Science.gov

Sample records for gas density factors

  1. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

    NASA Astrophysics Data System (ADS)

    Zhuravleva, I.; Churazov, E.; Arévalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2015-07-01

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ˜10-30 kpc within radii of 30-220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90-140 km s-1 on ˜20-30 kpc scales and 70-100 km s-1 on smaller scales ˜7-10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7-8 per cent for radii ˜30-220 kpc from the centre, leading to a density bias of less than 3-4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density-velocity perturbation relation and further reduce systematic uncertainties in this analysis.

  2. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

    SciTech Connect

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2015-05-20

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s-1 on ~20–30 kpc scales and 70–100 km s-1 on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.

  3. Density form factors of the 1D Bose gas for finite entropy states

    NASA Astrophysics Data System (ADS)

    De Nardis, J.; Panfil, M.

    2015-02-01

    We consider the Lieb-Liniger model for a gas of bosonic δ-interacting particles. Using Algebraic Bethe Ansatz results we compute the thermodynamic limit of the form factors of the density operator between finite entropy eigenstates such as finite temperature states or generic non-equilibrium highly excited states. These form factors are crucial building blocks to obtain the thermodynamic exact dynamic correlation functions of such physically relevant states. As a proof of principle we compute an approximated dynamic structure factor by including only the simplest types of particle-hole excitations and show the agreement with known results.

  4. Optical thickness, spin temperature and correction factor for the density of Galactic H I gas

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2017-07-01

    This paper presents a method to determine the spin temperature of the local (VLSR = 0 km s-1) H I gas using the saturated brightness temperature of the 21-cm line in radial velocity-degenerate regions (VDRs). The spin temperature is determined to be: TS = 146.2 ± 16.1 K by measuring saturated brightness in the VDR towards the Galactic Centre; 146.8 ± 10.7 K by χ2 fitting of the expected brightness distribution to observations around the VDR; and 144.4 ± 6.8 K towards the local arm. Assuming TS = 146 K, a correction factor Γ for the H I density, defined by the ratio of the true H I density for finite optical thickness to that calculated by assuming optically thin H i, was obtained as Γ ˜ 1.2 (optical depth τ ˜ 0.3) in the local H I gas, ˜1.8 (˜1.3) towards the arm and anti-Centre, and as high as ˜3.6 (˜2.7) in the Galactic Centre direction. It is suggested that the H I density and mass in the local arm could be ˜2 times greater than currently estimated values, and that in the inner Galaxy could be ˜3.6 times greater.

  5. Gas density histograms of galaxies: the observational density probability function of the interstellar gas density

    NASA Astrophysics Data System (ADS)

    Toshihiro, Handa; Takahiro, Yoda; Nario, Kuno

    2015-03-01

    In the steady state, the probability density function (PDF) of the gaseous interstellar matter (ISM) can be observed as a gas density histogram (GDH) of all cells in the system. We made GDHs of the Milky Way Galaxy (MWG) using Galactic plane surveys in CO lines. We found that the GDH in the MWG is log-normal which suggests that the density structure of the molecular gas is a result of many stochastic processes. Using the Nobeyama CO atlas, we made GDHs of nearby galaxies but in column density. Although some galaxies show log-normal, the others show completely different shapes, suggesting that the density structure of galaxies may be different from galaxy to galaxy.

  6. Critical density of a soliton gas

    SciTech Connect

    El, G. A.

    2016-02-15

    We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrödinger operator associated with the Korteweg–de Vries soliton gas dynamics. As a by-product of our derivation, we find the speed of sound in the soliton gas with Gaussian spectral distribution function.

  7. Photoionization and High Density Gas

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  8. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  9. Gravitational star formation thresholds and gas density in three galaxies

    NASA Technical Reports Server (NTRS)

    Oey, M. S.; Kennicutt, R. C., Jr.

    1990-01-01

    It has long been held that the star formation rate (SFR) may be described as a power law of the gas density, p(exp n), as given by Schmidt (1959). However, this relation has as yet remained poorly defined and is likewise poorly understood. In particular, most studies have been investigations of global gas and star formation properties of galaxies, due to lack of adequate high-resolution data for detailed studies of individual galaxies. The three spiral galaxies in this study have published maps of both H2 (as traced by CO), and HI, thereby enabling the authors to investigate the relationship between total gas surface density and SFR. The purpose of the present investigation is the comparison of spatially-resolved total surface gas density in three galaxies (NGC 6946, M51, and M83) to sigma sub c as given by the above model. CO, HI and H alpha data for NGC 6946 were taken from Tacconi-Garman (1988), and for M51 and M83 from Lord (1987). The authors used a CO-H2 conversion of N(H2)/I sub CO(exp cos i = 2.8 x 10(exp 20) atoms cm(-2)/(K kms(-1), and summed the H2 and HI data for each galaxy to obtain the total hydrogen gas density. This total was then multiplied by a factor of 1.36 to include the contribution of helium to the total surface gas density. The authors assumed distances to NGC 6946, M51, and M83 to be 6.0, 9.6, and 8.9 Mpc respectively, with inclination angles of 30, 20, and 26 degrees. H alpha flux was used as the measure of SFR for NGC 6946, and SFR for the remaining two galaxies was taken directly from Lord as computed from H alpha measurements. The results of these full-disk studies thus show a remarkable correlation between the total gas density and the threshold densities given by the gravitational stability criterion. In particular, the threshold density appears to mark a lower boundary to the range of gas densities in these galaxies, which may have consequence in determining appropriate models for star formation and gas dynamics. More evidence is

  10. Gas Density Discontinuities in Merging Clusters

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Markevitch, Maxim

    2004-01-01

    In a number of galaxy clusters, Chandra has discovered a new phenomenon, the sharp gas density edges. Depending on the sign of the temperature jump across the edge, these features may either be bow shocks or cold fronts. While the merger origin of the bow shocks is unambiguous, what causes cold fronts is not entirely clear, as they are observed both in mergers and in relaxed clusters. The purpose of the study of A3376, an interesting cluster with density edges, is to understand the origin of cold fronts and to look for possible shocks. This cluster also has a radio halo, and comparison of an X-ray temperature map and radio image may shed light on the nature of the cluster radio halos, which is our secondary goal. The XMM data for A3376 have been obtained, processed and cleaned. Most of the preliminary analysis, including deriving a temperature map, is complete. We also have Chandra data for this cluster, and intend to compare and combine the two datasets. We are well underway toward determining the dynamical state of A3376 and the nature of its gas density discontinuities.

  11. Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony Layiwola

    2001-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio

  12. Gas Density Discontinuities in Merging Clusters

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Markevitch, Maxim

    2005-01-01

    Chandra has discovered a new phenomenon in galaxy clusters, the sharp gas density edges. Depending on the sign of the temperature jump across the edge, these features may either be bow shocks or cold fronts. While bow shocks obviously are driven by merging sub-clusters, what causes cold fronts is not entirely clear, as they are observed both in mergers and in relaxed clusters. The purpose of the XMM study of A3376, an interesting cluster with density edges, is to understand the origin of cold fronts and to look for possible shocks. The XMM data for A3376 have been mostly analyzed (the X-ray edge turned out to be a cold front). Preliminary results have been shown at a conference and a paper is in preparation. We also have Chandra data for this cluster, and are comparing and combining the two datasets. In the course of analyzing the X-ray data for this cluster as well as several others, it has become apparent that we need the help of hydrodynamic simulations to study the precise mechanism by which cold fronts are formed, the main goal of the present project. A postdoc (Yago Ascasibar) is currently running SPH simulations of an idealized sub- cluster merger. These advanced simulations are nearing completion and two papers with their results are in preparation.

  13. THE MOLECULAR GAS DENSITY IN GALAXY CENTERS AND HOW IT CONNECTS TO BULGES

    SciTech Connect

    Fisher, David B.; Bolatto, Alberto; Drory, Niv; Combes, Francoise; Blitz, Leo; Wong, Tony

    2013-02-20

    In this paper we present gas density, star formation rate (SFR), stellar masses, and bulge-disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of the BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H{sub 2} conversion factors that depend on the CO surface brightness, and also that of correcting SFRs for diffuse emission from old stellar populations. We estimate that SFRs in bulges are typically lower by 20% when correcting for diffuse emission. Using the surface brightness dependent conversion factor, we find that over half of the galaxies in our sample have {Sigma}{sub mol} > 100 M {sub Sun} pc{sup -2}. Though our sample is not complete in any sense, our results are enough to rule out the assumption that bulges are uniformly gas-poor systems. We find a trend between gas density of bulges and bulge Sersic index; bulges with lower Sersic index have higher gas density. Those bulges with low Sersic index (pseudobulges) have gas fractions that are similar to that of disks. Conversely, the typical molecular gas fraction in classical bulges is more similar to that of an elliptical galaxy. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that classical bulges with low gas surface density can be barred as well. Our results suggest that understanding the connection between the central surface density of gas in disk galaxies and the presence of bars should also take into account the total gas content of the galaxy. Finally, we show that when using the corrected SFRs and gas densities, the correlation between SFR surface density and gas surface density of bulges is similar to that of disks. This implies that at the scale of the bulges the timescale for converting gas into stars is comparable to those results found in disks.

  14. The Molecular Gas Density in Galaxy Centers and how it Connects to Bulges

    NASA Astrophysics Data System (ADS)

    Fisher, David B.; Bolatto, Alberto; Drory, Niv; Combes, Francoise; Blitz, Leo; Wong, Tony

    2013-02-01

    In this paper we present gas density, star formation rate (SFR), stellar masses, and bulge-disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of the BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H2 conversion factors that depend on the CO surface brightness, and also that of correcting SFRs for diffuse emission from old stellar populations. We estimate that SFRs in bulges are typically lower by 20% when correcting for diffuse emission. Using the surface brightness dependent conversion factor, we find that over half of the galaxies in our sample have Σmol > 100 M ⊙ pc-2. Though our sample is not complete in any sense, our results are enough to rule out the assumption that bulges are uniformly gas-poor systems. We find a trend between gas density of bulges and bulge Sérsic index; bulges with lower Sérsic index have higher gas density. Those bulges with low Sérsic index (pseudobulges) have gas fractions that are similar to that of disks. Conversely, the typical molecular gas fraction in classical bulges is more similar to that of an elliptical galaxy. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that classical bulges with low gas surface density can be barred as well. Our results suggest that understanding the connection between the central surface density of gas in disk galaxies and the presence of bars should also take into account the total gas content of the galaxy. Finally, we show that when using the corrected SFRs and gas densities, the correlation between SFR surface density and gas surface density of bulges is similar to that of disks. This implies that at the scale of the bulges the timescale for converting gas into stars is comparable to those results found in disks.

  15. Growth of arc in high-pressure, pulsed glow discharge by gas density depletion

    NASA Astrophysics Data System (ADS)

    Imada, Go; Yatsui, Kiyoshi; Masuda, Wataru

    2000-10-01

    Effects of gas density depletion on arc formation of high-pressure, pulsed glow discharge have been investigated by eliminating the other factors which may affect the discharge stability, such as shock waves, residual ions, electrode heating, and discharge products. The gas density depletion has been simulated by utilizing a subsonic gas flow between the curved electrodes combined with a convergent nozzle and a divergent diffuser. A comparison has been made on the discharge in the aerodynamically created gas density depletion with the second discharge in the double-pulse discharge within a stable gas. We have found that the large gas density depletion, Δρ/ρ0˜-3.6% corresponding to a pulse repetition rate (PRR) of ˜50 Hz, tends to cause an arc-like filament or an arc without the shocks, ions, electrode heating, and products. However, the second discharge in the double-pulse discharge becomes an arc in much smaller gas density depletion (Δρ/ρ0˜-1.2% corresponding to PRR ˜3 Hz). Therefore, the collapse of high-pressure, pulsed glow discharge is most likely caused by some factor other than the gas density depletion.

  16. Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard; Panda, Jayanta

    1999-01-01

    A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.

  17. Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas

    SciTech Connect

    Sanner, Christian; Su, Edward J.; Keshet, Aviv; Gommers, Ralf; Shin, Yong-il; Huang Wujie; Ketterle, Wolfgang

    2010-07-23

    We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations (atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed for probe volumes containing more than 10 000 atoms. Measuring the level of suppression provides sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly correlated many-body systems.

  18. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  19. Constraining cloud parameters using high density gas tracers in galaxies

    NASA Astrophysics Data System (ADS)

    Kazandjian, M. V.; Pelupessy, I.; Meijerink, R.; Israel, F. P.; Coppola, C. M.; Rosenberg, M. J. F.; Spaans, M.

    2016-11-01

    Far-infrared molecular emission is an important tool used to understand the excitation mechanisms of the gas in the interstellar medium (ISM) of star-forming galaxies. In the present work, we model the emission from rotational transitions with critical densities n ≳ 104 cm-3. We include 4-3 < J ≤ 15-14 transitions of CO and 13CO , in addition to J ≤ 7-6 transitions of HCN, HNC, and HCO+ on galactic scales. We do this by re-sampling high density gas in a hydrodynamic model of a gas-rich disk galaxy, assuming that the density field of the ISM of the model galaxy follows the probability density function (PDF) inferred from the resolved low density scales. We find that in a narrow gas density PDF, with a mean density of 10 cm-3 and a dispersion σ = 2.1 in the log of the density, most of the emission of molecular lines, even of gas with critical densities >104 cm-3, emanates from the 10-1000 cm-3 part of the PDF. We construct synthetic emission maps for the central 2 kpc of the galaxy and fit the line ratios of CO and 13CO up to J = 15-14, as well as HCN, HNC, and HCO+ up to J = 7-6, using one photo-dissociation region (PDR) model. We attribute the goodness of the one component fits for our model galaxy to the fact that the distribution of the luminosity, as a function of density, is peaked at gas densities between 10 and 1000 cm-3, with negligible contribution from denser gas. Specifically, the Mach number, ℳ, of the model galaxy is 10. We explore the impact of different log-normal density PDFs on the distribution of the line-luminosity as a function of density, and we show that it is necessary to have a broad dispersion, corresponding to Mach numbers ≳30 in order to obtain significant (>10%) emission from n> 104 cm-3 gas. Such Mach numbers are expected in star-forming galaxies, luminous infrared galaxies (LIRGS), and ultra-luminous infrared galaxies (ULIRGS). This method provides a way to constrain the global PDF of the ISM of galaxies from observations of

  20. Electron density and gas density measurements in a millimeter-wave discharge

    SciTech Connect

    Schaub, S. C. Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2016-08-15

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  1. Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes.

    PubMed

    Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I

    2006-04-07

    We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.

  2. Density, phase behavior keys to acid gas injection

    SciTech Connect

    Carroll, J.J.; Lui, D.W.

    1997-06-23

    Acid gas injection requires an understanding of the complexities of gas phase behavior and physical properties. Injected acid gas streams typically come from the top of the regenerator reflux accumulator of an amine unit. Thus, they are composed mainly of hydrogen sulfide (H{sub 2}S) and carbon dioxide (CO{sub 2}) with significant amounts of methane and lesser amounts of other hydrocarbons. The stream is also saturated with water. The stream from the amine plant has a low pressure and must be compressed to a higher pressure for injection into a disposal well. This article summarizes the available research on acid gas phase behavior and density calculations.

  3. Low density gas dynamic wall boundary conditions

    NASA Technical Reports Server (NTRS)

    Collins, F. G.

    1986-01-01

    Low density nozzles or large expansion ratio nozzles used in space experience rarefaction effects near their exit in the form of velocity slip and temperature jump at the walls. In addition, the boundary layers become very thick and there is a very strong viscous/inviscid interaction. For these reasons no existing design technique has been found to accurately predict the nozzle flow properties up to the nozzle exit. The objective of this investigation was to examine the slip boundary conditions and formulate them in a form appropriate for use with a full Navier-Stokes numerical code. The viscous/inviscid interaction would automatically be accounted for by using a compressible Navier-Stokes code. Through examination of the interaction of molecules with solid surfaces, a model for the distribution function of the reflected molecules has been determined and this distribution function has been used to develop a new slip boundary condition that can be shown to yield more realistic surface boundary conditions.

  4. THE DEPENDENCE OF STAR FORMATION EFFICIENCY ON GAS SURFACE DENSITY

    SciTech Connect

    Burkert, Andreas; Hartmann, Lee E-mail: lhartm@umich.edu

    2013-08-10

    Studies by Lada et al. and Heiderman et al. have suggested that star formation mostly occurs above a threshold in gas surface density {Sigma} of {Sigma}{sub c} {approx} 120 M{sub Sun} pc{sup -2} (A{sub K} {approx} 0.8). Heiderman et al. infer a threshold by combining low-mass star-forming regions, which show a steep increase in the star formation rate per unit area {Sigma}{sub SFR} with increasing {Sigma}, and massive cores forming luminous stars which show a linear relation. We argue that these observations do not require a particular density threshold. The steep dependence of {Sigma}{sub SFR}, approaching unity at protostellar core densities, is a natural result of the increasing importance of self-gravity at high densities along with the corresponding decrease in evolutionary timescales. The linear behavior of {Sigma}{sub SFR} versus {Sigma} in massive cores is consistent with probing dense gas in gravitational collapse, forming stars at a characteristic free-fall timescale given by the use of a particular molecular tracer. The low-mass and high-mass regions show different correlations between gas surface density and the area A spanned at that density, with A {approx} {Sigma}{sup -3} for low-mass regions and A {approx} {Sigma}{sup -1} for the massive cores; this difference, along with the use of differing techniques to measure gas surface density and star formation, suggests that connecting the low-mass regions with massive cores is problematic. We show that the approximately linear relationship between dense gas mass and stellar mass used by Lada et al. similarly does not demand a particular threshold for star formation and requires continuing formation of dense gas. Our results are consistent with molecular clouds forming by galactic hydrodynamic flows with subsequent gravitational collapse.

  5. Gas density effect on dropsize of simulated fuel sprays

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1989-01-01

    Two-phase flow in pneumatic two-fluid fuel nozzles was investigated experimentally to determine the effect of atomizing-gas density and gas mass-flux on liquid-jet breakup in sonic-velocity gas-flow. Dropsize data were obtained for the following atomizing-gases: nitrogen; argon; carbon dioxide; and helium. They were selected to cover a gas molecular-weight range of 4 to 44. Atomizing-gas mass-flux ranged from 6 to 50 g/sq cm-sec and four differently sized two-fluid fuel nozzles were used having orifice diameters that varied from 0.32 to 0.56 cm. The ratio of liquid-jet diameter to SMD, D sub o/D sub 32, was correlated with aerodynamic and liquid-surface forces based on the product of the Weber and Reynolds number, We*Re, and gas-to-liquid density ratio, rho sub g/rho sub l. To correlate spray dropsize with breakup forces produced by using different atomizing-gases, a new molecular-scale dimensionless group was derived. The derived dimensionless group was used to obtain an expression for the ratio of liquid-jet diameter to SMD, D sub o/D sub 32. The mathematical expression of this phenomenon incorporates the product of the Weber and Reynolds number, liquid viscosity, surface tension, acoustic gas velocity, the RMS velocity of gas molecules, the acceleration of gas molecules due to gravity, and gas viscosity. The mathematical expression encompassing these parameters agrees well with the atomization theory for liquid-jet breakup in high velocity gas flow. Also, it was found that at the same gas mass-flux, helium was considerably more effective than nitrogen in producing small droplet sprays with SMD's in the order of 5 micrometers.

  6. Density and metallicity of the Milky Way circumgalactic gas

    NASA Astrophysics Data System (ADS)

    Troitsky, Sergey

    2017-06-01

    The halo of the Milky Way circumgalactic gas extends up to the virial radius of the Galaxy, ˜250 kpc. The halo properties may be deduced from X-ray spectroscopic observations and from studies of the ram-pressure stripping of satellite dwarf galaxies. The former method is more precise, but its results depend crucially on the assumed metallicity of the circumgalactic gas; the latter one does not need these assumptions. Here, the information from both approaches is combined to constrain observationally the gas metallicity and density as functions of the galactocentric distance. It is demonstrated that the two kinds of data could be reconciled if the metallicity decreased to Z ˜ 0.1 Z⊙ in the outer parts of the extended halo. The corresponding gas density profile is rather flat, falling as r-(0.45-0.75) at large galactocentric distances r.

  7. LPWA using supersonic gas jet with tailored density profile

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  8. Factors affecting gas content in coal beds

    SciTech Connect

    Scott, A.R.; Kaiser, W.R.

    1996-06-01

    Gas content is one of the most important controls on coalbed methane producibility because coal gas production becomes uneconomical if insufficient amounts of gas are sorbed onto the coal surface. Gas content in coal beds is not fixed but changes when equilibrium conditions within the reservoir are disrupted. Therefore, the distribution of gas content varies laterally within individual coal beds, vertically among coals within a single well, and vertically within thicker coal beds. The key hydrogeologic factors affecting gas content variability include gas generation, coal properties, and reservoir conditions. The potential for high gas content depends on thermogenic and secondary biogenic gas generation, which are controlled by burial history (coal rank), maceral composition, and basin hydrodynamics. Coal properties such as ash and moisture content, maceral type, permeability, and diffusion coefficient affect the sorption capacity and diffusion rates in coal beds and, therefore, the final gas content. Reservoir conditions such as pressure and temperature also affect the amount of gases sorbed to the coal surface, whereas coal geometry, hydrogeology, and the presence or absence of permeability barriers determine whether or not gas contents are increased or decreased. Stratigraphic and/or structural trapping concentrates coal gases, resulting in higher gas contents adjacent to permeability barriers; the presence of abnormally high gas contents in lower-rank coals indicates secondary biogenic gas generation and/or conventional trapping of thermogenic or biogenic gases. Gas content decreases in areas of active recharge caused by flushing or in areas of convergent flow where no trapping mechanisms (seals) are present.

  9. Shockwave compression of Ar gas at several initial densities

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana M.; Goodwin, Peter M.; Garcia, Daniel B.; Gustavsen, Richard L.; Lang, John M.; Aslam, Tariq D.; Sheffield, Stephen A.; Gibson, Lloyd L.; Morris, John S.

    2017-01-01

    Experimental data of the principal Hugoniot locus of variable density gas-phase noble and molecular gases are rare. The majority of shock Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of shock-driven ionization, and even dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target design for gas gun-driven plate impact experiments on noble gases at initial pressures between 200-1000 psi. Using optical velocimetry, we are able to directly determine both the shock and particle velocities of the gas on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. We describe the results of a series of plate impact experiments on Ar with starting densities between 0.02-0.05 g/cm3 at room temperature. Furthermore, by coupling optical fibers to the targets, we have measured the time-resolved optical emission from the shocked gas using a spectrometer coupled to an optical streak camera to spectrally-resolve the emission, and with a 5-color optical pyrometer for temperature determination.

  10. High-density equation of state for a lattice gas.

    PubMed

    Ushcats, M V

    2015-05-01

    For the lattice gas models of arbitrary geometry and dimensions with absolute repulsion between particles at zero distance (a hard core identical to a single lattice site) and arbitrary repulsion or attraction at other distances, the "hole-particle" symmetry of the system potential energy has been stated and an equation of state has been derived on the basis of the classical Gibbs statistics. The equation is completely analogous to the well-known virial equation of state, except that it is more accurate at high-density states, while the virial equation has the low-density limitation. Both equations contain the common set of the so-called irreducible integrals, related to the corresponding virial coefficients, and can be used together to describe the behavior of a lattice gas in a wide range of densities.

  11. Gas density drops inside dust cavities of transitional disks around young stars observed with ALMA

    NASA Astrophysics Data System (ADS)

    van der Marel, N.; van Dishoeck, E. F.; Bruderer, S.; Pérez, L.; Isella, A.

    2015-07-01

    Context. Transitional disks with large dust cavities are important laboratories in which to study planet formation and disk evolution. Cold gas may still be present inside these cavities, but quantying this gas is challenging. The gas content is important for constraining the origin of the dust cavity. Aims: We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of 12CO 6-5 and 690 GHz (Band 9) continuum of five well-studied transitional disks. In addition, we analyze previously published Band 7 observations of a disk in the 12CO 3-2 line and 345 GHz continuum. The observations are used to set constraints on the gas and dust surface density profiles, in particular, the drop δgas of the gas density inside the dust cavity. Methods: The physical-chemical modeling code DALI was used to simultaneously analyze the gas and dust images. We modeled SR21, HD 135344B, LkCa15, SR24S, and RX J1615-3255 (Band 9) and J1604-2130 (Band 7). The spectral energy distribution and continuum visibility curve constrain the dust surface density. Then we used the same model to calculate the 12CO emission, which we compared with the observations through spectra and intensity cuts. The amount of gas inside the cavity was quantified by varying the δgas parameter. Results: Model fits to the dust and gas indicate that gas is still present inside the dust cavity for all disks, but at a reduced level. The gas surface density drops inside the cavity by at least a factor 10, while the dust density drops by at least a factor 1000. Disk masses are comparable with previous estimates from the literature, cavity radii are found to be smaller than in the data obtained with the 345 GHz SubMillimeter Array. Conclusions: The derived gas surface density profiles suggest that the cavity was cleared by one or more companions in all cases, which trapped the millimeter-sized dust at the edge of the cavity. Appendix is available in electronic form at http://www.aanda.org

  12. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  13. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  14. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    SciTech Connect

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  15. Level density of a bose gas and extreme value statistics.

    PubMed

    Comtet, A; Leboeuf, P; Majumdar, Satya N

    2007-02-16

    We establish a connection between the level density of a gas of noninteracting bosons and the theory of extreme value statistics. Depending on the exponent that characterizes the growth of the underlying single-particle spectrum, we show that at a given excitation energy the limiting distribution function for the number of excited particles follows the three universal distribution laws of extreme value statistics, namely, the Gumbel, Weibull, and Fréchet distributions. Implications of this result, as well as general properties of the level density at different energies, are discussed.

  16. Measuring Protoplanetary Disk Gas Surface Density Profiles with ALMA

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; McPartland, Conor

    2016-10-01

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams & Best to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M gas = 0.048 M ⊙, and accretion disk characteristic size R c = 213 au and gradient γ = 0.39. The same parameters match the C18O 2-1 image and indicate an abundance ratio [12CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2-1 image library and fit simulated data. For disks with gas masses 3-10 M Jup at 150 pc, ALMA observations with a resolution of 0.″2-0.″3 and integration times of ˜20 minutes allow reliable estimates of R c to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  17. Scaling of multiphase pipeline flow behavior at high gas density

    SciTech Connect

    Crowley, C.J.

    1988-01-01

    This report contains data that demonstrates the scaling of flow regime, pressure drop, and holdup multiphase flow with pipe diameter. In addition, entrance length effects, the onset of liquid entrainment, and interfacial shear modeling at high gas density are studied for purposes of validating multiphase flow design methods. Stratified, slug and annular flow regimes have been observed. Air, freon, and water have been used to represent pipeline fluids.

  18. Shockwave compression of Argon gas at several initial densities

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Gustavsen, Richard; Lang, John; Aslam, Tariq; Sheffield, Stephen; Gibson, Lloyd; Morris, John; Los Alamos National Laboratory Team

    2015-06-01

    Experimental data of the principal Hugoniot locus of gas-phase noble gases are rare. The majority of Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of ionization, and dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target for gas gun-driven plate impact experiments on gases at initial pressures between 200-1000 psi. Using optical velocimetry, we directly determine shock and particle velocities on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. Using an impactor with higher impedance than the drive plate, we are able to achieve initial particle velocities well in excess of the impactor velocities. We will describe the results of plate impact experiments on Ar with initial densities between 0.02-0.05 g/cm3. By coupling optical fibers to the targets, we have measured the time-resolved optical emission, spectrally-resolved with a spectrometer coupled to an optical streak camera, and with a 5-color optical pyrometer for temperature determination. The experimental results are compared with hydrodynamic simulations using ideal gas and Sesame tabular equations of state.

  19. Gas permeation through a high density polyethylene microwave window

    SciTech Connect

    Viet Nguyen-Tuong

    1993-07-01

    Due to its low dielectric constant and low loss tangent, high density polyethylene (HDPE) has been selected for use as a high power microwave vacuum window in the Continuous Electron Beam Accelerator Facility cryounit. This window isolates the cryounit waveguide vacuum from the dry air in the external waveguide system. Gas permeation through the window will lead to cryopumping of the gas onto the cold waveguide walls and the cold ceramic window of the superconducting cavity. The gas load from permeation and outgassing of the window have to be minimized, due to the possibility of arcing when high power is applied through the waveguide. The outgassing and permeation of air through the 3.2 mm thick HDPE window were measured using the throughput method. A typical outgassing rate of 5.0 x 10{sup -1} Torr l/s/cm{sup 2} for samples baked out at 70 C was observed 20 h after pump down and bakeout. The gas load due to permeation through 34 cm{sup 2} of the window was 1.6 x 10 {sup -7} Torr l/s. The gas permeation through the 3.2 mm thick HDPE coated with a 300 nm barrier layer of SiO{sub x} was also investigated. No improvement was observed. It was presumably due to the presence of defects in the deposited SiO{sub x} layer.

  20. Plasma density perturbation caused by probes at low gas pressure

    NASA Astrophysics Data System (ADS)

    Sternberg, Natalia; Godyak, Valery

    2017-09-01

    An analysis of plasma parameter perturbations caused by a spherical probe immersed into a spherical plasma is presented for arbitrary collisionality and arbitrary ratios of probe to plasma dimensions. The plasma was modeled by the fluid plasma equations with ion inertia and nonlinear ion friction force that dominate plasma transport at low gas pressures. Significant depletion of the plasma density around the probe surface has been found. The area of plasma depletion coincides with the sensing area of different kinds of magnetic and microwave probes and will therefore lead to errors in data inferred from measurements with such probes.

  1. Superfluid density of a spin-orbit-coupled Bose gas

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Cai; Yu, Zeng-Qiang; Ng, Tai Kai; Zhang, Shizhong; Pitaevskii, Lev; Stringari, Sandro

    2016-09-01

    We discuss the superfluid properties of a uniform, weakly interacting Bose-Einstein condensed gas with spin-orbit coupling, realized recently in experiments. We find a finite normal fluid density ρn at zero temperature which turns out to be a function of the Raman coupling. In particular, the entire fluid becomes normal at the transition point from the zero momentum to the plane wave phase, even though the condensate fraction remains finite. We emphasize the crucial role played by the breaking of Galilean invariance and by the gapped branch of the elementary excitations whose contribution to various sum rules is discussed explicitly. Our predictions for the superfluid density are successfully compared with the available experimental results based on the measurement of the sound velocities.

  2. Circum-Protostellar Environments. III. Gas Densities and Kinetic Temperatures

    NASA Astrophysics Data System (ADS)

    Moriarty-Schieven, G. H.; Wannier, P. G.; Mangum, J. G.; Tamura, M.; Olmsted, V. K.

    1995-12-01

    We have surveyed a complete, flux-limited, IRAS-selected sample of protostars in Taurus whose infrared through millimeter-wave properties indicate them to be younger than T Tauri stars. We have observed CS J = 3-2, 5-4, and 7-6, and H2CO JK-1K+1 = 303-202 and 322-221, toward the central positions of all 25 objects. CS traces the dense gas in the circumstellar envelope, while H2CO probes the kinetic temperature of the dense gas. Only three of the sources were detected in both transitions of H2CO, making it of limited use as a temperature probe of these objects. Combining the CS- and H2CO-derived properties with those previously derived from dust continuum emission, we have placed limits on the temperatures of the envelopes, typically 20 K ≃ TK ≃ 50 K. Derived envelope gas densities and CS column densities were typically a few × 106 cm-3 and a few × 1012 cm-2, respectively. Where CS 5-4 was detected (roughly half of the observed sources), the derived envelope masses were consistent with those derived from dust emission (assuming a CS/H2 abundance of 10-8). Since most of the embedded (i.e., not optically visible) sources were detected in CS 5-4, and most of the visible sources were not, this may mean either that the CS-emitting envelope has dissipated in the more evolved objects (confirming Ohashi et al. 1991), or CS has become depleted. L1551NE may have an asymmetric, double-peaked line profile like that of B335, suggestive of a collapsing envelope. L1551NE may be in transition from the much younger "class 0" protostar stage to the somewhat more evolved "class I" protostar stage. Several of the sources have broad CS line wings probably originating from dense gas in a molecular outflow. In at least one case, the kinetic temperature of the outflowing gas may be greater than that in the envelope.

  3. Binary Collision Density in a Non-Ideal Gas as a Function of Particle Density, Collision Diameter, and Temperature

    NASA Astrophysics Data System (ADS)

    Mohazzabi, Pirooz

    2017-09-01

    Using molecular dynamics simulations, binary collision density in a dense non-ideal gas with Lennard-Jones interactions is investigated. It is shown that the functional form of the dependence of collision density on particle density and collision diameter remains the same as that for an ideal gas. The temperature dependence of the collision density, however, has a very different form at low temperatures, where it decreases as temperature increases. But at higher temperatures the functional form becomes the same as that for an ideal gas.

  4. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  5. Discharge dynamics and plasma density recovery by on/off switches of additional gas

    SciTech Connect

    Lee, Hyo-Chang; Kwon, Deuk-Chul; Oh, SeungJu; Kang, Hyun-Ju; Kim, Yu-Sin; Chung, Chin-Wook

    2016-06-15

    Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due to enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.

  6. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  7. Acoustic device and method for measuring gas densities

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy (Inventor); Kwack, Eug Y. (Inventor); Back, Lloyd (Inventor)

    1992-01-01

    Density measurements can be made in a gas contained in a flow through enclosure by measuring the sound pressure level at a receiver or microphone located near a dipole sound source which is driven at constant velocity amplitude at low frequencies. Analytical results, which are provided in terms of geometrical parameters, wave numbers, and sound source type for systems of this invention, agree well with published data. The relatively simple designs feature a transmitter transducer at the closed end of a small tube and a receiver transducer on the circumference of the small tube located a small distance away from the transmitter. The transmitter should be a dipole operated at low frequency with the kL value preferable less that about 0.3.

  8. Technique for measuring gas conversion factors

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R. (Inventor)

    1985-01-01

    A method for determining hydrocarbon conversion factors for a flowmeter. A mixture of air, O2 and C sub x H sub y is burned and the partial paressure of O2 in the resulting gas is forced to equal the partial pressure of O2 in air. The flowrate of O2 flowing into the mixture is measured by flowmeter and the flowrate of C sub x H sub y flowing into the mixture is measured by the flowmeter conversion factor is to be determined. These measured values are used to calculate the conversion factor.

  9. Density-functional theory of the trapped two-dimensional Fermi gas in the unitary regime

    SciTech Connect

    Zyl, Brandon P. van; Need, Melodie; Hutchinson, D. A. W.

    2007-08-15

    A recent paper by T. Papenbrock [Phys. Rev. A 72, 041602(R) (2005)] suggests that a determination of the universal factor {xi}{sub 3D} for a harmonically trapped, unpolarized dilute Fermi gas in the unitary regime may be obtained within the framework of a simple density-functional theory (DFT). One of the key results of that work is an estimate for the universal factor {xi}{sub 3D}{approx_equal}0.54, which is within 20% of the generally accepted quantum Monte Carlo simulation value of {xi}{sub 3D}=0.44{+-}0.01. Motivated by this result, this report investigates the determination of the universal factor {xi}{sub 2D} for a two-dimensional trapped Fermi gas, and suggests that the simple DFT approach of Papenbrock provides an exact result of {xi}{sub 2D}=1 in two dimensions.

  10. Dynamical density-density correlations in the one-dimensional Bose gas

    NASA Astrophysics Data System (ADS)

    Caux, Jean-Sébastien; Calabrese, Pasquale

    2006-09-01

    The zero-temperature dynamical structure factor of the one-dimensional Bose gas with delta-function interaction (Lieb-Liniger model) is computed as a function of momentum and frequency using a hybrid theoretical/numerical method based on the exact Bethe-ansatz solution. This allows one to interpolate continuously between the weakly coupled Thomas-Fermi and strongly coupled Tonks-Girardeau regimes. The results should be experimentally accessible with Bragg spectroscopy.

  11. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  12. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  13. Implementing an Inexpensive and Accurate Introductory Gas Density Activity with High School Students

    ERIC Educational Resources Information Center

    Cunningham, W. Patrick; Joseph, Christopher; Morey, Samantha; Santos Romo, Ana; Shope, Cullen; Strang, Jonathan; Yang, Kevin

    2015-01-01

    A simplified activity examined gas density while employing cost-efficient syringes in place of traditional glass bulbs. The exercise measured the density of methane, with very good accuracy and precision, in both first-year high school and AP chemistry settings. The participating students were tasked with finding the density of a gas. The…

  14. Implementing an Inexpensive and Accurate Introductory Gas Density Activity with High School Students

    ERIC Educational Resources Information Center

    Cunningham, W. Patrick; Joseph, Christopher; Morey, Samantha; Santos Romo, Ana; Shope, Cullen; Strang, Jonathan; Yang, Kevin

    2015-01-01

    A simplified activity examined gas density while employing cost-efficient syringes in place of traditional glass bulbs. The exercise measured the density of methane, with very good accuracy and precision, in both first-year high school and AP chemistry settings. The participating students were tasked with finding the density of a gas. The…

  15. Rare Gas Metastable Atom Density in Diluted O2 RF Plasmas

    NASA Astrophysics Data System (ADS)

    Kitajima, Takeshi; Takahashi, Kei; Nakano, Toshiki; Makabe, Toshiaki

    Rare gas diluted O2 plasmas are gaining interests for application to high quality SiO2 film formation. The density of rare gas metastable atoms and O atom in rare gas diluted O2 radio frequency (RF) capacitively coupled plasma (CCP) was measured by optical absorption spectroscopy (OAS). Decreases of rare gas metastable densities due to addition of O2 indicate efficient O atom production by rare gas metastables via collisional quenching. Krypton metastable had highest density among four rare gas species for fixed RF power. The decrease of Ar metastable density due to O2 addition showed quantitative agreement with reported quenching rate coefficient. Detailed discussion on different gas pressures illustrates reduced O2 fraction is the key for selective production of O atoms through rare gas metastables.

  16. Luminescence of rare gas crystals at high excitation densities for VUV laser applications

    NASA Astrophysics Data System (ADS)

    Nahme, H.; Schwentner, N.

    1990-09-01

    An investigation on the suitability of rare gas crystals for VUV excimer laser applications is reported. Densities of the order of 10 to the 18 excitons per cm-cubed are generated in optically clear rare gas crystals. The excitons are generated in 0.1-0.3 mm thick surface layers in a 10 mm x 20 mm area. The quantum efficiencies at 126 nm (Ar), 145 nm (Kr), and 172 nm (Xe) remain near 0.5 for even the highest excitation densities. The corresponding gain coefficients of 2.6 kaysers (Ar) to 18 kaysers (Xe) exceed those of high-pressure gas lasers by a factor of 20. The net gain coefficient is reduced to 0.5-1 kayser by transient absorption of excited centers and scattering by irradiation-induced defects. The generation of defects could be eliminated by two-photon pumping or by sandwich-type samples. The results are analyzed by a system of rate equations for the excitation, relaxation, quenching, and amplification processes. Electron trapping at the grain boundaries is proposed as an explanation for the small quantum efficiency at low temperatures and for a peculiar time dependence at extremely high excitation densities.

  17. Density perturbations in a finite scale factor singularity universe

    NASA Astrophysics Data System (ADS)

    Balcerzak, Adam; Denkiewicz, Tomasz

    2012-07-01

    We discuss evolution of density perturbations in cosmological models which admit finite scale factor singularities. After solving the matter perturbations equations we find that there exists a set of parameters which admits a finite scale factor singularity in future and instantaneously recover matter density evolution history which is indistinguishable from the standard ΛCDM scenario.

  18. Effects of Mean Flow Profiles on Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, Nanda Kishore

    2003-01-01

    The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.

  19. Dynamic-structure-factor measurements on a model Lorentz gas

    NASA Astrophysics Data System (ADS)

    Egelstaff, P. A.; Eder, O. J.; Glaser, W.; Polo, J.; Renker, B.; Soper, A. K.

    1990-02-01

    A model system for the Lorentz gas can be made [Eder, Chen, and Egelstaff, Proc. Phys. Soc. London 89, 833 (1966); McPherson and Egelstaff, Can. J. Phys. 58, 289 (1980)] by mixing small quantities of hydrogen with an argon host. For neutron-scattering experiments the large H-to-Ar cross section ratio (~200) makes the argon relatively invisible. Dynamic-structure-factor [S(Q,ω) for H2] measurements at room temperature have been made on this system using the IN4 spectrometer at the Institute Laue Langevin, Grenoble, France. Argon densities between 1.9 and 10.5 atoms/nm3 were used for 0.4gas host at densities of 4 and 10.5 atoms/nm3; helium is relatively invisible also compared to hydrogen. These experiments are described, and some examples of the results are presented to show the qualitative effects observed. The principle observation is a pronounced narrowing of S(Q,ω) as a function of ω as the argon density is increased. This effect is large at low Q and decreases with increasing Q, and also decreases substantially when helium is used in place of argon. In addition, the shape of S(Q,ω) is more complex than can be accommodated within a simple model, but slightly less complicated than a computer simulation so showing the significance of multiple-collision processes.

  20. Time-Dependent Density of Viscous Modified Chaplygin Gas with Arbitrary α

    NASA Astrophysics Data System (ADS)

    Saadat, H.

    2013-11-01

    In this paper we study modified Chaplygin gas which has viscosity for the case of arbitrary α instead of α=0.5. We obtain behavior of the energy density of modified Chaplygin gas with respect to the constant and time-dependent bulk viscosity. We find also, numerically, effect of α on the energy density.

  1. Linear Stability Analysis of Gravitational Effects on a Low-Density Gas Jet Injected into a High-Density Medium

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony L.; Parthasarathy, Ramkumar N.

    2005-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The Briggs-Bers criterion was combined with the spatio-temporal stability analysis to determine the nature of the absolute instability of the jet whether absolutely or convectively unstable. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the absolute instability of the jet were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be.

  2. Density gradients and absorption effects in gas-filled magnetic axion helioscopes

    SciTech Connect

    Creswick, R. J.; Avignone, F. T. III; Nussinov, S

    2008-07-01

    The effects of absorption in the gas, and of density variations on the sensitivity of gas-filled solar-axion helioscopes, are theoretically investigated. It is concluded that the 10-meter long CAST helioscope, the most sensitive experiment to date, is near the limit of sensitivity in axion mass. Increasing the length, gas density, or tilt angle all have negative influences and will not improve the sensitivity.

  3. The SAMI Galaxy Survey: a new method to estimate molecular gas surface densities from star formation rates

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Salim, Diane M.; Medling, Anne M.; Davies, Rebecca L.; Yuan, Tiantian; Bian, Fuyan; Groves, Brent A.; Ho, I.-Ting; Sharp, Robert; Kewley, Lisa J.; Sweet, Sarah M.; Richards, Samuel N.; Bryant, Julia J.; Brough, Sarah; Croom, Scott; Scott, Nicholas; Lawrence, Jon; Konstantopoulos, Iraklis; Goodwin, Michael

    2017-07-01

    Stars form in cold molecular clouds. However, molecular gas is difficult to observe because the most abundant molecule (H2) lacks a permanent dipole moment. Rotational transitions of CO are often used as a tracer of H2, but CO is much less abundant and the conversion from CO intensity to H2 mass is often highly uncertain. Here we present a new method for estimating the column density of cold molecular gasgas) using optical spectroscopy. We utilize the spatially resolved Hα maps of flux and velocity dispersion from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. We derive maps of Σgas by inverting the multi-freefall star formation relation, which connects the star formation rate surface density (ΣSFR) with Σgas and the turbulent Mach number (M). Based on the measured range of ΣSFR = 0.005-1.5 {M_{⊙} yr^{-1} kpc^{-2}} and M=18-130, we predict Σgas = 7-200 {M_{⊙} pc^{-2}} in the star-forming regions of our sample of 260 SAMI galaxies. These values are close to previously measured Σgas obtained directly with unresolved CO observations of similar galaxies at low redshift. We classify each galaxy in our sample as 'star-forming' (219) or 'composite/AGN/shock' (41), and find that in 'composite/AGN/shock' galaxies the average ΣSFR, M and Σgas are enhanced by factors of 2.0, 1.6 and 1.3, respectively, compared to star-forming galaxies. We compare our predictions of Σgas with those obtained by inverting the Kennicutt-Schmidt relation and find that our new method is a factor of 2 more accurate in predicting Σgas, with an average deviation of 32 per cent from the actual Σgas.

  4. 40 CFR Table Mm-1 to Subpart Mm of... - Default Factors for Petroleum Products and Natural Gas Liquids 1 2

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Natural Gas Liquids 1 2 MM Table MM-1 to Subpart MM of Part 98 Protection of Environment... Factors for Petroleum Products and Natural Gas Liquids 1 2 Products Column A: density(metric tons/bbl... Natural Gas Liquids Aviation Gasoline 0.1120 85.00 0.3490 Special Naphthas 0.1222 84.76 0.3798...

  5. 40 CFR Table Mm-1 to Subpart Mm of... - Default Factors for Petroleum Products and Natural Gas Liquids 1 2

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Natural Gas Liquids 1 2 MM Table MM-1 to Subpart MM of Part 98 Protection of Environment... Factors for Petroleum Products and Natural Gas Liquids 1 2 Products Column A: density(metric tons/bbl... Natural Gas Liquids Aviation Gasoline 0.1120 85.00 0.3490 Special Naphthas 0.1222 84.76 0.3798...

  6. 40 CFR Table Mm-1 to Subpart Mm of... - Default Factors for Petroleum Products and Natural Gas Liquids 1 2

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Natural Gas Liquids 1 2 MM Table MM-1 to Subpart MM of Part 98 Protection of Environment... Factors for Petroleum Products and Natural Gas Liquids 1 2 Products Column A: density(metric tons/bbl... Natural Gas Liquids Aviation Gasoline 0.1120 85.00 0.3490 Special Naphthas 0.1222 84.76 0.3798...

  7. Modeling of neutral gas dynamics in high-density plasmas

    NASA Astrophysics Data System (ADS)

    Canupp, Patrick Wellington

    This thesis describes a physical model of chemically reactive neutral gas flow and discusses numerical solutions of this model for the flow in an inductively coupled plasma etch reactor. To obtain these solutions, this research develops an efficient, implicit numerical method. As a result of the enhanced numerical stability of the scheme, large time steps advance the solution from initial conditions to a final steady state in fewer iterations and with less computational expense than simpler explicit methods. This method would incorporate suitably as a module in currently existing large scale plasma simulation tools. In order to demonstrate the accuracy of the numerical technique, this thesis presents results from two simulations of flows that possess theoretical solutions. The first case is the inviscid flow of a gas through a converging nozzle. A comparison of the numerical solution to isentropic flow theory shows that the numerical technique capably captures the essential flow features of this environment. The second case is the Couette flow of a gas between two parallel plates. The simulation results compare well with the exact solution for this flow. After establishing the accuracy of the numerical technique, this thesis discusses results for the flow of chemically reactive gases in a chlorine plasma etch reactor. This research examines the influence of the plasma on the neutral gas and the dynamics exhibited by the neutral gas in the reactor. This research finds that the neutral gas temperature strongly depends on the rate at which inelastic, electron-impact dissociation reactions occur and on atomic chlorine wall recombination rates. Additionally, the neutral gas Aow in the reactor includes a significant mass flux of etch product from the wafer surface. Resolution of these effects is useful for neutral gas simulation. Finally, this thesis demonstrates that continuum fluid models provide reasonable accuracy for these low pressure reactor flows due to the fact

  8. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  9. Influence of lifestyle factors on mammographic density in postmenopausal women.

    PubMed

    Brand, Judith S; Czene, Kamila; Eriksson, Louise; Trinh, Thang; Bhoo-Pathy, Nirmala; Hall, Per; Celebioglu, Fuat

    2013-01-01

    Mammographic density is a strong risk factor for breast cancer. Apart from hormone replacement therapy (HRT), little is known about lifestyle factors that influence breast density. We examined the effect of smoking, alcohol and physical activity on mammographic density in a population-based sample of postmenopausal women without breast cancer. Lifestyle factors were assessed by a questionnaire and percentage and area measures of mammographic density were measured using computer-assisted software. General linear models were used to assess the association between lifestyle factors and mammographic density and effect modification by body mass index (BMI) and HRT was studied. Overall, alcohol intake was positively associated with percent mammographic density (P trend  = 0.07). This association was modified by HRT use (P interaction  = 0.06): increasing alcohol intake was associated with increasing percent density in current HRT users (P trend  = 0.01) but not in non-current users (P trend  = 0.82). A similar interaction between alcohol and HRT was found for the absolute dense area, with a positive association being present in current HRT users only (P interaction  = 0.04). No differences in mammographic density were observed across categories of smoking and physical activity, neither overall nor in stratified analyses by BMI and HRT use. Increasing alcohol intake is associated with an increase in mammography density, whereas smoking and physical activity do not seem to influence density. The observed interaction between alcohol and HRT may pose an opportunity for HRT users to lower their mammographic density and breast cancer risk.

  10. Influence of Lifestyle Factors on Mammographic Density in Postmenopausal Women

    PubMed Central

    Brand, Judith S.; Czene, Kamila; Eriksson, Louise; Trinh, Thang; Bhoo-Pathy, Nirmala; Hall, Per; Celebioglu, Fuat

    2013-01-01

    Background Mammographic density is a strong risk factor for breast cancer. Apart from hormone replacement therapy (HRT), little is known about lifestyle factors that influence breast density. Methods We examined the effect of smoking, alcohol and physical activity on mammographic density in a population-based sample of postmenopausal women without breast cancer. Lifestyle factors were assessed by a questionnaire and percentage and area measures of mammographic density were measured using computer-assisted software. General linear models were used to assess the association between lifestyle factors and mammographic density and effect modification by body mass index (BMI) and HRT was studied. Results Overall, alcohol intake was positively associated with percent mammographic density (P trend  = 0.07). This association was modified by HRT use (P interaction  = 0.06): increasing alcohol intake was associated with increasing percent density in current HRT users (P trend  = 0.01) but not in non-current users (P trend  = 0.82). A similar interaction between alcohol and HRT was found for the absolute dense area, with a positive association being present in current HRT users only (P interaction  = 0.04). No differences in mammographic density were observed across categories of smoking and physical activity, neither overall nor in stratified analyses by BMI and HRT use. Conclusions Increasing alcohol intake is associated with an increase in mammography density, whereas smoking and physical activity do not seem to influence density. The observed interaction between alcohol and HRT may pose an opportunity for HRT users to lower their mammographic density and breast cancer risk. PMID:24349146

  11. Neutron radiography of a static density gradient of 3He gas at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Wichmann, G.; Antognini, A.; Eggenberger, A.; Kirch, K.; Piegsa, F. M.; Soler, U.; Stahn, J.; Taqqu, D.

    2016-04-01

    We demonstrate a stationary helium gas density gradient which is needed for a proposed novel low-energy μ+ beam line. In a closed system with constant pressure the corresponding density gradient is only a function of the temperature. In a neutron radiography experiment two gas cells with different geometries were filled with 3He gas at constant pressures of about 10 mbar. Temperatures in the range from 6 K to 40 K were applied and density distributions with a maximum to minimum density ratio of larger than 3 were realized. The distribution was investigated employing the strongly neutron absorbing isotope 3He. A simple one-dimensional approach derived from Fourier's law describes the obtained gas density with a deviation < 2 %.

  12. Density fluctuation dynamics in a dissipative self-gravitating dilute gas revisited

    NASA Astrophysics Data System (ADS)

    Méndez, A. R.; García-Perciante, A. L.

    2016-11-01

    The analysis of the behavior of density fluctuations in a dissipative self gravitating gas in the linear regime is revisited. A factorization for the dispersion relation given by approximate roots is proposed, which is analogous to the one introduced in the case without gravitational field. The threshold for the onset of a gravitational instability, namely Jeans wavenumber, is found to be unaltered by the presence of thermal and viscous dissipation. However, the behavior of damped modes does not correspond to the usual Rayleigh-Brillouin spectrum when the gravitational field is taken into account. Additional to the usual central Rayleigh peak and Brillouin doublet, both corrected due to the presence of the field, non-Lorentizan terms are included in the structure factor. These terms are larger in the presence of the gravitational field and may lead in principle to relevant differences in the general properties of the spectrum. The possible mathematical origin of these modifications is briefly discussed.

  13. Gas pycnometry for density determination of plutonium parts

    SciTech Connect

    Collins, S.; Randolph, H.W.

    1997-08-19

    The traditional method for plutonium density determination is by measuring the weight loss of the component when it is immersed in a liquid of known density, Archimedes` Principle. The most commonly used heavy liquids that are compatible for plutonium measurement are freon and monobromobenzene, but these pose serious environmental and health hazards. The contaminated liquid is also a radiological waste concern with difficult disposition. A gaseous medium would eliminate these environmental and health concerns. A collaborative research effort between the Savannah River Technology Center and Los Alamos National Laboratory was undertaken to determine the feasibility of a gaseous density measurement process for plutonium hemishells.

  14. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    SciTech Connect

    Kato, S.; Seya, A.; Asano, A.

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  15. An enhancement of plasma density by neutral gas injection observed in SEPAC Spacelab-1 experiment

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Kubota, S.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.; Williamson, P. R.

    1985-01-01

    An enhancement of plasma density observed during a neutral gas injection in Space Experiments with Particle Accelerators by the Space Shuttle/Spacelab-1 is presented. When a plume of nitrogen gas was injected from the orbiter into space, a large amount of plasma was detected by an onboard plasma probe. The observed density often increased beyond the background plasma density and was strongly dependent on the attitude of the orbiter with respect to the velocity vector. This effect has been explained by a collisional interaction between the injected gas molecules and the ionospheric ions relatively drifting at the orbital speed.

  16. Laser-induced wakefield acceleration by using density-tapered gas-cell

    NASA Astrophysics Data System (ADS)

    Kim, Minseok; Nam, Inhyuk; Lee, Seungwoo; Suk, Hyyong

    2015-11-01

    The plasma sources with upward density gradient can be used to increase a dephasing length and an accelerating field in laser wakefield acceleration (LWFA) mechanism. As a result, the electron energy accelerated is expected to be increased and we developed a density-tapered gas-cell on this account. Using a 20 TW Ti:Sapphire laser constructed at GIST, we performed the acceleration experiments with the gas-cell and gas-jet with density-gradient. In this presentation, the results of acceleration experiments will be presented in detail.

  17. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  18. Factors influencing the density of aerobic granular sludge.

