Science.gov

Sample records for gas diffusion media

  1. Probing porous media with gas diffusion NMR

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.

    1999-01-01

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.

  2. Gas-phase diffusion in porous media: Comparison of models

    SciTech Connect

    Webb, S.W.

    1998-09-01

    Two models are commonly used to analyze gas-phase diffusion in porous media in the presence of advection, the Advective-Dispersive Model (ADM) and the Dusty-gas Model (DGM). The ADM, which is used in TOUGH2, is based on a simple linear addition of advection calculated by Darcy`s law and ordinary diffusion using Fick`s law with a porosity-tortuosity-gas saturation multiplier to account for the porous medium. Another approach for gas-phase transport in porous media is the Dusty-Gas Model. This model applies the kinetic theory of gases to the gaseous components and the porous media (or dust) to combine transport due to diffusion and advection that includes porous medium effects. The two approaches are compared in this paper.

  3. a Diffusivity Model for Gas Diffusion in Dry Porous Media Composed of Converging-Diverging Capillaries

    NASA Astrophysics Data System (ADS)

    Wang, Shifang; Wu, Tao; Deng, Yongju; Zheng, Qiusha; Zheng, Qian

    2016-08-01

    Gas diffusion in dry porous media has been a hot topic in several areas of technology for many years. In this paper, a diffusivity model for gas diffusion in dry porous media is developed based on fractal theory and Fick’s law, which incorporates the effects of converging-diverging pores and tortuous characteristics of capillaries as well as Knudsen diffusion. The effective gas diffusivity model is expressed as a function of the fluctuation amplitude of the capillary cross-section size variations, the porosity, the pore area fractal dimension and the tortuosity fractal dimension. The results show that the relative diffusivity decreases with the increase of the fluctuation amplitude and increases with the increase of pore area fractal dimension. To verify the validity of the present model, the relative diffusivity from the proposed fractal model is compared with the existing experimental data as well as two available models of Bruggeman and Shou. Our proposed diffusivity model with pore converging-diverging effect included is in good agreement with reported experimental data.

  4. Characterization of the Capillary Properties of Gas Diffusion Media

    NASA Astrophysics Data System (ADS)

    Gostick, Jeffrey T.; Ioannidis, Marios A.; Fowler, Michael W.; Pritzker, Mark D.

    The present generation of membrane materials used in polymer electrolyte membrane fuel cells (PEMFCs) requires high humidity to maintain sufficient proton conductivity. Mass transport through the porous electrodes, however, is most effective in dry conditions since the presence of liquid water in the pores reduces effective oxygen diffusivity to the catalytic sites. Management of these competing requirements is further complicated by the production of water inside the cell as a by-product of the cathode reaction. Maximizing fuel cell power density therefore requires effective water management techniques to prevent excessive liquid water from accumulating in the porous electrode components. Liquid water distribution and flow in the cathode gas diffusion media (GDM) of an operating PEMFC is critically affected by capillary forces. Perhaps the most widely employed technique for improving water management is to impregnate the fibrous GDM with a polymer, such as poly-tetra-fluoro-ethylene (PTFE), to coat the carbon fibers and thereby render the GDM more hydrophobic. It is thus important to understand the relationship between wettability and capillary properties of native (i.e., untreated) or PTFE-treated GDMs on the one hand and the relationship between GDM capillary properties and fuel cell performance on the other hand. Until recently, however, few experimental techniques were available to measure the capillary properties of GDMs. This chapter discusses the present understanding of the capillary properties of GDM-water-air systems and provides a critical analysis of reported experimental techniques that have recently contributed to this understanding.

  5. A novel analytical solution for gas diffusion in multi-scale fuel cell porous media

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Qiu, Shuxia; Cai, Jianchao; Li, Cuihong; Liu, Haicheng

    2017-09-01

    Gas diffusion in multi-scale fuel cell porous media such as gas diffusion layer, microporous layer and catalyst layer affects the power performance of proton exchange membrane fuel cells. The effective gas diffusivity is one of the key parameters for gas diffusion in multi-scale fuel cell porous media, which has attracted broad interests from science and engineering. A new analytical model is presented and solved for gas diffusion in fuel cell porous media based on fractal geometry. Due to its multi-scale characteristics and existence of microscale and nanoscale pores in most fuel cell porous media, both molecular and Knudsen diffusion mechanisms are taken into account. An expression for the effective gas diffusivity of multi-scale porous media is derived, expressed in terms of bulk diffusion, pore structure as well as the Knudsen number. The proposed fractal model is validated by comparison with available experimental data and empirical correlations. The model shows that the effective gas diffusivity increases with increase of porosity and pore fractal dimension, while it decreases with increased tortuosity fractal dimension. It is believed that the current work may shed light on the gas diffusion mechanism in fuel cell porous media.

  6. Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media

    NASA Astrophysics Data System (ADS)

    Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi

    2016-09-01

    We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.

  7. Gas and solute diffusion in partially saturated porous media: Percolation theory and Effective Medium Approximation compared with lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Daigle, Hugh; Hunt, Allen G.; Ewing, Robert P.; Sahimi, Muhammad

    2015-01-01

    Understanding and accurate prediction of gas or liquid phase (solute) diffusion are essential to accurate prediction of contaminant transport in partially saturated porous media. In this study, we propose analytical equations, using concepts from percolation theory and the Effective Medium Approximation (EMA) to model the saturation dependence of both gas and solute diffusion in porous media. The predictions of our theoretical approach agree well with the results of nine lattice Boltzmann simulations. We find that the universal quadratic scaling predicted by percolation theory, combined with the universal linear scaling predicted by the EMA, describes diffusion in porous media with both relatively broad and extremely narrow pore size distributions.

  8. Dynamic characterization of partially saturated engineered porous media and gas diffusion layers using hydraulic admittance

    NASA Astrophysics Data System (ADS)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    2012-09-01

    Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.

  9. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  10. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).

  11. Review of enhanced vapor diffusion in porous media

    SciTech Connect

    Webb, S.W.; Ho, C.K.

    1998-08-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  12. Gas fluidized-bed stirred media mill

    DOEpatents

    Sadler, III, Leon Y.

    1997-01-01

    A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

  13. Gas Diffusion in the CNS.

    PubMed

    Rodriguez-Grande, Beatriz; Konsman, Jan-Pieter

    2017-05-15

    Gases have been long known to have essential physiological functions in the CNS such as respiration or regulation of vascular tone. Since gases have been classically considered to freely diffuse, research in gas biology has so far focused on mechanisms of gas synthesis and gas reactivity, rather than gas diffusion and transport. However, the discovery of gas pores during the last two decades and the characterization of diverse diffusion patterns through different membranes has raised the possibility that modulation of gas diffusion is also a physiologically relevant parameter. Here we review the means of gas movement into and within the brain through "free" diffusion and gas pores, notably aquaporins, discussing the role that gas diffusion may play in the modulation of gas function. We highlight how diffusion is relevant to neuronal signaling, volume transmission, and cerebrovascular control in the case of NO, one of the most extensively studied gases. We point out how facilitated transport can be especially relevant for gases with low permeability in lipid membranes like NH3 and discuss the possible implications of NH3 -permeable channels in physiology and hyperammonemic encephalopathy. We identify novel research questions about how modulation of gas diffusion could intervene in CNS pathologies. This emerging area of research can provide novel and interesting insights in the field of gas biology. © 2017 Wiley Periodicals, Inc.

  14. Layering Effects on Gas Diffusivity of Firn

    NASA Astrophysics Data System (ADS)

    Whelsky, A. N.; Albert, M. R.

    2016-12-01

    The gas diffusivity of layered snow and firn is important to air snow transfer, ice core interpretation, and a host of other applications. It directly depends on the size, connectivity and tortuosity of the porous space that lies between the snow grains. In firn, the gas diffusivity may vary significantly even in adjacent layers, due in part to differences in weather conditions during the original depositional events, and also due to differences in metamorphic and compressional processes that affect the evolution of the porous space. In order to understand the total effective diffusivity profile of layered firn, we test the hypothesis that the firn may be treated as a composite porous media using resistance theory, where the resistance to gaseous transfer is inversely related to the different layer diffusivities arranged in series. The diffusivity of multiple homogeneous single firn layers, and also combinations of the individual layers together, have been measured in a cold room lab on samples of near-surface firn taken from Summit Station, Greenland in July 2016, and from deeper firn samples from other sites. Results aim to help inform differences between model and measured diffusivity profiles of firn.

  15. Gas transport in highly permeable, dry porous media

    NASA Astrophysics Data System (ADS)

    Levintal, Elad; Dragila, Maria I.; Kamai, Tamir; Weisbrod, Noam

    2017-04-01

    Gas exchange between soil and atmosphere is far more efficient via advective than diffusive mechanisms. Whereas advection requires media permeability be sufficiently high and an advecting driving mechanism, diffusion transport occurs in all permeabilities. Traditionally, diffusion models generally have focused only on low permeability media (sand particles and smaller, k < 10-5 cm2). Here we establish the validity of these models to quantify diffusive transport in higher permeability media when climatic conditions do not favor advection. A permeability cutoff is quantified, such that above it traditional diffusion models become inaccurate. Results are based on experiments using large columns filled with different homogeneous spherical particles, conducted inside a climate-controlled laboratory especially designed for quantifying soil-gas diffusivity under isothermal and windless conditions. The results indicate that traditional diffusion models are accurate for permeability values below 2.7×10-3 cm2. Above this threshold, gas transport could not be explained by diffusion alone. Our measurements indicate that for permeability values above this threshold gas flux is higher than can be explained by diffusion, even under stable environmental conditions where advection is not expected. The findings of this research can contribute to better understanding of gas transport in high-permeability porous media such as: aggregated soils, snowpacks and mines stockpiles.

  16. Marmot-Fission-Gas-Diffusion

    SciTech Connect

    Andersson, Anders; Matthews, Christopher

    2016-10-22

    The MARMOT-FISSION-GAS-DIFFUSION software solves a coupled set of partial differential equations describing fission gas evolution in UO2 nuclear fuel. It is part of the MARMOT code, which builds on the MOOSE framework. Both the MARMOT code and the MOOSE framework are developed and maintained by Idaho National Laboratory. The model in MARMOT-FISSION-GAS-DIFFUSION consists of a set of continuum reaction-diffusion equations capturing formation and annihilation of defects, reactions between defects, diffusion of defects and segregation of defects to grain boundaries. Defects refer to vacancies and interstitials as well fission gas atoms (Xe) occupying various trap sites such as uranium and oxygen vacancies and interstitials sites. The code can treat a large number of defect types. The model is formulated within the phase field framework to be compatible with other MARMOT kernels. The driving forces for all reactions, diffusion and segregation events are consistently formulated as a variational derivatives of the free energy of the system. The rates of the reactions are controlled by the corresponding kinetic coefficients. The free energy and the kinetic coefficients for UO2 have been parameterized by lower length scale simulations. The code can be used to simulate defect evolution in a prescribed UO2 microstructure as well as to solve defect clustering problems that control effective diffusivities under both thermal and irradiation conditions. It I possible to extend the current UO2 model to other fuel types such as accident tolerant fuels based on the U3Si2 compound. This would obviously require a new set of material properties describing the behavior of defects in U3Si2 rather than UO2. The framework is however designed to be generic.

  17. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  18. Ternary gas mixture for diffuse discharge switch

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1988-01-01

    A new diffuse discharge gas switch wherein a mixture of gases is used to take advantage of desirable properties of the respective gases. There is a conducting gas, an insulating gas, and a third gas that has low ionization energy resulting in a net increase in the number of electrons available to produce a current.

  19. Diffusion Driven Combustion Waves in Porous Media

    NASA Technical Reports Server (NTRS)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  20. Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell

    SciTech Connect

    Damle, Ashok S; Cole, J Vernon

    2008-12-01

    A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

  1. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  2. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Technical Reports Server (NTRS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)

    2005-01-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  3. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Technical Reports Server (NTRS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)

    2005-01-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  4. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.

    2005-08-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (Drel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in Drel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  5. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods.

    PubMed

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C

    2005-08-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  6. Purging of multilayer insulation by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Spuckler, C. M.

    1976-01-01

    An experimental investigation was conducted to determine the time required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable (nitrogen) gas concentration of less than 1 percent within the panel. Two flat, rectangular MLI panel configurations, one incorporating a butt joint, were tested. The insulation panels consisted of 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The test results indicated that the rate which the condensable gas concentration at the edge or at the butt joint of an MLI panel was reduced was a significant factor in the total time required to reduce the condensable gas concentration within the panel to less than 1 percent. The experimental data agreed well with analytical predictions made by using a simple, one-dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent.

  7. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  8. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  9. Measurement of Solute Diffusion Behavior in Fractured Waste Glass Media

    SciTech Connect

    Saripalli, Kanaka P.; Lindberg, Michael J.; Meyer, Philip D.

    2008-10-01

    Determination of aqueous phase diffusion coefficients of solutes through fractured media is essential for understanding and modeling contaminants transport at many hazardous waste disposal sites. No methods for earlier measurements are available for the characterization of diffusion in fractured glass blocks. We report here the use of time-lag diffusion experimental method to assess the diffusion behavior of three different solutes (Cs, Sr and Pentafluoro Benzoic Acid or PFBA) in fractured, immobilized low activity waste (ILAW) glass forms. A fractured media time-lag diffusion experimental apparatus that allows the measurement of diffusion coefficients has been designed and built for this purpose. Use of time-lag diffusion method, a considerably easier experimental method than the other available methods, was not previously demonstrated for measuring diffusion in any fractured media. Hydraulic conductivity, porosity and diffusion coefficients of a solute were experimentally measured in fractured glass blocks using this method for the first time. Results agree with the range of properties reported for similar rock media earlier, indicating that the time-lag experimental method can effectively characterize the diffusion coefficients of fractured ILAW glass media.

  10. The structure of hydrophobic gas diffusion electrodes.

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    The 'flooded agglomerate' model of the Teflon-bonded gas diffusion electrode is discussed. A mathematical treatment of the 'flooded agglomerate' model is given; it can be used to predict the performance of the electrode as a function of measurable physical parameters.

  11. Simulating gas-water relative permeabilities for nanoscale porous media with interfacial effects

    NASA Astrophysics Data System (ADS)

    Wang, Jiulong; Song, Hongqing; Li, Tianxin; Wang, Yuhe; Gao, Xuhua

    2017-08-01

    This paper presents a theoretical method to simulate gas-water relative permeability for nanoscale porous media utilizing fractal theory. The comparison between the calculation results and experimental data was performed to validate the present model. The result shows that the gas-water relative permeability would be underestimated significantly without interfacial effects. The thinner the liquid film thickness, the greater the liquid-phase relative permeability. In addition, both liquid surface diffusion and gas diffusion coefficient can promote gas-liquid two-phase flow. Increase of liquid surface diffusion prefer to increase liquid-phase permeability obviously as similar as increase of gas diffusion coefficient to increase gas-phase permeability. Moreover, the pore structure will become complicated with the increase of fractal dimension, which would reduce the gas-water relative permeability. This study has provided new insights for development of gas reservoirs with nanoscale pores such as shale.

  12. Distribution of randomly diffusing particles in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.

    2017-09-01

    Diffusion can be conceptualized, at microscopic scales, as the random hopping of particles between neighboring lattice sites. In the case of diffusion in inhomogeneous media, distinct spatial domains in the system may yield distinct particle hopping rates. Starting from the master equations (MEs) governing diffusion in inhomogeneous media we derive here, for arbitrary spatial dimensions, the deterministic lattice equations (DLEs) specifying the average particle number at each lattice site for randomly diffusing particles in inhomogeneous media. We consider the case of free (Fickian) diffusion with no steric constraints on the maximum particle number per lattice site as well as the case of diffusion under steric constraints imposing a maximum particle concentration. We find, for both transient and asymptotic regimes, excellent agreement between the DLEs and kinetic Monte Carlo simulations of the MEs. The DLEs provide a computationally efficient method for predicting the (average) distribution of randomly diffusing particles in inhomogeneous media, with the number of DLEs associated with a given system being independent of the number of particles in the system. From the DLEs we obtain general analytic expressions for the steady-state particle distributions for free diffusion and, in special cases, diffusion under steric constraints in inhomogeneous media. We find that, in the steady state of the system, the average fraction of particles in a given domain is independent of most system properties, such as the arrangement and shape of domains, and only depends on the number of lattice sites in each domain, the particle hopping rates, the number of distinct particle species in the system, and the total number of particles of each particle species in the system. Our results provide general insights into the role of spatially inhomogeneous particle hopping rates in setting the particle distributions in inhomogeneous media.

  13. Effect of foam films on gas diffusion.

    PubMed

    Quoc, P Nguyen; Zitha, Pacelli L J; Currie, Peter K

    2002-04-15

    We report an experimental investigation of the permeability to gas of systems of one or several soap films freely standing in a straight tube, using either reactive gas (NH(3)) or inert gas (argon). The series of soap films appears to be the simplest paradigm of successive lamellae arrangements encountered in foams confined in a porous medium. To conduct the experiments, we devised two novel methods for the determination of gas diffusion fluxes: one based on reactive changes of pH by NH(3) and the other on mass spectrometry. The permeability of a single film, stabilized by sodium dodecyl sulfate solution, was found to be 3.50+/-0.04 10(-2) cm/s for argon and 3.18+/-0.07 10(-4) cm/s for NH(3). The permeability value for the inert gas is in good agreement with data obtained by the diminishing-bubble method. When the number of films increases, the permeability decreases considerably as a result of cumulative film resistance effects. We also developed a simple phenomenological model based upon a combination of gas kinetic and energy barrier concepts to interpret our data. This model takes into account gas solubility and the effects of salinity, which have seemingly been ignored in previous models. The predicted film permeability decreases sharply with increase surfactant concentration, indicating the occurrence of higher adsorption and increasingly compact surfactant layers.

  14. Absorption from Diffuse Molecular Gas in the LMC

    NASA Astrophysics Data System (ADS)

    Welty, Dan; Murphy, Tara; Xue, Rui; Wong, Tony

    2011-04-01

    Observations of absorption from complex molecular species (e.g., HCO+, H2CO, HCN, C3H2, NH3) in the mm- and cm-wave spectra of extragalactic radio sources have revealed a surprisingly rich chemistry in relatively diffuse Galactic gas. Some of those same species have been detected, at redshifts z ~ 0.6-0.9, in similar spectra of several gravitationally lensed QSOs. It is not at all clear how such complex molecules are formed (and survive) in clouds characterized by such relatively low densities and extinctions. We propose to search for absorption from NH3 and C3H2 in the nearby, lower metallicity Large Magellanic Cloud, using ATCA/CABB observations of two of the brightest 20 GHz sources behind the main body of the LMC. Comparisons among the lowest NH3 inversion lines can yield estimates for the kinetic temperature in the gas; the ratio of linear- to cyclic-C3H2 can give an indication of the density. Via comparisons with existing observations of these species in our Galaxy and in several higher redshift systems, we aim to further understand (1) how complex molecules can be present in diffuse media, and (2) diffuse cloud chemistry and the atomic-to-molecular transition in lower metallicity systems.

  15. Spiral core in singly diffusive excitable media

    SciTech Connect

    Kessler, D.A. ); Levine, H.; Reynolds, W.N. )

    1992-01-20

    We formulate the problem of finding the spiral core which smoothly matches onto the asymptotic rotating solution of the FitzHugh-Nagumo model. We prove that the inner problem (with scale {epsilon}, the ratio of the reaction rates) has a solution for all possible outer solutions on scale {epsilon}{sup 2/3}; furthermore, we explicitly determine this solution via a simple numerical procedure. This completes the rigorous demonstration of the existence of rotating spiral solutions in singly diffusive excitable systems.

  16. Lattice Boltzmann Modeling of Gaseous Diffusion in Unsaturated Porous Media under Variable Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Chau, J. F.; Or, D.; Jones, S.; Sukop, M.

    2004-05-01

    Liquid distribution in unsaturated porous media under different gravitational forces and resulting gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. Different fluid behavior in plant growth media under microgravity conditions as compared to earth presents a challenge to plant growth in long duration space exploration missions. Our primary objective was to provide qualitative description and quantitative measures of the role of reduced gravity on hydraulic and gaseous transport properties in simulated porous media. We implemented a multi-phase lattice Boltzmann code for equilibrium distribution of liquid in an idealized two-dimensional porous medium under microgravity and "normal" gravity conditions. The information was then used to provide boundary conditions for simulation of gaseous diffusion through the equilibrium domains (considering diffusion through liquid phase negligibly small). The models were tested by comparison with several analytical solutions to the diffusion equation, with excellent results. The relative diffusion coefficient for both series of simulations (with and without gravity) as functions of air-filled porosity was in good agreement with established models of Millington-Quirk. Liquid distribution under earth's gravity featured increased water content at the lower part of the medium relative to the distribution in reduced gravity, which resulted in decreased gas diffusion through a vertically oriented column of a porous medium. Simulation results for larger domains under various orientations will be presented.

  17. Diffusion of Bacterial Cells in Porous Media

    PubMed Central

    Licata, Nicholas A.; Mohari, Bitan; Fuqua, Clay; Setayeshgar, Sima

    2016-01-01

    The chemotaxis signal transduction network regulates the biased random walk of many bacteria in favorable directions and away from harmful ones through modulating the frequency of directional reorientations. In mutants of diverse bacteria lacking the chemotaxis response, migration in classic motility agar, which constitutes a fluid-filled porous medium, is compromised; straight-swimming cells unable to tumble become trapped within the agar matrix. Spontaneous mutations that restore spreading have been previously observed in the enteric bacterium Escherichia coli, and recent work in other bacterial species has isolated and quantified different classes of nonchemotacting mutants exhibiting the same spreading phenotype. We present a theoretical description of bacterial diffusion in a porous medium—the natural habitat for many cell types—which elucidates how diverse modifications of the motility apparatus resulting in a nonzero tumbling frequency allows for unjamming of otherwise straight-swimming cells at internal boundaries and leads to net migration. A unique result of our analysis is increasing diffusive spread with increasing tumbling frequency in the small pore limit, consistent with earlier experimental observations but not captured by previous models. Our theoretical results, combined with a simple model of bacterial diffusion and growth in agar, are compared with our experimental measurements of swim ring expansion as a function of time, demonstrating good quantitative agreement. Our results suggest that the details of the cellular tumbling process may be adapted to enable bacteria to propagate efficiently through complex environments. For engineered, self-propelled microswimmers that navigate via alternating straight runs and changes in direction, these results suggest an optimal reorientation strategy for efficient migration in a porous environment with a given microarchitecture. PMID:26745427

  18. Forced dichotomic diffusion in a viscous media

    NASA Astrophysics Data System (ADS)

    Calisto, Hector; Bologna, Mauro; Chandía, Kristopher J.

    2017-02-01

    In this paper, we study the dynamical properties of a linear system driven by a superposition of a Gaussian white noise and a symmetric Markovian dichotomic noise operating simultaneously on the system. We find exact analytical solutions for the moment generating function and for the probability distribution function. We show analytically that the system presents characteristics belonging to the nonlinear cases, such as a nonequilibrium bimodal distribution. We infer that the white Gaussian noise smooths the two characteristics Diracs delta peaks, generated by a purely dichotomic diffusion, transforming them in two smooth maxima.

  19. Photoacoustic-guided convergence of light through optically diffusive media.

    PubMed

    Kong, Fanting; Silverman, Ronald H; Liu, Liping; Chitnis, Parag V; Lee, Kotik K; Chen, Y C

    2011-06-01

    We demonstrate that laser beams can be converged toward a light-absorbing target through optically diffusive media by using photoacoustic-guided interferometric focusing. The convergence of light is achieved by shaping the wavefront of the incident light with a deformable mirror to maximize the photoacoustic signal, which is proportional to the scattered light intensity at the light absorber.

  20. Photoacoustic-guided convergence of light through optically diffusive media

    PubMed Central

    Kong, Fanting; Silverman, Ronald H.; Liu, Liping; Chitnis, Parag V.; Lee, Kotik K.; Chen, Y. C.

    2012-01-01

    We demonstrate that laser beams can be converged toward a light-absorbing target through optically diffusive media by using photoacoustic-guided interferometric focusing. The convergence of light is achieved by shaping the wavefront of the incident light with a deformable mirror to maximize the photoacoustic signal, which is propor tional to the scattered light intensity at the light absorber. PMID:21633446

  1. Fundamentals of multiphase, gas-solid and gas-liquid flows in porous media

    NASA Astrophysics Data System (ADS)

    Mazaheri, Ali Reza

    This thesis is concerned with fundamentals and applications of multiphase and particulate flows. The study contains three parts covering gas-liquid flows through porous media, gas-solid flows and Chemical-Mechanical Polishing (CMP). A continuum model for multiphase fluid flows through poro-elastic media is developed. It is shown that the present theory leads to the extended Darcy's law and contains, as its special case, Biot's theory of saturated poro-elastic media. The capillary pressure formulation derived from the new model is used and the equation governing the evolution of the saturation and its temporal variation in porous media is derived. The resulting nonlinear diffusion equation is then solved numerically. The results show that the capillary hysteresis occurs when the temporal variation of saturation is included. Application of the developed model to CO2 sequestration is discussed. Computer simulations of dilute Gas-Solid flows in complex geometry regions are studied. A procedure for handling particle trajectory analysis in unstructured grid is developed. Examples of particle transport and removal in human lung and hot-gas cleaning systems are presented. The simulation results for the human lung show that the capture efficiency is affected by the turbulence in the upper three bifurcation airways. Computer simulations of gas-solid flows in hot-gas cleaning for a demonstration scale filtration system is studied in details. Alternative designs of the filter vessel are proposed. The corresponding vessel performance are numerically simulated. Chemical mechanical polishing (CMP) has become critical to the fabrication of advanced multilevel integrated circuit in microelectronic industry. The effect of course surface roughness of abrasive particles on the polishing rate in CMP is studied. The effects of slurry pH and double layer attraction and repulsion on chemical-mechanical polishing are also studied. It is shown that the slurry pH and colloidal forces

  2. Narrow groove welding gas diffuser assembly and welding torch

    DOEpatents

    Rooney, Stephen J.

    2001-01-01

    A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes a manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

  3. Narrow groove welding gas diffuser assembly and welding torch

    SciTech Connect

    Rooney, Stephen J.

    2000-02-04

    A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

  4. Gradient Driven Flow: Lattice Gas, Diffusion Equation and Measurement Scales

    DTIC Science & Technology

    2001-01-01

    03-200 1 Journal Article (refereed) 2001 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Gradient Driven Flow : Lattice Gas, Diffusion Equation and...time regime, the collective motion exhibits an onset of oscillation. 15. SUBJECT TERMS Diffusion; Fick’s Law; Gradient Driven Flow ; Lattice Gas 16...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 20010907 062 Gradient driven flow : lattice gas, diffusion equation and measurement scales R.B

  5. Reaction-Diffusion Patterns in Structured Media

    NASA Astrophysics Data System (ADS)

    Epstein, Irving

    I will look at pattern formation in the Belousov-Zhabotinsky (BZ) oscillating chemical reaction in media that are structured at length scales ranging from ten nanometers to a few centimeters. A reverse microemulsion consisting of nanometer diameter droplets of water containing the reactants dispersed in oil allows the physical structure (size, spacing) of the droplets and their chemical composition to be controlled independently, enabling one to generate a remarkable variety of stationary and moving patterns, including Turing structures, ordinary and antispirals, packet waves and spatiotemporal chaos. One- and two-dimensional arrays of aqueous droplets in oil generated by microfluidic techniques have diameters of the order of 100 micrometers and produce a different array of patterns that can be precisely controlled with light. In particular, circular arrays of droplets provide a testing ground for some of Turing's ideas about morphogenesis. By attaching the BZ catalyst to a polymer that shrinks and swells in response to changes in the redox state of the catalyst, one can construct gel materials that transduce chemical changes to mechanical motion, a phenomenon modeled with considerable success by the Balazs group. If time permits, I will also discuss the BZ reaction in coupled macroscopic flow reactors that mimic small neural networks.

  6. Diffusion with condensation and evaporation in porous media

    SciTech Connect

    Gu, L.; Plumb, O.A.; Ho, C.K.; Webb, S.W.

    1998-03-01

    Vapor phase transport in porous media is important in a number of environmental and industrial processes: soil moisture transport, vapor phase transport in the vadose zone, transport in the vicinity of buried nuclear waste, and industrial processes such as drying. The diffusion of water vapor in a packed bed containing residual liquid is examined experimentally. The objective is to quantify the effect of enhanced vapor diffusion resulting from evaporation/condensation in porous media subjected to a temperature gradient. Isothermal diffusion experiments in free-space were conducted to qualify the experimental apparatus and techniques. For these experiments measured diffusion coefficients are within 3.6% of those reported in the literature for the temperature range from 25 C to 40 C. Isothermal experiments in packed beds of glass beads were used to determine the tortuosity coefficient resulting in {tau} = 0.78 {+-} 0.028, which is also consistent with previously reported results. Nonisothermal experiments in packed beds in which condensation occurs were conducted to examine enhanced vapor diffusion. The interpretation of the results for these experiments is complicated by a gradual, but continuous, build-up of condensate in the packed beds during the course of the experiment. Results indicate diffusion coefficients which increase as a function of saturation resulting in enhancement of the vapor-phase transport by a factor of approximately four compared to a dry porous medium.

  7. Diffusion of lexical change in social media.

    PubMed

    Eisenstein, Jacob; O'Connor, Brendan; Smith, Noah A; Xing, Eric P

    2014-01-01

    Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity - especially with regard to race - plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified "netspeak" dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English.

  8. Bibliographical review for reflectance of diffusing media

    NASA Astrophysics Data System (ADS)

    Philips-Invernizzi, Bernadette; Dupont, Daniel; Caze, Claude

    2001-06-01

    When light travels through a diffusing medium, the incident radiation is scattered and a part of it is reemitted. The reflected proportion is defined as the reflectance and provides the quantification of color sensations. Many authors have tried to derive reflectance values by various means. This bibliographical synthesis reviews the main theories on the subject, comparing them and especially their assumptions and derivations. First, the widely used theory of Kubelka and Munk--which has been proved to be a particular case of Schuster's formula-- is described, according to its terms, limits, improvements, and applications. Next, the well-known electromagnetic approach by Mie is presented, along with methods derived from radiative transfer theory, multilayer methods (the `pile of plates' due to Stokes), multiflux methods (developed by Mudgett and Richards or Volz for instance), and the corpuscular treatment proposed by Silvy. Finally, new methods are listed that allow the calculation of reflectance values, such as Monte Carlo simulations, expert systems, or neural networks. A chronological organization chart is also given to place each work or advance relative to the others.

  9. Diffusion of Lexical Change in Social Media

    PubMed Central

    Eisenstein, Jacob; O'Connor, Brendan; Smith, Noah A.; Xing, Eric P.

    2014-01-01

    Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity – especially with regard to race – plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified “netspeak” dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English. PMID:25409166

  10. Ice Formation in Gas-Diffusion Layers

    SciTech Connect

    Dursch, Thomas; Radke, Clayton J.; Weber, Adam Z.

    2010-07-10

    Under sub-freezing conditions, ice forms in the gas-diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) drastically reducing cell performance. Although a number of strategies exist to prevent ice formation, there is little fundamental understanding of the mechanisms of freezing within PEMFC components. Differential scanning calorimetry (DSC) is used to elucidate the effects of hydrophobicity (Teflon® loading) and water saturation on the rate of ice formation within three commercial GDLs. We find that as the Teflon® loading increases, the crystallization temperature decreases due to a change in internal ice/substrate contact angle, as well as the attainable level of water saturation. Classical nucleation theory predicts the correct trend in freezing temperature with Teflon® loading.

  11. Diffuse Hot Gas in M51

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric

    2014-08-01

    X-ray observations of face-on spiral galaxies reveal diffuse emission across the face of nearby galaxies. Whether that emission represents hot gas or unresolved point sources remains to be determined. We present two examples of our pursuit of an answer. First, a Chandra observation of M51 reveals a difference in the soft X-ray emission of the arms. The fitted spectra exhibit similar temperatures for the model components, but different abundances, particularly for Mg. Second, we compare the X-ray emission of M51 with data at other wavelengths via 'pixel statistics'. We adaptively bin the X-ray image and apply the resulting mask to data at other wavelengths to search for pixel correlations. We report on our results and inferences to date.

  12. Transitional Gas Jet Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  13. Numerical schemes for anomalous diffusion of single-phase fluids in porous media

    NASA Astrophysics Data System (ADS)

    Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine

    2016-10-01

    Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.

  14. Linking drainage front morphology with gaseous diffusion in unsaturated porous media: a lattice Boltzmann study.

    PubMed

    Chau, Jessica Furrer; Or, Dani

    2006-11-01

    The effect of drainage front morphology on gaseous diffusion through partially saturated porous media is analyzed using the lattice Boltzmann method (LBM). Flow regimes for immiscible displacement in porous media have been characterized as stable displacement, capillary fingering, and viscous fingering. The dominance of a flow regime is associated with the relative magnitudes of gravity, viscous, and capillary forces, quantifiable via the Bond number Bo, capillary number Ca, and their difference, Bo-Ca . Forced drainage from an initially saturated two-dimensional (2D) porous medium was simulated and the resulting flow patterns were analyzed and compared with theoretical predictions and experimental results. The LBM simulations reproduced expected flow morphologies for a range of drainage velocities and gravitational forces (i.e., a range of capillary and Bond numbers). Furthermore, measures of drainage front width as a function of the dimensionless difference Bo-Ca correspond well with scaling laws derived from percolation theory. Effects of flow morphology on residual fluid entrapment and gaseous diffusion were assessed by running LBM diffusion simulations through the partially saturated domain for a range of water contents. The effective diffusion coefficient as a function of water content was estimated for three regimes: stable drainage front, capillary fingering, and viscous fingering. Significant reductions in gaseous diffusion coefficient were found for viscous fingering relative to stable displacement, and to a lesser extent for capillary fingering, indicating that wetting phase distribution with a high degree of fingering in the 2D domain severely restricts connectivity of gas diffusion pathways through the medium. The study lends support for the use of LBM in design and management of fluids in porous media under variable gravity, and enhances the understanding of the role of dynamic fluid behavior on macroscopic transport properties of partially saturated

  15. Improved Modeling and Understanding of Diffusion-Media Wettability on Polymer-Electrolyte-Fuel-Cell Performance

    SciTech Connect

    Weber, Adam

    2010-03-05

    A macroscopic-modeling methodology to account for the chemical and structural properties of fuel-cell diffusion media is developed. A previous model is updated to include for the first time the use of experimentally measured capillary pressure -- saturation relationships through the introduction of a Gaussian contact-angle distribution into the property equations. The updated model is used to simulate various limiting-case scenarios of water and gas transport in fuel-cell diffusion media. Analysis of these results demonstrate that interfacial conditions are more important than bulk transport in these layers, where the associated mass-transfer resistance is the result of higher capillary pressures at the boundaries and the steepness of the capillary pressure -- saturation relationship. The model is also used to examine the impact of a microporous layer, showing that it dominates the response of the overall diffusion medium. In addition, its primary mass-transfer-related effect is suggested to be limiting the water-injection sites into the more porous gas-diffusion layer.

  16. Surface Properties of PEMFC Gas Diffusion Layers

    SciTech Connect

    WoodIII, David L; Rulison, Christopher; Borup, Rodney

    2010-01-01

    The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 higher than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.

  17. Anode characterisation and gas diffusion behaviour in aluminium smelting

    NASA Astrophysics Data System (ADS)

    Putri, Epma; Brooks, Geoffrey; Snook, Graeme; Eick, Ingo

    2017-01-01

    Over the past century, significant research on different aspects of the Hall-Héroult process has been conducted to increase energy efficiency. Bubble generation at the anode reaction and its contribution to the overall voltage drop in aluminium production holds significant potential for energy saving, yet the details of the gas transport mechanism for bubble nucleation behaviour are not completely understood. The multi-step electrochemical reaction releases predominantly CO2 gas along with CO gas, which is a reduction product formed by reaction of CO2 with the anode carbon. Complicating the reaction is the multiple paths by which the gas can diffuse (either through the porous anode or the electrolyte bath). There has been no detailed investigation of the correlation between gas diffusion as a function of anode and bath properties. In the present study, the porosity measurement techniques in the anode will be used to understand the relation of gas diffusion and anode properties. A porosimetric study was conducted for two different anode samples using mercury intrusion porosimetry (MIP) and hydrostatic method. The MIP method provides important anode properties information such as density, percent porosity, pore size distribution, permeability, and tortuosity factor which affect gas diffusion and anode performance. The Knudsen number obtained from MIP data shows both Knudsen diffusion and molecular diffusion need to be considered when predicting the effective diffusion.

  18. Diffusion of organic pollutants within a biofilm in porous media

    NASA Astrophysics Data System (ADS)

    Fan, Chihhao; Kao, Chen-Fei; Liu, You-Hsi

    2017-04-01

    The occurrence of aquatic pollution is an inevitable environmental impact resulting from human civilization and societal advancement. Either from the natural or anthropogenic sources, the aqueous contaminants enter the natural environment and aggravate its quality. To assure the aquatic environment quality, the attached-growth biological degradation is often applied to removing organic contaminants by introducing contaminated water into a porous media which is covered by microorganism. Additionally, many natural aquatic systems also form such similar mechanism to increase their self-purification capability. To better understand this transport phenomenon and degradation mechanism in the biofilm for future application, the mathematic characterization of organic contaminant diffusion within the biofilm requires further exploration. The present study aimed to formulate a mathematic representation to quantify the diffusion of the organic contaminant in the biofilm. The BOD was selected as the target contaminant. A series of experiments were conducted to quantify the BOD diffusion in the biofilm under the conditions of influent BOD variation from 50 to 300 mg/L, COD:N:P ratios of 100:5:1 and 100:15:3, with or without auxiliary aeration. For diffusion coefficient calculation, the boundary condition of zero diffusion at the interface between microbial phase and contact media was assumed. With the principle of conservation of mass, the removed contaminants equal those that diffuse into the biofilm, and eq 1 results, and the diffusion coefficient (i.e., eq 2) can be solved through calculus with equations from table of integral. ∂2Sf- Df ∂z2 = Rf (1) --(QSin--QSout)2Y--- Df = 2μmaxxf(Sb + Ks ln-Ks-) Sb+Ks (2) Using the obtained experimental data, the diffusion coefficient was calculated to be 2.02*10-6 m2/d with influent COD of 50 mg/L at COD:N:P ratio of 100:5:1 with aeration, and this coefficient increased to 6.02*10-6 m2/d as the influent concentration increased to

  19. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  20. Diffusive counter dispersion of mass in bubbly media.

    PubMed

    Goldobin, Denis S; Brilliantov, Nikolai V

    2011-11-01

    We consider a liquid bearing gas bubbles in a porous medium. When gas bubbles are immovably trapped in a porous matrix by surface-tension forces, the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. Essentially, the gas solution is in local thermodynamic equilibrium with vapor phase all over the system, i.e., the solute concentration equals the solubility. When temperature and/or pressure gradients are applied, diffusion fluxes appear and these fluxes are faithfully determined by the temperature and pressure fields, not by the local solute concentration, which is enslaved by the former. We derive the equations governing such systems, accounting for thermodiffusion and gravitational segregation effects, which are shown not to be neglected for geological systems-marine sediments, terrestrial aquifers, etc. The results are applied for the treatment of non-high-pressure systems and real geological systems bearing methane or carbon dioxide, where we find a potential possibility of the formation of gaseous horizons deep below a porous medium surface. The reported effects are of particular importance for natural methane hydrate deposits and the problem of burial of industrial production of carbon dioxide in deep aquifers.

  1. Gas transport in unsaturated porous media: the adequacy of Fick's law

    USGS Publications Warehouse

    Thorstenson, D.C.; Pollock, D.W.

    1989-01-01

    The increasing use of natural unsaturated zones as repositories for landfills and disposal sites for hazardous wastes (chemical and radioactive) requires a greater understanding of transport processes in the unsaturated zone. For volatile constituents an important potential transport mechanism is gaseous diffusion. Diffusion, however, cannot be treated as an independent isolated transport mechanism. A complete understanding of multicomponent gas transport in porous media (unsaturated zones) requires a knowledge of Knudsen transport, the molecular and nonequimolar components of diffusive flux, and viscous (pressure driven) flux. This review presents a brief discussion of the underlying principles and interrelationships among each of the above flux mechanisms. -from Authors

  2. The effect of relative humidity on binary gas diffusion.

    PubMed

    Astrath, Nelson G C; Shen, Jun; Song, Datong; Rohling, Jurandir H; Astrath, Francine B G; Zhou, Jianqin; Navessin, Titichai; Liu, Zhong Sheng Simon; Gu, Caikang E; Zhao, Xinsheng

    2009-06-18

    The dependence of diffusion coefficient of O2-N2 mixture in the presence of water vapor was experimentally determined as a function of relative humidity (RH) with different temperatures using an in-house made Loschmidt diffusion cell. The experimental results showed that O2-N2 diffusion coefficient increased more than 17% when RH increased from 0% to 80% at 79 degrees C. In the experiments, the RH in both top and bottom chambers of the diffusion cell were the same, and the pressure inside the diffusion cell was kept as ambient pressure (1 atm.). Maxwell-Stefan theory was employed to analyze the mass transport in the diffusion cell, and found that there was no effective water vapor diffusion taking place, indicating that the gas diffusion in this ternary (O2-N2-water vapor) system could be considered binary gas (O2-N2) diffusion. The Fuller, Schettler, and Giddings (FSG) empirical equation of the kinetic theory of gases was generalized to accommodate the dependence of the binary diffusion coefficient on the RH. The prediction of the generalized equation was found to be consistent with experimental results with the difference of less than 1.5%, showing that the generalized equation could be applied to calculate the diffusion coefficients of the binary gaseous mixture with different temperature and RH values. The effect of water vapor on the increase of O2-N2 diffusion coefficient was discussed using molecule theory.

  3. Physical Properties of DiffuseGas in the Galaxy

    NASA Astrophysics Data System (ADS)

    Troland, T. H.

    The diffuse (non self-gravitating) interstellar medium of the Galaxy is almost impossibly complex and diverse. Temperatures and densities range over many orders of magnitude. The magnetic field links all regimes of the gas, including cosmic rays. Shocks from supernovae and other sources buffet the medium. Into this maelstrom, theorists have ventured. Some models emphasize time-independent thermal equilibrium between hot and cold phases of the gas. Other models stress frequent dynamical events that throw much of the medium out of thermal equilibrium. Some models include magnetic field effects, others do not. Here we report on the nature of diffuse atomic gas, emphasizing observational results from a recent, extensive survey of HI emission and absorption along random lines of sight in the local diffuse medium. We find much of the warmer diffuse atomic gas is out of thermal equilibrium, yet the medium retains a clear dichotomy between warmer and cooler phases. The warmer phase comprises about half of the total diffuse atomic hydrogen gas. Magnetic fields have a median value of about 6 μG in the cold gas, insuring that their dynamical effects cannot be ignored. The conundrum of similar magnetic field strengths in diffuse gas at widely disparate densities remains as an observational fact and a challenge to explain theoretically.

  4. Statistics of photon penetration depth in diffusive media

    NASA Astrophysics Data System (ADS)

    Spinelli, Lorenzo; Farina, Andrea; Binzoni, Tiziano; Torricelli, Alessandro; Pifferi, Antonio; Martelli, Fabrizio

    2017-02-01

    The study of photon migration through highly scattering media opens the way to the non-invasive investigation of biological tissues well below the skin surface. When the medium is addressed in reflectance geometry, a key issue is to maximize the depth reached by migrating photons. By exploiting the Diffusion Approximation of the Radiative Transfer Equation, we calculated the time-resolved and continuous-wave probability density functions for the maximum depth reached by detected photons, for both a homogeneous and a layered laterally-infinite diffusive slab. From the probability density functions it is possible to calculate the mean value of the maximum depth at which detected photons have undergone scattering events.

  5. Structural Measurements from Images of Noble Gas Diffusion

    NASA Astrophysics Data System (ADS)

    Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.

    2009-03-01

    Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.

  6. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    SciTech Connect

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  7. Measurement of hyperpolarized gas diffusion at very short time scales

    PubMed Central

    Carl, Michael; Wilson Miller, G.; Mugler, John P.; Rohrbaugh, Scott; Tobias, William A.; Cates, Gordon D.

    2007-01-01

    We present a new pulse sequence for measuring very-short-time-scale restricted diffusion of hyperpolarized noble gases. The pulse sequence is based on concatenating a large number of bipolar diffusion-sensitizing gradients to increase the diffusion attenuation of the MR signal while maintaining a fundamentally short diffusion time. However, it differs in several respects from existing methods that use oscillating diffusion gradients for this purpose. First, a wait time is inserted between neighboring pairs of gradient pulses; second, consecutive pulse pairs may be applied along orthogonal axes; and finally, the diffusion-attenuated signal is not simply read out at the end of the gradient train but is periodically sampled during the wait times between neighboring pulse pairs. The first two features minimize systematic differences between the measured (apparent) diffusion coefficient and the actual time-dependent diffusivity, while the third feature optimizes the use of the available MR signal to improve the precision of the diffusivity measurement in the face of noise. The benefits of this technique are demonstrated using theoretical calculations, Monte-Carlo simulations of gas diffusion in simple geometries, and experimental phantom measurements in a glass sphere containing hyperpolarized 3He gas. The advantages over the conventional single-bipolar approach were found to increase with decreasing diffusion time, and thus represent a significant step toward making accurate surface-to-volume measurements in the lung airspaces. PMID:17936048

  8. Copper Gas Diffusers For Purging Line-Focus Laser Welds

    NASA Technical Reports Server (NTRS)

    Fonteyne, Steve L.; Hosking, Timothy J.; Shelley, D. Mark

    1996-01-01

    Modified flow diffusers built for inert-gas purging of welds made with 5-kW CO(2) lasers operating with line-focus optics in conduction mode instead of with point-focus optics in customary keyhole mode. Diffusers made of copper components brazed together, robust enough to withstand strong reflections of line-focused laser energy.

  9. Anomalous diffusion in viscoelastic media with active force dipoles

    NASA Astrophysics Data System (ADS)

    Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki

    2017-03-01

    With the use of the "two-fluid model," we discuss anomalous diffusion induced by active force dipoles in viscoelastic media. Active force dipoles, such as proteins and bacteria, generate nonthermal fluctuating flows that lead to a substantial increment of the diffusion. Using the partial Green's function of the two-fluid model, we first obtain passive (thermal) two-point correlation functions such as the displacement cross-correlation function between the two-point particles separated by a finite distance. We then calculate active (nonthermal) one-point and two-point correlation functions due to active force dipoles. The time correlation of a force dipole is assumed to decay exponentially with a characteristic time scale. We show that the active component of the displacement cross-correlation function exhibits various crossovers from super-diffusive to subdiffusive behaviors depending on the characteristic time scales and the particle separation. Our theoretical results are intimately related to the microrheology technique to detect fluctuations in nonequilibrium environment.

  10. Diffusion, Dispersion, and Uncertainty in Anisotropic Fractal Porous Media

    NASA Astrophysics Data System (ADS)

    Monnig, N. D.; Benson, D. A.

    2007-12-01

    Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields, in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these 2-D "operator-scaling" fractional Brownian motion (fBm) ln(K) fields. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent super-stratified growth must be the result of other demonstrable factors, such as initial plume size. The addition of large local dispersion and diffusion does not significantly change the effective longitudinal dispersivity of the plumes. In the presence of significant local dispersion or diffusion, the concentration coefficient of variation CV={σc}/{\\langle c \\rangle} remains large at the leading edge of the plumes. This indicates that even with considerable mixing due to dispersion or diffusion, there is still substantial uncertainty in the leading edge of a plume moving in fractal porous media.

  11. Model of boron diffusion from gas phase in silicon carbide

    SciTech Connect

    Aleksandrov, O. V.; Mokhov, E. N.

    2011-06-15

    Boron diffusion from the gas phase in silicon carbide is described on the basis of a two-component model. 'Shallow' boron, i.e., boron at silicon sites, is a slow component with a high surface concentration. Its diffusivity is proportional to the concentration of positively charged intrinsic point defects, which are presumably interstitial silicon atoms. 'Deep' boron, i.e., impurity-defect pairs of boron-carbon vacancy, is a fast component with lower surface concentration. The ratio between the surface concentrations of the components depends on the pressure of silicon or carbon vapors in the gas phase. The diffusion and interaction of components are described by the set of diffusion-reaction equations. The diffusion retardation observed on the concentration-profile tail is related to the capture of impurity-defect pairs and excess vacancies by traps of background impurities and defects.

  12. Inert-Gas Diffuser For Plasma Or Arc Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.

    1994-01-01

    Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.

  13. A numerical assessment of cosmic-ray energy diffusion through turbulent media

    SciTech Connect

    Fatuzzo, M.; Melia, F. E-mail: fmelia@email.arizona.edu

    2014-04-01

    How and where cosmic rays are produced, and how they diffuse through various turbulent media, represent fundamental problems in astrophysics with far-reaching implications, both in terms of our theoretical understanding of high-energy processes in the Milky Way and beyond, and the successful interpretation of space-based and ground based GeV and TeV observations. For example, recent and ongoing detections, e.g., by Fermi (in space) and HESS (in Namibia), of γ-rays produced in regions of dense molecular gas hold important clues for both processes. In this paper, we carry out a comprehensive numerical investigation of relativistic particle acceleration and transport through turbulent magnetized environments in order to derive broadly useful scaling laws for the energy diffusion coefficients.

  14. Characterization of gas diffusion electrodes for metal-air batteries

    NASA Astrophysics Data System (ADS)

    Danner, Timo; Eswara, Santhana; Schulz, Volker P.; Latz, Arnulf

    2016-08-01

    Gas diffusion electrodes are commonly used in high energy density metal-air batteries for the supply of oxygen. Hydrophobic binder materials ensure the coexistence of gas and liquid phase in the pore network. The phase distribution has a strong influence on transport processes and electrochemical reactions. In this article we present 2D and 3D Rothman-Keller type multiphase Lattice-Boltzmann models which take into account the heterogeneous wetting behavior of gas diffusion electrodes. The simulations are performed on FIB-SEM 3D reconstructions of an Ag model electrode for predefined saturation of the pore space with the liquid phase. The resulting pressure-saturation characteristics and transport correlations are important input parameters for modeling approaches on the continuum scale and allow for an efficient development of improved gas diffusion electrodes.

  15. Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport

    NASA Astrophysics Data System (ADS)

    Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike

    2017-04-01

    Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters

  16. Numerical Simulation of Gas Leaking Diffusion from Storage Tank

    NASA Astrophysics Data System (ADS)

    Zhu, Hongjun; Jing, Jiaqiang

    Over 80 percents of storage tank accidents are caused by gas leaking. Since traditional empirical calculation has great errors, present work aims to study the gas leaking diffusion under different wind conditions by numerical simulation method based on computational fluid dynamics theory. Then gas concentration distribution was obtained to determine the scope of the security zone. The results showed that gas diffused freely along the axis of leaking point without wind, giving rise to large range of hazardous area. However, wind plays the role of migrating and diluting the leaking gas. The larger is the wind speed, the smaller is the damage and the bigger is the security zone. Calculation method and results can provide some reference to establish and implement rescue program for accidents.

