H2 and H2 +Hi depletion timescales. The departure from the SK law is smaller when considering H2 +Hi rather than H2 only, and is larger for BCDs with lower metallicity and higher specific SFR. Thus, the molecular fraction (ΣH2/ ΣHI) and CO depletion timescale (ΣH2/ ΣSFR) of BCDs is found to be strongly correlated with metallicity. Using this, and assuming that the empirical correlation found between the specific SFR and galaxy-averaged H2 depletion timescale of more metal-rich galaxies extends to lower masses, we derive a metallicity-dependent CO-to-H2 conversion factor αCO,Z ∝ (Z/Z⊙)- y, with y = 1.5(±0.3)in qualitative agreement with previous determinations, dust-based measurements, and recent model

  8. From monoscale to multiscale modeling of fatigue crack growth: Stress and energy density factor

    NASA Astrophysics Data System (ADS)

    Sih, G. C.

    2014-01-01

    The formalism of the earlier fatigue crack growth models is retained to account for multiscaling of the fatigue process that involves the creation of macrocracks from the accumulation of micro damage. The effects of at least two scales, say micro to macro, must be accounted for. The same data can thus be reinterpreted by the invariancy of the transitional stress intensity factors such that the microcracking and macrocracking data would lie on a straight line. The threshold associated with the sigmoid curve disappears. Scale segmentation is shown to be a necessity for addressing multiscale energy dissipative processes such as fatigue and creep. Path independency and energy release rate are monoscale criteria that can lead to unphysical results, violating the first principles. Application of monoscale failure or fracture criteria to nanomaterials is taking toll at the expense of manufacturing super strength and light materials and structural components. This brief view is offered in the spirit of much needed additional research for the reinforcement of materials by creating nanoscale interfaces with sustainable time in service. The step by step consideraton at the different scales may offer a better understanding of the test data and their limitations with reference to space and time.

  9. Gene Location and DNA Density Determine Transcription Factor Distributions in E. coli

    NASA Astrophysics Data System (ADS)

    Kuhlman, Thomas; Cox, Edward

    2013-03-01

    The diffusion coefficient of the prototypical transcription factor LacI within living Escherichia coli has been measured directly by in vivo tracking to be D = 0.4 μm2/s. At this rate, simple models of diffusion lead to the expectation that LacI and other proteins will rapidly homogenize throughout the cell. We have tested this expectation of spatial homogeneity by single molecule visualization of LacI molecules non-specifically bound to DNA in fixed cells. Contrary to expectation, we find that the distribution depends on the spatial location of its encoding gene. We demonstrate that the spatial distribution of LacI is also determined by the local state of DNA compaction, and that E. coli can dynamically redistribute proteins by modifying the state of its nucleoid. Finally, we show that LacI inhomogeneity increases the strength with which targets located proximally to the LacI gene are regulated. We propose a model for intranucleoid diffusion which can reconcile these results with previous measurements of LacI diffusion. This work was supported by the National Institutes of Health [GM078591, GM071508] and the Howard Hughes Medical Institute [52005884]. TEK is supported by an NIH Ruth Kirschstein NRSA Fellowship [F32GM090568-01A1].

  10. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    SciTech Connect

    Dawood, Mahmoud S.; Hamdan, Ahmad E-mail: Joelle.margot@umontreal.ca; Margot, Joëlle E-mail: Joelle.margot@umontreal.ca

    2015-11-15

    The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  11. Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure

    DOE PAGESBeta

    Laroche, D.; Huang, S. -H.; Chuang, Y.; Li, J. -Y.; Liu, C. W.; Lu, T. M.

    2016-06-06

    We report the magneto-transport, scattering mechanisms, and e ective mass analysis of an ultralow density two-dimensional hole gas capacitively induced in an undoped strained Ge/Si0:2Ge0:8 heterostructure. This fabrication technique allows hole densities as low as p 1:1 1010 cm² to be achieved, more than one order of magnitude lower than previously reported in doped Ge/SiGe heterostructures. The power-law exponent of the electron mobility versus density curve, / n , is found to be 0:29 over most of the density range, implying that background impurity scattering is the dominant scattering mechanism at intermediate densities in such devices. A charge migration modelmore » is used to explain the mobility decrease at the highest achievable densities. The hole e ective mass is deduced from the temperature dependence of Shubnikov-de Haas oscillations. At p 1:0 1011cm², the e ective mass m is 0:105 m0, which is signi cantly larger than masses obtained from modulation-doped Ge/SiGe two-dimensional hole gases.« less

  12. Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure

    NASA Astrophysics Data System (ADS)

    Laroche, D.; Huang, S.-H.; Chuang, Y.; Li, J.-Y.; Liu, C. W.; Lu, T. M.

    2016-06-01

    We report the magneto-transport, scattering mechanisms, and effective mass analysis of an ultra-low density two-dimensional hole gas capacitively induced in an undoped strained Ge/Si0.2Ge0.8 heterostructure. This fabrication technique allows hole densities as low as p ˜ 1.1 × 1010 cm-2 to be achieved, more than one order of magnitude lower than previously reported in doped Ge/SiGe heterostructures. The power-law exponent of the electron mobility versus density curve, μ ∝ nα, is found to be α ˜ 0.29 over most of the density range, implying that background impurity scattering is the dominant scattering mechanism at intermediate densities in such devices. A charge migration model is used to explain the mobility decrease at the highest achievable densities. The hole effective mass is deduced from the temperature dependence of Shubnikov-de Haas oscillations. At p ˜ 1.0 × 1011 cm-2, the effective mass m* is ˜0.105 m0, which is significantly larger than masses obtained from modulation-doped Ge/SiGe two-dimensional hole gases.

  13. Fabrication of graded density impactor via underwater shock wave and quasi-isentropic compression testing at two-stage gas gun facility

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Li, Xiaojie; Hokamoto, Kazuyuki

    2014-12-01

    We show direct evidence that underwater shock wave enables us to bond multithin plates with flat, parallel, and high-strength interfaces, which are key requirements for functionally graded material (also called graded density impactor). This phenomenon is ascribed to the super short duration of the high-speed underwater shock wave, reducing the surface tension, diffusion, evaporation, deposition, and viscous flow of matter. Thin magnesium, aluminum, titanium, copper, and molybdenum foils were welded together and designed with the increase in density. Experimental evidence and numerical simulation show that well bonding between the multilayer structures. Microstructure examinations reveal that the dominant interfacial form shifts from waviness to linearity. Graded density impactor with multilayer structure is proved that can produce quasi-isentropic compression in two-stage gas gun experiment with a designed pressure loading profile, which suggests a feasible method to simulate the conditions we want to study that were previously inaccessible in a precisely controlled laboratory environment.

  14. Sedimentation of a two-dimensional colloidal mixture exhibiting liquid-liquid and gas-liquid phase separation: a dynamical density functional theory study.

    PubMed

    Malijevský, Alexandr; Archer, Andrew J

    2013-10-14

    We present dynamical density functional theory results for the time evolution of the density distribution of a sedimenting model two-dimensional binary mixture of colloids. The interplay between the bulk phase behaviour of the mixture, its interfacial properties at the confining walls, and the gravitational field gives rise to a rich variety of equilibrium and non-equilibrium morphologies. In the fluid state, the system exhibits both liquid-liquid and gas-liquid phase separation. As the system sediments, the phase separation significantly affects the dynamics and we explore situations where the final state is a coexistence of up to three different phases. Solving the dynamical equations in two-dimensions, we find that in certain situations the final density profiles of the two species have a symmetry that is different from that of the external potentials, which is perhaps surprising, given the statistical mechanics origin of the theory. The paper concludes with a discussion on this.

  15. A Wide-Field High-Resolution H I Mosaic of Messier 31. I. Opaque Atomic Gas and Star Formation Rate Density

    NASA Astrophysics Data System (ADS)

    Braun, R.; Thilker, D. A.; Walterbos, R. A. M.; Corbelli, E.

    2009-04-01

    We have undertaken a deep, wide-field H I imaging survey of M31, reaching a maximum resolution of about 50 pc and 2 km s-1 across a 95 × 48 kpc region. The H I mass and brightness sensitivity at 100 pc resolution for a 25 km s-1 wide spectral feature is 1500 M sun and 0.28 K. Our study reveals ubiquitous H I self-opacity features, discernible in the first instance as filamentary local minima in images of the peak H I brightness temperature. Local minima are organized into complexes of more than kpc length and are particularly associated with the leading edge of spiral arm features. Just as in the Galaxy, there is only patchy correspondence of self-opaque features with CO(1-0) emission. We have produced images of the best-fit physical parameters: spin temperature, opacity-corrected column density, and nonthermal velocity dispersion, for the brightest spectral feature along each line of sight in the M31 disk. Spectroscopically opaque atomic gas is organized into filamentary complexes and isolated clouds down to 100 pc. Localized opacity corrections to the column density exceed an order of magnitude in many cases and add globally to a 30% increase in the atomic gas mass over that inferred from the integrated brightness under the usual assumption of negligible self-opacity. Opaque atomic gas first increases from 20 to 60 K in spin temperature with radius to 12 kpc but then declines again to 20 K beyond 25 kpc. We have extended the resolved star formation law down to physical scales more than an order of magnitude smaller in area and mass than has been possible previously. The relation between total gas mass and star formation rate density is significantly tighter than that with molecular mass and is fully consistent in both slope and normalization with the power-law index of 1.56 found in the molecule-dominated disk of M51 at 500 pc resolution. Below a gas mass density of about 5 M sun pc-2, there is a downturn in star formation rate density which may represent a real

  16. Emission factors for hydraulically fractured gas wells derived using well- and battery-level reported data for Alberta, Canada.