    PubMed

    Winkler, M-K H; Kleerebezem, R; Strous, M; Chandran, K; van Loosdrecht, M C M

    2013-08-01

    In the present study, the factors influencing density of granular sludge particles were evaluated. Granules consist of microbes, precipitates and of extracellular polymeric substance. The volume fractions of the bacterial layers were experimentally estimated by fluorescent in situ hybridisation staining. The volume fraction occupied by precipitates was determined by computed tomography scanning. PHREEQC was used to estimate potential formation of precipitates to determine a density of the inorganic fraction. Densities of bacteria were investigated by Percoll density centrifugation. The volume fractions were then coupled with the corresponding densities and the total density of a granule was calculated. The sensitivity of the density of the entire granule on the corresponding settling velocity was evaluated by changing the volume fractions of precipitates or bacteria in a settling model. Results from granules originating from a Nereda reactor for simultaneous phosphate COD and nitrogen removal revealed that phosphate-accumulating organisms (PAOs) had a higher density than glycogen-accumulating organisms leading to significantly higher settling velocities for PAO-dominated granules explaining earlier observations of the segregation of the granular sludge bed inside reactors. The model showed that a small increase in the volume fraction of precipitates (1-5 %) strongly increased the granular density and thereby the settling velocity. For nitritation-anammox granular sludge, mainly granular diameter and not density differences are causing a segregation of the biomass in the bed.

  19. A CENSUS OF THE HIGH-DENSITY MOLECULAR GAS IN M82

    SciTech Connect

    Naylor, B. J.; Bradford, C. M.; Bock, J. J.; Nguyen, H. T.; Zmuidzinas, J.; Aguirre, J. E.; Earle, L.; Glenn, J.; Kamenetzky, J.; Maloney, P. R.; Inami, H.; Matsuhara, H.

    2010-10-10

    We present a three-pointing study of the molecular gas in the starburst nucleus of M82 based on 190-307 GHz spectra obtained with Z-Spec at the Caltech Submillimeter Observatory. We present intensity measurements, detections, and upper limits, for 20 transitions, including several new detections of CS, HNC, C{sub 2}H, H{sub 2}CO, and CH{sub 3}CCH lines. We combine our measurements with previously published measurements at other frequencies for HCN, HNC, CS, C{sup 34}S, and HCO{sup +} in a multi-species likelihood analysis constraining gas mass, density and temperature, and the species' relative abundances. We find some (1.7-2.7) x 10{sup 8} M{sub sun} of gas with n{sub H{sub 2}} between (1-6) x 10{sup 4} cm{sup -3} and T > 50 K. While the mass and temperature are comparable to values inferred from mid-J CO transitions, the thermal pressure is a factor of 10-20 greater. The molecular interstellar medium is largely fragmented and is subject to ultraviolet irradiation from the star clusters. It is also likely subject to cosmic rays and mechanical energy input from the supernovae, and is warmer on average than the molecular gas in the massive star formation (SF) regions in the Milky Way. The typical conditions in the dense gas in M82's central kiloparsec appear unfavorable for further SF; if any appreciable stellar populations are currently forming, they are likely biased against low-mass stars, producing a top-heavy initial mass function.

  20. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO

    SciTech Connect

    Pinte, C.; Ménard, F.

    2016-01-01

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.

  1. Dust and Gas in the Disk of HL Tauri: Surface Density, Dust Settling, and Dust-to-gas Ratio

    NASA Astrophysics Data System (ADS)

    Pinte, C.; Dent, W. R. F.; Ménard, F.; Hales, A.; Hill, T.; Cortes, P.; de Gregorio-Monsalvo, I.

    2016-01-01

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10-100 M⊕ in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M⊕ of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10-4. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO+ and CO emission is consistent with gas in Keplerian motion around a 1.7 M⊙ star at radii from ≤10-120 AU.

  2. X-ray gas mass fraction in the Shapley Supercluster and its implication on the cosmological baryon-density parameter

    NASA Astrophysics Data System (ADS)

    Makino, Nobuyoshi; Suto, Yasushi

    1993-04-01

    We estimated the X-ray gas mass of the clusters in the Shapley Supercluster by improving a previous estimate based on the extrapolation from the Coma data. Our estimate of the X-ray gas mass in the Shapley Supercluster, which depends on h50 and beta (a power-law index characterizing the gas density profile around a cluster), turned out to be a factor of 2-4 times smaller than the previous value. We then considered its implication on the baryon density parameter in the universe. Our estimates from the the Shapley Supercluster region are consistent with the predicted range according to the standard big-bang nucleosynthesis model if the universe is open for h50 = 2.0, or if the universe is flat (Omega(0) = 1.0), but with a substantial fraction of (non-baryonic) dark matter existing in intercluster space for h50 = 1.0.

  3. Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9

    NASA Astrophysics Data System (ADS)

    Noterdaeme, P.; Petitjean, P.; Carithers, W. C.; Pâris, I.; Font-Ribera, A.; Bailey, S.; Aubourg, E.; Bizyaev, D.; Ebelke, G.; Finley, H.; Ge, J.; Malanushenko, E.; Malanushenko, V.; Miralda-Escudé, J.; Myers, A. D.; Oravetz, D.; Pan, K.; Pieri, M. M.; Ross, N. P.; Schneider, D. P.; Simmons, A.; York, D. G.

    2012-11-01

    We present the first results from an ongoing survey for damped Lyman-α systems (DLAs) in the spectra of z > 2 quasars observed in the course of the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey (SDSS) III. Our full (non-statistical) sample, based on Data Release 9, comprises 12 081 systems with log N(H i) ≥ 20, out of which 6839 have log N(H i) ≥ 20.3. This is the largest DLA sample ever compiled, superseding that from SDSS-II by a factor of seven. Using a statistical sub-sample and estimating systematics from realistic mock data, we probe the N(H i) distribution at ⟨z⟩ = 2.5. Contrary to what is generally believed, the distribution extends beyond 1022 cm-2 with a moderate slope of index ≈-3.5. This result matches the opacity-corrected distribution observed at z = 0 surprisingly well. The cosmological mass density of neutral gas in DLAs is found to be ωgdla ≈ 10-3, evolving only mildly over the past 12 billion years. Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/L1

  4. Density analysis of the neutron structure factor and the determination of the pair potential of krypton

    NASA Astrophysics Data System (ADS)

    Barocchi, F.; Zoppi, M.; Egelstaff, P. A.

    1985-04-01

    We propose a method of analysis of the density behavior of the experimental neutron scattering structure factor which permits us to derive directly from the experimental results an ``experimental'' pair potential. We apply the method to the recent results of Teitsma and Egelstaff in krypton gas and derive a pair potential which is in good agreement with the empirical potential of Barker et al. Some discrepancies in the range 4

  5. Effect of inhaled gas density on the pendelluft-induced lung injury.

    PubMed

    Alzahrany, Mohammed; Banerjee, Arindam

    2016-12-08

    Helium, sulfur hexafluoride-oxygen, and air were modeled to examine the role of the gas density on the pendelluft-induced lung injury (PILI) under high frequency oscillatory ventilation (HFOV). Large eddy simulation coupled with physiological resistance-compliance boundary conditions was applied to capture pendelluft-induced gas entrapment and mechanical stresses in an image-based human lung model. The flow characteristics were strongly dependent on the inspired gas density. The flow partitioning, globally between the left and right lung and locally between adjacent units branches, was significantly affected by the density of inhaled gas and was more balanced when inspiring lighter gas. The incomplete loops of flow-volume and volume-pressure curves were significantly influenced by the variations of the flow redistribution, resistance, and turbulence associated with the pendelluft mechanism. Inhaling light gas reduced the entrapped gas volume and mechanical stress surrounding carina ridges signifying the important role of inhaled gas properties on PILI. In general, lung ventilation by HFOV with a gas mixture of large amounts of Helium is thought to mitigate ventilator complications.

  6. Multiple metabolic risk factors and mammographic breast density

    PubMed Central

    Tehranifar, Parisa; Reynolds, Diane; Fan, Xiaozhou; Boden-Albala, Bernadette; Engmann, Natalie J.; Flom, Julie D.; Terry, Mary Beth

    2014-01-01

    Purpose We examined whether obesity and a history of diabetes, hypertension, and elevated cholesterol, individually and in combination, are associated with breast density, a strong risk factor for breast cancer. Methods We measured percent density and dense area using a computer-assisted method (n=191; age range=40-61 years). We used linear regression models to examine the associations of each metabolic condition and the number of metabolic conditions (0, 1, 2, and 3 or 4 conditions) with breast density. Results Among individual metabolic conditions, only high blood cholesterol was inversely associated with percent density (β=-5.4, 95% CI: -8.5, -2.2) and dense area (β= -6.7, 95% CI=-11.1, -2.4). Having multiple metabolic conditions was also associated with lower breast density, with 2 conditions and 3 or 4 conditions vs. 0 conditions associated with 6.4% (95% CI:-11.2, -1.6) and 7.4% (95% CI:-12.9, -1.9) reduction in percent density and with 6.5 cm2 (95% CI: -13.1, -0.1) and 9.5 cm2 (95% CI: -17.1, -1.9) smaller dense area. Conclusions A history of high blood cholesterol and multiple metabolic conditions were associated with lower relative and absolute measures of breast density. The positive association between metabolic abnormalities and breast cancer risk may be driven by pathways unrelated to mammographic breast density. PMID:24698111

  7. Method For Enhanced Gas Monitoring In High Density Flow Streams

    DOEpatents

    Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu

    2005-09-13

    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  8. Molecular gas temperature and density in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Wall, W. F.; Jaffe, D. T.; Bash, F. N.; Israel, F. P.; Maloney, P. R.; Baas, F.

    1993-01-01

    We combine beam-matched CO-13, CO-12 J = 3 yields 2 and J = 2 yields 1 line data to infer the molecular gas excitation conditions in the central 500 to 1600 pc diameters of a small sample of infrared-bright external galaxies: NGC253, IC342, M 83, Maffei 2, and NGC6946. Additional observations of the J = 1 yields 0 lines of C-18O and CO-13 set limits on the opacity of the CO-13 J = 1 yields 0 line averaged over the central kiloparsec of these spiral galaxies.

  9. Childhood factors associated with mammographic density in adult women.

    PubMed

    Lope, Virginia; Pérez-Gómez, Beatriz; Moreno, María Pilar; Vidal, Carmen; Salas-Trejo, Dolores; Ascunce, Nieves; Román, Isabel González; Sánchez-Contador, Carmen; Santamariña, María Carmen; Carrete, Jose Antonio Vázquez; Collado-García, Francisca; Pedraz-Pingarrón, Carmen; Ederra, María; Ruiz-Perales, Francisco; Peris, Mercé; Abad, Soledad; Cabanes, Anna; Pollán, Marina

    2011-12-01

    Growth and development factors could contribute to the development of breast cancer associated with an increase in mammographic density. This study examines the influence of certain childhood-related, socio-demographic and anthropometric variables on mammographic density in adult woman. The study covered 3574 women aged 45-68 years, participating in breast cancer-screening programmes in seven Spanish cities. Based on a craniocaudal mammogram, blind, anonymous measurement of mammographic density was made by a single radiologist, using Boyd's semiquantitative scale. Data associated with the early stages of life were obtained from a direct survey. Ordinal logistic regression and generalised linear models were employed to estimate the association between mammographic density and the variables covered by the questionnaire. Screening programme was introduced as a random effects term. Age, number of children, body mass index (BMI) and other childhood-related variables were used as adjustment variables, and stratified by menopausal status. A total of 811 women (23%) presented mammographic density of over 50%, and 5% of densities exceeded 75%. Our results show a greater prevalence of high mammographic density in women with low prepubertal weight (OR: 1.18; 95% CI: 1.02-1.36); marked prepubertal height (OR: 1.25; 95% CI: 0.97-1.60) and advanced age of their mothers at their birth (>39 years: OR: 1.28; 95% CI: 1.03-1.60); and a lower prevalence of high mammographic density in women with higher prepubertal weight, low birth weight and earlier menarche. The influence of these early-life factors may be explained by greater exposure to hormones and growth factors during the development of the breast gland, when breast tissue would be particularly susceptible to proliferative and carcinogenic stimulus.

  10. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    NASA Astrophysics Data System (ADS)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water

  11. Fabrication and application of high impedance graded density impactors in light gas gun experiments

    SciTech Connect

    Yep, Steven J.; Belof, Jonathan L.; Orlikowski, Daniel A.; Nguyen, Jeffrey H.

    2013-10-01

    Recent advances in Graded Density Impactor fabrication technique have increased the maximum achievable pressure in gas gun quasi-isentropic experiments to 5 Mbars. In this report, we outline the latest methodologies and applications of Graded Density Impactors in experiments at extreme conditions. These new Graded Density Impactors are essentially metallic discs made of nearly one hundred layers of precisely mixed Mg, Cu, and W. The density gradients in these impactors are specifically designed to generate the desired thermodynamic path required for each experiment. We carried out a number of experiments at various pressures using these Graded Density Impactors. These experimental results and their simulations will be presented here.

  12. Background gas density and beam losses in NIO1 beam source

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  13. Background gas density and beam losses in NIO1 beam source

    SciTech Connect

    Sartori, E. Veltri, P.; Serianni, G.; Cavenago, M.

    2016-02-15

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  14. Investigations on the limits of uncertainty of gas density measurements with vibrating tube densimeters

    NASA Astrophysics Data System (ADS)

    Laznickova, Romana; Huemer, Hans

    1998-05-01

    The aim of this work was to examine the scope and limitations of gas density measurements with vibrating tube densimeters, especially their limits of measurement uncertainty. For this purpose, equipment was designed with glass and stainless steel vibrating tubes. The stability and sensitivity of the equipment were tested by measuring empty tubes (vacuum); the reproducibility of gas density measurements was examined with argon and methane. A calibration equation was derived from measurements with evacuated tubes, liquid water, argon and methane by means of the Wagner equation optimization method. With the gases helium, nitrogen, carbon dioxide, butane, tetrafluoromethane and sulphur hexafluoride the uncertainty of gas density measurements was tested. The measurements were performed in the range 30-0957-0233/9/5/001/img1 C in the pressure range 0-2.7 MPa. The uncertainty of gas density measurements with vibrating tubes is in the range of hundredths of kg 0957-0233/9/5/001/img2; the sensitivity of the equipment to density changes is higher by at least one order of magnitude. The primary reason for the great difference between the sensitivity and the uncertainty of measurements is the inadequate pressure stability of the vibrating tubes. In order to perform gas density measurements of higher quality (for example for scientific purposes) it would be necessary to increase the stability of the vibrating tubes at changing pressure loads by modifying their construction and/or materials.

  15. Star Formation and Gas Densities in the Dwarf Irregular Galaxy Sextans A

    NASA Astrophysics Data System (ADS)

    Plummer, Julia D.; Hunter, Deidre A.

    1995-12-01

    As a step in understanding the process of star formation in irregular galaxies, we have analysed the irregular galaxy Sextans A. Irregular galaxies provide star-forming systems that are unperturbed by spiral density waves. Sextans A is a tiny galaxy, 1.3 Mpc distant, just beyond the dynamic boundary of the Local Group. We studied the star formation properties of this galaxy using UBV and Hα images. Stars are not currently forming in the center of this galaxy, though they have in the past. The current star formation is in clumps in the outer parts of the galaxy and is not evenly distributed. The total Hα luminosity found for Sextans A is 9 x 10(38) erg/s, which corresponds to a star formation rate of 6 x 10(-3) Mmathordsun /yr for standard assumptions. The rate per unit area, within the Holmberg radius, is 6 x 10(-10) Mmathordsun /yr/pc(2) . Skillman et al. (1988) derived a total HI mass of 6 x 10(7) Mmathordsun . At its present rate, Sextans A will use up all of its gas in 12 x 10(9) yr, including the He contribution. We have also compared the star formation and gas density in Sextans A to critical gas surface density models (Toomre 1964, Quirk 1972, Kennicutt 1988). We used a published rotation curve to calculate the critical gas density necessary for the instabilities that produce star-forming clouds (Skillman et al. 1988). The ratio of observed to critical gas density is low in Sextans A, at the low end of values found by Kennicutt (1988) for spiral galaxies. The current star formation is located in the region of the galaxy with higher radially averaged observed gas densities relative to the critical density. This suggests that Sextans A has a difficult time forming gas clouds, resulting in an observed low star formation rate. This research was funded by the REU program at Northern Arizona University.

  16. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    PubMed Central

    Wang, Chengxiang; Yin, Longwei; Zhang, Luyuan; Xiang, Dong; Gao, Rui

    2010-01-01

    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above. PMID:22294916

  17. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    A method for making density measurements in a compressible flow by using off resonance laser induced fluorescence is studied. The seed molecule chosen for study is the iodine molecule which is excited with the 514.5 nm line of the argon ion laser whose output is frequency tuned, by as much as 3 GHz, relative to a strong iodine transition using an intracavity etalon. The theory which was developed to analyze the effect will be used in conjunction with two experiments being conducted to further study the method an acoustic resonance tube in which controlled perturbations about a uniform state are produced, and a small supersonic jet in which the conditions of the flow vary widely from point to point.

  18. The opacity of spiral galaxy disks: IX. Dust and gas surface densities

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Allen, R. J.; de Blok, W. J. G.; Bouchard, A.; González-Lópezlira, R. A.; van der Kruit, P. C.; Leroy, A.

    2013-03-01

    Our aim is to explore the relation between gas, atomic and molecular, and dust in spiral galaxies. Gas surface densities are from atomic hydrogen and CO line emission maps. To estimate the dust content, we use the disk opacity as inferred from the number of distant galaxies identified in twelve HST/WFPC2 fields of ten nearby spiral galaxies. The observed number of distant galaxies is calibrated for source confusion and crowding with artificial galaxy counts and here we verify our results with sub-mm surface brightnesses from archival Herschel-SPIRE data. We find that the opacity of the spiral disk does not correlate well with the surface density of atomic (H I) or molecular hydrogen (H_2) alone implying that dust is not only associated with the molecular clouds but also the diffuse atomic disk in these galaxies. Our result is a typical dust-to-gas ratio of 0.04, with some evidence that this ratio declines with galactocentric radius, consistent with recent Herschel results. We discuss the possible causes of this high dust-to-gas ratio; an over-estimate of the dust surface-density, an under-estimate of the molecular hydrogen density from CO maps or a combination of both. We note that while our value of the mean dust-to-gas ratio is high, it is consistent with the metallicity at the measured radii if one assumes the Pilyugin & Thuan (2005) calibration of gas metallicity.

  19. Reproductive factors related to childbearing and mammographic breast density.

    PubMed

    Yaghjyan, Lusine; Colditz, Graham A; Rosner, Bernard; Bertrand, Kimberly A; Tamimi, Rulla M

    2016-07-01

    We investigated the associations of reproductive factors related to childbearing with percent breast density, absolute dense and nondense areas, by menopausal status. This study included 4110 cancer-free women within the Nurses' Health Study and Nurses' Health Study II cohorts. Percent breast density, absolute dense and nondense areas were measured from digitized mammography film images with computerized techniques. All density measures were square root-transformed in all the analyses to improve normality. The data on reproductive variables and other breast cancer risk factors were obtained from biennial questionnaires, at the time of the mammogram date. As compared to nulliparous women, parous postmenopausal women had lower percent density (β = -0.60, 95 % CI -0.84; -0.37), smaller absolute dense area (β = -0.66, 95 % CI -1.03; -0.29), and greater nondense area (β = 0.72, 95 % CI 0.27; 1.16). Among parous women, number of children was inversely associated with percent density in pre- (β per one child = -0.12, 95 % CI -0.20; -0.05) and postmenopausal women (β per one child = -0.07, 95 % CI -0.12; -0.02). The positive associations of breastfeeding with absolute dense and nondense areas were limited to premenopausal women, while the positive association of the age at first child's birth with percent density and the inverse association with nondense area were limited to postmenopausal women. Women with greater number of children and younger age at first child's birth have more favorable breast density patterns that could explain subsequent breast cancer risk reduction.

  20. Solution of an associating lattice-gas model with density anomaly on a Husimi lattice.

    PubMed

    Oliveira, Tiago J; Stilck, Jürgen F; Barbosa, Marco Aurélio A

    2010-11-01

    We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.

  1. Characteristics of excitation discharge of an excimer laser in gas density depletion

    NASA Astrophysics Data System (ADS)

    Imada, Go; Masuda, Wataru; Yatsui, Kiyoshi

    1998-12-01

    The influences of gas density depletion on the highly- repetitive, high-pressure, pulsed glow discharge for excitation of excimer laser have been investigated eliminating the other instabilities, such as shock waves, residual ions, discharge products and electrode heating. The gas density depletion is simulated by utilizing a subsonic flow between the curved electrodes. The comparison has been made on the discharge occurred in the presence of the gas density depletion with the second discharge on the double-pulse experiment. We have found that the big gas density non uniformity, (Delta) (rho) /(rho) 0 approximately 3.6% corresponding to a pulse repetition rate (PRR) of approximately 20 Hz, tends to cause the arc discharge without the shocks, ions, discharge products and electrode heating. On the other hand, the second discharge on the double-pulse experiment becomes arc discharge in much smaller non uniformity ((Delta) (rho) /(rho) 0 approximately 1.2% corresponding to PRR approximately 3 Hz). The arc discharge in the double-pulse experiment might be driven by the residual ions and/or discharge products other than gas density depletion except for PRR greater than 20 Hz.

  2. Solution of an associating lattice-gas model with density anomaly on a Husimi lattice

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago J.; Stilck, Jürgen F.; Barbosa, Marco Aurélio A.

    2010-11-01

    We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.

  3. Linear Temporal Stability Analysis of a Low-Density Round Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony L.; Parthasarathy, Ramkumar N.

    2002-01-01

    It has been observed in previous experimental studies that round helium jets injected into air display a repetitive structure for a long distance, somewhat similar to the buoyancy-induced flickering observed in diffusion flames. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis of a round helium jet injected into air was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. The temporal growth rates of the disturbances increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity.

  4. Human respiration at rest in rapid compression and at high pressures and gas densities

    NASA Technical Reports Server (NTRS)

    Gelfand, R.; Lambertsen, C. J.; Strauss, R.; Clark, J. M.; Puglia, C. D.

    1983-01-01

    The ventilation (V), end-tidal PCO2 (PACO2), and CO2 elimination rate were determined in men at rest breathing CO2-free gas over the pressure range 1-50 ATA and the gas density range 0.4-25 g/l, during slow and rapid compressions, at stable elevated ambient pressures and during slow decompressions. Progressive increase in pulmonary gas flow resistance due to elevation of ambient pressure and inspired gas density to the He-O2 equivalent of 5000 feet of seawater was found to produce a complex pattern of change in PACO2. It was found that as both ambient pressure and pulmonary gas flow resistance were progressively raised, PACO2 at first increased, went through a maximum, and then declined towards values near the 1 ATA level. It is concluded that this pattern of PACO2 change results from the interaction on ventilation of the increase in pulmonary resistance due to the elevation of gas density with the increase in respiratory drive postulated as due to generalized central nervous system excitation associated with exposure to high hydrostatic pressure. It is suggested that a similar interaction exists between increased gas flow resistance and the increase in respiratory drive related to nitrogen partial pressure and the resulting narcosis.

  5. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    NASA Astrophysics Data System (ADS)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kóspál, Ágnes; Moór, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.; Kastner, Joel H.; Ábrahám, Peter

    2017-04-01

    We present ˜0.″4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ˜100 and 310 au, with a marginally significant enhancement of surface density at a radius of ˜110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ˜80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ˜20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (˜220 au) is smaller than that of the dust disk (˜300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  6. Electron density measurements in a photoinitiated, impulse-enhanced, electrically excited laser gas discharge

    NASA Astrophysics Data System (ADS)

    Seguin, V. A.; Seguin, H. J. J.; Capjack, C. E.; Nikumb, S. K.

    1986-11-01

    Measurements of the electron density within a photo-initiated, impulse-enhanced, electrically excited (PIE) laser gas discharge are presented. Ion current measurements were made using a single Langmuir electrostatic probe positioned within the laser discharge volume. Calculations of the electron density were made utilizing a thick-sheath analysis. The results indicate that the electron density increases by two orders of magnitude as the pulser power level is increased. In addition, the electron density was observed to decrease markedly as the dc discharge current was increased.

  7. Determination of Transverse Charge Density from Kaon Form Factor Data

    NASA Astrophysics Data System (ADS)

    Mejia-Ott, Johann; Horn, Tanja; Pegg, Ian; Mecholski, Nicholas; Carmignotto, Marco; Ali, Salina

    2016-09-01

    At the level of nucleons making up atomic nuclei, among subatomic particles made up of quarks, K-mesons or kaons represent the most simple hadronic system including the heavier strange quark, having a relatively elementary bound state of a quark and an anti-quark as its valence structure. Its electromagnetic structure is then parametrized by a single, dimensionless quantity known as the form factor, the two-dimensional Fourier transform of which yields the quantity of transverse charge density. Transverse charge density, in turn, provides a needed framework for the interpretation of form factors in terms of physical charge and magnetization, both with respect to the propagation of a fast-moving nucleon. To this is added the value of strange quarks in ultimately presenting a universal, process-independent description of nucleons, further augmenting the importance of studying the kaon's internal structure. The pressing character of such research questions directs the present paper, describing the first extraction of transverse charge density from electromagnetic kaon form factor data. The extraction is notably extended to form factor data at recently acquired higher energy levels, whose evaluation could permit more complete phenomenological models for kaon behavior to be proposed. This work was supported in part by NSF Grant PHY-1306227.

  8. Density and pressure effects on the transport of gas phase chemicals in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Altevogt, Andrew S.; Rolston, Dennis E.; Venterea, Rodney T.

    2003-03-01

    The density of gas phase contaminants may be responsible for several important transport phenomena in porous media. One-dimensional laboratory experiments were conducted to explore the transport of a dense gas (Freon-113) through an air-dry sand. Gas densities were measured and fluxes were estimated during transport through a column filled with oso-flaco sand. Significant differences in density profiles and fluxes were observed for the three primary flow directions (horizontal, vertically upward, and vertically downward) at high source densities. Estimates indicate that pressure gradients of up to 20 Pa/m measured in the first 2.5 cm of the column were possibly due to the nonequimolar diffusion of Freon and air. Simulated Freon densities from numerical models based on the standard Darcy-Fickian transport equation did not compare well against measured density data. Density profiles generated by the model differed from the data by up to 400%. Numerical simulations indicated that slip flow may be significant relative to Darcy advective flow, but the slip phenomenon did not account for the discrepancy between model simulations and data. Further research and equation development will be necessary in order to ascertain why the standard theory does not adequately describe the diffusive and advective transport processes for dense gases.

  9. Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti

    NASA Technical Reports Server (NTRS)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.; hide

    2017-01-01

    We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  10. Dominant factors in controlling marine gas pools in South China

    USGS Publications Warehouse

    Xu, S.; Watney, W.L.

    2007-01-01

    In marine strata from Sinian to Middle Triassic in South China, there develop four sets of regional and six sets of local source rocks, and ten sets of reservoir rocks. The occurrence of four main formation periods in association with five main reconstruction periods, results in a secondary origin for the most marine gas pools in South China. To improve the understanding of marine gas pools in South China with severely deformed geological background, the dominant control factors are discussed in this paper. The fluid sources, including the gas cracked from crude oil, the gas dissolved in water, the gas of inorganic origin, hydrocarbons generated during the second phase, and the mixed pool fluid source, were the most significant control factors of the types and the development stage of pools. The period of the pool formation and the reconstruction controlled the pool evolution and the distribution on a regional scale. Owing to the multiple periods of the pool formation and the reconstruction, the distribution of marine gas pools was complex both in space and in time, and the gas in the pools is heterogeneous. Pool elements, such as preservation conditions, traps and migration paths, and reservoir rocks and facies, also served as important control factors to marine gas pools in South China. Especially, the preservation conditions played a key role in maintaining marine oil and gas accumulations on a regional or local scale. According to several dominant control factors of a pool, the pool-controlling model can be constructed. As an example, the pool-controlling model of Sinian gas pool in Weiyuan gas field in Sichuan basin was summed up. ?? Higher Education Press and Springer-Verlag 2007.

  11. Pressure - Density Isotherms of HELIUM-3 Gas Below 1.3 K.

    NASA Astrophysics Data System (ADS)

    Cameron, James Allen

    The second virial coefficient of He('3) gas and the absolute temperature of the gas were determined at five different temperatures below 1.3 K. The technique used involved measuring pressure and density simultaneously at different points along on isotherm and using the virial equation to determine the temperature and the second virial coefficient. The results are in good agreement with empirical calculations of the second virial coefficient which are based on measurements made at higher temperatures. The measurements of temperature, while only known to within (+OR-)1.5 mK, confirm the widespread belief that the T(,62) temperature scale is in error by several mK. Pressure and density were measured in-situ, using superconducting microwave cavities. These eliminate many sources of error which have in the past made measurements inaccurate below 1.5 K. The density and pressure could be related to changes in the resonant frequencies of the cavities. The frequency of one cavity, which contained the He('3) gas was proportional to the dielectric constant of the gas. The Clausius-Mossotti relationship was used to determine the density as a function of the dielectric constant. The pressure was measured using a reentrant cavity with a flexible diaphragm forming one end wall. The pressure of the gas flexed this diaphragm, changing the frequency of the cavity. A room temperature mercury manometer was used to provide a frequency vs. pressure calibration of this cavity.

  12. Upper bounds of spin-density wave energies in the homogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Delyon, F.; Bernu, B.; Baguet, L.; Holzmann, M.

    2015-12-01

    Studying the jellium model in the Hartree-Fock approximation, Overhauser has shown that spin-density waves (SDWs) can lower the energy of the Fermi gas, but it is still unknown whether these SDWs are actually relevant for the phase diagram. In this paper, we give a more complete description of SDW states. We show that a modification of the Overhauser ansatz explains the behavior of the jellium at high density compatibly with previous Hartree-Fock simulations.

  13. Lyapunov Exponents and Kolmogorov-Sinai Entropy for the Lorentz Gas at Low Densities

    NASA Astrophysics Data System (ADS)

    van Beijeren, Henk; Dorfman, J. R.

    1995-05-01

    The Lyapunov exponents and the Kolmogorov-Sinai (KS) entropy for a two-dimensional Lorentz gas at low densities are defined for general nonequilibrium states and calculated with the use of a Lorentz-Boltzmann type equation. In equilibrium the density dependence of these quantities, predicted by Krylov, is recovered and explicit expressions are obtained. The relationship between KS entropy, Lyapunov exponents, and diffusion coefficients, developed by Gaspard and Nicolis, is generalized to a wide class of nonequilibrium states.

  14. The gas density measurement of one long distance supersonic molecular beam.

    PubMed

    Liu, D; Han, J F; Chen, Z Y; Bai, L X; Zhou, J X

    2016-12-01

    The gas density of the supersonic molecular beam (SMB) is a crucial parameter for the fueling or diagnostic process in the tokamak experiments. Using the microphone, one improved method of gas density measurement is proposed, which can greatly improve the measurement capacity by about 3 orders of magnitude by studying the pulsed signal characteristic of the microphone when it is pushed by the SMB. The gas density of the SMB is measured within the axial range of 20-2000 mm, and the axial central density at 2000 mm is about 100 times less than that at 20 mm. It is also found that the radial density distribution follows the Gaussian function in both free expansion (where the SMB can expand freely without any influence from the vacuum chamber) and restricted expansion (where the expansion of the SMB is restricted inside the flight tube of the vacuum system). And the axial central density decreases with the axial distance, which follows the inverse square law in the free expansion, but it deviates from this law in the restricted expansion.

  15. The density variance-Mach number relation in supersonic turbulence - I. Isothermal, magnetized gas

    NASA Astrophysics Data System (ADS)

    Molina, F. Z.; Glover, S. C. O.; Federrath, C.; Klessen, R. S.

    2012-07-01

    It is widely accepted that supersonic, magnetized turbulence plays a fundamental role for star formation in molecular clouds. It produces the initial dense gas seeds out of which new stars can form. However, the exact relation between gas compression, turbulent Mach number and magnetic field strength is still poorly understood. Here, we introduce and test an analytical prediction for the relation between the density variance and the rms Mach number ? in supersonic, isothermal, magnetized turbulent flows. We approximate the density and velocity structure of the interstellar medium as a superposition of shock waves. We obtain the density contrast considering the momentum equation for a single magnetized shock and extrapolate this result to the entire cloud. Depending on the field geometry, we then make three different assumptions based on observational and theoretical constraints: B independent of ρ, B∝ρ1/2 and B∝ρ. We test the analytically derived density variance-Mach number relation with numerical simulations, and find that for B∝ρ1/2, the variance in the logarithmic density contrast, ?, fits very well to simulated data with turbulent forcing parameter b= 0.4, when the gas is super-Alfvénic. However, this result breaks down when the turbulence becomes trans-Alfvénic or sub-Alfvénic, because in this regime the turbulence becomes highly anisotropic. Our density variance-Mach number relations simplify to the purely hydrodynamic relation as the ratio of thermal to magnetic pressure β0→∞.

  16. The gas density measurement of one long distance supersonic molecular beam

    NASA Astrophysics Data System (ADS)

    Liu, D.; Han, J. F.; Chen, Z. Y.; Bai, L. X.; Zhou, J. X.

    2016-12-01

    The gas density of the supersonic molecular beam (SMB) is a crucial parameter for the fueling or diagnostic process in the tokamak experiments. Using the microphone, one improved method of gas density measurement is proposed, which can greatly improve the measurement capacity by about 3 orders of magnitude by studying the pulsed signal characteristic of the microphone when it is pushed by the SMB. The gas density of the SMB is measured within the axial range of 20-2000 mm, and the axial central density at 2000 mm is about 100 times less than that at 20 mm. It is also found that the radial density distribution follows the Gaussian function in both free expansion (where the SMB can expand freely without any influence from the vacuum chamber) and restricted expansion (where the expansion of the SMB is restricted inside the flight tube of the vacuum system). And the axial central density decreases with the axial distance, which follows the inverse square law in the free expansion, but it deviates from this law in the restricted expansion.

  17. Maximization of ICRF power by SOL density tailoring with local gas injection

    NASA Astrophysics Data System (ADS)

    Jacquet, P.; Goniche, M.; Bobkov, V.; Lerche, E.; Pinsker, R. I.; Pitts, R. A.; Zhang, W.; Colas, L.; Hosea, J.; Moriyama, S.; Wang, S.-J.; Wukitch, S.; Zhang, X.; Bilato, R.; Bufferand, H.; Guimarais, L.; Faugel, H.; Hanson, G. R.; Kocan, M.; Monakhov, I.; Noterdaeme, J.-M.; Petrzilka, V.; Shaw, A.; Stepanov, I.; Sips, A. C. C.; Van Eester, D.; Wauters, T.; JET contributors, the; the ASDEX Upgrade Team; the DIII-D Team; ITPA ‘Integrated Operation Scenarios' members, the; experts

    2016-04-01

    Experiments have been performed under the coordination of the International Tokamak Physics Activity (ITPA) on several tokamaks, including ASDEX Upgrade (AUG), JET and DIII-D, to characterize the increased Ion cyclotron range of frequency (ICRF) antenna loading achieved by optimizing the position of gas injection relative to the RF antennas. On DIII-D, AUG and JET (with the ITER-Like Wall) a 50% increase in the antenna loading was observed when injecting deuterium in ELMy H-mode plasmas using mid-plane inlets close to the powered antennas instead of divertor injection and, with smaller improvement when using gas inlets located at the top of the machine. The gas injection rate required for such improvements (~0.7  ×  1022 el s-1 in AUG, ~1.0  ×  1022 el s-1 in JET) is compatible with the use of this technique to optimize ICRF heating during the development of plasma scenarios and no degradation of confinement was observed when using the mid-plane or top inlets compared with divertor valves. An increase in the scrape-off layer (SOL) density was measured when switching gas injection from divertor to outer mid-plane or top. On JET and DIII-D, the measured SOL density increase when using main chamber puffing is consistent with the antenna coupling resistance increase provided that the distance between the measurement lines of sight and the injection location is taken into account. Optimized gas injection was also found to be beneficial for reducing tungsten (W) sputtering at the AUG antenna limiters, and also to reduce slightly the W and nickel (Ni) content in JET plasmas. Modeling the specific effects of divertor/top/mid-plane injection on the outer mid-plane density was carried out using both the EDGE2D-EIRENE and EMC3-EIRENE plasma boundary code packages; simulations indeed indicate that outer mid-plane gas injection maximizes the density in the mid-plane close to the injection point with qualitative agreement with the AUG SOL density measurements

  18. Determination of density and concentration from fluorescent images of a gas flow

    NASA Astrophysics Data System (ADS)

    Belan, Marco; de Ponte, Sergio; Tordella, Daniela

    2008-09-01

    A fluorescence image analysis procedure to determine the distribution of species concentration and density in a gas flow is proposed. The fluorescent emission is due to the excitation of atoms/molecules of a gas that is intercepted by an electron sheet. The intensity of the fluorescent light is proportional to the local number density of the gas. When the gas flow is a mixture of different species, this proportionality can be used to extract the contribution associated with the species from the spectral superposition acquired by a digital camera. In particular, the fact is exploited such that the ratio between a pair of color intensities takes different values for different gases and that different linear superpositions of different color intensities yield a ratio that varies with the species concentration. This leads to a method that simultaneously reveals species concentrations and mass density of the mixture. For the proper working of a continuous electron gun in a gas, the procedure can be applied to gas flow where the pressure is below the thresholds of 200˜300 Pa and the number density is no greater than 1023 m-3. To maintain the constancy of the emission coefficients, the temperature variation in the flow should be inside the range 75-900 K (above the temperature where the probability to meet disequilibrium phenomena due to rarefaction is low, below the temperature where visible thermal emission is present). The overall accuracy of the measurement method is approximately 10%. The uncertainty can vary locally in the range from 5 to 15% for the concentration and from 5 to 20% for the density depending on the local signal-to-noise ratio. The procedure is applied to two under-expanded sonic jets discharged into a different gas ambient—Helium into Argon and Argon into Helium—to measure the concentration and density distribution along the jet axis and across it. A comparison with experimental and numerical results obtained by other authors when observing

  19. Observing the gas temperature drop in the high-density nucleus of L 1544

    NASA Astrophysics Data System (ADS)

    Crapsi, A.; Caselli, P.; Walmsley, M. C.; Tafalla, M.

    2007-07-01

    Context: The thermal structure of a starless core is crucial for our understanding of the physics in these objects and hence for our understanding of star formation. Theory predicts a gas temperature drop in the inner 5000 AU of the pre-stellar core L 1544, but there has been no observational proof of this. Aims: We performed VLA observations of the NH{3} (1, 1) and (2, 2) transitions towards L 1544 in order to measure the temperature gradient between the high density core nucleus and the surrounding core envelope. Our VLA observation for the first time provide measurements of gas temperature in a core with a resolution smaller than 1000 AU. We have also obtained high resolution Plateau de Bure observations of the 110 GHz 111-101 para-NH2D line in order to further constrain the physical parameters of the high density nucleus. Methods: We combine our interferometric NH{3} and NH2D observations with available single dish measurements in order to estimate the effects of flux loss from extended components upon our data. We have estimated the temperature gradient using a model of the source to fit our data in the u,v plane. As the NH{3}(1, 1) line is extremely optically thick, this also involved fitting a gradient in the NH{3} abundance. In this way, we also measure the [ NH2D] /[ NH{3}] abundance ratio in the inner nucleus. Results: We find that indeed the temperature decreases toward the core nucleus from 12 K down to 5.5 K resulting in an increase of a factor of 50% in the estimated density of the core from the dust continuum if compared with the estimates done with constant temperature of 8.75 K. Current models of the thermal equilibrium can describe consistently the observed temperature and density in this object, simultaneously fitting our temperature profile and the continuum emission. We also found a remarkably high abundance of deuterated ammonia with respect to the ammonia abundance (50% ± 20%), which proves the persistence of nitrogen bearing molecules at

  20. Improved parameterization of interatomic potentials for rare gas dimers with density-based energy decomposition analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Nengjie; Lu, Zhenyu; Wu, Qin; Zhang, Yingkai

    2014-06-01

    We examine interatomic interactions for rare gas dimers using the density-based energy decomposition analysis (DEDA) in conjunction with computational results from CCSD(T) at the complete basis set (CBS) limit. The unique DEDA capability of separating frozen density interactions from density relaxation contributions is employed to yield clean interaction components, and the results are found to be consistent with the typical physical picture that density relaxations play a very minimal role in rare gas interactions. Equipped with each interaction component as reference, we develop a new three-term molecular mechanical force field to describe rare gas dimers: a smeared charge multipole model for electrostatics with charge penetration effects, a B3LYP-D3 dispersion term for asymptotically correct long-range attractions that is screened at short-range, and a Born-Mayer exponential function for the repulsion. The resulted force field not only reproduces rare gas interaction energies calculated at the CCSD(T)/CBS level, but also yields each interaction component (electrostatic or van der Waals) which agrees very well with its corresponding reference value.

  1. Quantum oscillations in the kinetic energy density: Gradient corrections from the Airy gas

    NASA Astrophysics Data System (ADS)

    Lindmaa, Alexander; Mattsson, Ann E.; Armiento, Rickard

    2014-03-01

    We show how one can systematically derive exact quantum corrections to the kinetic energy density (KED) in the Thomas-Fermi (TF) limit of the Airy gas (AG). The resulting expression is of second order in the density variation and we demonstrate how it applies universally to a certain class of model systems in the slowly varying regime, for which the accuracy of the gradient corrections of the extended Thomas-Fermi (ETF) model is limited. In particular we study two kinds of related electronic edges, the Hermite gas (HG) and the Mathieu gas (MG), which are both relevant for discussing periodic systems. We also consider two systems with finite integer particle number, namely non-interacting electrons subject to harmonic confinement as well as the hydrogenic potential. Finally we discuss possible implications of our findings mainly related to the field of functional development of the local kinetic energy contribution.

  2. The probability density function in molecular gas in the G333 and Vela C molecular clouds

    NASA Astrophysics Data System (ADS)

    Cunningham, Maria

    2015-08-01

    The probability density function (PDF) is a simple analytical tool for determining the hierarchical spatial structure of molecular clouds. It has been used frequently in recent years with dust continuum emission, such as that from the Herschel space telescope and ALMA. These dust column density PDFs universally show a log-normal distribution in low column density gas, characteristic of unbound turbulent gas, and a power-law tail at high column densities, indicating the presence of gravitationally bound gas. We have recently conducted a PDF analysis of the molecular gas in the G333 and Vela C giant molecular cloud complexes, using transitions of CO, HCN, HNC, HCO+ and N2H+.The results show that CO and its isotopologues trace mostly the log-normal part of the PDF, while HCN and HCO+ trace both a log-normal part and a power law part to the distribution. On the other hand, HNC and N2H+ mostly trace only the power law tail. The difference between the PDFs of HCN and HNC is surprising, as is the similarity between HNC and the N2H+ PDFs. The most likely explanation for the similar distributions of HNC and N2H+ is that N2H+ is known to be enhanced in cool gas below 20K, where CO is depleted, while the reaction that forms HNC or HCN favours the former at similar low temperatures. The lack of evidence for a power law tail in 13CO and C18O, in conjunction for the results for the N2H+ PDF suggest that depletion of CO in the dense cores of these molecular clouds is significant. In conclusion, the PDF has proved to be a surprisingly useful tool for investigating not only the spatial distribution of molecular gas, but also the wide scale chemistry of molecular clouds.

  3. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  4. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  5. Pressure-density isotherms of He/sup 3/ gas below 1. 3 K

    SciTech Connect

    Cameron, J.A.

    1984-01-01

    The second virial coefficient of He/sup 3/ gas and the absolute temperature of the gas were determined at five different temperatures below 1.3 K. The technique used involved measuring pressure and density simultaneously at different points along an isotherm and using the virial equation to determine the temperature and the second virial coefficient. The results are in good agreement with empirical calculations of the second virial coefficient which are based on measurements made at higher temperatures. The measurements of temperature, while only known to within +/- 1.5 mK, confirm the widespread belief that the T/sub 62/ temperature scale is in error by several mK. Pressure and density were measured in-situ, using superconducting microwave cavities. These eliminate many sources of error which have in the past made measurements inaccurate below 1.5 K. The density and pressure could be related to changes in the resonant frequencies of the cavities.

  6. Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas

    SciTech Connect

    Gao Xianlong; Rizzi, M.; Polini, Marco; Tosi, M. P.; Fazio, Rosario; Campo, V. L. Jr.; Capelle, K.

    2007-01-19

    The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern.

  7. Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy

    SciTech Connect

    Belostotskiy, Sergey G.; Ouk, Tola; Donnelly, Vincent M.; Economou, Demetre J.; Sadeghi, Nader

    2010-03-15

    Optical emisssion spectroscopy was employed to study a high pressure (100 s of Torr), slot-type (600 {mu}m interelectrode gap), argon dc microdischarge, with added traces of nitrogen. Spatially resolved gas temperature profiles were obtained by analyzing rovibrational bands of the N{sub 2} first positive system. The gas temperature peaked near the cathode and increased with current. The contribution of Stark broadening to the hydrogen H{sub {beta}} emission lineshape was used to extract the electron density. The axial distribution of electron density as well as visual observation revealed that the microdischarge positive column was highly constricted. The electron density near the sheath edge increased with both pressure and current.

  8. Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas

    NASA Astrophysics Data System (ADS)

    Xianlong, Gao; Rizzi, M.; Polini, Marco; Fazio, Rosario; Tosi, M. P.; Campo, V. L., Jr.; Capelle, K.

    2007-01-01

    The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern.

  9. Probing Milky Way's hot gas halo density distribution using the dispersion measure of pulsars

    NASA Astrophysics Data System (ADS)

    Zhezher, Ya. V.; Nugaev, E. Ya.; Rubtsov, G. I.

    2016-03-01

    A number of recent studies indicates a significant amount of ionized gas in a form of the hot gas halo around the Milky Way. The halo extends over the region of 100 kpc and may be acountable for the missing baryon mass. In this paper we calculate the contribution of the proposed halo to the dispersion measure (DM) of the pulsars. The Navarro, Frenk, and White (NFW), Maller and Bullock (MB), and Feldmann, Hooper, and Gnedin (FHG) density distibutions are considered for the gas halo. The data set includes pulsars with the distance known independently from the DM, e.g., pulsars in globular clusters, LMC, SMC and pulsars with known parallax. The results exclude the NFW distribution for the hot gas, while the more realisticMB and FHG models are compatible with the observed dispersion measure.

  10. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    NASA Astrophysics Data System (ADS)

    Chen, Guanglong; Boldarev, A. S.; Geng, Xiaotao; Xu, Yi; Cao, Yunjiu; Mi, Yiming; Zhang, Xiuli; Wang, Lili; Kim, Dong Eon

    2015-10-01

    The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized deq in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  11. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    SciTech Connect

    Chen, Guanglong; Xu, Yi; Cao, Yunjiu; Mi, Yiming; Zhang, Xiuli; Wang, Lili; Boldarev, A. S.; Geng, Xiaotao; Kim, Dong Eon

    2015-10-15

    The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized d{sub eq} in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  12. Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics

    SciTech Connect

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; Bender, Ralf; Thomas, Jens; Van den Bosch, Remco C. E.; Van de Ven, Glenn; Barentine, John C.; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A. E-mail: jja439@gmail.com

    2014-07-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these

  13. Nonlocal density functionals and the linear response of the homogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Mazin, I. I.; Singh, D. J.

    1998-03-01

    The known and usable truly nonlocal functionals for exchange-correlation energy of the inhomogeneous electron gas are the ADA (average density approximation) and the WDA (weighted density approximation). ADA, by design, yields the correct linear response function of the uniform electron gas. The WDA is constructed so that it is exact in the opposite limit of one-electron systems, and it was conjectured that the WDA is also accurate in the uniform gas limit. To test this conjecture, we derive an expression for the linear response of the uniform gas in the WDA, and calculate it for several flavors of the WDA. We then compare the results with the Monte Carlo data on the exchange-correlation local-field correction, and identify the weak points of conventional WDA in the homogeneous limit. We suggest how the WDA can be modified to improve the response function. The resulting approximation is a good one in both opposite limits. Future testing should show whether it will also be better than conventional WDA and ADA for practical nonlocal density-functional calculations.

  14. 40 CFR Table Mm-1 to Subpart Mm of... - Default Factors for Petroleum Products and Natural Gas Liquids 1 2

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Default Factors for Petroleum Products... Suppliers of Petroleum Products Pt. 98, Subpt. MM, Table MM-1 Table MM-1 to Subpart MM of Part 98—Default Factors for Petroleum Products and Natural Gas Liquids 1 2 Products Column A: density(metric tons/bbl...

  15. New stopping cell capabilities: RF carpet performance at high gas density and cryogenic operation

    NASA Astrophysics Data System (ADS)

    Ranjan, M.; Purushothaman, S.; Dickel, T.; Geissel, H.; Plass, W. R.; Schäfer, D.; Scheidenberger, C.; Van de Walle, J.; Weick, H.; Dendooven, P.

    2011-12-01

    We have developed a stopping cell to be used at the FRS and Super-FRS (Super-conducting FRagment Separator) at the GSI Helmholtz Centre for Heavy-Ion Research and the Facility for Antiproton and Ion Research (FAIR), both in Darmstadt, Germany. The cell has a stopping volume with a length of 1 m and a diameter of 25 cm. It is aimed at operation with high-density helium gas (up to 0.2 mg/cm3). Ours is the first realisation of a stopping cell in which the required purity of the helium stopping gas is ensured by operation at cryogenic temperatures. On the exit side, the ions are guided to the exit hole by an RF carpet with 4 electrodes per mm, operating at a frequency of 5.8 MHz. We present the first commissioning results of the cryogenic stopping cell. Using 219Rn ions emitted as alpha-decay recoils from a 223Ra source, a combined ion survival and extraction efficiency between 10 and 25% is measured for helium gas at a temperature of 85 K and with a density up to 0.07 mg/cm3 (equivalent to a pressure of 430 mbar at room temperature). This density is almost two times higher than demonstrated up to now for RF ion repelling structures in helium gas. Given the operational and design parameters of the system, it is projected that this technology is useful up to a helium gas density of at least 0.2 mg/cm3.

  16. Gas and Electron Temperatures in Atmospheric Pressure High-Density Microdischarge Excited by Microwave

    NASA Astrophysics Data System (ADS)

    Kono, A.; Iwamoto, K.; Kano, T.

    2003-10-01

    A stable high-density ( ˜ 10^15 cm-3) non-equilibrium plasma can be produced in a microgap ( ˜ 100 μm) between two knife-edge electrodes using microwave excitation (Jpn. J. Appl. Phys. 40, L238 (2001)). In an application of the microgap discharge to VUV excimer light sources, the gas temperature is an important parameter. In this study the effect of gas flow on the gas temperature as well as on the electron temperature and electron density in the microgap discharge in atmospheric pressure air and helium was studied using optical emission spectroscopy and laser Thomson scattering; for helium discharge, a small amount of N2 was admixed to derive the gas temperature from N2 optical emission. The helium discharge showed significant decrease in the gas temperature with increasing flow rate, whereas the air discharge did not. The optical emission from N2 was much stronger in the helium discharge and it increased with increasing flow rate; this behavior can be attributed to the change in the electron temperature. Measurements are being extended to He/Ar and He/Xe mixture gases giving excimer emission. (Work supported by Grant 14658131 from Ministry of Education, Culture, Sports, Science and Technology in Japan)

  17. Emission and afterglow properties of an expanding RF plasma with nonuniform neutral gas density

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2016-08-01

    We describe some notable aspects of the light emission and afterglow properties in pulsed, high-density ( 1018-1020 m-3 ) argon inductively coupled discharges initiated following fast gas injection. The plasma was created in a long, narrow discharge tube and then expanded downstream of the radiofrequency (RF) antenna into a large chamber. Fast camera images of the expanding plasma revealed a multi-phase time-dependent emission pattern that did not follow the ion density distribution. Dramatic differences in visible brightness were observed between discharges with and without an externally applied magnetic field. These phenomena were studied by tracking excited state populations using passive emission spectroscopy and are discussed in terms of the distinction between ionizing and recombining phase plasmas. Additionally, a method is presented for inferring the unknown neutral gas pressure in the discharge tube from the time-dependent visible and infrared emission measured by a simple photodiode placed near the antenna. In magnetized discharges created with fast gas injection, the downstream ion density rose by Δni˜1018 m-3 in the first ˜100 μs after the RF power was turned off. The conditions conducive to this afterglow density rise are investigated in detail, and the effect is tentatively attributed to pooling ionization.

  18. Nonlocal density functionals and the linear response of the homogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Mazin, I. I.; Singh, D. J.

    1998-03-01

    The known and usable truly nonlocal exchange-correlation density functionals are the ADA (average density approximation) and the WDA (weighted density approximation). The ADA, by design, yields the correct linear response of the uniform electron gas. WDA is constructed so that it is exact for one-electron systems, and was shown to yield good results for solids, too. While the WDA has correct one-electron behavior, it is important to access the accuracy of the method in the opposite limit of the nearly homogeneous electron gas. To do so, we derive an expression for the linear response of the uniform gas in the WDA, and calculate it for several flavors of WDA. We compare our results with Monte-Carlo data on the exchange-correlation local field correction, and identify the weak points of the conventional WDA in this limit. The WDA can be modified to improve the response function in the short wavelength regime. The exchange-correlation local field correction includes a term derived from the correlation part of the kinetic energy, which does not decay at qarrow ∞. This can be reproduced by adding a delta-function part to the WDA weight function. The resulting approximation is good in both limits, and may be useful for practical density functional calculations. (More at this URL.)

  19. Azimuthal Variability in Gas Hydrate Concentration using LWD Resistivity and Density Images

    NASA Astrophysics Data System (ADS)

    Janik, A.; Goldberg, D.; Collett, T.

    2003-12-01

    We estimate the concentration of gas hydrate in several boreholes drilled in the vicinity of Hydrate Ridge during ODP Leg 204. Logging-while-drilling (LWD) tools were used, which measure formation resistivity and density at azimuthal positions around each borehole as a function of depth. We utilize the density data to compute porosity and the resistivity data to compute water (Sw) and hydrate (1-Sw) saturation at each azimuthal position in these holes. The results allows for delineation of the shape, geometrical distribution, and azimuthal orientation of the porous sediment structures that are saturated with gas hydrate as a function of depth. This 360-degree approach contrasts with conventional methods that use wireline logs or core data and produce a single saturation value at each measurement depth. In addition, LWD data are acquired only minutes after the formation is drilled, limiting the extent of hydrate dissociation on the measured in situ properties. From these results on Hydrate Ridge, the clay-bearing sediments within the gas hydrate stability zone (GHSZ) appear to contain patchy zones with high concentrations of hydrate that are locally distributed around the borehole. Patchy zones occur throughout the GHSZ and at all of the Sites (1244-1251), where LWD data were acquired. LWD neutron and density data indicate that there is no significant free gas occurrence within the GHSZ, confirming that the images represent gas hydrate features, not free gas, in these sediments. Within the limitations of the method, which include uncertainties in the Archie parameters, the accuracy of porosity measurements, and the effects of ship heave, among others, our estimates of azimuthal hydrate concentration compare closely, when averaged around the borehole, to estimates from other conventional log and core measurements. However, the computation of this information from LWD images adds significantly to our understanding of the spatial distribution of hydrate in these

  20. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil.