  17. Gas mixture for diffuse-discharge switch

    DOEpatents

    Christophorou, Loucas G.; Carter, James G.; Hunter, Scott R.

    1984-01-01

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF.sub.4, C.sub.2 F.sub.6, C.sub.3 F.sub.8, n-C.sub.4 F.sub.10, WF.sub.6, (CF.sub.3).sub.2 S and (CF.sub.3).sub.2 O.

  18. Gas mixture for diffuse-discharge switch

    DOEpatents

    Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

    1982-08-31

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

  19. The CO Transition from Diffuse Molecular Gas to Dense Clouds

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, Steven

    2017-06-01

    The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.

  20. Direct demonstration of gas diffusion into the middle ear.

    PubMed

    Levy, D; Herman, M; Luntz, M; Sadé, J

    1995-03-01

    The gas composition of the middle ear differs from that of air, and resembles the gas composition of mixed venous blood. This observation suggests the existence of a bi-directional route for gas diffusion between the middle ear and blood. In an attempt to demonstrate this route in a direct way, we tracheotomized guinea pigs in such a way that they breathed freon-22 directly into the distal part of their tracheostomy. The proximal part of the trachea was sealed so that air by-passed the oropharynx and nasopharynx, thus preventing freon-22 from making contact with the eustachian tube orifice. At the same time middle ear gases were monitored with a mass spectrometer, through a measuring probe which was inserted into a hole in the bulla. The appearance of freon-22 in all middle ears--after 8 min on the average--demonstrated direct gas diffusion from the blood into the middle ear, since freon-22 could reach the middle ear only from the blood stream, i.e., by diffusion. Differences in gas diffusion rates into and from the middle ear may therefore play a role in regulating middle ear gas economy, and therefore in middle ear pressure.

  1. Multicomponent Gas Diffusion and an Appropriate Momentum Boundary Condition

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1994-01-01

    Multicomponent gas diffusion is reviewed with particular emphasis on gas flows near solid boundaries-the so-called Kramers-Kistemaker effect. The aim is to derive an appropriate momentum boundary condition which governs many gaseous species diffusing together. The many species' generalization of the traditional single gas condition, either as slip or stick (no-slip), is not obvious, particularly for technologically important cases of lower gas pressures and very dissimilar molecular weight gases. No convincing theoretical case exists for why two gases should interact with solid boundaries equally but in opposite flow directions, such that the total gas flow exactly vanishes. ln this way, the multicomponent no-slip boundary requires careful treatment The approaches discussed here generally adopt a microscopic model for gas-solid contact. The method has the advantage that the mathematics remain tractable and hence experimentally testable. Two new proposals are put forward, the first building in some molecular collision physics, the second drawing on a detailed view of surface diffusion which does not unphysically extrapolate bulk gas properties to govern the adsorbed molecules. The outcome is a better accounting of previously anomalous experiments. Models predict novel slip conditions appearing even for the case of equal molecular weight components. These approaches become particularly significant in view of a conceptual contradiction found to arise in previous derivations of the appropriate boundary conditions. The analogous case of three gases, one of which is uniformly distributed and hence non-diffusing, presents a further refinement which gives unexpected flow reversals near solid boundaries. This case is investigated alone and for aggregating gas species near their condensation point. In addition to predicting new physics, this investigation carries practical implications for controlling vapor diffusion in the growth of crystals used in medical diagnosis (e

  2. SHIR competitive information diffusion model for online social media

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Diao, Su-Meng; Zhu, Yi-Xiang; Liu, Qing

    2016-11-01

    In online social media, opinion divergences and differentiations generally exist as a result of individuals' extensive participation and personalization. In this paper, a Susceptible-Hesitated-Infected-Removed (SHIR) model is proposed to study the dynamics of competitive dual information diffusion. The proposed model extends the classical SIR model by adding hesitators as a neutralized state of dual information competition. It is both hesitators and stable spreaders that facilitate information dissemination. Researching on the impacts of diffusion parameters, it is found that the final density of stiflers increases monotonically as infection rate increases and removal rate decreases. And the advantage information with larger stable transition rate takes control of whole influence of dual information. The density of disadvantage information spreaders slightly grows with the increase of its stable transition rate, while whole spreaders of dual information and the relaxation time remain almost unchanged. Moreover, simulations imply that the final result of competition is closely related to the ratio of stable transition rates of dual information. If the stable transition rates of dual information are nearly the same, a slightly reduction of the smaller one brings out a significant disadvantage in its propagation coverage. Additionally, the relationship of the ratio of final stiflers versus the ratio of stable transition rates presents power characteristic.

  3. Diffusive Gas Loss from Silica Glass Ampoules at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    1998-01-01

    Changes in the pressure of hydrogen, helium and neon due to diffusion through the wall of silica crystal growth ampoules at elevated temperatures were determined experimentally. We show that, while both He- and Ne-losses closely follow conventional model of diffusive gas permeation through the wall, hydrogen losses, in particular at low fill pressures, can be much larger. This is interpreted in terms of the high solubility of hydrogen in silica glasses.

  4. Imaging Absorbing Structures Embedded in Thick Diffusing Media.

    NASA Astrophysics Data System (ADS)

    Dilworth, David Saunders

    Linear systems models and confocal imaging techniques are applied to the problem of imaging absorbing structures embedded in thick diffusing media. At the microscopic level, the model is linear in complex field and space variant; at the macroscopic level where spatial averaging processes are considered the model is linear in irradiance and space variant, thereby becoming mathematically more tractable. We describe the planar confocal imager, in which a small spot of light scans the front surface of a diffuser, and the light distribution on the back surface is sampled for each position of the scanning spot. A composite image is then formed by selection of one pixel from each of the 25,600 images, viz., a pixel from a spot opposite or nearly opposite from the scanning spot. The overall process is effectively a confocal imaging process. The planar system can be modified to create 3-D confocal imaging, where many stereo image pairs are created of the absorbing structures within a thick diffuser. Techniques for both planar and exfoliative deconvolution are investigated. Planar deconvolution sharpens images affected by space invariant processes in which the image point spread function is always the same. Exfoliatative deconvolution is a systematic method for sharpening images formed by space variant processes in which the point spread function varies in accordance with the depth of the embedded object. Results from planar and 3-D confocal scanning verify the linear systems model and demonstrate that the broad beam point spread function width (the point spread function formed by conventional, non-confocal imaging) can be reduced by a factor of 2. Results from planar and exfoliative deconvolution demonstrate that the confocal point spread function width can be reduced by a factor of 1.5. Preliminary optical and data processing techniques are discussed for developing a coherent confocal scanner. The image resolution from this type of scanner will be determined by the

  5. Multi-wavelength Study of Diffuse Atomic and Molecular Gas

    NASA Astrophysics Data System (ADS)

    Federman, Steven Robert; Rice, Johnathan; Flagey, Nicolas; Ritchey, Adam M.; Welty, Daniel E.; Goldsmith, Paul; Langer, William; Pineda, Jorge L.; Lambert, David L.; Lemaire, Jean-Louis

    2017-06-01

    Diffuse atomic and molecular gas is revealed through a combination of absorption lines against background targets and emission. We describe a project that combines results on ultraviolet (UV) and visible absorption with those obtained from the Herschel key program GOTC+ (Galactic Observations of Terahertz C+) to develop a comprehensive picture of neutral diffuse gas in the Galaxy. [C II], H I, and CO emission acquired for the GOTC+ survey reveal the presence of warm neutral atomic gas, cold neutral atomic gas, CO-dark H2 gas (molecular gas not seen in CO emission), and denser molecular gas in different kinematic components. We derive the component structure (number of clouds and their column densities) seen in absorption at visible wavelengths from Ca II, Ca I, K I, CH, CH+, and CN and compare that to the emission from [C II], H I, and CO and its isotopologues. Absorption lines from additional atoms (including C I, O I, and Ni II) and molecules (CO) from UV spectra obtained with the Hubble Space Telescope are used to expand the kinematic correspondences. Preliminary results on physical conditions (gas temperature and density) inferred from analyses of CN chemistry and excitation of neutral and singly-ionized carbon, neutral oxygen, and CO are also presented.

  6. Heat diffusion in the disordered electron gas

    NASA Astrophysics Data System (ADS)

    Schwiete, G.; Finkel'stein, A. M.

    2016-03-01

    We study the thermal conductivity of the disordered two-dimensional electron gas. To this end, we analyze the heat density-heat density correlation function concentrating on the scattering processes induced by the Coulomb interaction in the subtemperature energy range. These scattering processes are at the origin of logarithmic corrections violating the Wiedemann-Franz law. Special care is devoted to the definition of the heat density in the presence of the long-range Coulomb interaction. To clarify the structure of the correlation function, we present details of a perturbative calculation. While the conservation of energy strongly constrains the general form of the heat density-heat density correlation function, the balance of various terms turns out to be rather different from that for the correlation functions of other conserved quantities such as the density-density or spin density-spin density correlation function.

  7. Nonequilibrium gas absorption in rotating permeable media

    NASA Astrophysics Data System (ADS)

    Baev, V. K.; Bazhaikin, A. N.

    2016-08-01

    The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.

  8. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  9. Gas turbine engine with radial diffuser and shortened mid section

    SciTech Connect

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  10. Active media inhomogeneities of gas flow lasers. I - Dust content of solid propellant combustion-driven GDL media. II - Gas flow optics of high power gas lasers

    NASA Astrophysics Data System (ADS)

    Borejsho, Anatolij S.; Leonov, Aleksandr F.; Militsyn, Yurij A.; Moshkov, Vladislav L.; Mal'Kov, Viktor M.

    1993-07-01

    This paper discusses some results obtained during our participation in various special-purpose projects for largescale gas lasers. One of most common problems for these systems is the presence of optical inhomogeneities (including solid particles) in the active media caused by both the processes of the media production and the features of gas flow through nozzle banks and cavities. Various optical methods were used to study the inhomogeneities in continuous wave gas dynamic, chemical, and pulsed photodissociating lasers. Solid propellant sources of working media for the gas dynamic lasers are also considered. Dust content of the laser media is discussed with a special consideration as one of the important problems for this type of gas laser.

  11. Unified Measurement System with Suction Control for Gas Transport Parameters in Porous Media

    NASA Astrophysics Data System (ADS)

    Kawamoto, K.; Rouf, M. A.; Hamamoto, S.; Sakaki, T.; Komatsu, T.; Moldrup, P.

    2010-12-01

    Pore geometric parameters including pore size distribution, total and air-filled porosities, pore tortuosity and connectivity strongly influence air flow in porous media, and, thus, characterize gas transport parameters such as gas diffusion coefficient Dp and air permeability ka. In this study, the gas transport parameters were measured for porous media with varying textures under repeated drying and wetting cycles using a newly-developed measurement system, and the hysteretic behaviors in the gas transport parameters were examined. A unified measurement system with suction control (UMS_SC) was developed for measuring soil water characteristics curve and gas transport parameters sequentially under drying and wetting cycles. It consisted of a porous plate, diffusion chamber, sample ring (15 cm in inner diameter and 12 cm in height), tensiometer, soil moisture sensor, oxygen electrodes and air pressure gauges. Soil water characteristics curve and gas transport parameters (gas diffusion coefficient Dp and air permeability ka) for differently textured materials including sand, molten slag , and a mixture material of MS and volcanic ash soil were measured under repeated drying and wetting cycles. The measurement for each porous material was initiated from a full saturation and suction head was increased/decreased in steps in the drainage/wetting cycles. Moreover, independent measurements of Dp and ka were carried out for repacked air-dried samples using a cylindrical mold (15 cm in inner diameter and 12 cm in height) in order to obtain the Dp and ka values at a full dry condition. The newly-developed UMS_SC performed well for the applied suction head less than 50 cm of water with corresponding saturation of roughly 0.3-0.5. The gas transport parameters were well measured at each suction head level under repeated drying and wetting cycles, and the measured gas transport parameters including the independent measurements were verified by literature data as well as

  12. Gas Diffusion in Polyethylene Terepthalate By Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Butler, Simon; Adolf, David

    2006-03-01

    Molecular dynamics simulations of the diffusion of small penetrants through PET have been performed utilising the anisotropic united atom model [1] and a virtual liquid technique. [2] The accuracy and reliability of these two approaches has been assessed in terms of the improvement in equation of state behaviour and of diffusion co-efficients and solubilities. The effect of the diffusion of nitrogen, carbon dioxide, and oxygen on the local dynamics of PET have been investigated as a result. Attention has been focused on the dual mode effect [3] observed during mixed gas diffusion. [1] Molecular dynamics calculation of the equation of state of alkanes, J. Chem. Phys. 93, 6 (1990) [2] Kikuchi, Kuwajima, Fukada, Novel method to estimate the solubility of small molecules in cis-polyisoprene by molecular dynamics simulations, J. Chem. Phys, 115, 13 (2001) [3] Lewis, Duckett, Ward, Fairclough, Ryan, The barrier properties of polyethylene terephthalate to mixtures of oxygen, carbon dioxide and nitrogen, Polymer, 1631, 44 (2003)

  13. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Diffusion media effects

    NASA Astrophysics Data System (ADS)

    Kim, Soowhan; Ahn, Byung Ki; Mench, M. M.

    In this work, the effects of properties of diffusion media (DM) (stiffness, thickness and micro-porous layer (MPL)) on the physical damage of membrane electrode assembly (MEA) subjected to freeze/thaw cycling were studied. Pressure uniformity of the diffusion media onto the catalyst layer (CL) was determined to be a key parameter to mitigate freeze-induced physical damage. Stiffer diffusion media, enabling more uniform compression under the channels and lands, can mitigate surface cracks, but flexible cloth diffusion media experienced severe catalyst layer surface damage. The thickness of the diffusion media and existence of a micro-porous layer were not observed to be major factors to mitigate freeze-damage when the catalyst layer is in contact with liquid. Interfacial delamination between diffusion media and catalyst layers, but not between the catalyst layer and membrane, was observed. This permanent deformation of the stiff diffusion media in the channel locations as well as fractures of carbon fibers increased electrical resistance, and may increase water flooding, resulting in reduced longevity and operational losses. Although use of a freeze-tolerable MEA design (negligible virgin cracked catalyst layers with thinner reinforced membrane) [S. Kim, M.M. Mench, J. Power Sources, in press] with stiff diffusion media can reduce the freeze-damage in the worst case scenario test condition of direct liquid contact, extensive irreversible damage (diffusion media/catalyst layer interfacial delamination) was not completely prevented. In addition to proper material selection, liquid water contact with the catalyst layer should be removed prior to shutdown to a frozen state to permit long-term cycling damage and facilitate frozen start.

  14. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  15. Drop Tower Setup for Dynamic Light Scattering in Dense Gas-Fluidized Granular Media

    NASA Astrophysics Data System (ADS)

    Born, Philip; Schmitz, Johannes; Bußmann, Michael; Sperl, Matthias

    2016-08-01

    Investigation of dynamics in dense granular media is challenging. Here we present a setup that facilitates gas fluidization of dense granular media in microgravity. The dynamics is characterized using diffusing wave spectroscopy. We demonstrate that agitated granular media reach a steady state within fractions of a second in drop tower flights. The intensity autocorrelation functions obtained in microgravity show a remarkable dependence on sample volume fraction and driving strength. A plateau in correlation emerges at low volume fractions and strong driving, while correlation decays only very slowly but continuously at high packing fractions. The setup allows to independently set sample volume fraction and driving strength, and thus extends the possibilities for investigations on dynamics in dense granular on ground.

  16. Diffuse hot gas in nearby face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Doane, Nathaniel

    2007-08-01

    We present a study of the diffuse thermal emission in three nearby, face-on spiral galaxies, NGC 3631, NGC 628 and NGC 3184, using X-ray data from the Chandra X-ray Observatory and optical data from the WIYN observatory. We are able to separate out the X-ray emission from unresolved point sources from the total unresolved emission in order to study the truly diffuse X-ray emission. We find that in all cases, the spectrum of the hot gas is well fit using a two thermal-component model. In the three galaxies, we find a strong correlation between the X-ray surface brightness and regions of star formation. We also estimate the electron density, pressure and cooling time of the hot gas, finding that the pressure of the hot gas in these three galaxies is higher than the ambient Milky Way pressure. In addition to the standard two temperature spectral model of the hot-gas emission from spiral galaxies, we show a model with the hot gas at a continuum of temperatures provides an equally good fit and a more physical description of the gas. Finally, we discuss the Chandra ACIS background and our method of spectrally modeling it. We also present plots of all our spectral fits to each galaxy and its sub-regions using our background model.

  17. An electrochemical sensor for determining elemental iodine in gas media

    SciTech Connect

    Goffman, V.G.; Shaimerdinov, B.U.; Kotelkin, I.M.

    1993-12-01

    The possibility of using solid-electrolyte Ag, AgI/AgI/Au cells as sensors for determining the concentration of elemental iodine in gas media is investigated. It is established that the sensor parameters are independent of oxygen content and radiation dose at different relative humidities.

  18. Bulk and surface controlled diffusion of fission gas atoms

    SciTech Connect

    Andersson, Anders D.

    2012-08-09

    Fission gas retention and release impact nuclear fuel performance by, e.g., causing fuel swelling leading to mechanical interaction with the clad, increasing the plenum pressure and reducing the gap thermal conductivity. All of these processes are important to understand in order to optimize operating conditions of nuclear reactors and to simulate accident scenarios. Most fission gases have low solubility in the fuel matrix, which is especially pronounced for large fission gas atoms such as Xe and Kr, and as a result there is a significant driving force for segregation of gas atoms to extended defects such as grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. Several empirical or semi-empirical models have been developed for fission gas release in nuclear fuels, e.g. [1-6]. One of the most commonly used models in fuel performance codes was published by Massih and Forsberg [3,4,6]. This model is similar to the early Booth model [1] in that it applies an equivalent sphere to separate bulk UO{sub 2} from grain boundaries represented by the sphere circumference. Compared to the Booth model, it also captures trapping at grain boundaries, fission gas resolution and it describes release from the boundary by applying timedependent boundary conditions to the circumference. In this work we focus on the step where fission gas atoms diffuse from the grain interior to the grain boundaries. The original Massih-Forsberg model describes this process by applying an effective diffusivity divided into three temperature regimes. In this report we present results from density functional theory calculations (DFT) that are relevant for the high (D{sub 3}) and intermediate (D{sub 2}) temperature diffusivities of fission gases. The results are validated by making a quantitative comparison to Turnbull's [8-10] and Matzke's data [12]. For the intrinsic or high temperature regime we report activation energies for both Xe and Kr diffusion in UO

  19. Experimental approaches to kinetics of gas diffusion in hydrogenase

    PubMed Central

    Leroux, Fanny; Dementin, Sébastien; Burlat, Bénédicte; Cournac, Laurent; Volbeda, Anne; Champ, Stéphanie; Martin, Lydie; Guigliarelli, Bruno; Bertrand, Patrick; Fontecilla-Camps, Juan; Rousset, Marc; Léger, Christophe

    2008-01-01

    Hydrogenases, which catalyze H2 to H+ conversion as part of the bioenergetic metabolism of many microorganisms, are among the metalloenzymes for which a gas-substrate tunnel has been described by using crystallography and molecular dynamics. However, the correlation between protein structure and gas-diffusion kinetics is unexplored. Here, we introduce two quantitative methods for probing the rates of diffusion within hydrogenases. One uses protein film voltammetry to resolve the kinetics of binding and release of the competitive inhibitor CO; the other is based on interpreting the yield in the isotope exchange assay. We study structurally characterized mutants of a NiFe hydrogenase, and we show that two mutations, which significantly narrow the tunnel near the entrance of the catalytic center, decrease the rates of diffusion of CO and H2 toward and from the active site by up to 2 orders of magnitude. This proves the existence of a functional channel, which matches the hydrophobic cavity found in the crystal. However, the changes in diffusion rates do not fully correlate with the obstruction induced by the mutation and deduced from the x-ray structures. Our results demonstrate the necessity of measuring diffusion rates and emphasize the role of side-chain dynamics in determining these. PMID:18685111

  20. Reorientation and isotropisation of liquid crystals induced by gas diffusion

    NASA Astrophysics Data System (ADS)

    Tantillo, Anthony; Shibaev, Petr

    Reorientation and isotropisation of liquid crystals induced by organic solvent vapors was studied experimentally in relation to the use of liquid crystals as gas sensors. Reorientation and isotropisation were studied in the droplets deposited on the flat surface and on the tip of the hollow fibers. The anisotropy of gas diffusion was studied in the films and droplets of different sizes deposited on the surfaces with planar and homeotropic conditions. It was revealed that the diffusion coefficients differ approximately by a factor of two for liquid crystals in planar and homeotropic orientations. It was also shown that interference pattern created by passing light in liquid crystalline droplets deposited on the planar surface and on the tip of the hollow fiber can be used in detection of very small concentration of vapors. The model of diffusion is suggested and molecular dynamics simulations of the diffusion in liquid crystals with different molecular orientation are performed. The molecular dynamics simulations were performed on a time scale of about tens nanoseconds. In general they confirm the experimental results, but provide larger differences (by a factor 2 to 4) for diffusion coefficient in liquid crystals with planar and homeotropic orientation.

  1. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect

    Munday, E.B.; Simmons, D.W.

    1993-02-01

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF{sub 6}), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF{sub 3}) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF{sub 6} and other gases are evacuated. The UF{sub 6} is recovered by chemical trapping. The lab results demonstrated that ClF{sub 3} gas at subatmospheric pressure and at {approx} 75{degree}F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  2. Detection of Extraplanar Diffuse Ionized Gas in M83

    NASA Astrophysics Data System (ADS)

    Boettcher, Erin; Gallagher, J. S., III; Zweibel, Ellen G.

    2017-08-01

    We present the first kinematic study of extraplanar diffuse ionized gas (eDIG) in the nearby, face-on disk galaxy M83 using optical emission-line spectroscopy from the Robert Stobie Spectrograph on the Southern African Large Telescope. We use a Markov Chain Monte Carlo method to decompose the [N ii]λ λ 6548, 6583, Hα, and [S ii]λ λ 6717, 6731 emission lines into H ii region and diffuse ionized gas emission. Extraplanar, diffuse gas is distinguished by its emission-line ratios ([N ii]λ6583/Hα ≳ 1.0) and its rotational velocity lag with respect to the disk ({{Δ }}v=-24 km s-1 in projection). With interesting implications for isotropy, the velocity dispersion of the diffuse gas, σ =96 km s-1, is a factor of a few higher in M83 than in the Milky Way and nearby, edge-on disk galaxies. The turbulent pressure gradient is sufficient to support the eDIG layer in dynamical equilibrium at an electron scale height of {h}z=1 kpc. However, this dynamical equilibrium model must be finely tuned to reproduce the rotational velocity lag. There is evidence of local bulk flows near star-forming regions in the disk, suggesting that the dynamical state of the gas may be intermediate between a dynamical equilibrium and a galactic fountain flow. As one of the first efforts to study eDIG kinematics in a face-on galaxy, this study demonstrates the feasibility of characterizing the radial distribution, bulk velocities, and vertical velocity dispersions in low-inclination systems. Based on observations made with the Southern African Large Telescope (SALT) under program 2015-2-SCI-004 (PI: E. Boettcher).

  3. Effect of gas channel height on gas flow and gas diffusion in a molten carbonate fuel cell stack

    NASA Astrophysics Data System (ADS)

    Hirata, Haruhiko; Nakagaki, Takao; Hori, Michio

    An investigation is made of the relationships between the gas channel height, the gas-flow characteristics, and the gas-diffusion characteristics in a plate heat-exchanger type molten carbonate fuel cell stack. Effects of the gas channel height on the uniformity and pressure loss of the gas flow are evaluated by numerical analysis using a computational fluid dynamics code. The effects of the gas channel height on the distribution of the reactive gas concentration in the direction perpendicular to the channel flow are evaluated by an analytical solution of the two-dimensional concentration transport equation. Considering the results for uniformity and pressure loss of the gas flow, and for distribution of the reactive gas concentration, the appropriate gas channel height in the molten carbonate fuel cell stack is investigated.

  4. Gas in Scattering Media Absorption Spectroscopy -- Laser Spectroscopy in Unconventional Environments

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2010-02-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The GASMAS technique combines narrow-band diode-laser spectroscopy with optical propagation in diffuse media. Whereas solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures. These are typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. Molecular oxygen and water vapor have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen gas, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the human sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen, while breathing normally through the mouth. A clinical study comprising 40 patients has been concluded.

  5. Diffusion and viscosity coefficients for helium. [in astrophysical gas mixtures

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, R.

    1982-01-01

    The first order Boltzmann-Fokker-Planck equation is solved numerically to obtain diffusion and viscosity coefficients for a ternary gas mixture composed of electron, protons, and helium. The coefficients are tabulated for five He/H abundances ranging from 0.01 to 10 and for both He II and He III. Comparison with Burgers's thermal diffusion coefficients reveals a maximum difference of 9-10% for both He II and He III throughout the range of helium abundances considered. The viscosity coefficients are compared to those of Chapman and Cowling and show a maximum difference of only 5-6% for He II but 15-16% for He III. For the astrophysically important gas mixtures, it is concluded that the results of existing studies which employed Burgers's or Chapman and Cowling's coefficients will remain substantially unaltered.

  6. The diffusion of individual molecules within a gas

    NASA Technical Reports Server (NTRS)

    Bird, G. A.

    1986-01-01

    The Direct Simulation Monte Carlo method is used to study the positional history of the individual molecules in a gas that is homogeneous at the macroscopic level and is in Maxwellian equilibrium at the microscopic level. The behavior at small times is characterized by 'persistence of velocity' effects, and a 'random walk' type of dispersal occurs over a longer timescale. It is shown that the rate of dispersal can be directly related to the self-diffusion coefficient. In addition, the diffusion coefficients are obtained directly from one-dimensional calculations, and the local Knudsen number at which the Chapman-Enskog theory breaks down is determined. Results are presented for both simple gases and gas mixtures.

  7. Experimental studies and model analysis of noble gas fractionation in low-permeability porous media

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Mack Kennedy, B.; Molins, Sergi; Kneafsey, Timothy; Evans, William C.

    2017-05-01

    Gas flow through the vadose zone from sources at depth involves fractionation effects that can obscure the nature of transport and even the identity of the source. Transport processes are particularly complex in low permeability media but as shown in this study, can be elucidated by measuring the atmospheric noble gases. A series of laboratory column experiments was conducted to evaluate the movement of noble gas from the atmosphere into soil in the presence of a net efflux of CO2, a process that leads to fractionation of the noble gases from their atmospheric abundance ratios. The column packings were designed to simulate natural sedimentary deposition by interlayering low permeability ceramic plates and high permeability beach sand. Gas samples were collected at different depths at CO2 fluxes high enough to cause extreme fractionation of the noble gases (4He/36Ar > 20 times the air ratio). The experimental noble gas fractionation-depth profiles were in good agreement with those predicted by the dusty gas (DG) model, demonstrating the applicability of the DG model across a broad spectrum of environmental conditions. A governing equation based on the dusty gas model was developed to specifically describe noble gas fractionation at each depth that is controlled by the binary diffusion coefficient, Knudsen diffusion coefficient and the ratio of total advection flux to total flux. Finally, the governing equation was used to derive the noble gas fractionation pattern and illustrate how it is influenced by soil CO2 flux, sedimentary sequence, thickness of each sedimentary layer and each layer's physical parameters. Three potential applications of noble gas fractionation are provided: evaluating soil attributes in the path of gas flow from a source at depth to the atmosphere, testing leakage through low permeability barriers used to isolate buried waste, and tracking biological methanogenesis and methane oxidation associated with hydrocarbon degradation.

  8. Method of making gas diffusion layers for electrochemical cells

    DOEpatents

    Frisk, Joseph William; Boand, Wayne Meredith; Larson, James Michael

    2002-01-01

    A method is provided for making a gas diffusion layer for an electrochemical cell comprising the steps of: a) combining carbon particles and one or more surfactants in a typically aqueous vehicle to make a preliminary composition, typically by high shear mixing; b) adding one or more highly fluorinated polymers to said preliminary composition by low shear mixing to make a coating composition; and c) applying the coating composition to an electrically conductive porous substrate, typically by a low shear coating method.

  9. Gas Diffusion Studies in Steady and Nonsteady Cavities

    DTIC Science & Technology

    1987-09-01

    gaseous diffusion, turbulent entrainment, cavitating flows, gas-liquid interface, two-dimensional flows, hydrofoil I Ioscillation 19 ABSTRACT...PAS Water tunnel experiments for twoidimensional f ows were co2ducted on cavities behind a stationary and oscillating -~flat plate’ (wedge) hydrofoil ...for two-dimensional flows were conducted on cavities behind a stationary and oscillating "flat plate" (wedge) hydrofoil . It is found that the steady

  10. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    SciTech Connect

    B. Bullard

    1999-05-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.

  11. Excess-entropy scaling for gas diffusivity in nanoporous materials.

    PubMed

    Liu, Yu; Fu, Jia; Wu, Jianzhong

    2013-10-22

    We present an efficient computational procedure for the rapid prediction of the self-diffusivity of gas molecules in nanoporous materials by a combination of the Knudsen model, Rosenfeld's excess-entropy scaling method, and a classical density functional theory (DFT). The self-diffusivity conforms to the Knudsen model at low density, and the effects of intermolecular interactions at higher densities are accounted for by Rosenfeld's excess-entropy scaling method. The classical DFT provides a convenient way to calculate the excess entropy used in the scaling analysis. The hybrid computational procedure has been calibrated with MD simulation for the adsorption of H2, He, Ne, and Ar gases in several nanoporous materials over a broad range of pressure. It predicts adsorption isotherms and different types of diffusion behavior in excellent agreement with the simulation results. Although the simulation of gas diffusion in nanoporous materials is extremely time-consuming, the new procedure is computationally very efficient because it uses only single molecular and thermodynamic parameters.

  12. Surface Diffusion Effect on Gas Transport in Nanoporous Materials

    NASA Astrophysics Data System (ADS)

    Hori, Takuma; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2016-11-01

    Polymer electrolyte fuel cells are one of the promising candidates for power sources of electric vehicles. For further improvement of their efficiency in high current density operation, a better understanding of oxygen flow inside the cells, which have micro- or nanoporous structures, is necessary. Molecular simulations such as the direct simulation of Monte Carlo (DSMC) are necessary to elucidate flow phenomena in micro- or nanostructures since the Knudsen number is close to unity. Our previous report showed that the oxygen diffusion resistance in porous structures with a characteristic pore size of 100 nm calculated by DSMC agrees well with that measured experimentally. On the other hand, when it comes to the transport in structures with much smaller pore sizes, it is expected that the surface diffusion has a significant impact on gas transport because of their higher specific surface area. Here we present the calculation of gas transport in porous structures with considering surface diffusion. The numerical porous structure models utilized in our simulations are constructed from three-dimensional imaging of materials. The effect of the distance of random walk on the total diffusion resistance in the structures is discussed. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Development Organization (NEDO).

  13. Shear Reduction of Diffusion in a Point Vortex Gas.

    NASA Astrophysics Data System (ADS)

    Dubin, Dan

    2001-11-01

    In seminal work, Taylor and McNamara(J.B. Taylor and B. McNamara, Phys. Fluids 14), 1492 (1971). showed that, for a 2-dimensional point vortex gas of N vortices, each with circulation γ, collisional diffusion scales as γ √N. The diffusion is caused by large-scale ``Dawson-Okuda'' eddies.(J.M. Dawson et al., Phys. Rev. Lett. 27), 491 (1971). We revisit the Taylor-McNamara theory, adding a mean shear to the gas. The applied shear destroys the Dawson-Okuda eddies, reducing the transport. Theory based on both Boltzmann and quasilinear calculations shows a marked reduction in diffusion with increasing applied shear. This theory applies to 2D Euler fluids or 2D plasmas, and provides the first rigorous analysis of shear reduction of transport in a paradigmatic system.(D.H.E. Dubin, Phys. Lett. A 284), 112 (2001). Simulations verify the theory, provided that the shear is negative. For a cylindrical vorticity patch this corresponds to monotonically-decreasing rotation frequency versus radius. Preliminary experiments on 2D pure ion plasmas are also in rough agreement with the theory. For positive shear, diffusion is reduced even further due to trapping effects.

  14. A Mathematical Model of Diffusion-Limited Gas Bubble Dynamics in Tissue with Varying Diffusion Region Thickness

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.; Paloski, William H. (Technical Monitor)

    2000-01-01

    A three-region mathematical model of gas bubble dynamics has been shown suitable for describing diffusion-limited dynamics of more than one bubble in a given volume of extravascular tissue. The model is based on the dynamics of gas exchange between a bubble and a well-stirred tissue region through an intervening unperfused diffusion region previously assumed to have constant thickness and uniform gas diffusivity. As a result, the gas content of the diffusion region remains constant as the volume of the region increases with bubble growth, causing dissolved gas in the region to violate Henry's law. Earlier work also neglected the relationship between the varying diffusion region volume and the fixed total tissue volume, because only cases in which the diffusion region volume is a small fraction of the overall tissue volume were considered. We herein extend the three-region model to correct these theoretical inconsistencies by allowing both the thickness and gas content of the diffusion region to vary during bubble evolution. A postulated difference in gas diffusivity between an infinitesimally thin layer at the bubble surface and the remainder of the diffusion region leads to variation in diffusion region gas content and thickness during bubble growth and resolution. This variable thickness, differential diffusivity (VTDD) model can yield bubble lifetimes considerably longer than those yielded by earlier three-region models for given model and decompression parameters, and meets a need for theoretically consistent but relatively simple bubble dynamics models for use in studies of decompression sickness (DCS) in human subjects, Keywords: decompression sickness, gas diffusion in tissue, diffusivity

  15. The contribution of diffusion to gas microflow: An experimental study

    NASA Astrophysics Data System (ADS)

    Veltzke, Thomas; Baune, Michael; Thöming, Jorg

    2012-08-01

    Moderately rarefied gas flows are clearly distinguished from viscous flow in the continuum regime and from molecular diffusion at high rarefaction. They are an intermediate of the two border cases referred to as slip flow and transition regime flow. Here, we present a new pencil-and-paper approach for modeling flows in these regimes by a superposition of convection and Fickian diffusion. It allows us to predict mass flows for helium, argon, nitrogen, and carbon dioxide in microducts with parallel walls and with slightly varying cross section. The model was validated by measurement series taken from literature and by own permeation experiments on tapered microchannels. Analytical investigation of the approach showed that the diffusive flow is proportional to the cross-sectional area at the channel entrance. Hence, the mass flow in a tapered channel is unequal in both directions when diffusion dominates due to increased rarefaction. In contrary to the common Maxwellian slip approach the superposition model describes the data reliably. From this we conclude that deviations from continuum behavior in the intermediate cannot be explained by slip flow at the walls and tangential momentum accommodation, but by Fickian diffusion. Now predictions are possible without any usage of fitted parameters such as the tangential momentum accommodation coefficient.

  16. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media.

    PubMed

    Huber, Patrick

    2015-03-18

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  17. An empirical formula based on Monte Carlo simulation for diffuse reflectance from turbid media

    NASA Astrophysics Data System (ADS)

    Gnanatheepam, Einstein; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Diffuse reflectance spectroscopy has been widely used in diagnostic oncology and characterization of laser irradiated tissue. However, still accurate and simple analytical equation does not exist for estimation of diffuse reflectance from turbid media. In this work, a diffuse reflectance lookup table for a range of tissue optical properties was generated using Monte Carlo simulation. Based on the generated Monte Carlo lookup table, an empirical formula for diffuse reflectance was developed using surface fitting method. The variance between the Monte Carlo lookup table surface and the surface obtained from the proposed empirical formula is less than 1%. The proposed empirical formula may be used for modeling of diffuse reflectance from tissue.

  18. Understanding gas capacity, guest selectivity, and diffusion in porous liquids.

    PubMed

    Greenaway, Rebecca L; Holden, Daniel; Eden, Edward G B; Stephenson, Andrew; Yong, Chin W; Bennison, Michael J; Hasell, Tom; Briggs, Michael E; James, Stuart L; Cooper, Andrew I

    2017-04-01

    Porous liquids are a new class of material that could have applications in areas such as gas separation and homogeneous catalysis. Here we use a combination of measurement techniques, molecular simulations, and control experiments to advance the quantitative understanding of these liquids. In particular, we show that the cage cavities remain unoccupied in the absence of a suitable guest, and that the liquids can adsorb large quantities of gas, with gas occupancy in the cages as high as 72% and 74% for Xe and SF6, respectively. Gases can be reversibly loaded and released by using non-chemical triggers such as sonication, suggesting potential for gas separation schemes. Diffusion NMR experiments show that gases are in dynamic equilibrium between a bound and unbound state in the cage cavities, in agreement with recent simulations for related porous liquids. Comparison with gas adsorption in porous organic cage solids suggests that porous liquids have similar gas binding affinities, and that the physical properties of the cage molecule are translated into the liquid state. By contrast, some physical properties are different: for example, solid homochiral porous cages show enantioselectivity for chiral aromatic alcohols, whereas the equivalent homochiral porous liquids do not. This can be attributed to a loss of supramolecular organisation in the isotropic porous liquid.

  19. Using a Quasipotential Transformation for Modeling Diffusion Media inPolymer-Electrolyte Fuel Cells

    SciTech Connect

    Weber, Adam Z.; Newman, John

    2008-08-29

    In this paper, a quasipotential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena.

  20. Gas phase diffusion coefficients of reactive trace gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tang, Mingjin; Shiraiwa, Manabu; Cox, Tony; Pöschl, Ulrich; Kalberer, Markus

    2015-04-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions. However, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. We have compiled and evaluated, for the first time, the diffusivities (pressure independent diffusion coefficients) of atmospheric inorganic (Tang et al., 2014) and organic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed.

  1. Verification of the integrity of barriers using gas diffusion

    SciTech Connect

    Ward, D.B.; Williams, C.V.

    1997-06-01

    In-situ barrier materials and designs are being developed for containment of high risk contamination as an alternative to immediate removal or remediation. The intent of these designs is to prevent the movement of contaminants in either the liquid or vapor phase by long-term containment, essentially buying time until the contaminant depletes naturally or a remediation can be implemented. The integrity of the resultant soil-binder mixture is typically assessed by a number of destructive laboratory tests (leaching, compressive strength, mechanical stability with respect to wetting and freeze-thaw cycles) which as a group are used to infer the likelihood of favorable long-term performance of the barrier. The need exists for a minimally intrusive yet quantifiable methods for assessment of a barrier`s integrity after emplacement, and monitoring of the barrier`s performance over its lifetime. Here, the authors evaluate non-destructive measurements of inert-gas diffusion (specifically, SF{sub 6}) as an indicator of waste-form integrity. The goals of this project are to show that diffusivity can be measured in core samples of soil jet-grouted with Portland cement, validate the experimental method through measurements on samples, and to calculate aqueous diffusivities from a series of diffusion measurements. This study shows that it is practical to measure SF{sub 6} diffusion rates in the laboratory on samples of grout (Portland cement and soil) typical of what might be used in a barrier. Diffusion of SF{sub 6} through grout (Portland cement and soil) is at least an order of magnitude slower than through air. The use of this tracer should be sensitive to the presence of fractures, voids, or other discontinuities in the grout/soil structure. Field-scale measurements should be practical on time-scales of a few days.

  2. A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Lindstrom, Michael; Wetton, Brian

    2017-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

  3. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-11-01

    Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

  4. Modeling Intragranular Diffusion in Low-Connectivity Granular Media

    SciTech Connect

    Ewing, Robert G.; Liu, Chongxuan; Hu, Qinhong

    2012-03-20

    Diffusive exchange of solutes between bulk water in an aquifer and water in the intragranular pores of the solid phase remains confusing after decades of study. In a previous paper, we reviewed some of the explanations, and suggested that the disparities between observation and theory were largely due to low connectivity of the intragranular pores. Low connectivity indicates that a useful conceptual framework is percolation theory, which guided our analysis. The present study was initiated to improve the finite difference (FD) model presented in the previous paper, and to test that new model rigorously against new random walk (RW) simulations of diffusion in low-connectivity porous spheres starting from non-equilibrium. The new FD model calculates diffusion separately in the infinite cluster and the finite clusters, and closely matches the new, more complex RW results. The percolation-theory based description of the new model is fairly simple, and can readily be incorporated into existing FD models. The simulations showed that the combination of low intragranular pore connectivity, and out-diffusion initiated at diffusive non-equilibrium, can produce diffusive behavior that appears as if the solute had undergone slow sorption, even in the absence of any sorption process. This mechanism may help explain some hitherto confusing aspects of intragranular diffusion.

  5. Ion Diffusion Within Water Films in Unsaturated Porous Media.

    PubMed

    Tokunaga, Tetsu K; Finsterle, Stefan; Kim, Yongman; Wan, Jiamin; Lanzirotti, Antonio; Newville, Matthew

    2017-04-05

    Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb(+) and Br(-) in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, De, as low as ∼9 × 10(-15) m(2) s(-1) at θ = 1.0 × 10(-4) m(3) m(-3), where the film thickness = 0.9 nm. Given that the diffusion coefficients (Do) of Rb(+) and Br(-) in bulk water (30 °C) are both ∼2.4 × 10(-9) m(2) s(-1), we found the impedance factor f = De/(θDo) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in De relative to Do as desaturation progressed down to nanoscale films.

  6. Diffusion in the two-dimensional nonoverlapping Lorentz gas

    NASA Astrophysics Data System (ADS)

    James, Corinne P.; Evans, Glenn T.

    1987-10-01

    The self-diffusion coefficient, velocity autocorrelation function, and distribution of collision times for a two-dimensional nonoverlapping Lorentz gas were calculated using molecular dynamics simulation. The systems studied covered a range of densities, from a packing fraction (πNr2/L2) of 0.01 to 0.8. Self-diffusion coefficients were found to agree to all densities with kinetic theory predictions [A. Weijland and J. M. J. van Leeuwen, Physica 38, 35 (1968)] if the radial distribution function (rdf) was taken into account. The density dependence of the decay of the velocity autocorrelation function was qualitatively different from that predicted by kinetic theory. The distribution of collision times was nearly exponential for all but the highest density studied.

  7. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  8. Nonclassical transport in fractal media with a diffusion barrier

    SciTech Connect

    Dvoretskaya, O. A. Kondratenko, P. S.

    2013-04-15

    We investigate the impurity transport in a randomly heterogeneous fractal medium with a diffusion barrier. The barrier is due to low permeable medium surrounding the source. The transport regimes and asymptotic (large-distance) concentration distributions are found. The presence of the diffusion barrier results in the retardation of the transport regimes at short times. As regards the asymptotic concentration distribution, the barrier influence persists for long times as well.

  9. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  10. Digital volume imaging of the PEFC gas diffusion layer

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary; Mukherjee, Partha; Shim, Eunkyoung

    2010-01-01

    The gas diffusion layer (GDL) plays a key role in the overall performance/durability of a polymer electrolyte fuel cell (PEFC). Of profound importance, especially in the context of water management and flooding phenomena, is the influence of the underlying pore morphology and wetting characteristics Of the GDL microstructure. In this article, we present the digital volumetric imaging (DVI) technique in order to generate the 3-D carbon paper GDL microstructure. The internal pore structure and the local microstructural variations in terms of fiber alignment and fiber/binder distributions are investigated using the several 3-D thin sections of the sample obtained from DVI.

  11. Properties of turbulence in natural gas-oxygen diffusion flames

    SciTech Connect

    Sautet, J.C.; Ditaranto, M. ); Samaniego, J.M.; Charon, O. )

    1999-07-01

    Measurements of turbulent flow field velocities, including first and second order velocity moments and the shear stress are carried out by laser Doppler velocimetry in five different, 25 kW, turbulent natural gas-oxygen diffusion flames. The mean flow behavior is described including the velocity half value radius as well as centerline velocity. Mean radial velocity profiles are fitted by a Gaussian function. According to the initial momentum ratio, different jet dynamic behaviors are pointed out by the description of the fluctuating velocity field.

  12. Diffusive dynamics of nanoparticles in ultra-confined media

    DOE PAGES

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; ...

    2015-08-10

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accountedmore » for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Altogether, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.« less

  13. Diffusive dynamics of nanoparticles in ultra-confined media

    SciTech Connect

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; Retterer, Scott T.; He, Kai

    2015-08-10

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accounted for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Altogether, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.

  14. Correlation between information diffusion and opinion evolution on social media

    NASA Astrophysics Data System (ADS)

    Xiong, Fei; Liu, Yun; Zhang, Zhenjiang

    2014-12-01

    Information diffusion and opinion evolution are often treated as two independent processes. Opinion models assume the topic reaches each agent and agents initially have their own ideas. In fact, the processes of information diffusion and opinion evolution often intertwine with each other. Whether the influence between these two processes plays a role in the system state is unclear. In this paper, we collected more than one million real data from a well-known social platform, and analysed large-scale user diffusion behaviour and opinion formation. We found that user inter-event time follows a two-scaling power-law distribution with two different power exponents. Public opinion stabilizes quickly and evolves toward the direction of convergence, but the consensus state is prevented by a few opponents. We propose a three-state opinion model accompanied by information diffusion. Agents form and exchange their opinions during information diffusion. Conversely, agents' opinions also influence their diffusion actions. Simulations show that the model with a correlation of the two processes produces similar statistical characteristics as empirical results. A fast epidemic process drives individual opinions to converge more obviously. Unlike previous epidemic models, the number of infected agents does not always increase with the update rate, but has a peak with an intermediate value of the rate.

  15. FAST Mapping of Diffuse HI Gas in the Local Universe

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Pisano, D. J.; Ai, M.; Jiao, Q.

    2016-02-01

    We propose to use the Five hundred meter Aperture Spherical radio Telescope (FAST) to map the diffuse intergalactic HI gas in the local universe at column densities of NHI=1018 cm-2 and below. The major science goal is to study gas accretion during galaxy evolution, and trace cosmic web features in the local universe. We disuss the technical feasibilty of such a deep survey, and have conducted test observations with the Arecibo 305 m telescope. Our preliminary results shows that, with about a few thousand hours of observing time, FAST will be able to map several hundred square degree regions at 1 σ of NHI=2×1017 cm-2 level out to a distance of 5-10 Mpc, and with a volume 1000 larger than that of the Local Group.

  16. Variations between Dust and Gas in the Diffuse Interstellar Medium. II. Search for Cold Gas

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe

    2017-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M⊙ in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that there is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.

  17. Time-resolved measurements of the optical properties of fibrous media using the anisotropic diffusion equation

    NASA Astrophysics Data System (ADS)

    Simon, Emanuel; Krauter, Philipp; Kienle, Alwin

    2014-07-01

    Transmittance and reflectance from spruce wood and bovine ligamentum nuchae as two different fibrous media are examined by time-of-flight spectroscopy for varying source detector separations and several orientations of the fibers in the sample. The anisotropic diffusion theory is used to obtain the absorption coefficient and the diffusion coefficients parallel and perpendicular to the fibers. The results are compared to those obtained with the isotropic diffusion theory. It is shown that for increasing source detector separations, the retrieved optical properties change as expected from Monte Carlo simulations performed in a previous study. This confirms that the anisotropic diffusion theory yields useful results for certain experimental conditions.

  18. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    SciTech Connect

    Kwong, S.; Jivkov, A.P.

    2013-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier system will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive

  19. Gas transport in unsaturated porous media: The adequacy of Fick's law

    NASA Astrophysics Data System (ADS)

    Thorstenson, D. C.; Pollock, D. W.

    1989-02-01

    The increasing use of natural unsaturated zones as repositories for landfills and disposal sites for hazardous wastes (chemical and radioactive) requires a greater understanding of transport processes in the unsaturated zone. For volatile constituents an important potential transport mechanism is gaseous diffusion. Diffusion, however, cannot be treated as an independent isolated transport mechanism. A complete understanding of multicomponent gas transport in porous media (unsaturated zones) requires a knowledge of Knudsen transport, the molecular and nonequimolar components of diffusive flux, and viscous (pressure driven) flux. The constitutive equations relating these flux components are available from the "dusty gas" model of Mason et al. (1967). This review presents a brief discussion of the underlying principles and interrelationships among each of the above flux mechanisms. Some aspects of these transport mechanisms are, to our knowledge, generally unrecognized in the Earth science literature. The principles underlying the transport mechanisms are illustrated with binary systems; the constitutive equations are then cast in forms thought to be most useful for the study of natural unsaturated zones. The viscous and diffusive fluxes are coupled in the constitutive equations through the Knudsen diffusivities; a knowledge of Knudsen diffusivities is necessary to calculate the viscous component of flux and pressure gradients. The Knudsen diffusivities can be calculated from measurements of the Klinkenberg effect. Two examples are presented showing that in natural systems, very small pressure gradients (1 Pa/m or less) can produce viscous fluxes greater than or equal to diffusive fluxes and that, conversely, pressure gradients of this magnitude can be generated by diffusive processes. The example calculations show that major concentration gradients can be developed for stagnant (zero flux, nonreactive) gases. A method is presented for approximating the viscous and

  20. Effects of buoyancy on gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.

    1993-01-01

    The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.

  1. Innovative discharge geometries for diffusion-cooled gas lasers

    NASA Astrophysics Data System (ADS)

    Lapucci, Antonio

    2004-09-01

    Large area, narrow discharge gap, diffusion cooled gas lasers are nowadays a well established technology for the construction of industrial laser sources. Successful examples exist both with the slab (Rofin-Sinar) or coaxial (Trumpf) geometry. The main physical properties and the associated technical problems of the transverse large area RF discharge, adopted for the excitation of high power diffusion cooled gas lasers, are reviewed here. The main problems of this technology are related to the maintenance of a uniform and stable plasma excitation between closely spaced large-area electrodes at high power-density loading. Some practical solutions such as distributed resonance of the discharge channel proved successful in the case of square or rectangular cross-sections but hardly applicable to geometries such as that of coaxial electrodes. In this paper we present some solutions, adopted by our group, for the development of slab and annular CO2 lasers and for CO2 laser arrays with linear or circular symmetry. We will also briefly mention the difficulties encountered in the extraction of a good quality beam from an active medium with such a cross section. A problem that has also seen some interesting solutions.

  2. Radiation from Gas-Jet Diffusion Flames in Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.; Sotos, Raymond G.; Stocker, Dennis P.

    1991-01-01

    This paper presents the first demonstration of quantitative flame-radiation measurement in microgravity environments, with the objective of studying the influences and characteristics of radiative transfer on the behavior of gas-jet diffusion flames with possible application to spacecraft fire detection. Laminar diffusion flames of propane, burning in quiescent air at atmospheric pressure, are studied in the 5.18-Second Zero-Gravity Facility of NASA Lewis Research Center. Radiation from these flames is measured using a wide-view angle, thermopile-detector radiometer, and comparisons are made with normal-gravity flames. The results show that the radiation level is significantly higher in microgravity compared to normal-gravity environments due to larger flame size, enhanced soot formation, and entrapment of combustion products in the vicinity of the flame. These effects are the consequences of the removal of buoyancy which makes diffusion the dominant mechanism of transport. The results show that longer test times may be needed to reach steady state in microgravity environments.

  3. Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.