    PubMed

    Tyner, David R; Johnson, Matthew R

    2014-12-16

    A comprehensive technical analysis of available industry-reported well activity and production data for Alberta in 2011 has been used to derive flaring, venting, and diesel combustion greenhouse gas and criteria air contaminant emission factors specifically linked to drilling, completion, and operation of hydraulically fractured natural gas wells. Analysis revealed that in-line ("green") completions were used at approximately 53% of wells completed in 2011, and in other cases the majority (99.5%) of flowback gases were flared rather than vented. Comparisons with limited analogous data available in the literature revealed that reported total flared and vented natural gas volumes attributable to tight gas well-completions were ∼ 6 times larger than Canadian Association of Petroleum Producers (CAPP) estimates for natural gas well-completion based on wells ca. 2000, but 62% less than an equivalent emission factor that can be derived from U.S. EPA data. Newly derived emission factors for diesel combustion during well drilling and completion are thought to be among the first such data available in the open literature, where drilling-related emissions for tight gas wells drilled in Alberta in 2011 were found to have increased by a factor of 2.8 relative to a typical well drilled in Canada in 2000 due to increased drilling lengths. From well-by-well analysis of production phase flared, vented, and fuel usage natural gas volumes reported at 3846 operating tight gas wells in 2011, operational emission factors were developed. Overall results highlight the importance of operational phase GHG emissions at upstream well sites (including on-site natural gas fuel use), and the critical levels of uncertainty in current estimates of liquid unloading emissions. PMID:25402949

  17. Emission factors for hydraulically fractured gas wells derived using well- and battery-level reported data for Alberta, Canada.

    PubMed

    Tyner, David R; Johnson, Matthew R

    2014-12-16

    A comprehensive technical analysis of available industry-reported well activity and production data for Alberta in 2011 has been used to derive flaring, venting, and diesel combustion greenhouse gas and criteria air contaminant emission factors specifically linked to drilling, completion, and operation of hydraulically fractured natural gas wells. Analysis revealed that in-line ("green") completions were used at approximately 53% of wells completed in 2011, and in other cases the majority (99.5%) of flowback gases were flared rather than vented. Comparisons with limited analogous data available in the literature revealed that reported total flared and vented natural gas volumes attributable to tight gas well-completions were ∼ 6 times larger than Canadian Association of Petroleum Producers (CAPP) estimates for natural gas well-completion based on wells ca. 2000, but 62% less than an equivalent emission factor that can be derived from U.S. EPA data. Newly derived emission factors for diesel combustion during well drilling and completion are thought to be among the first such data available in the open literature, where drilling-related emissions for tight gas wells drilled in Alberta in 2011 were found to have increased by a factor of 2.8 relative to a typical well drilled in Canada in 2000 due to increased drilling lengths. From well-by-well analysis of production phase flared, vented, and fuel usage natural gas volumes reported at 3846 operating tight gas wells in 2011, operational emission factors were developed. Overall results highlight the importance of operational phase GHG emissions at upstream well sites (including on-site natural gas fuel use), and the critical levels of uncertainty in current estimates of liquid unloading emissions.

  18. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  19. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Factors influencing the late phase of recovery after bone mineral density loss in allogeneic stem cell transplantation survivors.

    PubMed

    Anandi, P; Jain, N A; Tian, X; Wu, C O; Pophali, P A; Koklanaris, E; Ito, S; Savani, B N; Barrett, J; Battiwalla, M

    2016-08-01

    Accelerated bone mineral density loss (BMDL) occurs early after allogeneic stem cell transplantation (SCT) and is related to factors such as steroids and chronic GvHD. In order to understand the natural history of BMDL of SCT in the longer term, we evaluated a longitudinal cohort of 148 survivors with a median follow-up of 12 years (range 3-22 years). All women received hormone replacement therapy, and routine calcium/vitamin D supplementation was recommended but ∼50% of patients still had suboptimal vitamin D levels and bisphosphonates were rarely utilized. BMD significantly improved from 5 to 20+ years but the femoral neck and forearm remained vulnerable sites. Younger age, higher pretransplant body mass index (BMI) and increment in BMI post transplant were significantly associated with increased BMD and protected against osteopenia/osteoporosis. These findings support consideration of BMD loss in SCT survivors in two phases, an early phase of BMD loss (3-5 years) followed by a later phase of BMD recovery, with different protective and aggravating factors. Treatment- and transplant-related factors (such as steroids, immunosuppressives, chronic GvHD, vitamin D) are known to impact the early phase of BMD loss but age and BMI are more influential in the late phase of BMD recovery. PMID:27042843

  1. Clinical prognostic values of vascular endothelial growth factor, microvessel density,and p53 expression in esophageal carcinomas.

    PubMed Central

    Ahn, Myung-Ju; Jang, Se-Jin; Park, Yong-Wook; Choi, Jung-Hye; Oh, Ho-Suk; Lee, Chul-Burm; Paik, Hong-Kyu; Park, Chan-Kum

    2002-01-01

    Vascular endothelial growth factor (VEGF) is known to play a key role in tumor angiogenesis. The tumor-suppressor gene p53 has been thought to regulate VEGF. We investigated the effect of VEGF on esophageal carcinoma and the correlation between VEGF and p53. Tissue samples were taken from 81 patients with esophageal carcinoma after surgery. VEGF and p53 expressions were examined by immunohistochemical staining. Microvessels in the tumor stained for CD34 antigen were also counted. VEGF and p53 expressions were observed in 51.3% (41/80) and 51.9% (41/79), respectively. The microvessel density was 70.9+/-6.7 (mean+/-SE) in VEGF-positive group and 68.7+/-5.1 in VEGF-negative group. However, no correlation was noted between VEGF and p53 expression. Whereas the tumor size, nodal status, depth of invasions, and tumor stage were associated with poor overall survival, VEGF expression or p53 expression was not. These results indicate that VEGF and p53 are highly expressed in esophageal carcinomas. Since the VEGF expression is not correlated with the p53 expression, microvessel density or clinicopathological findings, further studies with other angiogenic molecules are needed to determine the role in esophageal carcinomas. PMID:11961303

  2. INCIDENCE DENSITY, PROPORTIONATE MORTALITY, AND RISK FACTORS OF ASPERGILLOSIS IN MAGELLANIC PENGUINS IN A REHABILITATION CENTER FROM BRAZIL.

    PubMed

    Silva Filho, Rodolfo Pinho da; Xavier, Melissa Orzechowski; Martins, Aryse Moreira; Ruoppolo, Valéria; Mendoza-Sassi, Raúl Andrés; Adornes, Andréa Corrado; Cabana, Ângela Leitzke; Meireles, Mário Carlos Araújo

    2015-12-01

    Aspergillosis, an opportunistic mycosis caused by the Aspergillus genus, affects mainly the respiratory system and is considered one of the most significant causes of mortality in captive penguins. This study aimed to examine a 6-yr period of cases of aspergillosis in penguins at the Centro de Recuperação de Animais Marinhos (CRAM-FURG), Rio Grande, Brazil. A retrospective cohort study was conducted using the institution's records of penguins received from January 2004 to December 2009. Animals were categorized according to the outcome "aspergillosis," and analyzed by age group, sex, oil fouling, origin, prophylactic administration of itraconazole, period in captivity, body mass, hematocrit, and total plasma proteins. A total of 327 Magellanic penguins (Spheniscus magellanicus) was studied, 66 of which died of aspergillosis. Proportionate mortality by aspergillosis was 48.5%, and incidence density was 7.3 lethal aspergillosis cases per 100 penguins/mo. Approximately 75% of the aspergillosis cases occurred in penguins that had been transferred from other rehabilitation centers, and this was considered a significant risk factor for the disease. Significant differences were also observed between the groups in regard to the period of time spent in captivity until death, hematocrit and total plasma proteins upon admission to the center, and body mass gain during the period in captivity. The findings demonstrate the negative impacts of aspergillosis on the rehabilitation of Magellanic penguins, with a high incidence density and substantial mortality.

  3. INCIDENCE DENSITY, PROPORTIONATE MORTALITY, AND RISK FACTORS OF ASPERGILLOSIS IN MAGELLANIC PENGUINS IN A REHABILITATION CENTER FROM BRAZIL.