    PubMed

    Wickramarachchi, Praneeth; Kawamoto, Ken; Hamamoto, Shoichiro; Nagamori, Masanao; Moldrup, Per; Komatsu, Toshiko

    2011-12-01

    Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, ρ(b), and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D(p)/D(o), ratio of gas diffusion coefficients in soil and free air) and air permeability (k(a)) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting ρ(b) values ranging from 1.40 to 2.10 g cm(-3). Results showed that D(p) and k(a) values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2mm) under variably-saturated conditions for a given soil-air content (ε), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D(p) and k(a) was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D(p)/D(f), the ratio of measured D(p) to D(p) in total porosity (f), (ii) for air permeability k(a)/k(a)(,pF4.1), the ratio of measured k(a) to k(a) at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content (ε) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D(p)(ε/f) and k(a)(ε/f) models were developed based on a single parameter (water blockage factor M for D(p) and P for k(a)). The water blockage factors, M and P, were found to be linearly correlated to ρ(b) values, and the effects of dry bulk density on D(p) and k(a) for both '+gravel' and '-gravel' fractions were well accounted for by the new models.

  1. Density-matrix-power functional: Performance for finite systems and the homogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Lathiotakis, N. N.; Sharma, S.; Dewhurst, J. K.; Eich, F. G.; Marques, M. A. L.; Gross, E. K. U.

    2009-04-01

    An exchange-correlation energy functional involving fractional power of the one-body reduced density matrix [S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross, Phys. Rev. B 78, 201103(R) (2008)] is applied to finite systems and to the homogeneous electron gas. The performance of the functional is assessed for the correlation and atomization energies of a large set of molecules and for the correlation energy of the homogeneous electron gas. High accuracy is found for these two very different types of systems.

  2. Gas temperature and density measurements based on spectrally resolved Rayleigh-Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Lock, James A.

    1992-01-01

    The use of molecular Rayleigh scattering for measurements of gas density and temperature is evaluated. The technique used is based on the measurement of the spectrum of the scattered light, where both temperature and density are determined from the spectral shape. Planar imaging of Rayleigh scattering from air using a laser light sheet is evaluated for ambient conditions. The Cramer-Rao lower bounds for the shot-noise limited density and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light can be analyzed to obtain density (or pressure) and temperature. Experimental results are presented for planar measurements taken in a heated air stream.

  3. Gas amplification factor in neon-nitrogen filled proportional counters

    NASA Astrophysics Data System (ADS)

    Othman, A.

    1988-07-01

    The gas amplification factor in a cylindrical proportional counter filled with NeN 2 Penning mixtures has been measured (over the range 1 < A < 6.4 × 10 3) to verify the validity of the gas gain formulae of Rose and Korff, Khristov, Williams and Sara, Diethorn and Zastawny. This factor has been found to obey Zastawny's formula over the range of variables studied. The formula of Diethorn can be fitted only for small nitrogen concentrations (below 5 × 10 -4). Constants appropriate to the Zastawny and Diethorn formulae have been determined over a wide range of N 2 concentrations from spectroscopically pure Ne up to 11.1% N 2.

  4. Spectroscopic analysis of the density and temperature gradients in the laser-heated gas jet

    SciTech Connect

    Matthews, D.L.; Lee, R.W.; Auerbach, J.M.

    1981-01-01

    We have performed an analysis of the x-ray spectra produced by a 1.0TW, lambda/sub L/-0.53..mu..m laser-irradiated gas jet. Plasmas produced by ionization of neon, argon and N/sub 2/ + SF/sub 6/ gases were included in those measurements. Plasma electron density and temperature gradients were obtained by comparison of measured spectra with those produced by computer modeling. Density gradients were also obtained using laser interferometry. The limitations of this technique for plasma diagnosis will be discussed.

  5. An exact solution for a rotating selfgravitating gas mass with oscillatory density

    NASA Astrophysics Data System (ADS)

    Schmitz, F.; Ebert, R.

    1986-01-01

    An oscillatory solution of the equations of structure of isothermal selfgravitating gas masses with stationary differential rotation is given. Both the density and the rotational velocity show oscillations. The solution is an axially symmetric analogue to a solution found by Schmid-Burgk (1967) which shows a periodic structure depending on two cartesian coordinates. It falls into two families with distinct density structures but a common rotation law. The physical meaning of the solutions is discussed. In order to draw conclusions about other configurations with differential rotation the authors consider the influence of an applied external gravitational field.

  6. Universal high frequency high momentum behavior of dynamic structure factor in one dimensional interacting boson gas

    NASA Astrophysics Data System (ADS)

    Qi, Ran; Pustilnik, Michael; Tan, Shina

    2014-03-01

    We study the short-distance and short-time structure of density-density correlation in one dimensional repulsively interacting boson gas. A compact universal formula is obtained for the high frequency high momentum asymptotic behavior of dynamic structure factor. We observe non-monotonous behavior in the dependence of DSF on interacting strength and qualitative change in the singular behavior in different region of q2 / ω . Possible experimental applications are discussed. R.Q. is supported by the NSFC under Grant No. 11104157.

  7. Energy Factor Analysis for Gas Heat Pump Water Heaters

    SciTech Connect

    Gluesenkamp, Kyle R

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basis energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.

  8. First Density Correction to the Transport Coefficients for a Square Well Gas: Temperature Dependence and Bound State Effects

    NASA Astrophysics Data System (ADS)

    Garland, Gregory Ellis

    The temperature dependence of transport properties of a moderately dense square well gas is studied in order to understand the effects of attractive forces (particularly bound states). The quantum cluster expansions of the Green -Kubo time correlation functions for the thermal conductivity, shear viscosity, and self-diffusion coefficients are given, and exact expressions to zeroth (Boltzmann level) and first order in the density are obtained. Specializing to Boltzmann statistics and the classical square well potential allows calculations of the kinetic potential parts of the first density correction; the important contributions to the remaining triple collision parts are discussed. Good agreement with molecular dynamics results is found; quantitative difference from real fluids are observed, however. Possible reasons for the discrepancies are discussed. A brief description of the ultility and limitations of the hard sphere model is given for comparison. The dynamics structure factor is calculated for a dense fluid of hard spheres and compared with recent neutron scattering data for Krypton.

  9. Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime

    SciTech Connect

    Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan

    2011-11-15

    In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.

  10. The effective density of randomly moving electrons and related characteristics of materials with degenerate electron gas

    SciTech Connect

    Palenskis, V.

    2014-04-15

    Interpretation of the conductivity of metals, of superconductors in the normal state and of semiconductors with highly degenerate electron gas remains a significant issue if consideration is based on the classical statistics. This study is addressed to the characterization of the effective density of randomly moving electrons and to the evaluation of carrier diffusion coefficient, mobility, and other parameters by generalization of the widely published experimental results. The generalized expressions have been derived for various kinetic parameters attributed to the non-degenerate and degenerate electron gas, by analyzing a random motion of the single type carriers in homogeneous materials. The values of the most important kinetic parameters for different metals are also systematized and discussed. It has been proved that Einstein's relation between the diffusion coefficient and the drift mobility of electrons is held for any level of degeneracy if the effective density of randomly moving carriers is properly taken into account.

  11. X-ray diagnostic for current density profiling relativistic electron beams in vacuum and gas

    SciTech Connect

    Slaughter, D.; Koppel, L.; Smith, J.

    1986-02-15

    An x-ray imaging technique has been studied for the purpose of observing the current density profile in a high-current relativistic electron beam (50 MeV, 10 kA). Calculations and measurements of energy spectra and intensities are in good agreement. Results indicate sufficient photon yield for pinhole imaging when the beam deposits a small part of its energy in high-Z gas or a thin high-Z foil. Characteristic L and K x-ray emission is not found not be a reliable technique due to strong L and K shell fluorescence in the presence of intense bremsstrahlung radiation. It is also found that at pressures on the order of one atmosphere, the density of energy deposition in a gas cell is too small to generate sufficient photon yield for time-resolved measurements.

  12. Modulation of solar flare particles and track density profiles in gas-rich meteorite grains

    NASA Technical Reports Server (NTRS)

    Lee, M. A.

    1976-01-01

    A solution is presented to the problem concerning the time-averaged solar flare particle flux as a function of kinetic energy and distance from the sun for a given particle injection spectrum at the sun within the framework of standard diffusion-convection-adiabatic deceleration theory with the diffusion coefficient independent of distance from the sun. Results of the calculations which give best agreement with observations at 1 AU are presented and discussed, with particular reference to their implications for gas-rich meteorites. Normalization at the orbit of earth is achieved via observed track density versus depth profiles in lunar vug crystals. It is shown that if gas-rich meteorite grains were irradiated in the asteroid belt and if source and modulation parameters have changed little since irradiation, the track density should be 'harder' than the lunar vug profile by about 0.2-0.3 in the index. Quantitative estimation of solar flare particle exposure ages is discussed.

  13. Applications of Screened Hybrid Density Functionals with Empirical Dispersion Corrections to Rare Gas Dimers and Solids.

    PubMed

    Yousaf, Kazim E; Brothers, Edward N

    2010-03-09

    An empirical dispersion correction is added to the range-separated hybrid density functionals HSE and HISS via parametrization versus a standard test bed of weakly bound complexes. The performance of the resulting HSE-D and HISS-D functionals is evaluated by calculating the equilibrium bond length, harmonic frequency, and dissociation energy for a number of rare gas dimers, and the lattice constants, band gaps, and sublimation energies of the rare gas solids. Both HSE-D and HISS-D are shown to provide accurate results for both molecules and extended systems, suggesting that the combination of a screened hybrid functional with an empirical dispersion correction provides an accurate, widely applicable method for use in solid-state and gas-phase electronic structure theory.

  14. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet

  15. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.; Moody, J. D.; Turnbull, D.; Ralph, J.; Michel, P. A.; Hohenberger, M.; Moore, A. S.; Landen, O. L.; Divol, L.; Bradley, D. K.; Hinkel, D. E.; Mackinnon, A. J.; Town, R. P. J.; Meezan, N. B.; Berzak Hopkins, L.; Izumi, N.

    2017-05-01

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Measurements characterized the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc ("near vacuum") and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) was observed. For higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. However, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ˜10% higher than the gas filled hohlraums throughout the main pulse.

  16. HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-09-15

    We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

  17. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    DOE PAGES

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.; ...

    2017-05-11

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) wasmore » observed. Furthermore, for higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less

  18. R-Z Density Mapping and CFD Simulation of Gas Puff Nozzle Flow

    NASA Astrophysics Data System (ADS)

    McKee, Erik; Valenzuela, Julio; Krasheninnikov, Igor; Frazier, Alister; Covington, Aaron; Beg, Farhat; Darling, Tim; Nevada Terawatt Facility Team; University of San Diego Team

    2015-11-01

    Laser induced fluorescence (LIF) is a technique in which a tracer is added to the gas flow for measurement of its spatial and temporal density profile. The Nd:YAG EKSPLA laser 20mJ/150ps at the fourth harmonic 266nm wavelength is focused down to a <1mm pencil beam to excite the acetone tracer. The use of anr ICCD gating camera is necessary because the 4ns short-lived fluorescence state is an order-of-magnitude dimmer than the 200us long-lived phosphorescence state. Mapping the density profile in time and space requires multiple shots. Once the temporal and spatial density profile is obtained, it can be used and benchmarked for two independent CFD software programs using transient solvers: OpenFOAM and FLUENT. The measurements and simulations serve as the initial conditions for (i) Gas Puff experiments that utilize special nozzle contours to inject the gas load between the electrode gap on pulsed-power machines and (ii) use with future MHD modeling efforts. Support for this work is provided by DOE/NNSA grant DE-NA0002075 and funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.

  19. UPDATE OF EPA'S EMISSION FACTORS FOR LANDFILL GAS EMISSIONS

    EPA Science Inventory

    The paper describes an effort to collect updated data and determine if changes are needed to AP-42, a document that provides emission factors characterizing landfill gas (LFG) emissions from sites with and without LFG controls. The work underway includes the types of measurement ...

  20. Investigating the Effect of Complexity Factors in Gas Law Problems

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Kirk, John; Pienta, Norbert J.; Tang, Hui

    2012-01-01

    Undergraduate students were asked to complete gas law questions using a Web-based tool as a first step in our understanding of the role of cognitive load in chemistry word questions and in helping us assess student problem-solving. Each question contained five different complexity factors, which were randomly assigned by the tool so that a…

  1. Investigating the Effect of Complexity Factors in Gas Law Problems

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Kirk, John; Pienta, Norbert J.; Tang, Hui

    2012-01-01

    Undergraduate students were asked to complete gas law questions using a Web-based tool as a first step in our understanding of the role of cognitive load in chemistry word questions and in helping us assess student problem-solving. Each question contained five different complexity factors, which were randomly assigned by the tool so that a…

  2. UPDATE OF EPA'S EMISSION FACTORS FOR LANDFILL GAS EMISSIONS

    EPA Science Inventory

    The paper describes an effort to collect updated data and determine if changes are needed to AP-42, a document that provides emission factors characterizing landfill gas (LFG) emissions from sites with and without LFG controls. The work underway includes the types of measurement ...

  3. Effects of stock density on the laying performance, blood parameter, corticosterone, litter quality, gas emission and bone mineral density of laying hens in floor pens

    PubMed Central

    Kang, H. K.; Park, S. B.; Kim, S. H.; Kim, C. H.

    2016-01-01

    The effects of stocking density on the performance, egg quality, leukocyte concentration, blood biochemistry, corticosterone levels, bone mineral density, and noxious gas emission of laying hens were investigated. Eight hundred 34-week-old Hy-Line Brown laying hens (Gallus gallus domesticus) were randomly assigned to one of 4 treatments, each of which was replicated 4 times. Four stocking densities, including 5, 6, 7, and 10 birds/m2, were compared. A commercial-type basal diet was formulated to meet or exceed nutrient recommendations for laying hens from the National Research Council. The diet was fed to the hens ad libitum for 8 wk. Results indicated that hen-day egg production, egg mass, and feed intake were less for (P < 0.01) 10 birds/m2 stock density than other stock densities. Production rate of floor and broken eggs and eggshell strength were greater (P < 0.01) for 10 birds/m2 stock density than other stock densities. There were no significant differences in the level of leukocytes among densities. However, heterophils and the H/L ratio were greater (P < 0.01) for 10 birds/m2 than in stock density of 6 or 7 birds/m2. Serum corticosterone was greater (P < 0.01) 10 birds/m2 than stock density than other stock densities. Litter moisture and gas emission (CO2 and NH3) were greater (P < 0.01) for 10 birds/m2 than stock density than 6 and 7 birds/m2 stock density. Bone mineral content was not influenced by increasing stock density. However, bone mineral density was less (P < 0.05) for 10 m2 stock density than other stock densities. These results indicate that increasing the density beyond 5 birds/m2 elicits some negative effects on laying performance of Hy-Line brown laying hens. PMID:27578881

  4. Effects of stock density on the laying performance, blood parameter, corticosterone, litter quality, gas emission and bone mineral density of laying hens in floor pens.

    PubMed

    Kang, H K; Park, S B; Kim, S H; Kim, C H

    2016-12-01

    The effects of stocking density on the performance, egg quality, leukocyte concentration, blood biochemistry, corticosterone levels, bone mineral density, and noxious gas emission of laying hens were investigated. Eight hundred 34-week-old Hy-Line Brown laying hens (Gallus gallus domesticus) were randomly assigned to one of 4 treatments, each of which was replicated 4 times. Four stocking densities, including 5, 6, 7, and 10 birds/m(2), were compared. A commercial-type basal diet was formulated to meet or exceed nutrient recommendations for laying hens from the National Research Council. The diet was fed to the hens ad libitum for 8 wk. Results indicated that hen-day egg production, egg mass, and feed intake were less for (P < 0.01) 10 birds/m(2) stock density than other stock densities. Production rate of floor and broken eggs and eggshell strength were greater (P < 0.01) for 10 birds/m(2) stock density than other stock densities. There were no significant differences in the level of leukocytes among densities. However, heterophils and the H/L ratio were greater (P < 0.01) for 10 birds/m(2) than in stock density of 6 or 7 birds/m(2) Serum corticosterone was greater (P < 0.01) 10 birds/m(2) than stock density than other stock densities. Litter moisture and gas emission (CO2 and NH3) were greater (P < 0.01) for 10 birds/m(2) than stock density than 6 and 7 birds/m(2) stock density. Bone mineral content was not influenced by increasing stock density. However, bone mineral density was less (P < 0.05) for 10 m(2) stock density than other stock densities. These results indicate that increasing the density beyond 5 birds/m(2) elicits some negative effects on laying performance of Hy-Line brown laying hens.

  5. Density functional theory of gas-liquid phase separation in dilute binary mixtures.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-22

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas [Formula: see text] (the Gibbs energy of transfer) is considerably larger than the thermal energy [Formula: see text] for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by [Formula: see text], where [Formula: see text] is the solute density added in liquid. For [Formula: see text], phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  6. Density of states in a two-dimensional electron gas: Impurity bands and band tails

    NASA Astrophysics Data System (ADS)

    Gold, A.; Serre, J.; Ghazali, A.

    1988-03-01

    We calculate the density of states of a two-dimensional electron gas in the presence of charged impurities within Klauder's best multiple-scattering approach. The silicon metal-oxide-semiconductor (MOS) system with impurities at the interface is studied in detail. The finite extension of the electron wave function into the bulk is included as well as various dependences of the density of states on the electron, the depletion, and the impurity densities. The transition from an impurity band at low impurity concentration to a band tail at high impurity concentration is found to take place at a certain impurity concentration. If the screening parameter of the electron gas is decreased, the impurity band shifts to lower energy. For low impurity density we find excited impurity bands. Our theory at least qualitatively explains conductivity and infrared-absorption experiments on impurity bands in sodium-doped MOS systems and deep band tails in the gap observed for high doping levels in these systems.

  7. A high density two-dimensional electron gas in an oxide heterostructure on Si (001)

    SciTech Connect

    Jin, E. N.; Kornblum, L.; Kumah, D. P.; Zou, K.; Walker, F. J.; Broadbridge, C. C.; Ngai, J. H.; Ahn, C. H.

    2014-11-01

    We present the growth and characterization of layered heterostructures comprised of LaTiO{sub 3} and SrTiO{sub 3} epitaxially grown on Si (001). Magnetotransport measurements show that the sheet carrier densities of the heterostructures scale with the number of LaTiO{sub 3}/SrTiO{sub 3} interfaces, consistent with the presence of an interfacial 2-dimensional electron gas (2DEG) at each interface. Sheet carrier densities of 8.9 × 10{sup 14} cm{sup −2} per interface are observed. Integration of such high density oxide 2DEGs on silicon provides a bridge between the exceptional properties and functionalities of oxide 2DEGs and microelectronic technologies.

  8. Study of sonic, neutron, and density logging of low-permeability gas sands. Final report

    SciTech Connect

    Osoba, J.S.

    1982-05-01

    Gas accumulations in Lower Tertiary and Upper Cretaceous formations are the object of widespread exploration in the Tight Western Gas Sands. The complex lithology of these formations has hindered the usefulness of the sonic, density, and neutron logs. Current log evaluation practices assume a matrix density of 2.68 gm/cc and a matrix travel-time of 52.6 microseconds/ft. The neutron log is calibrated for a sandstone matrix. Conventional analysis yields inconsistent and often contradictory results. Core and petrographic studies have been made on samples from Lower Tertiary and Upper Cretaceous formations in the Uinta Basin. Results indicated that a carbonate cement has filled much of the original porosity and altered the matrix density. Lower porosity samples tend to be heavily cemented and have matrix densities that approach, and even exceed, 2.68 gm/cc. Higher porosity samples tend to be lightly cemented and have matrix densities that approach 2.65 gm/cc. Log analyses in the Uinta Basin, supplemented by core data, reveal that the higher porosity samples have matrix travel-times that approach 55.6 microseconds/ft. The presence of the carbonate cement does not decrease the matrix travel-times as expected. Laboratory measured matrix travel-times substantiate these conclusions. Log analyses also indicate the neutron log, when calibrated for a sandstone matrix, will not accurately evaluate the higher porosity, non-shaly sandstones. Core and log analyses have been made on samples from the Upper Cretaceous Mesaverde formation in the Greater Green River Basin. The resulting pressure and temperature difference caused the physical properties of the Mesaverde to vary widely within the Greater Green River Basin. Matrix density and matrix travel-time for the Mesaverde are very different for the two wells. Neutron log response also varies considerably.

  9. Gas Transport Parameters for Landfill Final Cover Soil: Measurements and Model Modification by Dry Bulk Density

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric methane (CH4). Until recently, landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest sources of anthropogenic CH4 emission, the final cover system should also be designed for minimizing the greenhouse gases migration into the atmosphere or the areas surrounding the landfill while securing the hydraulic performance. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil, few studies about gas transport characteristics of landfill cover soils have been done. However, recent soil-gas studies implied that the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size are key parameters to understand landfill gaseous performance. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport. In this study, the effects of compaction level and particle size fraction effects on ka and Dp for landfill final cover soil was investigated. The disturbed soil samples were taken from landfill final cover in Japan. A compaction tests were performed for the soil samples with two different size fractions (< 35 mm and < 2.0 mm). In the compaction tests at field water content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm, 2120 cm3) at two different compaction levels [(MP):2700 kN/m2 and (SP):600 kN/m2]. After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential of 0.98, 2.94, 9.81, 1235 kPa and with air-dried and oven-dried conditions. Results showed that measured Dp and ka values for the

  10. Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density

    SciTech Connect

    Surrey, Elizabeth; Porton, Michael

    2011-09-26

    The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D{sup -} beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.

  11. Simulations of gas puff effects on edge density and ICRF coupling in ASDEX upgrade using EMC3-Eirene

    SciTech Connect

    Zhang, W.; Lunt, T.; Bobkov, V.; Coster, D.; Brida, D.; Noterdaeme, J.-M.; Jacquet, P.; Feng, Y.

    2015-12-10

    Simulations were carried out with the 3D plasma transport code EMC3-EIRENE, to study the deuterium gas (D{sub 2}) puff effects on edge density and the coupling of Ion Cyclotron Range of Frequency (ICRF) power in ASDEX Upgrade. Firstly we simulated an inter-ELM phase of an H-mode discharge with a moderate (1.2 × 10{sup 22} electrons/s) lower divertor gas puff. Then we changed the gas source positions to the mid-plane or top of machine while keeping other conditions the same. Cases with different mid-plane or top gas valves are investigated. Our simulations indicate that compared to lower divertor gas puffing, the mid-plane gas puff can enhance the local density in front of the antennas most effectively, while a rather global (toroidally uniform) but significantly smaller enhancement is found for top gas puffing. Our results show quantitative agreement with the experiments.

  12. Optical depth estimates and effective critical densities of dense gas tracers in the inner parts of nearby galaxy discs

    NASA Astrophysics Data System (ADS)

    Jiménez-Donaire, M. J.; Bigiel, F.; Leroy, A. K.; Cormier, D.; Gallagher, M.; Usero, A.; Bolatto, A.; Colombo, D.; García-Burillo, S.; Hughes, A.; Kramer, C.; Krumholz, M. R.; Meier, D. S.; Murphy, E.; Pety, J.; Rosolowsky, E.; Schinnerer, E.; Schruba, A.; Tomičić, N.; Zschaechner, L.

    2017-04-01

    High critical density molecular lines like HCN (1-0) or HCO+ (1-0) represent our best tool to study currently star-forming, dense molecular gas at extragalactic distances. The optical depth of these lines is a key ingredient to estimate the effective density required to excite emission. However, constraints on this quantity are even scarcer in the literature than measurements of the high-density tracers themselves. Here, we combine new observations of HCN, HCO+ and HNC (1-0) and their optically thin isotopologues H13CN, H13CO+ and HN13C (1-0) to measure isotopologue line ratios. We use IRAM 30-m observations from the large programme EMPIRE and new Atacama Large Millimetre/submillimetre Array observations, which together target six nearby star-forming galaxies. Using spectral stacking techniques, we calculate or place strong upper limits on the HCN/H13CN, HCO+/H13CO+ and HNC/HN13C line ratios in the inner parts of these galaxies. Under simple assumptions, we use these to estimate the optical depths of HCN (1-0) and HCO+ (1-0) to be τ ∼ 2-11 in the active, inner regions of our targets. The critical densities are consequently lowered to values between 5 and 20 × 105 cm-3, 1 and 3 × 105 cm-3 and 9 × 104 cm-3 for HCN, HCO+ and HNC, respectively. We study the impact of having different beam-filling factors, η, on these estimates and find that the effective critical densities decrease by a factor of η _{12}/η _{13} τ_{12}. A comparison to existing work in NGC 5194 and NGC 253 shows the HCN/H13CN and HCO+/H13CO+ ratios in agreement with our measurements within the uncertainties. The same is true for studies in other environments such as the Galactic Centre or nuclear regions of active galactic nucleus dominated nearby galaxies.

  13. Gas Surface Density, Star Formation Rate Surface Density, and the Maximum Mass of Young Star Clusters in a Disk Galaxy. II. The Grand-design Galaxy M51

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, Rosa A.; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2013-06-01

    We analyze the relationship between maximum cluster mass and surface densities of total gasgas), molecular gas (\\Sigma _H_2), neutral gas (\\Sigma _{H\\,\\scriptsize{I}}), and star formation rate (ΣSFR) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M_3rd \\propto \\Sigma _H\\,\\scriptsize{I}^{0.4 +/- 0.2}, whereM 3rd is the median of the five most massive clusters. There is no correlation withΣgas,ΣH2, orΣSFR. For clusters younger than 10 Myr, M_3rd \\propto \\Sigma _{H\\,\\scriptsize{I}}^{0.6 +/- 0.1} and M_3rd \\propto \\Sigma _gas^{0.5 +/- 0.2}; there is no correlation with either \\Sigma _H_2 orΣSFR. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M_3rd \\propto \\Sigma _gas^{3.8 +/- 0.3}, M_3rd \\propto \\Sigma _H_2^{1.2 +/- 0.1}, and M_3rd \\propto \\Sigma _SFR^{0.9 +/- 0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet traveled too far from their birth sites, the poor resolution of the radio data compared to the physical sizes of the clusters results in measuredΣ that are likely quite

  14. Molecular density functional theory for water with liquid-gas coexistence and correct pressure

    SciTech Connect

    Jeanmairet, Guillaume Levesque, Maximilien; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-04-21

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  15. Molecular density functional theory for water with liquid-gas coexistence and correct pressure.

    PubMed

    Jeanmairet, Guillaume; Levesque, Maximilien; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-04-21

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  16. Molecular density functional theory for water with liquid-gas coexistence and correct pressure

    NASA Astrophysics Data System (ADS)

    Jeanmairet, Guillaume; Levesque, Maximilien; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-04-01

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  17. Optimizing the hohlraum gas density for better symmetry control of indirect drive implosion experiments

    NASA Astrophysics Data System (ADS)

    Izumi, Nobuhiko; Hall, G. N.; Nagel, S. R.; Khan, S.; Rygg, R. R.; MacKinnon, A. J.; Ho, D. D.; Berzak Hopkins, L.; Jones, O. S.; Town, R. P. J.; Bradley, D. K.

    2014-10-01

    To achieve a spherically symmetric implosion, control of drive uniformity is essential. Both the ablation pressure and the mass ablation rate on the capsule surface should be made as uniform as possible for the duration of the drive. For an indirect drive implosion, the drive uniformity changes during the pulse because of: (1) the dynamic movement of the laser spots due to blow-off of the hohlraum wall, and (2) cross-beam energy transfer caused by laser-plasma interaction in the hohlraum. To tamp the wall blow-off, we use gas filled hohlraums. The cross-beam energy transfer can be controlled by applying a wave length separation between the cones of the laser beams. However, both of those dynamic effects are sensitive to the initial density of the hohlraum gas fill. To assess this, we performed implosion experiments with different hohlraum gas densities and tested the effect on drive asymmetry. The uniformity of the acceleration was measured by in-flight x-ray backlit imaging of the capsule. The uniformity of the core assembly was observed by imaging the self emission x-ray from the core. We will report on the experimental results and compare them to hydrodynamic simulations. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-626372.

  18. Dynamic structure factor of a strongly correlated Fermi superfluid within a density functional theory approach

    NASA Astrophysics Data System (ADS)

    Zou, Peng; Dalfovo, Franco; Sharma, Rishi; Liu, Xia-Ji; Hu, Hui

    2016-11-01

    We theoretically investigate the dynamic structure factor of a strongly interacting Fermi gas at the crossover from Bardeen-Cooper-Schrieffer superfluids to Bose-Einstein condensates, by developing an improved random phase approximation within the framework of a density functional theory (DFT)—the so-called superfluid local density approximation. Compared with the previous random-phase-approximation studies based on the standard Bogoliubov-de Gennes equations, the use of the DFT greatly improves the accuracy of the equation of state at the crossover, and leads to a better description of both collective Bogoliubov-Anderson-Goldstone phonon mode and single-particle fermionic excitations at small transferred momentum. Near unitarity, where the s-wave scattering length diverges, we show that the single-particle excitations start to significantly contribute to the spectrum of dynamic structure factor once the frequency is above a threshold of the energy gap at 2{{Δ }}. The sharp rise in the spectrum at this threshold can be utilized to measure the pairing gap Δ. Together with the sound velocity determined from the phonon branch, the dynamic structure factor provides us some key information of the crossover Fermi superfluid. Our predictions could be examined in experiments with 6Li or 40K atoms using Bragg spectroscopy.

  19. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil

    SciTech Connect

    Wickramarachchi, Praneeth; Kawamoto, Ken; Hamamoto, Shoichiro; Nagamori, Masanao; Moldrup, Per; Komatsu, Toshiko

    2011-12-15

    Highlights: > The effects of soil physical properties on gas transport parameters were investigated. > Higher values of D{sub p} and k{sub a} exhibited in the '+gravel' than the '-gravel' fraction at same soil-air content ({epsilon}). > Recent power law models for D{sub p} (WLR) and k{sub a} (RPL) were modified. > Model parameters were linearly related to easily measurable dry bulk density ({rho}{sub b}). - Abstract: Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, {rho}{sub b}, and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D{sub p}/D{sub o}, ratio of gas diffusion coefficients in soil and free air) and air permeability (k{sub a}) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting {rho}{sub b} values ranging from 1.40 to 2.10 g cm{sup -3}. Results showed that D{sub p} and k{sub a} values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2 mm) under variably-saturated conditions for a given soil-air content ({epsilon}), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D{sub p} and k{sub a} was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D{sub p}/D{sub f}, the ratio of measured D{sub p} to D{sub p} in total porosity (f), (ii) for air permeability k{sub a}/k{sub a,pF4.1}, the ratio of measured k{sub a} to k{sub a} at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content ({epsilon}) to total porosity (f) (air

  20. Reproductive factors affecting the bone mineral density in postmenopausal women.

    PubMed

    Ozdemir, Ferda; Demirbag, Derya; Rodoplu, Meliha

    2005-03-01

    Osteoporosis has been defined as a metabolic bone disease characterized by a loss of bone mineral density (BMD) greater than 2.5 standard deviations below young adult peak bone mass or the presence of fracture. By considering that some factors related to female reproductive system might influence the ultimate risk of osteoporosis, we aimed to investigate if a relationship exists between the present BMD of postmenopausal women with their past and present reproductive characteristics. The present study focused on how BMD could be affected by the following factors in postmenopausal women, such as age at menarche, age at first pregnancy, the number of pregnancies and total breast-feeding time. We reviewed detailed demographic history of 303 postmenopausal women. According to the results of the present study, a negative correlation was found between the number of parities and BMD. The BMD values decreased as the number of pregnancies increased. When the BMD values for lumbar vertebrae 2 and Ward's triangle were investigated, it was observed that a significant difference exists between the women with no child birth and those with more than five parities. There was a significant relationship between age at first pregnancy and BMD values at the lumbar vertebrae 2 and Ward's triangle. Women who had five or more abortions were found to have significantly lower spine BMD values compared to women who had no abortions or women who had one or two abortions. These findings indicate that the increased risk of osteoporosis is associated with the increased number of pregnancies and abortions and higher age at first pregnancy.

  1. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus)

    PubMed Central

    Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi

    2016-01-01

    ABSTRACT Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg−1, closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m−3 at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m−3, which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. PMID:27296044

  2. Density characterization of tapered super-sonic gas jet targets for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Golovin, Gregory; Grace, Emily; Banerjee, Sudeep; Petersen, Chad; Brown, Kevin; Mills, Jared; Chen, Shouyuan; Liu, Cheng; Umstadter, Donald

    2012-10-01

    Phase slippage between plasma wave and electron bunch limits maximum energy gain in laser-wakefield acceleration. Plasma-density spatial tailoring has been proposed as a way to overcome this dephasing problem [1]. In practice, such tailoring can be achieved in super-sonic gas jets by use of a nozzle with a tapered orifice. We have developed a 3-D temporally-resolved interferometric tomography technique to characterize dynamical density distribution of such gas jets. The SIRT (Simultaneous Iterative Reconstructive Technique) algorithm [2] was implemented. We also present preliminarily results on laser wakefield acceleration in the tailored gradient density profiles resulting from use of the characterized jets as targets. [4pt] [1] W. Rittershofer, C. B. Schroeder, E. Esarey, F. J. Gr"uner, and W. P. Leemans, ``Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators,'' Physics of Plasmas 17, 063104, (2010). [0pt] [2] P. Gilbert, ``Iterative methods for the three-dimensional reconstruction of an object from projections,'' Journal of Theoretical Biology 36, 105 (1972).

  3. Validity of power functionals for a homogeneous electron gas in reduced-density-matrix-functional theory

    NASA Astrophysics Data System (ADS)

    Putaja, A.; Eich, F. G.; Baldsiefen, T.; Räsänen, E.

    2016-03-01

    Physically valid and numerically efficient approximations for the exchange and correlation energy are critical for reduced-density-matrix-functional theory to become a widely used method in electronic structure calculations. Here we examine the physical limits of power functionals of the form f (n ,n') =(nn')α for the scaling function in the exchange-correlation energy. To this end we obtain numerically the minimizing momentum distributions for the three- and two-dimensional homogeneous electron gas, respectively. In particular, we examine the limiting values for the power α to yield physically sound solutions that satisfy the Lieb-Oxford lower bound for the exchange-correlation energy and exclude pinned states with the condition n (k )<1 for all wave vectors k . The results refine the constraints previously obtained from trial momentum distributions. We also compute the values for α that yield the exact correlation energy and its kinetic part for both the three- and two-dimensional electron gas. In both systems, narrow regimes of validity and accuracy are found at α ≳0.6 and at rs≳10 for the density parameter, corresponding to relatively low densities.

  4. Speckle measurements of density and temperature profiles in a model gas circuit breaker

    NASA Astrophysics Data System (ADS)

    Stoller, P. C.; Panousis, E.; Carstensen, J.; Doiron, C. B.; Färber, R.

    2015-01-01

    Speckle imaging was used to measure the density and temperature distribution in the arc zone of a model high voltage circuit breaker during the high current phase and under conditions simulating those present during current-zero crossings (current-zero-like arc); the arc was stabilized by a transonic, axial flow of synthetic air. A single probe beam was used; thus, accurate reconstruction was only possible for axially symmetric gas flows and arc channels. The displacement of speckles with respect to a reference image was converted to a line-of-sight integrated deflection angle, which was in turn converted into an axially symmetric refractive index distribution using a multistep process that made use of the inverse Radon transform. The Gladstone-Dale relation, which gives the index of refraction as a function of density, was extended to high temperatures by taking into account dissociation and ionization processes. The temperature and density were determined uniquely by assuming that the pressure distribution in the case of cold gas flow (in the absence of an arc) is not modified significantly by the arc. The electric conductivity distribution was calculated from the temperature profile and compared to measurements of the arc voltage and to previous results published in the literature for similar experimental conditions.

  5. Enhanced gas adsorption on graphitic substrates via defects and local curvature: A density functional theory study

    DOE PAGES

    Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; ...

    2014-03-24

    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces inmore » buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are similar, although CO2 binding is generally stronger by ~4 to 5 kJ mol–1. Furthermore, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gas-selective sensors.« less

  6. Enhanced gas adsorption on graphitic substrates via defects and local curvature: A density functional theory study

    SciTech Connect

    Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; Ayappa, K. Ganapathy; Narasimhan, Shobhana

    2014-03-24

    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are similar, although CO2 binding is generally stronger by ~4 to 5 kJ mol–1. Furthermore, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gas-selective sensors.

  7. Measurement of OH density and gas temperature in incipient spark-ignited hydrogen-air flame

    SciTech Connect

    Ono, Ryo; Oda, Tetsuji

    2008-01-15

    To investigate the electrostatic ignition of hydrogen-air mixtures, the density of OH radicals and the gas temperature are measured in an incipient spark-ignited hydrogen-air flame using laser-induced predissociation fluorescence (LIPF). The assessment of the electrostatic hazard of hydrogen is necessary for developing hydrogen-based energy systems in which hydrogen is used in fuel cells. The spark discharge occurs across a 2-mm gap with pulse duration approximately 10 ns. First, a hydrogen (50%)-air mixture is ignited by spark discharge with E=1.35E{sub -}, where E is the spark energy and E{sub -} is the minimum ignition energy. In this mixture, OH density decreases after spark discharge. It is 3 x 10{sup 16}cm{sup -3} at t=0{mu}s and 4 x 10{sup 15}cm{sup -3} at t=100{mu}s, where t is the postdischarge time. On the other hand, the gas temperature increases after spark discharge. It is 900 K at t=30{mu}s and 1400 K at t=200{mu}s. Next, a stoichiometric (hydrogen (30%)-air) mixture is ignited by spark discharge with E=1.25E{sub -}. In this mixture, OH density is approximately constant at 4 x 10{sup 16}cm{sup -3} for 150 {mu}s after spark discharge, and the gas temperature increases from 1000 K (t=0{mu}s) to 1800 K (t=150{mu}s). (author)

  8. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    PubMed

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  9. Column Density Maps of the I-GALFA HI Survey: Evidence for Dark Gas?

    NASA Astrophysics Data System (ADS)

    Gibson, Steven J.; Koo, B.; Douglas, K. A.; Newton, J. H.; Peek, J. E.; Hughes, J. M.; Spraggs, M.; Park, G.; Kang, J.; Heiles, C. E.; Korpela, E. J.

    2014-01-01

    The gas in galactic disks, including our own, occurs in a wide range of temperatures and densities, most of which are unsuitable for star formation. Somehow, diffuse atomic clouds are collected into colder, denser molecular clouds that can collapse under their own gravity. The molecular condensation process is not directly observable, and the gas itself is often ``dark'' to standard probes like optically thin HI 21cm emission or the CO 2.6mm line. However, the presence of this dark gas can often be inferred from infrared dust emission in excess of what is expected for the observed HI and CO content. We have mapped apparent HI column densities in the Inner-Galaxy Arecibo L-band Feed Array (I-GALFA) survey, which covers a 1600 square degree region at 4-arcminute resolution in the first Galactic quadrant. We compare these ``naive'' HI columns to others derived from Planck first-release CO and dust maps and NE2001 model dispersion measures to identify a number of areas with potentially significant dark gas. We discuss whether optically thick HI or CO-free H2 is more likely to dominate the dark column, and we consider the effects of possible biases on our results. We acknowledge support from the National Science Foundation, the NASA Kentucky Space Grant Consortium, Western Kentucky University, and the Gatton Academy. I-GALFA (www.naic.edu igalfa) is a GALFA-HI survey observed with the 7-beam ALFA receiver on the 305-meter William E. Gordon Telescope. The Arecibo Observatory is a U.S. National Science Foundation facility operated under sequential cooperative agreements with Cornell University and SRI International, the latter in alliance with the Ana G. Mendez-Universidad Metropolitana and the Universities Space Research Association.

  10. Minimal framework density molecular sieves for natural gas storage. Final report, January 1992-April 1993

    SciTech Connect

    Szostak, R.

    1993-02-10

    A study of the ability of the aluminophosphate family of molecular sieves to adsorb methane is summarized. The work examines the sieves chosen for their lowest framework density and smallest pore diameter system. These materials represent a possible improvement in systems for on-board storage of natural gas as their physical properties can improve methane capacity inside the cavities and maximize framework-adsorbate interaction. The study details the topology of the aluminophospate molecular sieves and compares them to the aluminosilicate zeolites. Experimental procedures for synthesizing the sieves are described.

  11. Time-dependent density functional theory molecular dynamics simulation of doubly charged uracil in gas phase

    NASA Astrophysics Data System (ADS)

    López-Tarifa, Pablo; Hervé du Penhoat, Marie-Anne; Vuilleumier, Rodophe; Gaigeot, Marie-Pierre; Rothlisberger, Ursula; Tavernelli, Ivano; Le Padellec, Arnaud; Champeaux, Jean-Philippe; Alcamí, Manuel; Moretto-Capelle, Patrick; Martín, Fernando; Politis, Marie-Françoise

    2014-02-01

    We use time-dependent density functional theory and Born-Oppenheimer molecular dynamics methods to investigate the fragmentation of doubly ionized uracil in gas phase. Different initial electronic excited states of the dication are obtained by removing electrons from different inner-shell orbitals of the neutral species. We show that shape-equivalent orbitals lead to very different fragmentation patterns revealing the importance of the intramolecular chemical environment. The results are in good agreement with ionion coincidence measurements of uracil collision with 100 keV protons.

  12. Fission-gas release from uranium nitride at high fission rate density

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Kirchgessner, T. A.; Tambling, T. N.

    1973-01-01

    A sweep gas facility has been used to measure the release rates of radioactive fission gases from small UN specimens irradiated to 8-percent burnup at high fission-rate densities. The measured release rates have been correlated with an equation whose terms correspond to direct recoil release, fission-enhanced diffusion, and atomic diffusion (a function of temperature). Release rates were found to increase linearly with burnups between 1.5 and 8 percent. Pore migration was observed after operation at 1550 K to over 6 percent burnup.

  13. Gas density structure of supersonic flows impinged on by thin blades for laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Mao, H.-S.; Swanson, K. K.; Tsai, H.-E.; Barber, S. K.; Steinke, S.; van Tilborg, J.; Geddes, C. G. R.; Leemans, W. P.

    2017-03-01

    Density transition injection is an effective technique for controllably loading electrons into a trapped phase for laser-plasma accelerators. One common technique to achieve this fluid phenomenon is to impinge a thin blade on the plume of a supersonic nozzle. 2-D simulations show that the density transition accessible to a transverse laser is produced by a rapid re-expansion of the high pressure region behind the initial bow shock, and not by the bow shock produced by the blade, as is commonly thought. This pressure mismatched re-expansion generates compression waves that could coalesce into shock-fronts as they interact with the surrounding ambient gas. This has consequences when interpreting the electron injection mechanism. In the simulations presented here, the fluid dynamics of a supersonic nozzle impinged on by a thin, flat object is explored, along with the implications for electron beam injectors in laser-plasma accelerators.

  14. The application of laser Rayleigh scattering to gas density measurements in hypersonic helium flows

    NASA Technical Reports Server (NTRS)

    Hoppe, J. C.; Honaker, W. C.

    1979-01-01

    Measurements of the mean static free-stream gas density have been made in two Langley Research Center helium facilities, the 3-inch leg of the high-Reynolds-number helium complex and the 22-inch hypersonic helium tunnel. Rayleigh scattering of a CW argon ion laser beam at 514.5 nm provided the basic physical mechanism. The behavior of the scattered signal was linear, confirmed by a preliminary laboratory study. That study also revealed the need to introduce baffles to reduce stray light. A relatively simple optical system and associated photon-counting electronics were utilized to obtain data for densities from 10 to the 23rd to 10 to the 25th per cu m. The major purpose, to confirm the applicability of this technique in the hypersonic helium flow, was accomplished.

  15. The application of laser Rayleigh scattering to gas density measurements in hypersonic helium flows

    NASA Technical Reports Server (NTRS)

    Hoppe, J. C.; Honaker, W. C.

    1979-01-01

    Measurements of the mean static free-stream gas density have been made in two Langley Research Center helium facilities, the 3-inch leg of the high-Reynolds-number helium complex and the 22-inch hypersonic helium tunnel. Rayleigh scattering of a CW argon ion laser beam at 514.5 nm provided the basic physical mechanism. The behavior of the scattered signal was linear, confirmed by a preliminary laboratory study. That study also revealed the need to introduce baffles to reduce stray light. A relatively simple optical system and associated photon-counting electronics were utilized to obtain data for densities from 10 to the 23rd to 10 to the 25th per cu m. The major purpose, to confirm the applicability of this technique in the hypersonic helium flow, was accomplished.

  16. Vascular endothelial growth factor and intratumoral microvessel density as prognostic factors in endometrial cancer.

    PubMed

    Topolovec, Zlatko; Corusić, Ante; Babić, Damir; Mrcela, Milanka; Sijanović, Sinisa; Müller-Vranjes, Andrijana; Curzik, Darko

    2010-06-01

    The aim of this research was to determine the VEGF A expression in tumor cells and the intratumoral microvessel density and their prognostic significance in the survival of the subjects. 87 subjects were monitored retrospectively for a period of 60 to 132 months. The subjects were treated at the Department of Obstetrics and Gynecology of Osijek University Hospital Center, Croatia. We analysed standard clinical, pathohistological and therapeutical prognostic factors, intratumoral microvessel density and expression of VEGF A. Five-year survival was calculated by the life chart method and presented graphically by Kaplan-Meier curves. Reaching conclusions on statistical hypotheses in this paper was done with a reliability level p < 0.05. Of the analyzed clinical prognostic factors, those which proved to be statistically significant and independent prognostic factors were age and clinical stage of the disease, and of pathohistologic ones it was the depth of myometrial invasion and VEGF expression. An elevated VEGF expression is associated with deep myometrial invasion, poorly differentiated tumors, histologic type and intratumoral microvessel density to a statistically significant degree. Elevated VEGF expression, age, FIGO stage and depth of myometrial invasion play a significant prognostic role in patients with endometrial cancer. VEGF receptors could be a target for adjuvant therapy in VEGF positive endometrial cancer.

  17. Density functional theory of gas-liquid phase separation in dilute binary mixtures

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-01

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas Δ {μ\\text{s}} (the Gibbs energy of transfer) is considerably larger than the thermal energy {{k}\\text{B}}T for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by {{k}\\text{B}}Tn2\\ell\\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right) , where n2\\ell is the solute density added in liquid. For \\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right)\\gg 1 , phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  18. Spatial Density Distributions and Correlations in a Quasi-one-Dimensional Polydisperse Granular Gas

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Zhang, Duan-Ming

    2009-02-01

    By Monte Carlo simulations, the effect of the dispersion of particle size distribution on the spatial density distributions and correlations of a quasi one-dimensional polydisperse granular gas with fractal size distribution is investigated in the same inelasticity. The dispersive degree of the particle size distribution can be measured by a fractal dimension df, and the smooth particles are constrained to move along a circle of length L, colliding inelastically with each other and thermalized by a viscosity heat bath. When the typical relaxation time τ of the driving Brownian process is longer than the mean collision time τc, the system can reach a nonequilibrium steady state. The average energy of the system decays exponentially with time towards a stable asymptotic value, and the energy relaxation time τB to the steady state becomes shorter with increasing values of df. In the steady state, the spatial density distribution becomes more clusterized as df increases, which can be quantitatively characterized by statistical entropy of the system. Furthermore, the spatial correlation functions of density and velocities are found to be a power-law form for small separation distance of particles, and both of the correlations become stronger with the increase of df. Also, the density clusterization is explained from the correlations.

  19. Level density of a Fermi gas and integer partitions: A Gumbel-like finite-size correction

    SciTech Connect

    Roccia, Jerome; Leboeuf, Patricio

    2010-04-15

    We investigate the many-body level density of a gas of noninteracting fermions. We determine its behavior as a function of the temperature and the number of particles. As the temperature increases, and beyond the usual Sommerfeld expansion that describes the degenerate gas behavior, corrections due to a finite number of particles lead to Gumbel-like contributions. We discuss connections with the partition problem in number theory, extreme value statistics, and differences with respect to the Bose gas.

  20. High-speed digital holography for neutral gas and electron density imaging

    SciTech Connect

    Granstedt, E. M.; Thomas, C. E.; Kaita, R.; Majeski, R.; Baylor, L. R.; Meitner, S. J.; Combs, S. K.

    2016-05-15

    An instrument was developed using digital holographic reconstruction of the wavefront from a CO{sub 2} laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1–25 μs pulses from a continuous-wave CO{sub 2} laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations.

  1. Gas Transport and Density Control in the HYLIFE Heavy-Ion Beam Lines

    SciTech Connect

    Debonnel, Christophe S.; Welch, Dale R.; Rose, David V.; Lawrence, Simon S.Yu; Peterson, Per F

    2003-05-15

    The effective propagation and focusing of heavy-ion beams in the final-focus magnet region of inertial fusion target chambers require controlling the background gas density and pressure in the beam tubes. Liquid vortexes will coat the inside of the tubes next to the beam ports and will help eliminate the need for mechanical shutters to mitigate the venting of target chamber background gas into the final-focus magnet region. Before the neutralizing region, the beam space charge is high, and ablation and target debris deposition in the final-focus magnet region may cause voltage breakdown. Previous studies focused on evaluating the amount of target chamber debris reaching the entrance of the beam ports. The TSUNAMI code has now been used to assess the density, temperature, and velocity of the vortex debris transported {approx}3 m up the beam tubes and reaching the final-focus magnet region, assuming that the liquid vortexes are perfectly absorbing surfaces. To further mitigate debris deposition in the final-focus magnet region, and prevent voltage breakdown, a 'magnetic shutter' has been envisaged to divert the debris out of the final-focus region. This shutter will prevent the hot ablation debris from reaching the magnet region and, coupled to some ionizing scheme, will conveniently suppress early ingression of debris into the final-focus magnet region.

  2. High-speed digital holography for neutral gas and electron density imaging.

    PubMed

    Granstedt, E M; Thomas, C E; Kaita, R; Majeski, R; Baylor, L R; Meitner, S J; Combs, S K

    2016-05-01

    An instrument was developed using digital holographic reconstruction of the wavefront from a CO2 laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1-25 μs pulses from a continuous-wave CO2 laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations.

  3. Very high-density planets: a possible remnant of gas giants.

    PubMed

    Mocquet, A; Grasset, O; Sotin, C

    2014-04-28

    Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets.

  4. Accurate ab initio potential for the krypton dimer and transport properties of the low-density krypton gas.

    PubMed

    Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo

    2015-05-28

    A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range.

  5. Associations of Breast Density With Demographic, Reproductive, and Lifestyle Factors in a Developing Southeast Asian Population.

    PubMed

    Dung Yun Trieu, Phuong; Mello-Thoms, Claudia; Peat, Jennifer K; Doan Do, Thuan; Brennan, Patrick C

    2017-07-01

    The aim of this study was to investigate how breast density interacted with demographic, reproductive, and lifestyle features among Vietnamese women. Mammographic density and established risk factors for breast cancer were collected from 1651 women (345 cancer cases and 1306 normal cases) in Vietnam. The association of breast density categories with potential risk factors was investigated using Spearman's test for continuous variables and χ(2) tests for categorical variables. Independent factors associated with high breast density and breast cancer in specific density groupings were assessed using logistic regression. Results showed that high breast density was significantly associated with young age, low body mass index, low number of children, early age at having the last child, premenopausal status, and increased vegetable consumption. Reproductive factors were key agents associated with breast cancer for women with high breast density, which was not so evident for women with low breast density.

  6. TEMPERATURE AND DENSITY DISTRIBUTION IN THE MOLECULAR GAS TOWARD WESTERLUND 2: FURTHER EVIDENCE FOR PHYSICAL ASSOCIATION

    SciTech Connect

    Ohama, A.; Dawson, J. R.; Furukawa, N.; Kawamura, A.; Moribe, N.; Yamamoto, H.; Okuda, T.; Mizuno, N.; Onishi, T.; Fukui, Y.; Maezawa, H.; Mizuno, A.; Minamidani, T.

    2010-02-01

    Furukawa et al. reported the existence of a large mass of molecular gas associated with the super star cluster Westerlund 2 and the surrounding H II region RCW49, based on a strong morphological correspondence between NANTEN2 {sup 12}CO(J = 2-1) emission and Spitzer IRAC images of the H II region. We here present temperature and density distributions in the associated molecular gas at approx3.5 pc resolution, as derived from a large velocity gradient analysis of the {sup 12}CO(J = 2-1), {sup 12}CO(J = 1-0), and {sup 13}CO(J = 2-1) transitions. The kinetic temperature is as high as approx60-150 K within a projected distance of approx5-10 pc from Westerlund 2 and decreases to as low as approx10 K away from the cluster. The high temperature provides robust verification that the molecular gas is indeed physically associated with the H II region, supporting Furukawa et al.'s conclusion. The derived temperature is also roughly consistent with theoretical calculations of photodissociation regions (PDRs), while the low spatial resolution of the present study does not warrant a more detailed comparison with PDR models. We suggest that the molecular clouds presented here will serve as an ideal laboratory to test theories on PDRs in future higher resolution studies.

  7. He Interpolation Gas Thermometry with Different Virial Coefficients and Gas Densities and Model Calculation of a Temperature Profile with Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Tamura, O.; Nakano, T.; Takasu, S.

    2015-08-01

    He interpolating constant-volume gas thermometer scales are compared using different virial coefficients and gas densities for a temperature range of 3 K to the triple point of Ne (24.5561 K). The differences between the International Temperature Scale of 1990 (ITS-90) and the interpolation scale, which follows the definition of the ITS-90 but uses the second and third virial coefficients of the recent ab initio calculations, have maxima of about 0.08 mK and 0.13 mK for gas densities of and , respectively. The differences between the ITS-90 and the interpolation scale using only the ab initio second virial coefficient have maxima of about 0.08 mK and 0.14 mK for the same respective sequence of gas densities. The ITS-90 temperatures obtained in eight runs with gas densities from to agree with a polynomial of the resistance of a rhodium-iron resistance thermometer within 0.2 mK. To calculate the temperature profile along the pressure-sensing tube connecting the low temperature part of the constant-volume gas thermometer to room temperature, a calculation model is proposed that takes into account not only the thermal conductivity of the tube wall but also the radiative heat transfer between the tube and the vacuum jacket enclosing it. The calculation results of this model approximate the measured profile better than the conventional calculations that neglect the radiative heat transfer.

  8. Flowing afterglow measurements of the density dependence of gas-phase ion-ion mutual neutralization reactions

    NASA Astrophysics Data System (ADS)

    Shuman, Nicholas S.; Viggiano, Albert A.; Johnsen, Rainer

    2013-05-01

    We have studied the dependence of several ion-ion mutual neutralization (MN) reactions on helium density in the range from 1.6 × 1016 to 1.5 × 1017 cm-3 at 300 K, using the Variable Electron and Neutral Density Attachment Mass Spectrometry method. The rate coefficients of the reactions Ar+ + Br2-, Ar+ + SF6-, and Ar+ + C7F14- were found to be independent of gas density over the range studied, in disagreement with earlier observations that similar MN reactions are strongly enhanced at the same gas densities. The cause of the previous enhancement with density is traced to the use of "orbital-motion-limit" theory to infer ion densities from the currents collected by ion-attracting Langmuir probes in a region where it is not applicable.