    PubMed

    Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin

    2011-10-01

    This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.

  4. How social media matter: Repression and the diffusion of the Occupy Wall Street movement.

    PubMed

    Suh, Chan S; Vasi, Ion Bogdan; Chang, Paul Y

    2017-07-01

    This study explores the role played by social media in reshaping the repression-mobilization relationship. Drawing on the case of the Occupy Wall Street movement, we examine the impact of Facebook and Twitter on the spatial diffusion of protests during a period of heightened state repression. Results from event history analyses suggest that the effects of repression on protest diffusion are contingent on the presence of social media accounts supporting the movement. We find that state repression at earlier protest sites encouraged activists to create Facebook and Twitter accounts in their own cities, which then served as important vehicles for the initiation of new Occupy protests. Moreover, results suggest that repression incidents can directly facilitate future protests in cities that already have Occupy Facebook accounts. This study highlights the potential of social media to both mediate and moderate the influence of repression on the diffusion of contemporary movements. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Modeling intragranular diffusion in low-connectivity granular media

    NASA Astrophysics Data System (ADS)

    Ewing, Robert P.; Liu, Chongxuan; Hu, Qinhong

    2012-03-01

    Characterizing the diffusive exchange of solutes between bulk water in an aquifer and water in the intragranular pores of the solid phase is still challenging despite decades of study. Many disparities between observation and theory could be attributed to low connectivity of the intragranular pores. The presence of low connectivity indicates that a useful conceptual framework is percolation theory. The present study was initiated to develop a percolation-based finite difference (FD) model, and to test it rigorously against both random walk (RW) simulations of diffusion starting from nonequilibrium, and data on Borden sand published by Ball and Roberts (1991a,b) and subsequently reanalyzed by Haggerty and Gorelick (1995) using a multirate mass transfer (MRMT) approach. The percolation-theoretical model is simple and readily incorporated into existing FD models. The FD model closely matches the RW results using only a single fitting parameter, across a wide range of pore connectivities. Simulation of the Borden sand experiment without pore connectivity effects reproduced the MRMT analysis, but including low pore connectivity effects improved the fit. Overall, the theory and simulation results show that low intragranular pore connectivity can produce diffusive behavior that appears as if the solute had undergone slow sorption, despite the absence of any sorption process, thereby explaining some hitherto confusing aspects of intragranular diffusion.

  6. The Diffusion of Muonic Deuterium Atoms in Deuterium Gas.

    NASA Astrophysics Data System (ADS)

    Kraiman, James Brian

    Negative muons were brought to rest in a target array consisting of 30-50 parallel plastic foils coated with Au which were separated by a few mm. The interstitial volumes between the foils were filled with deuterium gas at pressures from 0.094 bar to 1.52 bar. Muons which stopped in the deuterium formed mud atoms, which subsequently diffused through the gas until either the muon decayed or the mud atom struck a foil surface. For mud atoms impinging upon the Au layer, the muon would transfer to an Au atom, resulting in the formation of a mu Au atom in a highly excited state. De-excitation to the 1S ground state resulted in emission of characteristic muonic Au x rays, and after the muon was absorbed by the Au nucleus, the emission of Pt gamma rays. These transfer photons were detected by one of four germanium x-ray detectors adjacent to the target vessel. Analysis of the time distributions formed by collecting delayed transfer events for several sets of experimental conditions yielded information on the diffusion process of mud atoms in deuterium gas. The initial speed distribution of the mud atoms upon reaching the 1S state is described reasonably well by a Maxwellian speed distribution of mean energy 3KT/2 = 1.8 +/- 0.1 eV. The theoretical scattering cross sections for the reaction mud + d to mud + d calculated by Bubak and Faifman agree well with this experiment when the effects of molecular scattering are approximated by multiplying the nuclear cross sections by a factor of about two. It was found that a factor of 2.10 for center of mass collision energies greater than 0.30 eV, and 2.30 for collision energies less than 0.30 eV provided a good fit to the experimental data.

  7. Glitters of warm H2 in cold diffuse molecular gas

    NASA Astrophysics Data System (ADS)

    Falgarone, Edith; Boulanger, Francois; Combes, Francoise; Pineau Des Forets, Guillaume; Verstraete, Laurent

    2007-05-01

    Cold molecular hydrogen, a dominant gas fraction in galaxies, does not radiate due to the symmetry of the molecule. The only tracers of cold H2, the rotational lines of CO and dust thermal emission operate only in metal-rich environments. By detecting the lowest rotational lines of H2 at unexpected levels in the cold diffuse medium of the Galaxy, ISO-SWS has challenged the traditional view of the interstellar medium (ISM) by possibly revealing the existence of tiny gas fractions within the cold ISM, warm enough to excite H2 lines. The heating source of H2 there is the intermittent dissipation of supersonic turbulence, pervading the entire ISM. These glitters of H2 line emission may become the unique tracers of cold H2 in low metallicity environments. Given the fundamental importance of probing large hidden masses of gas in galaxies, for their implication on galaxy dynamics, star formation thresholds in metal-poor environments, and the hypothesis of H2 as baryonic dark matter in galaxies, the present SST/IRS proposal is dedicated to further search of this still elusive emission. The proposed observations consist in several IRS LL pointings along the major axis of two external galaxies with massive HI disks extending far beyond their optical radius, and for which the HI rotation curve cannot be accounted for by the stellar and visible gas components. These spectra also observed in the direction of the galaxy nuclei, are meant to allow the separation between the H2 emission with stellar-type excitation from that originating in gas heated by turbulence dissipation. The goal of the proposal is to strenghten the existence of pockets of warm H2 disseminated in the cold diffuse medium of galaxies. These glitters of warm H2 would be a new tracer of hitherto undetected amounts of cold H2 in low metallicity environments, and, as a more exploratory facet, might probe the presence of large amounts of baryonic dark matter in galaxies in the form of cold molecular hydrogen.

  8. Impact of diffusion on transverse dispersion in two-dimensional ordered and random porous media

    NASA Astrophysics Data System (ADS)

    Hlushkou, Dzmitry; Piatrusha, Stanislau; Tallarek, Ulrich

    2017-06-01

    Solute dispersion in fluid flow results from the interaction between advection and diffusion. The relative contributions of these two mechanisms to mass transport are characterized by the reduced velocity ν , also referred to as the Péclet number. In the absence of diffusion (i.e., when the solute diffusion coefficient Dm=0 and ν →∞ ), divergence-free laminar flow of an incompressible fluid results in a zero-transverse dispersion coefficient (DT=0 ) , both in ordered and random two-dimensional porous media. We demonstrate by numerical simulations that a more realistic realization of the condition ν →∞ using Dm≠0 and letting the fluid flow velocity approach infinity leads to completely different results for ordered and random two-dimensional porous media. With increasing reduced velocity, DT approaches an asymptotic value in ordered two-dimensional porous media but grows linearly in disordered (random) structures depending on the geometrical disorder of a structure: a higher degree of heterogeneity results in a stronger growth of DT with ν . The obtained results reveal that disorder in the geometrical structure of a two-dimensional porous medium leads to a growth of DT with ν even in a uniform pore-scale advection field; however, lateral diffusion is a prerequisite for this growth. By contrast, in ordered two-dimensional porous media the presence of lateral diffusion leads to a plateau for the transverse dispersion coefficient with increasing ν .

  9. Density and pressure effects on the transport of gas phase chemicals in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Altevogt, Andrew S.; Rolston, Dennis E.; Venterea, Rodney T.

    2003-03-01

    The density of gas phase contaminants may be responsible for several important transport phenomena in porous media. One-dimensional laboratory experiments were conducted to explore the transport of a dense gas (Freon-113) through an air-dry sand. Gas densities were measured and fluxes were estimated during transport through a column filled with oso-flaco sand. Significant differences in density profiles and fluxes were observed for the three primary flow directions (horizontal, vertically upward, and vertically downward) at high source densities. Estimates indicate that pressure gradients of up to 20 Pa/m measured in the first 2.5 cm of the column were possibly due to the nonequimolar diffusion of Freon and air. Simulated Freon densities from numerical models based on the standard Darcy-Fickian transport equation did not compare well against measured density data. Density profiles generated by the model differed from the data by up to 400%. Numerical simulations indicated that slip flow may be significant relative to Darcy advective flow, but the slip phenomenon did not account for the discrepancy between model simulations and data. Further research and equation development will be necessary in order to ascertain why the standard theory does not adequately describe the diffusive and advective transport processes for dense gases.

  10. An Ohm's law analogy for the effective diffusivity of composite media

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, J.; Valdes-Parada, F. J.; Ibarra-Valdez, C.

    2016-04-01

    The aim of this work is to obtain an equation for the effective diffusivity of permeable composite media based on an analogy with Ohm's law of electricity. Here, particles are transported across a composite medium, which is seen as an arrangement of series and parallel resistances. Comparison with simulations of Brownian particles traveling through the successive walls of the medium showed good agreement for moderate inclusion-to-continuous medium diffusivity ratio.

  11. 2D relaxation/diffusion correlations in porous media.

    PubMed

    Godefroy, S; Callaghan, P T

    2003-01-01

    2D correlations between NMR relaxation and/or diffusion have been used to investigate water and oil dynamics in food and micro-emulsion systems. In the case of Mozzarella and Gouda cheese samples, a significant change in D/T2 correlation is appearing with cheese aging. In the case of a water/toluene micro-emulsion, some evidence for coalescence effects is suggested by D/D exchange spectra.

  12. Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: A review

    NASA Astrophysics Data System (ADS)

    Liu, Xunliang; Peng, Fangyuan; Lou, Guofeng; Wen, Zhi

    2015-12-01

    Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett-Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.

  13. Measuring adsorption, diffusion and flow in chemical engineering: applications of magnetic resonance to porous media

    NASA Astrophysics Data System (ADS)

    Gladden, Lynn F.; Mitchell, Jonathan

    2011-03-01

    Magnetic resonance (MR) techniques are increasingly used to improve our understanding of the multi-component, multi-phase processes encountered in chemical engineering. This review brings together many of the MR techniques used, and often developed specifically, to study chemical engineering systems and, in particular, processes occurring within porous media. Pulse sequences for relaxometry, pulsed field gradient measurements of diffusion, imaging and velocimetry measurements are described. Recent applications of these MR pulse sequences to microporous, mesoporous and macroporous structures are then reviewed. Considering the microporous and mesoporous systems, we focus attention on studies of rock cores, manufactured materials such as cement and gypsum plaster, and catalysts. When considering macroporous structures, the transport through packed beds of particles typical of fixed-bed catalytic reactors is reviewed; a brief overview of the increasing research interest in gas-solid fluidized beds is also presented. We highlight the field of sparse k-space sampling as an area that is in its infancy and suggest that, combined with Bayesian methods, it will offer new opportunities in both extending the application of high-field MR techniques to chemical engineering and increasing the range of measurements that can be carried out using low-field hardware.

  14. A new model for thermal contact resistance between fuel cell gas diffusion layers and bipolar plates

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2014-11-01

    A new analytical model is developed to predict the thermal contact resistance (TCR) between fibrous porous media such as gas diffusion layers (GDLs) of polymer electrolyte membrane fuel cells (PEMFCs) and flat surfaces (bipolar plates). This robust model accounts for the salient geometrical parameters of GDLs, mechanical deformation, and thermophysical properties of the contacting bodies. The model is successfully validated against experimental data, and is used to perform in a comprehensive parametric study to investigate the effects of fiber parameters such as waviness and GDL properties on the TCR. Fiber waviness, diameter and surface curvature, as well as GDL porosity, are found to have a strong influence on TCR whereas fiber length does not affect the TCR when the porosity is kept constant. Such findings provide useful guidance for design and manufacturing of more effective GDLs for PEMFC heat management. The analytic model can be readily implemented in simulation and modeling of PEMFCs, and can be extended with minor modifications to other fibrous porous media such as fibrous catalysts, insulating media and sintered metals.

  15. The impact of thermal conductivity and diffusion rates on water vapor transport through gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Burlatsky, Sergei F.; Atrazhev, Vadim V.; Gummalla, Mallika; Condit, Dave A.; Liu, Fuqiang

    Proper water management in a hydrogen-fueled polymer electrolyte membrane (PEM) fuel cell is critical for performance and durability. A mathematical model has been developed to elucidate the effect of thermal conductivity and water vapor diffusion coefficient in the gas diffusion layers (GDLs). The fraction of product water removed in the vapor phase through the GDL as a function of GDL properties/set of material and component parameters and operating conditions has been calculated. The current model enables identification of conditions wherein condensation occurs in each GDL component. The model predicts the temperature gradient across various components of a PEM fuel cell, providing insight into the overall mechanism of water transport in a given cell design. The water condensation conditions and transport mode in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDLs and water transport scenarios are defined in this work, based on water condensation in the GDL and fraction of water that the GDL removes through the vapor phase, respectively.

  16. Gas depletion through single gas bubble diffusive growth and its effect on subsequent bubbles

    NASA Astrophysics Data System (ADS)

    Moreno Soto, Alvaro; Prosperetti, Andrea; Lohse, Detlef; van der Meer, Devaraj; Physics of Fluid Group Collaboration; MCEC Netherlands CenterMultiscale Catalytic Energy Conversion Collaboration

    2016-11-01

    In weakly supersaturated mixtures, bubbles are known to grow quasi-statically as diffusion-driven mass transfer governs the process. In the final stage of the evolution, before detachment, there is an enhancement of mass transfer, which changes from diffusion to natural convection. Once the bubble detaches, it leaves behind a gas-depleted area. The diffusive mass transfer towards that region cannot compensate for the amount of gas which is taken away by the bubble. Consequently, the consecutive bubble will grow in an environment which contains less gas than for the previous one. This reduces the local supersaturation of the mixture around the nucleation site, leading to a reduced bubble growth rate. We present quantitative experimental data on this effect and the theoretical model for depletion during the bubble growth rate. This work was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands.

  17. Effect of pore structure on gas trapping in porous media

    NASA Astrophysics Data System (ADS)

    Mohammadian, Sadjad; Geistlinger, Helmut; Vogel, Hans-Jörg

    2014-05-01

    Capillary trapping of nonwetting phase in porous media plays an important role in many geological processes. For example, large portions of hydrocarbons cannot be extracted from reservoirs due to capillary forces, while in carbon sequestration processes; capillary trapping might improve the storage efficiency. An important case is when the wetting phase (mostly water) displaces a low-viscosity low-density fluid. In such cases, like water encroachment into gas reservoirs or rising of water table in soils, competition of gravity, viscous, and capillary forces determines the final configuration of the fluids in invaded zone. The trapped nonwetting phase and its distribution within the porous media will affect many other processes such as flow of the other fluids and mass transfer phenomena. Thus, investigating the parameters affecting phase trapping and distribution, especially their relation to pore structure, which controls the capillary action, is required. The aim is to predict gas trapping from structural properties of the material. We conducted a series of column experiments, in which water displaces air at a range of flow rates in different glass-bead packs. The final 3D configuration and morphology of fluids was observed using X-Ray Computed Tomography (CT). We extracted 3D structure of porous media as well as of the trapped gas phase, and quantified them in terms of volume ratios, interfacial area, and morphology. Then we investigated the relations of the trapped phase to capillary forces (pore structure) and viscous forces (front velocity). The results give us new insights to explore the flow and dissolution processes: We found no systematic dependency of the front velocity of the invading water phase in the velocity range from 0.1 to 0.6 cm/min what corresponds to capillary numbers from 2 to 12 ×10^-6. Our experimental results indicate that the capillary trapping mechanism is controlled by the local pore structure and local connectivity and not by

  18. Properties of Diffuse Molecular Gas in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Welty, Daniel

    2012-10-01

    Studies of the interstellar medium in the lower-metallicity Magellanic Clouds explore somewhat different environmental conditions from those typically probed in our own Galactic ISM. Recent studies based on optical/UV spectra of SMC and LMC targets, for example, have revealed unexpected differences in gas-phase abundance patterns {for various atomic and molecular species} and have begun to explore the effects of differences in metallicity on the atomic-to-molecular transition and resulting molecular fraction f{H_2} - a key aspect in the formation of molecular clouds. We propose a more detailed study of the abundances, depletions, and local physical conditions characterizing diffuse molecular material in the Magellanic Clouds, using STIS E140H and E230M spectra of two sight lines with N{H_2} > 10^20 cm^-2 {both probing the outskirts of molecular clouds seen in CO emission}. The two STIS settings will include lines from various neutral and ionized species {with a range in depletion behavior}, several C I multiplets, and several bands of CO and C_2. By probing and characterizing the atomic-to-molecular transition in the Magellanic Clouds, we will address key issues regarding the effects of differences in metallicity on the relationship between the atomic and molecular gas in galaxies; on cloud structure, physical conditions, and diffuse cloud chemistry; and on the composition and properties of interstellar dust. The results of this project should thus aid in the interpretation of observations of atomic and molecular material in more distant low-metallicity systems.

  19. Diffuse-Interface Modelling of Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Addy, Doug; Pradas, Marc; Schmuck, Marcus; Kalliadasis, Serafim

    2016-11-01

    Multiphase flows are ubiquitous in a wide spectrum of scientific and engineering applications, and their computational modelling often poses many challenges associated with the presence of free boundaries and interfaces. Interfacial flows in porous media encounter additional challenges and complexities due to their inherently multiscale behaviour. Here we investigate the dynamics of interfaces in porous media using an effective convective Cahn-Hilliard (CH) equation recently developed in from a Stokes-CH equation for microscopic heterogeneous domains by means of a homogenization methodology, where the microscopic details are taken into account as effective tensor coefficients which are given by a Poisson equation. The equations are decoupled under appropriate assumptions and solved in series using a classic finite-element formulation with the open-source software FEniCS. We investigate the effects of different microscopic geometries, including periodic and non-periodic, at the bulk fluid flow, and find that our model is able to describe the effective macroscopic behaviour without the need to resolve the microscopic details.

  20. Real-time convolution method for generating light diffusion profiles of layered turbid media.

    PubMed

    Kim, Hoe-Min; Ko, Kwang Hee; Lee, Kwan H

    2011-06-01

    In this paper we present a technique to obtain a diffusion profile of layered turbid media in real time by using the quasi fast Hankel transform (QFHT) and the latest graphics processing unit technique. We apply the QFHT to convolve the diffusion profiles of each layer so as to dramatically reduce the time for the convolution step while maintaining the accuracy. In addition, we also introduce an accelerated technique to generate individual discrete diffusion profiles for each layer through parallel processing. The proposed method is 2 orders of magnitude faster than the existing method, and we validate its efficiency by comparing it with Monte Carlo simulation and another relevant methods.

  1. Quenched Large Deviations for Interacting Diffusions in Random Media

    NASA Astrophysics Data System (ADS)

    Luçon, Eric

    2017-03-01

    The aim of the paper is to establish a large deviation principle (LDP) for the empirical measure of mean-field interacting diffusions in a random environment. The point is to derive such a result once the environment has been frozen (quenched model). The main theorem states that a LDP holds for every sequence of environment satisfying appropriate convergence condition, with a rate function that does not depend on the disorder and is different from the rate function in the averaged model. Similar results concerning the empirical flow and local empirical measures are provided.

  2. Resolution limits for imaging through turbid media with diffuse light

    NASA Astrophysics Data System (ADS)

    Moon, J. A.; Mahon, R.; Duncan, M. D.; Reintjes, J.

    1993-10-01

    For the achievable resolution for imaging through a turbid medium with multiply scattered light in the diffusion limit, the authors present analytic expressions. The spatial resolution R (the half-width of the point-spread function) scales with thickness d of the sample as R = (0.2 +/- 0.04)d over 10 order of magnitude in input intensity and transport length are found for detectable levels of light. The experiments with a time-gated stimulated Raman amplifier are in good agreement with the calculations.

  3. A Search for Hot, Diffuse Gas in Superclusters

    NASA Technical Reports Server (NTRS)

    Boughn, Stephen P.

    1998-01-01

    The HEA01 A2 full sky, 2-10 keV X-ray map was searched for diffuse emission correlated with the plane of the local supercluster of galaxies and a positive correlation was found at the 99% confidence level. The most obvious interpretation is that the local supercluster contains a substantial amount of hot (10(exp 8) OK), diffuse gas, i.e. ionized hydrogen, with a density on the order of 2 - 3 x 10(exp -6) ions per cubic centimeter. This density is about an order of magnitude larger than the average baryon density of the universe and is consistent with a supercluster collapse factor of 10. The implied total mass is of the order of 10(exp 16) times the mass of the sun and would constitute a large fraction of the baryonic matter in the local universe. This result supports current thinking that most of the ordinary matter in the universe is in the form of ionized hydrogen; however, the high temperature implied by the X-ray emission is at the top of the range predicted by most theories. The presence of a large amount of hot gas would leave its imprint on the Cosmic Microwave Background (CMB) via the Sunyaev-Zel'dovich (SZ) effect. A marginal decrement (-17 muK) was found in the COBE 4-year 53 GHz CMB map coincident with the plane of the local supercluster. Although the detection is only 1beta, the level is consistent with the SZ effect predicted from the hot gas. If these results are confirmed by future observations they will have important implications for the formation of large-scale structure in the universe. Three other projects related directly to the HEAO 1 map or the X-ray background in general benefited from this NASA grant. They are: (1) "Correlations between the Cosmic X-ray and Microwave Backgrounds: Constraints on a Cosmological Constant"; (2) "Cross-correlation of the X-ray Background with Radio Sources: Constraining the Large-Scale Structure of the X-ray Background"; and (3) "Radio and X-ray Emission Mechanisms in Advection Dominated Accretion Flow".

  4. Frequency behavior of coherent random lasing in diffusive resonant media

    NASA Astrophysics Data System (ADS)

    Tiwari, Anjani Kumar; Uppu, Ravitej; Mujumdar, Sushil

    2012-10-01

    We investigate diffusive propagation of light and consequent random lasing in an amplifying medium comprising resonant spherical scatterers. A Monte-Carlo calculation based on photon propagation via three-dimensional random walks is employed to obtain the dwell-times of light in the system. We compare the inter-scatterer and intra-scatterer dwell-times for representative resonant and non-resonant wavelengths. Our results show that more efficient random lasing, with intense coherent modes, is obtained for a system with intra-scatterer gain. This is also coupled with a larger reduction in frequency fluctuations. We find that such a system can yield almost thresholdless random lasing. Inspired by these results, we discuss a possible practical situation, based on a monodisperse aerosol, wherein frequency controlled coherent random lasing can be obtained. Since our analysis essentially investigates transport of intensity, the results are relevant to coherent random lasers under nonresonant feedback.

  5. Predicting release and transport of pesticides from a granular formulation during unsaturated diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Paradelo, Marcos; Soto-Gómez, Diego; Pérez-Rodríguez, Paula; Pose-Juan, Eva; López-Periago, J. Eugenio

    2014-03-01

    The release and transport of active ingredients (AIs) from controlled-release formulations (CRFs) have potential to reduce groundwater pesticide pollution. These formulations have a major effect on the release rate and subsequent transport to groundwater. Therefore the influence of CRFs should be included in modeling non-point source pollution by pesticides. We propose a simplified approach that uses a phase transition equation coupled to the diffusion equation that describes the release rate of AIs from commercial CRFs in porous media; the parameters are as follows: a release coefficient, the solubility of the AI, and diffusion transport with decay. The model gives acceptable predictions of the pesticides release from commercial CRFs in diffusion cells filled with quartz sand. This approach can be used to study the dynamics of the CRF-porous media interaction. It also could be implemented in fate of agricultural chemical models to include the effect of CRFs.

  6. Survival probability and order statistics of diffusion on disordered media.

    PubMed

    Acedo, L; Yuste, S B

    2002-07-01

    We investigate the first passage time t(j,N) to a given chemical or Euclidean distance of the first j of a set of N>1 independent random walkers all initially placed on a site of a disordered medium. To solve this order-statistics problem we assume that, for short times, the survival probability (the probability that a single random walker is not absorbed by a hyperspherical surface during some time interval) decays for disordered media in the same way as for Euclidean and some class of deterministic fractal lattices. This conjecture is checked by simulation on the incipient percolation aggregate embedded in two dimensions. Arbitrary moments of t(j,N) are expressed in terms of an asymptotic series in powers of 1/ln N, which is formally identical to those found for Euclidean and (some class of) deterministic fractal lattices. The agreement of the asymptotic expressions with simulation results for the two-dimensional percolation aggregate is good when the boundary is defined in terms of the chemical distance. The agreement worsens slightly when the Euclidean distance is used.

  7. Effect of transition from slip to free molecular flow on gas transport in porous media

    NASA Astrophysics Data System (ADS)

    Bravo, Maria Cecilia

    2007-10-01

    Traditional models, such as the advection-diffusion and the dusty gas models, overlook the contribution of the transition flow regime between the slip and the free molecular flow, on the gas transport in porous media. In this work we demonstrate that, due to the existence of this intermediate regime, the Klinkenberg [Drill. & Prod. Prac. 1941, 200 (1941)] parameter b depends on the pressure. Reported experiments were used to corroborate such an effect and a formulation that extends the Klinkenberg equation—to include the effect of a region at pore scale where both molecule-molecule and molecule-wall interactions are important—was developed. The mathematical form of the extended Klinkenberg equation remains the same, but the slippage Klinkenberg's parameter b is now a generalized parameter that is a function of Knudsen's number. It was demonstrated that the widely accepted relation between the parameter b and the Knudsen diffusion coefficient is a good approximation just for Knudsen numbers corresponding to the free molecular flow regime. The model proposed in this paper reproduces the experimental data and predicts practical situations where important errors on total flow rate can be expected if the transition flow regime is neglected in the formalism.

  8. OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.

    PubMed

    Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao

    2014-12-01

    It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.

  9. Analysis of porous media heterogeneities using the diffusion of pressure waves

    NASA Astrophysics Data System (ADS)

    Rigord, P.; Caristan, Y.; Hulin, J. P.

    1993-06-01

    We present an experimental study and a model of the diffusion of sinusoidal pressure waves through porous media. We show that measurements of the hydraulic admittance A(omega) in the sine wave mode allow us to probe the structure of porous samples with an adjustable investigation depth depending on the frequency omega. The variations of A(omega) in heterogeneous media with a percolationlike geometry are modeled numerically on 2D percolation networks. One obtains a transition from normal diffusion at low frequencies to anomalous diffusion at higher frequencies. At the transition, the penetration depth of the wave is of the order of the percolation correlation length. The hydraulic admittance and transmittance of 20 percent porosity pressed calcite have been investigated experimentally with sine wave excitations at pulsations omega between 2 x 10 exp -4 and 0.42 rad/s. Both the modulus and the phase of the complex admittance A(omega) display normal diffusive variations as omega increases. Increasing the viscosity reduces the frequency above which the diffusive behavior is observed. The measured diffusion coefficient is 25 percent higher than that computed from permeability and compressibility values measured independently; this difference may be associated with nonconnected porosity.

  10. Depth sensitivity of frequency domain optical measurements in diffusive media

    PubMed Central

    Sassaroli, Angelo; Torricelli, Alessandro; Spinelli, Lorenzo; Farina, Andrea; Durduran, Turgut; Cavalieri, Stefano; Pifferi, Antonio

    2017-01-01

    The depth sensitivity functions for AC amplitude, phase (PH) and DC intensity signals have been obtained in the frequency domain (where the source amplitude is modulated at radio-frequencies) by making use of analytical solutions of the photon diffusion equation in an infinite slab geometry. Furthermore, solutions for the relative contrast of AC, PH and DC signals when a totally absorbing plane is placed at a fixed depth of the slab have also been obtained. The solutions have been validated by comparisons with gold standard Monte Carlo simulations. The obtained results show that the AC signal, for modulation frequencies < 200 MHz, has a depth sensitivity with similar characteristics to that of the continuous-wave (CW) domain (source modulation frequency of zero). Thus, the depth probed by such a signal can be estimated by using the formula of penetration depth for the CW domain (Sci. Rep. 6, 27057 (2016)27256988). However, the PH signal has a different behavior compared to the CW domain, showing a larger depth sensitivity at shallow depths and a less steep relative contrast as a function of depth. These results mark a clear difference in term of depth sensitivity between AC and PH signals, and highlight the complexity of the estimation of the actual depth probed in tissue spectroscopy. PMID:28663921

  11. Depth sensitivity of frequency domain optical measurements in diffusive media.

    PubMed

    Binzoni, Tiziano; Sassaroli, Angelo; Torricelli, Alessandro; Spinelli, Lorenzo; Farina, Andrea; Durduran, Turgut; Cavalieri, Stefano; Pifferi, Antonio; Martelli, Fabrizio

    2017-06-01

    The depth sensitivity functions for AC amplitude, phase (PH) and DC intensity signals have been obtained in the frequency domain (where the source amplitude is modulated at radio-frequencies) by making use of analytical solutions of the photon diffusion equation in an infinite slab geometry. Furthermore, solutions for the relative contrast of AC, PH and DC signals when a totally absorbing plane is placed at a fixed depth of the slab have also been obtained. The solutions have been validated by comparisons with gold standard Monte Carlo simulations. The obtained results show that the AC signal, for modulation frequencies < 200 MHz, has a depth sensitivity with similar characteristics to that of the continuous-wave (CW) domain (source modulation frequency of zero). Thus, the depth probed by such a signal can be estimated by using the formula of penetration depth for the CW domain (Sci. Rep.6, 27057 (2016)). However, the PH signal has a different behavior compared to the CW domain, showing a larger depth sensitivity at shallow depths and a less steep relative contrast as a function of depth. These results mark a clear difference in term of depth sensitivity between AC and PH signals, and highlight the complexity of the estimation of the actual depth probed in tissue spectroscopy.

  12. Tracer diffusion coefficients in a sheared inelastic Maxwell gas

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Trizac, Emmanuel

    2016-07-01

    We study the transport properties of an impurity in a sheared granular gas, in the framework of the Boltzmann equation for inelastic Maxwell models. We investigate here the impact of a nonequilibrium phase transition found in such systems, where the tracer species carries a finite fraction of the total kinetic energy (ordered phase). To this end, the diffusion coefficients are first obtained for a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. In this situation, the set of coupled Boltzmann equations are solved by means of a Chapman-Enskog-like expansion around the (local) shear flow distributions for each species, thereby retaining all the hydrodynamic orders in the shear rate a. Due to the anisotropy induced by the shear flow, three tensorial quantities D ij , D p,ij , and D T,ij are required to describe the mass transport process instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled algebraic equations, which can be exactly solved as functions of the shear rate a, the coefficients of restitution {αsr} and the parameters of the mixture (masses and composition). Once the forms of D ij , D p,ij , and D T,ij are obtained for arbitrary mole fraction {{x}1}={{n}1}/≤ft({{n}1}+{{n}2}\\right) (where n r is the number density of species r), the tracer limit ({{x}1}\\to 0 ) is carefully considered for the above three diffusion tensors. Explicit forms for these coefficients are derived showing that their shear rate dependence is significantly affected by the order-disorder transition.

  13. [Effect of diffusion limitation on gas exchange in the lung--analysis in oleic acid-induced lung injury].

    PubMed

    Yamaguchi, K; Kawai, A; Mori, M; Asano, K; Takasugi, T; Umeda, A; Kawashiro, T; Yokoyama, T

    1993-05-01

    To assess the effect of diffusion limitation on gas exchange in injured lungs with non-cardiogenic pulmonary edema, an experimental model of acute lung injury with alveolar flooding was produced in six mongrel dogs by intravenously injecting oleic acid at 0.06 ml/kg. The effect of diffusion limitation was quantitatively examined by measuring the excretion (E) of three indicator gases (acetylene, ethylene and freon-22) with differing solubility (lambda) and tissue diffusivity (d). The indicator gases were dissolved in normal saline and infused at a constant rate through a peripheral vein. Since acetylene and ethylene have nearly identical of d but differing lambda, the difference in E values of these two gases may solely reflect the effect of uneven distribution of ventilation-perfusion ratios (VA/Q) in the lung. Thus, measured E values of acetylene and ethylene allowed us to approximately predict the E of freon-22, the value corresponding to the condition where d of freon-22 was taken to be equal to that of acetylene or ethylene. The difference between predicted and measured E values of freon-22 is indicative of the limitation of diffusion in the lung periphery. In all the lungs studied, measured E values of freon-22 were consistently smaller than those predicted from acetylene and ethylene, leading to the conclusion that gas exchange in injured lungs with widespread pulmonary edema was partly impaired by diffusion in aqueous media.

  14. [Electrochemical degradation of sodium pentachlorophenol on a Pd/C gas-diffusion electrode].

    PubMed

    Wang, Hui; Wang, Jian-Long

    2009-02-15

    Pd/C catalyst was prepared by hydrogen reduction method and used for the Pd/C gas-diffusion electrode. It was characterized by cyclic voltammetry (CV) techniques. The electrochemical degradation of sodium pentachlorophenol (PCP-Na) was investigated in a diaphragm electrolysis device, feeding firstly with hydrogen gas then with air, using the Pd/C gas-diffusion electrode and the carbon/polytetrafluoroethylene (C/PTFE) gas-diffusion electrode as the cathode, respectively. The results indicate that the two-electron reduction from O2 to hydrogen peroxide (H2O2) is produced at the Pd/C gas-diffusion electrode, and the accumulated H2O2 in the cathodic compartment reach to the steady concentration of 9.8 mg/L after 100 min. The Pd/C gas-diffusion cathode can reductively dechlorinate PCP-Na by feeding hydrogen gas, and accelerate the two-electron reduction of O2 to hydrogen peroxide (H2O2) by feeding air. Therefore, both the removal efficiency and the dechlorination degree of PCP-Na exceed 80% after 100 min, and the average removal efficiency of PCP-Na in terms of total organic carbon (TOC) exceeds 75% after 200 min by using Pd/C gas-diffusion cathode,which is better than that of the C/PTFE gas-diffusion cathode. High performance liquid chromatography (HPLC) allows identifying phenol as the dechlorination product.

  15. Diffusion of colloidal fluids in random porous media.

    PubMed

    Chávez-Rojo, M A; Juárez-Maldonado, R; Medina-Noyola, M

    2008-04-01

    The diffusive relaxation of a colloidal fluid adsorbed in a porous medium depends on many factors, including the concentration and composition of the adsorbed colloidal fluid, the average structure of the porous matrix, and the nature of the colloid-colloid and colloid-substrate interactions. A simple manner to describe these effects is to model the porous medium as a set of spherical particles fixed in space at random positions with prescribed statistical structural properties. Within this model one may describe the relaxation of concentration fluctuations of the adsorbed fluid by simply setting to zero the short-time mobility of one species (the porous matrix) in a theory of the dynamics of equilibrium colloidal mixtures, or by extending such dynamic theory to explicitly consider the porous matrix as a random external field, as recently done in the framework of mode coupling theory [V. Krakoviack, Phys. Rev. Lett. 94, 065703 (2005)]. Here we consider the first approach and employ the self-consistent generalized Langevin equation (SCGLE) theory of the dynamics of equilibrium colloidal mixtures, to describe the dynamics of the mobile component. We focus on the short- and intermediate-time regimes, which we compare with Brownian dynamics simulations involving a binary mixture with screened Coulomb interactions for two models of the average static structure of the matrix: a porous matrix constructed by quenching configurations of an equilibrium mixture in which both species were first equilibrated together, and a preexisting matrix with prescribed average structure, in which we later add the mobile species. We conclude that in both cases, if the correct static structure factors are provided as input, the SCGLE theory correctly predicts the main features of the dynamics of the permeating fluid.

  16. Detachment of Liquid-Water Droplets from Gas-Diffusion Layers

    SciTech Connect

    Das, Prodip K.; Grippin, Adam; Weber, Adam Z.

    2011-07-01

    A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on the gas-diffusion layer surfaces are investigated experimentally to improve the understating of water transport through and removal from gas-diffusion layers. An experiment using a sliding-angle measurement is designed and used to quantify and directly measure the adhesion force for liquid-water droplets, and to understand the droplets? growth and detachment from the gas-diffusion layers.

  17. Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.

    2014-02-01

    The physical structure of polar firn plays a key role in the mechanisms by which glaciers and ice sheets preserve a natural archive of past atmospheric composition. This study presents the first measurements of gas diffusivity and permeability along with microstructural information measured from the near-surface firn through the firn column to pore close-off. Both fine- and coarse-grained firn from Summit, Greenland are included in this study to investigate the variability in firn caused by seasonal and storm-event layering. Our measurements reveal that the porosity of firn (derived from density) is insufficient to describe the full profiles of diffusivity and permeability, particularly at porosity values above 0.5. Thus, even a model that could perfectly predict the density profile would be insufficient for application to issues involving gas transport. The measured diffusivity profile presented here is compared to two diffusivity profiles modeled from firn air measurements from Summit. Because of differences in scale and in firn processes between the true field situation, firn modeling, and laboratory measurements, the results follow a similar overall pattern but do not align; our results constitute a lower bound on diffusive transport. In comparing our measurements of both diffusivity and permeability to previous parameterizations from numerical 3-D lattice-Boltzmann modeling, it is evident that the previous relationships to porosity are likely site-specific. We present parameterizations relating diffusivity and permeability to porosity as a possible tool, though use of direct measurements would be far more accurate when feasible. The relationships between gas transport properties and microstructural properties are characterized and compared to existing relationships for general porous media, specifically the Katz-Thompson (KT), Kozeny-Carman (KC), and Archie's law approximations. While those approximations can capture the general trend of gas transport

  18. Diffusion of high-frequency energy in fluid-saturated porous media

    NASA Astrophysics Data System (ADS)

    Savin, Eric

    2004-05-01

    The modern mathematical theory of microlocal analysis shows that the energy associated with the high-frequency solutions of hyperbolic partial differential equations (such as the wave or the Navier equations) satisfy Liouville-type transport equations, or radiative transfer equations for randomly heterogeneous media. For long propagation times the latter can be approached by diffusion equations. Some classical results of the structural acoustics literature about the heat conduction analogy and the statistical energy analysis of structural dynamics at higher frequencies are recovered in this process. The purpose of this communication is to focus on such a diffusive regime for isotropic, fluid-saturated porous media. More specifically, we have derived the diffusion parameters (transport mean-free path and diffusion constant) for such media. Our model considers Biot's equations of poroelasticity, where thermal and viscous effects are modelized by dynamic tortuosity and compressibility with singular memory kernels. The macroscopic bulk modulus and density of the dry solid phase are assumed to be homogeneous random processes, while tortuosity and porosity remain constant.

  19. Development of an Internet accessible software: optics and spectroscopy of gas-aerosol media

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Kashirskii, D. E.; Egorov, O. V.

    2015-11-01

    A description of an Internet accessible software «Optics and spectroscopy of gas-aerosol media» is represented. The new software is focused on research in the field of direct and inverse problems of optics and spectroscopy of gas-aerosol media.

  20. Modeling heating curve for gas hydrate dissociation in porous media.

    PubMed

    Dicharry, Christophe; Gayet, Pascal; Marion, Gérard; Graciaa, Alain; Nesterov, Anatoliy N

    2005-09-15

    A method for modeling the heating curve for gas hydrate dissociation in porous media at isochoric conditions (constant cell volume) is presented. This method consists of using an equation of state of the gas, the cumulative volume distribution (CVD) of the porous medium, and a van der Waals-Platteeuw-type thermodynamic model that includes a capillary term. The proposed method was tested to predict the heating curves for methane hydrate dissociation in a mesoporous silica glass for saturated conditions (liquid volume = pore volume) and for a fractional conversion of water to hydrate of 1 (100% of the available water was converted to hydrate). The shape factor (F) of the hydrate-water interface was found equal to 1, supporting a cylindrical shape for the hydrate particles during hydrate dissociation. Using F = 1, it has been possible to predict the heating curve for different ranges of pressure and temperature. The excellent agreement between the calculated and experimental heating curves supports the validity of our approach.

  1. Compressed air energy storage in depleted natural gas reservoirs: effects of porous media and gas mixing

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Pan, L.

    2015-12-01

    Although large opportunities exist for compressed air energy storage (CAES) in aquifers and depleted natural gas reservoirs, only two grid-scale CAES facilities exist worldwide, both in salt caverns. As such, experience with CAES in porous media, what we call PM-CAES, is lacking and we have relied on modeling to elucidate PM-CAES processes. PM-CAES operates similarly to cavern CAES. Specifically, working gas (air) is injected through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir flows first into a recuperator, then into an expander, and subsequently is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Energy storage in porous media is complicated by the solid matrix grains which provide resistance to flow (via permeability in Darcy's law); in the cap rock, low-permeability matrix provides the seal to the reservoir. The solid grains also provide storage capacity for heat that might arise from compression, viscous flow effects, or chemical reactions. The storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Residual liquid (i.e., formation fluids) affects flow and can cause watering out at the production well(s). PG&E is researching a potential 300 MW (for ten hours) PM-CAES facility in a depleted gas reservoir near Lodi, California. Special considerations exist for depleted natural gas reservoirs because of mixing effects which can lead to undesirable residual methane (CH4) entrainment and reactions of oxygen and CH4. One strategy for avoiding extensive mixing of working gas (air) with reservoir CH4 is to inject an initial cushion gas with reduced oxygen concentration providing a buffer between the working gas (air) and the residual CH4 gas. This reduces the potential mixing of the working air with the residual CH4

  2. Electrochemical disinfection using the gas diffusion electrode system.

    PubMed

    Xu, Wenying; Li, Ping; Dong, Bin

    2010-01-01

    A study on the electrochemical disinfection with H2O2 generated at the gas diffusion electrode (GDE) from active carbon/polytetrafluoroethylene was performed in a non-membrane cell. The effects of Pt load and the pore-forming agent content in GDE, and operating conditions were investigated. The experimental results showed that nearly all bacterial cultures inoculated in the secondary effluent from wastewater treatment plant could be inactivated within 30 min at a current density of 10 mA/cm2. The disinfection improved with increasing Pt load. Addition of the pore-forming agent NH4HCO3 improved the disinfection, while a drop in the pH value resulted in a rapid rise of germicidal efficacy and the disinfection time was shortened with increasing oxygen flow rate. Adsorption was proved to be ineffective in destroying bacteria, while germicidal efficacy increased with current density. The acceleration rate was different, it initially increased with current density. Then decreased, and finally reached a maximum at a current density of 6.7 mA/cm2. The disinfection also improved with decreasing total bacterial count. The germicidal efficacy in the cathode compartment was approximately the same as in the anode compartment, indicating that the contribution of direct oxidation and the indirect treatment of bacterial cultures by hydroxyl radical was similar to the oxidative indirect effect of the generated H2O2.

  3. Buoyancy induced extinction of laminar gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Altenkirch, R. A.; Eichhorn, R.; Brancic, A. B.

    1977-01-01

    The behavior of laminar gas jet diffusion flames subjected to elevated gravity in order to investigate the role of buoyancy in such flames has been studied experimentally. Higher than earth normal gravity was achieved using a 1.83 m diameter centrifuge. Methane, ethane, propane and hydrogen air flames were stabilized at the exit of small tubular burners ranging in size from .05 to .21 cm in diameter. The experimental arrangement was such that the flames were burnt vertically upward. Following a shortening of the flame and a decrease in luminosity with increasing gravity level, further increases in gravity caused the hydrocarbon flames to separate from the rim and eventually extinguish. The extinction gravity levels appear to correlate with the parameter g alpha (u)/S to the 3rd (u), which should be a constant for buoyancy controlled extinction. This parameter is developed by a rudimentary analysis of the heat loss from the premixed stabilizing flame in the lifted flame base. When the loss is excessive, the flame is extinguished.

  4. Multi-scale structural analysis of gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Göbel, Martin; Godehardt, Michael; Schladitz, Katja

    2017-07-01

    The macroscopic properties of materials are strongly determined by their micro structure. Here, transport properties of gas diffusion layers (GDL) for fuel cells are considered. In order to simulate flow and thermal properties, detailed micro structural information is essential. 3D images obtained by high-resolution computed tomography using synchrotron radiation and scanning electron microscopy (SEM) combined with focused ion beam (FIB) serial slicing were used. A recent method for reconstruction of porous structures from FIB-SEM images and sophisticated morphological image transformations were applied to segment the solid structural components. The essential algorithmic steps for segmenting the different components in the tomographic data-sets are described and discussed. In this paper, two types of GDL, based on a non-woven substrate layer and a paper substrate layer were considered, respectively. More than three components are separated within the synchrotron radiation computed tomography data. That is, fiber system, polytetrafluoroethylene (PTFE) binder/impregnation, micro porous layer (MPL), inclusions within the latter, and pore space are segmented. The usage of the thus derived 3D structure data in different simulation applications can be demonstrated. Simulations of macroscopic properties such as thermal conductivity, depending on the flooding state of the GDL are possible.

  5. Stability Analysis of an Encapsulated Microbubble against Gas Diffusion

    PubMed Central

    Katiyar, Amit; Sarkar, Kausik

    2009-01-01

    Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although, bubbles, containing gases other than air is considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided. PMID:20005522

  6. Stability analysis of an encapsulated microbubble against gas diffusion.

    PubMed

    Katiyar, Amit; Sarkar, Kausik

    2010-03-01

    Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although bubbles, containing gases other than air, are considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support a net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided.

  7. The Impact of Diffuse Ionized Gas on Emission-line Ratios and Gas Metallicity Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yan, Renbin; MaNGA Team

    2016-01-01

    Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impact the measurements of emission line ratios, hence the gas-phase metallicity measurements and the interpretation of diagnostic diagrams. We demonstrate that emission line surface brightness (SB) is a reasonably good proxy to separate HII regions from regions dominated by diffuse ionized gas. For spatially-adjacent regions or regions at the same radius, many line ratios change systematically with emission line surface brightness, reflecting a gradual increase of dominance by DIG towards low SB. DIG could significantly bias the measurement of gas metallicity and metallicity gradient. Because DIG tend to have a higher temperature than HII regions, at fixed metallicity DIG displays lower [NII]/[OII] ratios. DIG also show lower [OIII]/[OII] ratios than HII regions, due to extended partially-ionized regions that enhance all low-ionization lines ([NII], [SII], [OII], [OI]). The contamination by DIG is responsible for a substantial portion of the scatter in metallicity measurements. At different surface brightness, line ratios and line ratio gradients can differ systematically. As DIG fraction could change with radius, it can affect the metallicity gradient measurements in systematic ways. The three commonly used strong-line metallicity indicators, R23, [NII]/[OII], O3N2, are all affected in different ways. To make robust metallicity gradient measurements, one has to properly isolate HII regions and correct for DIG contamination. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LINER-like regions.

  8. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    USGS Publications Warehouse

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  9. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

    PubMed Central

    Guerra, Carlos

    2017-01-01

    In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires) as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i) the gas diffusion coefficient inside such arrays, (ii) the time between collisions of molecules with the nanocylinder walls (mean time of flight), (iii) the surface impingement rate, and (iv) the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes. PMID:28144565

  10. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders.

    PubMed

    Szmyt, Wojciech; Guerra, Carlos; Utke, Ivo

    2017-01-01

    In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires) as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i) the gas diffusion coefficient inside such arrays, (ii) the time between collisions of molecules with the nanocylinder walls (mean time of flight), (iii) the surface impingement rate, and (iv) the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes.

  11. Upscaling scheme for long-term ion diffusion in charged porous media

    NASA Astrophysics Data System (ADS)

    Yang, Yuankai; Wang, Moran

    2017-08-01

    Description of long-term (over years) ion diffusion at the pore scale is a huge challenge since the characteristic time of diffusion in a typical representative elementary volume is around microseconds, generally ten orders of magnitude lower than the time we were concerned with. This paper presents a numerical upscaling scheme for ion diffusion with electrical double-layer effects (electrodiffusion) considered in charged porous media. After a scaling analysis for the nondimensional governing equations of ion transport at the pore scale, we identify the conditions for decoupling of electrical effect and diffusion, and therefore are able to choose apposite temporal and spatial scales for corresponding directions of the electrodiffusion process. The upscaling scheme is therefore proposed based on a numerical framework for governing equations using a lattice Boltzmann method. The electrical potential or concentration profiles from steady- or unsteady-state electrodiffusion in the long, straight channel, calculated by this upscaling scheme, are compared with the well-meshed full-sized simulations with good agreement. Furthermore, this scheme is used to predict tracer-ion throughdiffusion and outdiffusion in hardened cement pastes. All numerical results show good agreement with the full-sized simulations or experiment data without any fitting parameters. This upscaling scheme bridges the ion diffusion behaviors in different time scales, and may help to improve the understanding of long-term ion transport mechanisms in charged porous media.

  12. Thermal characterization of semi-transparent media: measurement of phononic diffusivity of glass and silica

    NASA Astrophysics Data System (ADS)

    Lazard, M.; André, S.; Maillet, D.

    2003-09-01

    Materials such as glasses, insulated foams, polymers are semi-transparent. In order to measure the phononic diffusivity of such media in which the heat transfer is both conductive and radiative it is necessary to develop a complete methodology. The technique, we propose here, is an extension of the Flash method with the use of a semi-analytical combined model. It permits to determine the diffusivity of materials such as glass and silica for a large range of temperature (from 300K to 700K).

  13. A novel rumor diffusion model considering the effect of truth in online social media

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Liu, Yun; Zeng, Qing-An; Xiong, Fei

    2015-12-01

    In this paper, we propose a model to investigate how truth affects rumor diffusion in online social media. Our model reveals a relation between rumor and truth — namely, when a rumor is diffusing, the truth about the rumor also diffuses with it. Two patterns of the agents used to identify rumor, self-identification and passive learning are taken into account. Combining theoretical proof and simulation analysis, we find that the threshold value of rumor diffusion is negatively correlated to the connectivity between nodes in the network and the probability β of agents knowing truth. Increasing β can reduce the maximum density of the rumor spreaders and slow down the generation speed of new rumor spreaders. On the other hand, we conclude that the best rumor diffusion strategy must balance the probability of forwarding rumor and the probability of agents losing interest in the rumor. High spread rate λ of rumor would lead to a surge in truth dissemination which will greatly limit the diffusion of rumor. Furthermore, in the case of unknown λ, increasing β can effectively reduce the maximum proportion of agents who do not know the truth, but cannot narrow the rumor diffusion range in a certain interval of β.

  14. Diffused waveguiding capillary tube with distributed feedback for a gas laser

    NASA Technical Reports Server (NTRS)

    Elachi, C. (Inventor)

    1976-01-01

    For use in a waveguide gas laser, a capillary tube of glass or ceramic has an inner surface defining a longitudinal capillary opening through which the laser gas flows. At least a portion of the inner surface is corrugated with corrugations or channels with a periodicity Lambda where Lambda = 1/2 Lambda, Lambda being the laser gas wavelength. The tube includes a diffused region extending outwardly from the opening. The diffused region of a depth d on the order of 1 Lambda to 3 Lambda acts as a waveguide for the waves, with the corrugations producing distributed feedback. The evanescent component of the waves traveling in the diffused region interact with the laser gas in the opening, gaining energy, and thereby amplifying the waves travelling in the diffused region, which exit the diffused region, surrounding the opening, as a beam of wavelength Lambda.

  15. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    SciTech Connect

    Rohmer, Damien; Gullberg, Grant T.