    PubMed

    Silva Filho, Rodolfo Pinho da; Xavier, Melissa Orzechowski; Martins, Aryse Moreira; Ruoppolo, Valéria; Mendoza-Sassi, Raúl Andrés; Adornes, Andréa Corrado; Cabana, Ângela Leitzke; Meireles, Mário Carlos Araújo

    2015-12-01

    Aspergillosis, an opportunistic mycosis caused by the Aspergillus genus, affects mainly the respiratory system and is considered one of the most significant causes of mortality in captive penguins. This study aimed to examine a 6-yr period of cases of aspergillosis in penguins at the Centro de Recuperação de Animais Marinhos (CRAM-FURG), Rio Grande, Brazil. A retrospective cohort study was conducted using the institution's records of penguins received from January 2004 to December 2009. Animals were categorized according to the outcome "aspergillosis," and analyzed by age group, sex, oil fouling, origin, prophylactic administration of itraconazole, period in captivity, body mass, hematocrit, and total plasma proteins. A total of 327 Magellanic penguins (Spheniscus magellanicus) was studied, 66 of which died of aspergillosis. Proportionate mortality by aspergillosis was 48.5%, and incidence density was 7.3 lethal aspergillosis cases per 100 penguins/mo. Approximately 75% of the aspergillosis cases occurred in penguins that had been transferred from other rehabilitation centers, and this was considered a significant risk factor for the disease. Significant differences were also observed between the groups in regard to the period of time spent in captivity until death, hematocrit and total plasma proteins upon admission to the center, and body mass gain during the period in captivity. The findings demonstrate the negative impacts of aspergillosis on the rehabilitation of Magellanic penguins, with a high incidence density and substantial mortality. PMID:26667521

  4. Effects of probiotic supplementation in different energy and nutrient density diets on performance, egg quality, excreta microflora, excreta noxious gas emission, and serum cholesterol concentrations in laying hens.

    PubMed

    Zhang, Z F; Kim, I H

    2013-10-01

    This 6-wk study was conducted to determine the effects of probiotic (Enterococcus faecium DSM 7134) supplementation of different energy and nutrient density diets on performance, egg quality, excreta microflora, excreta noxious gas emission, and serum cholesterol concentrations in laying hens. A total of 432 Hy-Line brown layers (40 wk old) were allotted into 4 dietary treatments with 2 levels of probiotic supplementation (0 or 0.01%) and 2 levels of energy (2,700 or 2,800 kcal ME/kg) and nutrient density. Weekly feed intake, egg quality, and daily egg production were determined. Eighteen layers per treatment (2 layers/replication) were bled to determine serum cholesterol concentrations at wk 3 and 6. Excreta microbial shedding of Lactobacillus, Escherichia coli, and Salmonella and noxious gas emission were determined at the end of the experiment. Hens fed the high-energy and high-nutrient-density diets had less (P < 0.01) ADFI than those fed the low-energy and low-nutrient-density diets throughout the experimental period. During wk 4 to 6 and overall, hens fed the diets supplemented with the probiotic had greater (P < 0.01) egg production, egg weight, and eggshell thickness than hens fed the diets without the probiotic. Dietary supplementation of the probiotic increased (P = 0.01) excreta Lactobacillus counts and decreased (P = 0.02) Escherichia coli counts compared with hens fed the diets without the probiotic. The excreta ammonia emission was decreased (P = 0.02) in hens fed the probiotic diets compared with hens fed the diets without the probiotic. Serum total cholesterol concentration was decreased (P < 0.01) by feeding hens with the probiotic at wk 3 and 6. Layers fed the probiotic-incorporated diets had greater (P < 0.01) high-density lipoprotein (HDL) cholesterol and lower (P = 0.03) low-density lipoprotein (LDL) cholesterol concentrations than hens fed the nonsupplemented diets at wk 6. Interactive effects (P < 0.05) of energy and nutrient density and the

  5. 40 CFR Table W - 3 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false 3 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Transmission Compression W Table W Protection...-3 of Subpart W of Part 98—Default Total Hydrocarbon Emission Factors for Onshore Natural...

  6. 40 CFR Table W - 3 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false 3 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Transmission Compression W Table W Protection...-3 of Subpart W of Part 98—Default Total Hydrocarbon Emission Factors for Onshore Natural...

  7. Measuring Ambient Densities and Lorentz Factors of Gamma-Ray Bursts from GeV and Optical Observations

    NASA Astrophysics Data System (ADS)

    Hascoët, Romain; Vurm, Indrek; Beloborodov, Andrei M.

    2015-11-01

    The Fermi satellite detected GeV flashes from cosmological gamma-ray bursts (GRBs). In two GRBs, an optical counterpart of the GeV flash was detected. Such flashes are predicted by the model of a blast wave running into a medium loaded with copious {e}+/- pairs. Here we examine a sample of seven bursts with the best GeV+optical data and further test the model. We find that the observed light curves are in agreement with the theoretical predictions, which allows us to measure three parameters for each burst: the Lorentz factor of the explosion, its isotropic kinetic energy, and the external density. With the possible exception of GRB 090510 (the only short burst in the sample), the ambient medium is consistent with a wind from a Wolf-Rayet progenitor. The wind density parameter A=ρ {r}2 varies in the sample around 1011 g cm-1. The initial Lorentz factor of the blast wave varies from 200 to 540, and correlates with the burst luminosity. Radiative efficiency of the prompt emission varies between 0.1 and 0.8. For the two bursts with a detected optical flash, GRB 120711A and GRB 130427A, we also estimate the magnetization of the external blast wave. Remarkably, despite its small number of free parameters, the model reproduces the entire optical light curve of GRB 120711A (with its sharp peak, fast decay, plateau, and break) as well as the GeV data. The spectra of GeV flashes are predicted to extend above 0.1 TeV, where they can be detected by ground-based Cherenkov telescopes.

  8. THE MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES. II. EXTREME PHYSICAL CONDITIONS AND THEIR EFFECTS ON THE X{sub co} FACTOR

    SciTech Connect

    Papadopoulos, Padelis P.; Van der Werf, Paul; Xilouris, E.; Isaak, Kate G.; Gao, Yu E-mail: pvdwerf@strw.leidenuniv.nl E-mail: kisaak@rssd.esa.int

    2012-05-20

    In this work, we conclude the analysis of our CO line survey of luminous infrared galaxies (LIRGs: L{sub IR} {approx}> 10{sup 11} L{sub Sun }) in the local universe (Paper I) by focusing on the influence of their average interstellar medium (ISM) properties on the total molecular gas mass estimates via the so-called X{sub co} = M(H{sub 2})/L{sub co,1-0} factor. One-phase radiative transfer models of the global CO spectral line energy distributions (SLEDs) yield an X{sub co} distribution with (X{sub co}) {approx} (0.6 {+-} 0.2) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} over a significant range of average gas densities, temperatures, and dynamic states. The latter emerges as the most important parameter in determining X{sub co}, with unbound states yielding low values and self-gravitating states yielding the highest ones. Nevertheless, in many (U)LIRGs where available higher-J CO lines (J = 3-2, 4-3, and/or J = 6-5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities ({>=}10{sup 4} cm{sup -3}) rather than a simple one-phase analysis, we find that near-Galactic X{sub co} {approx} (3-6) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} values become possible. We further show that in the highly turbulent molecular gas in ULIRGs, a high-density component will be common and can be massive enough for its high X{sub co} to dominate the average value for the entire galaxy. Using solely low-J CO lines to constrain X{sub co} in such environments (as has been the practice up until now) may have thus resulted in systematic underestimates of molecular gas mass in ULIRGs, as such lines are dominated by a warm, diffuse, and unbound gas phase with low X{sub co} but very little mass. Only well-sampled high-J CO SLEDs (J = 3-2 and higher) and/or multi-J observations of heavy rotor molecules (e.g., HCN) can circumvent such a bias, and the latter type of observations may have actually provided early evidence of it in local ULIRGs. The only

  9. CARMA SURVEY TOWARD INFRARED-BRIGHT NEARBY GALAXIES (STING). III. THE DEPENDENCE OF ATOMIC AND MOLECULAR GAS SURFACE DENSITIES ON GALAXY PROPERTIES

    SciTech Connect

    Wong, Tony; Xue, Rui; Bolatto, Alberto D.; Fisher, David B.; Vogel, Stuart N.; Leroy, Adam K.; Blitz, Leo; Rosolowsky, Erik; Bigiel, Frank; Ott, Jürgen; Rahman, Nurur; Walter, Fabian

    2013-11-01

    We investigate the correlation between CO and H I emission in 18 nearby galaxies from the CARMA Survey Toward IR-Bright Nearby Galaxies (STING) at sub-kpc and kpc scales. Our sample, spanning a wide range in stellar mass and metallicity, reveals evidence for a metallicity dependence of the H I column density measured in regions exhibiting CO emission. Such a dependence is predicted by the equilibrium model of McKee and Krumholz, which balances H{sub 2} formation and dissociation. The observed H I column density is often smaller than predicted by the model, an effect we attribute to unresolved clumping, although values close to the model prediction are also seen. We do not observe H I column densities much larger than predicted, as might be expected were there a diffuse H I component that did not contribute to H{sub 2} shielding. We also find that the H{sub 2} column density inferred from CO correlates strongly with the stellar surface density, suggesting that the local supply of molecular gas is tightly regulated by the stellar disk.

  10. CARMA Survey toward Infrared-bright Nearby Galaxies (STING). III. The Dependence of Atomic and Molecular Gas Surface Densities on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Wong, Tony; Xue, Rui; Bolatto, Alberto D.; Leroy, Adam K.; Blitz, Leo; Rosolowsky, Erik; Bigiel, Frank; Fisher, David B.; Ott, Jürgen; Rahman, Nurur; Vogel, Stuart N.; Walter, Fabian

    2013-11-01

    We investigate the correlation between CO and H I emission in 18 nearby galaxies from the CARMA Survey Toward IR-Bright Nearby Galaxies (STING) at sub-kpc and kpc scales. Our sample, spanning a wide range in stellar mass and metallicity, reveals evidence for a metallicity dependence of the H I column density measured in regions exhibiting CO emission. Such a dependence is predicted by the equilibrium model of McKee and Krumholz, which balances H2 formation and dissociation. The observed H I column density is often smaller than predicted by the model, an effect we attribute to unresolved clumping, although values close to the model prediction are also seen. We do not observe H I column densities much larger than predicted, as might be expected were there a diffuse H I component that did not contribute to H2 shielding. We also find that the H2 column density inferred from CO correlates strongly with the stellar surface density, suggesting that the local supply of molecular gas is tightly regulated by the stellar disk.