  9. Flowing afterglow measurements of the density dependence of gas-phase ion-ion mutual neutralization reactions

    SciTech Connect

    Shuman, Nicholas S.; Viggiano, Albert A.; Johnsen, Rainer

    2013-05-28

    We have studied the dependence of several ion-ion mutual neutralization (MN) reactions on helium density in the range from 1.6 Multiplication-Sign 10{sup 16} to 1.5 Multiplication-Sign 10{sup 17} cm{sup -3} at 300 K, using the Variable Electron and Neutral Density Attachment Mass Spectrometry method. The rate coefficients of the reactions Ar{sup +}+ Br{sub 2}{sup -}, Ar{sup +}+ SF{sub 6}{sup -}, and Ar{sup +}+ C{sub 7}F{sub 14}{sup -} were found to be independent of gas density over the range studied, in disagreement with earlier observations that similar MN reactions are strongly enhanced at the same gas densities. The cause of the previous enhancement with density is traced to the use of 'orbital-motion-limit' theory to infer ion densities from the currents collected by ion-attracting Langmuir probes in a region where it is not applicable.

  10. Can mammographic assessments lead to consider density as a risk factor for breast cancer?

    PubMed

    Colin, C; Prince, V; Valette, P J

    2013-03-01

    Admitting that mammographic breast density is an important independent risk factor for breast cancer in the general population, has a crucial economical health care impact, since it might lead to increasing screening frequency or reinforcing additional modalities. Thus, the impact of density as a risk factor has to be carefully investigated and might be debated. Some authors suggested that high density would be either a weak factor or confused with a masking effect. Others concluded that most of the studies have methodological biases in basic physics to quantify percentage of breast density, as well as in mammographic acquisition parameters. The purpose of this review is to evaluate mammographic procedures and density assessments in published studies regarding density as a breast cancer risk. No standardization was found in breast density assessments and compared density categories. High density definitions varied widely from 25 to 75% of dense tissues on mammograms. Some studies showed an insufficient follow-up to reveal masking effect related to mammographic false negatives. Evaluating breast density impact needs thorough studies with consensual mammographic procedures, methods of density measurement, breast density classification as well as a standardized definition of high breast density. Digital mammography, more effective in dense breasts, should help to re-evaluate the issue of density as a risk factor for breast cancer. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Effects of density stratification in driving zonal flow in gas giants

    NASA Astrophysics Data System (ADS)

    Gastine, T.; Wicht, J.

    2011-12-01

    The banded structures at the surfaces of Jupiter and Saturn are associated with prograde and retrograde zonal flows. The depth of these jets remains however poorly known. Theoretical scenarios range from ``shallow models'', that assume that zonal flows are restricted to a very thin layer close to the surface; to ``deep models'' that suppose that the jets involve the whole molecular shell (typically 104 kms). The latter idea was supported by fully 3-D numerical simulations (e.g. Heimpel, 2005) using the Boussinesq approximation, meaning that the background properties (temperature, density, ...) are constant with radius (Christensen, 2002). While this approximation is suitable for liquid iron cores of planets, it is more questionable in the envelopes of gas giants, where density increases by several orders of magnitude (Guillot, 1999). The anelastic approximation provides a more realistic framework to simulate the dynamics of zonal flows as it allows compressibility effects, while filtering out fast acoustic waves (Lantz & Fan, 1999). Recent anelastic simulations suggest that including compressibility effects yields interesting differences to Boussinesq approaches (Jones, 2009; Showman et al., 2011). Here, we therefore adopt an anelastic formulation to simulate 3-D compressible flows in rapidly rotating shells. We have conducted a systematic parametric study on the effects of background density stratification and analysed the influences on both convective flows and zonal jets. Despite the strong dependence of convection on the density stratification (i.e. the typical lengthscale of convective flows decreases when compressibility increases), the comparison between Boussinesq and anelastic simulations reveals striking common features: the latitudinal extent, the amplitude and the number of zonal jets is found to be nearly independent of the density stratification, provided convection is strongly driven. Mass-weighted properties of the flow (and notably a mass

  12. Exchange Energy Density Functionals that reproduce the Linear Response Function of the Free Electron Gas

    NASA Astrophysics Data System (ADS)

    García-Aldea, David; Alvarellos, J. E.

    2009-03-01

    We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).

  13. Magnetic properties of the low-density two- and three- dimensional gas

    NASA Astrophysics Data System (ADS)

    Ceperley, David

    2004-03-01

    Path Integral Monte Carlo was used to calculate[1] defect energies and exchange frequencies in a clean 2d Wigner crystal. Agreement with WKB calculations is found at very low density, but the results show an enhanced increase with density near melting, perhaps diverging at melting. Remarkably, the exchange Hamiltonian closely resembles the measured exchanges in 2d 3He. Using the resulting multi-spin exchange model we find the spin Hamiltonian is a frustrated antiferromagnet, with a spin liquid ground state. We discuss evidence that long ring exchanges are a precursor to melting. To determine the state of spin polarization of the 3D electron gas at very low densities and zero temperature, Diffusion Quantum Monte Carlo was used to calculate[2] the energy versus spin polarization. We find a second order phase transition to a partially polarized phase at rs = 50 ± 2. The magnetic transition temperature is estimated using the Stoner model. [1] Bernu, B., L. Candido and D. M. Ceperley, Phys. Rev. Lett. 86, 870-873 (2001). [2] Zong, F. H, C. Lin and D. M. Ceperley, Phys. Rev. E 66, 036703:1-7 (2002).

  14. Current-density functional theory of the friction of ions in an interacting electron gas.

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Pitarke, J. M.; Takada, Y.; Vignale, G.; Chang, Y.-C.

    2007-03-01

    Recently [1], the dynamical contribution to the friction coefficient of an electron gas for ions has been obtained quite generally in terms of the exchange and correlation (xc) kernel of the time-dependent density-functional theory (TDDFT). To implement this approach practically, an efficient approximation, like the local-density approximation (LDA), is needed for the dynamical xc kernel. It is, however, known that the scalar xc kernel of the TDDFT is a nonlocal quantity for which the LDA is not only inaccurate, but also contradictory [2]. Here we recast the theory into the terms of the tensorial xc kernel of the current-density functional theory [3] in which form the LDA can be applied. Our numerical results are in a considerably better agreement with the experimental stopping power of Al than it has been the case within the LDA to the TDDFT. [1] V.U.Nazarov et al., Phys. Rev. B71, 121106 (2005). [2] G.Vignale, Phys. Lett. A209, 206 (1995). [3] G.Vignale and W.Kohn, Phys. Rev. Lett. 77, 2037 (1996).

  15. Linking stomata geometries and densities to leaf gas exchange - new opportunities and old pitfalls

    NASA Astrophysics Data System (ADS)

    Schymanski, Stanislaus; Singer, Thomas; Or, Dani

    2017-04-01

    Historical trends in stomatal sizes and numbers are believed to be directly related to trends in atmospheric CO2 concentrations, where lower atmospheric CO2 concentrations selected for larger leaf conductance to achieve adequate CO2 assimilation rates. In addition to affecting maximum stomatal conductance, stomatal size is considered to affect transition time between full opening and full closure with smaller stomata responding faster. Stomatal sizes and numbers are often deduced by direct microscopy of leaf surfaces (fresh or fossil), or from nail polish imprints obtained from leaf epidermis. The maximum stomatal conductance is then calculated for fully open stomata of assumed aperture shape based on gas diffusion from within the leaf across a leaf boundary layer. Direct microscopic observations of leaves in specialised gas exchange chambers or snap-frozen leaves right after removal from a gas exchange chamber enabled correlation of actual stomatal apertures with directly measured bulk stomatal conductance. We combined systematic analyses of stomatal conductance and response times with laser scanning microscopy of epidermis imprints using fast setting dental imprint that preserve highly resolved stomatal apertures after removal from a gas exchange chamber. The simplicity of data collection relative to previous approaches enables data collection across a range of species with different stomatal sizes and numbers. The dataset was used to evaluate the adequacy of different physically-based stomatal conductance formulas based on geometrical attributes relative to measured conductance for a range of external CO2 concentrations. We also investigated the link between stomata size and response time to environmental perturbation. Results point to uncertainties in inferred geometrical attributes and suggest highly patchy stomatal opening that complicates links between stomata aperture and density for estimation of actual stomatal conductance. Additionally, we identified

  16. Finite-density corrections to the unitary Fermi gas: A lattice perspective from dynamical mean-field theory

    SciTech Connect

    Privitera, Antonio; Capone, Massimo; Castellani, Claudio

    2010-01-01

    We investigate the approach to the universal regime of the dilute unitary Fermi gas as the density is reduced to zero in a lattice model. To this end we study the chemical potential, superfluid order parameter and internal energy of the attractive Hubbard model in three different lattices with densities of states (DOSs) which share the same low-energy behavior of fermions in three-dimensional free space: a cubic lattice, a 'Bethe lattice' with a semicircular DOS, and a 'lattice gas' with parabolic dispersion and a sharp energy cutoff that ensures the normalization of the DOS. The model is solved using dynamical mean-field theory, that treats directly the thermodynamic limit and arbitrarily low densities, eliminating finite-size effects. At densities on the order of one fermion per site the lattice and its specific form dominate the results. The evolution to the low-density limit is smooth and it does not allow to define an unambiguous low-density regime. Such finite-density effects are significantly reduced using the lattice gas, and they are maximal for the three-dimensional cubic lattice. Even though dynamical mean-field theory is bound to reduce to the more standard static mean field in the limit of zero density due to the local nature of the self-energy and of the vertex functions, it compares well with accurate Monte Carlo simulations down to the lowest densities accessible to the latter.

  17. Gas density alters expiratory time constants before and after experimental lung injury.

    PubMed

    Henderson, William R; Molgat-Seon, Yannick; Dominelli, Paolo B; Brasher, Penelope M A; Griesdale, Donald E G; Foster, Glen E; Yacyshyn, Alexandra; Ayas, Najib T; Sheel, A William

    2015-10-01

    What is the central question of this study? Does the induction of a model of lung injury affect the expiratory time constant (τE) in terms of either total duration or morphology? Does ventilation with gases of different densities alter the duration or morphology of τE either before or after injury? What is the main finding and its importance? The use of sulfur hexafluoride in ventilating gas mixtures lengthens total expiratory time constants before and after lung injury compared with both nitrogen and helium mixtures. Sulfur hexafluoride mixtures also decrease the difference and variability of τE between fast- and slow-emptying compartments before and after injury when compared with nitrogen and helium mixtures. Acute lung injury is characterized by regional heterogeneity of lung resistance and elastance that may lead to regional heterogeneity of expiratory time constants (τE). We hypothesized that increasing airflow resistance by using inhaled sulfur hexafluoride (SF6) would lengthen time constants and decrease their heterogeneity in an experimental model of lung injury when compared with nitrogen or helium mixtures. To overcome the limitations of a single-compartment model, we employed a multisegment model of expiratory gas flow. An experimental model of lung injury was created using intratracheal injection of sodium polyacrylate in anaesthetized and mechanically ventilated female Yorkshire-cross pigs (n = 7). The animals were ventilated with 50% O2 and the remaining 50% as nitrogen (N2), helium (He) or sulfur hexafluoride (SF6). Values for τE decreased with injury and were more variable after injury than before (P < 0.001). Values for τE increased throughout expiration both before and after injury, and the rate of increase in τE was lessened by SF6 (P < 0.001 when compared with N2 both before and after injury). Altering the inhaled gas density did not affect indices of oxygenation, dead space or shunt. The use of SF6 in ventilating gas mixtures lengthens

  18. A Herschel-SPIRE survey of the Mon R2 giant molecular cloud: analysis of the gas column density probability density function

    NASA Astrophysics Data System (ADS)

    Pokhrel, R.; Gutermuth, R.; Ali, B.; Megeath, T.; Pipher, J.; Myers, P.; Fischer, W. J.; Henning, T.; Wolk, S. J.; Allen, L.; Tobin, J. J.

    2016-09-01

    We present a far-IR survey of the entire Mon R2 giant molecular cloud (GMC) with Herschel-Spectral and Photometric Imaging REceiver cross-calibrated with Planck-High Frequency Instrument data. We fit the spectral energy distributions of each pixel with a greybody function and an optimal beta value of 1.8. We find that mid-range column densities obtained from far-IR dust emission and near-IR extinction are consistent. For the entire GMC, we find that the column density histogram, or column density probability distribution function (N-PDF), is lognormal below ˜1021 cm-2. Above this value, the distribution takes a power law form with an index of -2.15. We analyse the gas geometry, N-PDF shape, and young stellar object (YSO) content of a selection of subregions in the cloud. We find no regions with pure lognormal N-PDFs. The regions with a combination of lognormal and one power-law N-PDF have a YSO cluster and a corresponding centrally concentrated gas clump. The regions with a combination of lognormal and two power-law N-PDF have significant numbers of typically younger YSOs but no prominent YSO cluster. These regions are composed of an aggregate of closely spaced gas filaments with no concentrated dense gas clump. We find that for our fixed scale regions, the YSO count roughly correlates with the N-PDF power-law index. The correlation appears steeper for single power-law regions relative to two power-law regions with a high column density cut-off, as a greater dense gas mass fraction is achieved in the former. A stronger correlation is found between embedded YSO count and the dense gas mass among our regions.

  19. High-Density Gas Column Abundance Measurements Using New Low-Cost Autonomous Sensors, A Solution For Gas Flux Monitoring

    NASA Astrophysics Data System (ADS)

    Gordley, L. L.; Marshall, B. T.; Paxton, G.; Lachance, R. L.; Gubeli, J.; Fisher, J.

    2016-12-01

    This presentation describes a new low-cost gas sensor and strategies of grid deployment for continuous monitoring of gas flux. By measuring column abundances using sun, moon and local light sources, with strategically placed grids of such autonomous sensors, the resulting data can be analyzed with dispersion models to continuously monitor gas flux into or out of any area. We describe this pupil imaging gas correlation (PIGC) sensor, recent laboratory test results, and grid deployment and analysis strategies.

  20. Polynomial approximations of thermodynamic properties of arbitrary gas mixtures over wide pressure and density ranges

    NASA Technical Reports Server (NTRS)

    Allison, D. O.

    1972-01-01

    Computer programs for flow fields around planetary entry vehicles require real-gas equilibrium thermodynamic properties in a simple form which can be evaluated quickly. To fill this need, polynomial approximations were found for thermodynamic properties of air and model planetary atmospheres. A coefficient-averaging technique was used for curve fitting in lieu of the usual least-squares method. The polynomials consist of terms up to the ninth degree in each of two variables (essentially pressure and density) including all cross terms. Four of these polynomials can be joined to cover, for example, a range of about 1000 to 11000 K and 0.00001 to 1 atmosphere (1 atm = 1.0133 x 100,000 N/m sq) for a given thermodynamic property. Relative errors of less than 1 percent are found over most of the applicable range.

  1. Infrared and density functional theory studies of formic acid hydrate clusters in noble gas matrices

    NASA Astrophysics Data System (ADS)

    Ito, Fumiyuki

    2016-08-01

    Infrared absorption spectra of formic acid hydrate clusters (HCOOH)m(H2O)n have been measured in noble gas matrices (Ar and Kr). The concentration dependence of the spectra and the comparison with a previous experimental study on HCOOH(H2O) and HCOOH(H2O)2 [Geoge et al., Spectrochim. Acta, Part A 60 (2004) 3225] led to the identification of large clusters. Density functional theory calculations at the B3LYP-DCP/6-31+G(2d,2p) level were carried out to determine the anharmonic vibrational properties of the clusters, enabling a consistent assignment of the observed vibrational peaks to specific clusters.

  2. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Popping, Gergö; Riechers, Dominik; Smail, Ian R.; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J.; Bauer, Franz E.; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ˜ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 109 K km s-1 pc2). We find clear evidence of an evolution in the CO luminosity function with respect to z ˜ 0, with more CO-luminous galaxies present at z ˜ 2. The observed galaxies at z ˜ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3-10 from z ˜ 2 to z ˜ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ˜ 2).

  3. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOEpatents

    Hagans, Karla; Berzins, Leon; Galkowski, Joseph; Seng, Rita

    1996-01-01

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer's law.

  4. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOEpatents

    Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

    1996-08-27

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

  5. Dynamical correlation effects on structure factor of spin-polarized two-dimensional electron gas

    SciTech Connect

    Singh, Gurvinder; Moudgil, R. K.; Kumar, Krishan; Garg, Vinayak

    2015-06-24

    We report a theoretical study on static density structure factor S(q) of a spin-polarized two-dimensional electron gas over a wide range of electron number density r{sub s}. The electron correlations are treated within the dynamical version of the self-consistent mean-field theory of Singwi, Tosi, Land, and Sjolander, the so-called qSTLS approach. The calculated S(q) exhibits almost perfect agreement with the quantum Monte Carlo simulation data at r{sub s}=1. However, the extent of agreement somewhat diminishes with increasing r{sub s}, particularly for q around 2k{sub F}. Seen in conjunction with the success of qSTLS theory in dealing with correlations in the unpolarized phase, our study suggests that the otherwise celebrated qSTLS theory is not that good in treating the like-spin correlations.

  6. The Carina Nebula and Gum 31 molecular complex - I. Molecular gas distribution, column densities, and dust temperatures

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Burton, Michael; Green, Anne; Braiding, Catherine; Molinari, Sergio; Wong, Graeme; Blackwell, Rebecca; Elia, Davide; Schisano, Eugenio

    2016-03-01

    We report high-resolution observations of the 12CO(1-0) and 13CO(1-0) molecular lines in the Carina Nebula and the Gum 31 region obtained with the 22-m Mopra telescope as part of The Mopra Southern Galactic Plane CO Survey. We cover 8 deg2 from l = 285° to 290°, and from b = -1.5° to +0.5°. The molecular gas column density distributions from both tracers have a similar range of values. By fitting a grey-body function to the observed infrared spectral energy distribution from Herschel maps, we derive gas column densities and dust temperatures. The gas column density has values in the range from 6.3 × 1020 to 1.4 × 1023 cm-2, while the dust temperature has values in the range from 17 to 43 K. The gas column density derived from the dust emission is approximately described by a lognormal function for a limited range of column densities. A high-column-density tail is clearly evident for the gas column density distribution, which appears to be a common feature in regions with active star formation. There are regional variations in the fraction of the mass recovered by the CO emission lines with respect to the total mass traced by the dust emission. These variations may be related to changes in the radiation field strength, variation of the atomic to molecular gas fraction across the observed region, differences in the CO molecule abundance with respect to H2, and evolutionary stage differences of the molecular clouds that compose the Carina Nebula-Gum 31 complex.

  7. Measurement of resonance level densities in rare gas plasmas and modeling of their resulting VUV emissions

    NASA Astrophysics Data System (ADS)

    Boffard, J. B.; Culver, C. L.; Wang, S.; Lin, C. C.; Wendt, A. E.; Radovanov, S. B.; Persing, H. M.

    2013-09-01

    In the rare gases, the vacuum ultraviolet (VUV) emissions are dominated by the decays from the 1s2 and 1s4 (Paschen's notation) principal resonance levels. In isolation, atoms excited to these resonance levels have a short radiative lifetime (< 10 ns), but resonance blockade of the VUV transitions to the ground state significantly extend the effective lifetimes of these levels under typical plasma conditions with pressures greater than a mTorr. Despite this re-absorption, rare gas plasmas do produce copious VUV emissions that may play an important role in critical surface reactions under certain process conditions. We have measured the resonance level densities as a function of pressure in rare-gas discharges (Ne,Ar,Kr,Xe) in an inductively coupled plasma using both white-light absorption spectroscopy and optical emission spectroscopy by monitoring changes in the 2px --> 1sy branching fractions. The measured resonance level concentrations are subsequently used as inputs to a simple VUV transport model to determine the VUV flux to surfaces. These model VUV flux calculations are compared to measurements made with an absolutely calibrated VUV photodiode. This work was supported in part by NSF grant PHY-1068670.

  8. Density functional theory calculations of defect and fission gas properties in U-Si fuels

    SciTech Connect

    Andersson, Anders David

    2016-02-03

    Accident tolerant fuels (ATF) are being developed in response to the Fukushima Daiichi accident in Japan. One of the options being pursued is U-Si fuels, such as the U3Si2 and U3Si5 compounds, which benefit from high thermal conductivity (metallic) compared to the UO2 fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for U-Si fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap. The present study investigates point defect and fission gas properties in U3Si2, which is one of the main fuel candidates, using density functional theory (DFT) calculations. Based on a few assumption regarding entropy contributions, defect and fission diffusivities are predicted. Even though uranium silicides have been shown to amorphize easily at low temperature, we assume that U3Si2 remains crystalline under the conditions expected in Light Water Reactors (LWRs). The temperature and dose where amorphization occurs has not yet been well established.

  9. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    SciTech Connect

    Zhang, Lipeng; Xu, Haixuan; Kent, Paul R. C.; Ganesh, Panchapakesan; Cooper, Valentino R.; Zhuang, Houlong L.

    2016-05-06

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO over layers. This insulator-to-metal transition can be explained through the polar catastrophe mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first principles calculations indicate that for nanowire heterostructure geometries a one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity in LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density will decay laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier behavior between 1D and 2D conductivity. Furthermore, our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.

  10. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    DOE PAGES

    Zhang, Lipeng; Xu, Haixuan; Kent, Paul R. C.; ...

    2016-05-06

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO over layers. This insulator-to-metal transition can be explained through the polar catastrophe mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first principles calculations indicate that for nanowire heterostructuremore » geometries a one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity in LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density will decay laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier behavior between 1D and 2D conductivity. Furthermore, our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.« less

  11. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    PubMed Central

    Zhuang, Houlong L.; Zhang, Lipeng; Xu, Haixuan; Kent, P. R. C.; Ganesh, P.; Cooper, Valentino R.

    2016-01-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO layers. This insulator to-metal transition can be explained through the “polar catastrophe” mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified “polar catastrophe” model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first-principles calculations indicate that for nanowire heterostructures a robust one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity at LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density decays laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier dimensionality between 1D and 2D conductivity. Our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases. PMID:27151049

  12. Dust-to-gas ratio, XCO factor and CO-dark gas in the Galactic anticentre: an observational study

    NASA Astrophysics Data System (ADS)

    Chen, B.-Q.; Liu, X.-W.; Yuan, H.-B.; Huang, Y.; Xiang, M.-S.

    2015-04-01

    We investigate the correlation between extinction and H I and CO emission at intermediate and high Galactic latitudes (|b| > 10°) within the footprint of the Xuyi Schmidt Telescope Photometric Survey of the Galactic anticentre (XSTPS-GAC) on small and large scales. In Paper I, we present a three-dimensional (3D) dust extinction map within the footprint of XSTPS-GAC, covering a sky area of over 6000 deg2 at a spatial angular resolution of 6 arcmin. In the current work, the map is combined with data from gas tracers, including H I data from the Galactic Arecibo L-band Feed Array H I survey and CO data from the Planck mission, to constrain the values of dust-to-gas ratio DGR = AV/N(H) and CO-to-H2 conversion factor XCO = N(H2)/WCO for the entire GAC footprint excluding the Galactic plane, as well as for selected star-forming regions (such as the Orion, Taurus and Perseus clouds) and a region of diffuse gas in the northern Galactic hemisphere. For the whole GAC footprint, we find DGR = (4.15 ± 0.01) × 10-22 mag cm2 and XCO = (1.72 ± 0.03) × 1020 cm- 2 (K km s- 1)- 1. We have also investigated the distribution of `CO-dark' gas (DG) within the footprint of GAC and found a linear correlation between the DG column density and the V-band extinction: N(DG) ˜eq 2.2 × 10^{21} (A_V - AcV) cm^{-2}. The mass fraction of DG is found to be fDG ˜ 0.55 towards the Galactic anticentre, which is respectively about 23 and 124 per cent of the atomic and CO-traced molecular gas in the same region. This result is consistent with the theoretical work of Papadopoulos et al. but much larger than that expected in the H2 cloud models by Wolfire et al.

  13. The Density of States in the Two-Dimensional Electron Gas and Quantum Dots.

    NASA Astrophysics Data System (ADS)

    Ashoori, Raymond Cameron

    The density of states (DOS) in both the two-dimensional (2d) electron gas and arrays of "quantum dots" is studied using capacitive and tunneling techniques. A capacitance bridge described in this thesis is used to make high sensitivity capacitance measurements on GaAs samples produced using molecular beam epitaxy. We have made quantitative determinations of the "thermodynamic" DOS of Landau levels in a 2d system whose electronic density can be varied by means of a gate bias. A novel technique which, by taking advantage of two normalization conditions based on knowledge of the Landau level degeneracy and level spacing, allows extraction of the DOS from capacitance data using no sample parameters. The method yields the DOS as a function of Fermi energy in the 2d electron gas. We find that Lorentzian lineshapes give an excellent fit to the Landau level lineshapes observed. Further, the widths of these lineshapes are independent of the strength of the magnetic field. In high fields, the exchange enhanced spin splitting is observed and the exchange energy is determined. The "single-particle" DOS is measured in the same samples. Zero bias tunneling of electrons between a quantum well and an n^{+} substrate is studied with excitation voltages smaller than k _{B}T. At low temperatures and only with magnetic field applied perpendicular to the plane of the electron gas in the well, the tunneling rate develops a novel temperature dependent suppression. The data are interpreted in terms of a magnetic field induced energy gap, at the Fermi level, in the single-particle spectrum of electrons in the well. We laterally confine electrons in a quantum well into arrays of quantum dots using a technique which requires only slight (300A) surface corrugation of the sample. Electron beam lithography and reactive ion etching techniques are used to produce this corrugation. These samples are studied using a capacitance method which has allowed us to determine the lateral area of dots

  14. Lyα EMISSION FROM GREEN PEAS: THE ROLE OF CIRCUMGALACTIC GAS DENSITY, COVERING, AND KINEMATICS

    SciTech Connect

    Henry, Alaina; Scarlata, Claudia; Martin, Crystal L.; Erb, Dawn

    2015-08-10

    We report Hubble Space Telescope/Cosmic Origins Spectrograph observations of the Lyα emission and interstellar absorption lines in a sample of 10 star-forming galaxies at z ∼ 0.2. Selected on the basis of high equivalent width optical emission lines, the sample, dubbed “Green Peas,” make some of the best analogs for young galaxies in an early universe. We detect Lyα emission in all ten galaxies, and 9/10 show double-peaked line profiles suggestive of low H i column density. We measure Lyα/Hα flux ratios of 0.5–5.6, implying that 5%–60% of Lyα photons escape the galaxies. These data confirm previous findings that low-ionization metal absorption (LIS) lines are weaker when Lyα escape fraction and equivalent width are higher. However, contrary to previously favored interpretations of this trend, increased Lyα output cannot be the result of a varying H i covering: the Lyman absorption lines (Lyβ and higher) show a covering fraction near unity for gas with N{sub H} {sub i} ≳ 10{sup 16} cm{sup −2}. Moreover, we detect no correlation between Lyα escape and the outflow velocity of the LIS lines, suggesting that kinematic effects do not explain the range of Lyα/Hα flux ratios in these galaxies. In contrast, we detect a strong anticorrelation between the Lyα escape fraction and the velocity separation of the Lyα emission peaks, driven primarily by the velocity of the blue peak. As this velocity separation is sensitive to H i column density, we conclude that Lyα escape in these Green Peas is likely regulated by the H i column density rather than outflow velocity or H i covering fraction.

  15. Spectral density of the correlation matrix of factor models: a random matrix theory approach.

    PubMed

    Lillo, F; Mantegna, R N

    2005-07-01

    We studied the eigenvalue spectral density of the correlation matrix of factor models of multivariate time series. By making use of the random matrix theory, we analytically quantified the effect of statistical uncertainty on the spectral density due to the finiteness of the sample. We considered a broad range of models, ranging from one-factor models to hierarchical multifactor models.

  16. Capacities and Limitations of Wind Tunnel Physical Experiments on Motion and Dispersion of Different Density Gas Pollutants

    NASA Astrophysics Data System (ADS)

    Zavila, Ondřej; Blejchař, Tomáš

    2017-04-01

    The article focuses on the analysis of the possibilities to model motion and dispersion of plumes of different density gas pollutants in lowspeed wind tunnels based on the application of physical similarity criteria, in this case the Froude number. The analysis of the physical nature of the modeled process by the Froude number is focused on the influence of air flow velocity, gas pollutant density and model scale. This gives an idea of limitations for this type of physical experiments in relation to the modeled real phenomena. The resulting statements and logical links are exemplified by a CFD numerical simulation of a given task calculated in ANSYS Fluent software.

  17. Charge density wave with meronlike spin texture induced by a lateral superlattice in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Côté, R.; Bazier-Matte, Xavier

    2016-11-01

    The combined effect of a lateral square superlattice potential and the Coulomb interaction on the ground state of a two-dimensional electron gas in a perpendicular magnetic field is studied for different rational values of Γ , the inverse of the number of flux quanta per unit cell of the external potential, at filling factor ν =1 in Landau-level N =0 . When Landau-level mixing and disorder effects are neglected, increasing the strength W0 of the potential induces a transition at a critical strength of W0(c ) from a uniform and fully spin-polarized state to a two-dimensional charge density wave (CDW) with a meronlike spin texture at each maximum and minimum of the CDW. The collective excitations of this "vortex CDW" are similar to those of the Skyrme crystal that is expected to be the ground-state near filling factor ν =1 . In particular, a broken U (1 ) symmetry in the vortex CDW results in an extra gapless phase mode that could provide a fast channel for the relaxation of nuclear spins. The average spin-polarization Sz changes in a continuous or discontinuous manner as W0 is increased depending on whether Γ ∈[1 /2 ,1 ] or Γ ∈[0 ,1 /2 ] . The phase mode and the meronlike spin texture disappear at a large value of W0 leaving as the ground state a partially spin-polarized CDW if Γ ≠1 /2 or a spin-unpolarized CDW if Γ =1 /2 .

  18. Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes.

    PubMed

    McDowell, Nate G; Adams, Henry D; Bailey, John D; Hess, Marcey; Kolb, Thomas E

    2006-06-01

    Homeostatic maintenance of gas exchange optimizes carbon gain per water loss. Homeostasis is regulated by short-term physiological and long-term structural mechanisms, both of which may respond to changes in resource availability associated with competition. Therefore, stand density regulation via silvicultural manipulations may facilitate growth and survival through mechanisms operating at both short and long timescales. We investigated the responses of ponderosa pine (Pinus ponderosa) to stand basal area manipulations in Arizona, USA. Stand basal area was manipulated to seven replicated levels in 1962 and was maintained for four decades by decadal thinning. We measured basal area increment (BAI) to assess the response and sustainability of wood growth, carbon isotope discrimination (A) inferred from annual rings to assess the response of crown gas exchange, and ratios of leaf area to sapwood area (A(l):A(s)) to assess longer term structural acclimation. Basal area treatments increased soil water potential (r2 = 0.99) but did not affect photosynthetic capacity. BAI increased within two years of thinning, and the 40-year mean BAI was negatively correlated with stand basal area (r2 = 0.98). delta was negatively correlated with stand basal area for years 5 through 12 after thinning (r2 = 0.90). However, delta was relatively invariant with basal area for the period 13-40 years after initial thinning despite maintenance of treatment basal areas via repeated decadal thinnings. Independent gas exchange measurements verified that the ratio of photosynthesis to stomatal conductance was invariant with basal area, but absolute values of both were elevated at lower basal areas. A(l):A(s) was negatively correlated with basal area (r2 = 0.93). We hypothesize that increased A(l):A(s) is a homeostatic response to increased water availability that maximizes water-use efficiency and whole-tree carbon uptake. Elevated A(l):A(s) of trees at low basal areas was associated with greater

  19. Oscillation spectrum of an electron gas with a small density fraction of ions

    SciTech Connect

    Yeliseyev, Yu. N.

    2010-07-15

    The problem is solved of the stability of a nonneutral plasma that completely fills a waveguide and consists of magnetized cold electrons and a small density fraction of ions produced by ionization of the atoms of the background gas. The ions are described by an anisotropic distribution function that takes into account the characteristic features of their production in crossed electric and magnetic fields. By solving a set of Vlasov-Poisson equations analytically, a dispersion equation is obtained that is valid over the entire range of allowable electric and magnetic field strengths. The solutions to the dispersion equation for the m = +1 main azimuthal mode are found numerically. The plasma oscillation spectrum consists of the families of Trivelpiece-Gould modes at frequencies equal to the frequencies of oblique Langmuir oscillations Doppler shifted by the electron rotation and also of the families of 'modified' ion cyclotron (MIC) modes at frequencies close to the harmonics of the MIC frequency (the frequencies of radial ion oscillations in crossed fields). It is shown that, over a wide range of electric and magnetic field strengths, Trivelpiece-Gould modes have low frequencies and interact with MIC modes. Trivelpiece-Gould modes at frequencies close to the harmonics of the MIC frequency with nonnegative numbers are unstable. The lowest radial Trivelpiece-Gould mode at a frequency close to the zeroth harmonic of the MIC frequency has the fastest growth rate. MIC modes are unstable over a wide range of electric and magnetic field strengths and grow at far slower rates. For a low ion density, a simplified dispersion equation is derived perturbatively that accounts for the nonlocal ion contribution, but, at the same time, has the form of a local dispersion equation for a plasma with a transverse current and anisotropic ions. The solutions to the simplified dispersion equation are obtained analytically. The growth rates of the Trivelpiece-Gould modes and the behavior

  20. Effects of bronchomotor tone and gas density on time dependence of forced expiratory vital capacity maneuver.

    PubMed

    D'Angelo, E; Milic-Emili, J; Marazzini, L

    1996-11-01

    It has been shown that in normal subjects and chronic obstructive pulmonary disease (COPD) patients the maximal expiratory flows and FEV1 are significantly higher if the FVC maneuver is preceded by a rapid inspiration without an end-inspiratory pause (maneuver 1) compared with a slow inspiration with an end-inspiratory pause of approximately 5 s (maneuver 2). This time dependency of FVC was attributed primarily to loss of lung recoil (stress relaxation) during breath-holding at TLC, in association with time constant inequality within the lungs, and changes in bronchomotor tone. To examine the role of bronchomotor tone on time dependency of FVC, 11 COPD and 10 asthmatic patients performed FVC maneuvers 1 and 2 before and after administration of a bronchodilator drug (salbutamol). In addition, using the same approach, the effects of changing airway resistance per se were assessed in another group of 10 COPD patients and 10 normal subjects, while breathing air and after equilibration with 80% helium in oxygen. Main findings were: peak expiratory flow (PEF), FEV1, and maximal midexpiratory flow rate (MMF) were significantly larger with maneuver 1 than 2; after salbutamol administration and during helium-oxygen breathing, all indices increased significantly with both maneuvers but the relative differences between maneuvers 1 and 2 were unchanged. We conclude that time dependency of maximal expiratory flow-volume (MEFV) curves, as indexed by PEF, FEV1, and MMF, is largely independent of bronchomotor tone and gas density, and probably reflects mainly stress relaxation of the respiratory tissues. The relevance of time dependency of FVC maneuver in the assessment of bronchodilator response and density dependence is discussed.

  1. Density response of a trapped Fermi gas: A crossover from the pair vibration mode to the Goldstone mode

    SciTech Connect

    Korolyuk, A.; Kinnunen, J. J.; Toermae, P.

    2011-09-15

    We consider the density response of a trapped two-component Fermi gas. Combining the Bogoliubov-deGennes method with the random phase approximation allows the study of both collective and single-particle excitations. Calculating the density response across a wide range of interactions, we observe a crossover from a weakly interacting pair vibration mode to a strongly interacting Goldstone mode. The crossover is associated with a depressed collective mode frequency and an increased damping rate, in agreement with density response experiments performed in strongly interacting atomic gases.

  2. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  3. Effect of preionization, fluorine concentration, and current density on the discharge uniformity in F2 excimer laser gas mixtures

    NASA Astrophysics Data System (ADS)

    Mathew, D.; Bastiaens, H. M. J.; Boller, K. J.; Peters, P. J. M.

    2007-08-01

    The discharge homogeneity in F2-based excimer laser gas mixtures and its dependence on various key parameters, such as the degree of preionization, preionization delay time, F2 concentration and current density, is investigated in a small x-ray preionized discharge chamber. The spatial and temporal evolution of the discharges is monitored by taking photographs of the discharge fluorescence with a fast intensified CCD camera. It is found that a preionization electron density of about 107 cm-3 bar-1 is sufficient to initiate a streamer-free homogeneous discharge in gas mixtures of helium and fluorine with multiatmospheric gas pressure. The accompanying optimum time delay between the application of the x-ray pulse and voltage across the discharge electrodes is determined to be about 20 ns. It is shown that in spite of these optimum initial conditions, a homogeneous glow discharge eventually transforms into an inhomogeneous discharge containing numerous filaments. Our experiments show that the higher the initial F2 concentration, the initial current density or the pump power density, the shorter the time interval over which the discharge stays homogeneous. By a quantitative characterization and defining a detailed measure of the observed discharge inhomogeneity we find that halogen depletion, as suggested from the theory, is responsible for the temporal instability of discharges in such laser gas mixtures, as the experimental results are in good agreement with the theory on the halogen depletion instability mechanism.

  4. Freeze-out temperature and density in heavy-ion collisions at liquid-gas phase transition

    SciTech Connect

    Shlomo, Shalom

    2010-08-04

    The study of properties of hot nuclei and the search for liquid-gas phase transition in nuclei have been the subjects of many investigations in recent decades. We present a short and limited review of the theoretical and experimental status of determining the temperature and density of the disassembling nucleus from ratios of the yields of emitted fragments.

  5. Novelty detection by multivariate kernel density estimation and growing neural gas algorithm

    NASA Astrophysics Data System (ADS)

    Fink, Olga; Zio, Enrico; Weidmann, Ulrich

    2015-01-01

    One of the underlying assumptions when using data-based methods for pattern recognition in diagnostics or prognostics is that the selected data sample used to train and test the algorithm is representative of the entire dataset and covers all combinations of parameters and conditions, and resulting system states. However in practice, operating and environmental conditions may change, unexpected and previously unanticipated events may occur and corresponding new anomalous patterns develop. Therefore for practical applications, techniques are required to detect novelties in patterns and give confidence to the user on the validity of the performed diagnosis and predictions. In this paper, the application of two types of novelty detection approaches is compared: a statistical approach based on multivariate kernel density estimation and an approach based on a type of unsupervised artificial neural network, called the growing neural gas (GNG). The comparison is performed on a case study in the field of railway turnout systems. Both approaches demonstrate their suitability for detecting novel patterns. Furthermore, GNG proves to be more flexible, especially with respect to dimensionality of the input data and suitability for online learning.

  6. Noble gas adsorption in two-dimensional zeolites: a combined experimental and density functional theory study

    NASA Astrophysics Data System (ADS)

    Wang, Mengen; Zhong, Jianqiang; Boscoboinik, Jorge Anibal; Lu, Deyu

    Zeolites are important industrial catalysts with porous three-dimensional structures. The catalytically active sites are located inside the pores, thus rendering them inaccessible for surface science measurements. We synthesized a two-dimensional (2D) zeolite model system, consisting of an (alumino)silicate bilayer weakly bound to a Ru (0001) surface. The 2D zeolite is suitable for surface science studies; it allows a detailed characterization of the atomic structure of the active site and interrogation of the model system during the catalytic reaction. As an initial step, we use Ar adsorption to obtain a better understanding of the atomic structure of the 2D zeolite. In addition, atomic level studies of rare gas adsorption and separation by zeolite are important for its potential application in nuclear waste sequestration. Experimental studies found that Ar atoms can be trapped inside the 2D-zeolite, raising an interesting question on whether Ar atoms are trapped inside the hexagonal prism nano-cages or at the interface between the (alumino)silicate bilayer and Ru(0001), or both. DFT calculations using van der Waals density functionals were carried out to determine the preferred Ar adsorption sites and the corresponding adsorption energies. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  7. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    NASA Astrophysics Data System (ADS)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  8. Density-Functional Study of the Two-Dimensional Electron Gas at the Perovskite Titanate Interface

    NASA Astrophysics Data System (ADS)

    Nanda, Ranjit; Popovic, Zoran; Thulasi, Sunita; Satpathy, Sashi

    2006-03-01

    Oxide superlattices and microstructures hold the promise for creating a new class of devices with unprecedented functionalities. Density-functional studies^1 of the recently fabricated, lattice-matched perovskite titanates^2 (SrTiO3)n/(LaTiO3)m reveal a classic wedge-shaped potential well for the monolayer structure, originating from the Coulomb potential of a charged La sheet. The potential in turn confines the electrons in the Airy-function-localized states. This resulting two-dimensional electron gas may be described in terms of the simplified jellium model^3 and it describes reasonably well the observed charge modulation of the Ti atoms near the interface. Concerning magnetism, it is suppressed for the monolayer LaTiO3 structure, while in structures with a thicker LaTiO3 part, bulk antiferromagnetism is recovered, with a narrow transition region separating the magnetic LaTiO3 and the non-magnetic SrTiO3. 1. Z. S. Popovic and S. Satpathy, Phys. Rev. Lett. 94, 176805 (2005) 2. A. Ohtomo et al., Nature 419, 378 (2002) 3. S. Thulasi and S. Satpathy, Phys. Rev. B (2006)

  9. Incidental Intraosseous Pneumatocyst with gas-density-fluid level in an adolescent: a case report and review of the literature

    PubMed Central

    Al-Tarawneh, Emad; AL-Qudah, Mohammad; Hadidi, Fadi; Jubouri, Shams; Hadidy, Azmy

    2014-01-01

    Intraosseous pneumatocyst is a gas containing lesion located within a bone. It is a relatively rare condition of unclear etiology and with an undetermined natural course. Gas-density-fluid level pneumatocyst is even rarer. Pneumatocyst is frequently seen in adults but rarely reported in pediatrics. The lesion is usually small and is seen in the vertebral bodies as well as around the sacroiliac joints. Rarely does it occur in other parts of the skeleton. We are reporting a case of large blood signal intensity containing intraosseous pneumatocyst in a 14 year old boy and reviewing other pediatric cases of pneumatocysts as well as those with gas-density-fluid level. The recognition of this incidental rare benign lesion is essential to avoid over investigation and an inappropriate aggressive intervention. PMID:24967024

  10. Incidental intraosseous pneumatocyst with gas-density-fluid level in an adolescent: a case report and review of the literature.

    PubMed

    Al-Tarawneh, Emad; Al-Qudah, Mohammad; Hadidi, Fadi; Jubouri, Shams; Hadidy, Azmy

    2014-03-01

    Intraosseous pneumatocyst is a gas containing lesion located within a bone. It is a relatively rare condition of unclear etiology and with an undetermined natural course. Gas-density-fluid level pneumatocyst is even rarer. Pneumatocyst is frequently seen in adults but rarely reported in pediatrics. The lesion is usually small and is seen in the vertebral bodies as well as around the sacroiliac joints. Rarely does it occur in other parts of the skeleton. We are reporting a case of large blood signal intensity containing intraosseous pneumatocyst in a 14 year old boy and reviewing other pediatric cases of pneumatocysts as well as those with gas-density-fluid level. The recognition of this incidental rare benign lesion is essential to avoid over investigation and an inappropriate aggressive intervention.

  11. Unequal density effect on static structure factor of coupled electron layers

    NASA Astrophysics Data System (ADS)

    Saini, L. K.; Nayak, Mukesh G.

    2014-04-01

    In order to understand the ordered phase, if any, in a real coupled electron layers (CEL), there is a need to take into account the effect of unequal layer density. Such phase is confirmed by a strong peak in a static structure factor. With the aid of quantum/dynamical version of Singwi, Tosi, Land and Sjölander (so-called qSTLS) approximation, we have calculated the intra- and interlayer static structure factors, Sll(q) and S12(q), over a wide range of density parameter rsl and interlayer spacing d. In our present study, the sharp peak in S22(q) has been found at critical density with sufficiently lower interlayer spacing. Further, to find the resultant effect of unequal density on intra- and interlayer static structure factors, we have compared our results with that of the recent CEL system with equal layer density and isolated single electron layer.

  12. Departures from local thermodynamic equilibrium in cutting arc plasmas derived from electron and gas density measurements using a two-wavelength quantitative Schlieren technique

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2011-03-15

    A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.

  13. 40 CFR Table W - 1A of Subpart W-Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Onshore Petroleum and Natural Gas Production W Table W Protection of Environment... Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-1A Table W-1A of Subpart W—Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production Onshore petroleum and...

  14. Scaling of stomatal size and density optimizes allocation of leaf epidermal space for gas exchange in angiosperms

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo Jan; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2015-04-01

    Stomata on plant leaves are key traits in the regulation of terrestrial fluxes of water and carbon. The basic morphology of stomata consists of a diffusion pore and two guard cells that regulate the exchange of CO2 and water vapour between the leaf interior and the atmosphere. This morphology is common to nearly all land plants, yet stomatal size (defined as the area of the guard cell pair) and stomatal density (the number of stomata per unit area) range over three orders of magnitude across species. Evolution of stomatal sizes and densities is driven by selection pressure on the anatomical maximum stomatal conductance (gsmax), which determines the operational range of leaf gas exchange. Despite the importance of stomata traits for regulating leaf gas exchange, a quantitative understanding of the relation between adaptation of gsmax and the underlying co-evolution of stomatal sizes and densities is still lacking. Here we develop a theoretical framework for a scaling relationship between stomatal sizes and densities within the constraints set by the allocation of epidermal space and stomatal gas exchange. Our theory predicts an optimal scaling relationship that maximizes gsmax and minimizes epidermal space allocation to stomata. We test whether stomatal sizes and densities reflect this optimal scaling with a global compilation of stomatal trait data on 923 species reflecting most major clades. Our results show optimal scaling between stomatal sizes and densities across all species in the compiled data set. Our results also show optimal stomatal scaling across angiosperm species, but not across gymnosperm and fern species. We propose that the evolutionary flexibility of angiosperms to adjust stomatal sizes underlies their optimal allocation of leaf epidermal space to gas exchange.

  15. The factors controlling species density in herbaceous plant communities: An assessment

    USGS Publications Warehouse

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  16. Compositions and greenhouse gas emission factors of flared and vented gas in the Western Canadian Sedimentary Basin.

    PubMed

    Johnson, Matthew R; Coderre, Adam R

    2012-09-01

    A significant obstacle in evaluating mitigation strategies for flaring and venting in the upstream oil and gas industry is the lack of publicly available data on the chemical composition of the gas. This information is required to determine the economic value of the gas, infrastructure and processing requirements, and potential emissions or emissions credits, all of which have significant impact on the economics of such strategies. This paper describes a method for estimating the composition of solution gas being flared and vented at individual facilities, and presents results derived for Alberta, Canada, which sits at the heart of the Western Canadian Sedimentary Basin. Using large amounts of raw data obtained through the Alberta Energy Resources Conservation Board, a relational database was created and specialized queries were developed to link production stream data, raw gas samples, and geography to create production-linked gas composition profiles for approximately half of the currently active facilities. These were used to create composition maps for the entire region, to which the remaining facilities with unknown compositions were geographically linked. The derived data were used to compute a range of solution gas composition profiles and greenhouse gas emission factors, providing new insight into flaring and venting in the region and enabling informed analysis of future management and mitigation strategies. Accurate and transparent determination of environmental impacts of flaring and venting of gas associated with oil production, and potential benefits of mitigation, is severely hampered by the lack of publicly available gas composition data. In jurisdictions within the Western Canadian Sedimentary Basin, frameworks exist for regulating and trading carbon offset credits but current potential for mitigation is limited by a lack of standardized methods for calculating CO2 equivalent emissions. The composition and emission factor data derived in this paper

  17. Gas Sensing Analysis of Ag-Decorated Graphene for Sulfur Hexafluoride Decomposition Products Based on the Density Functional Theory.

    PubMed

    Zhang, Xiaoxing; Huang, Rong; Gui, Yingang; Zeng, Hong

    2016-11-01

    Detection of decomposition products of sulfur hexafluoride (SF₆) is one of the best ways to diagnose early latent insulation faults in gas-insulated equipment, and the occurrence of sudden accidents can be avoided effectively by finding early latent faults. Recently, functionalized graphene, a kind of gas sensing material, has been reported to show good application prospects in the gas sensor field. Therefore, calculations were performed to analyze the gas sensing properties of intrinsic graphene (Int-graphene) and functionalized graphene-based material, Ag-decorated graphene (Ag-graphene), for decomposition products of SF₆, including SO₂F₂, SOF₂, and SO₂, based on density functional theory (DFT). We thoroughly investigated a series of parameters presenting gas-sensing properties of adsorbing process about gas molecule (SO₂F₂, SOF₂, SO₂) and double gas molecules (2SO₂F₂, 2SOF₂, 2SO₂) on Ag-graphene, including adsorption energy, net charge transfer, electronic state density, and the highest and lowest unoccupied molecular orbital. The results showed that the Ag atom significantly enhances the electrochemical reactivity of graphene, reflected in the change of conductivity during the adsorption process. SO₂F₂ and SO₂ gas molecules on Ag-graphene presented chemisorption, and the adsorption strength was SO₂F₂ > SO₂, while SOF₂ absorption on Ag-graphene was physical adsorption. Thus, we concluded that Ag-graphene showed good selectivity and high sensitivity to SO₂F₂. The results can provide a helpful guide in exploring Ag-graphene material in experiments for monitoring the insulation status of SF₆-insulated equipment based on detecting decomposition products of SF₆.

  18. A break in the gas and dust surface density of the disc around the T Tauri star IM Lupi

    NASA Astrophysics Data System (ADS)

    Panić, O.; Hogerheijde, M. R.; Wilner, D.; Qi, C.

    2009-07-01

    Aims: We study the distribution and physical properties of molecular gas in the disc around the T Tauri star IM Lup on scales close to 200 AU. We investigate how well the gas and dust distributions compare and work towards a unified disc model that can explain both gas and dust emission. Methods: 12CO, 13CO, and C18O J=2-1 line emission, as well as the dust continuum at 1.3 mm, is observed at 1.8 arcsec resolution towards IM Lup using the Submillimeter Array. A detailed disc model based on the dust emission is tested against these observations with the aid of a molecular excitation and radiative transfer code. Apparent discrepancies between the gas and dust distribution are investigated by adopting simple modifications to the existing model. Results: The disc is seen at an inclination of 54° ± 3° and is in Keplerian rotation around a 0.8-1.6 M_⊙ star. The outer disc radius traced by molecular gas emission is 900 AU, while the dust continuum emission and scattered light images limit the amount of dust present beyond 400 AU and are consistent with the existing model that assumes a 400 AU radius. Our observations require a drastic density decrease close to 400 AU with the vertical gas column density at 900 AU in the range of 5× 1020-1022 cm-2. We derive a gas-to-dust mass ratio of 100 or higher in disc regions beyond 400 AU. Within 400 AU from the star our observations are consistent with a gas-to-dust ratio of 100 but other values are not ruled out.

  19. Gas Sensing Analysis of Ag-Decorated Graphene for Sulfur Hexafluoride Decomposition Products Based on the Density Functional Theory

    PubMed Central

    Zhang, Xiaoxing; Huang, Rong; Gui, Yingang; Zeng, Hong

    2016-01-01

    Detection of decomposition products of sulfur hexafluoride (SF6) is one of the best ways to diagnose early latent insulation faults in gas-insulated equipment, and the occurrence of sudden accidents can be avoided effectively by finding early latent faults. Recently, functionalized graphene, a kind of gas sensing material, has been reported to show good application prospects in the gas sensor field. Therefore, calculations were performed to analyze the gas sensing properties of intrinsic graphene (Int-graphene) and functionalized graphene-based material, Ag-decorated graphene (Ag-graphene), for decomposition products of SF6, including SO2F2, SOF2, and SO2, based on density functional theory (DFT). We thoroughly investigated a series of parameters presenting gas-sensing properties of adsorbing process about gas molecule (SO2F2, SOF2, SO2) and double gas molecules (2SO2F2, 2SOF2, 2SO2) on Ag-graphene, including adsorption energy, net charge transfer, electronic state density, and the highest and lowest unoccupied molecular orbital. The results showed that the Ag atom significantly enhances the electrochemical reactivity of graphene, reflected in the change of conductivity during the adsorption process. SO2F2 and SO2 gas molecules on Ag-graphene presented chemisorption, and the adsorption strength was SO2F2 > SO2, while SOF2 absorption on Ag-graphene was physical adsorption. Thus, we concluded that Ag-graphene showed good selectivity and high sensitivity to SO2F2. The results can provide a helpful guide in exploring Ag-graphene material in experiments for monitoring the insulation status of SF6-insulated equipment based on detecting decomposition products of SF6. PMID:27809269

  20. Rigorous investigation of the reduced density matrix for the ideal Bose gas in harmonic traps by a loop-gas-like approach

    SciTech Connect

    Beau, Mathieu; Savoie, Baptiste

    2014-05-15

    In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. For such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.

  1. Local density probing of atomic gas via cold Li-Ca+ inelastic collisions in an atom-ion hybrid system

    NASA Astrophysics Data System (ADS)

    Saito, Ryoichi; Haze, Shinsuke; Fujinaga, Munekazu; Kyuno, Kazuki; Mukaiyama, Takashi

    2015-05-01

    Ultracold atoms in a harmonic trap inevitably has an inhomogeneous density distribution, which makes an atomic gas an ensemble of atoms in different physical phases. Recent technical advances in the determination of local physical quantities in an atomic gas overcome this complexity and make it possible to directly compare experimental results with many-body theories of a homogeneous atomic gas. A laser-cooled ion can be used as a high-spatial resolution probe of physical quantities of an atomic gas. The spatial spread of an ion can be reduced to sub-microns, which is even small enough for the application of the local probe of atoms in optical lattices. In our experiment, we constructed Li and Ca+ ultracold hybrid system and observed inelastic collisions as a loss of ions. The inelastic collision is confirmed to be a charge-exchange process, whose rate depends linearly on the local atomic density. From the measurement of the rate of the charge-exchange, we can reproduce an atomic density profile. This is an important step toward a local probe of physical quantities of atoms with cold ions. In this presentation, we report on the observation of charge-exchange collisions between Li atom and Ca+ ions, and discuss the feasibility of the ions as a probe of the atoms.

  2. Effective mass, Landè factor, and spin susceptibility of a two dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Polini, Marco C.; Davoudi, Bahman; Giuliani, Gabriele F.; Tosi, Mario P.

    2002-03-01

    We present a detailed calculation of the quasiparticle properties of a two-dimensional electron gas following an earlier microscopic theory developed by Yarlagadda and Giuliani [Solid state Commun. 69, 677 (1989)]. This approach incorporates in the calculation of the quasiparticle energy the vertex corrections associated with charge- and spin-density fluctuations through the symmetric and antisymmetric many-body local-field factors. In our calculations, these functions are taken to be static, analytical expressions which reproduce the diffusion Monte Carlo data, and embody the exact asymptotic behaviors at both small and large wave number q. It is shown that this choice improves the results obtained by a simple Hubbard-like form, as previously employed in the literature.

  3. [Determination of dimethyl ether correction factors in gas chromatography with TCD and FID].