    2006-12-29

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore,informs on the structure of the biological tissue. This technique isapplied with success to the static organs such as brain. However, thediffusion measurement on the dynamically deformable organs such as thein-vivo heart is a complex problem that has however a great potential inthe measurement of cardiac health. In order to understand the behavior ofthe Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torreyequation that leads the MR behavior is expressed in general curvilinearcoordinates. These coordinates enable to follow the heart geometry anddeformations through time. The equation is finally discretized andpresented in a numerical formulation using implicit methods, in order toget a stable scheme that can be applied to any smooth deformations.Diffusion process enables the link between the macroscopic behavior ofmolecules and themicroscopic structure in which they evolve. Themeasurement of diffusion in biological tissues is therefore of majorimportance in understanding the complex underlying structure that cannotbe studied directly. The Diffusion Tensor Magnetic ResonanceImaging(DTMRI) technique enables the measurement of diffusion parametersand therefore provides information on the structure of the biologicaltissue. This technique has been applied with success to static organssuch as the brain. However, diffusion measurement of dynamicallydeformable organs such as the in-vivo heart remains a complex problem,which holds great potential in determining cardiac health. In order tounderstand the behavior of the magnetic resonance (MR) signal in adeforming media, the Bloch-Torrey equation that defines the MR behavioris expressed in general curvilinear coordinates. These coordinates enableus to follow the heart geometry and deformations through time. Theequation is finally discretized and presented in a numerical formulationusing

  16. A lattice-Boltzman model for noble gas diffusion

    NASA Astrophysics Data System (ADS)

    Cassata, W. S.; Huber, C.; Renne, P. R.

    2010-12-01

    Thermochronometry by the 40Ar/39Ar, 4He/3He, and (U-Th)/He techniques provides insights into a array of planetary processes that span immense time and temperature regimes, from rapid and high temperature asteroid impact events to mountain uplift occurring over plate tectonic timescales at near surface temperatures. Thermal modeling has expanded from simple calculations for quantifying diffusion from a single spherical domain or log normal distributions of domains to include crystals having discrete domain distributions, fast diffusion pathways, diffusive anisotropy, complex crystal geometries, alpha damage, and alpha ejection. Despite these advances, our understanding of diffusion within crystals that have complex microstructural features (e.g., exsolution and diffusive sinks) or highly asymmetric concentration gradients remains fragmentary. Improved computational speeds now enable thermochronologists to quantitatively explore many such problems. We have developed a code based on the lattice-Boltzmann (LB) method to model diffusion from a variety of complex 2-D geometries having isotropic, temperature-independent anisotropic, and temperature-dependent anisotropic diffusivity. We utilize the LB diffusion code to examine the effects of non-zero concentration boundaries, fast diffusion pathways, diffusive sinks, exsolution lamellae, asymmetrical concentration distributions, and temperature gradients on calculated diffusion parameters, age data, and inferred thermal histories. Animations and geological examples illustrate the applicability of the code to natural settings.

  17. Frequency-dependent reflection coefficients in elastic diffusive-viscous media

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Wang, X.; Gao, J.

    2016-12-01

    Amplitude variation with offset/angle of incidence (AVO/AVA) analysis is essential for hydrocarbon detection and reservoir characterization. Frequency-dependent AVO analysis plays an important role in seismic interpretation especially for the low-frequency seismic anomalies. The diffusive-viscous wave equation is used to explain these anomalies, but it does not consider the shear effect of rocks. In this work, we firstly extend the diffusive-viscous wave equation to the elastic case by considering the shear effect of rocks based on the mechanisms in megascopic porous media. The elastic diffusive-viscous wave equation contains the attenuation of compressional and shear waves in hydrocarbon-saturated media and it reduces to the classic elastic wave equation in a special case. Then, we investigate the reflection and transmission coefficients at an interface between two different elastic diffusive-viscous media. The reflection and transmission coefficients not only relate to the parameters of the media but also depend significantly on the frequency. Finally we give an example to analyze the dependences of the reflection and transmission coefficients on the frequency and incident angle at an interface between a brine-saturated shale and an oil-saturated sandstone. The results show that magnitudes of the reflection and transmission coefficients have peak values at low frequency (<10 Hz). Also, the magnitudes increase with increasing incident angle except for the transmitted P-wave. Moreover, the phase angles of reflection and transmission coefficients vary significantly at lower frequency (< 10 Hz) and larger incident angle (> 20 degree). These results may have a potential to interpret the seismic low-frequency phenomena in hydrocarbon reservoirs.

  18. Polymer diffusion in porous media of fumed silica studied by forced Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Guo, Yihong; O'donohue, Stephen J.; Langley, Kenneth H.; Karasz, Frank E.

    1992-09-01

    The diffusion of dye-labeled linear polystyrenes within porous media composed of fumed silica particles has been studied by using forced-Rayleigh-scattering (FRS) spectroscopy. Significant differences have been observed between results obtained by using silica R972 (made by the Degussa Corp.), which is known to adsorb labeled polystyrene chains, and silica R972-M, in which the surface hydroxyl concentration has been reduced to minimize surface adsorption. In the porous medium R972-M, the FRS signal was ``normal,'' and the decay rate 1/τ was proportional to the square of the scattering wave vector, an observation indicating diffusion by Brownian motion. In contrast, in the porous medium R972, the FRS signal was ``abnormal'' and there was an obvious curvature in the plot of 1/τ vs q2. We studied the effect of porosity on the hindrance to diffusion in both types of porous fumed silica; the hindrance is characterized by the ratio of the diffusion coefficient inside the pores to that in the free solution, D/D0. For polymer diffusion inside R972-M, the hindrance can for the most part be attributed to geometric obstruction and hydrodynamic interaction with the silica surface; the experimental data are compared with predictions of the theories of Neale and Nader [Am. Inst. Chem. Eng. J. 19, 112 (1973)] and of Prager [Physica 29, 129 (1963)]. In the porous R972, adsorption dominated the polymer diffusion behavior, and the measured value of D/D0, which was also a weak function of the labeling ratio, fell within the range 0.2-0.4, an observation indicating very strong hindrance. The changing diffusion rate during gelation was also monitored, and a difference in the times required for stabilization of the diffusion coefficient was found in the two silica systems. This difference is related to the mechanisms that govern diffusion behavior in each system.

  19. Electrochemical degradation of pentachlorophenol on a palladium modified gas-diffusion electrode.

    PubMed

    Wang, H; Wang, J L

    2009-01-01

    Pd/C catalyst was prepared by a hydrogen reduction method and used for making a Pd/C gas-diffusion electrode. It was fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). In the catalyst, Pd particles with an average size of 4.0 nm were highly dispersed in the activated carbon with an amorphous structure; Pd content on the surface of the Pd/C catalyst reached 1.3 at% (atomic concentration). The Pd/C gas-diffusion electrode was then used as the cathode to investigate the electrochemical degradation of pentachlorophenol (PCP) in a diaphragm electrolysis device, feeding firstly with hydrogen gas then with air, compared with the carbon/polytetrafluoroethylene (C/PTFE) gas-diffusion cathode. The Pd/C gas-diffusion cathode can not only reductively dechlorinate PCP by feeding hydrogen gas, but also accelerate the two-electron reduction of O2 to hydrogen peroxide (H2O2) by feeding air. Therefore, both the removal efficiency and the dechlorination degree of PCP exceeded 80% after 100 min, and the average removal efficiency of PCP in terms of total organic carbon (TOC) was more than 75% after 200 min by using Pd/C gas-diffusion cathode, which was better than that of the C/PTFE gas-diffusion cathode. Phenol was identified as the dechorination product using high-performance liquid chromatography (HPLC).

  20. Diffusion of a Rouse chain in porous media: A mode-coupling-theory study

    NASA Astrophysics Data System (ADS)

    Ding, Huai; Jiang, Huijun; Zhao, Nanrong; Hou, Zhonghuai

    2017-01-01

    We use a kinetic mode-coupling theory (MCT) combining with generalized Langevin equation (GLE) to study the diffusion and conformational dynamics of a bead-spring Rouse chain (RC) dissolved in porous media. The media contains fluid particles and immobile matrix ones wherein the latter leads to the lack of translational invariance. The friction kernel ζ (t ) used in the GLE can be obtained directly by adopting a simple density-functional approach in which the density correlators calculated by MCT equations of porous media serve as inputs. Due to cage effects generated by surrounding particles, ζ (t ) shows a very long tail memory in the high volume fraction of fluid and matrix. It is found that the long-time center-of-mass diffusion constant DCM of the RC decreases with the increment of volume fraction, influencing more strongly by the matrix particles than by the fluid ones. The auto-correlation function (ACF) of the end-to-end distance fluctuation can also be calculated theoretically based on GLE. Of particular interest is that the power-law region of ACF has a nearly fixed length in logarithmic scale when it shifts to longer time range, with increasing the volume fraction of media particles. Moreover, the effect of lack of translational invariance has been investigated by comparing the results between fluid-matrix and pure fluid cases under identical total volume fraction.

  1. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    SciTech Connect

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; Peter, William H.; Toops, Todd J.; Green, Jr., Johney Boyd

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure, rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process

  2. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE PAGES

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; ...

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  3. Diffusion and decay chain of radioisotopes in stagnant water in saturated porous media.

    PubMed

    Guzmán, Juan; Alvarez-Ramirez, Jose; Escarela-Pérez, Rafael; Vargas, Raúl Alejandro

    2014-09-01

    The analysis of the diffusion of radioisotopes in stagnant water in saturated porous media is important to validate the performance of barrier systems used in radioactive repositories. In this work a methodology is developed to determine the radioisotope concentration in a two-reservoir configuration: a saturated porous medium with stagnant water is surrounded by two reservoirs. The concentrations are obtained for all the radioisotopes of the decay chain using the concept of overvalued concentration. A methodology, based on the variable separation method, is proposed for the solution of the transport equation. The novelty of the proposed methodology involves the factorization of the overvalued concentration in two factors: one that describes the diffusion without decay and another one that describes the decay without diffusion. It is possible with the proposed methodology to determine the required time to obtain equal injective and diffusive concentrations in reservoirs. In fact, this time is inversely proportional to the diffusion coefficient. In addition, the proposed methodology allows finding the required time to get a linear and constant space distribution of the concentration in porous mediums. This time is inversely proportional to the diffusion coefficient. In order to validate the proposed methodology, the distributions in the radioisotope concentrations are compared with other experimental and numerical works.

  4. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P. J.

    2014-10-01

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  5. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    SciTech Connect

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P.J.

    2014-10-15

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  6. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media.

    PubMed

    Zhou, L; Qu, Z G; Ding, T; Miao, J Y

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  7. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  8. Improvement of oxygen diffusion characteristic in gas diffusion layer with planar-distributed wettability for polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Koresawa, Ryo; Utaka, Yoshio

    2014-12-01

    Mass transfer characteristics of gas diffusion layer (GDL) are closely related to performance of polymer electrolyte fuel cells. Therefore, it is necessary to clarify the characteristics of water distribution relating to the microscopic conformation and oxygen diffusivity of GDL. A hybrid type carbon paper GDL with planar-distributed wettability is investigated for control of liquid water movement and distribution due to hydrophobic to hydrophilic areas that provide wettability differences in GDL and to achieve enhancement of both oxygen diffusion and moisture retention. Hybrid GDLs with different PTFE content were fabricated in an attempt to improve the oxygen diffusion characteristics. The effects of different PTFE contents on the oxygen diffusivity and water distribution were simultaneously measured and observed using galvanic cell oxygen absorber and X-ray radiography. The PTFE distribution was observed using scanning electron microscopy. The formation of oxygen diffusion paths was confirmed by X-ray radiography, where voids in the hybrid GDL were first formed in the hydrophobic regions and then spread to the untreated wetting region. Thus, the formation of oxygen diffusion paths enhanced the oxygen diffusion. In addition, the effects of local PTFE content in the hydrophobic region and the optimal amount of PTFE for hybrid GDL were elucidated.

  9. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    SciTech Connect

    Kwong, S.; Jivkov, A.P.

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  10. Diffusion-controlled startup of a gas-loaded liquid-metal heat pipe

    NASA Astrophysics Data System (ADS)

    Ponnappan, R.; Boehman, L. I.; Mahefkey, E. T.

    1990-07-01

    Liquid-metal heat pipes have exhibited difficulties starting up from a frozen-state. Inert gas loading is a possible solution to the frozen-state startup problem. The present study deals with the diffusion-controlled startup analysis and testing of an argon-loaded, 2-m-long, stainless steel-sodium heat pipe of the double-walled type with artery channel and long adiabatic section. A two-dimensional, quasi-steady state, binary vapor-gas diffusion model determined the energy transport rate of vapor at the diffusion front. The analytical solution to the diffusion problem provided the vapor flux, which in turn was used in the one-dimensional transient thermal model of the heat pipe to predict the time rate-of-change of temperature and position of the hot front. The experimental test results successfully demonstrated the startup of a gas-loaded sodium heat pipe and validated the diffusion model of the startup.

  11. Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC.

    PubMed

    Skoulidas, Anastasios I

    2004-02-11

    The class of coordination polymers known as metal-organic frameworks (MOFs) has three-dimensional porous structures that are considered as a promising alternative to zeolites and other nanoporous materials for catalysis, gas adsorption, and gas separation applications. In this paper, we present the first study of gas diffusion inside an MOF and compare the observed diffusion to known behaviors in zeolites. Using grand canonical Monte Carlo and equilibrium molecular dynamics, we calculate the adsorption isotherm and self-, corrected, and transport diffusivities for argon in the CuBTC metal-organic framework. Our results indicate that diffusion of Ar in CuBTC is very similar to Ar diffusion in silica zeolites in magnitude, concentration, and temperature dependence. This conclusion appears to apply to a broad range of MOF structures.

  12. Observations of a helium-air gas-confined barrier discharge operated in diffuse mode

    NASA Astrophysics Data System (ADS)

    Wu, Shuqun; Dong, Xi; Mao, Wenhao; Yue, Yuanfu; Jiang, Jun; Zhang, Chaohai; Lu, Xinpei

    2017-08-01

    With ambient air instead of solid dielectric operating as the insulating layer, a diffuse helium/air gas-confined barrier discharge with a coaxial jet configuration is demonstrated for the first time. The effects of the helium gas flow rate, the diameter, and the vertical position of the helium gas flow on the breakdown characteristics of the diffuse mode are investigated. As the applied voltage increases, a diffuse plasma layer is first ignited within the helium gas column followed by a typical filamentary discharge bridging the whole gap. With the replacement of ambient air by N2 or O2 gas, the diffuse mode can be achieved with relatively lower breakdown voltage in the case of N2 gas while it is not observable in the case of O2 gas. The dynamics of the diffuse discharge show that the plasma front crosses the helium gas column vertically at an average velocity of ˜104 m/s, and then splits into two horizontally counter-propagating plasma fronts with the dark channel left behind.

  13. Dynamics of effusive and diffusive gas separation on pillared graphene.

    PubMed

    Wesołowski, Radosław P; Terzyk, Artur P

    2016-06-22

    Pillared graphene structures, from a practical viewpoint, are very interesting novel carbon materials. Combining the properties of graphene and nanotubes, such as durability, chemical purity and a controlled structure, they were proven to be effective membranes for noble gas separation processes. Here, we examine their possible use for other, more commercially useful gas mixture separation, i.e. air and coal gas. The mechanism of air gas transport through the pillar channels is studied, and the prospective application of 2-D pillared membranes in effusion-like processes provided. The separative abilities of hybrid systems consisting of membranes with different channel diameters in relation to coal gas are proven to be promising.

  14. [Electrochemical disinfection using the gas diffusion electrode system].

    PubMed

    Xu, Wen-Ying; Li, Ping; Dong, Bin

    2010-01-01

    Study on the electrochemical disinfection with the H2O2 produced at the gas diffusion electrode (GDE) prepared from active carbon/ poly-tetrafluoroethylene (PTFE) was performed in the non-membrane cell. The effects of PTFE mass fraction W(PTFE) and content of the pore-forming agent in GDE m(NH4CO3), operating conditions such as pH value and oxygen flow rate Q(o2)) on disinfection were investigated, respectively. The experimental results showed that H2 O2 reached peak production at W(PTFE) of 0.5 in GDE. Addition of the pore-forming agent in the appropriate amount improved the disinfection, and this phenomenon was more obvious at neutral pH than at acidic pH. BET specific area analysis indicated that the average pore size in the membrane electrode first decreased significantly with the increasing amount of pore-forming agent, and then increased moderately. This helped the mass transfer of oxygen at the GDE. Adsorption made little or no progress to kill the bacteria during the electrolysis. Drop of pH value resulted in a rapid rise of the germicidal efficacy. This system had a broad pH coverage: when total bacterial count in raw water was 10(6) CFU x mL(-1), pH 3-10,the germicidal efficacy was greater than 80% after 30 min electrolysis using the GDE with W(Pt) of 3 per thousand as cathode. Increase of the oxygen flow rate Q(o2) within limits had little influence on the production of H2 O2 and the succeeding disinfection. On one hand, resistance of the solution and energy consumption on the disinfection increased at high oxygen flow rate, which gave rise to an increase in the operating cost of disinfection with the GDE system; on the other hand, treatment time could be reduced reasonably at high oxygen flow rate, which leads to reduction of equipment investment. Killing mechanism study showed that the direct oxidation and formation of the free radicals at the anode played a greater role in the beginning, and then the oxidative indirect effect of the generated H2 O2 at

  15. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  16. An in situ method for real-time monitoring of soil gas diffusivity

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  17. EOS7CA Version 1.0: TOUGH2 Module for Gas Migration in Shallow Subsurface Porous Media Systems

    SciTech Connect

    Oldenburg, Curtis M.

    2015-03-06

    EOS7CA is a TOUGH2 module for mixtures of a non-condensible gas (NCG) and air with or without a gas tracer, an aqueous phase, and water vapor. The user can select the NCG as being CO2, N2, or CH4. EOS7CA uses a cubic equation of state with a multiphase version of Darcy’s Law to model flow and transport of gas and aqueous phase mixtures over a range of pressures and temperatures appropriate to shallow subsurface porous media systems. The limitation to shallow systems arises from the use of Henry’s Law for gas solubility which is appropriate for low pressures but begins to over-predict solubility starting at pressures greater than approximately 1 MPa (10 bar). The components modeled in EOS7CA are water, brine, NCG, gas tracer, air, and optional heat. The real gas properties module (ZEVCA) has options for Peng-Robinson, Redlich-Kwong, or Soave-Redlich-Kwong equations of state to calculate gas mixture density, enthalpy departure, and viscosity. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. This user guide provides instructions for use and two sample problems as verification and demonstration of EOS7CA.

  18. Theory and simulation of time-fractional fluid diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Sanchez-Sesma, Francisco J.; Luzón, Francisco; Perez Gavilán, Juan J.

    2013-08-01

    We simulate a fluid flow in inhomogeneous anisotropic porous media using a time-fractional diffusion equation and the staggered Fourier pseudospectral method to compute the spatial derivatives. A fractional derivative of the order of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion equation. It implies a time-dependent permeability tensor having a power-law time dependence, which describes memory effects and accounts for anomalous diffusion. We provide a complete analysis of the physics based on plane waves. The concepts of phase, group and energy velocities are analyzed to describe the location of the diffusion front, and the attenuation and quality factors are obtained to quantify the amplitude decay. We also obtain the frequency-domain Green function. The time derivative is computed with the Grünwald-Letnikov summation, which is a finite-difference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. An example of the pressure field generated by a fluid injection in a heterogeneous sandstone illustrates the performance of the algorithm for different values of ν. The calculation requires storing the whole pressure field in the computer memory since anomalous diffusion ‘recalls the past’.

  19. A multiscale theoretical model for diffusive mass transfer in cellular biological media.

    PubMed

    Kapellos, George E; Alexiou, Terpsichori S; Payatakes, Alkiviades C

    2007-11-01

    An integrated methodology is developed for the theoretical analysis of solute transport and reaction in cellular biological media, such as tissues, microbial flocs, and biofilms. First, the method of local spatial averaging with a weight function is used to establish the equation which describes solute conservation at the cellular biological medium scale, starting with a continuum-based formulation of solute transport at finer spatial scales. Second, an effective-medium model is developed for the self-consistent calculation of the local diffusion coefficient in the cellular biological medium, including the effects of the structural heterogeneity of the extra-cellular space and the reversible adsorption to extra-cellular polymers. The final expression for the local effective diffusion coefficient is: D(Abeta)=lambda(beta)D(Aupsilon), where D(Aupsilon) is the diffusion coefficient in water, and lambda(beta) is a function of the composition and fundamental geometric and physicochemical system properties, including the size of solute molecules, the size of extra-cellular polymer fibers, and the mass permeability of the cell membrane. Furthermore, the analysis sheds some light on the function of the extra-cellular hydrogel as a diffusive barrier to solute molecules approaching the cell membrane, and its implications on the transport of chemotherapeutic agents within a cellular biological medium. Finally, the model predicts the qualitative trend as well as the quantitative variability of a large number of published experimental data on the diffusion coefficient of oxygen in cell-entrapping gels, microbial flocs, biofilms, and mammalian tissues.

  20. Multifrequency radiation diffusion equations for homogeneous, refractive, lossy media and their interface conditions

    SciTech Connect

    Shestakov, Aleksei I.

    2013-06-15

    We derive time-dependent multifrequency diffusion equations for homogeneous, refractive lossy media. The equations are applicable for a domain composed of several materials with distinct refractive indexes. In such applications, the fundamental radiation variable, the intensity I, is discontinuous across material interfaces. The diffusion equations evolve a variable ξ, the integral of I over all directions divided by the square of the refractive index. Attention is focused on boundary and internal interface conditions for ξ. For numerical solutions using finite elements, it is shown that at material interfaces, the usual diffusion coefficient 1/3κ of the multifrequency equation, where κ is the opacity, is modified by a tensor diffusion term consisting of integrals of the reflectivity. Numerical results are presented. For a single material simulation, the ξ equations yield the same result as diffusion equations that evolve the spectral radiation energy density. A second simulation solves a test problem that models radiation transport in a domain comprised of materials with different refractive indexes. Results qualitatively agree with those previously published.

  1. Diffusion in Homogeneous and in Inhomogeneous Media: A New Unified Approach.

    PubMed

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2016-11-08

    We propose a new method to calculate the diffusion coefficient within molecular dynamics simulations for either homogeneous or inhomogeneous fluids. We formulate such method by solving analytically the Smoluchowski equation for a linear potential of mean force within a thin layer with absorbing boundary conditions. The bulk, or homogeneous, fluid diffusion emerges as a particular case in this approach. We apply this method to bulk liquid water at atmospheric pressure and different temperatures using the SPC/E water force field. We show that our method gives results as accurate as the traditional Einstein-Smoluchowski method, avoiding the fitting procedure required in the traditional method. We also apply this method for molten sodium chloride showing its applicability for multicomponent systems. The water vapor-liquid interface is studied as an example of an inhomogeneous system. We calculate all the components of the diffusion tensor at the interface. We observe the same anisotropy between the perpendicular and the parallel components at the interface as it has been noted in the literature. We also calculate the perpendicular self-diffusion coefficient of methane near the calcite surface showing that this coefficient is much lower than the parallel diffusion coefficients. We believe that this new unified approach is a very promising technique for both bulk and confined media.

  2. Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong

    2017-05-01

    We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.

  3. Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong

    2016-09-01

    We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} m^{ 2} / s, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} m^{ 2} / s. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.

  4. Transport of methane and noble gases during gas push-pull tests in dry porous media.

    PubMed

    Gonzalez-Gil, Graciela; Schroth, Martin H; Zeyer, Josef

    2007-05-01

    A field method called the gas push-pull test (GPPT) was previously developed and tested for the in situ quantification of aerobic methane (CH4) oxidation by soil microorganisms. The GPPT consists of an injection followed by extraction of reactant and tracer gases into and out of the soil. Quantification of microbial activities from GPPTs requires insight in the transport of reactant and tracer gases under diverse field conditions. We investigated how the transport of differenttracer gases (He, Ne, and Ar) compares to that of the reactant gas CH4 during GPPTs conducted in a well-defined, dry porous media that mimicked an open system. Transport of gaseous components during GPPT is mainly driven by advection resulting from injection and extraction and diffusion driven by concentration gradients. Regardless of the advective component (selected injection/ extraction, flow rates 0.2-0.8 L min(-1)), diffusion was the dominant transport mechanism for gaseous components. This resulted in dissimilar transport of CH4 and the tracers He and Ne. Numerical simulations of GPPTs showed that similar transport of these components is only achieved at very high injection/extraction rates that, in practice, are not feasible since they would imply extremely short duration times of GPPTs to allow for consumption of a measurable amount of reactant(s) by soil microorganisms. However, Ar transport was similar to that of CH4. Hence, Ar may be a good tracer provided that it is injected at high concentrations (e.g., >25% [v/v]) to overcome its background concentration in soil air. Using moderate injection/ extraction rates (e.g., 0.6 L min(-1)) with injected volumes of 10-30 L will result in GPPT durations of 1-3 h, which would suffice to attain a measurable consumption of reactant(s) in soils having relatively high (e.g., first-order rate constants >0.3 h(-1)) microbial activities.

  5. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  6. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    DOEpatents

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  7. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    SciTech Connect

    Hielscher, A.H.; Mourant, J.R.; Bigio, I.J.

    2000-01-04

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser ({lambda} = 543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4 x 4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  8. Helium-3 gas self-diffusion in a nematically ordered aerogel at low temperatures: enhanced role of adsorption.

    PubMed

    Kuzmin, Vyacheslav; Safiullin, Kajum; Stanislavovas, Andrey; Tagirov, Murat

    2017-08-30

    We performed (3)He gas diffusion measurements for the first time in a highly porous ordered Al2O3 aerogel sample at a temperature of 4.2 K using a nuclear magnetic resonance field gradient technique. A strong influence of (3)He adsorption in the aerogel on self-diffusion is observed. The classical consideration of adsorptive gas diffusion in mesopores leads to anomalously high tortuosity factors. The application of a more sophisticated model than the simple combination of empirical two-phase diffusion and the Knudsen gas diffusion models is required to explain our results. Anisotropic properties of the aerogel are not reflected in the observed gas diffusion even at low gas densities where the anisotropic Knudsen regime of diffusion is expected. The observed gas densification indicates the influence of the aerogel attractive potential on the molecular dynamics, which probably explains the reduced diffusion process. Perhaps this behavior is common for any adsorptive gases in nanopores.

  9. Compilation and evaluation of gas-phase diffusion coefficients of inorganic reactive trace gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-06-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed.

  10. Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance.

    PubMed

    Pham, T H; Spott, T; Svaasand, L O; Tromberg, B J

    2000-09-01

    Noncontact, frequency-domain measurements of diffusely reflected light are used to quantify optical properties of two-layer tissuelike turbid media. The irradiating source is a sinusoidal intensity-modulated plane wave, with modulation frequencies ranging from 10 to 1500 MHz. Frequency-dependent phase and amplitude of diffusely reflected photon density waves are simultaneously fitted to a diffusion-based two-layer model to quantify absorption (mu(a)) and reduced scattering (mu(s)') parameters of each layer as well as the upper-layer thickness (l). Study results indicate that the optical properties of two-layer media can be determined with a percent accuracy of the order of +/-9% and +/-5% for mu(a) and mu(s)', respectively. The accuracy of upper-layer thickness (l) estimation is as good as +/-6% when optical properties of upper and lower layers are known. Optical property and layer thickness prediction accuracy degrade significantly when more than three free parameters are extracted from data fits. Problems with convergence are encountered when all five free parameters (mu(a) and mu(s)' of upper and lower layers and thickness l) must be deduced.

  11. Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Russian, Anna; Dentz, Marco; Gouze, Philippe

    2017-08-01

    Diffusion in natural and engineered media is quantified in terms of stochastic models for the heterogeneity-induced fluctuations of particle motion. However, fundamental properties such as ergodicity and self-averaging and their dependence on the disorder distribution are often not known. Here, we investigate these questions for diffusion in quenched disordered media characterized by spatially varying retardation properties, which account for particle retention due to physical or chemical interactions with the medium. We link self-averaging and ergodicity to the disorder sampling efficiency Rn, which quantifies the number of disorder realizations a noise ensemble may sample in a single disorder realization. Diffusion for disorder scenarios characterized by a finite mean transition time is ergodic and self-averaging for any dimension. The strength of the sample to sample fluctuations decreases with increasing spatial dimension. For an infinite mean transition time, particle motion is weakly ergodicity breaking in any dimension because single particles cannot sample the heterogeneity spectrum in finite time. However, even though the noise ensemble is not representative of the single-particle time statistics, subdiffusive motion in q ≥2 dimensions is self-averaging, which means that the noise ensemble in a single realization samples a representative part of the heterogeneity spectrum.

  12. Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media

    NASA Astrophysics Data System (ADS)

    Hemphill, Ashton S.; Tay, Jian Wei; Wang, Lihong V.

    2016-12-01

    One of the prime limiting factors of optical imaging in biological applications is the diffusion of light by tissue, which prevents focusing at depths greater than the optical diffusion limit (typically ˜1 mm). To overcome this challenge, wavefront shaping techniques that use a spatial light modulator (SLM) to correct the phase of the incident wavefront have recently been developed. These techniques are able to focus light through scattering media beyond the optical diffusion limit. However, the low speeds of typically used liquid crystal SLMs limit the focusing speed. Here, we present a method using a digital micromirror device (DMD) and an electro-optic modulator (EOM) to measure the scattering-induced aberrations, and using a liquid crystal SLM to apply the correction to the illuminating wavefront. By combining phase modulation from an EOM with the DMD's ability to provide selective illumination, we exploit the DMD's higher refresh rate for phase measurement. We achieved focusing through scattering media in less than 8 ms, which is sufficiently short for certain in vivo applications, as it is comparable to the speckle correlation time of living tissue.

  13. Predicting Partitioning and Diffusion Properties of Nonpolar Chemicals in Biotic Media and Passive Sampler Phases by GC × GC.

    PubMed

    Nabi, Deedar; Arey, J Samuel

    2017-02-14

    The chemical parameters needed to explain and predict bioavailability, biodynamics, and baseline toxicity are not readily available for most nonpolar chemicals detected in the environment. Here, we demonstrate that comprehensive two-dimensional gas chromatography (GC × GC) retention times can be used to predict 26 relevant properties for nonpolar chemicals, specifically: partition coefficients for diverse biotic media and passive sampler phases; aquatic baseline toxicity; and relevant diffusion coefficients. The considered biotic and passive sampler phases include membrane and storage lipids, serum and muscle proteins, carbohydrates, algae, mussels, polydimethylsiloxane, polyethylene, polyoxymethylene, polyacrylate, polyurethane, and semipermeable membrane devices. GC × GC-based chemical property predictions are validated with a compilation of 1038 experimental property data collected from the literature. As an example application, we overlay a map of baseline toxicity to fathead minnows onto the separated analyte signal of a polychlorinated alkanes (chlorinated paraffins) technical mixture that contains 7820 congeners. In a second application, GC × GC-estimated properties are used to parametrize multiphase partitioning models for mammalian tissues and organs. In a third example, we estimate chemical depuration kinetics for mussels. Finally, we illustrate an approach to screen the GC × GC chromatogram for nonpolar chemicals of potentially high concern, defined based on their GC × GC-estimated biopartitioning properties, diffusion properties, and baseline toxicity.

  14. Mathematical model of diffusion-limited evolution of multiple gas bubbles in tissue

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.

    2003-01-01

    Models of gas bubble dynamics employed in probabilistic analyses of decompression sickness incidence in man must be theoretically consistent and simple, if they are to yield useful results without requiring excessive computations. They are generally formulated in terms of ordinary differential equations that describe diffusion-limited gas exchange between a gas bubble and the extravascular tissue surrounding it. In our previous model (Ann. Biomed. Eng. 30: 232-246, 2002), we showed that with appropriate representation of sink pressures to account for gas loss or gain due to heterogeneous blood perfusion in the unstirred diffusion region around the bubble, diffusion-limited bubble growth in a tissue of finite volume can be simulated without postulating a boundary layer across which gas flux is discontinuous. However, interactions between two or more bubbles caused by competition for available gas cannot be considered in this model, because the diffusion region has a fixed volume with zero gas flux at its outer boundary. The present work extends the previous model to accommodate interactions among multiple bubbles by allowing the diffusion region volume of each bubble to vary during bubble evolution. For given decompression and tissue volume, bubble growth is sustained only if the bubble number density is below a certain maximum.

  15. Mathematical model of diffusion-limited evolution of multiple gas bubbles in tissue

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.

    2003-01-01

    Models of gas bubble dynamics employed in probabilistic analyses of decompression sickness incidence in man must be theoretically consistent and simple, if they are to yield useful results without requiring excessive computations. They are generally formulated in terms of ordinary differential equations that describe diffusion-limited gas exchange between a gas bubble and the extravascular tissue surrounding it. In our previous model (Ann. Biomed. Eng. 30: 232-246, 2002), we showed that with appropriate representation of sink pressures to account for gas loss or gain due to heterogeneous blood perfusion in the unstirred diffusion region around the bubble, diffusion-limited bubble growth in a tissue of finite volume can be simulated without postulating a boundary layer across which gas flux is discontinuous. However, interactions between two or more bubbles caused by competition for available gas cannot be considered in this model, because the diffusion region has a fixed volume with zero gas flux at its outer boundary. The present work extends the previous model to accommodate interactions among multiple bubbles by allowing the diffusion region volume of each bubble to vary during bubble evolution. For given decompression and tissue volume, bubble growth is sustained only if the bubble number density is below a certain maximum.

  16. Continuous-time random-walk model for anomalous diffusion in expanding media

    NASA Astrophysics Data System (ADS)

    Le Vot, F.; Abad, E.; Yuste, S. B.

    2017-09-01

    Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium

  17. Predictive Determination of the Integral Characteristics of Evaporation of Water Droplets in Gas Media with a Varying Temperature

    NASA Astrophysics Data System (ADS)

    Vysokomornaya, O. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-05-01

    The possibility of using three heat-transfer models based on ordinary differential equations (ODEs) has been analyzed with account taken of the relevant endothermic phase transformations to predict the integral characteristics of evaporation of liquid droplets (with the example of water) in gas media with a varying temperature. The existing formulations with "diffusive" and "kinetic" approximations to the description of the process of evaporation have been considered, and a new model has been developed according to approximations obtained from the results of conducted experiments (with the use of high-speed cameras and cross-correlation software and hardware systems). Two integral characteristics of the process of evaporation were monitored: the mass rate of vaporization and the lifetime (time of complete evaporation) of a droplet. A comparison of simulation results and experimental data allowed us to draw the conclusion on the expediency of use of ODE-based "diffusive" and "phase-transition" models in a limited temperature range (to 600 K). At high gas temperatures (particularly, higher than 1000 K), a satisfactory correlation with experimental data can be provided by a model that takes account of the substantially nonlinear dependence of the vaporization rate on temperature, the formation of a buffer (steam) layer between the droplet and the gas medium, and the basic mechanisms of heat transfer in the liquid and in the gas medium.

  18. Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Xu, You-Sheng; Zhong, Yi-Jun; Huang, Guo-Xiang

    2004-07-01

    Based on the lattice Boltzmann method and general theory of fluids flowing in porous media, a numerical model is presented for the diffusion-reaction-transport (DRT) processes in porous media. As a test, we simulate a DRT process in a two-dimensional horizontal heterogeneous porous medium. The influence of gravitation in this case can be neglected, and the DRT process can be described by a strongly heterogeneous diagnostic test strip or a thin confined piece of soil with stochastically distributing property in horizontal directions. The results obtained for the relations between reduced fluid saturation S, concentration c1, and concentration c2 are shown by using the visualization computing technique. The computational efficiency and stability of the model are satisfactory.

  19. Photon diffusion near the point-of-entry in anisotropically scattering turbid media

    PubMed Central

    Vitkin, Edward; Turzhitsky, Vladimir; Qiu, Le; Guo, Lianyu; Itzkan, Irving; Hanlon, Eugene B.; Perelman, Lev T.

    2012-01-01

    From astronomy to cell biology, the manner in which light propagates in turbid media has been of central importance for many decades. However, light propagation near the point-of-entry (POE) in turbid media has never been analytically described, until now. Here we report a straightforward and accurate method that overcomes this longstanding, unsolved problem in radiative transport. Our theory properly treats anisotropic photon scattering events and takes the specific form of the phase function into account. As a result, our method correctly predicts the spatially dependent diffuse reflectance of light near the POE for any arbitrary phase function. We demonstrate that the theory is in excellent agreement with both experimental results and Monte Carlo simulations for several commonly used phase functions. PMID:22158442

  20. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM

    SciTech Connect

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe

    2015-10-01

    Using the Planck far-infrared and Arecibo GALFA 21 cm line surveys, we identified a set of isolated interstellar clouds (approximately degree-sized on the sky and comprising 100 solar masses) and assessed the ratio of gas mass to dust mass. Significant variations of the gas/dust ratio are found both from cloud to cloud and within regions of individual clouds; within the clouds, the atomic gas per unit dust decreases by more than a factor of 3 compared with the standard gas/dust ratio. Three hypotheses are considered. First, the apparently low gas/dust ratio could be due to molecular gas. Comparing to Planck CO maps, the brightest clouds have a H{sub 2}/CO ratio comparable to Galactic plane clouds, but a strong lower limit is placed on the ratio for other clouds, such that the required amount of molecular gas is far higher than would be expected based on the CO upper limits. Second, we consider self-absorbed 21 cm lines and find that the optical depth must be ∼3, significantly higher than found from surveys of radio sources. Third, grain properties may change within the clouds: they become more emissive when they are colder, while not utilizing heavy elements that already have their cosmic abundance fully locked into grains. It is possible that all three processes are active, and follow-up studies will be required to disentangle them and measure the true total gas and dust content of interstellar clouds.

  1. Dual-Phase-Lag Model of Wave Propagation at the Interface Between Elastic and Thermoelastic Diffusion Media

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Gupta, V.

    2015-01-01

    A dual-phase-lag diffusion model, augmenting the Fick law by the inclusion of the delay times of the mass flow and the potential gradient at the interface between two media into it, is proposed. The effects of reflection and refraction of plane waves at the interface between an elastic and a thermoelastic diffusion media were investigated with the use of this model. It was established that the ratios between the amplitudes and energies of the waves reflected and refracted at the interface between the indicated media are determined by the angle of incidence of radiation on this interface, the frequency of the incident wave, and the thermoelastic and diffusion properties of the media. Expressions for the ratios between the energies of different reflected and refracted waves and the energy of the incident were derived. The variation in these ratios with change in the angle of incidence of radiation on the indicated interface was calculated numerically and represented graphically.

  2. Mathematical Models of Diffusion-Limited Gas Bubble Evolution in Perfused Tissue

    DTIC Science & Technology

    Mathematical models of gas and bubble dynamics in tissue are used in various algorithms to mitigate the incidence and severity of decompression ... sickness (DCS) in man. These are simple models that describe the diffusion and perfusion processes that underlie gas bubble growth and resolution in terms

  3. Mathematical model of diffusion-limited gas bubble dynamics in unstirred tissue with finite volume

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.

    2002-01-01

    Models of gas bubble dynamics for studying decompression sickness have been developed by considering the bubble to be immersed in an extravascular tissue with diffusion-limited gas exchange between the bubble and the surrounding unstirred tissue. In previous versions of this two-region model, the tissue volume must be theoretically infinite, which renders the model inapplicable to analysis of bubble growth in a finite-sized tissue. We herein present a new two-region model that is applicable to problems involving finite tissue volumes. By introducing radial deviations to gas tension in the diffusion region surrounding the bubble, the concentration gradient can be zero at a finite distance from the bubble, thus limiting the tissue volume that participates in bubble-tissue gas exchange. It is shown that these deviations account for the effects of heterogeneous perfusion on gas bubble dynamics, and are required for the tissue volume to be finite. The bubble growth results from a difference between the bubble gas pressure and an average gas tension in the surrounding diffusion region that explicitly depends on gas uptake and release by the bubble. For any given decompression, the diffusion region volume must stay above a certain minimum in order to sustain bubble growth.

  4. Mathematical model of diffusion-limited gas bubble dynamics in unstirred tissue with finite volume

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.

    2002-01-01

    Models of gas bubble dynamics for studying decompression sickness have been developed by considering the bubble to be immersed in an extravascular tissue with diffusion-limited gas exchange between the bubble and the surrounding unstirred tissue. In previous versions of this two-region model, the tissue volume must be theoretically infinite, which renders the model inapplicable to analysis of bubble growth in a finite-sized tissue. We herein present a new two-region model that is applicable to problems involving finite tissue volumes. By introducing radial deviations to gas tension in the diffusion region surrounding the bubble, the concentration gradient can be zero at a finite distance from the bubble, thus limiting the tissue volume that participates in bubble-tissue gas exchange. It is shown that these deviations account for the effects of heterogeneous perfusion on gas bubble dynamics, and are required for the tissue volume to be finite. The bubble growth results from a difference between the bubble gas pressure and an average gas tension in the surrounding diffusion region that explicitly depends on gas uptake and release by the bubble. For any given decompression, the diffusion region volume must stay above a certain minimum in order to sustain bubble growth.

  5. An advanced passive diffusion sampler for the determination of dissolved gas concentrations

    NASA Astrophysics Data System (ADS)

    Gardner, P.; Solomon, D. K.

    2009-06-01

    We have designed and tested a passive headspace sampler for the collection of noble gases that allows for the precise calculation of dissolved gas concentrations from measured gas mixing ratios. Gas permeable silicon tubing allows for gas exchange between the headspace in the sampler volume and the dissolved gases in the adjacent water. After reaching equilibrium, the aqueous-phase concentration is related to the headspace concentration by Henry's law. Gas exchange between the water and headspace can be shut off in situ, preserving the total dissolved gas pressure upon retrieval. Gas samples are then sealed in an all metal container, retaining even highly mobile helium. Dissolved noble gas concentrations measured in these diffusion samplers are in good agreement with traditional copper tube aqueous-phase samples. These significantly reduce the laboratory labor in extracting the gases from a water sample and provide a simple and robust method for collecting dissolved gas concentrations in a variety of aqueous environments.

  6. Inexact Picard iterative scheme for steady-state nonlinear diffusion in random heterogeneous media.

    PubMed

    Mohan, P Surya; Nair, Prasanth B; Keane, Andy J

    2009-04-01

    In this paper, we present a numerical scheme for the analysis of steady-state nonlinear diffusion in random heterogeneous media. The key idea is to iteratively solve the nonlinear stochastic governing equations via an inexact Picard iteration scheme, wherein the nonlinear constitutive law is linearized using the current guess of the solution. The linearized stochastic governing equations are then spatially discretized and approximately solved using stochastic reduced basis projection schemes. The approximation to the solution process thus obtained is used as the guess for the next iteration. This iterative procedure is repeated until an appropriate convergence criterion is met. Detailed numerical studies are presented for diffusion in a square domain for varying degrees of nonlinearity. The numerical results are compared against benchmark Monte Carlo simulations, and it is shown that the proposed approach provides good approximations for the response statistics at modest computational effort.

  7. Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size.

    PubMed

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal

    2012-05-15

    Traditional dual porosity models do not take into account the effect of matrix block size distribution on the mass transfer between matrix and fracture. In this study, we introduce the matrix block size distributions into an advective-diffusive solute transport model of a divergent radial system to evaluate the mass transfer shape factor, which is considered as a first-order exchange coefficient between the fracture and matrix. The results obtained lead to a better understanding of the advective-diffusive mass transport in fractured porous media by identifying two early and late time periods of mass transfer. Results show that fractured rock matrix block size distribution has a great impact on mass transfer during early time period. In addition, two dimensionless shape factors are obtained for the late time, which depend on the injection flow rate and the distance of the rock matrix from the injection point. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Modelling neutron transport in planetary media via analytical multigroup diffusion theory

    NASA Astrophysics Data System (ADS)

    Panfili, P.; Luciani, A.; Furfaro, R.; Ganapol, B. D.; Mostacci, D.

    A novel analytical solution to the 1D, steady-state, multi-slab, multi-group diffusion equation is proposed as a mean to compute the energy-dependent galactic cosmic ray-induced neutron fluxes established in planetary media. More specifically, the proposed algorithm is implemented to allow fast and highly accurate determination of low-energy cosmic ray neutrons inside the Earth's surface and atmosphere. Two sets of experimental measurements have been considered to validate our model. In both cases, a good agreement between the calculated and observed neutron fluxes is achieved. Subsequently, neutron diffusion calculations have been performed for various Earth-based scenarios comprising (a) two-slab (air-soil) configuration and (b) three-slab (air-soil-ice) configuration to investigate the functional relationship between soil composition and neutron spatial distribution.

  9. Effect of measurement on the ballistic-diffusive transition in turbid media.

    PubMed

    Glasser, Ziv; Yaroshevsky, Andre; Barak, Bavat; Granot, Er'el; Sternklar, Shmuel

    2013-10-01

    The dependence of the transition between the ballistic and the diffusive regimes of turbid media on the experimental solid angle of the detection system is analyzed theoretically and experimentally. A simple model is developed which shows the significance of experimental conditions on the location of the ballistic-diffusive transition. It is demonstrated that decreasing the solid angle expands the ballistic regime; however, this benefit is bounded by the initial Gaussian beam diffraction. In addition, choosing the appropriate wavelength according to the model's principles provides another means of expanding the ballistic regime. Consequently, by optimizing the experimental conditions, it should be possible to extract the ballistic image of a tissue with a thickness of 1 cm.

  10. The effect of thermal neutron field slagging caused by cylindrical BF3 counters in diffusion media

    NASA Technical Reports Server (NTRS)

    Gorshkov, G. V.; Tsvetkov, O. S.; Yakovlev, R. M.

    1975-01-01

    Computations are carried out in transport approximation (first collision method) for the attenuation of the field of thermal neutrons formed in counters of the CHM-8 and CHMO-5 type. The deflection of the thermal neutron field is also obtained near the counters and in the air (shade effect) and in various decelerating media (water, paraffin, plexiglas) for which the calculations are carried out on the basis of diffusion theory. To verify the calculations, the distribution of the density of the thermal neutrons at various distances from the counter in the water is measured.

  11. Rare clinical presentation of diffuse large B-cell lymphoma as otitis media and facial palsy.

    PubMed

    Siddiahgari, Sirisha Rani; Yerukula, Pallavi; Lingappa, Lokesh; Moodahadu, Latha S

    2016-01-01

    Extra nodal presentation of Non Hodgkins Lymphoma (NHL) is a rare entity, and data available about the NHL that primarily involves of middle ear and mastoid is limited. We report a case of diffuse large B cell lymphoma (DLBCL), in a 2 year 8 month old boy, who developed otalgia and facial palsy. Computed tomography revealed a mass in the left mastoid. Mastoid exploration and histopathological examination revealed DLBCL. This case highlights the importance of considering malignant lymphoma as one of the differential diagnosis in persistent otitis media and/facial palsy.

  12. Transport of methane and noble gases during gas push-pull tests in variably saturated porous media.

    PubMed

    Gómez, Katherine; Gonzalez-Gil, Graciela; Schroth, Martin H; Zeyer, Josef

    2008-04-01

    The gas push-pull test (GPPT) is a single-well gas-tracer method to quantify in situ rates of CH4 oxidation in soils. To improve the design and interpretation of GPPT field experiments, gas component transport during GPPTs was examined in abiotic porous media over a range of water saturations (0.0 < or = Sw < or = 0.61). A series of GPPTs using He, Ne, and Ar as tracers for CH4 were performed at two injection/extraction gas flow rates (approximately 200 and approximately 700 mL min(-1)) in a laboratory tank. Extraction phase breakthrough curves and mass recovery curves of the gaseous components became more similar at higher Sw as water in the pore space restricted diffusive gas-phase transport. Diffusional fractionation of the stable carbon isotopes of CH4 during the extraction period of GPPTs also decreased with increasing Sw (particularly when Sw > 0.42). Gas-component transport during GPPTs was numerically simulated using estimated hydraulic parameters for the porous media and no fitting of data for the GPPTs. Numerical simulations accurately predicted the relative decline of the gaseous components in the breakthrough curves, but slightly overestimated recoveries at low Sw (< or = 0.35) and underestimated recoveries at high Sw (> or = 0.49). Comparison of numerical simulations considering and not considering air-water partitioning indicated that removal of gaseous components through dissolution in pore water was not significant during GPPTs, even at Sw = 0.61. These data indicate that Ar is a good tracer for CH4 physical transport over the full range of Sw studied, whereas, at Sw > 0.61, any of the tracers could be used. Greater mass recovery at higher Sw raises the possibility to reduce gas flow rates, thereby extending GPPT times in environments such as tundra soils where low activity due to low temperatures may require longer test times to establish a quantifiable difference between reactant and tracer breakthrough curves.

  13. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.

    PubMed

    Liu, Quan; Ramanujam, Nirmala

    2007-04-01

    A scaling Monte Carlo method has been developed to calculate diffuse reflectance from multilayered media with a wide range of optical properties in the ultraviolet-visible wavelength range. This multilayered scaling method employs the photon trajectory information generated from a single baseline Monte Carlo simulation of a homogeneous medium to scale the exit distance and exit weight of photons for a new set of optical properties in the multilayered medium. The scaling method is particularly suited to simulating diffuse reflectance spectra or creating a Monte Carlo database to extract optical properties of layered media, both of which are demonstrated in this paper. Particularly, it was found that the root-mean-square error (RMSE) between scaled diffuse reflectance, for which the anisotropy factor and refractive index in the baseline simulation were, respectively, 0.9 and 1.338, and independently simulated diffuse reflectance was less than or equal to 5% for source-detector separations from 200 to 1500 microm when the anisotropy factor of the top layer in a two-layered epithelial tissue model was varied from 0.8 to 0.99; in contrast, the RMSE was always less than 5% for all separations (from 0 to 1500 microm) when the anisotropy factor of the bottom layer was varied from 0.7 to 0.99. When the refractive index of either layer in the two-layered tissue model was varied from 1.3 to 1.4, the RMSE was less than 10%. The scaling method can reduce computation time by more than 2 orders of magnitude compared with independent Monte Carlo simulations.

  14. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    NASA Astrophysics Data System (ADS)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  15. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  16. Thermodynamic Route to Efficient Prediction of Gas Diffusivity in Nanoporous Materials.

    PubMed

    Tian, Yun; Xu, Xiaofei; Wu, Jianzhong

    2017-09-26

    We report an efficient computational procedure for rapid and accurate prediction of the self-diffusivity of gas molecules in nanoporous materials by implementing the transition state theory for intercage hopping at infinite dilution with the string method in conjunction with the excess-entropy scaling for predicting gas diffusion coefficients at finite loadings. The theoretical procedure has been calibrated with molecular dynamics simulations for the diffusion coefficients of methane and hydrogen gases in representative nanoporous materials including metal organic frameworks and zeolites. Combined with the classical density functional theory for calculating the excess entropy of gas molecules in micropores, the theoretical procedure enables efficient computation of both thermodynamic and transport properties important for design and screening of nanostructured materials for gas storage and separation.

  17. Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes

    NASA Astrophysics Data System (ADS)

    Manuel, M.-F.; Neburchilov, V.; Wang, H.; Guiot, S. R.; Tartakovsky, B.