  11. Density of atoms in Ar*(3p{sup 5}4s) states and gas temperatures in an argon surfatron plasma measured by tunable laser spectroscopy

    SciTech Connect

    Huebner, S.; Carbone, E. A. D.; Mullen, J. J. A. M. van der; Sadeghi, N.

    2013-04-14

    This study presents the absolute argon 1 s (in Paschens's notation) densities and the gas temperature, T{sub g}, obtained in a surfatron plasma in the pressure range 0.65gas pressures of p<10 mbar, changes to a Voigt shape at p>10 mbar, for which the pressure broadening can no more be neglected. T{sub g} is in the range of 480-750 K, increasing with pressure and decreasing with the distance from the microwave launcher. Taking into account the line of sight effects of the absorption measurements, a good agreement is found with our previous measurements by Rayleigh scattering of T{sub g} at the tube center. In the studied pressure range, the Ar(4 s) atom densities are in the order of 10{sup 16}-10{sup 18} m{sup -3}, increasing towards the end of the plasma column, decreasing with the pressure. In the low pressure side, a broad minimum is found around 10densities increase slightly with rising pressure. For the studied pressure range and all axial positions, the density ratio: 1s{sub 5}/1s{sub 4}/1s{sub 3} is very close to a Boltzmann equilibrium by electron impact mixing at the local T{sub e}, which was previously measured by Thomson scattering. The Ar(4 s) densities are successfully compared to a detailed Collisional Radiative Model.

  12. Dynamic density and spin responses of a superfluid Fermi gas in the BCS-BEC crossover: Path integral formulation and pair fluctuation theory

    NASA Astrophysics Data System (ADS)

    He, Lianyi

    2016-10-01

    We present a standard field theoretical derivation of the dynamic density and spin linear response functions of a dilute superfluid Fermi gas in the BCS-BEC crossover in both three and two dimensions. The derivation of the response functions is based on the elegant functional path integral approach which allows us to calculate the density-density and spin-spin correlation functions by introducing the external sources for the density and the spin density. Since the generating functional cannot be evaluated exactly, we consider two gapless approximations which ensure a gapless collective mode (Goldstone mode) in the superfluid state: the BCS-Leggett mean-field theory and the Gaussian-pair-fluctuation (GPF) theory. In the mean-field theory, our results of the response functions agree with the known results from the random phase approximation. We further consider the pair fluctuation effects and establish a theoretical framework for the dynamic responses within the GPF theory. We show that the GPF response theory naturally recovers three kinds of famous diagrammatic contributions: the Self-Energy contribution, the Aslamazov-Lakin contribution, and the Maki-Thompson contribution. We also show that unlike the equilibrium state, in evaluating the response functions, the linear (first-order) terms in the external sources as well as the induced order parameter perturbations should be treated carefully. In the superfluid state, there is an additional order parameter contribution which ensures that in the static and long wavelength limit, the density response function recovers the result of the compressibility (compressibility sum rule). We expect that the f-sum rule is manifested by the full number equation which includes the contribution from the Gaussian pair fluctuations. The dynamic density and spin response functions in the normal phase (above the superfluid critical temperature) are also derived within the Nozières-Schmitt-Rink (NSR) theory.

  13. Regression approaches to derive generic and fish group-specific probability density functions of bioconcentration factors for metals.

    PubMed

    Tanaka, Taku; Ciffroy, Philippe; Stenberg, Kristofer; Capri, Ettore

    2010-11-01

    In the framework of environmental multimedia modeling studies dedicated to environmental and health risk assessments of chemicals, the bioconcentration factor (BCF) is a parameter commonly used, especially for fish. As for neutral lipophilic substances, it is assumed that BCF is independent of exposure levels of the substances. However, for metals some studies found the inverse relationship between BCF values and aquatic exposure concentrations for various aquatic species and metals, and also high variability in BCF data. To deal with the factors determining BCF for metals, we conducted regression analyses to evaluate the inverse relationships and introduce the concept of probability density function (PDF) for Cd, Cu, Zn, Pb, and As. In the present study, for building the regression model and derive the PDF of fish BCF, two statistical approaches are applied: ordinary regression analysis to estimate a regression model that does not consider the variation in data across different fish family groups; and hierarchical Bayesian regression analysis to estimate fish group-specific regression models. The results show that the BCF ranges and PDFs estimated for metals by both statistical approaches have less uncertainty than the variation of collected BCF data (the uncertainty is reduced by 9%-61%), and thus such PDFs proved to be useful to obtain accurate model predictions for environmental and health risk assessment concerning metals.

  14. Factors influencing gypsum crystal morphology within a flue gas desulfurization vessel

    NASA Astrophysics Data System (ADS)

    Lewis, Kinsey M.

    Flue gas desulfurization (FGD) is utilized by the coal--powered generating industry to safely eliminate sulfur dioxide. A FGD vessel (scrubber) synthetically creates gypsum crystals by combining limestone (CaCO3), SO2 flue gas, water and oxygen resulting in crystalline gypsum (CaSO4 · 2H2O), which can be sold for an economic return. Flat disk--like crystals, opposed to rod--like crystals, are hard to dewater, lowering economic return. The objectives were to investigate the cause of varying morphologies, understand the environment of precipitation, as well as identify correlations between operating conditions and resulting unfavorable gypsum crystal growth. Results show evidence supporting airborne impurities due to the onsite coal pile, the abundance and size of CaCO 3 and high Ca:SO4 ratios within the scrubber as possible factors controlling gypsum crystal morphology. In conclusion, regularly purging the system and incorporating a filter on the air intake valve will provide an economic byproduct avoiding costly landfill deposits.

  15. Risk assessment of oil and gas well drilling activities in Iran - a case study: human factors.

    PubMed

    Amir-Heidari, Payam; Farahani, Hadi; Ebrahemzadih, Mehrzad

    2015-01-01

    Oil and gas well drilling activities are associated with numerous hazards which have the potential to cause injury or harm for people, property and the environment. These hazards are also a threat for the reputation of drilling companies. To prevent accidents and undesired events in drilling operations it is essential to identify, evaluate, assess and control the attendant risks. In this work, a structured methodology is proposed for risk assessment of drilling activities. A case study is performed to identify, analyze and assess the risks arising from human factors in one of the on shore drilling sites in southern Iran. A total of 17 major hazards were identified and analyzed using the proposed methodology. The results showed that the residual risks of 100% of these hazards were in the acceptable or transitional zone, and their levels were expected to be lowered further by proper controls. This structured methodology may also be used in other drilling sites and companies for assessing the risks.

  16. Factors controlling the concentration of methane and other volatiles in groundwater and soil-gas around a waste site

    NASA Astrophysics Data System (ADS)

    Barber, C.; Davis, G. B.; Briegel, D.; Ward, J. K.

    1990-01-01

    The concentration of methane in groundwater and soil-gas in the vicinity of a waste landfill on an unconfined sand aquifer has been investigated in detail. These data have been used to evaluate techniques which use volatile organic compounds in soil-gas as indicators of groundwater contamination. Simple one-dimensional models of gas advection and diffusion have been adapted for use in the study. Lateral advection of gas in the unsaturated sand was found to be seasonal and was most noticeable in winter when the profile was wet; a mean velocity of 1 m d - was measured from breakthrough of a helium tracer in an injection test. The effects of advection on trace concentrations of methane in soil-gas were limited to within 150-200m from the waste site and resulted from pressure gradients brought about by positive gas pressures in the landfill, and also as a result of ebullition (gas bubbling) from contaminated groundwater. The distribution of methane in soil-gas at shallow (2m) depth gave a general indication of the direction of movement of contaminants with groundwater in close proximity to the landfill. Outside this zone, diffusional transport of methane from groundwater to soil-gas occurred and methane in soil-gas sampled close to the water table was found to be a useful indicator of contaminated groundwater. Modelling the exchange of volatiles between aqueous and gas phases indicates that a wide range of organic compounds, particularly those with Henry's Law constants greater than 2.5 × 10 t-2 kPam 3mol -1, would have potential for use as indicators of pollution, if these were present in groundwater and they behaved relatively conservatively. In general, the principal factors controlling the concentration of these volatiles in soil-gas were the concentration gradient at the water table and capillary fringe and the ratio of diffusion coefficients in the saturated and unsaturated zones.