    PubMed

    Chen, J; Zhang, L; Yang, L; Cai, G

    1997-05-01

    Dimethyl ether (DME) correction factors in gas chromatography with thermal conductivity detector (TCD) and flame ionization detector (FID) by using H2 as carrier gas were determined in this work. The homemade DME gas was quantitatively absorbed in ice-cold water. With ethanol as standard, the aqueous mixture was injected into a gas chromatograph, equipped with serially-connected TCD and FID. The weight correction factors of DME based on methanol were 0.86 and 0.55 for TCD and FID respectively. The result for TCD was also confirmed by calculation based on the stoichiometrical transformation of methanol into DME in reaction gas chromatography.

  4. 40 CFR Table W - 7 of Subpart W-Default Methane Emission Factors for Natural Gas Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Natural Gas Distribution W Table W Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas... for Natural Gas Distribution Natural gas distribution Emission factor (scf/hour/component) Leaker...

  5. Propagation of a strong spherical shock wave in a gravitating or non-gravitating dusty gas with exponentially varying density

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2016-06-01

    The propagation of a strong spherical shock wave in a dusty gas with or without self-gravitational effects is investigated in the case of isothermal and adiabatic flows. The dusty gas is assumed to be a mixture of small solid particles and perfect gas. The equilibrium flow conditions are assumed to be maintained, and the density of the mixture is assumed to be varying and obeying an exponential law. Non-similarity solutions are obtained and the effects of variations of the mass concentration of solid particles in the mixture and the ratio of the density of solid particles to the initial density of the gas, and the presence of self-gravitational field on the flow variables are investigated at given times. Our analysis reveals that after inclusion of gravitational field effects surprisingly the shock strength increases and remarkable differences are found in the distribution of flow variables. An increase in time also, increases the shock strength. Further, it is investigated that the consideration of isothermal flow increases the shock strength, and removes the singularity in the density distribution. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the inner contact surface and the shock surface is reduced. The shock waves in self-gravitating dusty gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, star formation and shocks in stellar explosion, nuclear explosion, in industry, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry of vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating media. The obtained solutions are applicable for

  6. Gas6 Induces Growth, β-Catenin Stabilization, and T-Cell Factor Transcriptional Activation in Contact-Inhibited C57 Mammary Cells

    PubMed Central

    Goruppi, Sandro; Chiaruttini, Cristina; Ruaro, Maria Elisabetta; Varnum, Brian; Schneider, Claudio

    2001-01-01

    Gas6 is a growth factor related to protein S that was identified as the ligand for the Axl receptor tyrosine kinase (RTK) family. In this study, we show that Gas6 induces a growth response in a cultured mammalian mammary cell line, C57MG. The presence of Gas6 in the medium induces growth after confluence and similarly causes cell cycle reentry of density-inhibited C57MG cells. We show that Axl RTK but not Rse is efficiently activated by Gas6 in density-inhibited C57MG cells. We have analyzed the signaling required for the Gas6 proliferative effect and found a requirement for PI3K-, S6K-, and Ras-activated pathways. We also demonstrate that Gas6 activates Akt and concomitantly inhibits GSK3 activity in a wortmannin-dependent manner. Interestingly, Gas6 induces up-regulation of cytosolic β-catenin, while membrane-associated β-catenin remains unaffected. Stabilization of β-catenin in C57MG cells is correlated with activation of a T-cell factor (TCF)-responsive transcriptional element. We thus provide evidence that Gas6 is mitogenic and induces β-catenin proto-oncogene stabilization and subsequent TCF/Lef transcriptional activation in a mammary system. These results suggest that Gas6-Axl interaction, through stabilization of β-catenin, may have a role in mammary development and/or be involved in the progression of mammary tumors. PMID:11154277

  7. Self-absorption Effects In Experimental Methods Used To Determine Electron Density And Gas Temperature In An Argon Microwave Plasma (SWP) Generated At Atmospheric Pressure

    SciTech Connect

    Santiago, I.; Munoz, J.; Calzada, M. D.

    2008-10-22

    In this work a procedure was applied to verify that self-absorption does not affect the spectral lines used in the experimental determination of the electron density and the gas temperature in surface wave discharges at atmospheric pressure. Therefore, the values of electron density and gas temperature obtained are not perturbed by this phenomenon.

  8. SPIRAL DENSITY WAVES IN M81. II. HYDRODYNAMIC SIMULATIONS OF THE GAS RESPONSE TO STELLAR SPIRAL DENSITY WAVES

    SciTech Connect

    Wang, Hsiang-Hsu; Lee, Wing-Kit; Taam, Ronald E.; Feng, Chien-Chang; Lin, Lien-Hsuan

    2015-02-20

    The gas response to the underlying stellar spirals is explored for M81 using unmagnetized hydrodynamic simulations. Constrained within the uncertainty of observations, 18 simulations are carried out to study the effects of self-gravity and to cover the parameter space comprising three different sound speeds and three different arm strengths. The results are confronted with the data observed at wavelengths of 8 μm and 21 cm. In the outer disk, the ring-like structure observed in the 8 μm image is consistent with the response of cold neutral medium with an effective sound speed 7 km s{sup –1}. For the inner disk, the presence of spiral shocks can be understood as a result of 4:1 resonances associated with the warm neutral medium with an effective sound speed 19 km s{sup –1}. Simulations with a single effective sound speed alone cannot simultaneously explain the structures in the outer and inner disks. Instead this justifies the coexistence of cold and warm neutral media in M81. The anomalously high streaming motions observed in the northeast arm and the outward shifted turning points in the iso-velocity contours seen along the southwest arm are interpreted as signatures of interactions with companion galaxies. The level of simulated streaming motions narrows down the uncertainty of the observed arm strength toward larger amplitudes.

  9. Project AMIGA: A Minimal Covering Factor for Optically Thick Circumgalactic Gas around the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Wotta, Christopher B.; Berg, Michelle A.; Lehner, Nicolas; Lockman, Felix J.; Hafen, Zachary; Pisano, D. J.; Faucher-Giguère, Claude-André; Wakker, Bart P.; Prochaska, J. Xavier; Wolfe, Spencer A.; Ribaudo, Joseph; Barger, Kathleen A.; Corlies, Lauren; Fox, Andrew J.; Guhathakurta, Puragra; Jenkins, Edward B.; Kalirai, Jason; O’Meara, John M.; Peeples, Molly S.; Stewart, Kyle R.; Strader, Jay

    2017-09-01

    We present a deep search for {{H}} {{I}} 21 cm emission from the gaseous halo of Messier 31 as part of Project AMIGA, a large Hubble Space Telescope program to study the circumgalactic medium of the Andromeda galaxy. Our observations with the Robert C. Byrd Green Bank Telescope target sight lines to 48 background AGNs, more than half of which have been observed in the ultraviolet with the Cosmic Origins Spectrograph, with impact parameters 25≲ ρ ≲ 340 {kpc} (0.1≲ ρ /{R}{vir}≲ 1.1). We do not detect any 21 cm emission toward these AGNs to limits of N({{H}} {{I}})≈ 4× {10}17 cm‑2 (5σ ; per 2 kpc-diameter beam). This column density corresponds to an optical depth of ∼2.5 at the Lyman limit; thus, our observations overlap with absorption line studies of Lyman limit systems at higher redshift. Our non-detections place a limit on the covering factor of such optically thick gas around M31 to {f}c< 0.051 (at 90% confidence) for ρ ≤slant {R}{vir}. Although individual clouds have previously been found in the region between M31 and M33, the covering factor of strongly optically thick gas is quite small. Our upper limits on the covering factor are consistent with expectations from recent cosmological “zoom” simulations. Recent COS-Halos ultraviolet measurements of {{H}} {{I}} absorption about an ensemble of galaxies at z≈ 0.2 show significantly higher covering factors within ρ ≲ 0.5{R}{vir} at the same N({{H}} {{I}}), although the metal ion-to-{{H}} {{I}} ratios appear to be consistent with those seen in M31.

  10. Association of cardiovascular disease risk factors with coronary artery calcium volume versus density.

    PubMed

    Thomas, Isac C; Shiau, Brandon; Denenberg, Julie O; McClelland, Robyn L; Greenland, Philip; de Boer, Ian H; Kestenbaum, Bryan R; Lin, Gen-Min; Daniels, Michael; Forbang, Nketi I; Rifkin, Dena E; Hughes-Austin, Jan; Allison, Matthew A; Jeffrey Carr, J; Ix, Joachim H; Criqui, Michael H

    2017-08-16

    Recently, the density score of coronary artery calcium (CAC) has been shown to be associated with a lower risk of cardiovascular disease (CVD) events at any level of CAC volume. Whether risk factors for CAC volume and CAC density are similar or distinct is unknown. We sought to evaluate the associations of CVD risk factors with CAC volume and CAC density scores. Baseline measurements from 6814 participants free of clinical CVD were collected for the Multi-Ethnic Study of Atherosclerosis. Participants with detectable CAC (n=3398) were evaluated for this study. Multivariable linear regression models were used to evaluate independent associations of CVD risk factors with CAC volume and CAC density scores. Whereas most CVD risk factors were associated with higher CAC volume scores, many risk factors were associated with lower CAC density scores. For example, diabetes was associated with a higher natural logarithm (ln) transformed CAC volume score (standardised β=0.44 (95% CI 0.31 to 0.58) ln-units) but a lower CAC density score (β=-0.07 (-0.12 to -0.02) density units). Chinese, African-American and Hispanic race/ethnicity were each associated with lower ln CAC volume scores (β=-0.62 (-0.83to -0.41), -0.52 (-0.64 to -0.39) and -0.40 (-0.55 to -0.26) ln-units, respectively) and higher CAC density scores (β= 0.41 (0.34 to 0.47), 0.18 (0.12 to 0.23) and 0.21 (0.15 to 0.26) density units, respectively) relative to non-Hispanic White. In a cohort free of clinical CVD, CVD risk factors are differentially associated with CAC volume and density scores, with many CVD risk factors inversely associated with the CAC density score after controlling for the CAC volume score. These findings suggest complex associations between CVD risk factors and these components of CAC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    NASA Astrophysics Data System (ADS)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    A characteristic feature of permafrost soils in the Arctic is widespread intra-permafrost unfrozen brine lenses - cryopegs. They are often found in permafrost horizons in the north part of Western Siberia, in particular, on the Yamal Peninsula. Cryopegs depths in permafrost zone can be tens and hundreds of meters from the top of frozen strata. The chemical composition of natural cryopegs is close to sea waters, but is characterized by high mineralization. They have a sodium-chloride primary composition with a minor amount of sulphate. Mineralization of cryopegs brine is often hundreds of grams per liter, and the temperature is around -6…-8 °C. The formation of cryopegs in permafrost is associated with processes of long-term freezing of sediments and cryogenic concentration of salts and salt solutions in local areas. The cryopegs' formation can take place in the course of permafrost evolution at the sea transgressions and regressions during freezing of saline sea sediments. Very important feature of cryopegs in permafrost is their transformation in the process of changing temperature and pressure conditions. As a result, the salinity and chemical composition are changed and in addition the cryopegs' location can be changed during their migration. The cryopegs migration violates the thermodynamic conditions of existence intra-permafrost gas hydrate formations, especially the relic gas hydrates deposits, which are situated in the shallow permafrost up to 100 meters depth in a metastable state [1]. The interaction cryopegs with gas hydrates accumulations can cause decomposition of intra-permafrost hydrates. Moreover, the increasing of salt and unfrozen water content in sedimentary rocks sharply reduce the efficiency of gas hydrates self-preservation in frozen soils. It is confirmed by experimental investigations of interaction of frozen gas hydrate bearing sediments with salt solutions [2]. So, horizons with elevated pressure can appear, as a result of gas hydrate

  12. 40 CFR Table W - 7 of Subpart W of Part 98-Default Methane Emission Factors for Natural Gas Distribution

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methane Emission Factors for Natural Gas Distribution W Table W Protection of Environment ENVIRONMENTAL... Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-7 Table W-7 of Subpart W of Part 98—Default Methane Emission Factors for Natural Gas Distribution Natural gas distribution Emission factor...

  13. 40 CFR Table W - 7 of Subpart W of Part 98-Default Methane Emission Factors for Natural Gas Distribution

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane Emission Factors for Natural Gas Distribution W Table W Protection of Environment ENVIRONMENTAL... Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-7 Table W-7 of Subpart W of Part 98—Default Methane Emission Factors for Natural Gas Distribution Natural gas distribution Emission factor...

  14. NO density and gas temperature measurements in atmospheric pressure nanosecond repetitively pulsed (NRP) discharges by Mid-IR QCLAS

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Stancu, Gabi-Daniel; Laux, Christophe

    2014-10-01

    Nitric oxide is a key species for many processes: in combustion, in human skin physiology... Recently, NO-ground state absolute density measurements produced by atmospheric pressure NRP discharges were carried out in air as a function of the discharge parameters, using Quantum Cascade Laser Absorption Spectroscopy. These measurements were space averaged and performed in the post-discharge region in a large gas volume. Here we present radial profiles of NO density and temperature measured directly in the discharge for different configurations. Small plasma volume and species densities, high temperature and EM noise environment make the absorption diagnostic challenging. For this purpose the QCLAS sensitivity was improved using a two-detector system. We conducted lateral absorbance measurements with a spatial resolution of 300 μm for two absorption features at 1900.076 and 1900.517 cm-1. The radial temperature and NO density distributions were obtained from the Abel inverted lateral measurements. Time averaged NO densities of about 1.E16 cm-3 and gas temperature of about 1000K were obtained in the center of the discharge. PLASMAFLAME Project (Grant No ANR-11-BS09-0025).

  15. Dynamics of the water molecule density in a discharge chamber filled with a low-pressure humid gas

    SciTech Connect

    Bernatskiy, A. V. Ochkin, V. N.; Bafoev, R. N.; Antipenkov, A. B.

    2016-10-15

    The dynamics of the H{sub 2}O molecule density in a metal gas-discharge chamber filled with low-pressure water vapor or its mixtures with noble gases was investigated by manometric and spectral methods. Regimes both with and without discharge excitation were studied. In the absence of a discharge, the molecule density dynamics is governed by the heterogeneous interaction of molecules with the chamber walls. In the presence of a discharge, in addition to the heterogeneous interaction, fast plasmachemical molecule dissociation also contributes to the initial stage of H{sub 2}O molecule loss. The role of heating of the chamber walls is discussed.

  16. Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Chen, Qinchuan; Tang, Ju; Hu, Weihua; Zhang, Jinbin

    2014-04-01

    The detection of partial discharge by analyzing the components of SF6 gas in gas-insulated switchgears is important to the diagnosis and assessment of the operational state of power equipment. A gas sensor based on anatase TiO2 is used to detect decomposed gases in SF6. In this paper, first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2, the primary decomposition by-products of SF6 under partial discharge, on anatase (101) and (001) surfaces. Simulation results show that the perfect anatase (001) surface has a stronger interaction with the three gases than that of anatase (101), and both surfaces are more sensitive and selective to SO2 than to SOF2 and SO2F2. The selection of a defect surface to SO2, SOF2, and SO2F2 differs from that of a perfect surface. This theoretical result is corroborated by the sensing experiment using a TiO2 nanotube array (TNTA) gas sensor. The calculated values are analyzed to explain the results of the Pt-doped TNTA gas sensor sensing experiment. The results imply that the deposited Pt nanoparticles on the surface increase the active sites of the surface and the gas molecules may decompose upon adsorption on the active sites.

  17. Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: a density functional theory study.

    PubMed

    Zhang, Xiaoxing; Chen, Qinchuan; Tang, Ju; Hu, Weihua; Zhang, Jinbin

    2014-04-23

    The detection of partial discharge by analyzing the components of SF6 gas in gas-insulated switchgears is important to the diagnosis and assessment of the operational state of power equipment. A gas sensor based on anatase TiO2 is used to detect decomposed gases in SF6. In this paper, first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2, the primary decomposition by-products of SF6 under partial discharge, on anatase (101) and (001) surfaces. Simulation results show that the perfect anatase (001) surface has a stronger interaction with the three gases than that of anatase (101), and both surfaces are more sensitive and selective to SO2 than to SOF2 and SO2F2. The selection of a defect surface to SO2, SOF2, and SO2F2 differs from that of a perfect surface. This theoretical result is corroborated by the sensing experiment using a TiO2 nanotube array (TNTA) gas sensor. The calculated values are analyzed to explain the results of the Pt-doped TNTA gas sensor sensing experiment. The results imply that the deposited Pt nanoparticles on the surface increase the active sites of the surface and the gas molecules may decompose upon adsorption on the active sites.

  18. Permutation-blocking path-integral Monte Carlo approach to the static density response of the warm dense electron gas

    NASA Astrophysics Data System (ADS)

    Dornheim, Tobias; Groth, Simon; Vorberger, Jan; Bonitz, Michael

    2017-08-01

    The static density response of the uniform electron gas is of fundamental importance for numerous applications. Here we employ the recently developed ab initio permutation blocking path integral Monte Carlo (PB-PIMC) technique [T. Dornheim et al., New J. Phys. 17, 073017 (2015), 10.1088/1367-2630/17/7/073017] to carry out extensive simulations of the harmonically perturbed electron gas at warm dense matter conditions. In particular, we investigate in detail the validity of linear response theory and demonstrate that PB-PIMC allows us to obtain highly accurate results for the static density response function and, thus, the static local field correction. A comparison with dielectric approximations to our new ab initio data reveals the need for an exact treatment of correlations. Finally, we consider a superposition of multiple perturbations and discuss the implications for the calculation of the static response function.

  19. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    SciTech Connect

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-15

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor {alpha} (TNF{alpha})-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNF{alpha}-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect.

  20. Steady temperature and density distributions in a gas containing heat sources

    NASA Technical Reports Server (NTRS)

    Davison, H. W.

    1971-01-01

    Computer program, STADDIG, is based on steady state, one dimensional heat transfer calculation using cylindrical coordinates. Program allows for conduction across gas and container walls. Heat is dissipated from walls by forced convection cooling with incompressible coolant. Heat sources are included in coolant, gas, and walls.

  1. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    SciTech Connect

    Jennings, C. A.; Ampleford, D. J.; Lamppa, D. C.; Hansen, S. B.; Jones, B.; Harvey-Thompson, A. J.; Jobe, M.; Strizic, T.; Reneker, J.; Rochau, G. A.; Cuneo, M. E.

    2015-05-15

    Large diameter multi-shell gas puffs rapidly imploded by high current (∼20 MA, ∼100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ∼13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.

  2. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    SciTech Connect

    Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; Hansen, Stephanie B.; Jones, Brent Manley; Harvey-Thompson, Adam James; Jobe, Marc Ronald Lee; Reneker, Joseph; Rochau, Gregory A.; Cuneo, Michael Edward; Strizic, T.

    2015-05-18

    Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.

  3. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    DOE PAGES

    Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; ...

    2015-05-18

    Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiativemore » output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.« less

  4. A new equation of state for better liquid density prediction of natural gas systems

    NASA Astrophysics Data System (ADS)

    Nwankwo, Princess C.

    Equations of state formulations, modifications and applications have remained active research areas since the success of van der Waal's equation in 1873. The need for better reservoir fluid modeling and characterization is of great importance to petroleum engineers who deal with thermodynamic related properties of petroleum fluids at every stage of the petroleum "life span" from its drilling, to production through the wellbore, to transportation, metering and storage. Equations of state methods are far less expensive (in terms of material cost and time) than laboratory or experimental forages and the results are interestingly not too far removed from the limits of acceptable accuracy. In most cases, the degree of accuracy obtained, by using various EOS's, though not appreciable, have been acceptable when considering the gain in time. The possibility of obtaining an equation of state which though simple in form and in use, could have the potential of further narrowing the present existing bias between experimentally determined and popular EOS estimated results spurred the interest that resulted in this study. This research study had as its chief objective, to develop a new equation of state that would more efficiently capture the thermodynamic properties of gas condensate fluids, especially the liquid phase density, which is the major weakness of other established and popular cubic equations of state. The set objective was satisfied by a new semi analytical cubic three parameter equation of state, derived by the modification of the attraction term contribution to pressure of the van der Waal EOS without compromising either structural simplicity or accuracy of estimating other vapor liquid equilibria properties. The application of new EOS to single and multi-component light hydrocarbon fluids recorded far lower error values than does the popular two parameter, Peng-Robinson's (PR) and three parameter Patel-Teja's (PT) equations of state. Furthermore, this research

  5. Technical factors influencing cone packing density estimates in adaptive optics flood illuminated retinal images.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Lombardo, Giuseppe

    2014-01-01

    To investigate the influence of various technical factors on the variation of cone packing density estimates in adaptive optics flood illuminated retinal images. Adaptive optics images of the photoreceptor mosaic were obtained in fifteen healthy subjects. The cone density and Voronoi diagrams were assessed in sampling windows of 320×320 µm, 160×160 µm and 64×64 µm at 1.5 degree temporal and superior eccentricity from the preferred locus of fixation (PRL). The technical factors that have been analyzed included the sampling window size, the corrected retinal magnification factor (RMFcorr), the conversion from radial to linear distance from the PRL, the displacement between the PRL and foveal center and the manual checking of cone identification algorithm. Bland-Altman analysis was used to assess the agreement between cone density estimated within the different sampling window conditions. The cone density declined with decreasing sampling area and data between areas of different size showed low agreement. A high agreement was found between sampling areas of the same size when comparing density calculated with or without using individual RMFcorr. The agreement between cone density measured at radial and linear distances from the PRL and between data referred to the PRL or the foveal center was moderate. The percentage of Voronoi tiles with hexagonal packing arrangement was comparable between sampling areas of different size. The boundary effect, presence of any retinal vessels, and the manual selection of cones missed by the automated identification algorithm were identified as the factors influencing variation of cone packing arrangements in Voronoi diagrams. The sampling window size is the main technical factor that influences variation of cone density. Clear identification of each cone in the image and the use of a large buffer zone are necessary to minimize factors influencing variation of Voronoi diagrams of the cone mosaic.

  6. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    PubMed

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.

  7. High stocking density as a predisposing factor for necrotic enteritis in broiler chicks.

    PubMed

    Tsiouris, V; Georgopoulou, I; Batzios, C; Pappaioannou, N; Ducatelle, R; Fortomaris, P

    2015-01-01

    Stocking density is a management factor which has critical implications for the poultry industry. The aim of the present study was to investigate the effect of high stocking density as a predisposing factor in an experimental model of necrotic enteritis in broiler chicks. The experimental challenge model included an oral inoculation with 10-fold dose of attenuated anticoccidial vaccine and multiple oral inoculations with a specific strain of Clostridium perfringens. Two hundred and forty as hatched day-old broiler chicks were randomly allocated to four treatment groups according to the following experimental design: group N, with normal stocking density (15 birds/m(2)) and no challenge; group D, with high stocking density (30 birds/m(2)) and no challenge; group P, with normal stocking density and positive challenge; and group DP, with high stocking density and positive challenge. From each bird, the intestine, gizzard and liver were collected and scored for gross lesions. The intestinal digesta was collected for pH and viscosity determination. One caecum from each bird was taken for microbiological analysis. The statistical analysis and evaluation of the experimental data revealed significant interaction effects between "stocking density" and "challenge", regarding gross lesion scores in intestine and liver, pH values in jejunum, ileum and caeca as well as C. perfringens counts in the caeca (P ≤ 0.05). High stocking density in challenged birds increased the gross lesion score in the intestine (P ≤ 0.05), contrary to unchallenged birds. It can be concluded that high stocking density affects unfavourably the welfare and gut health of broiler chicks, predisposes to necrotic enteritis in a subclinical experimental model and increases further its importance as a management factor for the poultry industry.

  8. Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density.

    PubMed

    Jones, Christopher; Kammen, Daniel M

    2014-01-21

    Which municipalities and locations within the United States contribute the most to household greenhouse gas emissions, and what is the effect of population density and suburbanization on emissions? Using national household surveys, we developed econometric models of demand for energy, transportation, food, goods, and services that were used to derive average household carbon footprints (HCF) for U.S. zip codes, cities, counties, and metropolitan areas. We find consistently lower HCF in urban core cities (∼ 40 tCO2e) and higher carbon footprints in outlying suburbs (∼ 50 tCO2e), with a range from ∼ 25 to >80 tCO2e in the 50 largest metropolitan areas. Population density exhibits a weak but positive correlation with HCF until a density threshold is met, after which range, mean, and standard deviation of HCF decline. While population density contributes to relatively low HCF in the central cities of large metropolitan areas, the more extensive suburbanization in these regions contributes to an overall net increase in HCF compared to smaller metropolitan areas. Suburbs alone account for ∼ 50% of total U.S. HCF. Differences in the size, composition, and location of household carbon footprints suggest the need for tailoring of greenhouse gas mitigation efforts to different populations.

  9. Highly underexpanded jets in the presence of a density jump between an ambient gas and a jet.

    PubMed

    Belan, Marco; De Ponte, Sergio; Tordella, Daniela

    2010-08-01

    An experimental research concerning highly underexpanded jets made of different gases from the surrounding ambient is here described. By selecting different species of gases, it was possible to vary the jet-to-ambient density ratio in the 0.04-12 range and observe its effect on the jet morphology. By adjusting the stagnation and ambient pressures, it has been possible to select the Mach number of the jets, independently from the density ratio. Each jet is therefore characterized by its maximum Mach number, ranging from 10 to 50. The Reynolds number range of the nozzle is 10(3)-5×10(4). The spatial evolution of the jets was observed over a much larger scale than the nozzle diameter. The gas densities were evaluated from the light emission induced by an electron beam and the gas concentrations were obtained by analyzing the color of the emitted light. The results have shown that the morphology of the jets depends to a greater extent on the density ratio. Jets that are lighter than the ambient exhibit a more intense jet-ambient mixing than jets that are heavier than the ambient, while the effects of changing the jet Mach number do not seem to be too large in the explored range. These results can be expressed by means of two simple scaling laws relevant to the near field (pre-Mach-disk) and the mid-long term field (post-Mach-disk), respectively.

  10. Testing the nonlocal kinetic energy functional of an inhomogeneous, two-dimensional degenerate Fermi gas within the average density approximation

    NASA Astrophysics Data System (ADS)

    Towers, J.; van Zyl, B. P.; Kirkby, W.

    2015-08-01

    In a recent paper [B. P. van Zyl et al., Phys. Rev. A 89, 022503 (2014), 10.1103/PhysRevA.89.022503], the average density approximation (ADA) was implemented to develop a parameter-free, nonlocal kinetic energy functional to be used in the orbital-free density functional theory of an inhomogeneous, two-dimensional (2D) Fermi gas. In this work, we provide a detailed comparison of self-consistent calculations within the ADA with the exact results of the Kohn-Sham density functional theory and the elementary Thomas-Fermi (TF) approximation. We demonstrate that the ADA for the 2D kinetic energy functional works very well under a wide variety of confinement potentials, even for relatively small particle numbers. Remarkably, the TF approximation for the kinetic energy functional, without any gradient corrections, also yields good agreement with the exact kinetic energy for all confining potentials considered, although at the expense of the spatial and kinetic energy densities exhibiting poor pointwise agreement, particularly near the TF radius. Our findings illustrate that the ADA kinetic energy functional yields accurate results for both the local and global equilibrium properties of an inhomogeneous 2D Fermi gas, without the need for any fitting parameters.

  11. Manifestly Hermitian semiclassical expansion for the one-particle density matrix of a two-dimensional Fermi gas

    NASA Astrophysics Data System (ADS)

    Bencheikh, K.; van Zyl, B. P.; Berkane, K.

    2016-08-01

    The semiclassical ℏ expansion of the one-particle density matrix for a two-dimensional Fermi gas is calculated within the Wigner transform method of B. Grammaticos and A. Voros [Ann. Phys. (N.Y.) 123, 359 (1979), 10.1016/0003-4916(79)90343-9], originally developed in the context of nuclear physics. The method of Grammaticos and Voros has the virtue of preserving both the Hermiticity and idempotency of the density matrix to all orders in the ℏ expansion. As a topical application, we use our semiclassical expansion to go beyond the local-density approximation for the construction of the total dipole-dipole interaction energy functional of a two-dimensional, spin-polarized dipolar Fermi gas. We find a finite, second-order gradient correction to the Hartree-Fock energy, which takes the form ɛ (∇ρ ) 2/√{ρ } , with ɛ being small (|ɛ |≪1 ) and negative. We test the quality of the corrected energy by comparing it with the exact results available for harmonic confinement. Even for small particle numbers, the gradient correction to the dipole-dipole energy provides a significant improvement over the local-density approximation.

  12. Factors Affecting the Incidence of Angel Wing in White Roman Geese: Stocking Density and Genetic Selection.

    PubMed

    Lin, M J; Chang, S C; Lin, T Y; Cheng, Y S; Lee, Y P; Fan, Y K

    2016-06-01

    The present study investigated stocking density and genetic lines, factors that may alter the severity and incidence of angel wing (AW), in White Roman geese. Geese (n = 384) from two genetically selected lines (normal- winged line, NL, and angel-winged line, AL, respectively) and one commercial line (CL) were raised in four pens. Following common commercial practice, low-stocking-density (LD), medium-stocking-density, and high-stocking-density treatments were respectively administered to 24, 32, and 40 geese per pen at 0 to 3 weeks (1.92 m(2)/pen) and 4 to 6 weeks (13.2 m(2)/pen) of age and to 24, 30, and 36 geese at 7 to 14 weeks (20.0 m(2)/pen) of age. The results revealed that stocking density mainly affected body weight gain in geese younger than 4 weeks, and that geese subjected to LD had a high body weight at 2 weeks of age. However, the effect of stocking density on the severity score of AW (SSAW) and incidence of AW (IAW) did not differ significantly among the treatments. Differences were observed among the genetic stocks; that is, SSAW and IAW were significantly higher in AL than in NL and CL. Genetic selection generally aggravates AW, complicating its elimination. To effectively reduce IAW, stocking density, a suspected causal factor, should be lower than that presently applied commercially.

  13. Reproductive factors associated with mammographic density: a Korean co-twin control study.

    PubMed

    Sung, Joohon; Song, Yun-Mi; Stone, Jennifer; Lee, Kayoung; Lee, Donghun

    2011-07-01

    To determine the mechanism by which menstrual and reproductive factors are associated with the risk of breast cancer, we examined the relationships between mammographic density and known menstrual and reproductive risk factors for breast cancer. A co-twin control study was conducted with 122 pairs of monozygotic Korean female twins selected from the Healthy Twin study. Mammographic density was measured from digital mammograms using a computer-assisted method. Information on selected menstrual and reproductive factors was collected through a self-administered questionnaire. Within-pair differences for each mammographic measure were regressed against within-pair differences for each menstrual and reproductive risk factor with an adjustment for body mass index and other menstrual and reproductive factors. The percent dense area was inversely associated with the age at the first full-term childbirth (FFTB) and the number of live births, although the associations were marginally significant with an adjustment for BMI and other reproductive factors. The non-dense area was positively associated with the age at the FFTB and the number of live births. The absolute dense area was positively associated with the duration of breast feeding. The age at menarche was not associated with any component of the mammographic measures. This finding suggests that mammographic density can mediate the protective effect of greater parity against breast cancer, at least in part while age at menarche, age at the FFTB, and breast feeding do not exert their effects through mammographic density.

  14. A Method to Simulate Linear Stability of Impulsively Accelerated Density Interfaces in Ideal-MHD and Gas Dynamics

    SciTech Connect

    Ravi Samtaney

    2009-02-10

    We present a numerical method to solve the linear stability of impulsively accelerated density interfaces in two dimensions such as those arising in the Richtmyer-Meshkov instability. The method uses an Eulerian approach, and is based on an unwind method to compute the temporally evolving base state and a flux vector splitting method for the perturbations. The method is applicable to either gas dynamics or magnetohydrodynamics. Numerical examples are presented for cases in which a hydrodynamic shock interacts with a single or double density interface, and a doubly shocked single density interface. Convergence tests show that the method is spatially second order accurate for smooth flows, and between first and second order accurate for flows with shocks.

  15. Temperature, density, and composition in the disturbed thermosphere from Esro 4 gas analyzer measurements - A global model

    NASA Technical Reports Server (NTRS)

    Jacchia, L. G.; Slowey, J. W.; Von Zahn, U.

    1977-01-01

    An analysis of density measurements of Ar, N2, O, and He made at 280 km with the gas analyzer aboard the polar-orbiting satellite Esro 4 has yielded a global model of the variations in temperature, density, and composition that occur in the disturbed thermosphere. In the model the increase of temperature over quiet conditions is a nonlinear function of the planetary geomagnetic index, its latitude profile being approximated by a fourth-power sin phi law, where phi is the 'invariant' magnetic latitude. A density wave proceeding from high latitudes is approximated by a fourth power cos phi law. A strong nonlinearity in the relation between the temperature variations and the variations in the height of the homopause explains a previously found behavioral difference in the variation of atomic oxygen during magnetic storms and during periods of sustained geomagnetic activity.

  16. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal.

    PubMed

    Lewis, Jesse S; Farnsworth, Matthew L; Burdett, Chris L; Theobald, David M; Gray, Miranda; Miller, Ryan S

    2017-03-09

    Biotic and abiotic factors are increasingly acknowledged to synergistically shape broad-scale species distributions. However, the relative importance of biotic and abiotic factors in predicting species distributions is unclear. In particular, biotic factors, such as predation and vegetation, including those resulting from anthropogenic land-use change, are underrepresented in species distribution modeling, but could improve model predictions. Using generalized linear models and model selection techniques, we used 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents to evaluate the relative importance, magnitude, and direction of biotic and abiotic factors in predicting population density of an invasive large mammal with a global distribution. Incorporating diverse biotic factors, including agriculture, vegetation cover, and large carnivore richness, into species distribution modeling substantially improved model fit and predictions. Abiotic factors, including precipitation and potential evapotranspiration, were also important predictors. The predictive map of population density revealed wide-ranging potential for an invasive large mammal to expand its distribution globally. This information can be used to proactively create conservation/management plans to control future invasions. Our study demonstrates that the ongoing paradigm shift, which recognizes that both biotic and abiotic factors shape species distributions across broad scales, can be advanced by incorporating diverse biotic factors.

  17. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal

    PubMed Central

    Lewis, Jesse S.; Farnsworth, Matthew L.; Burdett, Chris L.; Theobald, David M.; Gray, Miranda; Miller, Ryan S.

    2017-01-01

    Biotic and abiotic factors are increasingly acknowledged to synergistically shape broad-scale species distributions. However, the relative importance of biotic and abiotic factors in predicting species distributions is unclear. In particular, biotic factors, such as predation and vegetation, including those resulting from anthropogenic land-use change, are underrepresented in species distribution modeling, but could improve model predictions. Using generalized linear models and model selection techniques, we used 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents to evaluate the relative importance, magnitude, and direction of biotic and abiotic factors in predicting population density of an invasive large mammal with a global distribution. Incorporating diverse biotic factors, including agriculture, vegetation cover, and large carnivore richness, into species distribution modeling substantially improved model fit and predictions. Abiotic factors, including precipitation and potential evapotranspiration, were also important predictors. The predictive map of population density revealed wide-ranging potential for an invasive large mammal to expand its distribution globally. This information can be used to proactively create conservation/management plans to control future invasions. Our study demonstrates that the ongoing paradigm shift, which recognizes that both biotic and abiotic factors shape species distributions across broad scales, can be advanced by incorporating diverse biotic factors. PMID:28276519

  18. Geochemical and geologic factors effecting the formulation of gas hydrate: Task No. 5, Final report

    SciTech Connect

    Kvenvolden, K.A.; Claypool, G.E.

    1988-01-01

    The main objective of our work has been to determine the primary geochemical and geological factors controlling gas hydrate information and occurrence and particularly in the factors responsible for the generation and accumulation of methane in oceanic gas hydrates. In order to understand the interrelation of geochemical/geological factors controlling gas hydrate occurrence, we have undertaken a multicomponent program which has included (1) comparison of available information at sites where gas hydrates have been observed through drilling by the Deep Sea Drilling Project (DSDP) on the Blake Outer Ridge and Middle America Trench; (2) regional synthesis of information related to gas hydrate occurrences of the Middle America Trench; (3) development of a model for the occurrence of a massive gas hydrate as DSDP Site 570; (4) a global synthesis of gas hydrate occurrences; and (5) development of a predictive model for gas hydrate occurrence in oceanic sediment. The first three components of this program were treated as part of a 1985 Department of Energy Peer Review. The present report considers the last two components and presents information on the worldwide occurrence of gas hydrates with particular emphasis on the Circum-Pacific and Arctic basins. A model is developed to account for the occurrence of oceanic gas hydrates in which the source of the methane is from microbial processes. 101 refs., 17 figs., 6 tabs.

  19. Forming factors of gas hydrate chimney in the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Hyo; Chun, Jong-Hwa; Koo, Nam-Hyng; Kim, Won-Sik; Lee, Ho-Young; Lee, Joo-Yong

    2016-04-01

    Seismic chimneys ranging in width from 200 m to 1,000 m are observed in the seismic sections obtained in the Ulleung Basin, East Sea. In consequence of Ulleung Basin Gas Hydrate Expedition 1 and 2, concentrations of gas hydrates were identified. Especially, 6 chimney sites were drilled and the occurrence of gas hydrate was identified at all wells. Through the interpreting seismic section, three factors affect the formation of gas hydrate chimney; mass transport deposit, fault, igneous intrusion. These three factors result in three case of forming gas hydrate chimney. Firstly, gas hydrate chimney appears predominantly in the fault zone. Deep-rooted fault reach to mass transport deposit and gas hydrate chimney which is mostly rooted in mass transport deposit is formed. Secondly, Gas hydrate chimney appears linked to igneous intrusion. Igneous intrusion result in forming fault in overlying strata. Similar to first case, this fault traverses mass transport deposit and gas hydrate chimney rooted in mass transport deposit is created. Thirdly, gas hydrate chimney is formed at thick mass transport deposit without fault. In this case, chimney is not reach to seabed in contrast with first and second case. The thickness of mass transport deposit is 0.2 second in two-way travel times. Overburden load cause to pressure at the upper part of mass transport deposit. This leads to fracture in overlying sediments and form gas hydrate chimney.

  20. Spatial association between dissection density and environmental factors over the entire conterminous United States

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Jasiewicz, Jaroslaw; Stepinski, Tomasz; Wang, Jinfeng; Xu, Chengdong; Cang, Xuezhi

    2016-01-01

    Previous studies of land dissection density (D) often find contradictory results regarding factors controlling its spatial variation. We hypothesize that the dominant controlling factors (and the interactions between them) vary from region to region due to differences in each region's local characteristics and geologic history. We test this hypothesis by applying a geographical detector method to eight physiographic divisions of the conterminous United States and identify the dominant factor(s) in each. The geographical detector method computes the power of determinant (q) that quantitatively measures the affinity between the factor considered and D. Results show that the factor (or factor combination) with the largest q value is different for physiographic regions with different characteristics and geologic histories. For example, lithology dominates in mountainous regions, curvature dominates in plains, and glaciation dominates in previously glaciated areas. The geographical detector method offers an objective framework for revealing factors controlling Earth surface processes.

  1. Factors triggering floodplain fish emigration: Importance of fish density and food availability

    PubMed Central

    Louca, Vasilis; Lindsay, Steve W.; Lucas, Martyn C.

    2009-01-01

    Emigration is a widespread phenomenon among fish species in seasonal habitats, but little is known about the factors which trigger this behaviour. In controlled experiments using Tilapia guineensis, a species widely occurring in the seasonal floodplains of West Africa, density of fish played a significant role in triggering fish migration, whereas a lack of food available caused an increase in exploratory behaviour but with no impact on successful emigration. The impact of fish density and subsequently interactions between individuals on emigration suggests that this may be an important causal factor of emigration in fish species exhibiting social interactions. PMID:20161114

  2. A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984-1994

    NASA Astrophysics Data System (ADS)

    Thomason, L. W.; Poole, L. R.; Deshler, T.

    1997-04-01

    A global climatology of stratospheric aerosol surface area density has been developed using the multiwavelength aerosol extinction measurements of the Stratospheric Aerosol and Gas Experiment (SAGE) II for 1984-1994. The spatial and temporal variability of aerosol surface area density at 15.5, 20.5, and 25.5 km are presented as well as cumulative statistical distributions as a function of altitude and latitude. During this period, which encompassed the injection and dissipation of the aerosol associated with the June 1991 Mount Pinatubo eruption as well as the low loading period of 1989-1991, aerosol surface area density varied by more than a factor 30 at some altitudes. Aerosol surface area density derived from SAGE II and from the University of Wyoming optical particle counters are compared for 1991-1994 and are shown to be in generally good agreement though some differences are noted. An extension of the climatology using single-wavelength measurements by the Stratospheric Aerosol Measurement II (1978-1994) and SAGE (1979-1981) instruments is also presented.

  3. ANALYSIS OF FACTORS AFFECTING METHANE GAS RECOVERY FROM SIX LANDFILLS

    EPA Science Inventory

    The report gives results of a pilot study of six U.S. landfills that have methane (CH4) gas recovery systems. NOTE: The study was a first step in developing a field testing program to gather data to identify key variables that affect CH4 generation and to develop an empirical mod...

  4. US Natural Gas Price and Its Influencing Factors

    NASA Astrophysics Data System (ADS)

    Kao, Hsing-Chien

    Research has shown that the Henry Hub natural gas price and the WTI crude oil price are cointegrated in the long run; however, the short term relationship between these two energy prices draws continued discussions and remains inconclusive so far. This paper uses advanced nonlinear time series method MARS VAR to study the dynamic relationship between natural gas price movements and crude oil prices over the past 14 years of daily data. The main finding is that WTI crude oil prices were causally prior to Henry Hub natural gas prices prior to 2004. After this period a decoupling occurred that was captured by the MARS VAR model but not seen in other research using vector error correction model (VECM) that does not support thresholds. Moreover, the out-of-sample forecasting power of MARS VAR is superior to VECM, which based on the cointegration assumption. The research findings may have significant implications of commodity pricing, hedging, and risk management to natural gas local distribution company (LDC), and the Energy Administration.

  5. ANALYSIS OF FACTORS AFFECTING METHANE GAS RECOVERY FROM SIX LANDFILLS

    EPA Science Inventory

    The report gives results of a pilot study of six U.S. landfills that have methane (CH4) gas recovery systems. NOTE: The study was a first step in developing a field testing program to gather data to identify key variables that affect CH4 generation and to develop an empirical mod...

  6. PHIBSS: exploring the dependence of the CO-H2 conversion factor on total mass surface density at z<1.5

    NASA Astrophysics Data System (ADS)

    Carleton, Timothy; Cooper, Michael C.; Bolatto, Alberto D.; Bournaud, Frederic; Combes, Françoise; Freundlich, Jonathan; Garcia-Burillo, Santiago; Genzel, Reinhard; Neri, Roberto; Tacconi, Linda J.; Sandstrom, Karin M.; Weiner, Benjamin J.; Weiss, Axel

    2017-06-01

    We present an analysis of the relationship between the CO-H2 conversion factor (αCO) and total mass surface density (Σtot) in star-forming galaxies at z < 1.5. Our sample, which is drawn from the IRAM Plateau de Bure HIgh-z Blue Sequence Survey (PHIBSS) and the CO Legacy Database for GASS (COLD GASS), includes 'normal', massive star-forming galaxies that dominate the evolution of the cosmic star formation rate (SFR) at this epoch and probe the Σtot regime where the strongest variation in αCO is observed. We constrain αCO via existing CO observations, measurements of the SFR and an assumed molecular gas depletion time (tdep = Mgas/SFR) - the latter two of which establish the total molecular gas mass independent of the observed CO luminosity. For a broad range of adopted depletion times, we find that αCO is independent of total mass surface density, with little deviation from the canonical Milky Way value. This runs contrary to a scenario in which αCO decreases as surface density increases within the extended clouds of molecular gas that potentially fuel clumps of star formation in z ˜ 1 galaxies, similar to those observed in local ultra-luminous infrared galaxies. Instead, our results suggest that molecular gas, at both z ˜ 0 and z ˜ 1, is primarily in the form of self-gravitating molecular clouds. While CO observations suggest a factor of ˜3 reduction in the average molecular gas depletion time between z ˜ 0 and z ˜ 1, we find that, for typical galaxies, the structure of molecular gas and the process of star formation at z ˜ 1 is otherwise remarkably similar to that observed in local star-forming systems.

  7. Gas densities near 230 km from orbital drag and mass spectrometer measurements - A comparison

    NASA Technical Reports Server (NTRS)

    Roemar, M.; Framke, W.; Krankowsky, D.; Spencer, N. W.

    1978-01-01

    Perigee density data near 230 km for the Aeros satellite are analyzed for more than 1000 orbits. A comparison method for such data was developed which is based on the observed rate of change of orbital period as compared with the orbital decay computed from mass-spectrometer data obtained at discrete positions along the orbit. In general, the method confirms the good agreement of the average ratio of in-situ and orbit-drag-inferred perigee densities. In the case of Aeros, absolute densities measured by the NATE mass spectrometer are confirmed.

  8. Current density-voltage and admittance characteristics of hydrogenated nanocrystalline cubic SiC/crystalline Si heterojunction diodes prepared with varying H2 gas flow rates

    NASA Astrophysics Data System (ADS)

    Tabata, Akimori; Imori, Yoshikazu

    2015-02-01

    N-doped hydrogenated nanocrystalline cubic SiC (nc-3C-SiC:H) thin films were deposited on p-type crystalline Si (c-Si) substrates by hot-wire chemical vapor deposition from a SiH4/CH4/H2/N2 gas mixture. The current density-voltage and the admittance characteristics of the nc-3C-SiC:H/c-Si heterojunction diodes were investigated. As the H2 gas flow rate (F(H2)) increased from 25 to 100 sccm, the ideality factor and saturation current density deceased from 1.87 to 1.47 and 1.6 × 10-7 to 9.9 × 10-9 A/cm2, respectively. However, they increased to 1.82 and 3.0 × 10-7 A/cm2, respectively, when F(H2) was further increased to 1000 sccm. The relaxation time, evaluated from the admittance characteristics, decreased from 2.9 × 10-5 to 2.4 × 10-6 s with an increase in F(H2). The apparent built-in voltage, evaluated from the capacitance-voltage characteristics, decreased from 1.05 to 0.60 eV. These findings were mainly caused by interfacial defects, generated by a high density of H radicals during the nc-3C-SiC:H deposition process. The interfacial defect density increased with an increase in F(H2), resulting in deterioration of the diode characteristics.

  9. Importance of network density of nanotube: Effect on nitrogen dioxide gas sensing by solid state resistive sensor

    SciTech Connect

    Mishra, Prabhash; Grachyova, D. V.; Moskalenko, A. S.; Shcherbak, M. A.; Pavelyev, V. S.

    2016-04-13

    Dispersion of single-walled carbon nanotubes (SWCNTs) is an established fact, however, its effect on toxic gas sensing for the development of solid state resistive sensor was not well reported. In this report, the dispersion quality of SWCNTs has been investigated and improved, and this well-dispersed SWCNTs network was used for sensor fabrication to monitor nitrogen dioxide gas. Ultraviolet (UV)-visible spectroscopic studies shows the strength of SWNTs dispersion and scanning electron microscopy (SEM) imaging provides the morphological properties of the sensor device. In this gas sensor device, two sets of resistive type sensors were fabricated that consisting of a pair of interdigitated electrodes (IDEs) using dielectrophoresis technique with different SWCNTs network density. With low-density SWCNTs networks, this fabricated sensor exhibits a high response for nitrogen dioxide sensing. The sensing of nitrogen dioxide is mainly due to charge transfer from absorbed molecules to sidewalls of nanotube and tube-tube screening acting a major role for the transport properties of charge carriers.

  10. Importance of network density of nanotube: Effect on nitrogen dioxide gas sensing by solid state resistive sensor

    NASA Astrophysics Data System (ADS)

    Mishra, Prabhash; Grachyova, D. V.; Moskalenko, A. S.; Shcherbak, M. A.; Pavelyev, V. S.

    2016-04-01

    Dispersion of single-walled carbon nanotubes (SWCNTs) is an established fact, however, its effect on toxic gas sensing for the development of solid state resistive sensor was not well reported. In this report, the dispersion quality of SWCNTs has been investigated and improved, and this well-dispersed SWCNTs network was used for sensor fabrication to monitor nitrogen dioxide gas. Ultraviolet (UV)-visible spectroscopic studies shows the strength of SWNTs dispersion and scanning electron microscopy (SEM) imaging provides the morphological properties of the sensor device. In this gas sensor device, two sets of resistive type sensors were fabricated that consisting of a pair of interdigitated electrodes (IDEs) using dielectrophoresis technique with different SWCNTs network density. With low-density SWCNTs networks, this fabricated sensor exhibits a high response for nitrogen dioxide sensing. The sensing of nitrogen dioxide is mainly due to charge transfer from absorbed molecules to sidewalls of nanotube and tube-tube screening acting a major role for the transport properties of charge carriers.

  11. Determination of the Density and Temperature Dependence of the Shear Viscosity of a Unitary Fermi Gas Based on Hydrodynamic Flow

    NASA Astrophysics Data System (ADS)

    Bluhm, Marcus; Hou, Jiaxun; Schäfer, Thomas

    2017-08-01

    We determine the shear viscosity of the ultracold Fermi gas at unitarity in the normal phase using hydrodynamic expansion data. The analysis is based on a generalized fluid dynamic framework which ensures a smooth transition between the fluid dynamic core of the cloud and the ballistic corona. We use expansion data taken by Joseph, Elliott, and Thomas [Shear Viscosity of a Universal Fermi Gas Near the Superfluid Phase Transition, Phys. Rev. Lett. 115, 020401 (2015)., 10.1103/PhysRevLett.115.020401] and measurements of the equation of state by Ku et al. [Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas, Science 335, 563 (2012)., 10.1126/science.1214987]. We find that the shear viscosity to particle density ratio just above the critical temperature is η /n |Tc=0.41 ±0.11 . We also obtain evidence that the shear viscosity to entropy density ratio has a minimum slightly above Tc with η /s| min=0.50 ±0.10 .

  12. Unequal density effect on static structure factor of coupled electron layers

    SciTech Connect

    Saini, L. K. Nayak, Mukesh G.

    2014-04-24

    In order to understand the ordered phase, if any, in a real coupled electron layers (CEL), there is a need to take into account the effect of unequal layer density. Such phase is confirmed by a strong peak in a static structure factor. With the aid of quantum/dynamical version of Singwi, Tosi, Land and Sjölander (so-called qSTLS) approximation, we have calculated the intra- and interlayer static structure factors, S{sub ll}(q) and S{sub 12}(q), over a wide range of density parameter r{sub sl} and interlayer spacing d. In our present study, the sharp peak in S{sub 22}(q) has been found at critical density with sufficiently lower interlayer spacing. Further, to find the resultant effect of unequal density on intra- and interlayer static structure factors, we have compared our results with that of the recent CEL system with equal layer density and isolated single electron layer.

  13. Fluorocarbon seal replaces metal piston ring in low density gas environment

    NASA Technical Reports Server (NTRS)

    Morath, W. D.; Morgan, N. E.

    1967-01-01

    Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.

  14. THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Zhuravleva, I.; Allen, S. W.; Churazov, E. M.; Gaspari, M.; Schekochihin, A. A.; Lau, E. T.; Nagai, D.; Nelson, K.; Parrish, I. J.

    2014-06-10

    We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρ{sub k}/ρ){sup 2}=η{sub 1}{sup 2}(V{sub 1,k}/c{sub s}){sup 2}, where δρ {sub k}/ρ is the spectral amplitude of the density perturbations at wavenumber k, V{sub 1,k}{sup 2}=V{sub k}{sup 2}/3 is the mean square component of the velocity field, c{sub s} is the sound speed, and η{sub 1} is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η{sub 1} ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales.

  15. A synthesis of studies of access point density as a risk factor for road accidents.

    PubMed

    Elvik, Rune

    2017-10-01

    Studies of the relationship between access point density (number of access points, or driveways, per kilometre of road) and accident frequency or rate (number of accidents per unit of exposure) have consistently found that accident rate increases when access point density increases. This paper presents a formal synthesis of the findings of these studies. It was found that the addition of one access point per kilometre of road is associated with an increase of 4% in the expected number of accidents, controlling for traffic volume. Although studies consistently indicate an increase in accident rate as access point density increases, the size of the increase varies substantially between studies. In addition to reviewing studies of access point density as a risk factor, the paper discusses some issues related to formally synthesising regression coefficients by applying the inverse-variance method of meta-analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam

    PubMed Central

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-01-01

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m3), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively. PMID:26402682

  17. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam.

    PubMed

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-09-22

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m³), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively.

  18. A pressure gauge based on gas density measurement from analysis of the thermal noise of an atomic force microscope cantilever.

    PubMed

    Seo, Dongjin; Paul, Mark R; Ducker, William A

    2012-05-01

    We describe a gas-density gauge based on the analysis of the thermally-driven fluctuations of an atomic force microscope (AFM) cantilever. The fluctuations are modeled as a ring-down of a simple harmonic oscillator, which allows fitting of the resonance frequency and damping of the cantilever, which in turn yields the gas density. The pressure is obtained from the density using the known equation of state. In the range 10-220 kPa, the pressure readings from the cantilever gauge deviate by an average of only about 5% from pressure readings on a commercial gauge. The theoretical description we use to determine the pressure from the cantilever motion is based upon the continuum hypothesis, which sets a minimum pressure for our analysis. It is anticipated that the cantilever gauge could be extended to measure lower pressures given a molecular theoretical description. Alternatively, the gauge could be calibrated for use in the non-continuum range. Our measurement technique is similar to previous AFM cantilever measurements, but the analysis produces improved accuracy.

  19. Charge-density analysis of 1-nitroindoline: refinement quality using free R factors and restraints.

    PubMed

    Zarychta, Bartosz; Zaleski, Jacek; Kyzioł, Janusz; Daszkiewicz, Zdzisław; Jelsch, Christian

    2011-06-01

    Nitramines and related N-nitro compounds have attracted significant attention owing to their use in rocket fuel and as explosives. The charge density of 1-nitroindoline was determined experimentally and from theoretical calculations. Electron-density refinements were performed using the multipolar atom formalism. In order to design the ideal restraint strategy for the charge-density parameters, R-free analyses were performed involving a series of comprehensive refinements. Different weights were applied to the charge-density restraints, namely the similarity between chemically equivalent atoms and local symmetry. Additionally, isotropic thermal motion and an anisotropic model calculated by rigid-body analysis were tested on H atoms. The restraint weights which resulted in the lowest values of the averaged R-free factors and the anisotropic H-atom model were considered to yield the best charge density and were used in the final refinement. The derived experimental charge density along with intra- and intermolecular interactions was analysed and compared with theoretical calculations, notably with respect to the symmetry of multipole parameters. A comparison of different refinements suggests that the appropriate weighting scheme applied to charge-density restraints can reduce the observed artefacts. The topological bond orders of the molecule were calculated.