    Gas diffusion cathodes with Ni alloy and Ni catalysts manufactured by chemical deposition were tested for H 2 production in a microbial electrolysis cell (MEC). In a continuous flow MEC, multi-component cathodes containing Ni, Mo, Cr, and Fe, at a total catalyst load of 1 mg cm -2 on carbon support demonstrated stable H 2 production at rates of 2.8 - 3.7 L LR-1 d-1 with only 5% methane in the gas stream. Furthermore, a Ni-only gas diffusion cathode, with a Ni load of 0.6 mg cm -2, demonstrated a H 2 production rate of 4.1 L LR-1 d-1 . Overall, H 2 production was found to be proportional to the Ni load implying that inexpensive gas diffusion cathodes prepared by chemical deposition of Ni can be successfully used for continuous production of H 2 in a MEC.

  18. Derivation of effective fission gas diffusivities in UO2 from lower length scale simulations and implementation of fission gas diffusion models in BISON

    SciTech Connect

    Andersson, Anders David Ragnar; Pastore, Giovanni; Liu, Xiang-Yang; Perriot, Romain Thibault; Tonks, Michael; Stanek, Christopher Richard

    2014-11-07

    This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO2 were derived for both intrinsic conditions and under irradiation. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.

  19. Mitosis, diffusible crosslinkers, and the ideal gas law.

    PubMed

    Odde, David J

    2015-03-12

    During mitosis, molecular motors hydrolyze ATP to generate sliding forces between adjacent microtubules and form the bipolar mitotic spindle. Lansky et al. now show that the diffusible microtubule crosslinker Ase1p can generate sliding forces between adjacent microtubules, and it does so without ATP hydrolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The most diffuse molecular gas in the galaxy.

    PubMed

    Liszt, Harvey S

    2013-10-03

    Interstellar molecules preferentially reside in denser, cooler, optically shielded portions of the interstellar medium, but a weak residue of H2 will form via purely gas-phase processes involving H(-) even in rather bare atomic gas, the so-called warm interstellar medium where the temperature (>1000 K) and electron fraction (0.01 to 0.1) are relatively high. Along with H2, a few trace molecules will also form in this gas, partially because strongly endothermic reactions such as C(+) + H2 → CH(+) + H are energetically allowed. The observed abundance patterns of SH(+), CH(+) and OH(+) are reproduced by the warm gas chemistry, but not their overall abundances with respect to hydrogen. Even the very smallest molecular hydrogen fractions observed in the Milky Way along sightlines of low mean density are well above those that can readily be produced in the warm interstellar medium by gas-phase or grain-surface H2 formation processes. This suggests that density inhomogeneities may obscure the molecular contribution of warmer gas.

  1. Interplay between oxygen demand reactions and kinetic gas-water transfer in porous media.

    PubMed

    Oswald, Sascha E; Griepentrog, Marco; Schirmer, Mario; Balcke, Gerd U

    2008-08-01

    Gas-water phase transfer associated with the dissolution of trapped gas in porous media is a key process that occurs during pulsed gas sparging operations in contaminated aquifers. Recently, we applied a numerical model that was experimentally validated for abiotic situations, where multi-species kinetic inter-phase mass transfer and dissolved gas transport occurred during pulsed gas penetration-dissolution events [Balcke, G.U., Meenken, S., Hoefer, C. and Oswald, S.E., 2007. Kinetic gas-water transfer and gas accumulation in porous media during pulsed oxygen sparging. Environmental Science & Technology 41(12), 4428-4434]. Here we extend the model by using a reactive term to describe dissolved oxygen demand reactions via the formation of a reaction product, and to study the effects of such an aerobic degradation process on gas-water mass transfer and dissolution of trapped gas in porous media. As a surrogate for microbial oxygen reduction, first-order oxygen demand reactions were based on the measured oxidation of alkaline pyrogallol in column experiments. This reaction allows for adjusting the rate to values close to expected biodegradation rates and detection of the reaction product. The experiments and model consistently demonstrated accelerated oxygen gas-water mass transfer with increasing oxygen demand rates associated with an influence on the partitioning of other gases. Thus, as the oxygen demand accelerates, less gas phase residues, consisting mainly of nitrogen, are observed, which is in general beneficial to the performance of field biosparging operations. Model results additionally predict how oxygen demand influences oxygen mass transfer for a range of biodegradation rates. A typical field case scenario was simulated to illustrate the observed coupling of oxygen consumption and gas bubble dissolution. The model provides a tool to improve understanding of trapped gas behavior in porous media and contributes to a model-assisted biosparging.

  2. Free and Forced Convection in High Permeability Porous Media: Impact on Gas Flux at the Earth-atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Levintal, E.; Dragila, M. I.; Kamai, T.

    2015-12-01

    Gas movement within the earth's subsurface and its exchange with the atmosphere is one of the principal elements contributing to soil and atmospheric function. As the soil permeability increases, gas circulation by convective mechanisms becomes significantly greater than the diffusion. Two of the convective mechanisms, which can be of great importance, are being explored in this research. The first one is thermal convection venting (TCV), which develops when there are unstable density gradients. The second mechanism is wind induced convection (WIC), which develops due to surface winds that drive air movement. Here, we report the results of a study on the relationships between the porous media permeability and particle size, and the development and magnitude of TCV and WIC with the development of thermal differences and surface winds. The research included large high-permeability column experiments carried out under highly controlled laboratory conditions, using well-defined single-sized spherical particles while surface winds and thermal differences were forced and monitored. CO2 enriched air, functioned as a tracer, was used to quantify the impact of TCV and WIC on gas migration in the porous media. Results show that in homogenous porous media a permeability range of 10-7 to 10-6 m2 is the threshold value for TCV onset under standard atmospheric conditions. Adding surface wind with an average velocity of 1.5 m s-1 resulted in WIC effect to a depth of -0.3 m in most experimental settings; however, it did not caused additional air circulation at the reference depth of -0.9 m. Furthermore, given the appropriate conditions, a combined effect of TCV and WIC did significantly increase the overall media ventilation. Simulations of temperature profiles in soil under that permeability, showed that as the thermal gradient changes with depth and is a continuous function, TCV cells can be developed in local sections of the profile, not necessarily reaching the atmosphere.

  3. A Nucleation Theory for Gas-Supersaturated Liquids that Accounts for Gas Diffusion

    NASA Astrophysics Data System (ADS)

    Brereton, G. J.; Liu, X.

    2001-11-01

    Classical nucleation theory relates the rate at which embryo bubbles are formed to the reversible work required to grow a bubble of critical radius rc from random molecular activity, in the form: J ∝ exp-4πσ r_c^2/(3kT). By setting J to a constant, this rate equation can be inverted to determine the conditions for rc under which nucleation takes place. In the case of liquids supersaturated with dissimilar gases, classical nucleation theory indicates almost no dependence on the species of dissolved gas whereas experiments indicate order-of-magnitude changes in conditions for nucleation. By modifying the nucleation rate equation to relate the formation of embryo bubbles of critical size to sufficiently energetic molecular activity for: i) carrying out the reversible work 4πσ r_c^2/3; and ii) overcoming diffusive effects, which act to redissolve sub-critical-size bubbles; in the form: J∝exp(-W_rev-Q_diff) /(kT) ; agreement with experiments is recovered.

  4. Effects of Gas Diffusion on Nucleation of Gas-Supersaturated Liquids

    NASA Astrophysics Data System (ADS)

    Brereton, G. J.; Liu, X.; Garrett, S.; Spears, J. R.

    2002-03-01

    Classical nucleation theory relates the rate at which embryo bubbles are formed to the reversible work required to grow a bubble of critical radius rc from random molecular activity, in the form: J ∝ exp4πσ r_c^2/(3kT)\\. By setting J to a constant, this rate equation can be inverted to determine the conditions for rc under which nucleation takes place. In the case of liquids supersaturated with dissimilar gases, classical nucleation theory indicates almost no dependence on the species of dissolved gas whereas experiments indicate order-of-magnitude changes in conditions for nucleation. By modifying the nucleation rate equation to relate the formation of embryo bubbles of critical size to sufficiently energetic molecular activity for: i) carrying out the reversible work 4πσ r_c^2/3; and ii) overcoming diffusive effects, which act to redissolve sub-critical-size bubbles; in the form J∝exp(-W_rev-Φ_diff) /(kT) ; agreement with experiments is recovered.

  5. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  6. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  7. Diffusion in time-dependent random media and the Kardar-Parisi-Zhang equation

    NASA Astrophysics Data System (ADS)

    Le Doussal, Pierre; Thiery, Thimothée

    2017-07-01

    Although time-dependent random media with short-range correlations lead to (possibly biased) normal tracer diffusion, anomalous fluctuations occur away from the most probable direction. This was pointed out recently in one-dimensional (1D) lattice random walks, where statistics related to the 1D Kardar-Parisi-Zhang (KPZ) universality class, i.e., the Gaussian unitary ensemble Tracy-Widom distribution, were shown to arise. Here, we provide a simple picture for this correspondence, directly in the continuum, which allows one to study arbitrary space dimensions and to predict a variety of universal distributions. In d =1 , we predict and verify numerically the emergence of the Gaussian orthogonal ensemble Tracy-Widom distribution for fluctuations of the transition probability. In d =3 , we predict a phase transition from Gaussian fluctuations to three-dimensional KPZ-type fluctuations as the bias is increased. We predict KPZ universal distributions for the arrival time of a first particle from a cloud diffusing in such media.

  8. Relative role of convective and diffusive mixing in the miscible Rayleigh-Taylor instability in porous media

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, S. S.; Carballido-Landeira, J.; De Wit, A.; Knaepen, B.

    2017-01-01

    The relative role of convection and diffusion is characterized both numerically and experimentally for porous media flows due to a Rayleigh-Taylor instability of a horizontal interface between two miscible solutions in the gravity field. We show that, though globally convection dominates over diffusion during the nonlinear regime, diffusion can locally be as important as convection and even dominates over lateral convection far away from the fingertips. Our experimental and numerical computations of the temporal evolution of the mixing length, the width of the fingers, and their wavelength are in good agreement and show that the lateral evolution of fingers is governed by diffusion.

  9. Diffuse optical 3D-slice imaging of bounded turbid media using a new integro-differential equation.

    PubMed

    Pattanayak, D; Yodh, A

    1999-04-12

    A new integro-differential equation for diffuse photon density waves (DPDW) is derived within the diffusion approximation. The new equation applies to inhomogeneous bounded turbid media. Interestingly, it does not contain any terms involving gradients of the light diffusion coefficient. The integro-differential equation for diffusive waves is used to develop a 3D-slice imaging algorithm based the on angular spectrum representation in the parallel plate geometry. The algorithm may be useful for near infrared optical imaging of breast tissue, and is applicable to other diagnostics such as ultrasound and microwave imaging.

  10. Intermittency of interstellar turbulence: observational signatures in diffuse molecular gas

    NASA Astrophysics Data System (ADS)

    Falgarone, E.; Hily-Blant, P.; Pety, J.; Pineau Des Forêts, G.

    2005-09-01

    Several properties of the cold interstellar molecular gas may be interpreted as the signatures of the intermittency of turbulence. These are non-Gaussian statistics of the velocity field, plus ubiquitous traces of warm gas within the cold medium. The existence of the warm gas is attested to by observations of highly excited molecular hydrogen and by manifestations of a specific chemistry. Small-scale coherent magnetized vortices and low velocity magneto-hydrodynamical shocks are able to reproduce most of these properties. In both kinds of structure, and for different reasons, the neutrals decouple from the ions and magnetic fields. Interferometric observations seem to favor small scale vortices rather than shocks, involving timescales of only a few thousands years.

  11. Trapped bubbles keep pumice afloat and gas diffusion makes pumice sink

    NASA Astrophysics Data System (ADS)

    Fauria, Kristen E.; Manga, Michael; Wei, Zihan

    2017-02-01

    Pumice can float on water for months to years - long enough for pumice to travel across oceans and facilitate the spread of species. Long-lived pumice floatation is unexpected, however, because pumice pores are highly connected and water wets volcanic glass. As a result, observations of long floating times have not been reconciled with predictions of rapid sinking. We propose a mechanism to resolve this paradox - the trapping of gas bubbles by water within the pumice. Gas trapping refers to the isolation of gas by water within pore throats such that the gas becomes disconnected from the atmosphere and unable to escape. We use X-ray microtomography to image partially saturated pumice and demonstrate that non-condensable gas trapping occurs in both ambient temperature and hot (500 °C) pumice. Furthermore, we show that the size distribution of trapped gas clusters matches predictions of percolation theory. Finally, we propose that diffusion of trapped gas determines pumice floatation time. Experimental measurements of pumice floatation support a diffusion control on pumice buoyancy and we find that floatation time τ scales as τ ∝ L2/Dθ2 where L is the characteristic length of pumice, D is the gas-water diffusion coefficient, and θ is pumice water saturation. A mechanistic understanding of pumice floatation is a step towards understanding how pumice is partitioned into floating and sinking components and provides an estimate for the lifetime of pumice rafts in the ocean.

  12. Transport Rather Than Diffusion-Dependent Route for Nitric Oxide Gas Activity in Alveolar Epithelium

    PubMed Central

    Brahmajothi, Mulugu V.; Mason, S. Nicholas; Whorton, A. Richard; McMahon, Timothy J.; Auten, Richard L.

    2010-01-01

    The pathway by which inhaled NO gas enters pulmonary alveolar epithelial cells has not been directly tested. Although the expected mechanism is diffusion, another route is the formation of S-nitroso-L-cysteine, which then enters the cell through the L-type amino acid transporter(LAT). To determine if NO gas also enters alveolar epithelium this way, we exposed alveolar epithelial—rat type I, type II, L2, R3/1, and human A549—cells to NO gas at air liquid interface in the presence of L- and D-cysteine ± LAT competitors. NO gas exposure concentration-dependently increased intracellular NO and S-nitrosothiol levels in the presence of L- but not D-cysteine, which was inhibited by LAT competitors, and was inversely proportional to diffusion distance. The effect of L-cysteine on NO uptake was also concentration dependent. Without pre-incubation with L-cysteine, NO uptake was significantly reduced. We found similar effects using ethyl nitrite gas in place of NO. Exposure to either gas induced activation of soluble guanylyl cylase in a parallel manner, consistent with LAT-dependence. We conclude that NO gas uptake by alveolar epithelium achieves NO-based signaling predominantly by forming extracellular S-nitroso-L-cysteine that is taken up through LAT, rather than by diffusion. Augmenting extracellular S-nitroso-L-cysteine formation may augment pharmacological actions of inhaled NO gas. PMID:20423728

  13. Effects of diffusion in magnetically inhomogeneous media on rotating frame spin-lattice relaxation.

    PubMed

    Spear, John T; Gore, John C

    2014-12-01

    In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Effects of diffusion in magnetically inhomogeneous media on rotating frame spin-lattice relaxation

    NASA Astrophysics Data System (ADS)

    Spear, John T.; Gore, John C.

    2014-12-01

    In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues.

  15. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2007-06-25

    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  16. Derivation and Solution of Multifrequency Radiation Diffusion Equations for Homogeneous Refractive Lossy Media

    SciTech Connect

    Shestakov, A I; Vignes, R M; Stolken, J S

    2010-01-05

    Starting from the radiation transport equation for homogeneous, refractive lossy media, we derive the corresponding time-dependent multifrequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The system is coupled to a diffusion equation for the matter temperature. We are interested in modeling annealing of silica (SiO{sub 2}). We derive boundary conditions at a planar air-silica interface taking account of reflectivities. The spectral dimension is discretized into a finite number of intervals leading to a system of multigroup diffusion equations. Three simulations are presented. One models cooling of a silica slab, initially at 2500 K, for 10 s. The other two are 1D and 2D simulations of irradiating silica with a CO{sub 2} laser, {lambda} = 10.59 {micro}m. In 2D, we anneal a disk (radius = 0.4, thickness = 0.4 cm) with a laser, Gaussian profile (r{sub 0} = 0.5 mm for 1/e decay).

  17. Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage

    SciTech Connect

    Borah, B; Zhang, HD; Snurr, RQ

    2015-03-03

    Diffusion of methane, ethane, propane and n-butane was studied within the micropores of several metal organic frameworks (MOFs) of varying topologies, including the MOFs PCN-14, NU-125, NU-1100 and DUT-49. Diffusion coefficients of the pure components, as well as methane/ethane, methane/ propane and methane/butane binary mixtures, were calculated using molecular dynamics simulations to understand the effect of the longer alkanes on uptake of natural gas in MOB. The calculated self diffusion coefficients of all four components are on the order of 10(-8) m(2)/s. The diffusion coefficients of the pure components decrease as a function of chain length in all of the MOFs studied and show different behaviour as a function of loading in different MOB. The self-diffusivities follow the trend DPCN-14 < DNU-125 approximate to DNU-1100 < DDUT-49, which is exactly the reverse order of the densities of the MOFs: PCN-14 > NU-125 approximate to NU-1100 > DUT-49. By comparing the diffusion of pure methane and methane mixtures vvith the higher alkancs, it is observed that the diffusivity of methane is unaffected by the presence of the higher alkanes in the MOFs considered, indicating that the diffusion path of methane is not blocked by the higher alkanes present in natural gas. (C) 2014 Elsevier Ltd. All rights reserved.

  18. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    SciTech Connect

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  19. Experimental studies and model analysis of noble gas fractionation in porous media

    USGS Publications Warehouse

    Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.

    2016-01-01

    The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.

  20. Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks

    SciTech Connect

    Torgersen, T.; Kennedy, B.M.; van Soest, M.C.

    2004-06-14

    The mechanisms responsible for noble gas concentrations, abundance patterns, and strong retentivity in sedimentary lithologies remain poorly explained. Diffusion-controlled fractionation of noble gases is modeled and examined as an explanation for the absolute and relative abundances of noble gases observed in sediments. Since the physical properties of the noble gases are strong functions of atomic mass, the individual diffusion coefficients, adsorption coefficients and atomic radii combine to impede heavy noble gas (Xe) diffusion relative to light noble gas (Ne) diffusion. Filling of lithic grains/half-spaces by diffusive processes thus produces Ne enrichments in the early and middle stages of the filling process with F(Ne) values similar to that observed in volcanic glasses. Emptying lithic grains/half-spaces produces a Xe-enriched residual in the late (but not final) stages of the process producing F(Xe) values similar to that observed in shales. 'Exotic but unexceptional' shales that exhibit both F(Ne) and F(Xe) enrichments can be produced by incomplete emptying followed by incomplete filling. This mechanism is consistent with literature reported noble gas abundance patterns but may still require a separate mechanism for strong retention. A system of labyrinths-with-constrictions and/or C-, Si-nanotubes when combined with simple adsorption can result in stronger diffusive separation and non-steady-state enrichments that persist for longer times. Enhanced adsorption to multiple C atoms inside C-nanotubes as well as dangling functional groups closing the ends of nanotubes can provide potential mechanisms for 'strong retention'. We need new methods of examining noble gases in rocks to determine the role and function of angstrom-scale structures in both the diffusive enrichment process and the 'strong retention' process for noble gas abundances in terrestrial rocks.

  1. Development of Interactive Learning Media on Kinetic Gas Theory at SMAN 2 Takalar

    NASA Astrophysics Data System (ADS)

    Yanti, M.; Ihsan, N.; Subaer

    2017-02-01

    Learning media is the one of the most factor in supporting successfully in the learning process. The purpose of this interactive media is preparing students to improve skills in laboratory practice without need for assistance and are not bound by time and place. The subject of this study was 30 students grade XI IPA SMAN 2 Takalar. This paper discuss about the development of learning media based in theory of gas kinetic. This media designed to assist students in learning independently. This media made using four software, they are Microsoft word, Snagit Editor, Macromedia Flash Player and Lectora. This media are interactive, dynamic and could support the users desires to learn and understand course of gas theory. The development produce followed the four D models. Consisted of definition phase, design phase, development phase and disseminate phase. The results showed 1) the media were valid and reliable, 2) learning tools as well as hardcopy and softcopy which links to website 3) activity learners above 80% and 4) according to the test results, the concept of comprehension of student was improved than before given interactive media.

  2. Experimental Investigation of Laminar Gas Jet Diffusion Flames in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Cochran, Thomas H.

    1972-01-01

    An experimental program was conducted to study the burning of laminar gas jet diffusion flames in a zero-gravity environment. The tests were conducted in a 2.2-Second-Zero-Gravity Facility and were a part of a continuing effort investigating the effects of gravity on basic combustion processes. The photographic results indicate that steady state gas jet diffusion flames existed in zero gravity but they were geometrically quite different than their normal-gravity counterparts. Methane-air flames were found to be approximately 50 percent longer and wider in zero gravity than in normal gravity.

  3. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries

    NASA Astrophysics Data System (ADS)

    Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2016-02-01

    Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.

  4. Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase.

    PubMed

    Topin, Jérémie; Rousset, Marc; Antonczak, Serge; Golebiowski, Jérôme

    2012-03-01

    We have investigated O₂ and H₂ transport across a NiFe hydrogenase at the atomic scale by means of computational methods. The Wild Type protein has been compared with the V74Q mutant. Two distinct methodologies have been applied to study the gas access to the active site. Temperature locally enhanced sampling simulations have emphasized the importance of protein dynamics on gas diffusion. The O₂ diffusion free energy profiles, obtained by umbrella sampling, are in agreement with the known kinetic data and show that in the V74Q mutant, the inhibition process is lowered from both a kinetic and a thermodynamic point of view. Copyright © 2011 Wiley Periodicals, Inc.

  5. Composition dependence of ion diffusion coefficients in gas mixtures at arbitrary field strengths

    NASA Technical Reports Server (NTRS)

    Whealton, J. H.; Mason, E. A.

    1972-01-01

    Expressions for the diffusion coefficient of ions in gas mixtures are obtained from momentum transfer theory, and are given in terms of the diffusion coefficients and drift velocities of the ions in the pure component gases. Blanc's law holds exactly at all field strengths if the mean free time between collisions is independent of velocity (Maxwell model), but otherwise there may be either positive or negative deviations from Blanc's law at high fields. Such deviations are of comparable magnitude for the diffusion coefficients and the mobility, but are not identical. Specific cases of inverse-power potentials are treated in further detail, and some numerical examples are given for rigid-sphere interactions.

  6. The CO Transition from Diffuse Molecular Gas to Dense Clouds: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, Steven

    2016-06-01

    The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. The material is closely connected to CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Using optical observations of CH, CH+ and CN absorption from McDonald Observatory and the European Southern Observatory in conjunction with UV observations of CO and H2 absorption from FUSE, we explore the changing environment between diffuse and dense gas, emphasizing trends in column density, excitation temperature, gas density, and velocity structure. This presentation will focus on the completed analysis involving H2 and on the preliminary results of CO for our sample.

  7. On molecular transport effects in real gas laminar diffusion flames at large pressure

    NASA Astrophysics Data System (ADS)

    Palle, Sridhar; Nolan, Christopher; Miller, Richard S.

    2005-10-01

    Direct numerical simulations are conducted of unsteady, exothermic and one-dimensional laminar diffusion flames at large pressures. The simulations are used to assess the impact of molecular diffusion and real gas effects under high pressure conditions with simplified chemical kinetics. The formulation includes the fully compressible form of the governing equations, real gas effects modeled by the cubic Peng-Robinson equation of state, and a generalized form of the Soret and Dufour mass and heat diffusion vectors derived from nonequilibrium thermodynamics and fluctuation theory. The cross diffusion fluxes are derived for a ternary species system and include the effects of both heat and mass diffusion in the presence of temperature, concentration and pressure gradients (i.e., Soret and Dufour diffusion). The ternary species formulation is applied to a simplified single step reaction elucidating molecular and thermodynamic effects apparent in general combustion. Realistic models for pressure, temperature and species dependent heat capacities, viscosities, thermal conductivities and mass diffusivities are also included. Three different model reactions are simulated both including and neglecting Soret and Dufour cross diffusion. The simulation results show that Soret and Dufour effects are negligible for reactions comprised of species with equal or near equal molecular weights. However, Soret diffusion effects are apparent when species with nonequal molecular weights are involved in the reaction and result in reductions of the peak flame temperature. In addition, it is shown that neglect of cross diffusion leads to deviations in the predicted flame thicknesses, with under predictions for a hydrogen-oxygen system and over predictions for a heavy hydrocarbon reaction. These effects are explained in detail through examinations of the individual heat and mass flux vectors as well as through associated thermodynamic properties. A parametric study addresses the effects of

  8. In situ bioremediation: A network model of diffusion and flow in granular porous media

    SciTech Connect

    Griffiths, S.K.; Nilson, R.H.; Bradshaw, R.W.

    1997-04-01

    In situ bioremediation is a potentially expedient, permanent and cost- effective means of waste site decontamination. However, permeability reductions due to the transport and deposition of native fines or due to excessive microorganism populations may severely inhibit the injection of supplemental oxygen in the contamination zone. To help understand this phenomenon, we have developed a micro-mechanical network model of flow, diffusion and particle transport in granular porous materials. The model differs from most similar models in that the network is defined by particle positions in a numerically-generated particle array. The model is thus widely applicable to computing effective transport properties for both ordered and realistic random porous media. A laboratory-scale apparatus to measure permeability reductions has also been designed, built and tested.

  9. Theoretical optimal modulation frequencies for scattering parameter estimation and ballistic photon filtering in diffusing media.

    PubMed

    Panigrahi, Swapnesh; Fade, Julien; Ramachandran, Hema; Alouini, Mehdi

    2016-07-11

    The efficiency of using intensity modulated light for the estimation of scattering properties of a turbid medium and for ballistic photon discrimination is theoretically quantified in this article. Using the diffusion model for modulated photon transport and considering a noisy quadrature demodulation scheme, the minimum-variance bounds on estimation of parameters of interest are analytically derived and analyzed. The existence of a variance-minimizing optimal modulation frequency is shown and its evolution with the properties of the intervening medium is derived and studied. Furthermore, a metric is defined to quantify the efficiency of ballistic photon filtering which may be sought when imaging through turbid media. The analytical derivation of this metric shows that the minimum modulation frequency required to attain significant ballistic discrimination depends only on the reduced scattering coefficient of the medium in a linear fashion for a highly scattering medium.

  10. Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps

    SciTech Connect

    Lejay, Antoine; Pichot, Geraldine

    2012-08-30

    In this article, we propose new Monte Carlo techniques for moving a diffusive particle in a discontinuous media. In this framework, we characterize the stochastic process that governs the positions of the particle. The key tool is the reduction of the process to a Skew Brownian motion (SBM). In a zone where the coefficients are locally constant on each side of the discontinuity, the new position of the particle after a constant time step is sampled from the exact distribution of the SBM process at the considered time. To do so, we propose two different but equivalent algorithms: a two-steps simulation with a stop at the discontinuity and a one-step direct simulation of the SBM dynamic. Some benchmark tests illustrate their effectiveness.

  11. Dimethylether: a low velocity, low diffusion drift chamber gas

    SciTech Connect

    Villa, F.

    1983-01-01

    There are two main motivations to look for a low electron mobility gas: the first is that a low drift velocity relaxes the need to measure drift times with nanosecond (or even subnanosecond) precision; the second is that (in an ideal drift geometry), the capability of resolving two closely spaced tracks depends upon the ratio of electron mobility to ion mobility ..mu../sub e//..mu../sub i/. Since ..mu../sub i/ is rather constant, the way to separate two tracks is to slow down the electrons. Many other properties are required besides low mobility and low drifting electron temperature: the gas should have a large (> 10/sup 3/) stable gain; it must be chemically stable and not oxic; it should not attack materials commonly used to fabricate drift chambers, etc. With these requirements in mind, we have tried a few promising (on paper) gases, either pure or in admixture with Argon. One of the gases examined, dimethylether ((CH/sub 3/)/sub 2/)), has shown interesting characteristics.

  12. FEA for damping of structures having elastic bodies, viscoelastic bodies, porous media and gas

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takao; Kurosawa, Yoshio; Matsumura, Shuuji

    2007-01-01

    A numerical method is proposed to calculate damping properties for soundproof structures involving solid bodies, porous media and air in two-dimensional regions. Both effective density and bulk modulus have complex quantity to represent damped sound fields in the porous media. Particle displacements in the media are discretized using finite element method. For damped solid bodies, displacements are formulated using conventional finite elements including complex modulus of elasticity. Displacement vectors as common unknown variables are solved under coupled condition between solid bodies, porous media and gas. Further, by applying asymptotic method to complex eigenvalue problem, explicit expressions of modal loss factor for the mixed structures are derived. The proposed methods yield appropriate results for some typical problems and this method diminish computational time for large-scaled finite element models concerning the mixed structure. Moreover, it is found that damping can be coupled in the mixed structures between solid bodies, porous media and air.

  13. A diffuse interface approach to injection-driven flow of different miscibility in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Yao; Yan, Pei-Yu

    2015-08-01

    Miscible and immiscible injection flows in heterogeneous porous media, for which the permeability is characterized by a log Gaussian distribution, are simulated by a robust diffuse-interface formulation. The robust numerical method enables direct qualitative and quantitative comparisons regarding pattern formations in various fluid miscibility conditions. For miscible injections, the typical size of fingering structures depends strongly on the correlation length and forms tapered fingers with sharper tips. On the other hand, the typical size of immiscible fingers is affected less significantly by the permeability heterogeneity, and wide spreading tips are retained in the fingering patterns. Prominence of fingering instability is quantitatively evaluated by the channeling width and the interfacial length. The channeling width shows strong and monotonic dependences on the heterogeneous variance. On the contrary, maximum channeling width occurs at intermediate correlation length due to local resonant effect between the faster penetrating fingers and permeability heterogeneity. On the other hand, effects of the correlation length and the permeability variance on the interfacial lengths are generally consistent. Longer interfacial length is perturbed by smaller correlation length or higher variance. Interesting invariant evolutions of interfacial lengths are revealed regardless of the permeability variance in sufficiently large correlation length under all miscibility conditions. In addition, the regime of slower growth of interfacial length at later times experimentally observed in homogeneous miscible injection is verified in heterogeneous porous media as well.

  14. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect

    Abbas Firoozabadi

    2003-12-01

    Wettability alteration to intermediate gas-wetting in porous media by treatment with FC-759, a fluoropolymer polymer, has been studied experimentally. Berea sandstone was used as the main rock sample in our work and its wettability before and after chemical treatment was studied at various temperatures from 25 to 93 C. We also studied recovery performance for both gas/oil and oil/water systems for Berea sandstone before and after wettability alteration by chemical treatment. Our experimental study shows that chemical treatment with FC-759 can result in: (1) wettability alteration from strong liquid-wetting to stable intermediate gas-wetting at room temperature and at elevated temperatures; (2) neutral wetting for gas, oil, and water phases in two-phase flow; (3) significant increase in oil mobility for gas/oil system; and (4) improved recovery behavior for both gas/oil and oil/water systems. This work reveals a potential for field application for improved gas-well deliverability and well injectivity by altering the rock wettability around wellbore in gas condensate reservoirs from strong liquid-wetting to intermediate gas-wetting.

  15. Time-resolved diffusion tomographic imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1998-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =?Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!?W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Here Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information.

  16. Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.

    PubMed

    Kang, Dongyel; Kupinski, Matthew A

    2011-06-20

    We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

  17. Enhanced Vapor-Phase Diffusion in Porous Media - LDRD Final Report

    SciTech Connect

    Ho, C.K.; Webb, S.W.

    1999-01-01

    As part of the Laboratory-Directed Research and Development (LDRD) Program at Sandia National Laboratories, an investigation into the existence of enhanced vapor-phase diffusion (EVD) in porous media has been conducted. A thorough literature review was initially performed across multiple disciplines (soil science and engineering), and based on this review, the existence of EVD was found to be questionable. As a result, modeling and experiments were initiated to investigate the existence of EVD. In this LDRD, the first mechanistic model of EVD was developed which demonstrated the mechanisms responsible for EVD. The first direct measurements of EVD have also been conducted at multiple scales. Measurements have been made at the pore scale, in a two- dimensional network as represented by a fracture aperture, and in a porous medium. Significant enhancement of vapor-phase transport relative to Fickian diffusion was measured in all cases. The modeling and experimental results provide additional mechanisms for EVD beyond those presented by the generally accepted model of Philip and deVries (1957), which required a thermal gradient for EVD to exist. Modeling and experimental results show significant enhancement under isothermal conditions. Application of EVD to vapor transport in the near-surface vadose zone show a significant variation between no enhancement, the model of Philip and deVries, and the present results. Based on this information, the model of Philip and deVries may need to be modified, and additional studies are recommended.

  18. Porous liquids: A promising class of media for gas separation

    SciTech Connect

    Zhang, Jinshui; Chai, Song -Hai; Qiao, Zhen -An; Mahurin, Shannon M.; Chen, Jihua; Fang, Youxing; Wan, Shun; Nelson, Kimberly; Zhang, Pengfei; Dai, Sheng

    2014-11-17

    In porous liquids with empty cavities we successfully has been successfully fabricated by surface engineering of hollow structures with suitable corona and canopy species. By taking advantage of the liquid-like polymeric matrices as a separation medium and the empty cavities as gas transport pathway, this unique porous liquid can function as a promising candidate for gas separation. A facile synthetic strategy can be further extended to other types of nanostructure-based porous liquid fabrication, opening up new opportunities for preparation of porous liquids with attractive properties for specific tasks.

  19. Influence of gas law on ultrasonic behaviour of porous media under pressure.

    PubMed

    Griffiths, S; Ayrault, C

    2010-06-01

    This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.

  20. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    SciTech Connect

    McGill U; Gostick, J. T.; Gunterman, H. P.; Weber, A. Z.; Newman, J. S.; Kienitz, B. L.; MacDowell, A. A.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  1. DEVELOPMENT OF LOW-DIFFUSION FLUX-SPLITTING METHODS FOR DENSE GAS-SOLID FLOWS

    EPA Science Inventory

    The development of a class of low-diffusion upwinding methods for computing dense gas-solid flows is presented in this work. An artificial compressibility/low-Mach preconditioning strategy is developed for a hyperbolic two-phase flow equation system consisting of separate solids ...

  2. Engineered Water Highways in Fuel Cells: Radiation Grafting of Gas Diffusion Layers.

    PubMed

    Forner-Cuenca, Antoni; Biesdorf, Johannes; Gubler, Lorenz; Kristiansen, Per Magnus; Schmidt, Thomas Justus; Boillat, Pierre

    2015-11-04

    A novel method to produce gas diffusion layers with patterned wettability for fuel cells is presented. The local irradiation and subsequent grafting permits full design flexibility and wettability tuning, while modifying throughout the whole material thickness. These water highways have improved operando performance due to an optimized water management inside the cells.

  3. DEVELOPMENT OF LOW-DIFFUSION FLUX-SPLITTING METHODS FOR DENSE GAS-SOLID FLOWS

    EPA Science Inventory

    The development of a class of low-diffusion upwinding methods for computing dense gas-solid flows is presented in this work. An artificial compressibility/low-Mach preconditioning strategy is developed for a hyperbolic two-phase flow equation system consisting of separate solids ...

  4. Ultrasonic imaging of highly scattering media from local measurements of the diffusion constant: Separation of coherent and incoherent intensities

    NASA Astrophysics Data System (ADS)

    Aubry, Alexandre; Derode, Arnaud

    2007-02-01

    As classical imaging fails with diffusive media, one way to image a multiple-scattering medium is to achieve local measurements of the dynamic transport properties of a wave undergoing diffusion. This paper presents a method to obtain local measurements of the diffusion constant D in a multiple-scattering medium. The experimental setup consists in an array of programmable transducers placed in front of the multiple-scattering medium to be imaged. By achieving Gaussian beamforming both at emission and reception, an array of virtual sources and receivers located in the near field is constructed. The time evolution of the incoherent component of the intensity backscattered on this virtual array is shown to represent directly the growth of the diffusive halo as Dt . A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Once the incoherent contribution is isolated, a local measurement of the diffusion constant is possible. The technique is applied to image the long-scale variations of D in a random-scattering sample made of two parts with a different concentration of cylindrical scatterers. This experimental result is obtained with ultrasonic waves around 3MHz . It illustrates the possibility of imaging diffusive media from local measurements of the diffusion constant, based on coherent Gaussian beamforming and a matrix “antisymmetrization,” which creates a virtual antireciprocity.

  5. Ballistic and diffusive dynamics in a two-dimensional ideal gas of macroscopic chaotic Faraday waves.

    PubMed

    Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I

    2014-04-01

    We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.

  6. Nonlinear diffusion-wave equation for a gas in a regenerator subject to temperature gradient

    NASA Astrophysics Data System (ADS)

    Sugimoto, N.

    2015-10-01

    This paper derives an approximate equation for propagation of nonlinear thermoacoustic waves in a gas-filled, circular pore subject to temperature gradient. The pore radius is assumed to be much smaller than a thickness of thermoviscous diffusion layer, and the narrow-tube approximation is used in the sense that a typical axial length associated with temperature gradient is much longer than the radius. Introducing three small parameters, one being the ratio of the pore radius to the thickness of thermoviscous diffusion layer, another the ratio of a typical speed of thermoacoustic waves to an adiabatic sound speed and the other the ratio of a typical magnitude of pressure disturbance to a uniform pressure in a quiescent state, a system of fluid dynamical equations for an ideal gas is reduced asymptotically to a nonlinear diffusion-wave equation by using boundary conditions on a pore wall. Discussion on a temporal mean of an excess pressure due to periodic oscillations is included.

  7. Modelling of diffusion-limited retardation of contaminants in hydraulically and lithologically nonuniform media

    NASA Astrophysics Data System (ADS)

    Liedl, Rudolf; Ptak, Thomas

    2003-11-01

    A new reactive transport modelling approach and examples of its application are presented, dealing with the impact of sorption/desorption kinetics on the spreading of solutes, e.g. organic contaminants, in groundwater. Slow sorption/desorption is known from the literature to be strongly responsible for the retardation of organic contaminants. The modelling concept applied in this paper quantifies sorption/desorption kinetics by an intra-particle diffusion approach. According to this idea, solute uptake by or release from the aquifer material is modelled at small scale by a "slow" diffusion process where the diffusion coefficient is reduced as compared to the aqueous diffusion coefficient due to (i) the size and shape of intra-particle pores and (ii) retarded transport of solutes within intra-particle pores governed by a nonlinear sorption isotherm. This process-based concept has the advantage of requiring only measurable model parameters, thus avoiding fitting parameters like first-order rate coefficients. In addition, the approach presented here allows for modelling of slow sorption/desorption in lithologically nonuniform media. Therefore, it accounts for well-known experimental findings indicating that sorptive properties depend on (i) the grain size distribution of the aquifer material and (ii) the lithological composition (e.g. percentage of quartz, sandstone, limestone, etc.) of each grain size fraction. The small-scale physico-chemical model describing sorption/desorption is coupled to a large-scale model of groundwater flow and solute transport. Consequently, hydraulic heterogeneities may also be considered by the overall model. This coupling is regarded as an essential prerequisite for simulating field-scale scenarios which will be addressed by a forthcoming publication. This paper focuses on mathematical model formulation, implementation of the numerical code and lab-scale model applications highlighting the sorption and desorption behavior of an organic

  8. Modelling of diffusion-limited retardation of contaminants in hydraulically and lithologically nonuniform media.

    PubMed

    Liedl, Rudolf; Ptak, Thomas

    2003-11-01

    A new reactive transport modelling approach and examples of its application are presented, dealing with the impact of sorption/desorption kinetics on the spreading of solutes, e.g. organic contaminants, in groundwater. Slow sorption/desorption is known from the literature to be strongly responsible for the retardation of organic contaminants. The modelling concept applied in this paper quantifies sorption/desorption kinetics by an intra-particle diffusion approach. According to this idea, solute uptake by or release from the aquifer material is modelled at small scale by a "slow" diffusion process where the diffusion coefficient is reduced as compared to the aqueous diffusion coefficient due to (i) the size and shape of intra-particle pores and (ii) retarded transport of solutes within intra-particle pores governed by a nonlinear sorption isotherm. This process-based concept has the advantage of requiring only measurable model parameters, thus avoiding fitting parameters like first-order rate coefficients. In addition, the approach presented here allows for modelling of slow sorption/desorption in lithologically nonuniform media. Therefore, it accounts for well-known experimental findings indicating that sorptive properties depend on (i) the grain size distribution of the aquifer material and (ii) the lithological composition (e.g. percentage of quartz, sandstone, limestone, etc.) of each grain size fraction. The small-scale physico-chemical model describing sorption/desorption is coupled to a large-scale model of groundwater flow and solute transport. Consequently, hydraulic heterogeneities may also be considered by the overall model. This coupling is regarded as an essential prerequisite for simulating field-scale scenarios which will be addressed by a forthcoming publication. This paper focuses on mathematical model formulation, implementation of the numerical code and lab-scale model applications highlighting the sorption and desorption behavior of an organic

  9. Purging of a multilayer insulation with dacron tuft spacer by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Fisk, W. J.

    1976-01-01

    The time and purge gas usage required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable gas (nitrogen) concentration of less than 1 percent within the panel are stipulated. Two different, flat, rectangular MLI panels, one incorporating a butt joint, were constructed of of 11 double-aluminized Mylar (DAM) radiation shields separated by Dacron tuft spacers. The DAM/Dacron tuft concept is known commercially as Superfloc. The nitrogen gas concentration as a function of time within the MLI panel could be adequately predicted by using a simple, one dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent. The time and purge gas usage required to achieve 1 percent nitrogen gas concentration within the MLI panel varied from 208 to 86 minutes and 34.1 to 56.5 MLI panel purge volumes, respectively, for gaseous helium purge rates from 10 to 40 MLI panel volumes per hour.

  10. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-09-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online (diffusion"target="_blank">https://sites.google.com/site/mingjintang/home/diffusion).

  11. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-09-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results.

  12. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    PubMed Central

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-01-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293

  13. Diffuse gas emissions at the Ukinrek Maars, Alaska: Implications for magmatic degassing and volcanic monitoring

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, D.; McGimsey, R.G.; Hunt, A.G.

    2009-01-01

    Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m-2 d-1, was found in conspicuous zones of plant damage or kill that cover 30,000-50,000 m2 in area. Total diffuse CO2 emission was estimated at 21-44 t d-1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d-1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar ??13C values (???-6???), 3He/4He ratios (5.9-7.2 RA), and CO2/3He ratios (1-2 ?? 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 ?? 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas-water-rock interactions play a major role in the location, magnitude and chemistry of the emissions.

  14. On the validity of a Fickian diffusion model for the spreading of liquid infiltration plumes in partially saturated heterogeneous media

    SciTech Connect

    Pruess, K.

    1994-01-01

    Localized infiltration of aqueous and -non-aqueous phase liquids (NAPLs) occurs in many circumstances. Examples include leaky underground pipelines and storage tanks, landfill and disposal sites, and surface spills. Because of ever-present heterogeneities on different scales such infiltration plumes are expected to disperse transversally and longitudinally. This paper examines recent suggestions that liquid plumes are being dispersed from medium heterogeneities in a manner that is analogous to Fickian diffusion. Numerical simulation experiments on liquid infiltration in heterogeneous media are performed to study the dispersive effects of small-scale heterogeneity. It is found that plume spreading indeed tends to be diffusive. Our results suggest that, as far as infiltration of liquids is concerned, broad classes of heterogeneous media behave as dispersive media with locally homogeneous (albeit anisotropic) permeability.

  15. Acute inhalation injury with evidence of diffuse bronchiolitis following chlorine gas exposure at a swimming pool.

    PubMed

    Parimon, Tanyalak; Kanne, Jeffrey P; Pierson, David J

    2004-03-01

    A previously healthy 23-year-old man with nonproductive cough and sore throat presented to the hospital a few hours after chlorine gas exposure at a fitness center swimming pool. Initial physical examination and chest radiograph were normal. Thirty-six hours later he developed worsening dyspnea and cough, with development of blood-tinged sputum. Arterial blood gas analysis showed mild hypoxemia and a subsequent chest radiograph demonstrated diffuse tiny nodular opacities. Findings on a thin-section computed tomogram of the chest were consistent with diffuse bronchiolitis. Pulmonary function tests showed a mild obstructive abnormality and he demonstrated substantial bronchodilator response. The patient was treated with oral corticosteroids and an inhaled beta(2) agonist, to which he responded well, with full clinical recovery occurring over 5 months. This manifestation of chlorine gas exposure at a swimming pool is unusual.

  16. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    PubMed Central

    Zhou, Wencai; Wöll, Christof; Heinke, Lars

    2015-01-01

    The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1), whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.

  17. Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroyuki; Okawa, Shinpei; Yamada, Yukio; Hoshi, Yoko

    2014-11-01

    Numerical modeling of light propagation in random media has been an important issue for biomedical imaging, including diffuse optical tomography (DOT). For high resolution DOT, accurate and fast computation of light propagation in biological tissue is desirable. This paper proposes a space-time hybrid model for numerical modeling based on the radiative transfer and diffusion equations (RTE and DE, respectively) in random media under refractive-index mismatching. In the proposed model, the RTE and DE regions are separated into space and time by using a crossover length and the time from the ballistic regime to the diffusive regime, ρDA 10 / μt‧ and tDA 20 / v μt‧ where μt‧ and v represent a reduced transport coefficient and light velocity, respectively. The present model succeeds in describing light propagation accurately and reduces computational load by a quarter compared with full computation of the RTE.

  18. Porous Media Combustors for Clean Gas Turbine Engines

    DTIC Science & Technology

    2007-11-02

    emissions , no cooling requirement for the! combustor itself and the potential to operate free from combustion- induced noise. The reduced combustion...that the combustor operates in a "super-adiabatic" mode, with low emissions . Intrinsic pressure loss is within values, commonly accepted for propulsion...principles for low emissions turbulent flame gas turbine combustors are well established. The preferred strategy remains lean burn, often with staging to

  19. Ballistic and Diffuse Ultrafast Laser Pulses Propagation in Model Random Media and Biological Tissues

    NASA Astrophysics Data System (ADS)

    Liu, Feng

    The goal of this thesis is to study light scattering and ultrashort laser pulse propagation in the model discrete random media and biological tissues. The temporal profiles of the scattered ultrashort laser pulses were measured by using ultrashort laser pulses, streak camera with 10 ps time response and the femtosecond cross correlation technique. The intensity of the diffuse pulse is found to be preferentially reduced by the absorption with respect to the intensity of the ballistic light because the diffuse light on the average travel through a longer path than the ballistic light. A simple experiment was performed to demonstrate that one can image through a highly scattering medium by increasing the absorption in the medium. The speed of the ballistic pulse was measured by the femtosecond second harmonic cross correlation method and was found to be reduced by the scattering. This speed reduction can be accounted for by the volume fraction combination of the indices of refraction of the scatterers and the water or by the coherent interference between the scattered waves and the primary wave. No distinct ballistic pulse was observed when the laser pulse transmitted through a thin tissue. The continuous random variation of the dielectric constant in tissue may account for the lack of a distinct ballistic pulse. Nevertheless, the early arriving portion of the transmitted pulse was shown to carry image information. The earlier arriving photons were found to produce image of the hidden object with better quality. The intensity of the early arriving transmitted photons was found to decay exponentially with increasing tissue thickness. The earlier the photons arrive, the quicker their intensity decay. Diffusion theory was found to describe the overall transmitted pulse profiles well, but it underestimates the intensity of the early arriving photons. Compressing tissue was found not to change the key optical parameters of the tissue. The scattered laser pulse profile in

  20. Gas diffusion in a pulmonary acinus model: experiments with hyperpolarized helium-3.

    PubMed

    Habib, Dayane; Grebenkov, Denis; Guillot, Geneviève

    2008-10-01

    Diffusion of hyperpolarized helium-3 in epoxy phantoms was experimentally studied by pulsed-gradient nuclear magnetic resonance (NMR). One phantom with a dichotomic branching structure densely filling a cubic volume was built using the Kitaoka algorithm to model a healthy human acinus. Two other phantoms, one with a different size and the other one with a partial destruction of the branched structure, were built to simulate changes occurring at the early stages of emphysema. Gas pressure and composition (mixture with nitrogen) were varied, thus exploring different diffusion regimes. Preliminary measurements in a cylindrical glass cell allowed us to calibrate the gradient intensity with 1% accuracy. Measurements of NMR signal attenuation due to gas diffusion were compared to a classical Gaussian model and to Monte Carlo simulations. In the slow diffusion regime, the Gaussian model was in reasonable agreement with experiments for low gradient intensity, but there was a significant systematic deviation at larger gradient intensity. An apparent diffusion coefficient Dapp was deduced, and in agreement with previous findings, a linear decrease of Dapp/D0 with D0(1/2) was observed, where D0 is the free diffusion coefficient. In the regime of intermediate diffusion, experimental data could be described by the Gaussian model for very small gradient intensities only. The corresponding Dapp/D0 values seemed to reach a constant value. Monte Carlo simulations were generally in fair agreement with the measurements in both regimes. Our results suggest that, for diffusion times typical of medical magnetic resonance imaging, an increase in alveolar size has more impact on signal attenuation than a partial destruction of the branched structure at equivalent surface-to-volume ratio.

  1. General slip regime permeability model for gas flow through porous media

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Jiang, Peixue; Xu, Ruina; Ouyang, Xiaolong

    2016-07-01

    A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, "Effective correlation of apparent gas permeability in tight porous media," Transp. Porous Media 82, 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.

  2. A Study of Boundary Layer and Mass Bleed in a Short Length Supersonic Diffuser for a Gas Dynamic Laser

    DTIC Science & Technology

    1976-03-01

    layer and mass bleed in a short length supersonic diffuser for a gas dynamic laser Habel, Paul Grimmer Monterey, California. Naval Postgraduate School...http://hdl.handle.net/10945/17957 Downloaded from NPS Archive: Calhoun A STUDY OF BOUNDARY LAYER AND MASS BLEED IN A SHORT LENGTH SUPERSONIC DIFFUSER FOR...L THESIS I A Study of Boundary Layer and Mass Bleed in a Short Length Supersonic Diffuser for a Gas Dynamic Laser by Paul Grimmer Habel March 1976

  3. Pyrolysis gas-liquid chromatography of the genus Bacillus: effect of growth media on pyrochromatogram reproducibility.

    PubMed

    Oxborrow, G S; Fields, N D; Puleo, J R

    1977-04-01

    Pyrolysis gas-liquid chromatography was performed on dried Bacillus microorganisms to evaluate the effects of growth media. Six cultures of Bacillus and six lot numbers of Trypticase soy agar (BBL) were used to test the hypothesis that a microorganism grown on various lot numbers of the same chromatogram. Also tested was the effect of three different media on chromatogram reproduction using the same six cultures. Results show little or no differences observed between the chromatograms of the individual Bacillus spp. grown on the six lot numbers of Trypticase soy agar. When chromatograms of the three different media were compared, several differences were observed, particularly in the areas most characteristic of individual species. Pryolysis gas-liquid chromatography can be a useful tool for the characterization or identification of the genus Bacillus if the chromatographic and cultural conditions are maintained.