  17. Investigation of Controlling Factors Impacting Water Quality in Shale Gas Produced Brine

    NASA Astrophysics Data System (ADS)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2014-12-01

    The recent boom in production of natural gas from unconventional reservoirs has generated a substantial increase in the volume of produced brine that must be properly managed to prevent contamination of fresh water resources. Produced brine, which includes both flowback and formation water, is often highly saline and may contain elevated concentrations of naturally occurring radioactive material and other toxic elements. These characteristics present many challenges with regard to designing effective treatment and disposal strategies for shale gas produced brine. We will present results from a series of batch experiments where crushed samples from two shale formations in the Michigan Basin, the Antrim and Utica-Collingwood shales, were brought into contact with synthetic hydraulic fracturing fluids under in situ temperature and pressure conditions. The Antrim has been an active shale gas play for over three decades, while the Utica-Collingwood formation (a grouped reservoir consisting of the Utica shale and Collingwood limestone) is an emerging shale gas play. The goal of this study is to investigate the influence of water-rock interactions in controlling produced water quality. We evaluate toxic element leaching from shale samples in contact with model hydraulic fracturing fluids under system conditions corresponding to reservoir depths up to 1.5 km. Experimental results have begun to elucidate the relative importance of shale mineralogy, system conditions, and chemical additives in driving changes in produced water quality. Initial results indicate that hydraulic fracturing chemical additives have a strong influence on the extent of leaching of toxic elements from the shale. In particular, pH was a key factor in the release of uranium (U) and divalent metals, highlighting the importance of the mineral buffering capacity of the shale. Low pH values persisted in the Antrim and Utica shale experiments and resulted in higher U extraction efficiencies than that

  18. Charge-density oscillations on Be(10{bar 1}0): Screening in a non-free two-dimensional electron gas

    SciTech Connect

    Briner, B.G.; Hofmann, P. ||; Doering, M.; Rust, H.; Plummer, E.W. |; Bradshaw, A.M.

    1998-11-01

    The surface state on Be(10{bar 1}0) has been investigated using a low-temperature scanning tunneling microscope (STM). The Fermi contour of this surface state is located at one boundary of the surface Brillouin zone, and surface-state electrons provide the main part of the charge density near the Fermi energy. Be(10{bar 1}0), therefore, corresponds closely to a non-free two-dimensional electron gas. We have observed standing waves of the surface charge density on Be(10{bar 1}0) near step edges and point defects. Such wave patterns derive from the interference of incoming and scattered electrons; they demonstrate the screening characteristics of the surface state. On Be(10{bar 1}0) these waves were found to be highly anisotropic. It is shown that calculating the Fourier transforms of topographic STM images is a powerful method for determining the Fermi contour of the surface state. This method could even be applied to images that display a complex wave pattern arising from a random distribution of point scatterers. Fourier analysis also revealed that the charge density oscillations on Be(10{bar 1}0) contain multiple periods that differ by reciprocal lattice vectors. These multiperiodic oscillations relate to the non-free character of the surface-state electrons and constitute an interference pattern of Bloch states. Fourier filtering was used to separate the charge-density oscillations from the topographic corrugation and to visualize their shape and spatial range. The experimental data are qualitatively discussed using a model calculation based on the scattering of Bloch electrons from planar obstacles in a two-dimensional conductor. Experimental results and model calculations highlight how the screening characteristics on Be(10{bar 1}0) significantly deviate from the behavior expected for a free two-dimensional electron gas. {copyright} {ital 1998} {ital The American Physical Society}

  19. Picosecond-TALIF and VUV absorption measurements of absolute atomic nitrogen densities from an RF atmospheric pressure plasma jet with He/O2/N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    West, Andrew; Niemi, Kari; Schröter, Sandra; Bredin, Jerome; Gans, Timo; Wagenaars, Erik

    2015-09-01

    Reactive Oxygen and Nitrogen species (RONS) from RF atmospheric pressure plasma jets (APPJs) are important in biomedical applications as well as industrial plasma processing such as surface modification. Atomic oxygen has been well studied, whereas, despite its importance in the plasma chemistry, atomic nitrogen has been somewhat neglected due to its difficulty of measurement. We present absolute densities of atomic nitrogen in APPJs operating with He/O2/N2 gas mixtures in open air, using picosecond Two-photon Absorption Laser Induced Fluorescence (ps-TALIF) and vacuum ultra-violet (VUV) absorption spectroscopy. In order to apply the TALIF technique in complex, He/O2/N2 mixtures, we needed to directly measure the collisional quenching effects using picosecond pulse widths (32ps). Traditional calculated quenching corrections, used in nanosecond TALIF, are inadequate due to a lack of quenching data for complex mixtures. Absolute values for the densities were found by calibrating against a known density of Krypton. The VUV absorption experiments were conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Atomic nitrogen densities were on the order of 1020 m-3 with good agreement between TALIF and VUV absorption. UK EPSRC grant EP/K018388/1.

  20. Variation Trend and Driving Factors of Greenhouse Gas Emissions from Chinese Magnesium Production.

    PubMed

    Gao, Feng; Liu, Yu; Nie, Zuo-Ren; Gong, Xianzheng; Wang, Zhihong

    2015-11-01

    As the largest magnesium producer in the world, China is facing a great challenge of greenhouse gas (GHG) emissions reduction. In this paper, the variation trend and driving factors of GHG emissions from Chinese magnesium production were evaluated and the measures of technology and policy for effectively mitigating GHG emissions were provided. First, the energy-related and process-oriented GHG inventory is compiled for magnesium production in China. Then, the driving forces for the changes of the energy-related emission were analyzed by the method of Logarithmic Mean Divisia Index (LMDI) decomposition. Results demonstrated that Chinese magnesium output from 2003 to 2013 increased by 125%, whereas GHG emissions only increased by 16%. The emissions caused by the fuels consumption decline most significantly (from 28.4 to 6.6 t CO2eq/t Mg) among all the emission sources. The energy intensity and the energy structure were the main offsetting factors for the increase of GHG emissions, while the scale of production and the international market demand were the main contributors for the total increase. Considering the improvement of technology application and more stringent policy measures, the annual GHG emissions from Chinese primary magnesium production will be controlled within 22 million tons by 2020.

  1. Prevalence of Bone Mineral Density Abnormalities and Factors Affecting Bone Density in Patients with Chronic Obstructive Pulmonary Disease in a Tertiary Care Hospital in Southern India

    PubMed Central

    Mani, Sathish Kumar; Gopal, Gopinath Kango; Rangasami, Srinivasan

    2016-01-01

    Introduction Chronic Obstructive Pulmonary Disease (COPD) is a disease of wasting with airflow limitation, associated with a variety of systemic manifestations such as reduced Bone Mineral Density (BMD). There is a paucity of Indian studies on the effects of COPD on BMD. Aim This study was conducted to estimate the prevalence of osteopenia and osteoporosis in COPD patients and the correlation between bone density and severity of COPD classified according to GOLD Global initiative for chronic Obstructive Lung Disease guidelines (GOLD). Materials and Methods A prospective study of 60 patients diagnosed to have COPD, was conducted in the outpatient department of Respiratory Medicine, at a tertiary care hospital in Southern India, between September 2012 and September 2013. BMD was measured using ultrasound bone densitometer (ACHILLES GE HEALTH CARE). Patients with a T-score between -1 and -2.5 were considered to be osteopenic while patients with a T score less than -2.5 were considered to be osteoporotic (WHO criteria). Results Overall, 40 (67%) patients had an abnormal bone mineral density. A total of 21 (35%) patients were osteoporotic while 19 (33%) were osteopenic. BMD levels correlated with severity of obstruction (p<0.001), smoking status (p=0.02), age (p=0.05) and number of pack years (p=0.001). Conclusion Patients with COPD are at an increased risk for lower BMD and osteoporotic fractures and the risk appears to increase with disease severity. Further studies are required to assess whether routine BMD measurements in COPD patients is beneficial to diagnose osteoporosis and reduce morbidity. PMID:27790490

  2. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  3. Simulation study of geometric shape factor approach to estimating earth emitted flux densities from wide field-of-view radiation measurements

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Green, R. N.

    1980-01-01

    A study was performed on the use of geometric shape factors to estimate earth-emitted flux densities from radiation measurements with wide field-of-view flat-plate radiometers on satellites. Sets of simulated irradiance measurements were computed for unrestricted and restricted field-of-view detectors. In these simulations, the earth radiation field was modeled using data from Nimbus 2 and 3. Geometric shape factors were derived and applied to these data to estimate flux densities on global and zonal scales. For measurements at a satellite altitude of 600 km, estimates of zonal flux density were in error 1.0 to 1.2%, and global flux density errors were less than 0.2%. Estimates with unrestricted field-of-view detectors were about the same for Lambertian and non-Lambertian radiation models, but were affected by satellite altitude. The opposite was found for the restricted field-of-view detectors.

  4. Predictive values of vascular endothelial growth factor and microvessel-density levels in initial biopsy for prostate cancer.

    PubMed

    Kervancioglu, Enis; Kosan, Murat; Erinanc, Hilal; Gonulalan, Umut; Oguzulgen, Ahmet Ibrahim; Coskun, Esra Zeynep; Ozkardes, Hakan

    2016-02-01

    Angiogenesis is an important factor in the development and progression of prostate cancer (PCA). We aimed to investigate the values of vascular-endothelial-growth-factor (VEGF) expression level and microvessel density (MVD) in the prediction of PCA diagnosis at repeated prostate biopsy (re-PBx). We retrospectively evaluated 167 patients with re-PBx according to elevated prostate-specific antigen levels, suspicious digital rectal examination, and the presence of premalignant lesions. Patients with PCA on re-PBx were included in the cancer group (n = 17). Patients with benign prostatic hyperplasia or normal tissues on re-PBx were included in the control group (n = 21). The groups were compared according to the expression level of VEGF and MVD in initial prostate biopsy. There was no statistically significant difference between groups according to age and serum prostate-specific-antigen values. The mean VEGF scores of the cancer and control groups were 232.64 ± 11.14 and 183.09 ± 14.56, respectively (p < 0.05). The mean MVD of the biopsy samples in the cancer and control groups were 246.47 ± 17.59 n/mm(2) and 197.33 ± 16.26 n/mm(2), respectively (p < 0.05). The cutoff values of VEGF scores and MVD were set as 200 and 215, respectively, for PCA detection in our study. Our results showed that the expression level of VEGF and MVD significantly increased in the initial prostate-biopsy samples of patients with PCA diagnosed with re-PBx. The evaluation of VEGF expression level and MVD might have an important value in the prediction of PCA at re-PBx. The expression level of VEGF and MVD should be kept in mind as PCA-related histopathological changes that indicate the increased angiogenesis in prostatic tissue.

  5. What experimental factors influence the accuracy of retention projections in gas chromatography-mass spectrometry?

    PubMed

    Wilson, Michael B; Barnes, Brian B; Boswell, Paul G

    2014-12-19

    Programmed-temperature gas chromatographic (GC) retention information is difficult to share because it depends on so many experimental factors that vary among laboratories. Though linear retention indexing cannot properly account for experimental differences, retention times can be accurately calculated, or "projected", from shared isothermal retention vs. temperature (T) relationships, but only if the temperature program and hold-up time vs. T profile produced by a GC is known with great precision. The effort required to measure these profiles were previously impractical, but we recently showed that they can be easily back-calculated from the programmed-temperature retention times of a set of 25 n-alkanes using open-source software at www.retentionprediction.org/gc. In a multi-lab study, the approach was shown to account for both intentional and unintentional differences in the temperature programs, flow rates, and inlet pressures produced by the GCs. Here, we tested 16 other experimental factors and found that only 5 could reduce accuracy in retention projections: injection history, exposure to very high levels of oxygen at high temperature, a very low transfer line temperature, an overloaded column, and a very short column (≤15m). We find that the retention projection methodology acts as a hybrid of conventional retention projection and retention indexing, drawing on the advantages of both; it properly accounts for a wide range of experimental conditions while accommodating the effects of experimental factors not properly taken into account in the calculations. Finally, we developed a four-step protocol to efficiently troubleshoot a GC system after it is found to be yielding inaccurate retention projections. PMID:25482038

  6. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High--Density Lipoprotein Intervention Trial.

    PubMed

    Boden, W E

    2000-12-21

    The Framingham Heart Study found that high-density lipoprotein cholesterol (HDL-C) was the most potent lipid predictor of coronary artery disease risk in men and women >49 years of age. The Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS), in which subjects were randomized to treatment with lovastatin or placebo, also reported a striking benefit of treatment, particularly in patients with HDL-C < or =35 mg/dL at baseline. Treatment with lovastatin was associated with a remarkable 45% reduction in events for this group. The Veterans Affairs HDL Intervention Trial (VA-HIT) randomized subjects to gemfibrozil or placebo. A high proportion of enrolled subjects with low HDL-C also had characteristics of the dysmetabolic syndrome. HDL-C likewise increased by 6% on treatment, total cholesterol was reduced by 4% and triglycerides by 31%. There was no change in low-density lipoprotein cholesterol (LDL-C) levels. These changes in lipid were associated with a cumulative 22% reduction in the trial primary endpoint of all-cause mortality and nonfatal myocardial infarction (MI). Additionally, significant reductions in secondary endpoints including death from coronary artery disease, nonfatal MI, stroke, transient ischemic attack, and carotid endarterectomy were associated with the increase in HDL-C. In VA-HIT, for every 1% increase in HDL-C, there was a 3% reduction in death or MI, a therapeutic benefit that eclipses the benefit associated with LDL-C reduction. PMID:11374850

  7. Effects of retinoids on differentiation, lipid metabolism, epidermal growth factor, and low-density lipoprotein binding in squamous carcinoma cells

    SciTech Connect

    Ponec, M.; Weerheim, A. ); Havekes, L. ); Boonstra, J. )

    1987-08-01

    The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisone stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity.

  8. Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes.

    PubMed

    Molina-Portela, Maria del Pilar; Lugli, Elena B; Recio-Pinto, Esperanza; Raper, Jayne

    2005-12-01

    Trypanosome lytic factor 1 (TLF1) is a subclass of human high-density lipoprotein that kills some African trypanosomes thereby protecting humans from infection. We have shown that TLF1 is a 500 kDa HDL complex composed of lipids and at least seven different proteins. Here we present evidence outlining a new paradigm for the mechanism of lysis; TLF1 forms cation-selective pores in membranes. We show that the replacement of external Na+ (23 Da) with the larger tetramethylammonium+, choline+ and tetraethylammonium+ ions (74 Da, 104 Da and 130 Da) ameliorates the osmotically driven swelling and lysis of trypanosomes by TLF1. Confirmation of cation pore-formation was obtained using small unilamellar vesicles incubated with TLF1; these showed the predicted change in membrane potential expected from an influx of sodium ions. Using planar lipid bilayer model membranes made from trypanosome lipids, which allow the detection of single channels, we found that TLF1 forms discrete ion-conducting channels (17 pS) that are selective for potassium ions over chloride ions. We propose that the initial influx of extracellular Na+ down its concentration gradient promotes the passive entry of Cl- through preexisting Cl- channels. The net influx of both Na+ and Cl- create an osmotic imbalance that leads to passive water diffusion. This loss of osmoregulation results in cytoplasmic vacuolization, cell swelling and ultimately trypanosome lysis. PMID:16202458

  9. Climate and site management as driving factors for the atmospheric greenhouse gas exchange of a restored wetland

    NASA Astrophysics Data System (ADS)

    Herbst, M.; Friborg, T.; Schelde, K.; Jensen, R.; Ringgaard, R.; Vasquez, V.; Thomsen, A. G.; Soegaard, H.

    2013-01-01

    The atmospheric greenhouse gas (GHG) budget of a restored wetland in western Denmark was established for the years 2009-2011 from eddy covariance measurements of carbon dioxide (CO2) and methane (CH4) fluxes. The water table in the wetland, which was restored in 2002, was unregulated, and the vegetation height was limited through occasional grazing by cattle and grass cutting. The annual net CO2 uptake varied between 195 and 983 g m-2 and the annual net CH4 release varied between 11 and 17 g m-2. In all three years the wetland was a carbon sink and removed between 42 and 259 g C m-2 from the atmosphere. However, in terms of the full annual GHG budget (assuming that 1 g CH4 is equivalent to 25 g CO2 with respect to the greenhouse effect over a time horizon of 100 years) the wetland was a sink in 2009, a source in 2010 and neutral in 2011. Complementary observations of meteorological factors and management activities were used to explain the large inter-annual variations in the full atmospheric GHG budget of the wetland. The largest impact on the annual GHG fluxes, eventually defining their sign, came from site management through changes in grazing duration and animal stocking density. These changes accounted for half of the observed variability in the CO2 fluxes and about two thirds of the variability in CH4 fluxes. An unusually long period of snow cover in 2010 had the second largest effect on the annual CO2 flux, whose interannual variability was larger than that of the CH4 flux. Since integrated CO2 and CH4 flux data from restored wetlands are still very rare, it is concluded that more long-term flux measurements are needed to quantify the effects of ecosystem disturbance, in terms of management activities and exceptional weather patterns, on the atmospheric GHG budget more accurately.

  10. Exploring pulse shaping for Z using graded-density impactors on gas guns (final report for LDRD project 79879).

    SciTech Connect

    Furnish, Michael David; Reinhart, William Dodd; Anderson, William W. (Los Alamos National Laboratory, Los Alamos, NM); Vogler, Tracy John; Hixson, Rob (Los Alamos National Laboratory, Los Alamos, NM); Kipp, Marlin E.

    2005-10-01

    While isentropic compression experiment (ICE) techniques have proved useful in deducing the high-pressure compressibility of a wide range of materials, they have encountered difficulties where large-volume phase transitions exist. The present study sought to apply graded-density impactor methods for producing isentropic loading to planar impact experiments to selected such problems. Cerium was chosen due to its 20% compression between 0.7 and 1.0 GPa. A model was constructed based on limited earlier dynamic data, and applied to the design of a suite of experiments. A capability for handling this material was installed. Two experiments were executed using shock/reload techniques with available samples, loading initially to near the gamma-alpha transition, then reloading. As well, two graded-density impactor experiments were conducted with alumina. A method for interpreting ICE data was developed and validated; this uses a wavelet construction for the ramp wave and includes corrections for the ''diffraction'' of wavelets by releases or reloads reflected from the sample/window interface. Alternate methods for constructing graded-density impactors are discussed.

  11. van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions

    SciTech Connect

    Berland, Kristian; Arter, Calvin A.; Thonhauser, T.; Cooper, Valentino R.; Lee, Kyuho; Lundqvist, Bengt I.; Schröder, Elsebeth; Hyldgaard, Per

    2014-05-14

    The theoretical description of sparse matter attracts much interest, in particular for those ground-state properties that can be described by density functional theory. One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO{sub 3}, the adsorption of small molecules within metal-organic frameworks, the graphite/diamond phase transition, and the adsorption of an aromatic-molecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general-purpose functional that could be applied to a range of materials problems with a variety of competing interactions.

  12. van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions

    SciTech Connect

    Berland, Kristian; Arter, Calvin A; Cooper, Valentino R; Lee, Dr. Kyuho; Lundqvist, Prof. Bengt I.; Schroder, Prof. Elsebeth; Thonhauser, Prof. Timo; Hyldgaard, Per

    2014-01-01

    The theoretical description of sparse matter attracts much interest, in particular for those groundstate properties that can be described by density functional theory (DFT). One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B, in print] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO3, the adsorption of small molecules within metal-organic frameworks (MOFs), the graphite/diamond phase transition, and the adsorption of an aromaticmolecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general purpose functional that could be applied to a range of materials problems with a variety of competing interactions.

  13. van der Waals density functionals built upon the electron-gas tradition: facing the challenge of competing interactions.

    PubMed

    Berland, Kristian; Arter, Calvin A; Cooper, Valentino R; Lee, Kyuho; Lundqvist, Bengt I; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per

    2014-05-14

    The theoretical description of sparse matter attracts much interest, in particular for those ground-state properties that can be described by density functional theory. One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO3, the adsorption of small molecules within metal-organic frameworks, the graphite/diamond phase transition, and the adsorption of an aromatic-molecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general-purpose functional that could be applied to a range of materials problems with a variety of competing interactions.

  14. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-07-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  15. Factors affecting fish assemblages associated with gas platforms in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Consoli, Pierpaolo; Romeo, Teresa; Ferraro, Maria; Sarà, Gianluca; Andaloro, Franco

    2013-03-01

    Understanding the role played by offshore platforms in marine ecosystems is acquiring increasing importance worldwide. In this work, underwater visual census techniques were applied to describe spatial and temporal patterns of fish assemblages associated with extractive platforms. Data were collected during three seasons according to the following spatial factors: Location (Adriatic and Ionian Seas), Depth (0-6 m and 12-18 m) and Distance from the platform (external and internal). Both univariate and multivariate analyses showed highly significant differences for each factor assessed in this study, as well as for the interaction among said factors. Results indicated that artificial structures in both the Adriatic and Ionian Seas act as artificial reefs attracting reef-dwelling or partially reef-dwelling species, which are not present far from the platforms in open waters. Results also showed significant differences between Ionian and Adriatic fish assemblages, with a higher mean density of fish and a greater mean number of species in the latter basin. Boops boops, Chromis chromis and several species belonging to the Blennidae family most contributed to these differences. This is likely due to the eutrophication that involves the coast of the northern and central Adriatic, allowing a high production of fish, especially planctivorous. Thanks to the eutrophication, platforms located in this basin are characterized by a greater abundance of fouling organisms which offer a perfect habitat for cryptobenthic species, such as Blennids. Moreover, Thalassoma pavo and Scorpaena maderensis, thermophilic species, were more abundant in the Ionian platforms than in the Adriatic ones thus contributing to the dissimilarities between these two basins. Present results could bear strong implications for the environmental management of drilling and production activities in different basins. Assessing biodiversity in these highly complex contexts is a challenge for the near future, and

  16. Seasonal Habitat Use by Greater Sage-Grouse (Centrocercus urophasianus) on a Landscape with Low Density Oil and Gas Development

    PubMed Central

    2016-01-01

    Fragmentation of the sagebrush (Artemisia spp.) ecosystem has led to concern about a variety of sagebrush obligates including the greater sage-grouse (Centrocercus urophasianus). Given the increase of energy development within greater sage-grouse habitats, mapping seasonal habitats in pre-development populations is critical. The North Park population in Colorado is one of the largest and most stable in the state and provides a unique case study for investigating resource selection at a relatively low level of energy development compared to other populations both within and outside the state. We used locations from 117 radio-marked female greater sage-grouse in North Park, Colorado to develop seasonal resource selection models. We then added energy development variables to the base models at both a landscape and local scale to determine if energy variables improved the fit of the seasonal models. The base models for breeding and winter resource selection predicted greater use in large expanses of sagebrush whereas the base summer model predicted greater use along the edge of riparian areas. Energy development variables did not improve the winter or the summer models at either scale of analysis, but distance to oil/gas roads slightly improved model fit at both scales in the breeding season, albeit in opposite ways. At the landscape scale, greater sage-grouse were closer to oil/gas roads whereas they were further from oil/gas roads at the local scale during the breeding season. Although we found limited effects from low level energy development in the breeding season, the scale of analysis can influence the interpretation of effects. The lack of strong effects from energy development may be indicative that energy development at current levels are not impacting greater sage-grouse in North Park. Our baseline seasonal resource selection maps can be used for conservation to help identify ways of minimizing the effects of energy development. PMID:27788202

  17. Method of evaluating the impact of ERP implementation critical success factors - a case study in oil and gas industries

    NASA Astrophysics Data System (ADS)

    Gajic, Gordana; Stankovski, Stevan; Ostojic, Gordana; Tesic, Zdravko; Miladinovic, Ljubomir

    2014-01-01

    The so far implemented enterprise resource planning (ERP) systems have in many cases failed to meet the requirements regarding the business process control, decrease of business costs and increase of company profit margin. Therefore, there is a real need for an evaluation of the influence of ERP on the company's performance indicators. Proposed in this article is an advanced model for the evaluation of the success of ERP implementation on organisational and operational performance indicators in oil-gas companies. The recommended method establishes a correlation between a process-based method, a scorecard model and ERP critical success factors. The method was verified and tested on two case studies in oil-gas companies using the following procedure: the model was developed, tested and implemented in a pilot gas-oil company, while the results were implemented and verified in another gas-oil company.

  18. 40 CFR Table W - 7 of Subpart W-Default Methane Emission Factors for Natural Gas Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protected Steel 0.02 Plastic 0.001 Copper 0.03 1 Excluding customer meters. 2 Emission Factor is in units of... Line 26.131 Population Emission Factors—Below Grade Metering-Regulating station 1 Components, Gas Service 2 Below Grade M&R Station, Inlet Pressure > 300 psig 1.30 Below Grade M&R Station, Inlet...

  19. Key factor in rice husk Ash/CaO sorbent for high flue gas desulfurization activity.

    PubMed

    Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman

    2006-10-01

    Siliceous materials such as rice husk ash (RHA) have potential to be utilized as high performance sorbents for the flue gas desulfurization process in small-scale industrial boilers. This study presents findings on identifying the key factorfor high desulfurization activity in sorbents prepared from RHA. Initially, a systematic approach using central composite rotatable design was used to develop a mathematical model that correlates the sorbent preparation variables to the desulfurization activity of the sorbent. The sorbent preparation variables studied are hydration period, x1 (6-16 h), amount of RHA, x2 (5-15 g), amount of CaO, x3 (2-6 g), amount of water, x4 (90-110 mL), and hydration temperature, x5 (150-250 degrees C). The mathematical model developed was subjected to statistical tests and the model is adequate for predicting the SO2 desulfurization activity of the sorbent within the range of the sorbent preparation variables studied. Based on the model, the amount of RHA, amount of CaO, and hydration period used in the preparation step significantly influenced the desulfurization activity of the sorbent. The ratio of RHA and CaO used in the preparation mixture was also a significant factor that influenced the desulfurization activity of the sorbent. A RHA to CaO ratio of 2.5 leads to the formation of specific reactive species in the sorbent that are believed to be the key factor responsible for high desulfurization activity in the sorbent. Other physical properties of the sorbent such as pore size distribution and surface morphology were found to have insignificant influence on the desulfurization activity of the sorbent.

  20. Risk assessment of oil and gas well drilling activities in Iran - a case study: human factors.

    PubMed

    Amir-Heidari, Payam; Farahani, Hadi; Ebrahemzadih, Mehrzad

    2015-01-01

    Oil and gas well drilling activities are associated with numerous hazards which have the potential to cause injury or harm for people, property and the environment. These hazards are also a threat for the reputation of drilling companies. To prevent accidents and undesired events in drilling operations it is essential to identify, evaluate, assess and control the attendant risks. In this work, a structured methodology is proposed for risk assessment of drilling activities. A case study is performed to identify, analyze and assess the risks arising from human factors in one of the on shore drilling sites in southern Iran. A total of 17 major hazards were identified and analyzed using the proposed methodology. The results showed that the residual risks of 100% of these hazards were in the acceptable or transitional zone, and their levels were expected to be lowered further by proper controls. This structured methodology may also be used in other drilling sites and companies for assessing the risks. PMID:26333832

  1. Can't See the Forest for the Rice: Factors Influencing Spatial Variations in the Density of Trees in Paddy Fields in Northeast Thailand

    NASA Astrophysics Data System (ADS)

    Watanabe, Moriaki; Vityakon, Patma; Rambo, A. Terry

    2014-02-01

    The widespread presence of trees in paddy fields is a unique feature of Northeast Thailand's agricultural landscape. A survey of spatial variability in the density of trees in paddy fields in the Northeast Region was conducted utilizing high resolution satellite images and found that the mean density in the whole region was 12.1 trees/ha (varying from a high of 44.6 trees/ha to a low of 0.8 trees/ha). In general, tree densities are higher in the southeastern part of the region and much lower in the northern central part. Tree density was influenced by multiple factors including: (1) the history of land development, with more recently developed paddy fields having higher densities, (2) topography, with fields located at higher topographical positions having a higher mean density of trees, (3) access to natural forest resources, with fields in areas located close to natural forests having higher densities, (4) amount of annual rainfall, with fields in areas with higher average annual rainfall having higher tree densities, and (5) landholding size, with fields in areas with larger-sized landholdings having more trees. However, there is a considerable extent of co-variation among these factors. Although trees remain an important element of the paddy field landscape in the Northeast, it appears that their density has been declining in recent years. If this trend continues, then the vast "invisible forest" represented by trees in paddy fields may truly disappear, with negative consequences for the villagers' livelihoods, biodiversity conservation, and carbon sequestration in the rural ecosystem.

  2. Can't see the forest for the rice: factors influencing spatial variations in the density of trees in paddy fields in northeast Thailand.

    PubMed

    Watanabe, Moriaki; Vityakon, Patma; Rambo, A Terry

    2014-02-01

    The widespread presence of trees in paddy fields is a unique feature of Northeast Thailand's agricultural landscape. A survey of spatial variability in the density of trees in paddy fields in the Northeast Region was conducted utilizing high resolution satellite images and found that the mean density in the whole region was 12.1 trees/ha (varying from a high of 44.6 trees/ha to a low of 0.8 trees/ha). In general, tree densities are higher in the southeastern part of the region and much lower in the northern central part. Tree density was influenced by multiple factors including: (1) the history of land development, with more recently developed paddy fields having higher densities, (2) topography, with fields located at higher topographical positions having a higher mean density of trees, (3) access to natural forest resources, with fields in areas located close to natural forests having higher densities, (4) amount of annual rainfall, with fields in areas with higher average annual rainfall having higher tree densities, and (5) landholding size, with fields in areas with larger-sized landholdings having more trees. However, there is a considerable extent of co-variation among these factors. Although trees remain an important element of the paddy field landscape in the Northeast, it appears that their density has been declining in recent years. If this trend continues, then the vast "invisible forest" represented by trees in paddy fields may truly disappear, with negative consequences for the villagers' livelihoods, biodiversity conservation, and carbon sequestration in the rural ecosystem.

  3. Modified low density lipoproteins suppress production of a platelet-derived growth factor-like protein by cultured endothelial cells.

    PubMed Central

    Fox, P L; DiCorleto, P E

    1986-01-01

    Cultured endothelial cells (EC) produce a platelet-derived growth factor-like protein (PDGF-c) that stimulates the growth of cultured cells of mesenchymal origin. We have examined the effect of native plasma low density lipoprotein (LDL) and chemically modified LDL on production of PDGF-c by EC. Acetyl-LDL, but not native LDL, suppressed the production of PDGF-c by bovine aortic EC. Half-maximal inhibition was observed at a concentration of 25-75 micrograms of cholesterol per ml, and maximal inhibition (0-25% of control) at 150 micrograms of cholesterol per ml. EC treated with acetyl-LDL showed no morphological damage, there was no change in cell number, and the effect on production of PDGF-c was substantially reversed upon removal of the acetyl-LDL. The observed inhibition of PDGF-c production was specific, since total cellular and secreted protein synthesis were unaffected by acetyl-LDL. Acetyl-LDL suppressed PDGF-c production in both bovine aortic and human umbilical vein EC, but not in rat heart EC. This cell specificity correlated with the presence of scavenger receptors as measured by degradation of 125I-labeled acetyl-LDL and uptake of fluorescently labeled acetyl-LDL. Dimethylpropanediamine-LDL, a cationic modified lipoprotein, also inhibited PDGF-c production. The inhibition by both types of modified LDL was accompanied by significant intracellular cholesterol accumulation, suggesting a role for EC lipid composition in the regulation of production of PDGF-c. PMID:3460071

  4. Harnessing High Density Lipoproteins to Block Transforming Growth Factor Beta and to Inhibit the Growth of Liver Tumor Metastases

    PubMed Central

    Medina-Echeverz, José; Fioravanti, Jessica; Díaz-Valdés, Nancy; Frank, Kathrin; Aranda, Fernando; Gomar, Celia; Ardaiz, Nuria; Dotor, Javier; Umansky, Viktor; Prieto, Jesús; Berraondo, Pedro

    2014-01-01

    Transforming growth factor β (TGF-β) is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs) appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144) linked to apolipoprotein A-I (ApoA-I) through a flexible linker (pApoLinkerP144). The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144). The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2−/−IL2rγ−/− immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms. PMID:24797128

  5. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.)

    PubMed Central

    Hecht, Vera L.; Temperton, Vicky M.; Nagel, Kerstin A.; Rascher, Uwe; Postma, Johannes A.

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm−3) increases in the topsoil as well as specific root length (root length per root dry weight, cm g−1) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24–340 seeds m−2) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0–10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4–1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m−2 suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  6. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.).

    PubMed

    Hecht, Vera L; Temperton, Vicky M; Nagel, Kerstin A; Rascher, Uwe; Postma, Johannes A

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  7. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.).

    PubMed

    Hecht, Vera L; Temperton, Vicky M; Nagel, Kerstin A; Rascher, Uwe; Postma, Johannes A

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  8. Relative importance of physical and economic factors in Appalachian coalbed gas assessment

    USGS Publications Warehouse

    Attanasi, E.D.

    1998-01-01

    In the 1995 National Assessment of Oil and Gas Resources prepared by the U.S. Geological Survey, only 20% of the assessed technically recoverable Appalachian Province coalbed gas resources were economic. Physical and economic variables are examined to explain the disparity between economic and technically recoverable coalbed gas. The Anticline and Syncline plays of the Northern Appalachian Basin, which account for 77% of the assessed technically recoverable coalbed gas, are not economic. Analysis shows marginal reductions in costs or rate of return will not turn these plays into commercial successes. Physical parameters that determine ultimate well recoverability and the rate of gas recovery are primary reasons the Northern Appalachian Basin plays are non-commercial. If the application of new well stimulation technology could offset slow gas desorption rates, Appalachian Province economic gas could increase to more then 70% of the technically recoverable gas. Similarly, if operators are able to develop strategies to selectively drill plays by avoiding dry holes and non-commercial occurrences, the economic fraction of technically recoverable gas could increase to over half.In the 1995 National Assessment of Oil and Gas Resources prepared by the U.S. Geological Survey, only 20% of the assessed technically recoverable Appalachian Province coalbed gas resources were economic. Physical and economic variables are examined to explain the disparity between economic and technically recoverable coalbed gas. The Anticline and Syncline plays of the Northern Appalachian Basin, which account for 77% of the assessed technically recoverable coalbed gas, are not economic. Analysis shows marginal reductions in costs or rate of return will not turn these plays into commercial successes. Physical parameters that determine ultimate well recoverability and the rate of gas recovery are primary reasons the Northern Appalachian Basin plays are non-commercial. If the application of new well

  9. Use supercompressibility as a meter correction factor

    SciTech Connect

    Nelson, M.B.

    1982-09-01

    Describes how, in the range of conditions experienced in the natural gas industry, the actual density of the gas volume measured is greater than the theoretical density related to Boyle's Law, and explains how the supercompressibility factor can correct this deviation. Northern States Power decided to apply supercompressibility as part of billing procedures after a study showed that if only customers with meter pressures of 20 psig and greater had the factor applied, 95.5% of the gas that is not being accounted for would be recovered. Supercompressibility as a function of gas composition, gas pressure, and temperature indicates the empirical relationship that relates the factor to the ideal gas laws. For normal compositions of natural gas, supercompressibility can be related to the gravity of the gas, taking into account mole fractions of CO/sub 2/ and N/sub 2/.

  10. Factors That Limit Positron Emission Tomography Imaging of P-Glycoprotein Density at the Blood–Brain Barrier

    PubMed Central

    2013-01-01

    Efflux transporters located at the blood–brain barrier, such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), regulate the passage of many drugs in and out of the brain. Changes in the function and density of these proteins, in particular P-gp, may play a role in several neurological disorders. Several radioligands have been developed for measuring P-gp function at the blood–brain barrier of human subjects with positron emission tomography (PET). However, attempts to measure P-gp density with radiolabeled inhibitors that bind to these proteins in vivo have not thus far provided useful, quantifiable PET signals. Herein, we argue that not only the low density of transporters in the brain as a whole but also their very high density in brain capillaries act to lower the concentration of ligand in the plasma and thereby contribute to absent or low signals in PET studies of P-gp density. Our calculations, based on published data and theoretical approximations, estimate that whole brain densities of many efflux transporters at the blood–brain barrier range from 0.04 to 5.19 nM. We conclude that the moderate affinities (>5 nM) of currently labeled inhibitors may not allow measurement of efflux transporter density at the blood–brain barrier, and inhibitors with substantially higher affinity will be needed for density imaging of P-gp and other blood–brain barrier transporters. PMID:23597242

  11. Rapid tuning CW laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO

    NASA Technical Reports Server (NTRS)

    Chang, Albert Y.; Dirosa, Michael D.; Davidson, David F.; Hanson, Ronald K.

    1991-01-01

    An intracavity-doubled rapid-tuning CW ring dye laser was used to acquire fully resolved absorption profiles of NO line pairs in the A-X band at 225 nm at a rate of 4 kHz. These profiles were utilized for simultaneous measurements of flow parameters in the high-speed 1D flows generated in a shock tube. Velocity was determined from the Doppler shift, measured using a pair of profiles simultaneously acquired at different angles with respect to the flow direction. Temperature was determined from the intensity ratio of the adjacent lines. Pressure and density were found both from the collisional broadening and the fractional absorption. From this information the mass flux was determined. The results compare well to 1D shock calculations.

  12. Examination of the relationship between project management critical success factors and project success of oil and gas drilling projects

    NASA Astrophysics Data System (ADS)

    Alagba, Tonye J.

    Oil and gas drilling projects are the