  20. Relationship between breast cancer risk factors and mammographic breast density in the Fernald Community Cohort

    PubMed Central

    Yaghjyan, L; Mahoney, M C; Succop, P; Wones, R; Buckholz, J; Pinney, S M

    2012-01-01

    Background: We investigated associations of known breast cancer risk factors with breast density, a well-established and very strong predictor of breast cancer risk. Methods: This nested case–control study included breast cancer-free women, 265 with high and 860 with low breast density. Women were required to be 40–80 years old and should have a body mass index (BMI) <35 at the time of the index mammogram. Information on covariates was obtained from annual questionnaires. Results: In the overall analysis, breast density was inversely associated with BMI at mammogram (P for trend<0.001), and parity (P for trend=0.02) and positively associated with alcohol consumption (ever vs never: odds ratio 2.0, 95% confidence interval 1.4–2.8). Alcohol consumption was positively associated with density, and the association was stronger in women with a family history of breast cancer (P<0.001) and in women with hormone replacement therapy (HRT) history (P<0.001). Parity was inversely associated with density in all subsets, except premenopausal women and women without a family history. The association of parity with density was stronger in women with HRT history (P<0.001). Conclusion: The associations of alcohol and parity with breast density appear to be in reverse direction, but stronger in women with a family history of breast cancer and women who ever used HRT. PMID:22281662

  1. Characterization of breast density in Vietnam and its association with demographic, reproductive and lifestyle factors

    NASA Astrophysics Data System (ADS)

    Trieu, Phuong Dung (Yun); Mello-Thoms, Claudia; Peat, Jenny; Do, Thuan Doan; Brennan, Patrick C.

    2017-03-01

    This study aims to investigate patterns of breast density among women in Vietnam and their association with demographic, reproductive and lifestyle features. Mammographic densities of 1,651 women were collected from the two largest breast cancer screening and treatment centers in Ha Noi and Ho Chi Minh city. Putative factors associated with breast density were obtained from self-administered questionnaires which considered demographic, reproductive and lifestyle elements and were provided by women who attended mammography examinations. Results show that a large proportion of Vietnamese women (78.4%) had a high breast density. With multivariable logistic regression, significant associations of high breast density were evident with women with less than 55 years old (OR=3.0), having BMI less than 23 (OR=2.2), experiencing pre-menopausal status (OR=2.9), having less than three children (OR=1.7), and being less than 32 years old when having their last child (OR=1.8). Participants who consumed more than two vegetable servings per day also had an increased risk of higher density (OR=2.6). The findings suggest some unique features regarding mammographic density amongst Vietnamese compared with westernized women.

  2. Measurement of chromophores density using high Q-factor silica microspheres

    NASA Astrophysics Data System (ADS)

    Kandas, Ishac; Shehata, Nader; Daengngam, Chalongrat; Ashry, Islam; Xu, Yong

    2016-01-01

    This work investigates the relationship between the Q factor of a silica microsphere coated with nonlinear optical molecules and the surface density of the nonlinear molecules. Two types of nonlinear molecules are studied: poly{1-[p-(3‧-carboxy-4‧-hydroxyphenylazo) benzenesulfonamido]-1,2-ethandiyl} (PCBS), and Procion Brown MX-GRN (PB). In our experiments, we coat silica microspheres with ionic self-assembled multilayer films with different thicknesses as well as with different PCBS/PB chromophores densities. The Q factors of the coated microspheres are measured to be within the range of 106 to 107, which can be attributed to the optical absorption of the coated chromophores. This work can be used to experimentally determine the effective density of chromophores assembled on the silica microsphere. It may also find applications in chemical/biological sensing.

  3. Form factor dispersion at La M5,4 edges and average density of resonant atoms.

    PubMed

    Smadici, S; Lee, J C T; Logvenov, G; Bozovic, I; Abbamonte, P

    2014-01-15

    Resonant soft x-ray scattering on complex oxide superlattices shows very large variations in the superlattice reflection position and intensity near La M5,4 edges. Resonant dispersion of the La x-ray form factor describes the observations well. We determine the average density of resonant La atoms and the thickness of superlattice layers.

  4. Bone mineral density and perceived menopausal symptoms: factors influencing low back pain in postmenopausal women.

    PubMed

    Ahn, Sukhee; Song, Rhayun

    2009-06-01

    This paper is a report of a study of the relationships between the factors influencing low back pain in postmenopausal women (i.e. menopausal symptoms, bone mineral density, duration of menopause, hormonal therapy, obesity, inactivity during leisure time, parity, osteoarthritis and drinking coffee). Previous studies have shown that low back pain in postmenopausal women is associated with bone mineral density, menopausal symptoms and lifestyle factors, yet the factors influencing low back pain are not clear and vary with ethnicity. A survey was conducted with postmenopausal women (n = 134) in Korea in 2006. Bone mineral density in the lumbar spine, back pain status, menopausal symptoms and health habits were assessed. Participants' mean age was 59 years. About 70% experienced back pain on more than 1 day during the week prior to the survey and 35% suffered back pain daily. Women with back pain reported more severe menopausal symptoms than those without back pain. Based on bone mineral density scores, 26.9% of the women were considered to be at risk of osteoporosis. However, there was no association between back pain status and fracture risk status. Based on a multiple logistic regression model, menopausal symptoms, drinking coffee and inactivity during leisure time were statistically significant influencing factors for low back pain in this sample. The prevalence of low back pain in postmenopausal women should be recognized in association with menopausal symptoms and health habits. Further research is needed to develop interventions for the management of low back pain in postmenopausal women.

  5. Magnetomechanical coupling factor and energy density of single crystal iron-gallium alloys

    NASA Astrophysics Data System (ADS)

    Datta, Supratik; Flatau, Alison B.

    2008-03-01

    Energy density and coupling factor are widely used as figures of merit for comparing different active materials. These parameters are usually evaluated as material constants assuming a linear behavior of the material over all operating ranges. In this work it is shown that the operating conditions have an effect on the energy density and coupling factor which cannot be ignored. A single crystal rod of Fe 84Ga 16 was characterized as a magnetostrictive actuator and sensor under different quasi-static stress and magnetic field conditions. The material showed a saturation magnetostriction of 247 μɛ and a maximum stress sensitivity of 45 T/GPa. A maximum energy density of 2.38 kJ/m 3 and coupling factor higher than 0.6 were calculated from experimental results. The experimental behavior was modeled using an energy based non-linear approach which was further used to calculate the coupling factor and energy density as continuous functions of stress and magnetic field in the material. Guidelines on optimal operating conditions for magnetostrictive actuators and sensors using FeGa alloys have been suggested.

  6. A Factor Analytic Approach to the Study of Spatial Density Effects on Preschoolers.

    ERIC Educational Resources Information Center

    Loo, Chalsa M.

    1979-01-01

    Behavior of preschoolers was studied with respect to five factors: verbally-abusive interaction, activity-toy play, avoidance, negative affect-agression, and desire-to-leave-a-crowded-room. Under high density conditions, more girls exhibited reduced activity level and toy involvement, along with increased negative feelings, than boys. (MA)

  7. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Wang, Shicong; Wendt, Amy E.; Culver, Cody; Radovanov, Svetlana; Persing, Harold

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  8. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model.

    PubMed

    Fitzgerald, James E; Robinson, Robert L; Gasem, Khaled A M

    2006-11-07

    The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO2 sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO2 on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO2 on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.

  9. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    PubMed

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  10. Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction.

    PubMed

    Chen, Zezhi; Gong, Huijuan; Zhang, Mengqun; Wu, Weili; Liu, Yu; Feng, Jin

    2011-05-01

    Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. [Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China].

    PubMed

    Zhu, Xiang-cheng; Zhang, Zhen-ping; Zhang, Jun; Deng, Ai-xing; Zhang, Wei-jian

    2016-02-01

    The traditional rice growing practice has to change to save resource and protect environment, and it' s necessary to develop new technology in rice cultivation. Therefore, a two-year field experiment of Japonica rice (Liaoxing 1) was conducted in Northeast China in 2012 and 2013 to investigate the integrated effects of dense planting with less basal nitrogen (N) and unchanged top-dressing N (IR) on rice yield, N use efficiency (NUE) and greenhouse gas emissions. Compared with traditional practice (CK), we increased the rice seedling density by 33.3% and reduced the basal N rate by 20%. The results showed that the average N agronomy efficiency and partial factor productivity were improved by 49.6% (P<0.05) and 20.4% (P<0.05), respectively, while the area and yield-scaled greenhouse gas emissions were reduced by 9.9% and 12.7% (P<0.05), respectively. Although IR cropping mode decreased panicle number and biomass production, it significantly enhanced rice seed setting rate and harvest index, resulting in an unchanged or even highei yield. NH4+-N and NO3(-)-N concentrations in rice rhizosphere soil were reduced, resulting in an increment of N recovery efficiency. Generally, proper dense planting with less basal N applicatior could be a good approach for the trade-off between rice yield, NUE and greenhouse gas emission.

  12. FACTORS INFLUENCING THE DEPOSITION OF A COMPOUND THAT PARTITIONS BETWEEN GAS AND PARTICULATE PHASES

    EPA Science Inventory

    How will atmospheric deposition behave for a compound when it reversibly sorbs between gas and atmospheric particulate phases? Two factors influence the answer. What physical mechanisms occur in the sorption process? What are the concentration and composition of atmospheric par...

  13. FACTORS INFLUENCING THE DEPOSITION OF A COMPOUND THAT PARTITIONS BETWEEN GAS AND PARTICULATE PHASES

    EPA Science Inventory

    How will atmospheric deposition behave for a compound when it reversibly sorbs between gas and atmospheric particulate phases? Two factors influence the answer. What physical mechanisms occur in the sorption process? What are the concentration and composition of atmospheric par...

  14. Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2011-01-01

    The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.

  15. Environmental factors influencing tick densities over seven years in a French suburban forest.

    PubMed

    Paul, Richard E L; Cote, Martine; Le Naour, Evelyne; Bonnet, Sarah I

    2016-05-27

    Worldwide changes in socio-economic and environmental factors and the global climate are recognised causes of variation in tick distribution and density. Thus it is of great importance that new studies address the changing risk of infection for exposed populations. In Europe, Ixodes ricinus ticks are the most common vectors of several pathogens impacting veterinary and public health that have colonised suburban habitats. This study aimed to evaluate longitudinal I. ricinus questing densities and infection rates over 7 years in a French suburban forested area with high human population density. Ticks were collected in spring yearly between 2008 and 2014 and, out of a total of 8594 collected I. ricinus, a representative subset of adult females (n = 259) were individually examined for the presence of several pathogens via PCR. Nymph densities peaked in 2009-2011, and then declined in 2012-2014. Changes in monthly temperature only had a modest impact on this variation. In contrast, analysis revealed a complex intra-annual relationship between mean nymph density and both concurrent and lagged mean monthly temperatures. The following pathogens were detected in the studied area: Anaplasma phagocytophilum, Rickettsia helvetica, Babesia venatorum and B. divergens, Francisella tularensis, Borrelia miyamotoi, B. afzelii/valaisiana, B. garinii/lusitaniae and Bartonella spp. Our findings reinforce the conclusion that ticks are important vectors of pathogenic microorganisms in suburban forests and suggest that despite complex intra-annual relationships between tick densities and temperature, there is no evidence for a climate-associated increase in infection risk over the 7-year period. Rather, tick densities are likely to be strongly influenced by population density fluctuations in vertebrate host species and wildlife management. Further detailed studies on the impact of climate change on tick population densities are required.

  16. 40 CFR Table W - 5 of Subpart W-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment ENVIRONMENTAL... Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor (scf/hour/component...

  17. A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements

    SciTech Connect

    Jackson, S. L.; Weber, B. V.; Mosher, D.; Phipps, D. G.; Stephanakis, S. J.; Commisso, R. J.; Qi, N.; Failor, B. H.; Coleman, P. L.

    2008-10-15

    The distribution of argon gas injected by a 12-cm-diameter triple-shell nozzle was characterized using both planar, laser-induced fluorescence (PLIF) and high-sensitivity interferometry. PLIF is used to measure the density distribution at a given time by detecting fluorescence from an acetone tracer added to the gas. Interferometry involves making time-dependent, line-integrated gas density measurements at a series of chordal locations that are then Abel inverted to obtain the gas density distribution. Measurements were made on nominally identical nozzles later used for gas-puff Z-pinch experiments on the Saturn pulsed-power generator. Significant differences in the mass distributions obtained by the two techniques are presented and discussed, along with the strengths and weaknesses of each method.

  18. Ni(NiO)/single-walled carbon nanotubes composite: Synthesis of electro-deposition, gas sensing property for NO gas and density functional theory calculation

    SciTech Connect

    Li, Li; Zhang, Guo; Chen, Lei; Bi, Hong-Mei; Shi, Ke-Ying

    2013-02-15

    Graphical abstract: The Ni(NiO)/semiconducting single-walled carbon nanotubes composite collected from the cathode after electro-deposition shows a high sensitivity to low-concentration NO gas at room temperature (18 °C). Display Omitted Highlights: ► Ni(NiO) nanoparticles were deposited on semiconducting SWCNTs by electro-deposition. ► Ni(NiO)/semiconducting SWCNTs film shows a high sensitivity to NO gas at 18 °C. ►Theoretical calculation reveals electron transfer from SWCNTs to NO via Ni. -- Abstract: Single-walled carbon nanotubes which contains metallic SWCNTs (m-SWCNTs) and semiconducting SWCNTs (s-SWCNTs) have been obtained under electric arc discharge. Their separation can be effectively achieved by the electro-deposition method. The Ni(NiO)/s-SWCNTs composite was found on cathode where Ni was partially oxidized to NiO at ambient condition with Ni(NiO) nanoparticles deposited uniformly on the bundles of SWCNTs. These results were confirmed by Raman spectra, transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–vis–NIR and TG characterizations. Furthermore, investigation of the gas sensing property of Ni(NiO)/s-SWCNTs composite film to NO gas at 18 °C demonstrated the sensitivity was approximately 5% at the concentration of 97 ppb. Moreover, density functional theory (DFT) calculations were performed to explore the sensing mechanism which suggested the adsorption of NO molecules onto the composite through N–Ni interaction as well as the proposition of electron transfer mechanisms from SWCNTs to NO via the Ni medium.

  19. Effective g factor of low-density two-dimensional holes in a Ge quantum well

    DOE PAGES

    Lu, T. M.; Harris, C. T.; Huang, S. -H.; ...

    2017-09-04

    Here we report the measurements of the effective g factor of low-density two-dimensional holes in a Ge quantum well. Using the temperature dependence of the Shubnikov-de Haas oscillations, we extract the effective g factor in a magnetic field perpendicular to the sample surface. Very large values of the effective g factor, ranging from ~13 to ~28, are observed in the density range of 1.4×1010 cm-2– 1.4×1011 cm-2. When the magnetic field is oriented parallel to the sample surface, the effective g factor is obtained from a protrusion in the magneto-resistance data that signify full spin polarization. In the latter orientation,more » a small effective g factor, ~1.3-1.4, is measured in the density range of 1.5×1010 cm-2–2×1010 cm-2. Finally, this very strong anisotropy is consistent with theoretical predictions and previous measurements in other 2D hole systems, such as InGaAs and GaSb.« less

  20. Supernova matter at subnuclear densities as a resonant Fermi gas: enhancement of neutrino rates.

    PubMed

    Bartl, A; Pethick, C J; Schwenk, A

    2014-08-22

    At low energies nucleon-nucleon interactions are resonant and therefore supernova matter at subnuclear densities has many similarities to atomic gases with interactions dominated by a Feshbach resonance. We calculate the rates of neutrino processes involving nucleon-nucleon collisions and show that these are enhanced in mixtures of neutrons and protons at subnuclear densities due to the large scattering lengths. As a result, the rate for neutrino pair bremsstrahlung and absorption is significantly larger below 10(13) g cm(-3) compared to rates used in supernova simulations.

  1. Nonsimilar Solution for Shock Waves in a Rotational Axisymmetric Perfect Gas with a Magnetic Field and Exponentially Varying Density

    NASA Astrophysics Data System (ADS)

    Nath, G.; Sinha, A. K.

    2017-01-01

    The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.

  2. Predicting gas adsorption in complex microporous and mesoporous materials using a new density functional theory of finely discretized lattice fluids.

    PubMed

    Siderius, Daniel W; Gelb, Lev D

    2009-02-03

    We introduce a nonlocal on-lattice version of density functional theory (DFT) that allows for efficient modeling of fluids in complex inhomogeneous materials. In its previous implementations, classical DFT has required fine discretization of the fluid density. As a result, in studies of gas adsorption it has been used only in idealized pore models with high symmetry. Our new lattice DFT dramatically reduces the computational demand required to model simple fluids and hence can be efficiently applied to complex materials with multiple directions of asymmetry. We apply our new lattice DFT to study nitrogen adsorption in a slit pore with open ends and directly obtain the correct desorption hysteresis. We also apply our DFT to predict hydrogen adsorption accurately in an atomistic model of a metal-organic framework.

  3. Gas

    MedlinePlus

    ... intestine. Certain foods may cause gas. Foods that produce gas in one person may not cause gas in another. You can reduce the amount of gas you have by Drinking lots of water and non-fizzy drinks Eating more slowly so you swallow less air ...

  4. Factors Affecting the Starting Characteristics of Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    1951-01-01

    This report summarizes the effects of fuel volatility and engine design variables on the problem of starting gas-turbine engines at sea-level and altitude conditions. The starting operation for engines with tubular combustors is considered as three steps; namely, (1) ignition of a fuel-air mixture in the combustor, (2) propagation of flame through cross-fire tubes to all combustors, and (3) acceleration of the engine from windmilling or starting speed to the operating speed range. Pertinent data from laboratory researches, single-combustor studies, and full-scale engine investigations are presented on each phase of the starting problem.

  5. Impact of density and environmental factors on population fluctuations in a migratory passerine.

    PubMed

    Pasinelli, Gilberto; Schaub, Michael; Häfliger, Guido; Frey, Monika; Jakober, Hans; Müller, Mathis; Stauber, Wolfgang; Tryjanowski, Piotr; Zollinger, Jean-Luc; Jenni, Lukas

    2011-01-01

    1. Populations of plants and animals typically fluctuate because of the combined effects of density-dependent and density-independent processes. The study of these processes is complicated by the fact that population sizes are typically not known exactly, because population counts are subject to sampling variance. Although the existence of sampling variance is broadly acknowledged, relatively few studies on time-series data have accounted for it, which can result in wrong inferences about population processes. 2. To increase our understanding of population dynamics, we analysed time series from six Central European populations of the migratory red-backed shrike Lanius collurio by simultaneously assessing the strength of density dependence, process and sampling variance. In addition, we evaluated hypotheses predicting effects of factors presumed to operate on the breeding grounds, at stopover sites in eastern Africa during fall and spring migration and in the wintering grounds in southern Africa. We used both simple and state-space formulations of the Gompertz equation to model population size. 3. Across populations and modelling approaches, we found consistent evidence for negative density-dependent population regulation. Further, process variance contributed substantially to variation in population size, while sampling variance did not. Environmental conditions in eastern and southern Africa appear to influence breeding population size, as rainfall in the Sahel during fall migration and in the south African wintering areas were positively related to population size in the following spring in four of six populations. In contrast, environmental conditions in the breeding grounds were not related to population size. 4. Our findings suggest negative density-dependent regulation of red-backed shrike breeding populations and are consistent with the long-standing hypothesis that conditions in the African staging and wintering areas influence population numbers of species

  6. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    SciTech Connect

    Landi, G. T.; Romero, S. A.; Santos, A. D.

    2010-03-15

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  7. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus.

    PubMed

    Landi, G T; Romero, S A; Santos, A D

    2010-03-01

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  8. Driving Force Variation in Weld Pool Affected by Current Density and Flow Velocity of Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Sakai, Tadashi; Taki, Hiroyuki; Iwao, Toru; Tashiro, Shinichi; Tanaka, Manabu; Yumoto, Motoshige

    In arc welding, Gas Tungsten Arc Welding (GTAW) is suitable when good quality and a good surface are required. However, the weld shape is shallow and wide. Furthermore, GTAW welding is slow and inefficient. A deep weld shape is necessary to increase the welding speed. The heat input from the arc and convection flow of the weld pool in formation of weld pool are important. The convection flow varies along with the driving force. Past research has indicated some relation between the driving force and arc characteristics. In this study, the driving force in the weld pool changes with the current density. Flow velocity is simulated, and this relativity is elucidated. The Lorentz force, drag force, and Marangoni effect are focused in driving forces. Consequently, the Lorentz force of the axial direction decreases in direct relation to the -0.60th power of current density near the cathode in the maximum force. This force in the center of the axial direction decreases in relation to the -0.62th power of the current density. In addition, the drag force increases in relation to the 1.70th power of the maximum flow velocity, and the Marangoni effect decreases in direct relation to the -0.20th power of the maximum flow velocity in the maximum force. The driving force is apparently dependent on the arc current density and flow velocity.

  9. System and Method for Determining Gas Optical Density Changes in a Non-Linear Measurement Regime

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Rana, Mauro (Inventor)

    2007-01-01

    Each of two sensors, positioned to simultaneously detect electromagnetic radiation absorption along a path, is calibrated to define a unique response curve associated therewith that relates a change in voltage output for each sensor to a change in optical density. A ratio-of-responses curve is defined by a ratio of the response curve associated with the first sensor to the response curve associated with the second sensor. A ratio of sensor output changes is generated using outputs from the sensors. An operating point on the ratio-of-responses curve is established using the ratio of sensor output changes. The established operating point is indicative of an optical density. When the operating point is in the non-linear response region of at least one of the sensors, the operating point and optical density corresponding thereto can be used to establish an actual response of at least one of the sensors whereby the actual sensor output can be used in determining changes in the optical density.

  10. Interpretation of the shape factor at Ootacamund, India. [ionospheric electron density profile

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Anderson, D. N.; Davies, K.; Rama Rao, P. V. S.

    1978-01-01

    The paper deals with equatorial ATS-6 measurements of the shape factor, F, interpreted in terms of the shape of the electron density profile along the ray path. The observed rapid increase in F at sunrise is attributed to EUV production of ionization in the E and F regions. The evening decrease is seen to result from an upward drift of the F region at sunset and the evening decay of the E and bottomside F regions. The nighttime peak, or plateau, is caused by gradual decrease of the electron density profile.

  11. Greenhouse Gas Emissions of Indianapolis using a High-Density Surface Tower Network and an Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Lauvaux, T.; Miles, N. L.; Davis, K. J.; Richardson, S.; Deng, A.; Sarmiento, D. P.; Wu, K.; Sweeney, C.; Karion, A.; Hardesty, R. M.; Brewer, A.; Turnbull, J. C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Patarasuk, R.; Cambaliza, M. O. L.; Shepson, P. B.; Whetstone, J. R.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) was designed to develop and evaluate methods of detection and attribution of greenhouse gas fluxes from urban environments. Determination of greenhouse gas fluxes and uncertainty bounds is essential for the evaluation of the effectiveness of mitigation strategies. Indianapolis is intended to serve as a test bed for these methods; the results will inform efforts at measuring emissions from urban centers worldwide, including megacities. The generally accepted method for determining urban greenhouse gas emissions is inventories, which are compiled from records of land use and human activity. Atmospheric methods, in which towers are instrumented with sensors to measure greenhouse gas mole fractions and these data are used in an inversion model, have the potential to provide independent determination of emissions. The current INFLUX observation network includes twelve in-situ tower-based, continuous measurements of CO2. A subset of five towers additionally measure CH4, and a different subset measure CO. The subset measuring CO also include weekly flask samples of a wide variety of trace gases including 14CO2. Here we discuss the observed urban spatial and temporal patterns in greenhouse gas mole fraction in Indianapolis, with the critical result being the detectability of city emissions with this high-density network. We also present the first atmospheric inversion results for both CO2 and CH4, compare these results to inventories, and discuss the effects of critical assumptions in the inversion framework. The construction of unbiased atmospheric modeling systems and well-defined prior errors remains an important step in atmospheric emissions monitoring over urban areas. In order to minimize transport model errors, we developed a WRF-Chem FDDA modeling system ingesting surface and profile measurements of horizontal mean wind, temperature, and moisture. We demonstrate the impact of the meteorological data assimilation system on

  12. Risk factors for transient dysfunction of gas exchange after cardiac surgery

    PubMed Central

    Rodrigues, Cristiane Delgado Alves; Moreira, Marcos Mello; Lima, Núbia Maria Freire Vieira; de Figueirêdo, Luciana Castilho; Falcão, Antônio Luis Eiras; Petrucci, Orlando; Dragosavac, Desanka

    2015-01-01

    Objective A retrospective cohort study was preformed aiming to verify the presence of transient dysfunction of gas exchange in the postoperative period of cardiac surgery and determine if this disorder is linked to cardiorespiratory events. Methods We included 942 consecutive patients undergoing cardiac surgery and cardiac procedures who were referred to the Intensive Care Unit between June 2007 and November 2011. Results Fifteen patients had acute respiratory distress syndrome (2%), 199 (27.75%) had mild transient dysfunction of gas exchange, 402 (56.1%) had moderate transient dysfunction of gas exchange, and 39 (5.4%) had severe transient dysfunction of gas exchange. Hypertension and cardiogenic shock were associated with the emergence of moderate transient dysfunction of gas exchange postoperatively (P=0.02 and P=0.019, respectively) and were risk factors for this dysfunction (P=0.0023 and P=0.0017, respectively). Diabetes mellitus was also a risk factor for transient dysfunction of gas exchange (P=0.03). Pneumonia was present in 8.9% of cases and correlated with the presence of moderate transient dysfunction of gas exchange (P=0.001). Severe transient dysfunction of gas exchange was associated with patients who had renal replacement therapy (P=0.0005), hemotherapy (P=0.0001), enteral nutrition (P=0.0012), or cardiac arrhythmia (P=0.0451). Conclusion Preoperative hypertension and cardiogenic shock were associated with the occurrence of postoperative transient dysfunction of gas exchange. The preoperative risk factors included hypertension, cardiogenic shock, and diabetes. Postoperatively, pneumonia, ventilator-associated pneumonia, renal replacement therapy, hemotherapy, and cardiac arrhythmia were associated with the appearance of some degree of transient dysfunction of gas exchange, which was a risk factor for reintubation, pneumonia, ventilator-associated pneumonia, and renal replacement therapy in the postoperative period of cardiac surgery and cardiac

  13. Associations of lifestyle factors with bone mineral density among male university students in Japan.

    PubMed

    Egami, Isuzu; Wakai, Kenji; Kunitomo, Hirotada; Tamakoshi, Akiko; Ando, Masahiko; Nakayama, Toshiko; Ohno, Yoshiyuki

    2003-01-01

    To investigate associations of lifestyle factors with bone mineral density among young men in Japan, we measured bone mineral density of the second metacarpal bone in 143 male university students, aged 18-22 years, by the computed X-ray densitometry. The subjects completed a lifestyle questionnaire including a quantitative food frequency questionnaire. Their mean+/-standard deviation of bone mineral density was 2.61+/-0.23 mmAl. Body mass index (Spearman's rho=0.232, p=0.006), daily walking time (rho=0.186, p=0.028), and milk consumption at junior (rho=0.250, p=0.003) and senior (rho=0.195, p=0.020) high school were significantly correlated with the bone mineral density. For nutritional variables, the bone mineral density was positively correlated with energy-adjusted intakes of calcium (Pearson's r=0.302, p=0.0002), potassium (r=0.265, p=0.001), saturated fatty acids (r=0.211, p=0.011), and magnesium (r=0.173, p=0.039), and with those of milk and dairy products (r=0.228, p=0.006) and fruits (r=0.205, p=0.014), while being negatively associated with energy-adjusted noodle consumption (r=-0.185, p=0.027). The positive correlation of milk consumption at junior high school with the bone mineral density was not materially altered by adjustment for the body mass index, calcium intake, and walking time. Single-life students had lower bone mineral density compared with those lived with families (p=0.044). Bone mineral density could be increased by modifying dietary habits in young men.

  14. Improvement of S-factor method for evaluation of MOS interface state density

    NASA Astrophysics Data System (ADS)

    Cai, Weili; Takenaka, Mitsuru; Takagi, Shinichi

    2015-04-01

    In this paper, the accuracy of the S-factor method for evaluating the energy distribution of density of interface states (Dit) at MOS interfaces is examined by device simulation. Based on the analysis, we propose an improved S-factor method including the accurate depletion layer capacitance (Cd) values as a function of gate voltage, determined by gate-substrate capacitance (Cgb) and gate-channel capacitance (Cgc), and a new term, proportion to S/φs, in the analytical formulation of the relationship between Dit and the S-factor. The accuracy of Dit in this improved method is also quantitatively studied through the simulation. The above modifications for the S-factor method allow us to accurately provide the energy distribution of Dit. It has been found that the accuracy of lower half of 1010 cm-2 eV-1 order can be obtained for Dit extracted by using the improved S-factor method.

  15. Reproductive and lifestyle risk factors and mammographic density in Mexican women.

    PubMed

    Rice, Megan S; Bertrand, Kimberly A; Lajous, Martin; Tamimi, Rulla M; Torres, Gabriela; López-Ridaura, Ruy; Romieu, Isabelle

    2015-11-01

    Several breast cancer risk factors have been consistently associated with mammographic density (MD); however, data are limited for Hispanic women. We examined data from 1007 premenopausal and 600 postmenopausal women in the Mexican Teachers' Cohort. Multivariable linear regression was used to estimate associations between risk factors and MD. Among premenopausal women, age, current body mass index (BMI), BMI at age 18 years, and weight change since age 18 years were inversely associated with percent MD, whereas benign breast disease, alcohol intake, and breastfeeding 12 months or more were associated with higher percent MD. Among postmenopausal women, age, current BMI, BMI at age 18 years, weight change since age 18 years, and speaking or having parents who speak an indigenous language were inversely associated with percent MD, whereas benign breast disease and greater age at natural menopause were positively associated with percent MD. Other breast cancer risk factors, such as age at menarche, parity, and age at first pregnancy, were not significantly associated with density in either premenopausal or postmenopausal women. Results from the Mexican Teachers' Cohort are generally consistent with predictors of mammographic density observed in primarily non-Hispanic white populations; however, certain risk factors (e.g., parity) were not significantly associated with MD. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Magnetogasdynamic shock wave generated by a moving piston in a rotational axisymmetric isothermal flow of perfect gas with variable density

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2011-05-01

    The propagation of a strong cylindrical shock wave in an ideal gas with azimuthal magnetic field, and with or without axisymmetric rotational effects, is investigated. The shock wave is driven out by a piston moving with time according to power law. The ambient medium is assumed to have radial, axial and azimuthal component of fluid velocities. The fluid velocities, the initial density and the initial magnetic field of the ambient medium are assumed to be varying and obey power laws. Solutions are obtained, when the flow between the shock and the piston is isothermal. The gas is assumed to have infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The shock wave moves with variable velocity and the total energy of the wave is non-constant. The effects of variation of the initial density and the Alfven-Mach number on the flow-field are obtained. A comparison is also made between rotating and non-rotating cases.

  17. Factors controlling sulfur gas exchange in Sphagnum-dominated wetlands

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Atmosphere-peatland exchange of reduced sulfur gases was determined seasonally in fen in NH, and in an artificially-acidified fen at the Experimental Lakes Area (ELA) in Canada. Dimethyl sulfide (DMS) dominated gas fluxes at rates as high as 400 nmol/m(sup -2)hr(sup -1). DMS fluxes measured using enclosures were much higher than those calculated using a stagnant-film model, suggesting that Sphagnum regulated efflux. Temperature controlled diel and seasonal variability in DMS emissions. Use of differing enclosure techniques indicated that vegetated peatlands consume atmospheric carbonyl sulfide. Sulfate amendments caused DMS and methane thiol concentrations in near-surface pore waters to increase rapidly, but fluxes of these gases to the atmosphere were not affected. However, emission data from sites experiencing large differences in rates of sulfate deposition from the atmosphere suggested that chronic elevated sulfate inputs enhance DMS emissions from northern wetlands.

  18. A density gradient of basic fibroblast growth factor guides directional migration of vascular smooth muscle cells.

    PubMed

    Wu, Jindan; Mao, Zhengwei; Han, Lulu; Zhao, Yizhi; Xi, Jiabin; Gao, Changyou

    2014-05-01

    The migration of vascular smooth muscle cells (VSMCs) is an important process in many physiological events. It is of paramount importance to control the migration rate and direction of VSMCs by biomaterials. In this paper, a density gradient of basic fibroblast growth factor (bFGF) was fabricated using an injection method and the bio-conjugation between heparin and bFGF. The density of bFGF gradually increased with a slope of 17 ng/cm(2)/mm. Adhesion and migration of VSMCs were studied on the bFGF gradient. The VSMCs exhibited preferential orientation and an enhanced directional migration behavior on the gradient surface. Up to 70% cells migrated towards the region with a higher density of bFGF on the gradient. However, the bFGF gradient had no effect on the cell migration rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Monte Carlo modeling of electron density in hypersonic rarefied gas flows

    SciTech Connect

    Fan, Jin; Zhang, Yuhuai; Jiang, Jianzheng

    2014-12-09

    The electron density distribution around a vehicle employed in the RAM-C II flight test is calculated with the DSMC method. To resolve the mole fraction of electrons which is several orders lower than those of the primary species in the free stream, an algorithm named as trace species separation (TSS) is utilized. The TSS algorithm solves the primary and trace species separately, which is similar to the DSMC overlay techniques; however it generates new simulated molecules of trace species, such as ions and electrons in each cell, basing on the ionization and recombination rates directly, which differs from the DSMC overlay techniques based on probabilistic models. The electron density distributions computed by TSS agree well with the flight data measured in the RAM-C II test along a decent trajectory at three altitudes 81km, 76km, and 71km.

  20. Measurement of viscosity, density, and gas solubility of refrigerant blends in selected synthetic lubricants. Final report

    SciTech Connect

    Cavestri, R.C.

    1995-05-15

    The lubricants tested in this project were chosen based on the results of liquid/liquid miscibility tests. EMKARATE RL32S and Emery 2968A were selected. The Vapor Liquid Equilibrium (VLE) viscosity reduction and gas fractionation of each was measured with three different refrigerant blends: (1) R-404A; (2) R-507; and (3) R-407C. In addition, the four single refrigerants that make up the blends, HFC-32, HFC-125, HFC-134a, and HFC-143a, were also measured. Lubricants found to have the lowest liquid/liquid miscibilities had nearly equal viscosity reduction profiles as did the more miscible lubricants. Analytical methodology consisted of maintaining equally both the composition of the head space vapor above the lubricant/refrigerant mixture, and the composition of the liquid blend refrigerant. Blends with large temperature glides were re-evaluated in order to test the concept of head space quality and a vented piston hydraulic cylinder assembly was developed to perform this task. Fluid property data, above critical temperature and pressure conditions, is presented for the two lubricants with HFC-32, HFC-125, HFC-143a refrigerants. This research shows that the lubricant EMKARATE RL32S, which had the lowest (poorest) liquid/liquid miscibilities with the selected refrigerants, also had nearly equal viscosity reduction profiles to the more miscible Emery 2968A lubricant. The analytical methodology consisted of maintaining the composition of the refrigerant gas above the lubricant to be equal in composition to that of the pure liquid refrigerant blend being introduced into the lubricant. Refrigerant blends with large temperature glides were re-evaluated in order to validate the concept of the importance of the composition of the gas over the lubricant. To do perform this task, a special vented piston hydraulic cylinder assembly was developed. Fluid property data is also presented for HFC-32, HFC-125, and HFC-143a above the critical temperature and pressure of each.

  1. Laser-driven target of high-density nuclear-polarized hydrogen gas

    SciTech Connect

    Clasie, B.; Crawford, C.; Seely, J.; Xu, W.; Dutta, D.; Gao, H.

    2006-02-15

    We report the best figure-of-merit achieved for an internal nuclear polarized hydrogen gas target and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation, and the experimental results were in good agreement with the simulation. The best result achieved for this target was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of 1.1x10{sup 18} atoms/s.

  2. Laser-driven target of high-density nuclear-polarized hydrogen gas

    NASA Astrophysics Data System (ADS)

    Clasie, B.; Crawford, C.; Seely, J.; Xu, W.; Dutta, D.; Gao, H.

    2006-02-01

    We report the best figure-of-merit achieved for an internal nuclear polarized hydrogen gas target and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation, and the experimental results were in good agreement with the simulation. The best result achieved for this target was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of 1.1×1018atoms/s .

  3. Cosmic rays, gas and dust in nearby anticentre clouds. I. CO-to-H2 conversion factors and dust opacities

    NASA Astrophysics Data System (ADS)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2017-05-01

    Aims: We aim to explore the capabilities of dust emission and γ rays for probing the properties of the interstellar medium in the nearby anti-centre region, using γ-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. We also aim to study massive star-forming clouds including the well known Taurus, Auriga, Perseus, and California molecular clouds, as well as a more diffuse structure which we refer to as Cetus. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, XCO, in different environments. Methods: We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in H i 21-cm and 12CO 2.6-mm line emission. We have jointly modelled the γ-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth τ353 at 353 GHz as a combination of H i-bright, CO-bright, and ionised gas components. The complementary information from dust emission and γ rays was used to reveal the gas not seen, or poorly traced, by H i, free-free, and 12CO emissions, namely (i) the opaque H iand diffuse H2 present in the Dark Neutral Medium at the atomic-molecular transition, and (ii) the dense H2 to be added where 12CO lines saturate. Results: The measured interstellar γ-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds, from the atomic envelopes to the 12CO-bright cores, and with a small ± 9% cloud-to-cloud dispersion in particle flux. We detect the ionised gas from the H iiregion NGC 1499 in the dust and γ-ray emissions and measure its mean electron density and temperature. We find a gradual increase in grain opacity as the gas (atomic or molecular) becomes more dense. The increase reaches a factor of

  4. The density factor in the synthesis of carbon nanotube forest by injection chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Call, R. W.; Read, C. G.; Mart, C.; Shen, T.-C.

    2012-12-01

    Beneath the seeming straight-forwardness of growing carbon nanotube (CNT) forests by the injection chemical vapor deposition (CVD) method, control of the forest morphology on various substrates is yet to be achieved. Using ferrocene dissolved in xylene as the precursor, we demonstrate that the concentration of ferrocene and the injection rate of the precursor dictate the CNT density of these forests. However, CNT density will also be affected by the substrates and the growth temperature which determine the diffusion of the catalyst adatoms. The CNT growth rate is controlled by the temperature and chemical composition of the gases in the CVD reactor. We show that the final height of the forest is diffusion limited, at least in the conditions of our experiments. Because of the proximity and entanglement of the CNTs in a forest, the growing CNTs can lift-up the inactive CNTs resulting in reduced density toward the base of the forest unless the nucleation rate of the new catalyst particles is sufficiently high to replenish the inactive catalyst particles. Significant loss of CNT attachment by the lift-up effect reduces the adhesion of the forest to the substrate. Optimizing the ferrocene concentration in the precursor, precursor injection rate, gas mixture, substrate, and temperature is necessary to achieve desired forest morphology for specific applications.

  5. Factors limiting the domestic density of Triatoma infestans in north-west Argentina: a longitudinal study.

    PubMed

    Cecere, M C; Gürtler, R E; Chuit, R; Cohen, J E

    1998-01-01

    Reported are the environmental and demographic risk factors associated with the domestic infestation and density of Triatoma infestans in three heavily infested rural villages in Santiago del Estero Province, Argentina. In a one-factor unadjusted analysis, the number of T. infestans captured per person-hour was associated significantly and negatively with the use of domestic insecticides by householders, type of thatch used in the roofs and the age of the house; and positively with the following: degree of cracking of the indoor walls and presence of hens nesting indoors. In one model, using multiple linear regression and a backward stepwise elimination procedure, most of the variation in the overall abundance of T. infestans was explained by insecticide use and the presence of hens nesting indoors; in another model using the same procedure it was explained by insecticide use, bug density in 1988 and previous spraying with deltamethrin in 1985. Variations in bug density per capture stratum (household goods, beds, walls and roof) were explained by the bug density in other strata and by one or two of the following risk factors: hens nesting indoors, type of roof, presence of cracks in the walls and number of people living in the house. Bug density might be locally controlled by the availability of refuges in the roofs and walls, by the presence of hens nesting indoors and by the use of domestic insecticides. Certain local materials, such as a grass known as simbol, could be successfully used in rural housing improvement programmes aimed at reducing the availability of refuges for insects in the roof.

  6. Factors limiting the domestic density of Triatoma infestans in north-west Argentina: a longitudinal study.

    PubMed Central

    Cecere, M. C.; Gürtler, R. E.; Chuit, R.; Cohen, J. E.

    1998-01-01

    Reported are the environmental and demographic risk factors associated with the domestic infestation and density of Triatoma infestans in three heavily infested rural villages in Santiago del Estero Province, Argentina. In a one-factor unadjusted analysis, the number of T. infestans captured per person-hour was associated significantly and negatively with the use of domestic insecticides by householders, type of thatch used in the roofs and the age of the house; and positively with the following: degree of cracking of the indoor walls and presence of hens nesting indoors. In one model, using multiple linear regression and a backward stepwise elimination procedure, most of the variation in the overall abundance of T. infestans was explained by insecticide use and the presence of hens nesting indoors; in another model using the same procedure it was explained by insecticide use, bug density in 1988 and previous spraying with deltamethrin in 1985. Variations in bug density per capture stratum (household goods, beds, walls and roof) were explained by the bug density in other strata and by one or two of the following risk factors: hens nesting indoors, type of roof, presence of cracks in the walls and number of people living in the house. Bug density might be locally controlled by the availability of refuges in the roofs and walls, by the presence of hens nesting indoors and by the use of domestic insecticides. Certain local materials, such as a grass known as simbol, could be successfully used in rural housing improvement programmes aimed at reducing the availability of refuges for insects in the roof. PMID:9803588

  7. Concerning the measurement of atmospheric trace gas fluxes with open- and closed-path eddy covariance systems: The density terms and spectral attenuation [Chapter 7

    Treesearch

    W. J. Massman

    2004-01-01

    Atmospheric trace gas fluxes measured with an eddy covariance sensor that detects a constituent's density fluctuations within the in situ air need to include terms resulting from concurrent heat and moisture fluxes, the so called 'density' or 'WPL corrections' (Webb et al. 1980). The theory behind these additional terms is well established. But...

  8. Soil chemical factors and grassland species density in Emas National Park (central Brazil).

    PubMed

    Amorim, P K; Batalha, M A

    2008-05-01

    Studies of grasslands on specific soil types suggest that different nutrients can limit biomass production and, hence, species composition and number. The Brazilian cerrado is the major savanna region in America and once covered about 2 million km(2), mainly in the Brazilian Central Plateau, under seasonal climate, with wet summer and dry winter. In view of the importance of soil chemical factors in the distribution of the vegetation forms within the Cerrado domain and which may influence the number of species, we analyzed some soil characteristics in three herbaceous vegetation forms -- hyperseasonal cerrado, seasonal cerrado, and wet grassland -- in Emas National Park, a core cerrado site, to investigate the relationship between number of species and soil characteristics. We collected vegetation and soil samples in these three vegetation forms and submitted the obtained data to multiple linear regression. We found out that aluminum and pH were the best predictors of species density, the former positively related to species density and the latter negatively related. Since the predictable variation in species density is important in determining areas of conservation, we can postulate that these two soil factors are indicators of high species density areas in tropical grasslands, which could be used in selecting priority sites for conservation.

  9. Evaluation of the effect of cola drinks on bone mineral density and associated factors.

    PubMed

    Ogur, Recai; Uysal, Bulent; Ogur, Torel; Yaman, Halil; Oztas, Emin; Ozdemir, Aysegul; Hasde, Metin

    2007-05-01

    The aim of the study was to determine bone mineral density changes caused by consumption of cola drinks and the associated factors. Thirty Sprague-Dawley rats were divided into four groups. Groups 1 and 2, consisting of 10 male and 10 female rats, respectively, were provided with as much food, water and cola drinks as they wanted. Groups 3 and 4, consisting of five rats each, received only rat chow and water. The bone mineral density of the rats was measured using dual energy X-ray absorptiometry at the end of 30 days. The blood values and weights of the animals were also determined. The oesophagus and kidneys were removed for histopathological examination. The weight gain was higher in the groups consuming cola drinks than the control group rats (P < 0.05). Water consumption decreased 5.9 times while total fluid consumption increased 1.6-1.9 times in the group consuming cola drinks. No significant change was detected in the blood calcium levels. There was a significant decrease in the bone mineral density of test groups when compared to the control groups (P < 0.05). While we did not detect any pathological oesophageal changes in the rats consuming cola drinks, examination of the kidneys revealed general glomerular congestion and intertubular bleeding. We suggest that the decrease in bone mineral density might be related to the renal damage caused by cola drinks in addition to other related factors.

  10. Multivariate Granger causality: an estimation framework based on factorization of the spectral density matrix.

    PubMed

    Wen, Xiaotong; Rangarajan, Govindan; Ding, Mingzhou

    2013-08-28

    Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix.

  11. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    USGS Publications Warehouse

    Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.

    1997-01-01

    Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.

  12. Adolescent lifestyle factors and adult breast density in U.S. Chinese immigrant women.

    PubMed

    Tseng, Marilyn; Olufade, Temitope O; Evers, Kathryn A; Byrne, Celia

    2011-01-01

    We examined recalled measures of adolescent diet, physical activity, and body size in relation to adult breast density in 201 U.S. Chinese immigrant women recruited in January 2002 to May 2003 from Philadelphia region screening programs. Mammographic images were classified into 1 of 4 categories ranging from "entirely fatty" to "extremely dense." Questionnaires assessed diet and physical activity between ages 12-17, relative weight and height at age 10, and weight at age 18. To estimate odds ratios (ORs), we conducted logistic regression analyses using proportional odds models for polychotomous outcomes. Higher adult breast density was significantly associated with adolescent red meat intake (adjusted 3rd vs. 1st tertile OR = 3.0, 95% confidence interval (CI) 1.5-6.4, trend P = 0.003) but not with other adolescent factors. For the association of adult acculturation with breast density, adjustment for adolescent red meat intake attenuated the OR for the highest vs. lowest level of acculturation from 2.5 (95% CI 1.2-5.3) to 1.9 (95% CI 0.9-4.0). Greater adolescent red meat intake may have increased adult breast density and partly accounted for the strong association between acculturation and breast density in this sample of immigrant Chinese women. If confirmed by further study, dietary prevention efforts for breast cancer should be considered earlier in life.

  13. Low density of sympathetic nerve fibres and increased density of brain derived neurotrophic factor positive cells in RA synovium

    PubMed Central

    Weidler, C; Holzer, C; Harbuz, M; Hofbauer, R; Angele, P; Scholmerich, J; Straub, R

    2005-01-01

    Objective: To investigate the correlation between density of nerve fibres and the presence of BDNF+ cells. Methods: Densities of nerve fibres and BDNF+ cells were detected by quantitative immunohistochemistry in fresh synovial tissue from 52 patients with RA, 59 with OA, and 26 controls (Co). BDNF was also detected by in situ hybridisation. Results: Sympathetic nerve fibre density was similar in Co and OA but markedly reduced in RA (p = 0.002), whereas density of substance P positive (SP+) sensory nerve fibres was lower in OA than in Co and RA (p = 0.002). The ratio of sympathetic/SP+ sensory nerve fibre density was highest in OA and Co, followed by RA. The correlation between density of sympathetic nerve fibres and SP+ sensory nerve fibres in OA (R = 0.425, p = 0.001) was strongly positive, had a positive trend in Co (R = 0.243, NS), but was negative in RA (R = –0.292, p = 0.040). In RA and OA tissue the density of BDNF+ cells was high in sublining areas but markedly lower in Co (p = 0.001). BDNF+ cell density correlated positively with the ratio of sympathetic/SP+ sensory nerve fibre density in Co (R = 0.433, p = 0.045) and in OA (R = 0.613, p = 0.015), but not in RA (R = 0.101, NS). Immunohistochemical double staining demonstrated that some macrophages and fibroblasts were positive for BDNF. Conclusions: The correlation of density of SP+ sensory with sympathetic nerve fibres was positive in Co and OA but negative in RA. BDNF may have a stimulatory role on growth of sympathetic in relation to SP+ sensory nerve fibres in Co and OA, but not in RA. PMID:15608299

  14. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.

  15. Matter density distributions and elastic form factors of some two-neutron halo nuclei

    NASA Astrophysics Data System (ADS)

    Abdullah, Ahmed N.

    2017-09-01

    The Skyrme-Hartree-Fock (SHF) method with MSK7 Skyrme parameter has been used to investigate the ground-state properties for two-neutron halo nuclei 6He, ^{11}Li, ^{12}Be and ^{14}Be. These ground-state properties include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form factors. These calculations clearly reveal the long tail characterizing the halo nuclei as a distinctive feature.

  16. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    SciTech Connect

    Maddalena, Randy

    2011-08-20

    Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that provide elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter

  17. Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II - Data Release 7

    NASA Astrophysics Data System (ADS)

    Noterdaeme, P.; Petitjean, P.; Ledoux, C.; Srianand, R.

    2009-10-01

    We present the results of a search for damped Lyman-α (DLA) systems in the Sloan Digital Sky Survey II (SDSS), Data Release 7. We use a fully automatic procedure to identify DLAs and derive their column densities. The procedure is checked against the results of previous searches for DLAs in SDSS. We discuss the agreements and differences and show the robustness of our procedure. For each system, we obtain an accurate measurement of the absorber's redshift, the H I column density and the equivalent width of associated metal absorption lines, without any human intervention. We find 1426 absorbers with 2.15 < z < 5.2 with log N(H I) ≥ 20, out of which 937 systems have log N(H I) ≥ 20.3. This is the largest DLA sample ever built, made available to the scientific community through the electronic version of this paper. In the course of the survey, we discovered the intervening DLA with highest H I column density known to date with log N(H I) = 22.0±0.1. This single system provides a strong constraint on the high-end of the N(H I) frequency distribution now measured with high accuracy. We show that the presence of a DLA at the blue end of a QSO spectrum can lead to important systematic errors and propose a method to avoid them. This has important consequences for the measurement of the cosmological mass density of neutral gas at z ~ 2.2 and therefore on our understanding of galaxy evolution over the past 10 billion years. We find a significant decrease of the cosmological mass density of neutral gas in DLAs, Ω_g^DLA, from z = 4 to z = 2.2, consistent with the result of previous SDSS studies. However, and contrary to other SDSS studies, we find that Ω_g^DLA(z = 2.2) is about twice the value at z = 0. This implies that Ω_g^DLA keeps decreasing at z < 2.2. Catalog is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/1087

  18. The measurement of electron number density in helium micro hollow gas discharge using asymmetric He I lines

    NASA Astrophysics Data System (ADS)

    Jovović, J.; Šišović, N. M.

    2015-09-01

    The electron number density N e in helium micro hollow gas discharge (MHGD) is measured by means of optical emission spectroscopy (OES) techniques. The structure of MHGD is a gold-alumina-gold sandwich with 250 μm alumina thickness and 100 μm diameter hole. The electron temperature T e and gas temperature T g in the discharge is determined using the relative intensity of He I lines and {{\\text{N}}2}+≤ft({{\\text{B}}2}Σ\\text{u}+- {{X}2}Σ\\text{g}+\\right) R branch lines in the frame of BP technique, respectively. The simple procedure based on spectral line broadening theory was developed in MATLAB to generate synthetic neutral line asymmetric profiles. The synthetic profiles were compared with an experimental He I 447.1 nm and He I 492.2 nm line to obtain N e from the centre of a micro hollow gas discharge (MHGD) source in helium. The N e results were compared with N e values obtained from the forbidden-to-allowed (F/A) intensity ratio technique. The comparison confirmed higher N e determined using a F/A ratio due to large uncertainty of the method. Applying the fitting formula for a He I 492.2 nm line derived from computer simulation (CS) gives the same N e values as the one determined using the MATLAB procedure in this study. The dependence of N e on gas pressure and electric current is investigated as well.

  19. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    NASA Astrophysics Data System (ADS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-11-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm-3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source-target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  20. Snag densities in relation to human access and associated management factors in forests of Northeastern Oregon, USA

    Treesearch

    Lisa J. Bate; Michael J. Wisdom; Barbara C. Wales

    2007-01-01

    A key element of forest management is the maintenance of sufficient densities of snags (standing dead trees) to support associated wildlife. Management factors that influence snag densities, however, are numerous and complex. Consequently, accurate methods to estimate and model snag densities are needed. Using data collected in 2002 and Current Vegetation Survey (CVS)...

  1. Liquid-gas coexistence versus energy minimization with respect to the density profile in the inhomogeneous inner crust of neutron stars

    NASA Astrophysics Data System (ADS)

    Martin, Noël; Urban, Michael

    2015-07-01

    We compare two approaches to describe the inner crust of neutron stars: On the one hand, the simple coexistence of a liquid (clusters) and a gas phase, and on the other hand, the energy minimization with respect to the density profile, including Coulomb and surface effects. We find that the phase-coexistence model gives a reasonable description of the densities in the clusters and in the gas, but the precision is not high enough to obtain the correct proton fraction at low baryon densities. We also discuss the surface tension and neutron skin obtained within the energy minimization.

  2. Plasma density in discharge sustained in inhomogeneous gas flow by high-power radiation in the terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Vodopyanov, A. V.; Glyavin, M. Yu.; Golubev, S. V.; Luchinin, A. G.; Razin, S. V.; Safronova, M. I.; Sidorov, A. V.; Fokin, A. P.

    2017-02-01

    We have measured the density of plasma (electron concentration) in discharge maintained in inhomogeneous argon flow under the action of high-power pulsed radiation of gyrotron (frequency, 0.67 THz; power 40 kW; pulse duration, 20-30 μs) in a range of background gas pressures in the discharge chamber from 10-3 to 300 Torr. The electron concentration at low pressures (10-3 to 7 Torr) was determined using Starkeffect induced broadening of the Hα atomic emission line (656.3 nm) of hydrogen present in discharge as a small impurity in residual gases. The maximum observed Stark broadening of the Hα line corresponded to a plasma density on the order of 2 × 1016 cm-3, which exceeded the critical value for the given frequency of radiation sustaining the discharge. At background pressures above 7 Torr, the plasma density was estimated from analysis of the spatiotemporal patterns and waveforms of discharge glow in the visible spectral range. These estimations gave electron concentrations on the level of (1-2) × 1015 cm-3.

  3. Hysteresis phenomena of the two dimensional electron gas density in lattice-matched InAlN/GaN heterostructures

    SciTech Connect

    Sang, Ling; Yang, Xuelin Cheng, Jianpeng; Guo, Lei; Hu, Anqi; Xiang, Yong; Yu, Tongjun; Xu, Fujun; Tang, Ning; Jia, Lifang; He, Zhi; Wang, Maojun; Wang, Xinqiang; Shen, Bo; Ge, Weikun

    2015-08-03

    High-temperature transport properties in high-mobility lattice-matched InAlN/GaN heterostructures have been investigated. An interesting hysteresis phenomenon of the two dimensional electron gas (2DEG) density is observed in the temperature-dependent Hall measurements. After high-temperature thermal cycles treatment, the reduction of the 2DEG density is observed, which is more serious in thinner InAlN barrier samples. This reduction can then be recovered by light illumination. We attribute these behaviors to the shallow trap states with energy level above the Fermi level in the GaN buffer layer. The electrons in the 2DEG are thermal-excited when temperature is increased and then trapped by these shallow trap states in the buffer layer, resulting in the reduction and hysteresis phenomenon of their density. Three trap states are observed in the GaN buffer layer and C{sub Ga} may be one of the candidates responsible for the observed behaviors. Our results provide an alternative approach to assess the quality of InAlN/GaN heterostructures for applications in high-temperature electronic devices.