  4. Evaluation of porosity and thickness on effective diffusivity in gas diffusion layer

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Montana, Angel; Chen, Fengxiang

    2017-02-01

    Porosity and thickness are two key properties of GDL and both affect the transport properties of porous media. This paper focuses on the influence of the GDL microstructure on its transport properties, which will be analyzed from different samples. The results show that thickness affects permeability through the principal flow direction more than through non-principal directions, thus it is necessary to increase the anisotropic characteristics of the material. Moreover, it is ascertained that permeability is more affected by the number of fibers than by the thickness. For the variable porosity sample groups, the simulation results are coincident with the fractal model in principal and non-principal flow directions, and water saturation inside the GDL samples has been evaluated. They are shown several cases of the GDL model to illustrate the fluid flow along through-plane and in-plane directions as well as the conditions at inlet and outlet boundaries. These results have a strong potential to gain deeper understanding of the microscopic flow phenomenon within the porous structures and to determine the influence the microstructure has on the macroscopic transport properties, thus leading to notable improvements of fuel cell performance.

  5. Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method

    NASA Astrophysics Data System (ADS)

    Mirzaei Rafsanjani, H.; Rezaei Nasab, A.

    2012-05-01

    Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.

  6. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.

    PubMed

    Marica, Florea; Jofré, Sergio Andrés Bea; Mayer, K Ulrich; Balcom, Bruce J; Al, Tom A

    2011-07-01

    This work is focused on measuring the concentration distribution of a conservative tracer in a homogeneous synthetic porous material and in heterogeneous natural sandstone using MRI techniques, and on the use of spatially resolved porosity data to define spatially variable diffusion coefficients in heterogeneous media. The measurements are made by employing SPRITE, a fast MRI method that yields quantitative, spatially-resolved tracer concentrations in porous media. Diffusion experiments involving the migration of H(2)O into D(2)O-saturated porous media are conducted. One-dimensional spatial distributions of H(2)O-tracer concentrations acquired from experiments with the homogeneous synthetic calcium silicate are fitted with the one-dimensional analytical solution of Fick's second law to confirm that the experimental method provides results that are consistent with expectations for Fickian diffusion in porous media. The MRI-measured concentration profiles match well with the solution for Fick's second law and provide a pore-water diffusion coefficient of 1.75×10(-9)m(2)s(-1). The experimental approach was then extended to evaluate diffusion in a heterogeneous natural sandstone in three dimensions. The relatively high hydraulic conductivity of the sandstone, and the contrast in fluid density between the H(2)O tracer and the D(2)O pore fluid, lead to solute transport by a combination of diffusion and density-driven advection. The MRI measurements of spatially distributed tracer concentration, combined with numerical simulations allow for the identification of the respective influences of advection and diffusion. The experimental data are interpreted with the aid of MIN3P-D - a multicomponent reactive transport code that includes the coupled processes of diffusion and density-driven advection. The model defines local diffusion coefficients as a function of spatially resolved porosity measurements. The D(e) values calculated for the heterogeneous sandstone and used to

  7. Variability in gas production by Escherichia coli in enrichment media and its relationship to pH.

    PubMed Central

    Meadows, P S; Anderson, J G; Patel, K; Mullins, B W

    1980-01-01

    Variability in gas production in multiple subcultures of Escherichia coli was assessed in two selective enrichment media and in lactose peptone water. Considerable variability occurred with all media at 37 and 44 degrees C. Addition of buffer increased gas production and decreased variability. The relationships between pH, growth, and gas production were complex. In buffered media, viable counts increased by 269 x 10(6) to 382 x 10(6)/U of pH fall, whereas in unbuffered media, they increased by 9.45 x 10(6) to 30.37 x 10(6)/U of pH fall. In buffered and unbuffered media, pH fell as gas production rose. However, variability in gas production among individual subcultures was not associated with changes in pH. PMID:7008694

  8. 3D MRI of non-Gaussian (3)He gas diffusion in the rat lung.

    PubMed

    Jacob, Richard E; Laicher, Gernot; Minard, Kevin R

    2007-10-01

    In (3)He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted (3)He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only approximately 1 L of hyperpolarized (3)He gas. Diffusion weighting ranges from 0 s/cm(2) to 40 s/cm(2). Results show that the non-Gaussian effects of (3)He gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal.

  9. 3D MRI of non-Gaussian 3He gas diffusion in the rat lung

    NASA Astrophysics Data System (ADS)

    Jacob, Richard E.; Laicher, Gernot; Minard, Kevin R.

    2007-10-01

    In 3He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted 3He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only ˜1 L of hyperpolarized 3He gas. Diffusion weighting ranges from 0 s/cm 2 to 40 s/cm 2. Results show that the non-Gaussian effects of 3He gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal.

  10. Interpreting the sub-linear Kennicutt-Schmidt relationship: the case for diffuse molecular gas

    NASA Astrophysics Data System (ADS)

    Shetty, Rahul; Clark, Paul C.; Klessen, Ralf S.

    2014-08-01

    Recent statistical analysis of two extragalactic observational surveys strongly indicate a sub-linear Kennicutt-Schmidt (KS) relationship between the star formation rate (ΣSFR) and molecular gas surface density (Σmol). Here, we consider the consequences of these results in the context of common assumptions, as well as observational support for a linear relationship between ΣSFR and the surface density of dense gas. If the CO traced gas depletion time (τ_dep^CO) is constant, and if CO only traces star-forming giant molecular clouds (GMCs), then the physical properties of each GMC must vary, such as the volume densities or star formation rates. Another possibility is that the conversion between CO luminosity and Σmol, the XCO factor, differs from cloud-to-cloud. A more straightforward explanation is that CO permeates the hierarchical interstellar medium, including the filaments and lower density regions within which GMCs are embedded. A number of independent observational results support this description, with the diffuse gas comprising at least 30 per cent of the total molecular content. The CO bright diffuse gas can explain the sub-linear KS relationship, and consequently leads to an increasing τ_dep^CO with Σmol. If ΣSFR linearly correlates with the dense gas surface density, a sub-linear KS relationship indicates that the fraction of diffuse gas fdiff grows with Σmol. In galaxies where Σmol falls towards the outer disc, this description suggests that fdiff also decreases radially.

  11. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field.

    PubMed

    García-Pérez, E; Serra-Crespo, P; Hamad, S; Kapteijn, F; Gascon, J

    2014-08-14

    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations of gas adsorption and diffusion of carbon dioxide and methane in NH2-MIL-53(Al) are carried out using a linear combination of two crystallographic structures with rigid force fields. Once the interactions of carbon dioxide molecules and the bridging hydroxyls groups of the framework are optimized, an excellent match is found for simulations and experimental data for the adsorption of methane and carbon dioxide, including the stepwise uptake due to the breathing effect. In addition, diffusivities of pure components are calculated. The pore expansion by the breathing effect influences the self-diffusion mechanism and much higher diffusivities are observed at relatively high adsorbate loadings. This work demonstrates that using a rigid force field combined with a minimum number of experiments, reproduces adsorption and simulates diffusion of carbon dioxide and methane in the flexible metal-organic framework NH2-MIL-53(Al).

  12. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding

    NASA Astrophysics Data System (ADS)

    Radadia, A. D.; Salehi-Khojin, A.; Masel, R. I.; Shannon, M. A.

    2010-01-01

    Temperature programming of gas chromatography (GC) separation columns accelerates the elution rate of chemical species through the column, increasing the speed of analysis, and hence making it a favorable technique to speedup separations in microfabricated GCs (micro-GC). Temperature-programmed separations would be preferred in an all-silicon micro-column compared to a silicon-Pyrex® micro-column given that the thermal conductivity and diffusivity of silicon is 2 orders of magnitude higher than Pyrex®. This paper demonstrates how to fabricate all-silicon micro-columns that can withstand the temperature cycling required for temperature-programmed separations. The columns were sealed using a novel bonding process where they were first bonded using a gold eutectic bond, then annealed at 1100 °C to allow gold diffusion into silicon and form what we call a gold diffusion eutectic bond. The gold diffusion eutectic-bonded micro-columns when examined using scanning electron microscopy (SEM), scanning acoustic microscopy (SAM) and blade insertion techniques showed bonding strength comparable to the previously reported anodic-bonded columns. Gas chromatography-based methane injections were also used as a novel way to investigate proper sealing between channels. A unique methane elution peak at various carrier gas inlet pressures demonstrated the suitability of gold diffusion eutectic-bonded channels as micro-GC columns. The application of gold diffusion eutectic-bonded all-silicon micro-columns to temperature-programmed separations (120 °C min-1) was demonstrated with the near-baseline separation of n-C6 to n-C12 alkanes in 35 s.

  13. Subdiffusion, Anomalous Diffusion and Propagation of a Particle Moving in Random and Periodic Media

    NASA Astrophysics Data System (ADS)

    Mishra, Shradha; Bhattacharya, Sanchari; Webb, Benjamin; Cohen, E. G. D.

    2016-02-01

    We investigate the motion of a single particle moving on a two-dimensional square lattice whose sites are occupied by right and left rotators. These left and right rotators deterministically rotate the particle's velocity to the right or left, respectively and flip orientation from right to left or from left to right after scattering the particle. We study three types of configurations of left and right rotators, which we think of as types of media, through with the particle moves. These are completely random (CR), random periodic (RP), and completely periodic (CP) configurations. For CR configurations the particle's dynamics depends on the ratio r of right to left scatterers in the following way. For small r˜eq 0, when the configuration is nearly homogeneous, the particle subdiffuses with an exponent of 2/3, similar to the diffusion of a macromolecule in a crowded environment. Also, the particle's trajectory has a fractal dimension of d_f˜eq 4/3, comparable to that of a self-avoiding walk. As the ratio increases to r˜eq 1, the particle's dynamics transitions from subdiffusion to anomalous diffusion with a fractal dimension of d_f˜eq 7/4, similar to that of a percolating cluster in 2-d. In RP configurations, which are more structured than CR configurations but also randomly generated, we find that the particle has the same statistic as in the CR case. In contrast, CP configurations, which are highly structured, typically will cause the particle to go through a transient stage of subdiffusion, which then abruptly changes to propagation. Interestingly, the subdiffusive stage has an exponent of approximately 2/3 and a fractal dimension of d_f˜eq 4/3, similar to the case of CR and RP configurations for small r.

  14. Analytical solutions for a soil vapor extraction model that incorporates gas phase dispersion and molecular diffusion

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2017-06-01

    To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.

  15. Effect of advective flow in fractures and matrix diffusion on natural gas production

    SciTech Connect

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.

  16. Effect of advective flow in fractures and matrix diffusion on natural gas production

    DOE PAGES

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; ...

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less

  17. Inverse gas chromatography. V - Computer simulation of diffusion processes on the column

    NASA Technical Reports Server (NTRS)

    Hattam, Paul; Munk, Petr

    1988-01-01

    The elution behavior of low molecular weight probes on inverse gas chromatography (IGC) columns is simulated using a computer. The IGC model is based on a polymer stationary phase of uniform thickness with a nonnegligible resitance to probe penetration. Three characteristic numbers are found to determine the whole process: Z(p) characterizing the distribution of the probe between phases, Z(f) describing the diffusion in the polymer phase, and Z(g) related to diffusion in the gaseous phase. For situations when Z(p)/Z(f) is less than 2, the standard evaluation procedures are virtually useless. The actual behavior of such systems is described.

  18. Non-diffusive spin dynamics in a two-dimensional electron gas

    SciTech Connect

    Weber, C.P.

    2010-04-28

    We describe measurements of spin dynamics in the two-dimensional electron gas in GaAs/GaAlAs quantum wells. Optical techniques, including transient spin-grating spectroscopy, are used to probe the relaxation rates of spin polarization waves in the wavevector range from zero to 6 x 10{sup 4} cm{sup -1}. We find that the spin polarization lifetime is maximal at nonzero wavevector, in contrast with expectation based on ordinary spin diffusion, but in quantitative agreement with recent theories that treat diffusion in the presence of spin-orbit coupling.

  19. Quantification of trapped gas redistribution in dual-porosity media with continuous and discontinuous domains

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Sacha, Jan; Jelinkova, Vladimira; Cislerova, Milena; Vontobel, Peter

    2016-04-01

    Nonwetting phase (residual air) is trapped in the porous media at water contents close to the saturation. Trapped gas phase resides in pores in form of bubbles, blobs or cluster forming residual gas saturation. In homogeneous soil media trapped gas is relatively stable until it is released upon porous media drainage. If porous media remain saturated, trapped gas can slowly dissolve in response to changed air solubility of surrounding water. In heterogeneous media, relatively rapid change in the trapped gas distribution can be observed soon after the gas is initially trapped during infiltration. It has been recently shown that the mass transfer of gas is directed from regions of fine porosity to regions of coarse porosity. The mass transfer was quantified by means of neutron tomography for the case of dual porosity sample under steady state flow. However the underlying mechanism of the gas mass transfer is still not clear. Based on the robust experience of visualization of the flow within heterogeneous samples, it seems that due to the huge local (microscopic) pressure gradients between contrasting pore radii the portion of faster flowing water becomes attracted into small pores of high capillary pressure. The process depends on the initial distribution of entrapped air which has to be considered as random in dependence on the history and circumstances of wetting/drying. In this study, the redistribution of trapped gas was quantitatively studied by 3D neutron imaging on samples composed of fine porous ceramic and coarse sand. The redistribution of water was studied under no-flow and steady state flow conditions. Two different inner geometries of the samples were developed. In the first case the low permeability regions (ceramics) were disconnected, while in the second structure, the fine porosity material was continuous from the top to the bottom of the sample. Quantitative 3D neutron tomography imaging revealed similar redistribution process in both cases of

  20. Random walk to describe diffusion phenomena in three-dimensional discontinuous media: Step-balance and fictitious-velocity corrections

    NASA Astrophysics Data System (ADS)

    Maruyama, Yutaka

    2017-09-01

    In this paper, we show that diffusion phenomena in three-dimensional discontinuous media can be described as a random walk by two simple interface-correction methods, namely step-balance and fictitious-velocity corrections, which are completely different in a physical picture but equivalent in that the continuity of the random walk at interfaces is considered. In both corrections, asymmetric interface permeability of a random walker, which comes from ensuring the continuity, causes apparent confinement of the walker in higher-diffusivity layers for benchmark tests on heat diffusion in two-phase multilayered systems. Effective thermal conductivities (walker diffusivities) computed from the trajectories are in excellent agreement with the series and parallel conduction formulas, indicating the equivalence of the two corrections and the importance of ensuring the continuity of a random walk at interfaces.

  1. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    PubMed

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  2. Fractional and fractal dynamics approach to anomalous diffusion in porous media: application to landslide behavior

    NASA Astrophysics Data System (ADS)

    Martelloni, Gianluca; Bagnoli, Franco

    2016-04-01

    Richardson's treatise on turbulent diffusion in 1926 [24] and today, the list of system displaying anomalous dynamical behavior is quite extensive. We only report some examples: charge carrier transport in amorphous semiconductors [25], porous systems [26], reptation dynamics in polymeric systems [27, 28], transport on fractal geometries [29], the long-time dynamics of DNA sequences [30]. In this scenario, the fractional calculus is used to generalized the Fokker-Planck linear equation -∂P (x,t)=D ∇2P (x,t), ∂t (3) where P (x,t) is the density of probability in the space x=[x1, x2, x3] and time t, while D >0 is the diffusion coefficient. Such processes are characterized by Eq. (1). An example of Eq. (3) generalization is ∂∂tP (x,t)=D∇ αP β(x,t) - ∞ < α ≤ 2 β > - 1 , (4) where the fractional based-derivatives Laplacian Σ(∂α/∂xα)i, (i = 1, 2, 3), of non-linear term Pβ(x,t) is taken into account [31]. Another generalized form is represented by equation ∂∂tδδP(x,t)=D ∇ αP(x,t) δ > 0 α ≤ 2 , (5) that considers also the fractional time-derivative [32]. These fractional-described processes exhibit a power law patters as expressed by Eq. (2). This general introduction introduces the presented work, whose aim is to develop a theoretical model in order to forecast the triggering and propagation of landslides, using the techniques of fractional calculus. The latter is suitable for modeling the water infiltration (i.e., the pore water pressure diffusion in the soil) and the dynamical processes in the fractal media [33]. Alternatively the fractal representation of temporal and spatial derivative (the fractal order only appears in the denominator of the derivative) is considered and the results are compared to the fractional one. The prediction of landslides and the discovering of the triggering mechanism, is one of the challenging problems in earth science. Landslides can be triggered by different factors but in most cases the trigger is an

  3. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOEpatents

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  4. An adaptive streamline diffusion finite element method for hyperbolic systems in gas dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Guohui

    1992-09-01

    The paintwise error analysis of the streamline diffusion method for two dimensional stationary problem with constant coefficients is extended to the time dependent problem. The purpose of the study is to justify a local mesh refinement strategy. The one dimensional Euler equations coming from the shock tube and Riemann's problem in gas dynamics are used. The gas is assumed to be at rest on both sides of the membrane, with pressure and density different on each side. The case where the problem is scalar and linear is discussed. Linear systems of hyperbolic type in one space variable and nonlinear scalar problems are studied.

  5. Report on simulation of fission gas and fission product diffusion in UO2

    SciTech Connect

    Andersson, Anders David; Perriot, Romain Thibault; Pastore, Giovanni; Tonks, Michael R.; Cooper, Michael William; Liu, Xiang-Yang; Goyal, Anuj; Uberuaga, Blas P.; Stanek, Christopher Richard

    2016-07-22

    In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving XeU3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher

  6. Theoretical and experimental correlations of gas dissolution, diffusion, and thermodynamic properties in determination of gas permeability and selectivity in supported ionic liquid membranes.

    PubMed

    Gan, Quan; Zou, Yiran; Rooney, David; Nancarrow, Paul; Thompson, Jillian; Liang, Lizhe; Lewis, Moira

    2011-05-11

    Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [C(n)mim][NTf2] (n=2.4, 6, 8.10) from simple gas H(2), N(2), to polar CO(2), and C(2)H(6), leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution-diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution-diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H(2), N(2)) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C(2)H(6) and CO(2). With exothermic dissolution enthalpy and large order disruptive entropy, C(2)H(6) displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C(2)H(6) gas molecules "peg" on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO(2)-ILs affinity resulted in a more prolonged "residence time" for the gas molecule, typified by reversed CO(2)/N(2) selectivity and slowest CO(2) transport despite CO(2) possess the highest solubility and

  7. Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell

    SciTech Connect

    Mukherjeea, Shiladitya; Cole, J Vernon; Jainb, Kunal; Gidwania, Ashok

    2008-11-01

    Improved power density and freeze-thaw durability in automotive applications of Proton Exchange Membrane Fuel Cells (PEMFCs) requires effective water management at the membrane. This is controlled by a porous hydrophobic gas-diffusion-layer (GDL) inserted between the membrane catalyst layer and the gas reactant channels. The GDL distributes the incoming gaseous reactants on the catalyst surface and removes excess water by capillary action. There is, however, limited understanding of the multiphase, multi-component transport of liquid water, vapor and gaseous reactants within these porous materials. This is due primarily to the challenges of in-situ diagnostics for such thin (200 -“ 300 {microns}), optically opaque (graphite) materials. Transport is typically analyzed by fitting Darcy's Law type expressions for permeability, in conjunction with capillary pressure relations based on formulations derived for media such as soils. Therefore, there is significant interest in developing predictive models for transport in GDLs and related porous media. Such models could be applied to analyze and optimize systems based on the interactions between cell design, materials, and operating conditions, and could also be applied to evaluating material design concepts. Recently, the Lattice Boltzmann Method (LBM) has emerged as an effective tool in modeling multiphase flows in general, and flows through porous media in particular. This method is based on the solution of a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The kinetic theory basis of the method allows simple implementation of molecular forces responsible for liquid-gas phase separation and capillary effects. The solution advances by a streaming and collision type algorithm that makes it suitable to implement for domains with complex boundaries. We have developed both single and multiphase LB models and applied them to

  8. Selective chlorine dioxide determination using gas-diffusion flow injection analysis with chemiluminescent detection

    SciTech Connect

    Hollowell, D.A.; Gord, J.R.; Gordon, G.; Pacey, G.E.

    1986-06-01

    An automated chemiluminescent technique has been developed utilizing the advantages of gas-diffusion flow injection analysis. A gas-diffusion membrane separates the donor (sampling) stream from the acceptor (detecting) stream and removes ionic interferences. A novel chemiluminescence flow-through detector cell is used to measure the concentration of chlorine dioxide as a function of the intensity of the chemiluminescence produced from its reaction with luminol. The chemiluminescent reagent merges with the analyte directly in front of the photomultiplier tube in order to maximize the sensitivity of the system. The detection limit for chlorine dioxide is approximately 5 ppb. The method is over 1500 times more selective for chlorine dioxide than for chlorine on a mole basis. This method eliminates interference from iron and manganese compounds, as well as other oxychlorinated compounds such as chlorite ion and chlorate ion.

  9. Selective determination of chlorine dioxide using gas diffusion flow injection analysis

    SciTech Connect

    Hollowell, D.A.; Pacey, G.E.; Gordon, G.

    1985-12-01

    An automated absorbance technique for the determination of aqueous chlorine dioxide has been developed by utilizing gas diffusion flow injection analysis. A gas diffusion membrane is used to separate the donor (sampling) stream from the acceptor (detecting) stream. The absorbance of chlorine dioxide is monitored at 359 nm. The first method uses distilled water as the acceptor stream and gives a detection limit of 0.25 mg/L chlorine dioxide. This system is over 550 times more selective for chlorine dioxide than chlorine. To further minimize chlorine interference, oxalic acid is used in the acceptor stream. The detection limit for this system is 0.45 mg/L chlorine dioxide. This second system is over 5400 times more selective for chlorine dioxide than chlorine. Both methods show excellent selectivity for chlorine dioxide over iron and manganese compounds, as well as other oxychlorinated compounds such as chlorite and perchlorate ions. 18 references, 7 figures, 3 tables.

  10. Random Vibration Tests for Prediction of Fatigue Life of Diffuser Structure for Gas Dynamic Laser

    NASA Astrophysics Data System (ADS)

    Maurer, O. F.; Banaszak, D. L.

    1980-01-01

    Static and dynamic strain measurements which were taken during test stand operations of the gas dynamic laser (GDL) for the AF Airborne Laser Laboratory indicated that higher than expected vibrational stress levels may possibly limit the fatigue life of the laser structure. Particularly the diffuser sidewall structure exhibited large amplitude random vibrations which were excited by the internal gas flow. The diffuser structure consists of two layers of brazed stainless steel, AISI-347, panels. Cooling ducts were milled into the outer face sheet. These in turn are backed by the inner face sheet. So called T-rail stiffeners silver-brazed to the outer face sheets add the required stiffness and divide the sidewall into smaller rectangular plate sections.

  11. Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance

    NASA Astrophysics Data System (ADS)

    Morgan, Jason M.; Datta, Ravindra

    2014-04-01

    The proton exchange membrane fuel cell (PEMFC) has a significant potential in transportation, backup, and portable power applications, although there still are remaining technical and cost challenges. A key current goal is improving the performance while reducing the cost of the gas diffusion layer (GDL). Designing a commercial GDL, however, is far more complex than simply making a porous, sturdy, conductive layer, because of the trade-offs among performance, manufacturability, and cost. An improved understanding of its multifarious functions in the fuel cell can help attain this goal. Here, we identify 11 key characteristic parameters of the GDL and their significance to its performance. We begin a discussion of some of these parameters in this paper, specifically those related to the structure of the GDL substrate and the microporous layer (MPL), how these are measured experimentally ex-situ, how they influence fuel cell performance, and how they can be altered via the manufacturing process. In particular, we investigate the correlation between ex-situ measured effective diffusivity of water vapor and in-situ performance and limiting current density in a PEM fuel cell. Further, we examine the effect of adding multiple MPLs, MPL loading, and MPL particle size on cell performance under both wet and dry operating conditions.

  12. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem

    NASA Astrophysics Data System (ADS)

    Knohl, Alexander; Baldocchi, Dennis D.

    2008-06-01

    Forest ecosystems across the globe show an increase in ecosystem carbon uptake efficiency under conditions with high fraction of diffuse radiation. Here, we combine eddy covariance flux measurements at a deciduous temperate forest in central Germany with canopy-scale modeling using the biophysical multilayer model CANVEG to investigate the impact of diffuse radiation on various canopy gas exchange processes and to elucidate the underlying mechanisms. Increasing diffuse radiation enhances canopy photosynthesis by redistributing the solar radiation load from light saturated sunlit leaves to nonsaturated shade leaves. Interactions with atmospheric vapor pressure deficit and reduced leaf respiration are only of minor importance to canopy photosynthesis. The response strength of carbon uptake to diffuse radiation depends on canopy characteristics such as leaf area index and leaf optical properties. Our model computations shows that both canopy photosynthesis and transpiration increase initially with diffuse fraction, but decrease after an optimum at a diffuse fraction of 0.45 due to reduction in global radiation. The initial increase in canopy photosynthesis exceeds the increase in transpiration, leading to a rise in water-use-efficiency. Our model predicts an increase in carbon isotope discrimination with water-use-efficiency resulting from differences in the leaf-to-air vapor pressure gradient and atmospheric vapor pressure deficit. This finding is in contrast to those predicted with simple big-leaf models that do not explicitly calculate leaf energy balance. At an annual scale, we estimate a decrease in annual carbon uptake for a potential increase in diffuse fraction, since diffuse fraction was beyond the optimum for 61% of the data.

  13. CAN THE LYMAN CONTINUUM LEAKED OUT OF H II REGIONS EXPLAIN DIFFUSE IONIZED GAS?

    SciTech Connect

    Seon, Kwang-Il

    2009-09-20

    We present an attempt to explain the diffuse Halpha emission of a face-on galaxy M 51 with the 'standard' photoionization model, in which the Lyman continuum (Lyc) escaping from H II regions propagates large distances into the diffuse interstellar medium (ISM). The diffuse Halpha emission of M 51 is analyzed using thin slab models and exponential disk models in the context of the 'on-the-spot' approximation. The scale height of the ionized gas needed to explain the diffuse Halpha emission with the scenario is found to be of the order of {approx}1-2 kpc, consistent with those of our Galaxy and edge-on galaxies. The model also provides a vertical profile, when the galaxy is viewed edge-on, consisting of two-exponential components. However, it is found that an incredibly low absorption coefficient of kappa{sub 0} {approx} 0.4-0.8 kpc{sup -1} at the galactic plane, or, equivalently, an effective cross section as low as sigma{sub eff} {approx} 10{sup -5} of the photoionization cross section at 912 A is required to allow the stellar Lyc photons to travel through the H I disk. Such a low absorption coefficient is out of accord with the properties of the ISM. Furthermore, we found that even the model that has the diffuse ionized gas (DIG) phase only and no H I gas phase shows highly concentrated Halpha emissions around H II regions, and can account for only {approx}<26% of the Halpha luminosity of the DIG. This result places a strong constraint on the ionizing source of the DIG. We also report that the Halpha intensity distribution functions not only of the DIG, but also of H II regions in M 51, appear to be lognormal.

  14. Investigations of Air Perfusion through Porous Media and Super-Hydrophobic Surface Active Gas Replenishment

    NASA Astrophysics Data System (ADS)

    Perlin, Marc; Gose, James W.; Golovin, Kevin; Ceccio, Steven L.; Tuteja, Anish

    2015-11-01

    Super-hydrophobic (SH) materials have been used successfully to generate reduced skin-friction in laminar flows. Success in the laminar regime has led researchers to try SH materials in turbulent flows. More often than not, this has been unsuccessful at providing meaningful skin-friction drag reduction, and has even generated increased drag. This failure is frequently attributed to the wetting of an SH surface or equivalently the transition from the Cassie-Baxter to the Wenzel state. The result is fluid flow over an essentially roughened surface. In this investigation the researchers aim to perfuse small amounts of gas through porous media, including sintered and foam metals, to attain skin-friction drag reduction in a fully-developed turbulent channel flow. As air is perfused through porous media, the solid - liquid interaction at the interface transitions to a solid - liquid - gas interaction. This can result in an interface that functions similarly to SH materials. Controlled air perfusion that provides the necessary replenishment of lost gas at the interface might prevent wetting, and thus eliminate or reduce the effect of the roughness on the flow. This latter possibility is investigated by perfusing small amounts of gas through porous media with and without SH coatings. To quantify the effectiveness of this method, pressure drop is used to infer friction drag along the surface in a fully-developed turbulent channel flow. The authors recognize the support of ONR.

  15. DYNAMIC S0 GALAXIES. II. THE ROLE OF DIFFUSE HOT GAS

    SciTech Connect

    Li Jiangtao; Chen Yang; Daniel Wang, Q.; Li Zhiyuan

    2011-08-10

    Cold gas loss is thought to be important in star formation quenching and morphological transition during the evolution of S0 galaxies. In high-density environments, this gas loss can be achieved via many external mechanisms. However, in relatively isolated environments, where these external mechanisms cannot be efficient, the gas loss must then be dominated by some internal processes. We have performed Chandra analysis of hot gas in five nearby isolated S0 galaxies, based on the quantitative subtraction of various stellar contributions. We find that all the galaxies studied in the present work are X-ray faint, with the luminosity of the hot gas (L{sub X} ) typically accounting for {approx}< 5% of the expected Type Ia supernova (SN) energy injection rate. We have further compared our results with those from relevant recent papers, in order to investigate the energy budget, cold-hot gas relation, and gas removal from S0 galaxies in isolated environments. We find that elliptical and S0 galaxies are not significantly different in L{sub X} at the low-mass end (typically with K-band luminosity L{sub K} {approx}< 10{sup 11} L{sub sun,K}). However, at the high-mass end, S0 galaxies tend to have significantly lower L{sub X} than elliptical galaxies of the same stellar masses, as already shown in previous observational and theoretical works. We further discuss the potential relationship of the diffuse X-ray emission with the cold (atomic and molecular) gas content in the S0 and elliptical galaxies included in our study. We find that L{sub X} /L{sup 2}{sub K} tends to correlate positively with the total cold gas mass (M{sub H{sub 2}+H{sub i}}) for cold-gas-poor galaxies with M{sub H{sub 2}+H{sub i}}{approx}<10{sup 8} M{sub sun}, while they anti-correlate with each other for cold-gas-rich galaxies. This cold-hot gas relationship can be explained in a scenario of early-type galaxy evolution, with the leftover cold gas from the precursor star-forming galaxy mainly removed by the

  16. Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Fazeli, Mohammadreza

    In this thesis, pore network modeling was used to study how the microstructure of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) influences multiphase transport within the composite layer. An equivalent pore network of a GDL was used to study the effects of GDL/catalyst layer condensation points and contact quality on the spatial distribution of liquid water in the GDL. Next, pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures, and favorable GDL compression values for preferred liquid water distributions were found for two commercially available GDL materials. Finally, a technique was developed for calculating the oxygen diffusivity in carbon paper substrates with a microporous layer (MPL) coating through pore network modeling. A hybrid network was incorporated into the pore network model, and effective diffusivity predictions of MPL coated GDL materials were obtained.

  17. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOEpatents

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  18. Effective optical path length for tandem diffuse cubic cavities as gas absorption cell

    NASA Astrophysics Data System (ADS)

    Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.

    2014-12-01

    Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap < 0.01, which coincided well with theoretical analysis. The simulating EOPL was smaller than experimental results at fap > 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.

  19. Measurements of Plasma Expansion due to Background Gas in the Electron Diffusion Gauge Experiment

    SciTech Connect

    Kyle A. Morrison; Stephen F. Paul; Ronald C. Davidson

    2003-08-11

    The expansion of pure electron plasmas due to collisions with background neutral gas atoms in the Electron Diffusion Gauge (EDG) experiment device is observed. Measurements of plasma expansion with the new, phosphor-screen density diagnostic suggest that the expansion rates measured previously were observed during the plasma's relaxation to quasi-thermal-equilibrium, making it even more remarkable that they scale classically with pressure. Measurements of the on-axis, parallel plasma temperature evolution support the conclusion.

  20. Development and optimization of porous carbon papers suitable for gas diffusion electrodes. Final report, December 2000

    SciTech Connect

    Fleming, Gerald J.; Fleming, Patrick J.

    2001-01-16

    This final report details results from the program to optimize porous carbon gas diffusion electrodes for use in fuel cells. Efforts focused on isolating discrete paper properties through a custom-made matrix, then fuel cell testing each variant to correlate properties to performance. Resulting reduced cost material was manufactured on production equipment and made available to DOE industry partners. The resulting product is suitable for continuous production, which will be evaluated in future work.

  1. Heat Flux in a Vibrated Granular Gas: The Diffusive Heat Conductivity Coefficient

    DTIC Science & Technology

    2005-07-13

    in the dilute limit, when the Boltzmann equation applies. A distinctive feature of granular gases as compared to molecular (elastic) ones, is that the...characteristics that cannot be guessed from the one of molecular fluids. In particular, a new transport coefficient, the diffusive heat conductivity, has to be...11. Handbook of mathematical functions, Abramowitz, M., and Stegun, I. A., Dover, (New York, 1965). 12. Bird, G., Molecular Gas Dynamics and the

  2. Multiscale Structured and Functionally Graded Gas Diffusion Electrodes for PEM-Fuel Cells and Electrodialysis

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Franz, M.; Bienhüls, C.; Willert-Porada, M.

    2008-02-01

    In the presented work, different methods of preparation of functionally graded gas diffusion electrodes (GDE) for fuel cell and electrodialysis application were investigated. High electrochemical performance with a low platinum catalyst content of only 0.1 mg/cm2 was achieved. The new GDEs are superior to commercial ones with five times higher platinum content, due to their optimized pore structure and improved distribution of catalyst and ion conductive polymer.

  3. Simulation of radiation driven fission gas diffusion in UO2, ThO2 and PuO2

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Stanek, C. R.; Turnbull, J. A.; Uberuaga, B. P.; Andersson, D. A.

    2016-12-01

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. Here we present a molecular dynamics (MD) study of Xe, Kr, Th, U, Pu and O diffusion due to irradiation. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Thermal spike simulations are used to confirm that electronic stopping remedies the discrepancy with experiment and the predicted diffusivities lie within the scatter of the experimental data. Our results predict that the diffusion coefficients are ordered such that DO* > DKr* > DXe* > DU*. For all species >98.5% of diffusivity is accounted for by electronic stopping. Fission gas diffusivity was not predicted to vary significantly between ThO2, UO2 and PuO2, indicating that this process would not change greatly for mixed oxide fuels.

  4. Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.

    1993-01-01

    Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the

  5. Binary Diffusion Coefficient Data of Various Gas Systems Determined Using a Loschmidt Cell and Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Kugler, T.; Rausch, M. H.; Fröba, A. P.

    2015-11-01

    The paper reports on binary diffusion coefficient data for the gaseous systems argon-neon, krypton-helium, ammonia-helium, nitrous oxide-nitrogen, and propane-helium measured using a Loschmidt cell combined with holographic interferometry between (293.15 and 353.15) K as well as between (1 and 10) bar. The investigations on the noble gas systems aimed to validate the measurement apparatus by comparing the binary diffusion coefficients measured as a function of temperature and pressure with theoretical data. In previous studies, it was already shown that the raw concentration-dependent data measured with the applied setup are affected by systematic effects if pure gases are used prior to the diffusion process. Hence, the concentration-dependent measurement data were processed to obtain averaged binary diffusion coefficients at a mean mole fraction of 0.5. The data for the molecular gas systems complete literature data on little investigated systems of technical interest and point out the capabilities of the applied measurement apparatus. Further experimental data are reported for the systems argon-helium, krypton-argon, krypton-neon, xenon-helium, xenon-krypton, nitrous oxide-carbon dioxide, and propane-carbon dioxide at 293.15 K, 2 bar, and a mean mole fraction of 0.5.

  6. Performance of gas diffusion layer from coconut waste for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Widodo, H.; Destyorini, F.; Insiyanda, D. R.; Subhan, A.

    2017-04-01

    The performance of Gas Diffusion Layer (GDL) synthesized from coconut waste. Gas Diffusion Layer (GDL), produced from coconut waste, as a part of Proton Exchange Membrane Fuel Cell (PEMFC) component, has been characterized. In order to know the performance, the commercial products were used as the remaining parts of PEMFC. The proposed GDL possesses 69% porosity for diffusion of Hydrogen fuel and Oxygen, as well as for transporting electron. With the electrical conductivity of 500 mS.cm-1, it also has hydrophobic properties, which is important to avoid the reaction with water, with the contact angle of 139°. The 5 × 5 cm2 GDL paper was co-assembled with the catalyst, Nafion membrane, bipolar plate, current collector, end plate to obtain single Stack PEMFC. The performance was examined by flowing fuel and gas with the flow rate of 500 and 1000 ml.min-1, respectively, and analyse the I-V polarization curve. The measurements were carried out at 30, 35, and 40°C for 5 cycles to ensure the repeatability. The results shows that the current density and the maximum power density reaches 203 mA.cm-2 and 143 mW.cm-2, respectively, with a given voltage 0.6 V, at 40°C.

  7. The Vertical Structure of Diffuse Ionized Gas in Galactic Spiral Arms

    NASA Astrophysics Data System (ADS)

    Krishnarao, Dhanesh; Haffner, L. Matthew; Benjamin, Robert A.

    2017-01-01

    The Wisconsin H-Alpha Mapper provides the most sensitive velocity resolved observations of diffuse Hα, [S II] λ6716, and [N II] λ6584 emission in the Galaxy, tracing the warm (~8000K) ionized component of the interstellar medium. The vertical extent of this diffuse gas can directly impact the midplane pressure, influencing cold molecular clouds and star formation in the disk. Here, we analyze the vertical structure of the warm ionized medium around multiple spiral arm components of the Galaxy. Diffuse halo emission is isolated using longitude varying velocity channels guided by CO emission tracing cold molecular gas in the disk. We find exponential electron density squared (or emission measure) scale heights and analyze its behavior as a function of Galactocentric radius and the presence of cold molecular clouds and star forming regions in the disk. Statistical analysis of the behavior of [S II]/Hα and [N II]/Hα line ratios along some of these spiral arms disentangle the complex physical conditions of the warm ionized gas as a function of height and in-situ electron density. Some spiral arm sections, in particular the far Carina arm, have significantly larger (>3x) scale heights than previously studied arms that tend to increase as a function of Galactocentric radius.

  8. Diffusion and reaction of H2 gas for reducing Eu3+ ions in glasses

    NASA Astrophysics Data System (ADS)

    Nogami, Masayuki; Quang, Vu Xuan; Nonaka, Takamasa; Shimizu, Tadashi; Ohki, Shinobu; Deguchi, Kenzo

    2017-06-01

    We have recently developed new Eu2+-doped Na2O-Al2O3-SiO2 glasses by heating precursors in H2 gas, in which Al3+ ions play an important role in reducing Eu3+ to Eu2+. However, the pathway by which the Eu3+ ions are reduced was not established. To address this question, the structural changes involving Al3+ and Eu3+ ions have been elucidated from Magic-Angle Spinning Nuclear Magnetic Resonance (MAS NMR) in solid state and X-ray absorption fine-structure spectroscopies. In the glasses with Al/Na >1, the Al3+ ions form AlO4 units without incorporating Na+ ions for charge compensation, and the Eu3+ ions are coordinated by a network structure comprising AlO4 and SiO4. When heated in H2 gas, the H2 gas molecules diffuse and react with the Eu3+ ions, reducing them to Eu2+ and forming O-H bonds. The diffusion rate of H2 molecules was analyzed from the formation process of O-H bonds; 3.37×10-12 m2/sec at 700 °C and 39.5 kJ/mol for diffusion coefficient and activation energy, respectively.

  9. Surfactant shedding and gas diffusion during pulsed ultrasound through a microbubble contrast agent suspension.

    PubMed

    O'Brien, Jean-Pierre; Stride, Eleanor; Ovenden, Nicholas

    2013-08-01

    Interest in coated microbubbles as agents for therapeutic and quantitative imaging applications in biomedical ultrasound has increased the need for their accurate theoretical characterization. Effects such as gas diffusion, variation in the properties of the coating and the resulting changes in bubble behavior under repeated exposure to ultrasound pulses are, however, still not well understood. In this study, a revised equation for microbubble motion is proposed that includes the effects of gas diffusion, as well as adsorption, desorption and shedding of a surfactant from the bubble surface. This is incorporated into a nonlinear wave propagation model to account for these additional time dependent effects in the response of microbubble populations. The results from the model indicate there can be significant changes in both bubble behavior and the propagated pulse over time. This is in agreement with existing experimental data but is not predicted by existing propagation models. The analysis indicates that changes in bubble dynamics are dominated by surfactant shedding on the timescale of a diagnostic ultrasound pulse and gas diffusion over the timescale of the pulse repetition frequency. The implications of these results for the development of more accurate algorithms for quantitative imaging and for therapeutic applications are discussed.

  10. Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media

    SciTech Connect

    Mohamed, M. Shadi; Seaid, Mohammed; Trevelyan, Jon; Laghrouche, Omar

    2013-10-15

    We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach can be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.

  11. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide.

    PubMed

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J N; Pant, Deepak; Strik, David P B T B

    2016-11-01

    Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm(2) of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. Graphical abstract ᅟ.

  12. Influence of the Gas-Water Interface on Transport of Microorganisms through Unsaturated Porous Media

    PubMed Central

    Wan, Jiamin; Wilson, John L.; Kieft, Thomas L.

    1994-01-01

    In this article, a new mechanism influencing the transport of microorganisms through unsaturated porous media is examined, and a new method for directly visualizing bacterial behavior within a porous medium under controlled chemical and flow conditions is introduced. Resting cells of hydrophilic and relatively hydrophobic bacterial strains isolated from groundwater were used as model microorganisms. The degree of hydrophobicity was determined by contact-angle measurements. Glass micromodels allowed the direct observation of bacterial behavior on a pore scale, and three types of sand columns with different gas saturations provided quantitative measurements of the observed phenomena on a porous medium scale. The reproducibility of each break-through curve was established in three to five repeated experiments. The data collected from the column experiments can be explained by phenomena directly observed in the micromodel experiments. The retention rate of bacteria is proportional to the gas saturation in porous media because of the preferential sorption of bacteria onto the gas-water interface over the solid-water interface. The degree of sorption is controlled mainly by cell surface hydrophobicity under the simulated groundwater conditions because of hydrophobic forces between the organisms and the interfaces. The sorption onto the gas-water interface is essentially irreversible because of capillary forces. This preferential and irreversible sorption at the gas-water interface strongly influences the movement and spatial distribution of microorganisms. Images PMID:16349180

  13. Oxygen diffusion measurements in porous media on the ISS: One piece of the puzzle for optimal root zone performance

    NASA Astrophysics Data System (ADS)

    Jones, Scott; Heinse, Robert; Or, Dani; Topham, T. Shane; Podolsky, Igor; Bingham, Gail

    Optimization of Root Zone Substrates (ORZS) are currently being researched to expand plantbased bio-regenerative life support systems. This NASA funded research investigates the effect of reduced-gravity on porous media fluid management at the root-module and pore scale, necessitated by current limitations in root zone management that may have led to stunted, often unexplained plant vigor. Among them, alterations in substrate water retention and oxygen diffusion are restraining optimal support of plant growth. Our work explores the effect of gravity on the distribution and flow of fluids in porous media. These effects demonstrate unanticipated behavior in fluid transport with fluid distribution in pursuit of a capillary equilibrium within the hysteretic, contingent energy potential of water and continuity of phases for the supply of plant resources to the root. We investigate how accounts of fluid transport are part of a larger story of fluid distribution when gravitational and capillary forces are shifting. We now have data from the International Space Station that were collected in a novel experimental setup developed and tested for measurement of oxygen diffusion in partially saturated porous media under microgravity conditions with a sealed dual-chamber diffusion cell. The experiment flew on the International Space Station between July and September 2007 as part of the ORZS- MIS experimental flight package. In comparing oxygen diffusion measurements in microgravity with earth-based data, results point to enhanced hysteresis in oxygen diffusion dependency on air-filled porosity in microgravity. This indicates altered water distribution patterns relative to earth-based measurements. Considering air invasion during drainage, we hypothesize that a critical air-filled pathway forms at higher saturation in microgravity due to the absence of hydrostatic water distribution. A shift in the critical air-filled porosity in microgravity would require adjustment in plant

  14. Numerical scheme to complete a compressible gas flow in variable porosity media

    NASA Astrophysics Data System (ADS)

    Rochette, D.; Clain, S.; Buffard, T.

    2005-05-01

    We present an approximate Riemann solver coupled with a finite volume method to compute non conservative Euler equations in variable porosity media using ideal gas state law. The non conservative term is numerically taken into account from an original idea of LeRoux (1998) but here Riemann problems at each interface of the mesh are linearized using a VFRoe approach. The main goal is the resolution of the non conservative system even if the porosity is discontinuous. Stationary solutions are determined with continuous and discontinuous porosity in order to test the numerical scheme and computations of gas shock subsonic wave moving in a non continuous porosity medium are presented.

  15. Relative importance of gas-phase diffusive and advective tichloroethene (TCE) fluxes in the unsaturated zone under natural conditions.

    PubMed

    Choi, Jee-Won; Tillman, Fred D; Smith, James A

    2002-07-15

    It was hypothesized that atmospheric pressure changes can induce gas flow in the unsaturated zone to such an extent that the advective flux of organic vapors in unsaturated-zone soil gas can be significant relative to the gas-phase diffusion flux of these organic vapors. To test this hypothesis, a series of field measurements and computer simulations were conducted to simulate and compare diffusion and advection fluxes at a trichloroethene-contaminated field site at Picatinny Arsenal in north-central New Jersey. Moisture content temperature, and soil-gas pressure were measured at multiple depths (including at land surface) and times for three distinct sampling events in August 1996, October 1996, and August 1998. Gas pressures in the unsaturated zone changed significantly over time and followed changes measured in the atmosphere. Gas permeability of the unsaturated zone was estimated using data from a variety of sources, including laboratory gas permeability measurements made on intact soil cores from the site, a field air pump test, and calibration of a gas-flow model to the transient, one-dimensional gas pressure data. The final gas-flow model reproduced small pressure gradients as observed in the field during the three distinct sampling events. The velocities calculated from the gas-flow model were used in transient, one-dimensional transport simulations to quantify advective and diffusive fluxes of TCE vapor from the subsurface to the atmosphere as a function of time for each sampling event. Effective diffusion coefficients used for these simulations were determined from independent laboratory measurements made on intact soil cores collected from the field site. For two of the three sampling events (August 1996 and August 1998), the TCE gas-phase diffusion flux at land surface was significantly greater than the advection flux over the entire sampling period. For the second sampling event (October 1996), the advection flux was frequently larger than the

  16. Experimental characterization of in-plane permeability of gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Feser, J. P.; Prasad, A. K.; Advani, S. G.

    Recent studies indicate that PEM fuel cell performance may be strongly influenced by in-plane permeability of the gas diffusion layer (GDL). The current study employs a radial flow technique for obtaining in-plane permeability of GDLs, using either gas or liquid as the impregnating fluid. A model has been developed and experimentally verified to account for compressibility effects when permeability measurements are conducted using a gas. Permeability experiments are performed on samples of woven, non-woven, and carbon fiber-based GDL at various levels of compression using air as the impregnating fluid. Woven and non-woven samples are measured to have significantly higher in-plane permeability compared to carbon fiber paper at similar solid volume fractions.

  17. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media

    NASA Astrophysics Data System (ADS)

    Riaz, A.; Hesse, M.; Tchelepi, H. A.; Orr, F. M.

    2006-02-01

    We present a linear stability analysis of density-driven miscible flow in porous media in the context of carbon dioxide sequestration in saline aquifers. Carbon dioxide dissolution into the underlying brine leads to a local density increase that results in a gravitational instability. The physical phenomenon is analogous to the thermal convective instability in a semi-infinite domain, owing to a step change in temperature at the boundary. The critical time for the onset of convection in such problems has not been determined accurately by previous studies. We present a solution, based on the dominant mode of the self-similar diffusion operator, which can accurately predict the critical time and the associated unstable wavenumber. This approach is used to explain the instability mechanisms of the critical time and the long-wave cutoff in a semi-infinite domain. The dominant mode solution, however, is valid only for a small parameter range. We extend the analysis by employing the quasi-steady-state approximation (QSSA) which provides accurate solutions in the self-similar coordinate system. For large times, both the maximum growth rate and the most dangerous mode decay as t^{1/4}. The long-wave and the short-wave cutoff modes scale as t^{1/5} and t^{4/5}, respectively. The instability problem is also analysed in the nonlinear regime by high-accuracy direct numerical simulations. The nonlinear simulations at short times show good agreement with the linear stability predictions. At later times, macroscopic fingers display intense nonlinear interactions that significantly influence both the front propagation speed and the overall mixing rate. A dimensional analysis for typical aquifers shows that for a permeability variation of 1—3000 mD, the critical time can vary from 2000 yrs to about 10 days while the critical wavelength can be between 200 m and 0.3 m.

  18. Effect of dynamic diffusion of air, nitrogen, and helium gaseous media on the microhardness of ionic crystals with juvenile surfaces

    NASA Astrophysics Data System (ADS)

    Klyavin, O. V.; Fedorov, V. Yu.; Chernov, Yu. M.; Shpeizman, V. V.

    2015-09-01

    The load dependences of the microhardness of surface layers of NaCl and LiF ionic single crystals with juvenile surfaces and surfaces exposed to air for a long time measured in the air, nitrogen, and helium gaseous media have been investigated. It has been found that there is a change in the sign of the derivative of the microhardness as a function of the load for LiF crystals indented in helium and after their aging in air, as well as a weaker effect of the nitrogen and air gaseous media on the studied dependences as compared to NaCl crystals. It has also been found that, after the aging of the surface of NaCl crystals in air, there is a change in the sign of the derivative of the microhardness in the nitrogen and air gaseous media, as well as a pronounced change in the microhardness as a function of the time of aging the samples in air as compared to the weaker effect of the gaseous medium for LiF crystals. The obtained data have been analyzed in terms of the phenomenon of dislocation-dynamic diffusion of particles from the external medium into crystalline materials during their plastic deformation along the nucleating and moving dislocations. It has been shown that this phenomenon affects the microhardness through changes in the intensity of dislocation multiplication upon the formation of indentation rosettes in different gaseous media. The performed investigation of the microhardness of the juvenile surface of NaCl and LiF crystals in different gaseous media has revealed for the first time a different character of dislocation-dynamic diffusion of these media in a "pure" form.

  19. Hydroxyl as a Tracer of Dark Gas in a Diffuse Molecular Cloud

    NASA Astrophysics Data System (ADS)

    White, Josh; Donate, Emmanuel; Magnani, Loris A.

    2017-06-01

    In an attempt to determine the extent of dark molecular gas at high Galactic latitudes, we have conducted a survey of OH at 18 cm in a region containing the diffuse molecular cloud MBM 53. Dark molecular gas is a term that refers to molecular hydrogen that is either difficult or impossible to detect by conventional spectroscopic means. While models of photo-dissociation regions predict that some molecular hydrogen is found under conditions where other species are too low in abundance to be detected by radio spectroscopy, recent estimates have predicted that as much dark molecular gas exists as that normally detected by CO(1-0) surveys. However, more sensitive surveys either in the CO(1-0) line or other tracers should detect some of this gas. We observed 44 lines of sight at 18 cm to see if very sensitive OH observations could detect some of the dark molecular gas in the Pegasus-Pisces region. Our data were taken with the 305 m Arecibo radiotelescope and have typical rms values of 6-7 mK. We compared our OH observations with the Georgia/Harvard-Smithsonian CfA high-latitude CO(1-0) survey. Of 8 OH detections at 1667 MHz, 5 were not detected by the CO survey and indicate that at least some of the dark molecular gas may be traced by sensitive OH observations.

  20. Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2009-12-01

    In this paper, we address the manner in which the continuum-scale diffusive properties of smectite-rich porous media arise from their molecular- and pore-scale features. Our starting point is a successful model of the continuum-scale apparent diffusion coefficient for water tracers and cations which decomposes it as a sum of pore-scale terms describing diffusion in macropore and interlayer 'compartments.' We then apply molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients D{sub interlayer} of water tracers and representative cations (Na{sup +}, Cs{sup +}, Sr{sup 2+}) in Na-smectite interlayers. We find that a remarkably simple expression relates D{sub interlayer} to the pore-scale parameter {delta}{sub nanopore} {<=} 1, a constrictivity factor that accounts for the lower mobility in interlayers as compared to macropores: {delta}{sub nanopore} = D{sub interlayer}/D{sub 0}, where D{sub 0} is the diffusion coefficient in bulk liquid water. Using this scaling expression, we can accurately predict the apparent diffusion coefficients of tracer H{sub 2}O, Na{sup +}, Sr{sup 2+} and Cs{sup +}+ in compacted Na-smectite-rich materials.

  1. Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media.

    PubMed

    Bourg, Ian C; Sposito, Garrison

    2010-03-15

    In this paper, we address the manner in which the continuum-scale diffusive properties of smectite-rich porous media arise from their molecular- and pore-scale features. Our starting point is a successful model of the continuum-scale apparent diffusion coefficient for water tracers and cations, which decomposes it as a sum of pore-scale terms describing diffusion in macropore and interlayer "compartments." We then apply molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients D(interlayer) of water tracers and representative cations (Na(+), Cs(+), Sr(2+)) in Na-smectite interlayers. We find that a remarkably simple expression relates D(interlayer) to the pore-scale parameter δ(nanopore) ≤ 1, a constrictivity factor that accounts for the lower mobility in interlayers as compared to macropores: δ(nanopore) = D(interlayer)/D(0), where D(0) is the diffusion coefficient in bulk liquid water. Using this scaling expression, we can accurately predict the apparent diffusion coefficients of tracers H(2)0, Na(+), Sr(2+), and Cs(+) in compacted Na-smectite-rich materials.

  2. Analysis of the gas-dynamic performance of a vaned diffuser with given velocity distribution along the vane's surfaces

    NASA Astrophysics Data System (ADS)

    Kalinkevych, M.; Obukhov, O.; Obukhova, O.; Miroshnychenko, A.

    2015-08-01

    Extension of the effective range of vaned diffusers is one of the promising ways to improve the centrifugal compressor's stages which are used in numerous fields of industry. The new method of profiling of the diffuser vanes has been developed using Stratford's results and boundary layer theory by Loytsanskiy. The developed method is based on the solution of the inverse task of gas-dynamic using given velocity distribution along the vane's surface. Comparison of the results of numerical simulations for different diffusers has shown that the performance of the diffuser designed with the resulting velocity distribution are better. Influence of the vane profile, number of the vanes, diffuser outlet diameter and the diffuser width on diffuser characteristics has been investigated. The results of the simulations have been used to formulate recommendations on the design of high-effectiveness vaned diffusers for centrifugal stages of different types.

  3. Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. I. Kinetic model and scaling methods.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-11-07

    We describe in detail a diffusion model used to simulate inert gas transport through supercooled liquid overlayers. In recent work, the transport of the inert gas has been shown to be an effective probe of the diffusivity of supercooled liquid methanol in the experimentally challenging regime near the glass transition temperature. The model simulations accurately and quantitatively describe the inert gas permeation desorption spectra. The simulation results are used to validate universal scaling relationships between the diffusivity, overlayer thickness, and the temperature ramp rate for isothermal and temperature programmed desorption. From these scaling relationships we derive simple equations from which the diffusivity can be obtained using the peak desorption time or temperature for an isothermal or set of TPD experiments, respectively, without numerical simulation. The results presented here demonstrate that the permeation of gases through amorphous overlayers has the potential to be a powerful technique to obtain diffusivity data in deeply supercooled liquids.

  4. Imaging in diffusing media with a neural net formulation: a problem in large-scale computation

    NASA Astrophysics Data System (ADS)

    Schlereth, Fred H.; Fossaceca, John A.; Keckler, Andrew D.; Barbour, Randall L.

    1992-05-01

    Attempts to recover images from objects which diffuse radiation pose an especially challenging problem in terms of defining a suitable reconstruction algorithm and with regard to identifying an appropriate computing environment for efficient processing. In this paper we consider both issues and, in particular, describe results of an algebraic technique for imaging the interior of objects which diffuse penetrating radiation using a new multicomputer environment. Two important issues which arise when considering the numerical solution of ultra large problems are the numerical precision achieved and the overall computing efficiency. Our interest in this problem concerns the possibility of obtaining 3-D optical images of tissue which could identify the availability of oxygen by evaluating oxygen- dependent changes in the near infrared spectrum of hemoglobin. These studies were motivated by recent reports from our group and others, which showed promising results for imaging in dense scattering media given only diffusely scattered signals. In our model we assume the use of an NIR laser to provide the input radiation and suitable detectors to measure both transmission and backscatter. In our present work we assume a simple Markov process model for the way in which the energy travels in the medium, but it should be noted that the reconstruction technique we propose can use any model, including nonlinear as well as linear effects, and higher order processes. Current simulations are in 2-D but the methods are easily extended to 3-D. The algorithms we propose are more closely related to algebraic reconstruction algorithms such as ART, SIRT, and SART than to algorithms based on the Born and Rytov approximations such as used for tomographic imaging with diffracting sources. Our algorithms are a significant departure from those based on these standard algebraic methods. We assume only a probabilistic knowledge of the path of the radiation, and minimal knowledge of the absorption

  5. Gas detection and migration in geological media: lessons learned from the Roselend Natural Laboratory (Invited)

    NASA Astrophysics Data System (ADS)

    Pili, E.; Guillon, S.; Agrinier, P.; Sabroux, J.; Adler, P. M.

    2013-12-01

    The Roselend Natural Laboratory (French Alps) is a unique facility for studying gas transport in the subsurface and across the geosphere-atmosphere interface. At 55 m depth, a sealed cavity allows for gas release experiments across fractured porous rocks in the unsaturated zone. While many parameters controlling the state of the geological system are known, analogous gas-tracer experiments were conducted at the field-scale with SF6 and 3He. Water infiltration, permeability and the concentrations of many gases, naturally occurring or injected, are recorded via long-term and high-resolution monitoring. The fracture network is characterized thanks to extensive drilling, logging and modeling. These experiments are used to determine the physical and chemical processes that would control the noble gas source term after an underground nuclear explosion in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT) and to develop and validate the corresponding numerical models. The Roselend Natural Laboratory also provides a test bed for sampling protocols and instrument developments. Detection of gases relevant to CTBT issues requires that their baseline concentration is understood. Experiments and subsequent modeling demonstrated that baselines are a highly dynamical process resulting from gas sources, sinks and modulation by barometric pressure and water movements. Gas migration from underground cavities occurs as early venting through fractures due to advection driven by gas overpressure. It is associated with very large dilution which requires very low detection limits. Late-time seepage occurs through fractured porous media thanks to barometric pumping, which is only efficient for a narrow window of parameter values. Full calculation for real fractured porous media is now available.

  6. Controls on the physical properties of gas-hydrate-bearing sediments because of the interaction between gas hydrate and porous media

    USGS Publications Warehouse

    Lee, Myung W.; Collett, Timothy S.

    2005-01-01

    Physical properties of gas-hydrate-bearing sediments depend on the pore-scale interaction between gas hydrate and porous media as well as the amount of gas hydrate present. Well log measurements such as proton nuclear magnetic resonance (NMR) relaxation and electromagnetic propagation tool (EPT) techniques depend primarily on the bulk volume of gas hydrate in the pore space irrespective of the pore-scale interaction. However, elastic velocities or permeability depend on how gas hydrate is distributed in the pore space as well as the amount of gas hydrate. Gas-hydrate saturations estimated from NMR and EPT measurements are free of adjustable parameters; thus, the estimations are unbiased estimates of gas hydrate if the measurement is accurate. However, the amount of gas hydrate estimated from elastic velocities or electrical resistivities depends on many adjustable parameters and models related to the interaction of gas hydrate and porous media, so these estimates are model dependent and biased. NMR, EPT, elastic-wave velocity, electrical resistivity, and permeability measurements acquired in the Mallik 5L-38 well in the Mackenzie Delta, Canada, show that all of the well log evaluation techniques considered provide comparable gas-hydrate saturations in clean (low shale content) sandstone intervals with high gas-hydrate saturations. However, in shaly intervals, estimates from log measurement depending on the pore-scale interaction between gas hydrate and host sediments are higher than those estimates from measurements depending on the bulk volume of gas hydrate.

  7. Calculation of effective transport properties of partially saturated gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bednarek, Tomasz; Tsotridis, Georgios

    2017-02-01

    A large number of currently available Computational Fluid Dynamics numerical models of Polymer Electrolyte Membrane Fuel Cells (PEMFC) are based on the assumption that porous structures are mainly considered as thin and homogenous layers, hence the mass transport equations in structures such as Gas Diffusion Layers (GDL) are usually modelled according to the Darcy assumptions. Application of homogenous models implies that the effects of porous structures are taken into consideration via the effective transport properties of porosity, tortuosity, permeability (or flow resistance), diffusivity, electric and thermal conductivity. Therefore, reliable values of those effective properties of GDL play a significant role for PEMFC modelling when employing Computational Fluid Dynamics, since these parameters are required as input values for performing the numerical calculations. The objective of the current study is to calculate the effective transport properties of GDL, namely gas permeability, diffusivity and thermal conductivity, as a function of liquid water saturation by using the Lattice-Boltzmann approach. The study proposes a method of uniform water impregnation of the GDL based on the "Fine-Mist" assumption by taking into account the surface tension of water droplets and the actual shape of GDL pores.

  8. Network simulation method applied to models of diffusion-limited gas bubble dynamics in tissue

    NASA Astrophysics Data System (ADS)

    Zueco, Joaquín; Hernández-González, A.

    2010-08-01

    In this work the Network Simulation Method is used to study decompression sickness (DCS) in human subjects after diving and/or flying exposures. Bubble dynamics models suitable for these applications assume the bubble to be either contained in an unstirred tissue (two-region model) or surrounded by a boundary layer within a well stirred tissue (three-region model). The main results are obtained using the three-region model of gas bubble dynamics, which consists of a bubble and a well-stirred tissue region with an intervening unperfused diffusion region previously assumed to have a constant thickness and uniform gas diffusivity. Spatial discretization is used to numerically solve the diffusion equation considering the transitory term, where programming does not involve manipulation of the sophisticated mathematical software that is inherent in other numerical methods. The technique in question is always stable and convergent. Different effects (among them, tissue volume, initial bubble radius, surface tension of intercellular fluid and boundary layer thickness) are studied and plotted.

  9. Simulation of waste gas pollution diffusion for urban planning: take Nanjing as an example

    NASA Astrophysics Data System (ADS)

    Chen, Junting; Xu, Jianggang; Qi, Yi; Tong, Jianghua; Wu, Yang

    2008-10-01

    Waste gas pollution diffusion is one of the basic factors that should be considered in the layout of urban planning. In the field of Chinese urban planning, limited by the planning skill and the level of different departments' involvement, the future pollution degree and pollution range of industrial region is hard to be predicted accurately. The newly issued Urban and Rural Planning Act carry out scientific development idea, pay more attention to the proteaction of urban ecological environment in principles, and encourage the application of new technology and new methods in planning skill. This paper combines digital map information, collects industrial point source spatial data of Nanjing, selects appropriate model from the technical requirements of urban land planning, establish database of air pollution diffusion based on ArcGIS platform, calculates spatial concentration of air pollution diffusion with interpolation, and carry out superposition between 16 wind directions and value in multi-sources air pollution, puts forward the conception of effective pollution range according to national environment management system standard, and performs a preliminary spatial fitting between computing result of spatial data and urban land, evaluates the effects of waste gas pollution in Nanjing on urban land planning. Finally the research direction that can be prolonged is pointed out.

  10. Amperometric Determination of Sulfite by Gas Diffusion-Sequential Injection with Boron-Doped Diamond Electrode

    PubMed Central

    Chinvongamorn, Chakorn; Pinwattana, Kulwadee; Praphairaksit, Narong; Imato, Toshihiko; Chailapakul, Orawon

    2008-01-01

    A gas diffusion sequential injection system with amperometric detection using a boron-doped diamond electrode was developed for the determination of sulfite. A gas diffusion unit (GDU) was used to prevent interference from sample matrices for the electrochemical measurement. The sample was mixed with an acid solution to generate gaseous sulfur dioxide prior to its passage through the donor channel of the GDU. The sulfur dioxide diffused through the PTFE hydrophobic membrane into a carrier solution of 0.1M phosphate buffer (pH 8)/0.1% sodium dodecyl sulfate in the acceptor channel of the GDU and turned to sulfite. Then the sulfite was carried to the electrochemical flow cell and detected directly by amperometry using the boron-doped diamond electrode at 0.95 V (versus Ag/AgCl). Sodium dodecyl sulfate was added to the carrier solution to prevent electrode fouling. This method was applicable in the concentration range of 0.2-20 mg SO32−/L and a detection limit (S/N = 3) of 0.05 mg SO32−/L was achieved. This method was successfully applied to the determination of sulfite in wines and the analytical results agreed well with those obtained by iodimetric titration. The relative standard deviations for the analysis of sulfite in wines were in the range of 1.0-4.1 %. The sampling frequency was 65 h−1. PMID:27879796

  11. Monte Carlo simulation with fixed steplength for diffusion processes in nonhomogeneous media

    NASA Astrophysics Data System (ADS)

    Ruiz Barlett, V.; Hoyuelos, M.; Mártin, H. O.

    2013-04-01

    Monte Carlo simulation is one of the most important tools in the study of diffusion processes. For constant diffusion coefficients, an appropriate Gaussian distribution of particle's steplengths can generate exact results, when compared with integration of the diffusion equation. It is important to notice that the same method is completely erroneous when applied to non-homogeneous diffusion coefficients. A simple alternative, jumping at fixed steplengths with appropriate transition probabilities, produces correct results. Here, a model for diffusion of calcium ions in the neuromuscular junction of the crayfish is used as a test to compare Monte Carlo simulation with fixed and Gaussian steplength.

  12. A field study to estimate the vertical gas diffusivity and permeability of compacted MSW using a barometric pumping analytical model.

    PubMed

    Larson, Judd; Kumar, Sendhil; Gale, S Adrian; Jain, Pradeep; Townsend, Timothy

    2012-03-01

    The measurement of vertical gas diffusivity and permeability of compacted municipal solid waste (MSW) using an analytical gas flow and transport model was evaluated. A series of pressure transducers were buried in a MSW landfill and in situ pressures were modelled using an algorithm that predicts soil-gas pressures based on field-measured barometric pressure data and vertical diffusivity. The vertical gas diffusivity that represented the best-fit of the measured pressures was estimated at 20 locations and ranged from 0.002 to 0.052 m2 s(-1). The vertical gas permeability ranged from 3.3 × 10(-14) to 4.5 × 10(-12) m2 for the upper-most 3 to 6 m of compacted MSW. The shortfalls of applying this method to landfill conditions are also discussed.

  13. Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Khazaee, I.; Ghazikhani, M.; Esfahani, M. Nasr

    2012-01-01

    A complete three-dimensional and single phase computational dynamics model for annular proton exchange membrane (PEM) fuel cell is used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the two-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by decreasing the thickness of the membrane the performance of the cell increases.

  14. Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces.

    PubMed

    Matthews, Cory J D; St Louis, Vincent L; Hesslein, Raymond H

    2003-02-15

    Three approaches commonly used to quantify diffusive gas exchange across aquatic surfaces were compared in a densely treed, low-wind environment Diffusive surface fluxes of carbon dioxide (CO2) and methane (CH4) from a small boreal reservoir were estimated using (i) surface water concentrations, the thin boundary layer (TBL) equation, and gas transfer velocities (k) calculated using sulfur hexafluoride (SF6); (ii) surface water concentrations, the TBL equation, and k estimated from wind speed; and (iii) static floating chambers (FCs). Comparisons were made during three different approximately 10-day intervals (August 2000, June and September 2001). CO2 and CH4 fluxes estimated from SF6-derived k were on average 1-3 times greater than those determined from wind-estimated k Overall agreement between FC CO2 and CH4 flux estimates and those based on SF6 and wind speed derived kvalues was much weaker, with FC CO2 and CH4 flux estimates ranging from -9 to 23 times those based on SF6 and wind-estimated k values. Chamber deployment likely enhanced gas transfer through disturbance of the surface boundary layer, and results of this study suggest that caution must be exercised concerning the use of FCs on very still water surfaces. Furthermore, findings of this study contradict the common belief that use of wind speed to approximate k is inappropriate for small bodies of water characterized by low winds and surface obstructions.

  15. Dependence of ion drift velocity and diffusion coefficient in parent gas on its temperature

    NASA Astrophysics Data System (ADS)

    Maiorov, Sergey; Golyatina, Rusudan

    2016-09-01

    The results of Monte Carlo calculations of the ion drift characteristics are presented: ions of noble gases and Ti, Fe, Co, Cs, Rb, W and mercury ions in case of constant and uniform electric field are considered. The dependences of the ion mobility on the field strength and gas temperature are analyzed. The parameters of the drift velocity approximation by the Frost formula for gas temperatures of 4.2, 77, 300, 1000, and 2000 K are presented. A universal drift velocity approximation depending on the reduced electric field strength and gas temperature is obtained. In the case of strong electric fields or low gas temperatures, the deviation of the ion distribution function from the Maxwellian one (including the shifted Maxwellian one) can be very significant. The average energies of chaotic motion of ions along and across the electric field can also differ significantly. It is analyzed the kinetic characteristics of ion drift in own gas: ion diffusion coefficient along the field and across the field; thermal spread of velocities (temperature) along the field and across the field. The unexpected and nontrivial fact takes place: collision with backscattering represent only 10-50% of the total number of collisions. This calculation can be used when analyzing experiments with dusty plasma under cryogenic discharge, ultracold plasma. The work was supported by the Russian Science Foundation (grant RNF 14-19-01492).

  16. Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Huang, Jun-Jie

    2015-07-01

    Water management is one of the key issues in proton exchange membrane fuel cells. Fundamentally, it is related to dynamic behaviors of droplets on a gas diffusion layer (GDL) surface, and consequently they are investigated in this work. A two-dimensional hybrid method is employed to implement numerical simulations, in which the flow field is solved by using the lattice Boltzmann method and the interface between droplet and gas is captured by solving the Cahn-Hilliard equation directly. One or two liquid droplets are initially placed on the GDL surface of a gas channel, which is driven by the fully developed Poiseuille flow. At a fixed channel size, the effects of viscosity ratio of droplet to gas ( μ ∗ ), Capillary number (Ca, ratio of gas viscosity to surface tension), and droplet interaction on the dynamic behaviors of droplets are systematically studied. By decreasing viscosity ratio or increasing Capillary number, the single droplet can detach from the GDL surface easily. On the other hand, when two identical droplets stay close to each other or a larger droplet is placed in front of a smaller droplet, the removal of two droplets is promoted.

  17. Investigating the Diffuse Ionized Gas in the Magellanic Stream with Mapped WHAM Observations

    NASA Astrophysics Data System (ADS)

    Smart, Brianna; Haffner, L. Matthew; Barger, Kathleen; Hernandez, Mike

    2016-01-01

    We present early stages of an Hα survey of the Magellanic Stream using the Wisconsin H-Alpha Mapper (WHAM). While the neutral component of the Stream may extend 200° across the sky (Nidever et al. 2010), its ionized gas has not yet been studied in detail. Fox et al. 2014 find that the tidal debris in the Magellanic System contains twice as much ionized gas as neutral and may extend 30° away from the H I emission. However, such absorption-line studies are not sensitive to the overall morphology of the ionized gas. Using targeted Hα emission observations of the Magellanic Stream, Barger et al. 2015 find that although the warm ionized gas tracks the neutral gas, it often spans a few degrees away from the H I emission at slightly offset velocities. Using WHAM's unprecedented sensitivity to diffuse emission (~ 10s of mR) and its velocity resolution (12 km/s) to isolate Stream emission, we are now conducting the first full Hα survey of its ionized component. Here we present early results, including spatial and kinematic comparisons to the well-established neutral profile of the Stream. WHAM research and operations are supported through NSF Award AST-1108911.

  18. Description of gas/particle sorption kinetics with an intraparticle diffusion model: Desorption experiments

    USGS Publications Warehouse

    Rounds, S.A.; Tiffany, B.A.; Pankow, J.F.

    1993-01-01

    Aerosol particles from a highway tunnel were collected on a Teflon membrane filter (TMF) using standard techniques. Sorbed organic compounds were then desorbed for 28 days by passing clean nitrogen through the filter. Volatile n-alkanes and polycyclic aromatic hydrocarbons (PAHs) were liberated from the filter quickly; only a small fraction of the less volatile ra-alkanes and PAHs were desorbed. A nonlinear least-squares method was used to fit an intraparticle diffusion model to the experimental data. Two fitting parameters were used: the gas/particle partition coefficient (Kp and an effective intraparticle diffusion coefficient (Oeff). Optimized values of Kp are in agreement with previously reported values. The slope of a correlation between the fitted values of Deff and Kp agrees well with theory, but the absolute values of Deff are a factor of ???106 smaller than predicted for sorption-retarded, gaseous diffusion. Slow transport through an organic or solid phase within the particles or preferential flow through the bed of particulate matter on the filter might be the cause of these very small effective diffusion coefficients. ?? 1993 American Chemical Society.

  19. Similarity Solution for Gas Production From Dissociating Hydrates in Geologic Media

    NASA Astrophysics Data System (ADS)

    Moridis, G. J.; Reagan, M. T.

    2007-12-01

    By using the Boltzman transformation, the nonlinear partial differential equations governing multicomponent mass flow, energy transport and phase changes in a geologic system involving methane hydrate dissociation can be reduced to simpler ordinary differential equations, without resorting to simplifications or approximations that require removal of any of the nonlinearities. This capability indicates that the problem admits a similarity solution, which results in invariance of any of the parameters (e.g., pressure, temperature, phase saturations) with respect to the similarity variable r/t1/2. The similarity solution is confirmed in test problems involving gas production from hydrate deposits undergoing dissociation by depressurization and thermal stimulation. The existence of the similarity solution provides a robust estimator of the gas production potential of natural hydrate accumulations, in addition to a reliable tool for the evaluation of the validity of numerical simulators of gas hydrate behavior in porous media.

  20. Diffusion-driven growth of a spherical gas bubble in gelatin gels supersaturated with air

    NASA Astrophysics Data System (ADS)

    Shirota, Eriko; Ando, Keita

    2016-11-01

    We experimentally and theoretically study diffusion-driven growth of laser-induced gas bubbles in gelatin gels supersaturated with air. The supersaturation in the gels is realized by using a large separation between heat and mass diffusion rates. An optical system is developed to induce bubble nucleation by laser focusing and visualize the subsequent bubble growth. To evaluate the effect of the gel elasticity on the bubble growth rate, we propose the extended Epstein-Plesset theory that considers bubble pressure modifications due to linear/nonlinear elasticity (in addition to Laplace pressure). From comparisons between the experiments and the proposed theory, the bubble growth rate is found to be hindered by the elasticity. This study is supported by JSPS KAKENHI Grant Number 25709008.

  1. New Horizons in Multidimensional Diffusion: The Lorentz Gas and the Riemann Hypothesis

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.

    2012-01-01

    The Lorentz gas is a billiard model involving a point particle diffusing deterministically in a periodic array of convex scatterers. In the two dimensional finite horizon case, in which all trajectories involve collisions with the scatterers, displacements scaled by the usual diffusive factor sqrt{t} are normally distributed, as shown by Bunimovich and Sinai in 1981. In the infinite horizon case, motion is superdiffusive, however the normal distribution is recovered when scaling by sqrt {tln t}, with an explicit formula for its variance. Here we explore the infinite horizon case in arbitrary dimensions, giving explicit formulas for the mean square displacement, arguing that it differs from the variance of the limiting distribution, making connections with the Riemann Hypothesis in the small scatterer limit, and providing evidence for a critical dimension d=6 beyond which correlation decay exhibits fractional powers. The results are conditional on a number of conjectures, and are corroborated by numerical simulations in up to ten dimensions.

  2. Non-universal tracer diffusion in crowded media of non-inert obstacles.

    PubMed

    Ghosh, Surya K; Cherstvy, Andrey G; Metzler, Ralf

    2015-01-21

    We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer-obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer-obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer-crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids.

  3. Automation of flow injection gas diffusion-ion chromatography for the nanomolar determination of methylamines and ammonia in seawater and atmospheric samples

    PubMed Central

    Gibb, Stuart W.; Wood, John W.; Fauzi, R.; Mantoura, C.

    1995-01-01

    The automation and improved design and performance of Flow Injection Gas Diffusion-Ion Chromatography (FIGD-IC), a novel technique for the simultaneous analysis of trace ammonia (NH3) and methylamines (MAs) in aqueous media, is presented. Automated Flow Injection Gas Diffusion (FIGD) promotes the selective transmembrane diffusion of MAs and NH3 from aqueous sample under strongly alkaline (pH > 12, NaOH), chelated (EDTA) conditions into a recycled acidic acceptor stream. The acceptor is then injected onto an ion chromatograph where NH3 and the MAs are fully resolved as their cations and detected conductimetrically. A versatile PC interfaced control unit and data capture unit (DCU) are employed in series to direct the selonoid valve switching sequence, IC operation and collection of data. Automation, together with other modifications improved both linearily (R2 > 0.99 MAs 0-100 nM, NH3 0-1000 nM) and precision (<8%) of FIGD-IC at nanomolar concentrations, compared with the manual procedure. The system was successfully applied to the determination of MAs and NH3 in seawater and in trapped particulate and gaseous atmospheric samples during an oceanographic research cruise. PMID:18925047

  4. Determination of acetaldehyde in saliva by gas-diffusion flow injection analysis.

    PubMed

    Ramdzan, Adlin N; Mornane, Patrick J; McCullough, Michael J; Mazurek, Waldemar; Kolev, Spas D

    2013-07-05

    The consumption of ethanol is known to increase the likelihood of oral cancer. In addition, there has been a growing concern about possible association between long term use of ethanol-containing mouthwashes and oral cancer. Acetaldehyde, known to be a carcinogen, is the first metabolite of ethanol and it can be produced in the oral cavity after consumption or exposure to ethanol. This paper reports on the development of a gas-diffusion flow injection method for the online determination of salivary acetaldehyde by its colour reaction with 3-methyl-2-benzothiazolinone hydrazone (MBTH) and ferric chloride. Acetaldehyde samples and standards (80 μL) were injected into the donor stream containing NaCl from which acetaldehyde diffused through the hydrophobic Teflon membrane of the gas-diffusion cell into the acceptor stream containing the two reagents mentioned above. The resultant intense green coloured dye was monitored spectrophotometrically at 600 nm. Under the optimum working conditions the method is characterized by a sampling rate of 9h(-1), a linear calibration range of 0.5-15 mg L(-1) (absorbance=5.40×10(-2) [acetaldehyde, mg L(-1)], R(2)=0.998), a relative standard deviation (RSD) of 1.90% (n=10, acetaldehyde concentration of 2.5 mg L(-1)), and a limit of detection (LOD) of 12.3 μg L(-1). The LOD and sampling rate of the proposed method are superior to those of the conventional gas chromatographic (GC) method (LOD=93.0 μg L(-1) and sampling rate=4 h(-1)). The reliability of the proposed method was illustrated by the fact that spiked with acetaldehyde saliva samples yielded excellent recoveries (96.6-101.9%), comparable to those obtained by GC (96.4-102.3%) and there was no statistically significant difference at the 95% confidence level between the two methods when non-spiked saliva samples were analysed.

  5. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    NASA Technical Reports Server (NTRS)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  6. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    NASA Technical Reports Server (NTRS)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  7. An Experimental and Computational Evaluation of the Importance of Molecular Diffusion in Gas Gravity Currents

    NASA Astrophysics Data System (ADS)

    Herman, Jeremy J.

    The accidental release of hazardous, denser-than-air gases during their transport or manufacture is a vital area of study for process safety researchers. This project examines the importance of molecular diffusion on the developing concentration field of a gas gravity current released into a calm environment. Questions which arose from the unexpectedly severe explosion in 2005 at Buncefield, England were of particular interest. The accidental overfilling of a large tank with gasoline on a completely calm morning led to a massive open air explosion. Forensic evidence showed that at the time of ignition, a vapor cloud, most of which now appears to have been within the flammability limits, covered approximately 120,000 m2. Neither the severity of the explosion, nor the size of the vapor cloud would have been anticipated. Experiments were conducted in which carbon dioxide was released from a sunken source into a one meter wide channel devoid of any wind. These experiments were designed in such a way as to mitigate the formation of a raised head at the front of the gravity current which would have resulted in turbulent entrainment of air. This was done to create a flow in which molecular diffusion was the controlling form of mixing between the carbon dioxide and air. Concentration measurements were taken using flame ionization detection at varying depths and down channel locations. A model of the experiments was developed using COMSOL Multiphysics. The only form of mixing allowed between carbon dioxide and air in the model was molecular diffusion. In this manner the accuracy of the assertion that molecular diffusion was controlling in our experiments was checked and verified. Experimental measurements showed a large variation of gas concentration with depth of the gravity current at the very beginning of the channel where the gas emerged up from the sunken source and began flowing down channel. Due to this variation, molecular diffusion caused the vertical concentration

  8. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  9. Numerical modeling of two-phase behavior in the PEFC gas diffusion layer

    SciTech Connect

    Mukherjee, Partha Pa223876; Kang, Qinjun; Mukundan, Rangachary; Borup, Rod L

    2009-01-01

    A critical performance limitation in the polymer electrolye fuel cell (PEFC) is attributed to the mass transport loss originating from suboptimal liquid water transport and flooding phenomena. Liquid water can block the porous pathways in the fibrous gas diffusion layer (GDL) and the catalyst layer (CL), thus hindering oxygen transport from the flow field to the electrochemically actives sites in the catalyst layer. In this paper, the study of the two phase behavior and the durability implications due to the wetting characteristics in the carbon paper GDL are presented using a pore-scale modeling framework.

  10. Role of thermal diffusion in cw IR laser absorption in gas mixtures.

    PubMed

    Maleissye, J T; Lempereur, F

    1982-01-15

    The absorption of radiation from a cw CO(2) laser by a mixture of absorbing SF(6) and transparent buffer gases has been measured as a function of pressure of added transparent gas (C(4)H(10)). The results are analyzed in terms of thermal diffusion of excited SF6 molecules out of the irradiation zone. In the 60-400-Torr pressure range, thermal difusion depletes the concentration of SF(6) so that the overall absorption is decreased and competes with the various channels of collisional relaxation which enhance absorption. An approximate semiempirical expression is used to determine the transient perturbation of concentration which occurs inside the laser beam.

  11. The Massive Stellar Population in the Diffuse Ionized Gas of M33

    NASA Technical Reports Server (NTRS)

    Hoopes, Charles G.; Walterbos, Rene A. M.

    1995-01-01

    We compare Far-UV, H alpha, and optical broadband images of the nearby spiral galaxy M33, to investigate the massive stars associated with the diffuse ionized gas. The H-alpha/FUV ratio is higher in HII regions than in the DIG, possibly indicating that an older population ionizes the DIG. The broad-band colors support this conclusion. The HII region population is consistent with a young burst, while the DIG colors resemble an older population with constant star formation. Our results indicate that there may be enough massive field stars to ionize the DIG, without the need for photon leakage from HII regions.

  12. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  13. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  14. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  15. In stationary regime, electron transfer rates in RTIL media are diffusion controlled: experimental evidence from pulse radiolysis study.

    PubMed

    Manna, Biswajit; Ghosh, Rajib; Palit, Dipak K

    2013-05-02

    We report electron transfer (ET) process from the long-lived radical anions of pyrene and benzophenone to molecular acceptors, e.g., benzophenone and fluorenone, respectively, in two RTIL media, namely, [BMIM][PF6] and [BMIM][BF4], as well as a few other conventional organic solvents using the nanosecond pulse radiolysis technique. Decay of the donor radical anion and concomitant formation of the acceptor radical anion ensure a bimolecular ET process. The rate constants for the bimolecular ET process in both normal organic solvents and RTILs have been found to be nearly equal to diffusion controlled rate calculated for the corresponding solvent. For long-lived anions, having lifetimes longer than a few hundred nanoseconds, quenching occurs mainly in the stationary regime. In this regime, the ET rate is fully controlled by the rate of diffusion of the reactive species in those solvents. To the best of our knowledge, this is the first experimental evidence of the diffusion controlled ET process occurring in the stationary regime in RTIL media.

  16. Diffusion of Social Media among County 4-H Programs in Tennessee

    ERIC Educational Resources Information Center

    Bowen, Rebekah D.; Stephens, Carrie A.; Childers, Courtney C.; Avery, Elizabeth J.; Stripling, Christopher T.

    2013-01-01

    Over the past decade, Cooperative Extension and 4-H professionals have been faced with the decision of whether to adopt new communication technologies such as social media. Research on social media and Cooperative Extension has identified risks and barriers to adoption; however, many Cooperative Extension professionals believe that social media…

  17. Gas Diffusivity And Air Permeability In Sandy Soils: Effect Of Particle Size, Compaction And Sample Scale

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Kawamoto, K.; Moldrup, P.; Komatsu, T.

    2007-12-01

    The transport and fate of gases in soils is mainly governed by gas diffusion and advection. The gas diffusivity (Dp/D0) is the transport parameter for the gas diffusion due to gas concentration gradient, while the air permeability (ka) is the transport parameter for advective gas transport due to soil-air pressure gradient. Hence, those gas transport parameters play a crucial role in simulating transport of gaseous contaminants such as volatile organic chemicals and in quantifying emission and exchange of greenhouse gases from/at the soil- atmosphere interface. In this study, we measured Dp/D0 and ka for total of six sandy soils and examined the effects of soil physical properties such as particle size, soil compaction, and sample scale on the gas transport parameters. Toyoura sand (0.106-0.50 mm) and Narita sands with three different particle size fractions (0.106-0.25, 0.25- 0.425, 0.425-0.85 mm) were used as experimental materials for the measurements of Dp/D0 and ka. The sand materials were repacked with given bulk densities into small-scale cores of 100 cm3 (for all materials) and large-scale cores of 2120 cm3 (only for Toyoura sand) at given water contents. In addition to the measurements, Dp/D0 and ka of Oso Flaco fine sand and Oakley sand from literature were also analyzed in this study. For all sand materials, we observed the threshold soil-air content (ɛth) below which Dp/D0 and ka are negligible, and measured Dp/D0 and ka increased linearly with increasing air-filled porosity (ɛ) from ɛth to soil total porosity (Φ). At high ɛ, sand materials with larger average particle diameter (APD) gave higher Dp/D0 and ka than those with smaller APD sands at a given ɛ due to the existence of rapid air flow through the highly continuous large pores. At low ɛ near the ɛth however, the measured Dp/D0 for large APD sands were lower than those for small APD sands. The measurements for Narita sand fractions with different bulk densities indicated that soil

  18. Hydrodynamical simulations of G2 interpreted as a diffuse gas cloud

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Burkert, A.; Ballone, A.; Alig, C.; Gillessen, S.; Genzel, R.; Eisenhauer, F.; Fritz, T.

    2014-05-01

    Recently the gas and dust cloud "G2" was discovered on a highly eccentric orbit around the massive black hole in the Galactic center. The orbit will bring the cloud as close as 2400 Schwarzschild radii to Sgr A* beginning of 2014. With the help of hydrodynamical simulations using the PLUTO code, we investigate possible origins and the fate of the cloud in the coming years. In this proceedings article, we concentrate on a scenario where G2 is interpreted as a diffuse gas cloud and show its detailed evolution in the observable position-velocity diagrams. We further elaborate on the problem of the tail emission which might or might not be related to the G2 cloud.

  19. Atomically detailed models of gas mixture diffusion through CuBTC membranes

    SciTech Connect

    Keskin S; Liu JC; Johnson JK.

    2009-10-01

    Metal–organic frameworks are intriguing crystalline nanoporous materials that have potential applications in adsorption-based and membrane-based gas separations. We describe atomically detailed simulations of gas adsorption and diffusion in CuBTC that have been used to predict the performance of CuBTC membranes for separation of H2/CH4, CO2/CH4 and CO2/H2 mixtures. CuBTC membranes are predicted to have higher selectivities for all three mixtures than MOF-5 membranes, the only other metal–organic framework material for which detailed predictions of membrane selectivities have been made. Our results give insight into the physical properties that will be desirable in tuning the pore structure of MOFs for specific membrane-based separations

  20. Template-directed fabrication of porous gas diffusion layer for magnesium air batteries

    NASA Astrophysics Data System (ADS)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2015-11-01

    The uniform micropore distribution in the gas diffusion layers (GDLs) of the air-breathing cathode is very important for the metal air batteries. In this work, the super-hydrophobic GDL with the interconnected regular pores is prepared by a facile silica template method, and then the electrochemical properties of the Mg air batteries containing these GDLs are investigated. The results indicate that the interconnected and uniform pore structure, the available water-breakout pressure and the high gas permeability coefficient of the GDL can be obtained by the application of 30% silica template. The maximum power density of the Mg air battery containing the GDL with 30% regular pores reaches 88.9 mW cm-2 which is about 1.2 times that containing the pristine GDL. Furthermore, the GDL with 30% regular pores exhibits the improved the long term hydrophobic stability.

  1. High Pressure Gas Permeation and Liquid Diffusion Studies of Coflon and Tefzel Thermoplastics. Revision

    NASA Technical Reports Server (NTRS)

    Morgan, G. J.; Campion, R. P.

    1997-01-01

    The life of fluid-carrying flexible or umbilical pipes during service at elevated temperatures and pressures depends inter alia on their resistance to attack by the fluids present and the rate at which these fluids are absorbed by the pipe lining materials. The consequences of fluid ingress into the thermoplastic lining could mean a) a reduction in its mechanical strength, to increase chances of crack formation and growth and thus a loss of integrity, b) the occurrence of permeation right through the lining material, with pressure build- up in the outer pipe wall construction (of flexible pipes) or chemical attack (from a hostile permeant) on outer layers of reinforcements. Therefore it is important within this project to have relevant permeation data for Coflon and Tefzel thermoplastics: the former is plasticised, the latter is not. A previous report (CAPP/M.2) described experimental equipment and techniques used by MERL when measuring high pressure (up to 5000 psi) gas permeation and liquid diffusion through thermoplastic samples cut from extruded bar or pipe, and provided the basic theory involved. Norsk Hydro are also performing gas permeation tests on pipe sections, at up to 100 bars (1450 psi) pressure or so, and reporting separately. Some comparisons between data from Norsk Hydro and MERL have been made herein. The tests should be considered as complementary, as the Norsk Hydro test has the obvious benefit of using complete pipe sections, whilst MERL can test at much higher pressures, up to 1000 bar if necessary. The sophisticated analytical measuring equipment of Norsk Hydro can distinguish the individual components of mixed gases and hence the various permeation-linked coefficients whereas MERL, in using pressure increase at constant volume to determine permeation rate, is limited to obtaining single gas data, or apparent (or representative) coefficients for a mixed gas as a whole. Except for the initial fluid diffusion data for Tefzel described in CAPP

  2. Fetal response to neutral gas and liquid media for intraamniotic distension.

    PubMed

    Fauza, D O; Rawn, J; Fishman, S J

    1999-04-01

    This study was aimed at comparing the effects of a neutral liquid and a neutral gas used as intraamniotic media on umbilical blood flow, O2 delivery, blood pressure, acid-base status, and electrolytes in the fetus at escalating intraamniotic pressures. Eight fetal lambs underwent invasive monitoring of common umbilical blood flow, blood pressure, blood gases, sodium, and hematocrit, as intraamniotic pressure was raised from 0 to 30 mm Hg. The animals were divided equally in two groups depending on the intraamniotic medium used (group I, warmed saline and group II, air). Maternal systemic blood pressure, O2 saturation, and temperature were kept constant. In each group, a threshold level of intraamniotic pressure was evident, above which there was a significant decrease in the common umbilical artery blood flow, with concomitant fetal hypoxemia and hypercarbia. This intraamniotic pressure threshold was 20 mm Hg in group I (saline), but only 15 mm Hg in group II (air). Although both a neutral liquid and a neutral gas can safely be used as intraamniotic media, a neutral liquid medium allows for a wider range of safe intrauterine working pressure (0 to 20 mm Hg), as compared with a neutral gas (0-15 mm Hg).

  3. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.

    PubMed

    Jiao, Shuping; Xu, Zhiping

    2015-05-06

    Designing membrane materials from one-atom-thick structures is highly promising in separation and filtration applications for the reason that they offer the ultimate precision in modifying the atomic structures and chemistry for optimizing performance, and thus resolving the permeation-selectivity trade-off. In this work, we explore the molecular dynamics of gas diffusion in the gallery space between functionalized graphene layers as well as within nanopores across the multilayers. We have identified highly selective gas permeation that agrees with recent experimental measurements and is promising for advancing gas separation technologies such as hydrogen separation, helium/nitrogen generation, and CO2 sequestration. The roles of structural and chemical factors are discussed by considering different types of gases including H2, He, CH4, N2, O2, CO, CO2, and H2O. The overall performance of graphene oxide membranes is also discussed with respect to their microstructures, and compared with recent experimental measurements. These understandings could advise high-performance gas-separation membrane development by engineering assemblies of two-dimensional layered structures.

  4. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    SciTech Connect

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  5. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    NASA Astrophysics Data System (ADS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l- 1 and 1.0 ng l- 1, respectively.

  6. A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Lasseux, D.; Parada, F. J. Valdes; Tapia, J. A. Ochoa; Goyeau, B.

    2014-05-01

    The study of gas slip-flow in porous media is relevant in many applications ranging from nanotechnology to enhanced oil recovery and in any situation involving low-pressure gas-transport through structures having sufficiently small pores. In this paper, we use the method of volume averaging for deriving effective-medium equations in the framework of a slightly compressible gas flow. The result of the upscaling process is an effective-medium model subjected to time- and length-scale constraints, which are clearly identified in our derivation. At the first order in the Knudsen number, the macroscopic momentum transport equation corresponds to a Darcy-like model involving the classical intrinsic permeability tensor and a slip-flow correction tensor that is also intrinsic. It generalizes the Darcy-Klinkenberg equation for ideal gas flow, and exhibits a more complex form for dense gas. The component values of the two intrinsic tensors were computed by solving the associated closure problems on two- and three-dimensional periodic unit cells. Furthermore, the dependence of the slip-flow correction with the porosity was also verified to agree with approximate analytical results. Our predictions show a power-law relationship between the permeability and the slip-flow correction that is consistent with other works. Nevertheless, the generalization of such a relationship to any configuration requires more analysis.

  7. Transport characteristics of gas phase ozone in unsaturated porous media for in-situ chemical oxidation.

    SciTech Connect

    Choi, H.; Lim, H-N; Kang, J-W; Hwang, T-M; Kim, J.; Environmental Research; Kwangju Inst. of Science and Technology; Yonsei Univ.

    2002-07-01

    Laboratory column experiments were conducted by employing various porous media to delineate the characteristics of gaseous ozone transport in the unsaturated zone under various conditions. Water content, soil organic matter (SOM), and metal oxides (MOs) were found to be the factors most influential in the fate and transport of gaseous ozone in unsaturated porous media. The migration velocity of the gaseous ozone front was inversely proportional to the MO content of the porous media. Increased water content at fixed gas flux decreased the ozone breakthrough time proportionally as a result of reduced gas pore volume (PV) in the column, and increased pore water interfered with reactions of gaseous ozone with SOM and MOs on the surface of porous media. The feasibility of in-situ ozone injection for the remediation of unsaturated soils contaminated with either phenanthrene or diesel-range organics (DROs) was investigated under various conditions. The maximum removal after 1 h of ozone injection was achieved in columns packed with baked sand, followed, in descending order, by glass beads and by sand, indicating that catalytic ozone decomposition with MOs in columns packed with baked sand enhanced hydroxyl radical formation and resulted in increased contaminant removal. Overall removal efficiency of multicomponent C{sub 10}-C{sub 24} DROs after 14 h of ozonation was 78.7%. Ozone transport was retarded considerably because of the high ozone demand of DROs, requiring more than 6 h for the gaseous ozone to initially break through the soil column under the experimental conditions tested in this study. Overall, gaseous ozone was readily delivered and transported to remediate unsaturated soils contaminated with phenanthrene and DROs.

  8. An experimental investigation of the relationship between borehole-NMR derived effective diffusion in unconsolidated media and hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Irons, T. P.; Martin, K.; Abraham, J. D.

    2014-12-01

    A staple in the oilfield-borehole NMR measurements are increasingly being relied upon for hydrologic characterization. Most tool designs utilize strong permanent magnets in order to achieve sufficient S/N, this has the side effect that the measured NMR phenomenon occur in the presence of a constant static-field gradient (∇B0)left( nabla mathbf{B}_0 right). The gradient can be exploited, using enhanced diffusion methods (EDM), in order to measure the temperature-dependent effective diffusion (Deff(T)D_{mathit{eff}}(T)) constant of the investigated fluids. EDM have proven to be powerful and reliable techniques for fluid-type discrimination.In water-only samples deviation of the apparent diffusion from the intrinsic molecular diffusion coefficient of water (Dw(T))(D_w(T)) is primarily controlled by restricted diffusion-the physical obstruction of spins which impedes free diffusion within the gradient. The ability to relate hydraulic conductivity to NMR measurements is of fundamental interest in hydrogeophysics. Commonly, NMR relaxation and recovery time constants (T1,2)left(T_{1,2}right) are used for this purpose. A growing body of work has highlighted the complicated nature of these relationships, particularity in unconsolidated high-porosity media. Furthermore, these relationships are dependent on the surface relaxivity (ρNrho_{N}) and micro-porosity of the media. DeffD_{mathit{eff}} is intrinsically linked to the mobility of spins within a sample, has been related to pore geometry, and intriguingly shares units with transmissivity. The short-time behavior of DeffD_{mathit{eff}} is independent of ρNrho_N while full records can be used to yield estimates of relaxivity. In this study we compare data collected from laboratory and borehole NMR instruments with laboratory permeameter measurements for unconsolidated mixtures of sands, silt, and fine gravels. A 2D inversion for T2T_2 and DeffD_{mathit{eff}} was developed under the assumption that all diffusion

  9. Killing of total heterotrophic bacteria using the gas diffusion electrode system.

    PubMed

    Xu, W Y; Li, P

    2012-06-01

    This study focused on the disinfection of dual electrodes with a gas diffusion cathode using total heterotrophic bacteria as indicator microorganisms. Batch tests were performed to study the effects of platinum load W(Pt) and the pore-forming agent content WNH4HCO3 in gas diffusion electrodes on the germicidal efficacy eta and H2O2 yield. The results showed that the disinfection improved with W(Pt), but its efficiency at W(Pt) of 3 per thousand was equivalent to W(Pt) of 4 per thousand. The right amount of the pore-forming agent improved disinfection. Continuous tests were performed to study residence times (RTs), pH and oxygen flow rates Qo2 on the germicidal efficacy and H2O2 yield. The results indicated that at the steady state total heterotrophic bacteria in the outlet stream were completely inactivated under our experimental conditions. Disinfection improved with increasing RT. This phenomenon was more significant when RT < 20 min. A drop in pH value resulted in the rapid rise of germicidal efficacy, while disinfection shortened with an increasing oxygen flow rate Qo2. The operating costs are high. Further research is required to fully understand all parameters and reduce operating costs.

  10. Finite Element Analysis of Poroelastic Composites Undergoing Thermal and Gas Diffusion

    NASA Technical Reports Server (NTRS)

    Salamon, N. J. (Principal Investigator); Sullivan, Roy M.; Lee, Sunpyo

    1995-01-01

    A theory for time-dependent thermal and gas diffusion in mechanically time-rate-independent anisotropic poroelastic composites has been developed. This theory advances previous work by the latter two authors by providing for critical transverse shear through a three-dimensional axisymmetric formulation and using it in a new hypothesis for determining the Biot fluid pressure-solid stress coupling factor. The derived governing equations couple material deformation with temperature and internal pore pressure and more strongly couple gas diffusion and heat transfer than the previous theory. Hence the theory accounts for the interactions between conductive heat transfer in the porous body and convective heat carried by the mass flux through the pores. The Bubnov Galerkin finite element method is applied to the governing equations to transform them into a semidiscrete finite element system. A numerical procedure is developed to solve the coupled equations in the space and time domains. The method is used to simulate two high temperature tests involving thermal-chemical decomposition of carbon-phenolic composites. In comparison with measured data, the results are accurate. Moreover unlike previous work, for a single set of poroelastic parameters, they are consistent with two measurements in a restrained thermal growth test.

  11. Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils

    NASA Astrophysics Data System (ADS)

    Masís-Meléndez, Federico; Chamindu Deepagoda, T. K. K.; de Jonge, Lis Wollesen; Tuller, Markus; Moldrup, Per

    2014-05-01

    The saturated hydraulic conductivity (Ksat) is an essential effective parameter for the development of improved distributed hydrological models and area-differentiated risk assessment of chemical leaching. Basic soil properties such as the particle size distribution or, more recently, air permeability are commonly used to estimate Ksat. Conversely, links to soil gas diffusivity (Dp/Do) have not been fully explored even though gas diffusivity is intimately linked to the connectivity and tortuosity of the soil pore network. Based on measurements for a coarse sandy soil, potential relationships between Ksat and Dp/Do were investigated. A total of 84 undisturbed soil cores were extracted from the topsoil of a field site, and Dp/Do and Ksat were measured in the laboratory. Water-induced and solids-induced tortuosity factors were obtained by applying a two-parameter Dp/Do model to measured data, and subsequently linked to the cementation exponent of the well-established Revil and Cathles predictive model for saturated hydraulic conductivity. Furthermore, a two-parameter model, analogue to the Kozeny-Carman equation, was developed for the Ksat - Dp/Do relationship. All analyses implied strong and fundamental relationships between Ksat and Dp/Do.

  12. Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media.

    PubMed

    Mu, Ying; Valim, Niksa; Niedre, Mark

    2013-06-15

    We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.

  13. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements.

    PubMed

    Yin, Lu; Wang, Qiang; Zhang, Qizhi; Jiang, Huabei

    2007-09-01

    We present a new method that can provide high resolution images of absolute optical absorption coefficient in heterogeneous turbid media. In this method, acoustic measurements in conventional photoacoustic tomography are combined with diffusing light measurements to separate the product of absorption coefficient and optical fluence or photon density. We validate this method using a series of tissuelike phantom experiments. The experimental results show that targets as small as 0.5 mm in diameter with optical absorption contrasts as low as 1.5 relative to a 50 mm diameter scattering background medium can be clearly detected.