  4. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    SciTech Connect

    Ma, H. J. Harsan E-mail: ariando@nus.edu.sg; Zeng, S. W.; Annadi, A.; Ariando E-mail: ariando@nus.edu.sg; Huang, Z.; Venkatesan, T.

    2015-08-15

    The two-dimensional electron gas (2DEG) formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO{sub 3} (LAO) and non-polar SrTiO{sub 3} (STO). Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La{sub 0.5}Sr{sub 0.5}TiO{sub 3} (LSTO) layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  5. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments.

    PubMed

    Herrmann, H W; Kim, Y H; Young, C S; Fatherley, V E; Lopez, F E; Oertel, J A; Malone, R M; Rubery, M S; Horsfield, C J; Stoeffl, W; Zylstra, A B; Shmayda, W T; Batha, S H

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  6. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

    SciTech Connect

    Herrmann, H. W. Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.

    2014-11-15

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  7. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experimentsa)

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.; Batha, S. H.

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ˜400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  8. Factors Affecting Greenhouse Gas Emissions From Rice Agriculture

    NASA Astrophysics Data System (ADS)

    Shearer, M. J.; Xiong, Z.; Khalil, M. K.

    2007-12-01

    Experiments have shown that a few factors control the emissions of methane from rice fields. Among the most significant factors are water management and soil amendments. Continuous flooding and organic fertilizers result in the highest emissions of methane while intermittent flooding and use of nitrogen fertilizers produce more nitrous oxide. We measured fluxes of methane and nitrous oxide from tubs planted with rice grown in a greenhouse at Portland State University. We used classical factorial experimental design to calculate interactions between water management, nitrogen fertilizer application, and organic matter (chopped rice straw) for emission of methane and nitrous oxide. We will discuss the results of three years of experiments. This research was supported by the Office of Science (BER), US Department of Energy, Grant No. DE-FG02- 04ER63913.

  9. High-density Two-Dimensional Small Polaron Gas in a Delta-Doped Mott Insulator

    PubMed Central

    Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler A.; Zhang, Jack Y.; Stemmer, Susanne; Emin, David; Allen, S. James

    2013-01-01

    Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical point Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)+1 plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~7 × 1014 cm−2. PMID:24257578

  10. High-density two-dimensional small polaron gas in a delta-doped Mott insulator.

    PubMed

    Ouellette, Daniel G; Moetakef, Pouya; Cain, Tyler A; Zhang, Jack Y; Stemmer, Susanne; Emin, David; Allen, S James

    2013-11-21

    Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical point Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)(+1) plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~7 × 10(14) cm(-2).

  11. 40 CFR Table W - 2 of Subpart W-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false 2 of Subpart W-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing W Table W Protection of Environment... Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing Onshore natural gas processing...

  12. 40 CFR Table W - 4 of Subpart W-Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false 4 of Subpart W-Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage W Table W Protection of Environment... Total Hydrocarbon Emission Factors for Underground Natural Gas Storage Underground natural gas storage...

  13. Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium

    NASA Technical Reports Server (NTRS)

    Erickson, Wayne D.

    1960-01-01

    The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.

  14. Temporal fluctuations in oribatid mites indicate that density-independent factors favour parthenogenetic reproduction.

    PubMed

    Bluhm, Christian; Scheu, Stefan; Maraun, Mark

    2016-04-01

    We investigated the oribatid mite density, community structure and the percentage of parthenogenetic individuals in four different forest types across three regions in Germany in 2008 and once again in 2011. We compared temporal (inter-annual) fluctuations in population densities between sexually and parthenogenetically reproducing species of oribatid mites. We hypothesized that population densities in parthenogenetic oribatid mite species fluctuate more than in sexual ones. Further, we expected species composition and dominance of parthenogenetic species to differ between forest types and regions. Oribatid mite community structure did not differ between years but varied with forest type and region, indicating low species turnover in time. As hypothesized, temporal fluctuations were more pronounced in parthenogenetic as compared to sexual species. The percentage of parthenogenetic individuals was significantly higher in coniferous than in beech forests and significantly higher in Schorfheide-Chorin than in Hainich-Dün and Schwäbische Alb. The results indicate that parthenogenetic species flourish if populations are controlled by density-independent factors and dominate at sites were resources are plentiful and easily available, such as coniferous forests, and in regions with more acidic soils and thick organic layers, such as Schorfheide-Chorin. However, historical factors also may have contributed to the increased dominance of parthenogenetic species in the Schorfheide-Chorin, as this region was more heavily glaciated and this may have favoured parthenogenetic species. Overall, our study supports the hypothesis that parthenogenetic species benefit from the lack of density-dependent population control whereas the opposite is true for sexual species.

  15. Distribution of mammographic density and its influential factors among Chinese women

    PubMed Central

    Wang, Peishan; Liu, Peifang; Cao, Yali; Xiong, Li; Luo, Yahong; Pan, Tie; Ma, Xiangjun; Wang, Jie; Yang, Zhenhua; Liu, Xueou; Chen, Chuan; Huang, Yubei; Li, Yi; Wang, Yaogang; Hao, Xishan; Ye, Zhaoxiang; Chen, Kexin

    2014-01-01

    Background: Mammographic density (MD) has not been systematically investigated among Chinese women. Breast cancer screening programmes provided detailed information on MD in a large number of asymptomatic women. Methods: In the Multi-modality Independent Screening Trial (MIST), we estimated the association between MD and its influential factors using logistic regression, adjusting for age, body mass index (BMI) and study area. Differences between Chinese and other ethnic groups with respect to MD were also explored with adjustment for age and BMI. Results: A total of 28 388 women aged 45 to 65 years, who had been screened by mammography, were enrolled in the study. Of these, 49.2% were categorized as having dense breasts (BI-RADS density 3 and 4) and 50.8% as fatty breasts (BI-RADS density 1 and 2). Postmenopausal status [odds ratio (OR) = 0.66; 95% confidence interval (CI): 0.62–0.70] and higher number of live births (OR = 0.56; 95% CI: 0.46–0.68) were inversely associated with MD, whereas prior benign breast disease (OR = 1.48; 95% CI: 1.40–1.56) and later age at first birth (OR = 1.17; 95% CI: 1.08–1.27) were positively associated with MD. In comparison with the data from the Breast Cancer Surveillance Consortium, we found that women in MIST were more likely to have fatty breasts than Americans (from the Breast Cancer Surveillance Consortium) in the older age group (≥50 years) but more likely to have dense breasts in the younger age group (<50 years). Conclusions: This study suggests that several risk factors for breast cancer were associated with breast density in Chinese women. Information on the determinants of mammographic density may provide valuable insights into breast cancer aetiology. PMID:24639441

  16. Positive Feedback Loops for Factor V and Factor VII Activation Supply Sensitivity to Local Surface Tissue Factor Density During Blood Coagulation

    PubMed Central

    Balandina, A.N.; Shibeko, A.M.; Kireev, D.A.; Novikova, A.A.; Shmirev, I.I.; Panteleev, M.A.; Ataullakhanov, F.I.

    2011-01-01

    Blood coagulation is triggered not only by surface tissue factor (TF) density but also by surface TF distribution. We investigated recognition of surface TF distribution patterns during blood coagulation and identified the underlying molecular mechanisms. For these investigations, we employed 1), an in vitro reaction-diffusion experimental model of coagulation; and 2), numerical simulations using a mathematical model of coagulation in a three-dimensional space. When TF was uniformly immobilized over the activating surface, the clotting initiation time in normal plasma increased from 4 min to >120 min, with a decrease in TF density from 100 to 0.7 pmol/m2. In contrast, surface-immobilized fibroblasts initiated clotting within 3–7 min, independently of fibroblast quantity and despite a change in average surface TF density from 0.5 to 130 pmol/m2. Experiments using factor V-, VII-, and VIII-deficient plasma and computer simulations demonstrated that different responses to these two TF distributions are caused by two positive feedback loops in the blood coagulation network: activation of the TF–VII complex by factor Xa, and activation of factor V by thrombin. This finding suggests a new role for these reactions: to supply sensitivity to local TF density during blood coagulation. PMID:22004734

  17. Calculation of correction factors for ionization chamber measurements with small fields in low-density media

    NASA Astrophysics Data System (ADS)

    Pisaturo, O.; Pachoud, M.; Bochud, F. O.; Moeckli, R.

    2012-07-01

    The quantity of interest for high-energy photon beam therapy recommended by most dosimetric protocols is the absorbed dose to water. Thus, ionization chambers are calibrated in absorbed dose to water, which is the same quantity as what is calculated by most treatment planning systems (TPS). However, when measurements are performed in a low-density medium, the presence of the ionization chamber generates a perturbation at the level of the secondary particle range. Therefore, the measured quantity is close to the absorbed dose to a volume of water equivalent to the chamber volume. This quantity is not equivalent to the dose calculated by a TPS, which is the absorbed dose to an infinitesimally small volume of water. This phenomenon can lead to an overestimation of the absorbed dose measured with an ionization chamber of up to 40% in extreme cases. In this paper, we propose a method to calculate correction factors based on the Monte Carlo simulations. These correction factors are obtained by the ratio of the absorbed dose to water in a low-density medium □Dw,Q,V1low averaged over a scoring volume V1 for a geometry where V1 is filled with the low-density medium and the absorbed dose to water □Dw,QV2low averaged over a volume V2 for a geometry where V2 is filled with water. In the Monte Carlo simulations, □Dw,QV2low is obtained by replacing the volume of the ionization chamber by an equivalent volume of water, according to the definition of the absorbed dose to water. The method is validated in two different configurations which allowed us to study the behavior of this correction factor as a function of depth in phantom, photon beam energy, phantom density and field size.

  18. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)

    2001-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.

  19. Behavior of a plasma in a high-density gas-embedded Z-pinch configuration

    SciTech Connect

    Shlachter, J.S.

    1982-05-01

    The theoretical analysis of a high density Z-pinch (HDZP) begins with an examination of the steady state energy balance between ohmic heating and bremsstrahlung radiation losses for a plasma column in pressure equilibrium. The model is then expanded to include the time-varying internal energy and results in a quasi-equilibrium prescription for the load current through a constant radius plasma channel. This set of current waveforms is useful in the design of experimental systems. The behavior of a plasma for physically realizable conditions is first examined by allowing adiabatic changes in the column radius. A more complete model is then developed by incorporating inertial effects into the momentum equation, and the resultant global MHD computational model is compared with more sophisticated, and costly, one- and two-dimensional computer simulations. These comparisons demonstrate the advantages of the global MHD description over previously developed zero-dimensional models.

  20. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Griffin, D. W.; Yep, T. W.; Agrawal, A. K.

    2005-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2- second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. The global jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes change in gravity in the drop tower.

  1. Improvement of vibration energy harvesters mechanical Q-factor through high density proof mass integration

    NASA Astrophysics Data System (ADS)

    Dompierre, A.; Fréchette, L. G.

    2016-11-01

    This paper reports on improvement of the mechanical Q-factor of resonant energy harvesters at ambient pressure via the use of tungsten proof masses by evaluating the impact of the mass size and density on the squeeze film damping. To this end, a simplified model is first proposed to evaluate cantilever beams deflection and the resulting fluid pressure build up between the mass and a near surface. The model, which accounts for simultaneous transverse and rotational motion of very long tip masses as well as for 2D fluid flow in the gap, is used to extract a scaling law for the device fluidic Q-factor Qf. This law states that Qf can be improved by either increasing the linear mass density of the tip mass or by reducing the side lengths compared to the gap height. The first approach is validated experimentally by adding a tungsten proof mass on a silicon based device and observing an improvement of the Q-factor by 103%, going from 430 to 871, while the resonance frequency drops from 457 to 127 Hz. In terms of fluidic Q-factor, this represents an increase from 562 to 1673. These results successfully demonstrate the benefits of integrating a tungsten mass to reduce the fluid losses while potentially reducing the device footprint.

  2. Granular gas in weightlessness: The limit case of very low densities of non interacting spheres

    NASA Astrophysics Data System (ADS)

    Evesque, P.; Palencia, F.; Lecoutre-Chabot, C.; Beysens, D.; Garrabos, Y.

    2005-03-01

    Experiments on non interacting balls in a vibrated box are reported. In a first experiment with an electromagnetic vibrator on earth or in board of Airbus A300 of CNES, the 1-ball dynamics exhibit little transverse motion and an intermittent quasi periodic motion along the direction parallel to the vibration. This behaviour proves a significant reduction of the phase space dimension of this billiard-like system from 11- d to 3- d or 1- d. It is caused by dissipation, which generates non ergodic dynamics. This experiment exemplifies the coupling between translation and rotation degrees of freedom during the collisions with the walls, due to solid friction at contacts. This eliminates ball rotation and freezes transverse velocity fluctuations. This trend is confirmed by 3d simulations with JJ Moreau discrete element code. A two-ball experiment performed under zero-g conditions in the Maxus 5 flight confirms the trend; the quasi-periodicity is found much greater, which is probably due to an improvement of experimental conditions. The two balls are not in perfect synchronisation showing the effect of small random noise; but the particles has never collided. This is then the normal dynamics of a gas of non-interacting dilute spherical grains in a vibrated container.

  3. The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella.

    PubMed

    Liang, Fang; Du, Kui; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2015-12-28

    To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m(2); temperature: 30°C; pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R(2) = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

  4. Is tubal ligation a risk factor for low bone density and increased risk of fracture?

    PubMed

    Fox, K M; Cummings, S R

    1995-01-01

    Osteoporosis is a major women's health problem, because it is responsible for about 1.3 million fractures in the United States each year. Estrogen deficiency is a major risk factor in the pathogenesis of osteoporosis. Recent evidence has indicated that tubal ligation may cause menstrual dysfunction and estrogen deficiency. This study examined the association between tubal ligation and bone mass in a group of elderly postmenopausal women. Subjects were 2215 white women > or = 65 years old participating in the Baltimore center of the Study of Osteoporotic Fractures. Bone mineral density of the proximal and distal radius and the calcaneus was measured by single photon absorptiometry. Multiple regression analysis was performed to determine whether tubal ligation had an independent effect on bone density. The effect of tubal ligation on the risk of hip and osteoporotic fractures was estimated by Cox proportional hazards model. Women who reported a tubal ligation had lower, although not statistically significant, bone density of the radius and calcaneus. The relative risk of hip (1.05, 95% confidence limit 0.84 to 1.32) and osteoporotic fractures (1.01, 0.80 to 1.29) was not significantly increased in women with tubal ligation. We conclude that elderly women who had a tubal ligation have small changes in bone density that are not of sufficient magnitude to increase their risk of osteoporotic fractures.

  5. Percent Mammographic Density and Dense Area as Risk Factors for Breast Cancer.

    PubMed

    Rauh, C; Hack, C C; Häberle, L; Hein, A; Engel, A; Schrauder, M G; Fasching, P A; Jud, S M; Ekici, A B; Loehberg, C R; Meier-Meitinger, M; Ozan, S; Schulz-Wendtland, R; Uder, M; Hartmann, A; Wachter, D L; Beckmann, M W; Heusinger, K

    2012-08-01

    Purpose: Mammographic characteristics are known to be correlated to breast cancer risk. Percent mammographic density (PMD), as assessed by computer-assisted methods, is an established risk factor for breast cancer. Along with this assessment the absolute dense area (DA) of the breast is reported as well. Aim of this study was to assess the predictive value of DA concerning breast cancer risk in addition to other risk factors and in addition to PMD. Methods: We conducted a case control study with hospital-based patients with a diagnosis of invasive breast cancer and healthy women as controls. A total of 561 patients and 376 controls with available mammographic density were included into this study. We describe the differences concerning the common risk factors BMI, parital status, use of hormone replacement therapy (HRT) and menopause between cases and controls and estimate the odds ratios for PMD and DA, adjusted for the mentioned risk factors. Furthermore we compare the prediction models with each other to find out whether the addition of DA improves the model. Results: Mammographic density and DA were highly correlated with each other. Both variables were as well correlated to the commonly known risk factors with an expected direction and strength, however PMD (ρ = -0.56) was stronger correlated to BMI than DA (ρ = -0.11). The group of women within the highest quartil of PMD had an OR of 2.12 (95 % CI: 1.25-3.62). This could not be seen for the fourth quartile concerning DA. However the assessment of breast cancer risk could be improved by including DA in a prediction model in addition to common risk factors and PMD. Conclusions: The inclusion of the parameter DA into a prediction model for breast cancer in addition to established risk factors and PMD could improve the breast cancer risk assessment. As DA is measured together with PMD in the process of computer-assisted assessment of PMD it might be considered to include it as one additional breast

  6. Percent Mammographic Density and Dense Area as Risk Factors for Breast Cancer

    PubMed Central

    Rauh, C.; Hack, C. C.; Häberle, L.; Hein, A.; Engel, A.; Schrauder, M. G.; Fasching, P. A.; Jud, S. M.; Ekici, A. B.; Loehberg, C. R.; Meier-Meitinger, M.; Ozan, S.; Schulz-Wendtland, R.; Uder, M.; Hartmann, A.; Wachter, D. L.; Beckmann, M. W.; Heusinger, K.

    2012-01-01

    Purpose: Mammographic characteristics are known to be correlated to breast cancer risk. Percent mammographic density (PMD), as assessed by computer-assisted methods, is an established risk factor for breast cancer. Along with this assessment the absolute dense area (DA) of the breast is reported as well. Aim of this study was to assess the predictive value of DA concerning breast cancer risk in addition to other risk factors and in addition to PMD. Methods: We conducted a case control study with hospital-based patients with a diagnosis of invasive breast cancer and healthy women as controls. A total of 561 patients and 376 controls with available mammographic density were included into this study. We describe the differences concerning the common risk factors BMI, parital status, use of hormone replacement therapy (HRT) and menopause between cases and controls and estimate the odds ratios for PMD and DA, adjusted for the mentioned risk factors. Furthermore we compare the prediction models with each other to find out whether the addition of DA improves the model. Results: Mammographic density and DA were highly correlated with each other. Both variables were as well correlated to the commonly known risk factors with an expected direction and strength, however PMD (ρ = −0.56) was stronger correlated to BMI than DA (ρ = −0.11). The group of women within the highest quartil of PMD had an OR of 2.12 (95 % CI: 1.25–3.62). This could not be seen for the fourth quartile concerning DA. However the assessment of breast cancer risk could be improved by including DA in a prediction model in addition to common risk factors and PMD. Conclusions: The inclusion of the parameter DA into a prediction model for breast cancer in addition to established risk factors and PMD could improve the breast cancer risk assessment. As DA is measured together with PMD in the process of computer-assisted assessment of PMD it might be considered to include it as one additional

  7. Factors associated with low bone density among women with major depressive disorder.

    PubMed

    Hsiao, Mei-Chun; Liu, Chia-Yih; Wang, Chao-Jan

    2012-01-01

    Previous studies have suggested that depression might be associated with low bone mineral density (BMD) in women with depression. The aim of this study was to investigate the association between the BMD of women with major depressive disorder and correlated factors. This prospective cross-sectional study explored the association between bone density and major depressive disorder in women. One hundred women diagnosed with major depressive disorder were enrolled. The diagnoses were made by board-certificated psychiatrists using the Mini International Neuropsychiatric Interview (MINI). The Beck Depression Inventory (BDI) was administered. The bone density of the hip was measured with dual X-ray densitometry (DEXA) using a Hologic Delphi QDR-2000 densitometer. We found age, family history of osteoporosis, consumption of coffee, and consumption of tea to be associated with low BMD in single-variate analysis. Depression was also related to BMD, in that the worse the depression, the lower the BMD. Multi-variate analysis by linear regression revealed an equation of BMD = 0.91 - 0.004 x (severity of depression) + 0.07 x (tea consumption)--0.06 x (family history of osteoporosis)--0.04 x age. These results suggest that depression is associated with lower BMD, and the associated factors should be considered in depressive women. The findings of this research may be useful for improving the care of women with major depressive disorder in terms of developing appropriate and effective care plans.

  8. How well do static electronic dipole polarizabilities from gas-phase experiments compare with density functional and MP2 computations?

    SciTech Connect

    Thakkar, Ajit J. Wu, Taozhe

    2015-10-14

    Static electronic dipole polarizabilities for 135 molecules are calculated using second-order Møller-Plesset perturbation theory and six density functionals recently recommended for polarizabilities. Comparison is made with the best gas-phase experimental data. The lowest mean absolute percent deviations from the best experimental values for all 135 molecules are 3.03% and 3.08% for the LC-τHCTH and M11 functionals, respectively. Excluding the eight extreme outliers for which the experimental values are almost certainly in error, the mean absolute percent deviation for the remaining 127 molecules drops to 2.42% and 2.48% for the LC-τHCTH and M11 functionals, respectively. Detailed comparison enables us to identify 32 molecules for which the discrepancy between the calculated and experimental values warrants further investigation.

  9. Density Functional Theory and Reaction Kinetics Studies of the Water–Gas Shift Reaction on Pt–Re Catalysts

    SciTech Connect

    Carrasquillo-Flores, Ronald; Gallo, Jean Marcel R.; Hahn, Konstanze; Dumesic, James A.; Mavrikakis, Manos

    2013-11-05

    Periodic, self-consistent density functional theory calculations (DFT-GGA-PW91) on Pt(111) and Pt3Re(111) surfaces, reaction kinetics measurements, and microkinetic modeling are employed to study the mechanism of the water–gas shift (WGS) reaction over Pt and Pt–Re catalysts. The values of the reaction rates and reaction orders predicted by the model are in agreement with the ones experimentally determined; the calculated apparent activation energies are matched to within 6% of the experimental values. The primary reaction pathway is predicted to take place through adsorbed carboxyl (COOH) species, whereas formate (HCOO) is predicted to be a spectator species. We conclude that the clean Pt(111) is a good representation of the active site for the WGS reaction on Pt catalysts, whereas the active sites on the Pt–Re alloy catalyst likely contain partially oxidized metal ensembles.

  10. Characterization of nanoporous materials by gas adsorption and density-functional theory

    NASA Astrophysics Data System (ADS)

    Ravikovitch, Peter I.

    Nanoporous materials with pores ranging from several molecular diameters to ca. 10 nm currently find numerous applications in modern separation and catalytic technologies. Adsorption is one of the most informative experimental techniques for structural characterization of nanoporous materials. Practical problems of characterization and prediction of adsorption properties of active carbons, zeolites, pillared clays, mesoporous molecular sieves, carbon nanotubes, and many other traditional and newly synthesized adsorbents gave rise to a number of theoretical models capable of constructing adsorption isotherms in model pores. Modern methods of statistical thermodynamics such as Monte Carlo (MC) simulations, molecular dynamics (MD) and density functional theory (DFT) provide molecular level understanding of adsorption in pores, and can be used for characterization of nanoporous materials and predicting their adsorption properties. The main focus of the present work is experimental and theoretical studies of adsorption in nanoporous materials. A nonlocal density functional theory (NLDFT) model has been developed for predicting adsorption/desorption isotherms in nanopores of different geometries over a wide range of pore sizes (0.3-100 nm), and for calculating pore size distributions from the experimental adsorption isotherms based on given intermolecular fluid-fluid and fluid-solid potentials. The NLDFT model has been applied to studies of N2 and Ar adsorption and hysteresis phenomena in mesoporous molecular sieves of MCM-41-type, N 2 and CO2 adsorption on activated carbons. An important issue of comparison of the theoretical and experimental excess adsorption isotherms have been studied in details. A method of ``virtual helium calibration'' has been introduced, which makes the theoretical and experimental isotherms entirely consistent. The method is applicable to any molecular model of adsorption. Several new methods for calculating pore size distributions from

  11. Risk factors and impact on bone mineral density in postmenopausal Mexican mestizo women.

    PubMed

    Rojano-Mejía, David; Aguilar-Madrid, Guadalupe; López-Medina, Guillermo; Cortes-Espinosa, Leticia; Hernández-Chiu, Maria C; Canto-Cetina, Thelma; Vergara-López, Alma; Coral-Vázquez, Ramon M; Canto, Patricia

    2011-03-01

    Considering that the Mexican mestizo population seems to be the result of a genetic admixture, we proposed that further research is needed to evaluate the role of ethnicity in conjunction with health-related factors to better understand ethnic differences in bone mineral density (BMD). The aim of this study was to analyze several risk factors related to the development of osteoporosis in postmenopausal Mexican mestizo women. We included 567 postmenopausal Mexican mestizo women. A structured questionnaire for risk factors was applied and BMD was measured in total hip and lumbar spine by dual-energy x-ray absorptiometry. Nonconditional logistic regression was used to estimate crude and adjusted odds ratio. Using World Health Organization criteria, 28.7% of postmenopausal women had osteoporosis, 46.4% had osteopenia, and 24.9% had normal BMD. Each clinical risk factor had a different significance for osteopenia/osteoporosis; however, duration of total breast-feeding, body mass index, and number of years since menopause remained significantly associated with osteopenia/osteoporosis after bone density was added to the nonconditional model. Interestingly, extended periods of accumulated breast-feeding for 24 and 36 months were, in both cases, significantly associated with osteopenia/osteoporosis. Our results confirm the importance of considering the duration of breast-feeding as an important risk factor for osteopenia/osteoporosis. In addition, we find that body mass index is positively associated with BMD. Because of the heterogeneity of the Mexican mestizo population, the risk factor for osteoporosis may not be the same in different ethnic groups.

  12. A van der Waals density functional built upon the electron-gas foundation

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Berland, Kristian; Schröder, Elsebeth

    2015-03-01

    The vdW-DF method is designed to be a systematic extension of the constraint-based generalized-gradient approximation (GGA) and can therefore serve as general purpose density functional [PRB 90, 075148 (2014)]. Yet the early versions can have issues both with bulk systems and with weak chemisorption. We present a recent nonempirical version, vdW-DF-cx [J. Chem. Phys. 140, 18A539 (2014), PRB 89, 035412 (2014)], that resolves these issues. The version is designed to have a consistent combination of exchange and correlation. We show that it performs well for inter-molecular binding and that it can even be better than PBE for describing cohesion and structure of molecules and solids. These results validate the robustness of the vdW-DF plasmon-pole model, which we show is closed linked to the exchange correlation hole of constraint-based GGA. The work was supported by the Swedish Research Council (VR), by the Chalmers Areas of Advance: Materials, and by the Swedish National Infrastructure for Computing.

  13. Direct observation of many-body charge density oscillations in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Sessi, Paolo; Silkin, Vyacheslav M.; Nechaev, Ilya A.; Bathon, Thomas; El-Kareh, Lydia; Chulkov, Evgueni V.; Echenique, Pedro M.; Bode, Matthias

    2015-10-01

    Quantum interference is a striking manifestation of one of the basic concepts of quantum mechanics: the particle-wave duality. A spectacular visualization of this effect is the standing wave pattern produced by elastic scattering of surface electrons around defects, which corresponds to a modulation of the electronic local density of states and can be imaged using a scanning tunnelling microscope. To date, quantum-interference measurements were mainly interpreted in terms of interfering electrons or holes of the underlying band-structure description. Here, by imaging energy-dependent standing-wave patterns at noble metal surfaces, we reveal, in addition to the conventional surface-state band, the existence of an `anomalous' energy band with a well-defined dispersion. Its origin is explained by the presence of a satellite in the structure of the many-body spectral function, which is related to the acoustic surface plasmon. Visualizing the corresponding charge oscillations provides thus direct access to many-body interactions at the atomic scale.

  14. Measurements of absolute radical densities in atmospheric pressure plasmas with complex gas mixtures

    NASA Astrophysics Data System (ADS)

    O'Connell, Deborah

    2015-05-01

    Low temperature plasmas are emerging as an exciting development for therapeutics. Non-equilibrium plasmas, operated at ambient atmospheric pressure and temperature, are very efficient sources for highly reactive neutral particles, including reactive oxygen and nitrogen species (RONS), which are known to play a crucial role in biological systems and existing therapeutics. Transport of these plasma components to the target is complex. In order to understand the chemical kinetics and plasma-liquid-biological interaction mechanisms measurements of the relevant RONS are key. Under atmospheric pressure these are challenging, primarily due to the multi-phase and highly collisional environment, requiring extremely high temporal (picosecond to nanosecond) and spatial (microns) resolution. Absolute measurements of radical densities (including O and OH) using picosecond two-photon absorption laser induced fluorescence (ps-TALIF), UV and high-resolution synchrotron VUV absorption spectroscopy will be presented. Fluorescence lifetime measurements of the laser-excited radicals are possible with picosecond resolution and this provides us with information about collisional quenching partners and thus collision kinetics with the surrounding environment. The authors acknowledge support by the UK EPSRC EP/H003797 and EP/K018388.

  15. A general, rotating, hard sphere model applied to the transport properties of a low density gas.

    PubMed

    Meanwell, Michael; Thachuk, Mark

    2017-08-14

    A general, spherical, rigid model is introduced for describing rotating and translating particles. The model contains a parameter, which we label γ, that smoothly interpolates between the smooth hard sphere (γ = 0) and rough hard sphere (γ = 1) limits. Analytic expressions for transport coefficients are determined for the general model in the low density limit and compared with those for the smooth and rough hard sphere cases. While the diffusion constant decreases monotonically on moving from the smooth to the rough sphere limits, both the viscosity and thermal conductivity first decrease and then increase, thereby producing a minimum between the two limits. This qualitative change in behaviour is new and suggests translational-rotational coupling acts to decrease the values of the transport coefficients (in contrast to the prediction from the rough sphere model). Although the model still has the (known) deficiencies of rigid models, it is more flexible than either the smooth or rough sphere model and should find use in better representing molecular behaviour. The general model provides a consistent representation of the transport coefficients because it has proper, microscopic collision dynamics obeying conservation laws for total momentum, total angular momentum, and total energy.

  16. A general, rotating, hard sphere model applied to the transport properties of a low density gas

    NASA Astrophysics Data System (ADS)

    Meanwell, Michael; Thachuk, Mark

    2017-08-01

    A general, spherical, rigid model is introduced for describing rotating and translating particles. The model contains a parameter, which we label γ , that smoothly interpolates between the smooth hard sphere (γ = 0 ) and rough hard sphere (γ = 1 ) limits. Analytic expressions for transport coefficients are determined for the general model in the low density limit and compared with those for the smooth and rough hard sphere cases. While the diffusion constant decreases monotonically on moving from the smooth to the rough sphere limits, both the viscosity and thermal conductivity first decrease and then increase, thereby producing a minimum between the two limits. This qualitative change in behaviour is new and suggests translational-rotational coupling acts to decrease the values of the transport coefficients (in contrast to the prediction from the rough sphere model). Although the model still has the (known) deficiencies of rigid models, it is more flexible than either the smooth or rough sphere model and should find use in better representing molecular behaviour. The general model provides a consistent representation of the transport coefficients because it has proper, microscopic collision dynamics obeying conservation laws for total momentum, total angular momentum, and total energy.

  17. [Influence factor for prediction of air-dry density of Eucalyptus pellita by near infrared spectroscopy].

    PubMed

    Zhao, Rong-Jun; Huo, Xiao-Mei; Shangguan, Wei-Wei; Wang, Yu-Rong

    2011-11-01

    Near infrared spectroscopy(NIR)technique was applied to compare the influence factors of Eucalyptus pellita's air-dry density. Air-dry density of eucalypt wood was tested by direct measurement After collecting the near infrared reflectance spectra of samples in different section and with different thickness, moisture content and roughness, the NIR spectra were preprocessed with the second-derivative and the regression models were built in certain spectra. The calibration models were established using 50-140 samples with the partial least squares method and validated with external validation method. The results showed that the predicted results were influenced by sample's section, thickness, roughness and moisture content. The best near infrared spectroscopy prediction model was built under the condition of transverse section, 2-5 mm thickness, 12% moisture content and meticulous roughness of wood.

  18. High-precision absolute (true) density measurements on hygroscopic powders by gas pycnometry: application to determining effects of formulation and process on free volume of lyophilized products.

    PubMed

    Kikuchi, Takayuki; Wang, Bingquan Stuart; Pikal, Michael J

    2011-07-01

    As density (free volume) of the amorphous solids should be related to mobility and stability, an attempt was made to develop a simple, sensitive, and reproducible method to evaluate free volume via high-precision gas pycnometry density measurements, and to apply this methodology to study the variation of free volume with formulation and thermal history (i.e., annealing). Annealed samples were prepared either by heating the product after freeze drying (postannealing) or drying at higher temperature in secondary drying than normal (in-process annealing). Density was measured using a gas pycnometer. We find that the key to high-precision density measurements is isolation of the instrument from atmospheric moisture; accordingly, all operations were carried out in a dry box. With suitable care, densities of amorphous freeze-dried products can be measured with a precision of better than 0.5% in a series of independent but nominally identical samples. Density decreased with increasing molecular weight of dextran, but density of proteins was independent of molecular weight. Small but significant increases in density upon annealing were observed for several formulations. Thus, we conclude that accurate density measurements may be made by carefully controlling residual moisture. Density may be a useful parameter to predict long-term stability. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  19. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    PubMed

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  20. Theoretical infrared spectral density of H-bonds in liquid and gas phases: Anharmonicities and dampings effects

    NASA Astrophysics Data System (ADS)

    Rekik, Najeh; Oujia, Brahim; Wójcik, Marek J.

    2008-09-01

    The main purpose of the present paper is to show how both anharmonicities of the fast and the slow modes, multiple Fermi resonances and damping mechanisms introduced within the strong anharmonic coupling theory, are susceptible to explain some analogies in the infrared spectra of hydrogen bonded systems, when passing from the condensed to the gas phase. The high-frequency mode X-H→⋯Y described by double well potential is supposed to be anharmonically coupled to the H-bond stretching mode X←-H⋯Y→ described by Morse potential and to first overtones of some bending modes through Fermi resonances. The relaxation of the fast and bending modes and of the H-bond bridge is incorporated by aid of previous results [N. Rekik, B. Ouari, P. Blaise, O. Henri-Rousseau, J. Mol. Struct. 687 (2004) 125]. The spectral density is obtained as the Fourier transform of the autocorrelation function of the dipole moment operator within linear response theory. Numerical results show that mixing of all these effects results in a broad and complicated structure and expects to provide efficient energy relaxation pathways by using large dampings parameters for the condensed phase and weaker dampings for the gas one.

  1. Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards.

    PubMed

    Díez, Concepción M; Moral, Juan; Cabello, Diego; Morello, Pablo; Rallo, Luis; Barranco, Diego

    2016-01-01

    Super high-density (SHD) olive orchards are rapidly expanding since the first plantation was set up in Spain in the 1990s. Because there are no long-term studies characterizing these systems, it is unknown if densities above a certain threshold could trigger competition among fully-grown trees, compromising their development. Over 14 years we have evaluated the performance of the major olive cultivars currently planted in SHD systems ("Arbequina," Arbequina IRTA-i·18, "Arbosana," "Fs-17," and "Koroneiki") and nine SHD designs ranging from 780 to 2254 trees ha(-1) for the cultivar "Arbequina." Remarkably, the accumulated fruit and oil production of the five cultivars increased linearly over time. Our data indicated the favorable long-term performance of the evaluated cultivars with an average annual oil production of 2.3 t ha(-1). Only "Fs-17" did not perform well to the SHD system in our conditions and it yielded about half (1.2 t ha(-1)) of the other cultivars. In the density trial for "Arbequina," both fruit and oil accumulated production increased over time as a function of tree density. Thus, the accumulated oil yield ranged from 16.1 t ha(-1) for the lowest density (780 trees ha(-1)) to 29.9 t ha(-1) for the highest (2254 trees ha(-1)). In addition, we note that the accumulated production per surface unit showed a better correlation with the hedgerow length than the tree density. Thus, the current planting designs of SHD olive orchards can be further improved taking this parameter into account. Despite observations that some irregular patterns of crop distribution have arisen, our olive hedgerows are still fully productive after 14 years of planting. This result contradicts previous experiences that showed declines in production 7 or 8 years after planting due to high vigor, shading, and limited ventilation.

  2. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE PAGES

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang; ...

    2016-05-25

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M2(dobdc) (M-MOF-74; dobdc4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO2, H2O, and CH4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M2(dobpdc) (dobpdc4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended versionmore » of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H2O and N2 upon these materials’ performance for the separation of CO2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H2O vapor. The extent to which the various gases are affected by the concentration of H2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO2 selectivities over CH4 and N2 are observed as the temperature of the systems is lowered.« less

  3. Unsteady isothermal flow behind a magnetogasdynamic shock wave in a self-gravitating gas with exponentially varying density

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2014-06-01

    The propagation of spherical (or cylindrical) shock wave in an ideal gas with or without gravitational effects in the presence of a constant azimuthal magnetic field is investigated. Non-similarity solutions are obtained for isothermal flow between the shock and the piston. The numerical solutions are obtained using the Runge-Kutta method of the fourth order. The density of the gas is assumed to be varying and obeying an exponential law. The shock wave moves with variable velocity, and the total energy of the wave is non-constant and varies with time. The effects of variation of the Alfven-Mach number, gravitational parameter and time are obtained. It is investigated that the presence of gravitational field reduces the effect of the magnetic field. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and, therefore, the distance between the inner contact surface and the shock surface is reduced. The shock waves in conducting perfect gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating medium with or without magnetic field. The obtained solutions are applicable for arbitrary values of time.

  4. ALMA OBSERVATIONS OF A HIGH-DENSITY CORE IN TAURUS: DYNAMICAL GAS INTERACTION AT THE POSSIBLE SITE OF A MULTIPLE STAR FORMATION

    SciTech Connect

    Tokuda, Kazuki; Onishi, Toshikazu; Saigo, Kazuya; Kawamura, Akiko; Fukui, Yasuo; Inutsuka, Shu-ichiro; Tachihara, Kengo; Matsumoto, Tomoaki; Machida, Masahiro N.; Tomida, Kengo

    2014-07-01

    Starless dense cores eventually collapse dynamically, forming protostars inside them, and the physical properties of the cores determine the nature of the forming protostars. We report ALMA observations of dust continuum emission and molecular rotational lines toward MC27 or L1521F, which is considered to be very close to the first protostellar core phase. We found a few starless high-density cores, one of which has a very high density of ∼10{sup 7} cm{sup –3}, within a region of several hundred AU around a very low-luminosity protostar detected by Spitzer. A very compact bipolar outflow with a dynamical timescale of a few hundred years was found toward the protostar. The molecular line observation shows several cores with an arc-like structure, possibly due to the dynamical gas interaction. These complex structures revealed in the present observations suggest that the initial condition of star formation is highly dynamical in nature, which is considered to be a key factor in understanding fundamental issues of star formation such as the formation of multiple stars and the origin of the initial mass function of stars.

  5. Charge transfer and density of states modifications of graphene upon molecular adsorption - Implications for gas and molecular sensors

    NASA Astrophysics Data System (ADS)

    Carey, David; Samuels, Alexander

    2012-02-01

    The adsorption of molecules on single layer graphene can result in significant modifications to the band structure and density of states near the Dirac point and can result in the introduction of scattering centres which can modify the carrier mobility. Understanding how the competing interactions of increased carrier density and density of scattering centres is therefore an important consideration in the description of the properties of graphene. We have used ab initio methods to explore the degree of charge transfer, modification to the band structure and density of states associated with the adsorption of a range of open and closed shell molecules, organometallic molecules and planar organic molecules. We show how the charge transfer can be related to the position of the molecule related energy levels on adsorption relative to the Dirac point. We find low levels (<0.05e) of charge transfer for NH3, NO and NO2 molecules but larger values for cobaltocene (n-type, 0.31 e/molecule) and about 0.3 e/molecule for the organic molecules TDAE (n-type) and DDQ (p-type) respectively. These molecules open up ways to dope graphene to high levels and are important considerations in sensing. We also discuss the factors that control the charge transfer.

  6. Environmental Factors Associated with High Fly Densities and Diarrhea in Vellore, India

    PubMed Central

    Collinet-Adler, Stefan; Babji, Sudhir; Francis, Mark; Kattula, Deepthi; Premkumar, Prasanna Samuel; Sarkar, Rajiv; Mohan, Venkat Ragava; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar

    2015-01-01

    Diarrhea causes significant morbidity and mortality in Indian children under 5 years of age. Flies carry enteric pathogens and may mediate foodborne infections. In this study, we characterized fly densities as a determinant of infectious diarrhea in a longitudinal cohort of 160 urban and 80 rural households with 1,274 individuals (27% under 5 years of age) in Vellore, India. Household questionnaires on living conditions were completed at enrollment. Fly abundance was measured during the wet and dry seasons using fly ribbons placed in kitchens. PCRs for enteric bacteria, viruses, and protozoa were performed on 60 fly samples. Forty-three (72%) fly samples were positive for the following pathogens: norovirus (50%), Salmonella spp. (46.7%), rotavirus (6.7%), and Escherichia coli (6.7%). Ninety-one episodes of diarrhea occurred (89% in children under 5 years of age). Stool pathogens isolated in 24 of 77 (31%) samples included E. coli, Shigella spp., Vibrio spp., Giardia, Cryptosporidium, and rotavirus. Multivariate log-linear models were used to explore the relationships between diarrhea and fly densities, controlling for demographics, hygiene, and human-animal interactions. Fly abundance was 6 times higher in rural than urban sites (P < 0.0001). Disposal of garbage close to homes and rural living were significant risk factors for high fly densities. The presence of latrines was protective against high fly densities and diarrhea. The adjusted relative risks of diarrheal episodes and duration of diarrhea, associated with fly density at the 75th percentile, were 1.18 (95% confidence interval [CI], 1.03 to 1.34) and 1.15 (95% CI, 1.02 to 1.29), respectively. Flies harbored enteric pathogens, including norovirus, a poorly documented pathogen on flies. PMID:26116684

  7. Environmental Factors Associated with High Fly Densities and Diarrhea in Vellore, India.

    PubMed

    Collinet-Adler, Stefan; Babji, Sudhir; Francis, Mark; Kattula, Deepthi; Premkumar, Prasanna Samuel; Sarkar, Rajiv; Mohan, Venkat Ragava; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N

    2015-09-01

    Diarrhea causes significant morbidity and mortality in Indian children under 5 years of age. Flies carry enteric pathogens and may mediate foodborne infections. In this study, we characterized fly densities as a determinant of infectious diarrhea in a longitudinal cohort of 160 urban and 80 rural households with 1,274 individuals (27% under 5 years of age) in Vellore, India. Household questionnaires on living conditions were completed at enrollment. Fly abundance was measured during the wet and dry seasons using fly ribbons placed in kitchens. PCRs for enteric bacteria, viruses, and protozoa were performed on 60 fly samples. Forty-three (72%) fly samples were positive for the following pathogens: norovirus (50%), Salmonella spp. (46.7%), rotavirus (6.7%), and Escherichia coli (6.7%). Ninety-one episodes of diarrhea occurred (89% in children under 5 years of age). Stool pathogens isolated in 24 of 77 (31%) samples included E. coli, Shigella spp., Vibrio spp., Giardia, Cryptosporidium, and rotavirus. Multivariate log-linear models were used to explore the relationships between diarrhea and fly densities, controlling for demographics, hygiene, and human-animal interactions. Fly abundance was 6 times higher in rural than urban sites (P < 0.0001). Disposal of garbage close to homes and rural living were significant risk factors for high fly densities. The presence of latrines was protective against high fly densities and diarrhea. The adjusted relative risks of diarrheal episodes and duration of diarrhea, associated with fly density at the 75th percentile, were 1.18 (95% confidence interval [CI], 1.03 to 1.34) and 1.15 (95% CI, 1.02 to 1.29), respectively. Flies harbored enteric pathogens, including norovirus, a poorly documented pathogen on flies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. A SURVEY OF METAL LINES AT HIGH REDSHIFT. II. SDSS ABSORPTION LINE STUDIES-O VI LINE DENSITY, SPACE DENSITY, AND GAS METALLICITY AT z{sub abs} {approx} 3.0

    SciTech Connect

    Frank, S.; Mathur, S.; Pieri, M.; York, D. G.

    2010-09-15

    We have analyzed a large data set of O VI absorber candidates found in the spectra of 3702 Sloan Digital Sky Survey (SDSS) quasars, focusing on a subsample of 387 active galactic nuclei sight lines with an average S/N {>=}5.0, allowing for the detection of absorbers above a rest-frame equivalent width limit of W{sub r} {>=} 0.19 A for the O VI 1032 A component. Accounting for random interlopers mimicking an O VI doublet, we derive for the first time a secure lower limit for the redshift number density {Delta}N/{Delta}z for redshifts z{sub abs} {>=} 2.8. With extensive Monte Carlo simulations, we quantify the losses of absorbers due to blending with the ubiquitous Ly{alpha} forest lines and estimate the success rate of retrieving each individual candidate as a function of its redshift, the emission redshift of the quasar, the strength of the absorber, and the measured signal-to-noise ratio (S/N) of the spectrum by modeling typical Lyman forest spectra. These correction factors allow us to derive the 'incompleteness and S/N-corrected' redshift number densities of O VI absorbers: {Delta}N{sub O{sub VI,c}}/{Delta}z{sub c} (2.8 < z < 3.2) = 4.6 {+-} 0.3, {Delta}N{sub O{sub VI,c}}/{Delta}z{sub c} (3.2 < z < 3.6) = 6.7 {+-} 0.8, and {Delta}N{sub O{sub VI,c}}/{Delta}z{sub c} (3.6 < z < 4.0) = 8.4 {+-} 2.9. We can place a secure lower limit for the contribution of O VI to the closure mass density at the redshifts probed here: {Omega}{sub O{sub VI}}(2.8 < z < 3.2) {>=} 1.9 x 10{sup -8} h {sup -1}. We show that the strong lines we probe account for over 65% of the mass in the O VI absorbers; the weak absorbers, while dominant in line number density, do not contribute significantly to the mass density. Making a conservative assumption about the ionization fraction, O{sub VI}/O, and adopting the Anders and Grevesse solar abundance values, we derive the mean metallicity of the gas probed in our search: {zeta}(2.8 < z < 3.2) {>=} 3.6 x 10{sup -4} h, in good agreement with other

  9. Water-gas Shift Reaction on oxide/Cu(111): Rational Catalyst Screening from Density Functional Theory

    SciTech Connect

    Liu, P.

    2010-11-28

    Developing improved catalysts based on a fundamental understanding of reaction mechanism has become one of the grand challenges in catalysis. A theoretical understanding and screening the metal-oxide composite catalysts for the water-gas shift (WGS) reaction is presented here. Density functional theory was employed to identify the key step for the WGS reaction on the Au, Cu-oxide catalysts, where the calculated reaction energy for water dissociation correlates well with the experimental measured WGS activity. Accordingly, the calculated reaction energy for water dissociation was used as the scaling descriptor to screen the inverse model catalysts, oxide/Cu(111), for the better WGS activity. Our calculations predict that the WGS activity increases in a sequence: Cu(111), ZnO/Cu(111) < TiO{sub 2}/Cu(111), ZrO{sub 2}/Cu(111) < MoO{sub 3}/Cu(111). Our results imply that the high performances of Au, Cu-oxide nanocatalysts in the WGS reaction rely heavily on the direct participation of both oxide and metal sites. The degree that the oxide is reduced by Cu plays an important role in determining the WGS activity of oxide/Cu catalysts. The reducible oxide can be transformed from the fully oxidized form to the reduced form due to the interaction with Cu and, therefore, the transfer of electron density from Cu, which helps in releasing the bottleneck water dissociation and, therefore, facilitating the WGS reaction on copper.

  10. A Desorbed Gas Molecular Ionization Mechanism for Arcing Onset in Solar Arrays Immersed in a Low-Density Plasma

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.; Degroot, W.

    2002-01-01

    Previous experimental studies have hypothesized that the onset of Solar Array Arc (SAA) initiation in low-density space plasmas is caused by a desorbed gas molecular ionization mechanism. Indeed past investigations performed at the NASA Glenn Plasma Interaction Facility tend to not only support the desorbed gas molecular ionization mechanism, but have gone as far as identifying the crucial molecular species that must be present for molecular ion dominated process to occur. When electrical breakdown occurs at a triple junction site on a solar array panel, a quasi-neutral plasma cloud is ejected. Assuming the main component of the expelled plasma cloud by weight is due to water vapor, the fastest process available is due to HO molecules and OH(+) ions, or more succinctly, dissociative molecular-ion dominated recombination processes: H2O(+) + e(-) yields H* + OH*. Recently published spectroscopic observations of solar array arc spectra in ground tests have revealed the well-known molecular OH band (302 to 309nm), as well as the molecular SiH band (387nm peak), and the molecular CH band (432nm peak). Note that the OH band is observed in emission arcs where water vapor is present. Strong atomic lines were also observed for H(sub beta) at 486nm and H(sub alpha) at 656.3nm in prior ground testing. Independent supporting evidence of desorbed gas molecular ionization mechanisms also come from measurements of arc current pulse widths at different capacitances. We will revisit an earlier first order approximation demonstrating the dependence of arc current pulse widths on the square root of the capacitance. The simple arc current pulse width model will be then be used to estimate the temperature of the arc plasma (currently believed to be somewhere in the range of 3 to 5 eV). The current paper then seeks to extend the outlined work by including numerous vacuum chamber measurements obtained with a quadrupole mass spectrometer. A small solar array was mounted inside the vacuum

  11. Non-linear optics and local-field factors in liquid chloroform: A time-dependent density-functional theory study

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.; Andrade, Xavier; Rubio, Angel; Louie, Steve G.

    2009-03-01

    Chloroform is often used as a solvent and reference when measuring non-linear optical properties of organic molecules. We calculate directly the non-linear susceptibilities of liquid chloroform at optical frequencies, using molecular dynamics and the Sternheimer equation in time-dependent density-functional theory [X. Andrade et al., J. Chem. Phys. 126, 184106 (2007)]. We compare the results to those of chloroform in the gas and solid phases, and experimental values, and make an ab initio calculation of the local-field factors which are needed to extract molecular properties from liquid calculations and experimental measurements.

  12. High field tunneling as a limiting factor of maximum energy density in dielectric energy storage capacitors

    NASA Astrophysics Data System (ADS)

    Chen, Qin; Wang, Yong; Zhou, Xin; Zhang, Q. M.; Zhang, Shihai

    2008-04-01

    In several low loss dielectric materials, it was observed that the energy loss remains very small under low and medium electric fields but dramatically increases at high field which is believed to be due to tunneling current. The increase of tunneling current at high field is due to the decrease of barrier width and height and is a universal phenomenon in all dielectric materials. Due to the requirement of high energy efficiency, high field conduction places a limit for the maximum operation field, which could be lower than the breakdown field and act as the limiting factor of energy density.

  13. DEPENDENCE OF THE TURBULENT VELOCITY FIELD ON GAS DENSITY IN L1551

    SciTech Connect

    Yoshida, Atsushi; Kitamura, Yoshimi; Kawabe, Ryohei E-mail: kitamura@isas.jaxa.j

    2010-08-01

    We have carried out mapping observations of the entire L1551 molecular cloud with about 2 pc x 2 pc size in the {sup 12}CO(1-0) line with the Nobeyama 45 m radio telescope at the high effective resolution of 22'' (corresponding to 0.017 pc at the distance of 160 pc), and analyzed the {sup 12}CO data together with the {sup 13}CO(1-0) and C{sup 18}O(1-0) data from the Nobeyama Radio Observatory database. We derived the new non-thermal line width-size relations, {sigma}{sub NT} {proportional_to} L {sup {gamma}}, for the three molecular lines, corrected for the effect of optical depth and the line-of-sight integration. To investigate the characteristic of the intrinsic turbulence, the effects of the outflows were removed. The derived relations are ({sigma}{sub NT}/km s{sup -1}) = (0.18 {+-} 0.010)(L/pc){sup 0.45{+-}0.095}, (0.20 {+-} 0.020)(L/pc){sup 0.48{+-}0.091}, and (0.22 {+-} 0.050) (L/pc){sup 0.54{+-}0.21} for the {sup 12}CO, {sup 13}CO, and C{sup 18}O lines, respectively, suggesting that the line width-size relation of the turbulence very weakly depends on our observed molecular lines, i.e., the relation does not change between the density ranges of 10{sup 2}-10{sup 3} and 10{sup 3}-10{sup 4} cm{sup -3}. In addition, the relations indicate that incompressible turbulence is dominant at the scales smaller than 0.6 pc in L1551. The power spectrum indices converted from the relations, however, seem to be larger than that of the Kolmogorov spectrum for incompressible flow. The disagreement could be explained by the anisotropy in the turbulent velocity field in L1551, as expected in MHD turbulence. Actually, the autocorrelation functions of the centroid velocity fluctuations show larger correlation along the direction of the magnetic field measured for the whole Taurus cloud, which is consistent with the results of numerical simulations for incompressible MHD flow.

  14. Limiting Short-term Noise versus Optical Density in a Direct Absorption Spectrometer for Trace Gas Detection

    NASA Astrophysics Data System (ADS)

    Jervis, D.

    2016-12-01

    Field-deployable trace gas monitors are important for understanding a multitude of atmospheric processes: from forest photosynthesis and respiration [1], to fugitive methane emissions [2] and satellite measurement validation [3]. Consequently, a detailed knowledge of the performance limitations of these instruments is essential in order to establish reliable datasets. We present the short-term ( >1 Hz) performance of a long-pass direct absorption spectrometer as a function of the optical density of the absorption transition being probed. In particular, we identify fluctuations in the laser intensity as limiting the optical density uncertainty to 4x10-6/√Hz for weak transitions, and noise in the laser drive current as limiting the fractional noise in the optical density to 4x10-5/√Hz for deep transitions. We provide numerical and analytical predictions for both effects, as well as using the understanding of this phenomena to estimate how noise on neighboring strong and weak transitions couple to each other. All measurements were performed using the Aerodyne Research TILDAS Monitor, but are general to any instrument that uses direct absorption spectroscopy as a detection method. Wehr, R., et al. "Seasonality of temperate forest photosynthesis and daytime respiration." Nature 534.7609 (2016): 680-683. Conley, S., et al. "Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA." Science 351.6279 (2016): 1317-1320. Emmons, L. K., et al. "Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles." Journal of Geophysical Research: Atmospheres 109.D3 (2004).

  15. Comparative study on extinction process of gas-blasted air and CO2 arc discharge using two-dimensional electron density imaging sensor

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko; Nakano, Tomoyuki; Murai, Kosuke; Tanaka, Yasunori; Shinkai, Takeshi

    2017-05-01

    Shack-Hartmann type laser wavefront sensors were applied to gas-blasted arc discharges under current-zero phases, generated in a 50 mm-long interelectrode gap confined by a gas flow nozzle, in order to conduct a systematic comparison of electron density decaying processes for two kinds of arc-quenching gas media: air and \\text{C}{{\\text{O}}2} . The experimental results for the air and \\text{C}{{\\text{O}}2} arc plasmas showed that the electron densities and arc diameters became thinner toward the nozzle-throat inlet due to a stronger convection loss in the arc radial direction. In addition, \\text{C}{{\\text{O}}2} had a shorter electron density decaying time constant than air, which could be caused by convection loss and turbulent flow of \\text{C}{{\\text{O}}2} stronger than air.

  16. Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards

    PubMed Central

    Díez, Concepción M.; Moral, Juan; Cabello, Diego; Morello, Pablo; Rallo, Luis; Barranco, Diego

    2016-01-01

    Super high-density (SHD) olive orchards are rapidly expanding since the first plantation was set up in Spain in the 1990s. Because there are no long-term studies characterizing these systems, it is unknown if densities above a certain threshold could trigger competition among fully-grown trees, compromising their development. Over 14 years we have evaluated the performance of the major olive cultivars currently planted in SHD systems (“Arbequina,” Arbequina IRTA-i·18, “Arbosana,” “Fs-17,” and “Koroneiki”) and nine SHD designs ranging from 780 to 2254 trees ha−1 for the cultivar “Arbequina.” Remarkably, the accumulated fruit and oil production of the five cultivars increased linearly over time. Our data indicated the favorable long-term performance of the evaluated cultivars with an average annual oil production of 2.3 t ha−1. Only “Fs-17” did not perform well to the SHD system in our conditions and it yielded about half (1.2 t ha−1) of the other cultivars. In the density trial for “Arbequina,” both fruit and oil accumulated production increased over time as a function of tree density. Thus, the accumulated oil yield ranged from 16.1 t ha−1 for the lowest density (780 trees ha−1) to 29.9 t ha−1 for the highest (2254 trees ha−1). In addition, we note that the accumulated production per surface unit showed a better correlation with the hedgerow length than the tree density. Thus, the current planting designs of SHD olive orchards can be further improved taking this parameter into account. Despite observations that some irregular patterns of crop distribution have arisen, our olive hedgerows are still fully productive after 14 years of planting. This result contradicts previous experiences that showed declines in production 7 or 8 years after planting due to high vigor, shading, and limited ventilation. PMID:27602035

  17. Appearance and Frequency of Gas Interface Artifacts Involving Small Bowel on Rapid-Voltage-Switching Dual-Energy CT Iodine-Density Images.

    PubMed

    Wu, En-Haw; Kim, So Yeon; Wang, Z Jane; Chang, Wei-Chou; Zhao, Li-Qin; Yeh, Benjamin M

    2016-02-01

    The purpose of this study is to describe the appearance and frequency of gas interface artifacts in the jejunum that may mimic severe bowel disease on iodine-density images generated from rapid-voltage-switching dual-energy CT (DECT) scans. Two readers retrospectively reviewed 108 consecutive abdominal rapid-voltage-switching DECT scans to record the presence of image artifacts in jejunal segments with different degrees of gaseous luminal filling, classified as full, partial, or absent. Readers viewed iodine-density images and corresponding 140-kVp and 65-keV virtual monochromatic images and classified the jejunal artifacts on iodine-density images as pseudostratified appearance of the bowel wall, pseudopneumatosis, pseudohyperenhancement, or pseudohypoenhancement. We correlated the presence of the artifacts with clinical features suggesting bowel disease. Image artifacts were found in 91 of 108 scans (84.3%), appeared in 148 of 265 jejunal segments (55.8%), and included each type except for pseudohypoenhancement. Artifacts occurred exclusively when gas was present in the bowel lumen and were seen in 59 of 59 (100%) fully gas-distended segments, 89 of 98 (90.8%) partially gas-distended segments, and none of 108 gas-absent segments (p < 0.0001). In fully and partially gas-distended jejunal segments (n = 157), 148 (94.3%) segments had two or more artifacts. None of the patients was found to have clinical bowel-related injury on follow-up of medical records. Pseudostratified appearance, pseudopneumatosis, and pseudohyperenhancement, but not pseudohypoenhancement, artifacts are common in gas-filled jejunal segments on iodine-density images generated from rapid-voltage-switching DECT scans and are not seen in the corresponding 140-kVp or 65-keV images. Knowledge of the appearance of such iodine-density image artifacts will avoid potential examination interpretation pitfalls.

  18. Appearance and Frequency of Gas Interface Artifacts Involving Small Bowel on Rapid-Voltage-Switching Dual-Energy CT Iodine-Density Images

    PubMed Central

    Wu, En-Haw; Kim, So Yeon; Wang, Z. Jane; Chang, Wei-Chou; Zhao, Li-Qin; Yeh, Benjamin M.

    2016-01-01

    OBJECTIVE The purpose of this study is to describe the appearance and frequency of gas interface artifacts in the jejunum that may mimic severe bowel disease on iodine-density images generated from rapid-voltage-switching dual-energy CT (DECT) scans. MATERIALS AND METHODS Two readers retrospectively reviewed 108 consecutive abdominal rapid-voltage-switching DECT scans to record the presence of image artifacts in jejunal segments with different degrees of gaseous luminal filling, classified as full, partial, or absent. Readers viewed iodine-density images and corresponding 140-kVp and 65-keV virtual monochromatic images and classified the jejunal artifacts on iodine-density images as pseudostratified appearance of the bowel wall, pseudopneumatosis, pseudohyperenhancement, or pseudohypoenhancement. We correlated the presence of the artifacts with clinical features suggesting bowel disease. RESULTS Image artifacts were found in 91 of 108 scans (84.3%), appeared in 148 of 265 jejunal segments (55.8%), and included each type except for pseudohypoenhancement. Artifacts occurred exclusively when gas was present in the bowel lumen and were seen in 59 of 59 (100%) fully gas-distended segments, 89 of 98 (90.8%) partially gas-distended segments, and none of 108 gas-absent segments (p < 0.0001). In fully and partially gas-distended jejunal segments (n = 157), 148 (94.3%) segments had two or more artifacts. None of the patients was found to have clinical bowel-related injury on follow-up of medical records. CONCLUSION Pseudostratified appearance, pseudopneumatosis, and pseudohyperenhancement, but not pseudohypoenhancement, artifacts are common in gas-filled jejunal segments on iodine-density images generated from rapid-voltage-switching DECT scans and are not seen in the corresponding 140-kVp or 65-keV images. Knowledge of the appearance of such iodine-density image artifacts will avoid potential examination interpretation pitfalls. PMID:26797356

  19. Effect of boundary conditions on the neutral gas temperatures and densities in the ITER divertor and pump duct

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Juliano, D. R.

    1992-12-01

    The DEGAS neutral atom transport code was used to simulate helium pumping and D/T throughput in ITER. The sensitivity of the simulation to two different reflection models, four transmission probabilities from the exit of the simulation to the pump (0.0625, 0.125, 0.1875 and 0.250), and a 2-D model versus a 3-D model were analyzed. The variation in reflection model changes the densities in the duct and the recycling of D/T by a factor of 1.6. The variation in the transmission probabilities affects these same quantities by a factor of 2.5. The dimensionality of the simulation affects the density profile in the duct. A transmission probability from the exit of the DEGAS simulation to the pump of 0.110 to 0.125 was calculated from the ITER reference drawings. Using this quantity and the DEGAS results, an exhaust rate of 112 to 127 moles/h is predicted, implying that the reference pumping systems may be larger than necessary by a factor of 2.

  20. Gedanken densities and exact constraints in density functional theory

    SciTech Connect

    Perdew, John P.; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  1. Sociodemographic Factors, Population Density, and Bicycling for Transportation in the United States.

    PubMed

    Nehme, Eileen K; Pérez, Adriana; Ranjit, Nalini; Amick, Benjamin C; Kohl, Harold W

    2016-01-01

    Transportation bicycling is a behavior with demonstrated health benefits. Population-representative studies of transportation bicycling in United States are lacking. This study examined associations between sociodemographic factors, population density, and transportation bicycling and described transportation bicyclists by trip purposes, using a US-representative sample. This cross-sectional study used 2009 National Household Travel Survey datasets. Associations among study variables were assessed using weighted multivariable logistic regression. On a typical day in 2009, 1% of Americans older than 5 years of age reported a transportation bicycling trip. Transportation cycling was inversely associated with age and directly with being male, with being white, and with population density (≥ 10,000 vs < 500 people/square mile: odd ratio, 2.78, 95% confidence interval, 1.54-5.05). Those whose highest level of education was a high school diploma or some college were least likely to bicycle for transportation. Twenty-one percent of transportation bicyclists reported trips to work, whereas 67% reported trips to social or other activities. Transportation bicycling in the United States is associated with sociodemographic characteristics and population density. Bicycles are used for a variety of trip purposes, which has implications for transportation bicycling research based on commuter data and for developing interventions to promote this behavior.

  2. Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci

    PubMed Central

    Thompson, Wesley K.; McEvoy, Linda K.; Schork, Andrew J.; Zuber, Verena; LeBlanc, Marissa; Bettella, Francesco; Mills, Ian G.; Desikan, Rahul S.; Djurovic, Srdjan; Gautvik, Kaare M.; Dale, Anders M.; Andreassen, Ole A.

    2015-01-01

    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity. PMID:26695485

  3. Bone mineral density and osteoporosis after preterm birth: the role of early life factors and nutrition.

    PubMed

    Wood, Claire L; Wood, Alexander M; Harker, Caroline; Embleton, Nicholas D

    2013-01-01

    The effects of preterm birth and perinatal events on bone health in later life remain largely unknown. Bone mineral density (BMD) and osteoporosis risk may be programmed by early life factors. We summarise the existing literature relating to the effects of prematurity on adult BMD and the Developmental Origins of Health and Disease hypothesis and programming of bone growth. Metabolic bone disease of prematurity and the influence of epigenetics on bone metabolism are discussed and current evidence regarding the effects of breastfeeding and aluminium exposure on bone metabolism is summarised. This review highlights the need for further research into modifiable early life factors and their effect on long-term bone health after preterm birth.

  4. Bone mineral density and cardiovascular risk factors in postmenopausal women with coronary artery disease.

    PubMed

    Alissa, Eman M; Alnahdi, Wafa A; Alama, Nabil; Ferns, Gordon A

    2015-01-01

    It has been suggested that osteoporosis and coronary artery disease (CAD) have overlapping pathophysiological mechanisms and related risk factors. The aim of this study was to investigate the association between several traditional cardiovascular risk factors and measures of bone mineral density (BMD) in postmenopausal women with and without clinically significant CAD defined angiographically. A case-control study was undertaken of 180 postmenopausal women (aged between 48 and 88 years) who were recruited from King Abdulaziz University Hospital, Saudi Arabia. Study subjects underwent dual-energy x-ray absorptiometry and coronary angiography. The presence of hypertension, diabetes, dyslipidemia, obesity, smoking and physical activity was identified from clinical examination and history. Demographic, anthropometric and biochemical characteristics were measured. Univariate and multivariate analyses were employed to explore the relationships between cardiovascular risk factors, including BMD, and the presence of CAD. CAD patients were more likely to have a lower BMD and T-score at the femoral neck than those without CAD (P<0.05). Significant differences were found between the groups for fasting lipid profile, fasting blood glucose and anthropometric measures (P<0.05). Conditional logistic regression showed that 3 risk factors were significantly related with the presence of CAD: high-density lipoprotein-cholesterol (odds ratio, OR: 0.226, 95% confidence interval, CI: 0.062-0.826), fasting plasma glucose (OR: 1.154, 95% CI: 1.042-1.278) and femoral neck T-score (OR: 0.545, 95% CI: 0.374-0.794). This study suggests an association of low BMD and elevated CAD risk. Nevertheless, additional longitudinal studies are needed to determine the temporal sequence of this association.

  5. Bone mineral density and cardiovascular risk factors in postmenopausal women with coronary artery disease

    PubMed Central

    Alissa, Eman M; Alnahdi, Wafa A; Alama, Nabil; Ferns, Gordon A

    2015-01-01

    It has been suggested that osteoporosis and coronary artery disease (CAD) have overlapping pathophysiological mechanisms and related risk factors. The aim of this study was to investigate the association between several traditional cardiovascular risk factors and measures of bone mineral density (BMD) in postmenopausal women with and without clinically significant CAD defined angiographically. A case–control study was undertaken of 180 postmenopausal women (aged between 48 and 88 years) who were recruited from King Abdulaziz University Hospital, Saudi Arabia. Study subjects underwent dual-energy x-ray absorptiometry and coronary angiography. The presence of hypertension, diabetes, dyslipidemia, obesity, smoking and physical activity was identified from clinical examination and history. Demographic, anthropometric and biochemical characteristics were measured. Univariate and multivariate analyses were employed to explore the relationships between cardiovascular risk factors, including BMD, and the presence of CAD. CAD patients were more likely to have a lower BMD and T-score at the femoral neck than those without CAD (P<0.05). Significant differences were found between the groups for fasting lipid profile, fasting blood glucose and anthropometric measures (P<0.05). Conditional logistic regression showed that 3 risk factors were significantly related with the presence of CAD: high-density lipoprotein-cholesterol (odds ratio, OR: 0.226, 95% confidence interval, CI: 0.062–0.826), fasting plasma glucose (OR: 1.154, 95% CI: 1.042–1.278) and femoral neck T-score (OR: 0.545, 95% CI: 0.374–0.794). This study suggests an association of low BMD and elevated CAD risk. Nevertheless, additional longitudinal studies are needed to determine the temporal sequence of this association. PMID:26587227

  6. Analyses of Factors Affecting Endothelial Cell Density in an Eye Bank Corneal Donor Database.

    PubMed

    Kwon, Ji Won; Cho, Kyong Jin; Kim, Hong Kyu; Lee, Jimmy K; Gore, Patrick K; McCartney, Mitchell D; Chuck, Roy S

    2016-09-01

    To analyze the factors affecting central corneal endothelial cell density (ECD) in an eye bank corneal donor database. The Lion's Eye Institute corneal donor database consisting of 18,665 donors (34,234 corneas) aged 20 years or older was analyzed. In particular, differences in the ECD based on age, sex, race, prior ocular surgery, a history of systemic diseases, and smoking were investigated. Furthermore, risk factors for donor cell count inadequacy (defined here as ECD less than 2000/mm) were identified. ECD decreased with age. Regarding race, the average ECD of African American donors was higher than those of white or Hispanic donors. A history of diabetes mellitus (DM) and ocular surgery were associated with a lower ECD. Donor medical history of hypertension, glaucoma, depression, dementia, Parkinson disease, hyper- or hypothyroidism, or smoking did not seem to affect the ECD. The risk factors for donor cell count inadequacy, based on binary logistic regression analyses were advanced age [65-74 years yielded an odds ratio of 17.8; confidence interval (CI), 10.6-29.8; P < 0.001; and 75-99 years yielded an odds ratio of 24.6 (CI, 14.5-41.61; P < 0.001) when compared with 20-34 years], cataract surgery (odds ratio, 4.3; CI, 4.0-4.8; P < 0.001), and DM (odds ratio, 1.2; CI, 1.1-1.3; P = 0.001). Age, race, ocular surgery (cataract and refractive), and DM seem to significantly affect donor corneal ECD. Of these variables, age, a history of cataract surgery, and DM were found to be the greatest risk factors for inadequate donor cell density (less than 2000/mm).

  7. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    SciTech Connect

    Gubler, Philipp; Yamamoto, Naoki; Hatsuda, Tetsuo; Nishida, Yusuke

    2015-05-15

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  8. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.

    2017-09-01

    Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.

  9. Hydrodynamics, mixing, gas-liquid mass transfer, and biological applications of a three-phase fluidized bed of low density particles

    SciTech Connect

    Tang, W.T.

    1988-01-01

    Experiments were conducted to study the axial holdup distributions, liquid axial mixing and gas-liquid mass transfer behavior in a three-phase fluidized bed of low density particles. Axial phase holdups were determined using an electrical conductivity method coupled with pressure profile measurements. Gas holdup was found to be axially uniform. Axial solids holdup distributions changed only slightly with increasing gas velocity but varied significantly when a change in bubble flow regime was encountered due to changes in liquid velocity. A mechanistic model based on solids entrainment and deentrainment effects by bubbles was proposed and validated experimentally. The extent of liquid axial mixing in both a liquid-solid and a three-phase fluidized bed of low density particles is significantly smaller than that in a bed of heavy particles. Volumetric gas-liquid mass transfer coefficients in the present systems decreases with increasing solids concentration. For the low density particles studied, particles with a higher terminal velocity promoted greater extent of bubble coalescence which reduced gas holdup, and thus the rate of gas-liquid mass transfer. In addition, the dynamic responses of phenol biodegradation in a draft tube three-phase fluidized bed biofilm reactor subjected to a step increase in phenol inlet concentrations were investigated. A comprehensive mathematical model, which considered time delay phenomenon of microbial growth subjected to a nutrient shift up, phenol adsorption/desorption by carbon particles, and biofilm growth, was proposed and validated experimentally.

  10. Provider density and health system facility factors and their relationship to rates of pediatric perforated appendicitis in US counties.

    PubMed

    Camp, Melissa; Chang, David C; Zhang, Yiyi; Arnold, Meghan; Sharpe, Leilani; Gabre-Kidan, Alodia; Bathurst, Melinda A; Abdullah, Fizan

    2010-12-01

    To examine whether density of providers or health care facility factors have a significant effect on the rates of perforated appendicitis in the pediatric population. A retrospective database analysis. Data were linked to the Area Resource File to determine if there was an association between perforated appendicitis and density of provider and facility factors. The National Inpatient Sample database and the Kids' Inpatient Database from 1988 to 2005. All patients included had an age at admission of younger than 18 years and were selected by International Classification of Diseases, Ninth Revision code as having perforated appendicitis (540.0 or 540.1) or acute appendicitis (540.9). Main Outcome Measure Odds ratio of perforated appendicitis to acute appendicitis by county-level density of provider and health care facility factors. The odds ratio of perforated appendicitis to acute appendicitis when stratified by quartiles of increasing density of providers and facility-level factors was statistically significant only for the highest-density quartile of pediatricians (odds ratio = 0.88; 95% confidence interval = 0.78-0.99). Increasing geographic density of pediatricians was associated with a decreasing trend in the odds ratio of perforated appendicitis, with a statistically significant protective effect observed in the highest-density quartile of pediatricians. The density of all other provider and health care facility factors analyzed did not demonstrate a significant association with the rates of perforated appendicitis.

  11. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density.

    PubMed

    Hirth, Michael; Rukwied, Roman; Gromann, Alois; Turnquist, Brian; Weinkauf, Benjamin; Francke, Klaus; Albrecht, Philip; Rice, Frank; Hägglöf, Björn; Ringkamp, Matthias; Engelhardt, Maren; Schultz, Christian; Schmelz, Martin; Obreja, Otilia

    2013-11-01

    Nerve growth factor (NGF) is involved in the long-term sensitization of nociceptive processing linked to chronic pain. Functional and structural ("sprouting") changes can contribute. Thus, humans report long-lasting hyperalgesia to mechanical and electrical stimulation after intradermal NGF injection and NGF-induced sprouting has been reported to underlie cancer bone pain and visceral pain. Using a human-like animal model we investigated the relationship between the structure and function of unmyelinated porcine nociceptors 3 weeks after intradermal NGF treatment. Axonal and sensory characteristics were studied by in vivo single-fiber electrophysiology and immunohistochemistry. C fibers recorded extracellularly were classified based on mechanical response and activity-dependent slowing (ADS) of conduction velocity. Intraepidermal nerve fiber (IENF) densities were assessed by immunohistochemistry in pigs and in human volunteers using the same NGF model. NGF increased conduction velocity and reduced ADS and propagation failure in mechano-insensitive nociceptors. The proportion of mechano-sensitive C nociceptors within NGF-treated skin areas increased from 45.1% (control) to 71% and their median mechanical thresholds decreased from 40 to 20 mN. After NGF application, the mechanical receptive fields of nociceptors increased from 25 to 43 mm(2). At the structural level, however, IENF density was not increased by NGF. In conclusion, intradermal NGF induces long-lasting axonal and mechanical sensitization in porcine C nociceptors that corresponds to hyperalgesia observed in humans. Sensitization is not accompanied by increased IENF density, suggesting that NGF-induced hyperalgesia might not depend on changes in nerve fiber density but could be linked to the recruitment of previously silent nociceptors. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  12. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    SciTech Connect

    Traynor, G.W.; Apte, M.G.; Chang, G.-M.

    1996-08-01

    There is a need to reduce air pollutant emissions in some U.S. urban regions to meet federal and state air quality guidelines. Opportunities exist for reducing pollutant emissions from natural gas appliances in the residential sector. A cost-benefit analysis on various pollutant-reducing strategies is needed to evaluate these opportunities. The effectiveness of these pollutant-reducing strategies (e.g., low-emission burners, energy conservation) can then be ranked among themselves and compared with other pollutant-reducing strategies available for the region. A key step towards conducting a cost-benefit analysis is to collect information on pollutant emissions from existing residential natural gas appliances. An extensive literature search was conducted to collect data on residential natural-gas-appliance pollutant emission factors. The literature primarily describes laboratory tests and may not reflect actual emission factor distributions in the field. Pollutant emission factors for appliances operated at over 700 test conditions are summarized for nitrogen oxides, carbon monoxide, fine particulate matter, formaldehyde, and methane. The appliances for which pollutant emissions are summarized include forced-air furnaces; stand-alone space heaters (vented and unvented); water heaters; cooking range burners, ovens, and broilers; and pilot lights. The arithmetic means of the nitrogen oxides and fine particulate matter emission factor distributions agree well with the Environmental Protection Agency published emission factor values for domestic gas appliances (in report AP-42). However, the carbon monoxide and methane distribution means are much higher than the relevant AP-42 values. Formaldehyde emission factors are not addressed in AP-42, but the emission factor mean for formaldehyde is comparable to the AP-42 emission factor value for total hydrocarbon emissions.

  13. Density profiles of CDM microhalos and their implications for annihilation boost factors

    NASA Astrophysics Data System (ADS)

    Anderhalden, Donnino; Diemand, Juerg

    2013-04-01

    In a standard cold dark matter (CDM) cosmology, microhalos at the CDM cutoff scale are the first and smallest objects expected to form in the universe. Here we present results of high resolution simulations of three representative roughly Earth-mass microhalos in order to determine their inner density profile. We find that CDM microhalos in simulations without a cutoff in the power spectrum roughly follow the NFW density profile, just like the much larger CDM halos on galaxy and galaxy cluster scales. But having a cutoff in the initial power spectrum at a typical neutralino free streaming scale of 10-7Msolar makes their inner density profiles considerably steeper, i.e. ρproptor-(1.3-1.4), in good agreement with the results from Ishiyama et al. (2010). An extrapolation of the halo and subhalo mass functions down to the cutoff scale indicates that microhalos are extremely abundant throughout the present day dark matter distribution and might contribute significantly to indirect dark matter detection signals. Assuming a transition from a NFW to a steeper inner profile (ρproptor-1.4) two orders of magnitude above the cutoff scale, the total boost factor for a Milky Way sized dark matter halo increases from about 3.5 to 4. We further find that CDM microhalo concentrations are consistent with the Bullock et al. (2001) model and clearly rule out simplistic power law models for the mass dependence of concentrations and subhalo annihilation, which would erroneously lead to very large boost factors (a few hundred for galaxy halos and over 1000 for clusters).

  14. Genetic variation in Transforming Growth Factor beta 1 and mammographic density in Singapore Chinese women

    PubMed Central

    Lee, Eunjung; Van den Berg, David; Hsu, Chris; Ursin, Giske; Koh, Woon-Puay; Yuan, Jian-Min; Stram, Daniel O.; Yu, Mimi C.; Wu, Anna H.

    2013-01-01

    Transforming growth factor-beta (TGF-β) plays a critical role in normal mammary development and morphogenesis. Decreased TGF-β signaling has been associated with increased mammographic density. Percent mammographic density (PMD) adjusted for age and body mass index (BMI) is a strong risk factor and predictor of breast cancer risk. PMD is highly heritable, but few genetic determinants have been identified. We investigated the association between genetic variation in TGFB1 and PMD using a cross-sectional study of 2,038 women who were members of the population-based Singapore Chinese Health Study cohort. We assessed PMD using a computer-assisted method. We used linear regression to examine the association between 9 tagging SNPs of TGFB1 and PMD and their interaction with parity, adjusting for age, BMI, and dialect group. We calculated ‘P-values adjusted for correlated tests’ (PACT) to account for multiple testing. The strongest association was observed for rs2241716. Adjusted PMD was higher by 1.5% per minor allele (PACT =0.04). When stratifying by parity, this association was limited to nulliparous women. For nulliparous women, adjusted PMD was higher by 8.6% per minor allele (PACT=0.003; P for interaction with parity=0.002). Three additional TGFB1 tagging SNPs, which were in linkage disequilibrium with rs2241716, were statistically significantly associated with adjusted PMD (PACT<0.05) for nulliparous women. However, none of these three SNPs showed statistically significant association after adjusting for rs2241716. Our data support that TGFB1 genetic variation may be an important genetic determinant of mammographic density measure that predicts breast cancer risk, particularly in nulliparous women. PMID:23333936

  15. Factors in Daily Physical Activity Related to Calcaneal Mineral Density in Men

    NASA Technical Reports Server (NTRS)

    Hutchinson, Teresa M.; Whalen, Robert T.; Cleek, Tammy M.; Vogel, John M.; Arnaud, Sara B.

    1995-01-01

    To determine the factors in daily physical activity that influence the mineral density of the calcaneus, we recorded walking steps and the type and duration of exercise in 43 healthy 26-to 51-yr-old men. Areal (g/sq cm) calcaneal bone mineral density (CBMD) was measured by single energy x-ray densitometry. Subjects walked a mean (+/- SD) of 7902(+/-2534) steps per day or approximately 3.9(+/-1.2) miles daily. Eight subjects reported no exercise activities. The remaining 35 subjects spent 143(2-772) (median and range) min/wk exercising. Twenty-eight men engaged in exercise activities that generate single leg peak vertical ground reaction forces (GRF(sub z)) of 2 or more body weights (high loaders, HL), and 15 reported exercise or daily activities that typically generate GRF(sub z) less than 1.5 body weights (low loaders, LL). CBMD was 12% higher in HL than LL (0.668 +/- 0.074 g/sq cm vs 0.597 +/- 0.062 g/sq cm, P less than 0.004). In the HL group, CBMD correlated to reported minutes of high load exercise (r = 0.41, P less than 0.03). CBMD was not related to the number of daily walking steps (N = 43, r = 0.03, NS). The results of this study support the concept that the dominant factor in daily physical activity relating to bone mineral density is the participation in site specific high loading activities, i.e., for the calcaneus, high calcaneal loads.

  16. Density structure of submarine slump and normal sediments of the first gas production test site at Daini-Atsumi Knoll near Nankai Trough, estimated by LWD logging data

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Takayama, T.; Fujii, T.; Yamamoto, K.

    2014-12-01

    Many geologists have discussed slope instability caused by gas-hydrate dissociation, which could make movable fluid in pore space of sediments. However, physical property changes caused by gas hydrate dissociation would not be so simple. Moreover, during the period of natural gas-production from gas-hydrate reservoir applying depressurization method would be completely different phenomena from dissociation processes in nature, because it could not be caused excess pore pressure, even though gas and water exist. Hence, in all cases, physical properties of gas-hydrate bearing sediments and that of their cover sediments are quite important to consider this phenomena, and to carry out simulation to solve focusing phenomena during gas hydrate dissociation periods. Daini-Atsumi knoll that was the first offshore gas-production test site from gas-hydrate is partially covered by slumps. Fortunately, one of them was penetrated by both Logging-While-Drilling (LWD) hole and pressure-coring hole. As a result of LWD data analyses and core analyses, we have understood density structure of sediments from seafloor to Bottom Simulating Reflector (BSR). The results are mentioned as following. ・Semi-confined slump showed high-density, relatively. It would be explained by over-consolidation that was result of layer-parallel compression caused by slumping. ・Bottom sequence of slump has relative high-density zones. It would be explained by shear-induced compaction along slide plane. ・Density below slump tends to increase in depth. It is reasonable that sediments below slump deposit have been compacting as normal consolidation. ・Several kinds of log-data for estimating physical properties of gas-hydrate reservoir sediments have been obtained. It will be useful for geological model construction from seafloor until BSR. We can use these results to consider geological model not only for slope instability at slumping, but also for slope stability during depressurized period of gas

  17. VEGF, Flt-1, and microvessel density in primary tumors as predictive factors of colorectal cancer prognosis

    PubMed Central

    Zygoń, Justyna; Szajewski, Mariusz; Kruszewski, Wiesław Janusz; Rzepko, Robert

    2017-01-01

    Angiogenesis in the primary tumor is known to be necessary for tumor progression in adenocarcinomas of the colon. However, whether angiogenesis in the primary tumors of patients with colorectal cancer affects their prognosis has yet to be fully elucidated. The aim of the present study was to assess the association between selected pathoclinical parameters and overall survival of resectable colorectal cancer patients with the expression of angiogenesis-promoting factors, including vascular endothelial growth factor (VEGF) and Fms-like tyrosine kinase receptor (Flt-1), and microvessel density (MVD) in the primary tumor. VEGF and Flt-1 expression were assessed, as well as MVD (with anti-CD34) by immunohistochemistry in 139 archived primary colorectal cancer tissue samples. These results were compared with the overall survival of the patients and potential prognostic pathoclinical parameters. A higher MVD in the tumors expressing Flt-1 (P=0.04) was identified. However, there was no correlation between the pathoclinical parameters of colon cancer and Flt-1 expression, VEGF expression, or MVD in the tumor. Furthermore, the intensity of VEGF expression, Flt-1 expression and tumor MVD did not correlate with the overall survival of the patients. Therefore, although increased expression of VEGF and Flt-1 was correlated with an increased expression of MVD in the primary tumors of resectable colorectal cancer patients, these factors were not correlated with prognostic pathoclinical factors and overall survival. PMID:28357103

  18. Clinicopathological significance of vascular endothelial growth factor, thymidine phosphorylase and microvessel density in colorectal cancer

    PubMed Central

    KIMURA, YUTAKA; MOROHASHI, SATOKO; YOSHIZAWA, TADASHI; SUZUKI, TAKAHIRO; MOROHASHI, HAJIME; SAKAMOTO, YOSHIYUKI; KOYAMA, MOTOI; MURATA, AKIHIKO; KIJIMA, HIROSHI; HAKAMADA, KENICHI

    2016-01-01

    Colorectal cancer is a common malignant disease, the incidence of which is increasing worldwide, therefore, identifying novel prognostic factors to improve adjuvant therapeutic strategies or postoperative monitoring is required. Angiogenesis, which is assessed by microvessel density (MVD), is significant in tumor growth and metastasis. However, the association between angiogenesis and clinical outcome remains controversial. In the present study, 84 surgically resected cases of colorectal cancer were examined to clarify the clinicopathological significance of vascular endothelial growth factor (VEGF), thymidine phosphorylase (TP) and cluster of differentiation (CD)34 expression levels. VEGF expression was identified to be significantly correlated with TP expression (r=0.45; P<0.0001) and MVD in the high VEGF expression group was observed to be significantly greater than that in the low VEGF expression group (P=0.0194). In the Dukes' stage D group, the MVD in the high TP expression group was significantly greater than that in the low TP expression group (P=0.0149). High VEGF expression was subsequently correlated with a short overall survival rate for patients exhibiting lymph node metastasis (P=0.0128); however, there was no significant difference in overall survival rate regarding the expression levels of TP and CD34. The results of the present study indicate that VEGF expression may serve as a prognostic factor for colorectal cancer patients exhibiting lymph node metastasis. Furthermore, angiogenesis, as assessed by MVD, is an important prognostic factor for tumor growth at the primary site. PMID:26676225

  19. Bone marrow microvessel density and plasma angiogenic factors in myeloproliferative neoplasms: clinicopathological and molecular correlations.

    PubMed

    Lekovic, Danijela; Gotic, Mirjana; Skoda, Radek; Beleslin-Cokic, Bojana; Milic, Natasa; Mitrovic-Ajtic, Olivera; Nienhold, Ronny; Sefer, Dijana; Suboticki, Tijana; Buac, Marijana; Markovic, Dragana; Diklic, Milos; Cokic, Vladan P

    2017-03-01

    Increased angiogenesis in BCR-ABL1 negative myeloproliferative neoplasms (MPNs) has been recognized, but its connection with clinical and molecular markers needs to be defined. The aims of study were to (1) assess bone marrow (BM) angiogenesis measured by microvessel density (MVD) using CD34 and CD105 antibodies; (2) analyze correlation of MVD with plasma angiogenic factors including vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8; (3) examine the association of MVD with clinicopathological and molecular markers. We examined 90 de novo MPN patients (30 polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET)) and 10 age-matched controls. MVD was analyzed by immunohistochemistry "hot spot" method, angiogenic factors by immunoassay and JAK2V617F, and CALR mutations by DNA sequencing and allelic PCR. MVD was significantly increased in MPNs compared to controls (PMF > PV > ET). Correlation between MVD and plasma angiogenic factors was found in MPNs. MVD was significantly increased in patients with JAK2V617F mutation and correlated with JAK2 mutant allele burden (CD34-MVD: ρ = 0.491, p < 0.001; CD105-MVD: ρ = 0.276, p = 0.02) but not with CALR mutation. MVD correlated with leukocyte count, serum lactate dehydrogenase, hepatomegaly, and splenomegaly. BM fibrosis was significantly associated with CD34-MVD, CD105-MVD, interleukin-8, and JAK2 mutant allele burden. JAK2 homozygote status had positive predictive value (100%) for BM fibrosis. Patients with prefibrotic PMF had significantly higher MVD than patients with ET, and we could recommend MVD to be additional histopathological marker to distinguish these two entities. This study also highlights the strong correlation of MVD with plasma angiogenic factors, JAK2 mutant allele burden, and BM fibrosis in MPNs.

  20. 40 CFR Table W - 1A of Subpart W of Part 98-Default Whole Gas Emission Factors for Onshore Petroleum and Natural...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production W Table W Protection of... REPORTING Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-1A Table W-1A of Subpart W of Part 98—Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas...

  1. 40 CFR Table W - 1A of Subpart W of Part 98-Default Whole Gas Emission Factors for Onshore Petroleum and Natural...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production W Table W Protection of... REPORTING Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-1A Table W-1A of Subpart W of Part 98—Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas...

  2. Factors associated with arrival densities of grasshopper sparrow (Ammodramus Savannarum) and baird's sparrow (A. Bairdii) in the upper great plains

    USGS Publications Warehouse

    Ahlering, M.A.; Johnson, D.H.; Faaborg, J.

    2009-01-01

    Although critical to habitat and population management, the proximate cues that birds use to establish territories are largely unknown. Understanding these cues is important for birds, such as many grassland birds, that exhibit high annual variability in population density and make new habitat-selection decisions annually. Identifying the actual cues used is difficult in the field, but the factors associated with the arrival densities of birds can help uncover variables that are involved in or correlated with cues used for selection. During the summers of 2002-2004, we investigated how weather and local vegetation factors were related to arrival densities of Grasshopper Sparrows (Ammodramus savannarum) and Baird's Sparrows (A. bairdii) at three locations across North Dakota and Saskatchewan. Spring densities of Grasshopper Sparrows were positively correlated with concurrent May precipitation, whereas densities of Baird's Sparrows were negatively correlated with the previous winter's snowfall. We used a model-selection approach to evaluate the vegetation characteristics associated with arrival densities of birds. Grasshopper Sparrow densities showed a strong negative relationship to woody cover, and Baird's Sparrow densities showed a negative relationship to vegetation height and vegetation density near the ground. Our results provide a first detailed look at habitat and weather associations immediately after arrival in spring and an important first step in uncovering factors that may be involved in habitat selection in two grassland species. Received 13 August 2008, accepted 20 April 2009. ?? The American Ornithologists' Union, 2009.

  3. Risk Factors for Low Bone Mineral Density in Individuals Residing in a Facility for the People with Intellectual Disability

    ERIC Educational Resources Information Center

    Jaffe, J. S.; Timell, A. M.; Elolia, R.; Thatcher, S. S.

    2005-01-01

    Background: Individuals with intellectual disability (ID) are known to have a high prevalence of both low bone mineral density (BMD) and fractures with significant attendant morbidity. Effective strategies aimed at reducing fractures will be facilitated by the identification of predisposing risk factors. Methods: Bone mineral density was measured…

  4. Differences between standing and downed dead tree wood density reduction factors: A comparison across decay classes and tree species

    Treesearch

    Mark E. Harmon; Christopher W. Woodall; Becky Fasth; Jay Sexton; Misha. Yatkov

    2011-01-01

    Woody detritus or dead wood is an important part of forest ecosystems and has become a routine facet of forest monitoring and inventory. Biomass and carbon estimates of dead wood depend on knowledge of species- and decay class-specifi c density or density reduction factors. While some progress has been made in determining these parameters for dead and downed trees (DD...

  5. Risk Factors for Low Bone Mineral Density in Individuals Residing in a Facility for the People with Intellectual Disability

    ERIC Educational Resources Information Center

    Jaffe, J. S.; Timell, A. M.; Elolia, R.; Thatcher, S. S.

    2005-01-01

    Background: Individuals with intellectual disability (ID) are known to have a high prevalence of both low bone mineral density (BMD) and fractures with significant attendant morbidity. Effective strategies aimed at reducing fractures will be facilitated by the identification of predisposing risk factors. Methods: Bone mineral density was measured…

  6. Black carbon particulate matter emission factors for buoyancy-driven associated gas flares.

    PubMed

    McEwen, James D N; Johnson, Matthew R

    2012-03-01

    Flaring is a technique used extensively in the oil and gas industry to burn unwanted flammable gases. Oxidation of the gas can preclude emissions of methane (a potent greenhouse gas); however, flaring creates other pollutant emissions such as particulate matter (PM) in the form of soot or black carbon (BC). Currently available PM emissionfactors for flares were reviewed and found to be questionably accurate, or based on measurements not directly relevant to open-atmosphere flares. In addition, most previous studies of soot emissions from turbulent diffusion flames considered alkene or alkyne based gaseous fuels, and few considered mixed fuels in detail and/or lower sooting propensity fuels such as methane, which is the predominant constituent of gas flared in the upstream oil and gas industry. Quantitative emission measurements were performed on laboratory-scale flares for a range of burner diameters, exit velocities, and fuel compositions. Drawing from established standards, a sampling protocol was developed that employed both gravimetric analysis of filter samples and real-time measurements of soot volume fraction using a laser-induced incandescence (LII) system. For the full range of conditions tested (burner inner diameter [ID] of 12.7-76.2 mm, exit velocity 0.1-2.2 m/sec, 4- and 6-component methane-based fuel mixtures representative of associated gas in the upstream oil industry), measured soot emission factors were less than 0.84 kg soot/10(3) m3 fuel. A simple empirical relationship is presented to estimate the PM emission factor as a function of the fuel heating value for a range of conditions, which, although still limited, is an improvement over currently available emission factors.

  7. Strong optical and UV intermediate-width emission lines in the quasar SDSS J232444.80-094600.3: dust-free and intermediate-density gas at the skin of dusty torus?

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Zhen; Zhou, Hong-Yan; Hao, Lei; Wang, Shu-Fen; Ji, Tuo; Liu, Bo

    2016-09-01

    Emission lines from the broad emission line region (BELR) and the narrow emission line region (NELR) of active galactic nuclei (AGNs) have been extensively studied. However, emission lines are rarely detected between these two regions. We present a detailed analysis of quasar SDSS J232444.80-094600.3 (SDSS J2324-0946), which is remarkable for its strong intermediate-width emission lines (IELs) with FWHM ≈ 1800 km s-1. The IEL component is present in different emission lines, including the permitted lines Lyα λ1216, CIV λ1549, semiforbidden line [CIII] λ1909, and forbidden lines [OIII] λλ4959, 5007. With the aid of photo-ionization models, we found that the IELs are produced by gas with a hydrogen density of nH ˜ 106.2 ˜ 106.3 cm-3, a distance from the central ionizing source of R ˜ 35 - 50 pc, a covering factor of ˜ 6%, and a dust-to-gas ratio of ≤ 4% that of the SMC. We suggest that the strong IELs of this quasar are produced by nearly dust-free and intermediate-density gas located at the skin of the dusty torus. Such strong IELs, which serve as a useful diagnostic, can provide an avenue to study the properties of gas between the BELR and the NELR.

  8. Entanglement or separability: the choice of how to factorize the algebra of a density matrix

    NASA Astrophysics Data System (ADS)

    Thirring, W.; Bertlmann, R. A.; Köhler, P.; Narnhofer, H.

    2011-10-01

    Quantum entanglement has become a resource for the fascinating developments in quantum information and quantum communication during the last decades. It quantifies a certain nonclassical correlation property of a density matrix representing the quantum state of a composite system. We discuss the concept of how entanglement changes with respect to different factorizations of the algebra which describes the total quantum system. Depending on the considered factorization a quantum state appears either entangled or separable. For pure states we always can switch unitarily between separability and entanglement, however, for mixed states a minimal amount of mixedness is needed. We discuss our general statements in detail for the familiar case of qubits, the GHZ states, Werner states and Gisin states, emphasizing their geometric features. As theorists we use and play with this free choice of factorization, which for an experimentalist is often naturally fixed. For theorists it offers an extension of the interpretations and is adequate to generalizations, as we point out in the examples of quantum teleportation and entanglement swapping.

  9. Factors associated with graft survival and endothelial cell density after Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Ishii, Nobuhito; Yamaguchi, Takefumi; Yazu, Hiroyuki; Satake, Yoshiyuki; Yoshida, Akitoshi; Shimazaki, Jun

    2016-04-28

    Postoperative endothelial cell loss leads to graft failure after corneal transplantation, and is one of the important issues for long-term prognosis. The objective of this study was to identify clinical factors affecting graft survival and postoperative endothelial cell density (ECD) after Descemet's stripping automated endothelial keratoplasty (DSAEK). A total of 198 consecutive Japanese patients (225 eyes) who underwent DSAEK were analysed using Cox proportional hazard regression and multiple linear regression models. The candidate factors included recipient age; gender; diagnosis; pre-existing iris damage state, scored based on its severity; the number of previous intraocular surgeries; graft ECD; graft diameter; simultaneous cataract surgery; surgeons experience; intraoperative iris damage; postoperative rebubbling; and graft rejection. Eyes with higher pre-existing iris damage score and more number of previous intraocular surgery had a significantly higher risk of graft failure (HR = 8.53; P < 0.0001, and HR = 2.66; P = 0.026, respectively). Higher pre-existing iris damage score, lower graft ECD, and smaller graft diameter were identified as significant predisposing factors for lower postoperative ECD. The results show that iris damage status before DSAEK may be clinically useful in predicting the postoperative course. Avoiding intraoperative iris damage, especially in eyes with low ECD can change the prognosis of future DSAEK.

  10. The Survey for Ionization in Neutral Gas Galaxies. II. The Star Formation Rate Density of the Local Universe

    NASA Astrophysics Data System (ADS)

    Hanish, D. J.; Meurer, G. R.; Ferguson, H. C.; Zwaan, M. A.; Heckman, T. M.; Staveley-Smith, L.; Bland-Hawthorn, J.; Kilborn, V. A.; Koribalski, B. S.; Putman, M. E.; Ryan-Weber, E. V.; Oey, M. S.; Kennicutt, R. C., Jr.; Knezek, P. M.; Meyer, M. J.; Smith, R. C.; Webster, R. L.; Dopita, M. A.; Doyle, M. T.; Drinkwater, M. J.; Freeman, K. C.; Werk, J. K.

    2006-09-01

    We derive observed Hα and R-band luminosity densities of an H I-selected sample of nearby galaxies using the SINGG sample to be l'Hα=(9.4+/-1.8)×1038 h70 ergs s-1 Mpc-3 for Hα and l'R=(4.4+/-0.7)×1037 h70 ergs s-1 Å-1 Mpc-3 in the R band. This R-band luminosity density is approximately 70% of that found by the Sloan Digital Sky Survey. This leads to a local star formation rate density of log(ρ˙SFR [Msolar yr-1 Mpc-3])=-1.80+0.13-0.07(random)+/-0.03(systematic)+log(h70) after applying a mean internal extinction correction of 0.82 mag. The gas cycling time of this sample is found to be tgas=7.5+1.3-2.1 Gyr, and the volume-averaged equivalent width of the SINGG galaxies is EW(Hα)=28.8+7.2-4.7 Å (21.2+4.2-3.5 Å without internal dust correction). As with similar surveys, these results imply that ρ˙SFR(z) decreases drastically from z~1.5 to the present. A comparison of the dynamical masses of the SINGG galaxies evaluated at their optical limits with their stellar and H I masses shows significant evidence of downsizing: the most massive galaxies have a larger fraction of their mass locked up in stars compared with H I, while the opposite is true for less massive galaxies. We show that the application of the Kennicutt star formation law to a galaxy having the median orbital time at the optical limit of this sample results in a star formation rate decay with cosmic time similar to that given by the ρ˙SFR(z) evolution. This implies that the ρ˙SFR(z) evolution is primarily due to the secular evolution of galaxies, rather than interactions or mergers. This is consistent with the morphologies predominantly seen in the SINGG sample.

  11. Absolute density of precursor SiH3 radicals and H atoms in H2-diluted SiH4 gas plasma for deposition of microcrystalline silicon films

    NASA Astrophysics Data System (ADS)

    Abe, Yusuke; Ishikawa, Kenji; Takeda, Keigo; Tsutsumi, Takayoshi; Fukushima, Atsushi; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2017-01-01

    Microcrystalline hydrogenated silicon films were produced at a high deposition rate of about 2 nm/s by using a capacitively coupled plasma under a practical pressure of around 1 kPa. The SiH4 source gas was almost fully dissociated when highly diluted with H2 gas, and the dominant species in the gas phase were found to be SiH3 radicals, which are film-growth precursors, and H atoms. The absolute density of these species was measured as the partial pressure of SiH4 gas was varied. With the increasing SiH4 gas flow rate, the SiH3 radical density, which was on the order of 1012 cm-3, increased linearly, while the H-atom density remained constant at about 1012 cm-3. The film growth mechanism was described in terms of precursors, based on the measured flux of SiH3 radicals and H atoms, and the relative fraction of higher-order radicals.

  12. Estimates of density, detection probability, and factors influencing detection of burrowing owls in the Mojave Desert

    USGS Publications Warehouse

    Crowe, D.E.; Longshore, K.M.

    2010-01-01

    We estimated relative abundance and density of Western Burrowing Owls (Athene cunicularia hypugaea) at two sites in the Mojave Desert (200304). We made modifications to previously established Burrowing Owl survey techniques for use in desert shrublands and evaluated several factors that might influence the detection of owls. We tested the effectiveness of the call-broadcast technique for surveying this species, the efficiency of this technique at early and late breeding stages, and the effectiveness of various numbers of vocalization intervals during broadcasting sessions. Only 1 (3) of 31 initial (new) owl responses was detected during passive-listening sessions. We found that surveying early in the nesting season was more likely to produce new owl detections compared to surveying later in the nesting season. New owls detected during each of the three vocalization intervals (each consisting of 30 sec of vocalizations followed by 30 sec of silence) of our broadcasting session were similar (37, 40, and 23; n 30). We used a combination of detection trials (sighting probability) and double-observer method to estimate the components of detection probability, i.e., availability and perception. Availability for all sites and years, as determined by detection trials, ranged from 46.158.2. Relative abundance, measured as frequency of occurrence and defined as the proportion of surveys with at least one owl, ranged from 19.232.0 for both sites and years. Density at our eastern Mojave Desert site was estimated at 0.09 ?? 0.01 (SE) owl territories/km2 and 0.16 ?? 0.02 (SE) owl territories/km2 during 2003 and 2004, respectively. In our southern Mojave Desert site, density estimates were 0.09 ?? 0.02 (SE) owl territories/km2 and 0.08 ?? 0.02 (SE) owl territories/km 2 during 2004 and 2005, respectively. ?? 2010 The Raptor Research Foundation, Inc.

  13. Prediction of gas-phase thermodynamic properties for polychlorinated naphthalenes using G3X model chemistry and density functional theory.

    PubMed

    Wang, Liming; Lv, Guowen

    2010-01-01

    The standard gas-phase enthalpies of formation of polychlorinated naphthalenes (PCNs) have been predicted using G3X model chemistry, density functional theory (DFT), and second-order Muller-Plesset (MP2) theory. Two isodesmic reactions are used for better prediction of formation enthalpies. The first (IR1) employs chlorobenzene as a reference species and the second (IR2) employs polychlorinated benzenes as reference species. Among congeners, PCNs with simultaneous Cl-substitutions at positions 1 and 8 or 4 and 5 are the least stable, where the strong repulsion between Cl-atoms leads to non-planar structures for a few PCNs. The potential energy curves for ring-wagging motions in 1,8- or 4,5-PCNs are also extremely flat in the vicinity of equilibrium conformations, leading to extremely low harmonic frequencies for the ring-wagging modes. The contributions of these ring-wagging modes to entropy, heat capacity, and thermal corrections have been calculated using the numerically evaluated energy levels. The PCN isomer patterns are discussed based on the calculated Gibbs free energies.

  14. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments.

  15. Homogeneous catalysis on the gas-phase dehydration reaction of tertiary alcohols by hydrogen bromide. Density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Maldonado, Alexis; Rosas, Felix; Mora, Jose R.; Brusco, Yannely; Córdova-Sintjago, Tania C.; Chuchani, Gabriel

    2015-02-01

    The gas-phase thermal dehydration mechanism of tert-butanol, 2-methyl-2-butanol, 2-methyl-2-pentanol and 2,3-dimethyl-2-butanol by homogeneous catalysis of hydrogen bromide was examined by density functional theory calculations with the hybrid functionals: M062X, CAMB3LYP and WB97XD. Reasonable agreements were found between theoretical and experimental enthalpy values at the WB97XD/6-311++G(d,p) level. The dehydration mechanism of tert-butanol with and without catalysis was evaluated in order to examine the catalyst effect on the mechanism. The elimination reaction without catalysis involves a four-membered transition state (TS), while the reaction with catalysis involves a six-membered TS. The mechanism without catalysis has enthalpy activation over 150 kJ mol-1 greater than the catalysed reaction. In all these reactions, the elongation of the C-O bond is significant in the TS. The un-catalysed reaction is controlled by breaking of C-O bond, and it was found to be more synchronous (Sy ≈ 0.91) than the hydrogen bromide catalysed reactions (Sy ≈ 0.75-0.78); the latter reactions are dominated by the three reaction coordinates associated with water formation. No significant effect on the enthalpies of activation was observed when the size of the alkyl chain was increased.

  16. Transfer-matrix study of a hard-square lattice gas with two kinds of particles and density anomaly.

    PubMed

    Oliveira, Tiago J; Stilck, Jürgen F

    2015-09-01

    Using transfer matrix and finite-size scaling methods, we study the thermodynamic behavior of a lattice gas with two kinds of particles on the square lattice. Only excluded volume interactions are considered, so that the model is athermal. Large particles exclude the site they occupy and its four first neighbors, while small particles exclude only their site. Two thermodynamic phases are found: a disordered phase where large particles occupy both sublattices with the same probability and an ordered phase where one of the two sublattices is preferentially occupied by them. The transition between these phases is continuous at small concentrations of the small particles and discontinuous at larger concentrations, both transitions are separated by a tricritical point. Estimates of the central charge suggest that the critical line is in the Ising universality class, while the tricritical point has tricritical Ising (Blume-Emery-Griffiths) exponents. The isobaric curves of the total density as functions of the fugacity of small or large particles display a minimum in the disordered phase.

  17. Transfer-matrix study of a hard-square lattice gas with two kinds of particles and density anomaly

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago J.; Stilck, Jürgen F.

    2015-09-01

    Using transfer matrix and finite-size scaling methods, we study the thermodynamic behavior of a lattice gas with two kinds of particles on the square lattice. Only excluded volume interactions are considered, so that the model is athermal. Large particles exclude the site they occupy and its four first neighbors, while small particles exclude only their site. Two thermodynamic phases are found: a disordered phase where large particles occupy both sublattices with the same probability and an ordered phase where one of the two sublattices is preferentially occupied by them. The transition between these phases is continuous at small concentrations of the small particles and discontinuous at larger concentrations, both transitions are separated by a tricritical point. Estimates of the central charge suggest that the critical line is in the Ising universality class, while the tricritical point has tricritical Ising (Blume-Emery-Griffiths) exponents. The isobaric curves of the total density as functions of the fugacity of small or large particles display a minimum in the disordered phase.

  18. Unique features of high-density lipoproteins in the Japanese: in population and in genetic factors.

    PubMed

    Yokoyama, Shinji

    2015-04-02

    Despite its gradual increase in the past several decades, the prevalence of atherosclerotic vascular disease is low in Japan. This is largely attributed to difference in lifestyle, especially food and dietary habits, and it may be reflected in certain clinical parameters. Plasma high-density lipoprotein (HDL) levels, a strong counter risk for atherosclerosis, are indeed high among the Japanese. Accordingly, lower HDL seems to contribute more to the development of coronary heart disease (CHD) than an increase in non-HDL lipoproteins at a population level in Japan. Interestingly, average HDL levels in Japan have increased further in the past two decades, and are markedly higher than in Western populations. The reasons and consequences for public health of this increase are still unknown. Simulation for the efficacy of raising HDL cholesterol predicts a decrease in CHD of 70% in Japan, greater than the extent by reducing low-density lipoprotein cholesterol predicted by simulation or achieved in a statin trial. On the other hand, a substantial portion of hyperalphalipoproteinemic population in Japan is accounted for by genetic deficiency of cholesteryl ester transfer protein (CETP), which is also commonly unique in East Asian populations. It is still controversial whether CETP mutations are antiatherogenic. Hepatic Schistosomiasis is proposed as a potential screening factor for historic accumulation of CETP deficiency in East Asia.

  19. Spectral factorization-based current source density analysis of ongoing neural oscillations.

    PubMed

    Chand, Ganesh B; Dhamala, Mukesh

    2014-03-15

    Current source density (CSD) analysis is widely used in neurophysiological investigations intended to reveal the patterns of localized neuronal activity in terms of current sources and sinks. CSD is based on the second spatial derivatives of multi-electrode electrophysiological recordings, and can be applied to brain activity related to repeated external stimulations (evoked brain activity) or ongoing (spontaneous) brain activity. In evoked brain activity, event-related time-series averages of ensembles are used to compute CSD patterns. However, for ongoing neural activity, the lack of external events requires a different approach other than ensemble averaging. Here, we propose a new spectral factorization-based current source density (SF-CSD) analysis method for ongoing neural oscillations. We validated this new SF-CSD analysis method using simulated data and demonstrated its effectiveness by applying to experimental intra-cortical local field potentials recorded on multi-contact depth electrodes from monkeys performing selective visual attention tasks. The proposed method gives space-unbiased estimates since it does not rely on a reference for CSD calculation in the frequency-domain. The proposed SF-CSD method is expected to be a useful tool for systematic analysis of neural sources and oscillations from multi-site electrophysiological recordings. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Unique Features of High-Density Lipoproteins in the Japanese: In Population and in Genetic Factors

    PubMed Central<