  14. Study of effective transport properties of fresh and aged gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bosomoiu, Magdalena; Tsotridis, Georgios; Bednarek, Tomasz

    2015-07-01

    Gas diffusion layers (GDLs) play an important role in proton exchange membrane fuel cells (PEMFCs) for the diffusion of reactant and the removal of product water. In the current study fresh and aged GDLs (Sigracet® GDL34BC) were investigated by X-ray computed tomography to obtain a representative 3D image of the real GDL structure. The examined GDL samples are taken from areas located under the flow channel and under the land. Additionally, a brand new Sigracet® GDL34BC was taken as a reference sample in order to find out the impact of fuel cell assembly on GDL. The produced 3D image data were used to calculate effective transport properties such as thermal and electrical conductivity, diffusivity, permeability and capillary pressure curves of the dry and partially saturated GDL. The simulation indicates flooding by product water occurs at contact angles lower than 125° depending on sample porosity. In addition, GDL anisotropy significantly affects the permeability as well as thermal and electrical conductivities. The calculated material bulk properties could be next used as input for CFD modelling of PEM fuel cells where GDL is usually assumed layer-like and homogeneous. Tensor material parameters allow to consider GDL anisotropy and lead to more realistic results.

  15. Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media

    NASA Astrophysics Data System (ADS)

    Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.

    2015-06-01

    Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.

  16. Molecular Simulation Study of Gas Solubility and Diffusion in a Polymer-Boron Nitride Nanotube Composite.

    PubMed

    Wang, Congyue; Jagirdar, Preeti; Naserifar, Saber; Sahimi, Muhammad

    2016-02-25

    We study the possibility of using polymer composites made of a polymer and boron nitride nanotubes (BNNTs) as a new type of membranes for gas separation. The polymer used is amorphous poly(ether imide) (PEI), and zigzag BNNTs are used to generate the composites with the PEI. The solubilities and self-diffusivities of CO2 and CH4 in the PEI and its composites with the BNNTs are calculated by molecular dynamics (MD) simulations. The molecular models of the PEI and its composites with the BNNTs are generated using energy minimization and MD simulation, and the Universal Force Field is used to represent the interactions between all the atoms. The morhology of the composites are characterized and are compared with that of PEI. The accuracy of the computations is tested by calculating the gases' solubilities and self-diffsivities in the pure PEI and comparing them with the experimental data. Good agreement is obtained with the data. The computed diffusivities and solubilities in the polymer-BNNTs composites are much larger than those in the pure polymer, which are attributed to the changes that the BNNTs induce in the polymer composite's free-volume distribution. As the mechanical properties of the polymer-BNNTs composites are superior over those of the pure PEI, their use as a membrane for gas separation offers distinct advantages over the pure polymer. We also demonstrate that, calculating the diffusion coefficients with MD simulations in the NPT ensemble, as opposed to the common practice of utilizing the NVT ensemble, leads to much more accurate results.

  17. Helium Ionization in the Diffuse Ionized Gas Surrounding UCH ii Regions

    NASA Astrophysics Data System (ADS)

    Anish Roshi, D.; Churchwell, E.; Anderson, L. D.

    2017-04-01

    We present measurements of the singly ionized helium-to-hydrogen ratio ({n}{{He}+}/{n}{{{H}}+}) toward diffuse gas surrounding three ultracompact H ii (UCH ii) regions: G10.15-0.34, G23.46-0.20, and G29.96-0.02. We observe radio recombination lines of hydrogen and helium near 5 GHz using the GBT to measure the {n}{{He}+}/{n}{{{H}}+} ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium and in the inner Galaxy diffuse ionized regions. Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 and G23.46-0.20, and the upper limits of the {n}{{He}+}/{n}{{{H}}+} ratio obtained are 0.03 and 0.05, respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean {n}{{He}+}/{n}{{{H}}+} value 0.06 ± 0.02. Our data thus show that helium in diffuse gas located a few parsecs away from the young massive stars embedded in the observed regions is not fully ionized. We investigate the origin of the nonuniform helium ionization and rule out the possibilities (a) that the helium is doubly ionized in the observed regions and (b) that the low {n}{{He}+}/{n}{{{H}}+} values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars. We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in H ii regions.

  18. Helium Ionization in the Diffuse Ionized Gas Surrounding UCH ii Regions

    NASA Astrophysics Data System (ADS)

    Roshi, D. Anish; Churchwell, E.; Anderson, L. D.

    2017-04-01

    We present measurements of the singly ionized helium-to-hydrogen ratio ({n}{{He}+}/{n}{{{H}}+}) toward diffuse gas surrounding three ultracompact H ii (UCH ii) regions: G10.15-0.34, G23.46-0.20, and G29.96-0.02. We observe radio recombination lines of hydrogen and helium near 5 GHz using the GBT to measure the {n}{{He}+}/{n}{{{H}}+} ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium and in the inner Galaxy diffuse ionized regions. Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 and G23.46-0.20, and the upper limits of the {n}{{He}+}/{n}{{{H}}+} ratio obtained are 0.03 and 0.05, respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean {n}{{He}+}/{n}{{{H}}+} value 0.06 ± 0.02. Our data thus show that helium in diffuse gas located a few parsecs away from the young massive stars embedded in the observed regions is not fully ionized. We investigate the origin of the nonuniform helium ionization and rule out the possibilities (a) that the helium is doubly ionized in the observed regions and (b) that the low {n}{{He}+}/{n}{{{H}}+} values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars. We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in H ii regions.

  19. Methane Hydrate Formation in Thick Sand Reservoirs: Long-range Gas Transport or Short-range Methane Diffusion?

    NASA Astrophysics Data System (ADS)

    You, K.; Flemings, P. B.

    2016-12-01

    We developed two 2-D numerical models to simulate hydrate formation by long range methane gas transport and short-range methane diffusion. We interpret that methane hydrates in thick sands are most likely formed by long range gas transport where methane gas is transported upward into the hydrate stability zone (HSZ) under buoyancy and locally forms hydrate to its stability limit. In short-range methane diffusion, methane is generated locally by biodegradation of organic matter in mud and diffused into bounding sands where it forms hydrate. We could not simulate enough methane transport by diffusion to account for its observed concentration in thick sands. In our models, we include the capillary effect on dissolved methane solubility and on the hydrate phase boundary, sedimentation and different compaction in sand and mud, fracture generation as well as the fully coupled multiphase flow and multicomponent transport. We apply our models to a 12 meter-thick hydrate-bearing sand layer at Walker Ridge 313, Northern Gulf of Mexico. With the long-range gas transport, hydrate saturation is greater than 90% and salinity is increased from seawater to about 8 wt.% through the entire sand. With short-range diffusion, hydrate saturation is more than 90% at the sand base and is less than 10% in the overlying section; salinity is close to seawater when sand is deposited to 800 meter below seafloor by short-range methane diffusion. With short-range diffusion, the amount of hydrate formed is much less than that interpreted from the well log data. Two transient gas layers separated by a hydrate layer are formed from short-range diffusion caused by capillary effect. This could be interpreted as a double bottom simulating reflector. This study provides further insights into different hydrate formation mechanisms, and could serve as a base to confirm the hydrate formation mechanism in fields.

  20. Traveling glycolytic waves induced by a temperature gradient and determination of diffusivities for dense media

    NASA Astrophysics Data System (ADS)

    Verisokin, A. Yu.; Verveyko, D. V.; Postnikov, E. B.

    2012-07-01

    Here we consider the spatially extended model incorporating the temperature-dependent autocatalytic coefficient into the Merkin-Needham-Scott version of the Selkov system and show that this model with temperature gradient quite reasonably explains the experimentally detected traveling glycolytic nonstationary waves, which can be attributed as kinematic ones. Additionally, we analyze the influence of possibly incorporating diffusion terms into the equations. It is shown that the value of diffusivity influences the timetable for the birth of new wave and their further evolution. This result could be used as a method for the determination of diffusivity.

  1. The transition from silicon to gas detection media in nuclear physics

    NASA Astrophysics Data System (ADS)

    Pollacco, Emanuel C.

    2016-06-01

    Emerging radioactive beams and multi petawatt laser facilities are sturdily transforming our base concepts in instruments in nuclear physics. The changes are fuelled by studies of nuclei close to the drip-line or exotic reactions. This physics demands high luminosity, wide phase space cover with good resolution in energy, time, position and sampled waveform. By judiciously modifying the micro-world of the particle or space physics instruments (Double Sided Strip Si Detectors, Micro-Pattern Gas Amplifiers, microelectronics), we are on the path to initiate dream experiments. In the following a brief status in the domain is reported for selected instruments that highlight the present trends with silicon and the growing shift towards gas media for charged particle detection.

  2. Quantitative gas chromatographic analysis of volatile fatty acids in spent culture media and body fluids.

    PubMed Central

    van den Bogaard, A E; Hazen, M J; Van Boven, C P

    1986-01-01

    Gas chromatographic analysis of volatile fatty acids for identification of obligately anaerobic bacteria and for presumptive diagnosis of anaerobic infections is now widely practiced. However, it is difficult to compare data because only a qualitative analysis is done or only chromatograms are presented instead of quantitative data on volatile fatty acid production. We compared three stationary phases for volatile fatty acid analysis of aqueous solutions and four methods of pretreating samples for gas chromatography. Quantitative analysis could be done accurately by using Carbowax as the stationary phase after pretreatment of spent culture media with Dowex columns. If only qualitative analysis is required (e.g., for presumptive diagnosis of anaerobic infections), ether extraction and headspace analysis are equally suitable. The overall variation coefficient for volatile fatty acid production by four reference strains of obligately anaerobic bacteria after 24 h of incubation was approximately 10%. PMID:3958144

  3. ROSAT detection of diffuse hot gas in the edge-on galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    Wang, Q. David; Walterbos, Rene A. M.; Steakley, Michael F.; Norman, Colin A.; Braun, Robert

    1994-01-01

    ROSAT observation is presented of the edge-on spiral galaxy NGC 4631, a nearby Sc/SBd galaxy best known for its extended radio halo. Because of the low foreground Galactic X-ray-absorbing gas column density, N(sub H) approximately 1.4 x 10(exp 20)cm(exp -2), this observation is sensitive to gas of temperature greater than or equal to a few times 10(exp 5) K. A soft (approximately 0.25 keV) X-ray radiation out to more than 8 kpc above the midplane of the galaxy was detected. The strongest X-ray emission in the halo is above the central disk, a region of about 3 kpc radius which shows high star formation activity. The X-ray emission in the halo is bordered by two extended filaments of radio continuum emission. Diffuse X-ray emission from hot gas in the galaxy's disk was found. The spectrum of the radiation can be characterized by a thermal plasma with a temperature of 3 x 10(exp 6) K and a radiative cooling rate of approximately 8 x 10(exp 39) ergs s(exp -1). This rate is only a few percent of the estimated supernova energy release in the interstellar medium of the galaxy. Analysis of the X-ray spectrum shows evidence for the presence of a cooler (several times 10(exp 5) K) halo gas component that could consume a much larger fraction of the supernova energy. Strong evidence was found for disk/halo interaction. Hot gas apparently blows out from supershells in the galaxy's disk at a rate of approximately 1 solar mass yr(exp -1). This outflow of hot gas drags magnetic field lines up in the halo and forms a magnetized gaseous halo. If the magnetic field lines are still anchored to the disk gas at large disk radii, the outflowing gas may be confined high above the disk by magnetic pressure. A strong X-ray source which coincides spatially with an H I supershell has been identified. However, the source is likely an extremely luminous X-ray binary with L(sub chi)(0.1 - 2 keV) approximately 5 x 10(exp 39) ergs s(exp -1), which makes it a stellar mass black hole candidate.

  4. Non-equilibrium chemistry and cooling in the diffuse interstellar medium - II. Shielded gas

    NASA Astrophysics Data System (ADS)

    Richings, A. J.; Schaye, J.; Oppenheimer, B. D.

    2014-08-01

    We extend the non-equilibrium model for the chemical and thermal evolution of diffuse interstellar gas presented in Richings et al. to account for shielding from the UV radiation field. We attenuate the photochemical rates by dust and by gas, including absorption by H I, H2, He I, He II and CO where appropriate. We then use this model to investigate the dominant cooling and heating processes in interstellar gas as it becomes shielded from the UV radiation. We consider a one-dimensional plane-parallel slab of gas irradiated by the interstellar radiation field, either at constant density and temperature or in thermal and pressure equilibrium. The dominant thermal processes tend to form three distinct regions in the clouds. At low column densities, cooling is dominated by ionized metals such as Si II, Fe II, Fe III and C II, which are balanced by photoheating, primarily from H I. Once the hydrogen-ionizing radiation becomes attenuated by neutral hydrogen, photoelectric dust heating dominates, while C II becomes dominant for cooling. Finally, dust shielding triggers the formation of CO and suppresses photoelectric heating. The dominant coolants in this fully shielded region are H2 and CO. The column density of the H I-H2 transition predicted by our model is lower at higher density (or at higher pressure for gas clouds in pressure equilibrium) and at higher metallicity, in agreement with previous photodissociation region models. We also compare the H I-H2 transition in our model to two prescriptions for molecular hydrogen formation that have been implemented in hydrodynamic simulations.

  5. The three-layered mismatched media diffusion equation in frequency domain

    NASA Astrophysics Data System (ADS)

    Wang, Xichang; Wang, Shumei; Meng, Zhaokun; Yang, Shangming

    2006-09-01

    Near-IR radiation has great potential in medical diagnosis and therapy because of the non-invasive nature of light and the selectively poisonous effect to tumors of photodynarnic treatment. Therefore, Near-IR light propagation in highly scattering biological tissue must be understudied for basic research and clinical application of biomedical optics. A tissue is multi-layered mismatched medium, but many investigators only study the diffusion equation of matched medium. they take the tissue as the same refractive index. In order to understand the light transport in tissue, We analyze the diffusion of photons three-layered mismatched medium and set up the solution of Green's function in frequency domain, we employ the extrapolated boundary condition to set up a solution of the diffusion equation. At the same time, we utilize the diffuse equation to calculate the phase in different situation

  6. The diffusion of {sup 14}CO{sub 2} through engineered barrier media

    SciTech Connect

    Bauer, L.R.; Landolt, R.R.

    1988-12-31

    The diffusion of {sup 14}CO{sub 2} through crushed tuff, bentonite and a crushed tuff/bentonite mixture was measured for two diffusion lengths. The ability of {sup 14}CO{sub 2} to penetrate a microsilica-containing cement proposed for repository use was also examined. The specimens were subjected to uniaxially-applied compressive loads prior to the diffusion tests to simulate the onset of environmentally-induced microcracks. The results suggest that the presence of a tuff- or bentonite-based backfill would not significantly affect {sup 14}CO{sub 2} release rates from a repository. Conversely, {sup 14}CO{sub 2} diffusion through simulated cement seals can apparently only occur after severe physical damage has been induced. These results may have implications for the ability of a repository to comply with the applicable regulatory release limits for C-14.

  7. A numerical study of the effects of ambipolar diffusion on the collapse of magnetic gas clouds

    NASA Technical Reports Server (NTRS)

    Black, D. C.; Scott, E. H.

    1982-01-01

    The gravitational collapse of isothermal, nonrotating magnetic gas clouds have been calculated numerically, including the effects of ambipolar diffusion. The fractional ionization in the clouds is approximated by a power-law function of the gas density, f = K/n to the q-power, where K and q are adjustable parameters. Eleven numerical experiments were run, and the results indicate that the asymptotic character of collapse is determined mainly by the value of q and is largely independent of the other parameters characterizing a cloud (e.g., K, cloud mass). In particular, there is nearly a one-to-one correspondence between q and the slope, x, of the central magnetic field strength-gas density relationship. If q is no more than 0.8, a cloud collapses asymptotically, as though the magnetic field were 'frozen' to the neutral matter. The magnetic field strength at the center of a collapsing cloud is strongly amplified during collapse even for values of q of about 1, despite extremely low values of fractional ionization. A discussion of the theoretical basis for this unexpected behavior is given. Possible implications of our results for the problems of magnetic braking of rotating protostars and star formation in general are also presented.

  8. Identifying Extraplanar Diffuse Ionized Gas in a Sample of MaNGA Galaxies

    NASA Astrophysics Data System (ADS)

    Hubbard, Ryan J.; Diamond-Stanic, Aleksandar M.; MaNGA Team

    2016-01-01

    The efficiency with which galaxies convert gas into stars is driven by the continuous cycle of accretion and feedback processes within the circumgalactic medium. Extraplanar diffuse ionized gas (eDIG) can provide insights into the tumultuous processes that govern the evolution of galactic disks because eDIG emission traces both inflowing and outflowing gas. With the help of state-of-the-art, spatially-resolved spectroscopy from MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), we developed a computational method to identify eDIG based on the strength of and spatial extent of optical emission lines for a diverse sample of 550 nearby galaxies. This sample includes roughly half of the MaNGA galaxies that will become publicly available in summer 2016 as part of the Thirteenth Data Release of the Sloan Digital Sky Survey. We identified signatures of eDIG in 8% of the galaxies in this sample, and we found that these signatures are particularly common among galaxies with active star formation and inclination angles >45 degrees. Our analysis of the morphology, incidence, and kinematics of eDIG has important implications for current models of accretion and feedback processes that regulate star formation in galaxies. We acknowledge support from the Astrophysics REU program at the University of Wisconsin-Madison, the National Astronomy Consortium, and The Grainger Foundation.

  9. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Arvay, A.; Yli-Rantala, E.; Liu, C.-H.; Peng, X.-H.; Koski, P.; Cindrella, L.; Kauranen, P.; Wilde, P. M.; Kannan, A. M.

    2012-09-01

    The gas diffusion layer (GDL) in a proton exchange membrane fuel cell (PEMFC) is one of the functional components that provide a support structure for gas and water transport. The GDL plays a crucial role when the oxidant is air, especially when the fuel cell operates in the higher current density region. There has been an exponential growth in research and development because the PEMFC has the potential to become the future energy source for automotive applications. In order to serve in this capacity, the GDL requires due innovative analysis and characterization toward performance and durability. It is possible to achieve the optimum fuel cell performance only by understanding the characteristics of GDLs such as structure, pore size, porosity, gas permeability, wettability, thermal and electrical conductivities, surface morphology and water management. This review attempts to bring together the characterization techniques for the essential properties of the GDLs as handy tools for R&D institutions. Topics are categorized based on the ex-situ and in-situ characterization techniques of GDLs along with related modeling and simulation. Recently reported techniques used for accelerated durability evaluation of the GDLs are also consolidated within the ex-situ and in-situ methods.

  10. A numerical study of the effects of ambipolar diffusion on the collapse of magnetic gas clouds

    NASA Technical Reports Server (NTRS)

    Black, D. C.; Scott, E. H.

    1982-01-01

    The gravitational collapse of isothermal, nonrotating magnetic gas clouds have been calculated numerically, including the effects of ambipolar diffusion. The fractional ionization in the clouds is approximated by a power-law function of the gas density, f = K/n to the q-power, where K and q are adjustable parameters. Eleven numerical experiments were run, and the results indicate that the asymptotic character of collapse is determined mainly by the value of q and is largely independent of the other parameters characterizing a cloud (e.g., K, cloud mass). In particular, there is nearly a one-to-one correspondence between q and the slope, x, of the central magnetic field strength-gas density relationship. If q is no more than 0.8, a cloud collapses asymptotically, as though the magnetic field were 'frozen' to the neutral matter. The magnetic field strength at the center of a collapsing cloud is strongly amplified during collapse even for values of q of about 1, despite extremely low values of fractional ionization. A discussion of the theoretical basis for this unexpected behavior is given. Possible implications of our results for the problems of magnetic braking of rotating protostars and star formation in general are also presented.

  11. Performance enhancement of polymer electrolyte fuel cells by combining liquid removal mechanisms of a gas diffusion layer with wettability distribution and a gas channel with microgrooves

    NASA Astrophysics Data System (ADS)

    Utaka, Yoshio; Koresawa, Ryo

    2016-08-01

    Although polymer electrolyte fuel cells (PEFCs) are commercially available, there are still many problems that need to be addressed to improve their performance and increase their usage. At a high current density, generated water accumulates in the gas diffusion layer and in the gas channels of the cathode. This excess water obstructs oxygen transport, and as a result, cell performance is greatly reduced. To improve the cell performance, the effective removal of the generated water and the promotion of oxygen diffusion in the gas diffusion layer (GDL) are necessary. In this study, two functions proposed in previous reports were combined and applied to a PEFC: a hybrid GDL to form an oxygen diffusion path using a wettability distribution and a gas separator with microgrooves to enhance liquid removal. For a PEFC with a hybrid GDL and a gas separator with microgrooves, the concentration overvoltage of the PEFC was reduced, and the current density limit and maximum power density were increased compared with a conventional PEFC. Moreover, the stability of the cell voltage was markedly improved.

  12. Warm gas in the cold diffuse interstellar medium: Spectral signatures in the H2 pure rotational lines

    NASA Astrophysics Data System (ADS)

    Falgarone, E.; Verstraete, L.; Pineau Des Forêts, G.; Hily-Blant, P.

    2005-04-01

    We present ISO-SWS observations of five pure rotational lines of H2 along a line of sight through the Galaxy which avoids regions of massive star formation. It samples 30 mag of gas, half of it (i.e. 15 mag) being diffuse gas running from the solar neighbourhood to the molecular ring, up to the far side of the Galaxy. The intensities of the S(1) and S(2) lines are too large relative to S(0) to be produced by UV excitation in the known radiation field of the Galaxy. The excitation of these transitions has to tap a more powerful source of energy. We investigate the possibility that it takes place in a large number of magneto-hydrodynamic (MHD) shocks or coherent small-scale vortices, two processes responsible for the intermittent dissipation of MHD turbulence. These dissipation bursts locally and temporarily heat the diffuse gas to temperatures (Tk ˜ 103 K) well above that of the ambient diffuse gas. We compute the spectroscopic signatures of these processes in the H2 lines. Not only are the computed relative line intensities in good agreement with the observations, but the few percent of warm gas involved is consistent with other independent determinations. We find that the fraction of warm H2 in the diffuse gas (i.e. H2 molecules in Ju ≥ 3 levels) on that line of sight, N(H2*)/Av ≈ 4 × 1017 cm-2 mag-1, is the same as that found from far UV spectroscopy in the direction of nearby stars. It is also the same as that estimated in the solar neighbourhood to reproduce the large observed abundances of molecules like CH+. These results suggest that the existence, within the cold neutral medium (CNM), of a few percent of warm gas, for which UV photons cannot be the sole heating source, is ubiquitous and presumably traces the intermittent dissipation of MHD turbulence in the cold diffuse gas.

  13. Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Valdivia, Juan-Carlos; Marquez, Jesús; Susarrey, Orlando; Solorio-Avila, Marco A.

    2016-08-01

    In this Letter, we report experimental and theoretical studies of Newtonian fluid flow through permeable media with fractal porosity. Darcy flow experiments were performed on samples with a deterministic pre-fractal pore network. We found that the seepage velocity is linearly proportional to the pressure drop, but the apparent absolute permeability increases with the increase of sample length in the flow direction L. We claim that a violation of the Hagen-Poiseuille law is due to an anomalous diffusion of the fluid momentum. In this regard we argue that the momentum diffusion is governed by the flow metric induced by the fractal topology of the pore network. The Darcy-like equation for laminar flow in a fractal pore network is derived. This equation reveals that the apparent absolute permeability is independent of L, only if the number of effective spatial degrees of freedom in the pore-network ν is equal to the network fractal (self-similarity) dimension D, e.g. it is in the case of fractal tree-like networks. Otherwise, the apparent absolute permeability either decreases with L, if ν < D, e.g. in media with self-avoiding fractal channels, or increases with L, if ν > D, as this is in the case of the inverse Menger sponge.

  14. Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study

    USGS Publications Warehouse

    Molins, S.; Mayer, K.U.

    2007-01-01

    The two-way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate-rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.

  15. Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study

    NASA Astrophysics Data System (ADS)

    Molins, S.; Mayer, K. U.

    2007-05-01

    The two-way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate-rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.

  16. Characteristic regimes of premixed gas combustion in high-porosity micro-fibrous porous media

    NASA Astrophysics Data System (ADS)

    Fursenko, R.; Minaev, S.; Maruta, K.; Nakamura, H.; Yang, H.

    2010-08-01

    Dynamical behaviour of the premixed flame propagating in the inert high-porosity micro-fibrous porous media has been studied numerically. Effects of mixture filtration velocity, equivalence ratio and burner transverse size on the flame structure have been investigated and the regions of existence of different combustion regimes have been determined. It was found that the influence of the hydrodynamic instability on the flame dynamics is significant in the case of the moderate and high filtration velocities and this effect is negligible at the low velocities. At the moderate filtration velocities the effect of hydrodynamic instability manifests in the flame front deformation and in particular in the flame inclination. It was found that the flame can be stabilized within the whole interval of the filtration gas velocity, whereas in the ordinary porous media the standing wave is settled only at fixed value of gas filtration velocity. This finding is in line with recent experimental results on combustion in micro-fibrous porous media (Yang et al., Combust. Sci. Tech. 181 (2009), 1-16). Possible physical interpretation of the flame anchoring effect may be given on the base of present numerical analysis. At the high filtration velocities the hydrodynamic instability manifests itself in periodical appearance of the moving wrinkles on the flame front surface which forms non stationary high temperature trailing spots behind the leading part of the flame front. Such dynamics may be associated with splitting wave structures which were revealed in previous experiments (Yang et al., Combust. Sci. Tech. 181 (2009), 1-16).

  17. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Liu, Zhi-Jie; Tang, Kai; Song, Ying

    2013-12-01

    In this Letter, we report that the air gas-liquid diffuse discharge plasma excited by bipolar nanosecond pulse in quartz container with different bottom structures at atmospheric pressure. Optical diagnostic measurements show that bountiful chemically and biologically active species, which are beneficial for effective sterilization in some areas, are produced. Such diffuse plasmas are then used to treat drinking water containing the common microorganisms (Candida albicans and Escherichia coli). It is found that these plasmas can sterilize the microorganisms efficiently.

  18. The effect of diffusion and susceptibility differences on T2 measurements for fluids in porous media and biological tissues.

    PubMed

    Borgia, G C; Brown, R J; Fantazzini, P

    1996-01-01

    A number of features of T2 measurements for fluids in porous media have shown behavior contrary to that suggested by intuition developed in other areas. For porous media with relatively uniform pore spaces the following have been observed, in each case for certain ranges only of Xv (susceptibility difference times frequency), D (diffusion coefficient), a (a pore dimension), porespace shape and distribution, echo-time t for single echoes and half-echo-spacing tau for CPMG): (1) In S(t) for FID (free induction decay, S for signal) with constant slope after an initial period of increasing slope; (2) In Ss(t) for single (subscript s) echoes linear (instead of cubic) in t after an initial period; (3) for CPMG R(tau) = 1/T2(tau) - 1/T2(tau-->0) linear in tau over a substantial range; (4) slope of R(tau) independent of D and alpha for this range; (5) slope R(s) of In Ss(t) independent of D and a, and (6) R(s)(t) and R(tau) at long times linear (instead of quadratic) in Xv. These features appear to be compatible with the assumption of a truncated Cauchy-Lorentz distribution of the local magnetic fields due to susceptibility differences. The statistics of repeated sampling of local fields in different parts of the porespace during diffusion lead to a suppression, after a short time, of the effects of diffusion on the FID decay rate and the single-echo decay rate over significant ranges of the parameters. Data are presented to extend the range of parameters studied previously.

  19. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures.

    PubMed

    Wiberg, Gustav K H; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  20. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  1. Thermodynamic Properties of a Trapped Bose Gas:. a Diffusion Monte Carlo Study

    NASA Astrophysics Data System (ADS)

    Datta, S.

    We investigate the thermodynamic properties of a trapped Bose gas of Rb atoms interacting through a repulsive potential at low but finite temperature (kBT < μ < Tc) by Quantum Monte Carlo method based upon the generalization of Feynman-Kac method1-3 applicable to many-body systems at T=0 to finite temperatures. In this paper, we report temperature variation of condensation fraction, chemical potential, density profile, total energy of the system, release energy, frequency shifts and moment of inertia within the realistic potential model (Morse type) for the first time by diffusion Monte Carlo technique. The most remarkable success was in achieving the same trend in the temperature variation of frequency shifts as was observed in JILA4 for both m=2 and m=0 modes. For other things, we agree with the work of Giorgini et al.,5 Pitaevskii et al.6 and Krauth.7

  2. Defect Detection in Fuel Cell Gas Diffusion Electrodes Using Infrared Thermography

    SciTech Connect

    Ulsh, Michael; Porter, Jason M.; Bittinat, Daniel C.; Bender, Guido

    2016-04-01

    Polymer electrolyte membrane fuel cells are energy conversion devices that offer high power densities and high efficiencies for mobile and other applications. Successful introduction into the marketplace requires addressing cost barriers such as production volumes and platinum loading. For cost reduction, it is vital to minimize waste and maximize quality during the manufacturing of platinum-containing electrodes, including gas diffusion electrodes (GDEs). In this work, we report on developing a quality control diagnostic for GDEs, involving creating an ex situ exothermic reaction on the electrode surface and using infrared thermography to measure the resulting temperature profile. Experiments with a moving GDE containing created defects were conducted to demonstrate the applicability of the diagnostic for real-time web-line inspection.

  3. Carbon film coating on gas diffusion layer for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lin, Jui-Hsiang; Chen, Wei-Hung; Su, Shih-Hsuan; Liao, Yuan-Kai; Ko, Tse-Hao

    This study discusses a novel process to increase the performance of proton exchange membrane fuel cells (PEMFC). In order to improve the electrical conductivity and reduce the surface indentation of the carbon fibers, we modified the carbon fibers with pitch-based carbon materials (mesophase pitch and coal tar pitch). Compared with the gas diffusion backing (GDB), GDB-A240 and GDB-MP have 32% and 33% higher current densities at 0.5 V, respectively. Self-made carbon paper with the addition of a micro-porous layer (MPL) (GDL-A240 and GDL-MP) show improved performance compared with GDB-A240 and GDB-MP. The current densities of GDL-A240 and GDL-MP at 0.5 V increased by 37% and 31% compared with GDL, respectively. This study combines these two effects (carbon film and MPL coating) to promote high current density in a PEMFC.

  4. Application of gas diffusion electrodes in bioelectrochemical syntheses and energy conversion.

    PubMed

    Horst, Angelika E W; Mangold, Klaus-Michael; Holtmann, Dirk

    2016-02-01

    Combining the advantages of biological components (e.g., reaction specificity, self-replication) and electrochemical techniques in bioelectrochemical systems offers the opportunity to develop novel efficient and sustainable processes for the production of a number of valuable products. The choice of electrode material has a great impact on the performance of bioelectrochemical systems. In addition to the redox process at the electrodes, interactions of biocatalysts with electrodes (e.g., enzyme denaturation or biofouling) need to be considered. In recent years, gas diffusion electrodes (GDEs) have proved to be very attractive electrodes for bioelectrochemical purposes. GDEs are porous electrodes, that posses a large three-phase boundary surface. At this interface, a solid catalyst supports the electrochemical reaction between gaseous and liquid phase. This mini-review discusses the application of GDEs in microbial and enzymatic fuel cells, for microbial electrolysis, in biosensors and for electroenzymatic synthesis reactions.

  5. Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.

  6. Surface treatments with perfluoropolyether derivatives for the hydrophobization of gas diffusion layers for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Stampino, P. Gallo; Molina, D.; Omati, L.; Turri, S.; Levi, M.; Cristiani, C.; Dotelli, G.

    In the present work, preliminary results of different hydrophobic surface treatments for gas diffusion layer (GDL) for PEM fuel cells are presented. This hydrophobic coating consists of new perfluoropolyether (PFPE) derivatives, in comparison to standard polytetrafluoroethylene (PTFE) dispersions. Experimental conditions for an efficient coating of fluoropolymers onto carbon clothes were explored by wet chemical methods.The GDLs obtained were tested in a single fuel cell at the lab scale. The cell testing was run at two temperatures (60 °C and 80 °C) with a relative humidity (RH) of the feeding gases of 80/100%, hydrogen/air respectively.The new PFPE coatings measurably improve the cell performances, and this effect is more evident at 60 °C with respect to 80 °C.

  7. Thermally induced gas flows in ratchet channels with diffuse and specular boundaries

    NASA Astrophysics Data System (ADS)

    Shahabi, Vahid; Baier, Tobias; Roohi, Ehsan; Hardt, Steffen

    2017-01-01

    A net gas flow can be induced in the gap between periodically structured surfaces held at fixed but different temperatures when the reflection symmetry along the channel axis is broken. Such a situation arises when one surface features a ratchet structure and can be augmented by altering the boundary conditions on different parts of this surface, with some regions reflecting specularly and others diffusely. In order to investigate the physical mechanisms inducing the flow in this configuration at various Knudsen numbers and geometric configurations, direct simulation Monte Carlo (DSMC) simulations are employed using transient adaptive subcells for collision partner selection. At large Knudsen numbers the results compare favorably with analytical expressions, while for small Knudsen numbers a qualitative explanation for the flow in the strong temperature inhomogeneity at the tips of the ratchet is provided. A detailed investigation of the performance for various ratchet geometries suggests optimum working conditions for a Knudsen pump based on this mechanism.

  8. Implications of polymer electrolyte fuel cell exposure to synchrotron radiation on gas diffusion layer water distribution

    NASA Astrophysics Data System (ADS)

    Eller, Jens; Roth, Jörg; Marone, Federica; Stampanoni, Marco; Wokaun, Alexander; Büchi, Felix N.

    2014-01-01

    Synchrotron radiation (SR) based imaging of polymer electrolyte fuel cells (PEFC), both radiography and tomography, is an attractive tool for the visualization of water in the gas diffusion layer as it provides temporal and spatial resolutions one order of magnitude superior to neutron imaging. Here we report on the degradation of cell performance and changes in GDL water saturation after SR irradiation of about 43% of a cell's active area. Fast X-ray tomographic microscopy (XTM) scans of 11 s duration are used to compare the GDL saturation before and after a 5 min irradiation period of the imaged section. The cell voltage and the water saturation decreased clearly during and after the exposure. Estimates of the current density of the SR exposed and non exposed cell domains underline the effect of irradiation.

  9. Outflowing Diffuse Gas in the Active Galactic Nucleus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Geballe, T. R.; Mason, R. E.; Oka, T.

    2015-10-01

    Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 μm have revealed a weak absorption feature due to two lines of the molecular ion {{{H}}}3+. The observed wavelength of the feature corresponds to a velocity of -70 km s-1 relative to the systemic velocity of the galaxy, implying an outward flow from the nucleus along the line of sight. The absorption by H{}3+ along with the previously known broad hydrocarbon absorption at 3.4μm are probably formed in diffuse gas that is in close proximity to the continuum source, i.e., within a few tens of parsecs of the central engine. Based on that conclusion and the measured H{}3+ absorption velocity and with the assumption of a spherically symmetric wind we estimate a rate of mass outflow from the active galactic nucleus of ˜1 M⊙ yr-1.

  10. Thermally induced gas flows in ratchet channels with diffuse and specular boundaries

    PubMed Central

    Shahabi, Vahid; Baier, Tobias; Roohi, Ehsan; Hardt, Steffen

    2017-01-01

    A net gas flow can be induced in the gap between periodically structured surfaces held at fixed but different temperatures when the reflection symmetry along the channel axis is broken. Such a situation arises when one surface features a ratchet structure and can be augmented by altering the boundary conditions on different parts of this surface, with some regions reflecting specularly and others diffusely. In order to investigate the physical mechanisms inducing the flow in this configuration at various Knudsen numbers and geometric configurations, direct simulation Monte Carlo (DSMC) simulations are employed using transient adaptive subcells for collision partner selection. At large Knudsen numbers the results compare favorably with analytical expressions, while for small Knudsen numbers a qualitative explanation for the flow in the strong temperature inhomogeneity at the tips of the ratchet is provided. A detailed investigation of the performance for various ratchet geometries suggests optimum working conditions for a Knudsen pump based on this mechanism. PMID:28128309

  11. Competition of coarsening and shredding of clusters in a driven diffusive lattice gas

    NASA Astrophysics Data System (ADS)

    Kunwar, Ambarish; Chowdhury, Debashish; Schadschneider, Andreas; Nishinari, Katsuhiro

    2006-06-01

    We investigate a driven diffusive lattice gas model with two oppositely moving species of particle. The model is motivated by bidirectional traffic of ants on a pre-existing trail. A third species, corresponding to pheromones used by the ants for communication, is not conserved and mediates interactions between the particles. Here we study the spatio-temporal organization of the particles. In the unidirectional variant of this model it is known to be determined by the formation and coarsening of 'loose clusters'. For our bidirectional model, we show that the interaction of oppositely moving clusters is essential. In the late stages of evolution the cluster size oscillates because of a competition between their 'shredding' during encounters with oppositely moving counterparts and subsequent 'coarsening' during collision-free evolution. We also establish a nontrivial dependence of the spatio-temporal organization on the system size.

  12. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  13. Double diffusion in gel reactions with antigens insoluble in aqueous media.

    PubMed

    Milgrom, Felix; Loza, Ulana; Czechowski, Donna

    2004-08-01

    Ethanol-soluble, but saline-insoluble antigens were prepared as saline suspensions and studied in double diffusion reactions in a soft agarose gel. Positive reactions were observed with syphilis and SLE sera tested against the Kahn antigen as well as against commercial cardiolipin reagents. Also, ethanol-soluble brain antigen was studied for organ-specific reactions with rabbit immune sera. It was shown that double diffusion in gel can be employed as an analytical procedure for studies on reactions of saline suspensions of ethanol-soluble antigens.

  14. Tracer test for the measurement of gas diffusion and non-aqueous phase liquid (NAPL) saturation in soil.

    PubMed

    Van De Steene, Joke; Höhener, Patrick

    2009-01-01

    During soil bioremediation, the diffusion of oxygen into the soil is an important prerequisite for aerobic biodegradation, and the decrease of petroleum products is the ultimate goal. Both processes need to be monitored. The aim of this work was to develop a gas tracer test that yields information on both, gas diffusion and residual saturation with non-aqueous phase liquids (NAPLs) in unsaturated soil heaps. One conservative tracer (methane) and 4 partitioning gas tracers (diethylether, methyl tert-butyl ether, chloroform and n-heptane) were injected as vapors into laboratory columns filled with unsaturated sand with increasing NAPL saturation. Breakthrough curves of gaseous compounds were measured at two points and compared to analytical solutions of an analytical diffusive-reactive transport equation. By fitting of methane data, robust results for effective diffusivity (tortuosity) were obtained. NAPL saturation was most accurately measured by the moderately water soluble tracers (ethers and chloroform). The hydrophobic tracer n-heptane did not partition into water-immersed NAPL. An easy and accurate way to assess air-NAPL partitioning constants from gas chromatography retention times is furthermore reported. It is concluded that gas tracer tests have the potential for measuring two important properties in soil bioremediation systems easily and quickly.

  15. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating.

    PubMed

    Munholland, Jonah L; Mumford, Kevin G; Kueper, Bernard H

    2016-01-01

    A series of intermediate-scale laboratory experiments were completed in a two-dimensional flow cell to investigate gas production and migration during the application of electrical resistance heating (ERH) for the removal of dense non-aqueous phase liquids (DNAPLs). Experiments consisted of heating water in homogeneous silica sand and heating 270 mL of trichloroethene (TCE) and chloroform (CF) DNAPL pools in heterogeneous silica sands, both under flowing groundwater conditions. Spatial and temporal distributions of temperature were measured using thermocouples and observations of gas production and migration were collected using front-face image capture throughout the experiments. Post-treatment soil samples were collected and analyzed to assess DNAPL removal. Results of experiments performed in homogeneous sand subject to different groundwater flow rates showed that high groundwater velocities can limit subsurface heating rates. In the DNAPL pool experiments, temperatures increased to achieve DNAPL-water co-boiling, creating estimated gas volumes of 131 and 114 L that originated from the TCE and CF pools, respectively. Produced gas migrated vertically, entered a coarse sand lens and subsequently migrated laterally beneath an overlying capillary barrier to outside the heated treatment zone where 31-56% of the original DNAPL condensed back into a DNAPL phase. These findings demonstrate that layered heterogeneity can potentially facilitate the transport of contaminants outside the treatment zone by mobilization and condensation of gas phases during ERH applications. This underscores the need for vapor phase recovery and/or control mechanisms below the water table during application of ERH in heterogeneous porous media during the co-boiling stage, which occurs prior to reaching the boiling point of water.

  16. Study of gas-liquid flow in model porous media for heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Francois, Marie; Bodiguel, Hugues; Guillot, Pierre; Laboratory of the Future Team

    2015-11-01

    Heterogeneous catalysis of chemical reactions involving a gas and a liquid phase is usually achieved in fixed bed reactors. Four hydrodynamic regimes have been observed. They depend on the total flow rate and the ratio between liquid and gas flow rate. Flow properties in these regimes influence transfer rates. Rather few attempts to access local characterization have been proposed yet, though these seem to be necessary to better describe the physical mechanisms involved. In this work, we propose to mimic slices of reactor by using two-dimensional porous media. We have developed a two-dimensional system that is transparent to allow the direct observation of the flow and the phase distribution. While varying the total flow rate and the gas/liquid flow rate ratio, we observe two hydrodynamic regimes: at low flow rate, the gaseous phase is continuous (trickle flow), while it is discontinuous at higher flow rate (pulsed flow). Thanks to some image analysis techniques, we are able to quantify the local apparent liquid saturation in the system. Its fluctuations in time are characteristic of the transition between the two regimes: at low liquid flow rates, they are negligible since the liquid/gas interface is fixed, whereas at higher flow rates we observe an alternation between liquid and gas. This transition between trickle to pulsed flow is in relative good agreement with the existing state of art. However, we report in the pulsed regime important flow heterogeneities at the scale of a few pores. These heterogeneities are likely to have a strong influence on mass transfers. We acknowledge the support of Solvay.

  17. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating

    NASA Astrophysics Data System (ADS)

    Munholland, Jonah L.; Mumford, Kevin G.; Kueper, Bernard H.

    2016-01-01

    A series of intermediate-scale laboratory experiments were completed in a two-dimensional flow cell to investigate gas production and migration during the application of electrical resistance heating (ERH) for the removal of dense non-aqueous phase liquids (DNAPLs). Experiments consisted of heating water in homogeneous silica sand and heating 270 mL of trichloroethene (TCE) and chloroform (CF) DNAPL pools in heterogeneous silica sands, both under flowing groundwater conditions. Spatial and temporal distributions of temperature were measured using thermocouples and observations of gas production and migration were collected using front-face image capture throughout the experiments. Post-treatment soil samples were collected and analyzed to assess DNAPL removal. Results of experiments performed in homogeneous sand subject to different groundwater flow rates showed that high groundwater velocities can limit subsurface heating rates. In the DNAPL pool experiments, temperatures increased to achieve DNAPL-water co-boiling, creating estimated gas volumes of 131 and 114 L that originated from the TCE and CF pools, respectively. Produced gas migrated vertically, entered a coarse sand lens and subsequently migrated laterally beneath an overlying capillary barrier to outside the heated treatment zone where 31-56% of the original DNAPL condensed back into a DNAPL phase. These findings demonstrate that layered heterogeneity can potentially facilitate the transport of contaminants outside the treatment zone by mobilization and condensation of gas phases during ERH applications. This underscores the need for vapor phase recovery and/or control mechanisms below the water table during application of ERH in heterogeneous porous media during the co-boiling stage, which occurs prior to reaching the boiling point of water.

  18. Hyperpolarized gas diffusion MRI of biphasic lung inflation in short- and long-term emphysema models.

    PubMed

    Xin, Yi; Cereda, Maurizio; Kadlecek, Stephen; Emami, Kiarash; Hamedani, Hooman; Duncan, Ian; Rajaei, Jennia; Hughes, Liam; Meeder, Natalie; Naji, Joseph; Profka, Harrilla; Bolognese, Brian J; Foley, Joseph P; Podolin, Patricia L; Rizi, Rahim R

    2017-08-01

    During lung inflation, airspace dimensions are affected nonlinearly by both alveolar expansion and recruitment, potentially confounding the identification of emphysematous lung by hyperpolarized helium-3 diffusion magnetic resonance imaging (HP MRI). This study aimed to characterize lung inflation over a broad range of inflation volume and pressure values in two different models of emphysema, as well as in normal lungs. Elastase-treated rats (n = 7) and healthy controls (n = 7) were imaged with HP MRI. Gradual inflation was achieved by incremental changes to both inflation volume and airway pressure. The apparent diffusion coefficient (ADC) was measured at each level of inflation and fitted to the corresponding airway pressures as the second-order response equation, with minimizing residue (χ(2) < 0.001). A biphasic ADC response was detected, with an initial ADC increase followed by a decrease at airway pressures >18 cmH2O. Discrimination between treated and control rats was optimal when airway pressure was intermediate (between 10 and 11 cmH2O). Similar findings were confirmed in mice following long-term exposure to cigarette smoke, where optimal discrimination between treated and healthy mice occurred at a similar airway pressure as in the rats. We subsequently explored the evolution of ADC measured at the intermediate inflation level in mice after prolonged smoke exposure and found a significant increase (P < 0.01) in ADC over time. Our results demonstrate that measuring ADC at intermediate inflation enhances the distinction between healthy and diseased lungs, thereby establishing a model that may improve the diagnostic accuracy of future HP gas diffusion studies. Copyright © 2017 the American Physiological Society.

  19. Shielding gas effect to diffusion activities of magnesium and copper on aluminum clad

    NASA Astrophysics Data System (ADS)

    Manurung, Charles SP; Napitupulu, Richard AM

    2017-09-01

    Aluminum is the second most metal used in many application, because of its corrosion resistance. The Aluminum will be damaged in over time if it’s not maintained in good condition. That is important to give protection to the Aluminums surface. Cladding process is one of surface protection methodes, especially for metals. Aluminum clad copper (Al/Cu) or copper clad aluminum (Cu/Al) composite metals have been widely used for many years. These mature protection method and well tested clad metal systems are used industrially in a variety application. The inherent properties and behavior of both copper and aluminum combine to provide unique performance advantages. In this paper Aluminum 2024 series will be covered with Aluminum 1100 series by hot rolling process. Observations will focus on diffusion activities of Mg and Cu that not present on Aluminum 1100 series. The differences of clad material samples is the use of shielding gas during heating before hot rolling process. The metallurgical characteristics will be examined by using optical microscopy. Transition zone from the interface cannot be observed but from Energy Dispersive Spectrometry it’s found that Mg and Cu are diffused from base metal (Al 2024) to the clad metal (Al 1100). Hardness test proved that base metals hardness to interface was decrease.

  20. Stochastic diffusion interactions and coarsening in a system of droplets growing from a supersaturated gas mixture.

    PubMed

    Pines, V; Zlatkowski, M; Chait, A

    2005-01-15

    In this work we study diffusion interactions among liquid droplets growing in stochastic population by condensation from supersaturated binary gas mixture. During the postnucleation transient regime collective growth of liquid droplets competing for the available water vapor decreases local supersaturation leading to the increase of critical radius and the onset of coarsening process. In coarsening regime the growth of larger droplets is prevailing noticeably broadening the droplet size-distribution function when the condensation process becomes more intensive than the supersaturation yield. Modifications in the kinetic equation are discussed and formulated for a stochastic population of liquid droplets when diffusional interactions among droplets become noteworthy. The kinetic equation for the droplet size-distribution function is solved together with field equations for the mass fraction of disperse liquid phase, mass fraction of water vapor component of moist air, and temperature during diffusion-dominated regime of droplet coarsening. The droplet size and mass distributions are found as functions of the liquid volume fraction, showing considerable broadening of droplet spectra. It is demonstrated that the effect of latent heat of condensation considerably changes coarsening process. The coarsening rate constant, the droplet density (number of droplets per unit volume), the screening length, the mean droplet size, and mass are determined as functions of the temperature, pressure, and liquid volume fraction.

  1. Amperometric Determination of Sulfite by Gas Diffusion- Sequential Injection with Boron-Doped Diamond Electrode.

    PubMed

    Chinvongamorn, Chakorn; Pinwattana, Kulwadee; Praphairaksit, Narong; Imato, Toshihiko; Chailapakul, Orawon

    2008-03-17

    A gas diffusion sequential injection system with amperometric detection using aboron-doped diamond electrode was developed for the determination of sulfite. A gasdiffusion unit (GDU) was used to prevent interference from sample matrices for theelectrochemical measurement. The sample was mixed with an acid solution to generategaseous sulfur dioxide prior to its passage through the donor channel of the GDU. Thesulfur dioxide diffused through the PTFE hydrophobic membrane into a carrier solution of 0.1 M phosphate buffer (pH 8)/0.1% sodium dodecyl sulfate in the acceptor channel of theGDU and turned to sulfite. Then the sulfite was carried to the electrochemical flow cell anddetected directly by amperometry using the boron-doped diamond electrode at 0.95 V(versus Ag/AgCl). Sodium dodecyl sulfate was added to the carrier solution to preventelectrode fouling. This method was applicable in the concentration range of 0.2-20 mgSO3(2-)/L and a detection limit (S/N = 3) of 0.05 mg SO3²-/L was achieved. This method wassuccessfully applied to the determination of sulfite in wines and the analytical resultsagreed well with those obtained by iodimetric titration. The relative standard deviations forthe analysis of sulfite in wines were in the range of 1.0-4.1 %. The sampling frequency was65 h(-1).

  2. Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell.

    PubMed

    You, Shi-Jie; Wang, Xiu-Heng; Zhang, Jin-Na; Wang, Jing-Yuan; Ren, Nan-Qi; Gong, Xiao-Bo

    2011-01-15

    This study reports the fabrication of a new membrane electrode assembly by using stainless steel mesh (SSM) as raw material and its effectiveness as gas diffusion electrode (GDE) for electrochemical oxygen reduction in microbial fuel cell (MFC). Based on feeding glucose (0.5 g L(-1)) substrate to a single-chambered MFC, power generation using SSM-based GDE was increased with the decrease of polytetrafluoroethylene (PTFE) content applied during fabrication, reaching the optimum power density of 951.6 mW m(-2) at 20% PTFE. Repeatable cell voltage of 0.51 V (external resistance of 400 Ω) and maximum power density of 951.6 mW m(-2) produced for the MFC with SSM-based GDE are comparable to that of 0.52 V and 972.6 mW m(-2), respectively obtained for the MFC containing typical carbon cloth (CC)-made GDE. Besides, Coulombic efficiency (CE) is found higher for GDE (SSM or CC) with membrane assembly than without, which results preliminarily from the mitigation of Coulombic loss being associated with oxygen diffusion and substrate crossover. This study demonstrates that with its good electrical conductivity and much lower cost, the SSM-made GDE suggests a promising alternative as efficient and more economically viable material to conventional typical carbon for power production from biomass in MFC.

  3. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    NASA Astrophysics Data System (ADS)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant