Science.gov

Sample records for gas distension technique

  1. Photonic sensing of arterial distension

    PubMed Central

    Ruh, Dominic; Subramanian, Sivaraman; Sherman, Stanislav; Ruhhammer, Johannes; Theodor, Michael; Dirk, Lebrecht; Foerster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Zappe, Hans; Seifert, Andreas

    2016-01-01

    Most cardiovascular diseases, such as arteriosclerosis and hypertension, are directly linked to pathological changes in hemodynamics, i.e. the complex coupling of blood pressure, blood flow and arterial distension. To improve the current understanding of cardiovascular diseases and pave the way for novel cardiovascular diagnostics, innovative tools are required that measure pressure, flow, and distension waveforms with yet unattained spatiotemporal resolution. In this context, miniaturized implantable solutions for continuously measuring these parameters over the long-term are of particular interest. We present here an implantable photonic sensor system capable of sensing arterial wall movements of a few hundred microns in vivo with sub-micron resolution, a precision in the micrometer range and a temporal resolution of 10 kHz. The photonic measurement principle is based on transmission photoplethysmography with stretchable optoelectronic sensors applied directly to large systemic arteries. The presented photonic sensor system expands the toolbox of cardiovascular measurement techniques and makes these key vital parameters continuously accessible over the long-term. In the near term, this new approach offers a tool for clinical research, and as a perspective, a continuous long-term monitoring system that enables novel diagnostic methods in arteriosclerosis and hypertension research that follow the trend in quantifying cardiovascular diseases by measuring arterial stiffness and more generally analyzing pulse contours. PMID:27699095

  2. Simulant Gas Test Technique Feasibility

    DTIC Science & Technology

    1990-05-01

    constant y shock pressure. The test time is evaluated conservatively from the difference in arrival times at the expansion nozzle between the incident...relation for a constant y. The value of y at the supply gas conditions is used in this expression and a rapidly convergent Newton-Raphson iteration method...dimensional flow property/Mach number relations with assumed constant y and from the gas mixture equation of state. In all of the calculations in the present

  3. Discussion on seismic technique for gas exploration

    SciTech Connect

    Mingru, W.; Xianjue, G.; Honglin, Q. )

    1991-01-01

    The research result of seismic gas exploration in east Chaidamu basin leads to a common conclusion, interval velocity drop {Delta}{nu} higher than 300m/s a productive gas reservoir, and {Delta}{nu} above 400m/s a high-productive gas reservoir; that is to say, the bigger the interval velocity drop is, the richer the gas in a formation is. However, the author of this paper thinks that the conclusion is unlikely to be reliable because {Delta}{nu} is not directly proportional to gas content in a formation, and present techniques fail to determine accurate {Delta}{nu}.

  4. Radioactive-gas separation technique

    NASA Technical Reports Server (NTRS)

    Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.

    1977-01-01

    Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.

  5. The visceromotor responses to colorectal distension and skin pinch are inhibited by simultaneous jejunal distension.

    PubMed

    Shafton, Anthony D; Furness, John B; Ferens, Dorota; Bogeski, Goce; Koh, Shir Lin; Lean, Nicholas P; Kitchener, Peter D

    2006-07-01

    Noxious stimuli that are applied to different somatic sites interact; often one stimulus diminishes the sensation elicited from another site. By contrast, inhibitory interactions between visceral stimuli are not well documented. We investigated the interaction between the effects of noxious distension of the colorectum and noxious stimuli applied to the jejunum, in the rat. Colorectal distension elicited a visceromotor reflex, which was quantified using electromyographic (EMG) recordings from the external oblique muscle of the upper abdomen. The same motor units were activated when a strong pinch was applied to the flank skin. Distension of the jejunum did not provoke an EMG response at this site, but when it was applied during colorectal distension it blocked the EMG response. Jejunal distension also inhibited the response to noxious skin pinch. The inhibition of the visceromotor response to colorectal distension was prevented by local application of tetrodotoxin to the jejunum, and was markedly reduced when nicardipine was infused into the local jejunal circulation. Chronic sub-diaphragmatic vagotomy had no effect on the colorectal distension-induced EMG activity or its inhibition by jejunal distension. The nicotinic antagonist hexamethonium suppressed phasic contractile activity in the jejunum, had only a small effect on the inhibition of visceromotor response by jejunal distension. It is concluded that signals that arise from skin pinch and colorectal distension converge in the central nervous system with pathways that are activated by jejunal spinal afferents; the jejunal signals strongly inhibit the abdominal motor activity evoked by noxious stimuli.

  6. New technique for calibrating hydrocarbon gas flowmeters

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Puster, R. L.

    1984-01-01

    A technique for measuring calibration correction factors for hydrocarbon mass flowmeters is described. It is based on the Nernst theorem for matching the partial pressure of oxygen in the combustion products of the test hydrocarbon, burned in oxygen-enriched air, with that in normal air. It is applied to a widely used type of commercial thermal mass flowmeter for a number of hydrocarbons. The calibration correction factors measured using this technique are in good agreement with the values obtained by other independent procedures. The technique is successfully applied to the measurement of differences as low as one percent of the effective hydrocarbon content of the natural gas test samples.

  7. Introducing nanovalve technique for natural gas storage

    NASA Astrophysics Data System (ADS)

    Tate, Kirby L.

    In order for natural gas vehicles to be economically feasible in residential consumer sector, the limitations of the current natural storage approaches (Compressed Natural Gas and Liquefied Natural Gas) must be overcome. Advances in the Adsorbed Natural Gas storage approach have been made, however, these advances do not fit within the parameters (storage pressure of 35 bar) set by Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy (DOE). The research presented here establishes a novel technique to effectively store methane. This nanovalved technique involves loading a pelleted adsorbent at high pressure, sealing a layer coated on the adsorbent pellet, and reducing the storage vessel to a low pressure. Using zeolite 5A beads as a model adsorbent and MCM-48 as a nanovalving layer, >50% of the maximum methane capacity of zeolite 5A (73 V/V) was able to be maintained after being reduced to a pressure of 1 bar. After establishing the feasibility of the nanovalving technique with MCM-48, again using zeolite 5A beads a model adsorbent, the impact of coordinating metal of MOF nanovalve layers was assessed. This study was to aid in designating material properties of the nanovalving layer that allow for better sealing and better performance. Aluminum was established as a desirable component in the nanovalving layer (two layers of Al-MOF on zeolite 5A beads was able to maintain 46% of the maximum methane capacity). The work herein illustrates the nanovalving technique can store a high percentage of loaded methane at low pressure. With a high methane capacity adsorbent and an optimized nanovalving layer, the possibility of achieving the storage targets set by ARPA-E is promising.

  8. Models of visceral pain: colorectal distension (CRD).

    PubMed

    Jones, R Carter W; Gebhart, G F

    2004-09-01

    The visceromotor response to balloon distension of the colon is a robust behavioral model of visceral nociception in rodents and is ideally suited for studying the visceral antinociceptive activity of drugs. This unit describes, in detail, quantification of this response with the use of electromyography in both rats and mice.

  9. Uterine distension differentially affects remodelling and distensibility of the uterine vasculature in non-pregnant rats.

    PubMed

    Osol, George; Barron, Carolyn; Mandalà, Maurizio

    2012-01-01

    During pregnancy the mammalian uterine circulation undergoes significant expansive remodelling necessary for normal pregnancy outcome. The underlying mechanisms are poorly defined. The goal of this study was to test the hypothesis that myometrial stretch actively stimulates uterine vascular remodelling by developing a new surgical approach to induce unilateral uterine distension in non-pregnant rats. Three weeks after surgery, which consisted of an infusion of medical-grade silicone into the uterine lumen, main and mesometrial uterine artery and vein length, diameter and distensibility were recorded. Radial artery diameter, distensibility and vascular smooth muscle mitotic rate (Ki67 staining) were also measured. Unilateral uterine distension resulted in significant increases in the length of main uterine artery and vein and mesometrial segments but had no effect on vessel diameter or distensibility. In contrast, there were significant increases in the diameter of the radial arteries associated with the distended uterus. These changes were accompanied by reduced arterial distensibility and increased vascular muscle hyperplasia. In summary, this is the first report to show that myometrial stretch is a sufficient stimulus to induce significant remodelling of uterine vessels in non-pregnant rats. Moreover, the results indicate differential regulation of these growth processes as a function of vessel size and type.

  10. Oral distension methods for small bowel MRI: comparison of different agents to optimize bowel distension.

    PubMed

    Schmidt, Stefan A; Baumann, Julia A; Stanescu-Siegmund, Nora; Froehlich, Eckhart; Brambs, Hans-Juergen; Juchems, Markus S

    2016-12-01

    Background Different methods for bowel distension prior to magnetic resonance imaging (MRI) examinations were described in recent years. Purpose To compare orally administered psyllium or locust bean gum / mannitol (LBM) with tylose administered through a duodenal catheter for bowel distension in patients undergoing MRI examination of the small bowel. Material and Methods Three different methods of bowel distension prior to MRI were compared: tylose applied through a duodenal catheter and orally administered psyllium and LBM in three groups with 15 patients each. Datasets were blinded and reviewed independently by two experienced radiologists, who assessed the diagnostic value and the maximum luminal diameter. Results Tylose was superior to psyllium and LBM in the examination of the duodenum and proximal jejunum. LBM was superior to the other methods for distension of the ileum and terminal ileum. The greatest luminal diameter of the duodenum was achieved after tylose and distension of the terminal ileum was the best in patients receiving LBM. The psyllium group was inferior to the other two groups in all segments. Conclusion By using LBM as an oral method of bowel distension, many patients can avoid the unpleasant placement of a duodenal catheter without compromising the diagnostic value of the examination.

  11. Pathologic aerophagia: a rare cause of chronic abdominal distension

    PubMed Central

    de Jesus, Lisieux Eyer; Cestari, Ana Beatriz C.S.S.; da Silva, Orli Carvalho; Fernandes, Marcia Antunes; Firme, Livia Honorato

    2015-01-01

    Objective: To describe an adolescent with pathologic aerophagia, a rare condition caused by excessive and inappropriate swallowing of air and to review its treatment and differential diagnoses. Case description: An 11-year-old mentally impaired blind girl presenting serious behavior problems and severe developmental delay with abdominal distension from the last 8 months. Her past history included a Nissen fundoplication. Abdominal CT and abdominal radiographs showed diffuse gas distension of the small bowel and colon. Hirschsprung's disease was excluded. The distention was minimal at the moment the child awoke and maximal at evening, and persisted after control of constipation. Audible repetitive and frequent movements of air swallowing were observed. The diagnosis of pathologic aerophagia associated to obsessive-compulsive disorder and developmental delay was made, but pharmacological treatment was unsuccessful. The patient was submitted to an endoscopic gastrostomy, permanently opened and elevated relative to the stomach. The distention was resolved, while maintaining oral nutrition. Comments: Pathologic aerophagia is a rare self-limiting condition in normal children exposed to high levels of stress and may be a persisting problem in children with psychiatric or neurologic disease. In this last group, the disease may cause serious complications. Pharmacological and behavioral treatments are ill-defined. Severe cases may demand surgical strategies, mainly decompressive gastrostomy. PMID:26100594

  12. Hydrocarbon radical thermochemistry: Gas-phase ion chemistry techniques

    SciTech Connect

    Ervin, Kent M.

    2014-03-21

    Final Scientific/Technical Report for the project "Hydrocarbon Radical Thermochemistry: Gas-Phase Ion Chemistry Techniques." The objective of this project is to exploit gas-phase ion chemistry techniques for determination of thermochemical values for neutral hydrocarbon radicals of importance in combustion kinetics.

  13. Near Real Time Quantitative Gas Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Herget, William F.; Tromp, Marianne L.; Anderson, Charles R.

    1985-12-01

    A Fourier transform infrared (FT-IR) - based system has been developed and is undergoing evaluation for near real time multicomponent quantitative analysis of undiluted gaseous automotive exhaust emissions. The total system includes: (1) a gas conditioning system (GCS) for tracer gas injection, gas mixing, and temperature stabilization; and (2) an exhaust gas analyzer (EGA) consisting of a sample cell, an FT-IR system, and a computerized data processing system. Tests have shown that the system can monitor about 20 individual species (concentrations down to the 1-20 ppm range) with a time resolution of one second. Tests have been conducted on a chassis dynamometer system utilizing different autos, different fuels, and different driving cycles. Results were compared with those obtained using a standard constant volume sampling (CVS) system.

  14. A new technique for pumping hydrogen gas

    USGS Publications Warehouse

    Friedman, I.; Hardcastle, K.

    1970-01-01

    A system for pumping hydrogen gas without isotopic fractionation has been developed. The pump contains uranium metal, which when heated to about 80??C reacts with hydrogen to form UH3. The UH3 is heated to above 500??C to decompose the hydride and regenerate the hydrogen. ?? 1970.

  15. Distension of central great vein decreases sympathetic outflow in humans.

    PubMed

    Cui, Jian; Gao, Zhaohui; Blaha, Cheryl; Herr, Michael D; Mast, Jessica; Sinoway, Lawrence I

    2013-08-01

    Classic canine studies suggest that central great vein distension evokes an autonomic reflex tachycardia (Bainbridge reflex). It is unclear whether central venous distension in humans is a necessary and sufficient stimulus to evoke a reflex increase in heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA). Prior work from our laboratory suggests that limb venous distension evokes a reflex increase in BP and MSNA in humans. We hypothesized that in humans, compared with the limb venous distension, inferior vena cava (IVC) distension would evoke a less prominent increase in HR and MSNA. IVC distension (monitored with ultrasonography) was induced by two methods: 1) head-down tilt (HDT, N = 13); and 2) lower-body positive pressure (LBPP, N = 10). Two minutes of HDT induced IVC distension (Δ2.6 ± 0.2 mm, P < 0.001, ~27% in cross-sectional area), slightly increased mean BP (Δ2.3 ± 0.7 mmHg, P = 0.005), decreased MSNA (Δ5.2 ± 0.8 bursts/min, P < 0.001, N = 10), and did not alter HR (P = 0.37). LBPP induced similar IVC distension, increased BP (Δ2.0 ± 0.7 mmHg, P < 0.01), and did not alter HR (P = 0.34). Thus central venous distension leads to a rapid increase in BP and a subsequent fall in MSNA. Central venous distension does not evoke either bradycardia or tachycardia in humans. The absence of a baroreflex-mediated bradycardia suggests that the Bainbridge reflex is engaged. Clearly, this reflex differs from the powerful sympathoexcitation peripheral venous distension reflex described in humans.

  16. Hyperpolarized Gas MRI: Technique and Applications

    PubMed Central

    McAdams, Holman P.; Kaushik, S. Sivaram; Driehuys, Bastiaan

    2015-01-01

    Synopsis Functional imaging today offers a rich world of information that is more sensitive to changes in lung structure and function than traditionally obtained pulmonary function tests. Hyperpolarized helium (3He) and xenon (129Xe) MR imaging of the lungs provided new sensitive contrast mechanisms to probe changes in pulmonary ventilation, microstructure and gas exchange. With the recent scarcity in the supply of 3He the field of hyperpolarized gas imaging shifted to the use of cheaper and naturally available 129Xe. Xenon is well tolerated and recent technical advances have ensured that the 129Xe image quality is on par with that of 3He. The added advantage of 129Xe is its solubility in pulmonary tissue, which allows exploring specific lung function characteristics involved in gas exchange and alveolar oxygenation. With a plethora of contrast mechanisms, hyperpolarized gases and 129Xe in particular, stands to be an excellent probe of pulmonary structure and function, and provide sensitive and non-invasive biomarkers for a wide variety of pulmonary diseases. PMID:25952516

  17. Technique for measuring gas conversion factors

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R. (Inventor)

    1985-01-01

    A method for determining hydrocarbon conversion factors for a flowmeter. A mixture of air, O2 and C sub x H sub y is burned and the partial paressure of O2 in the resulting gas is forced to equal the partial pressure of O2 in air. The flowrate of O2 flowing into the mixture is measured by flowmeter and the flowrate of C sub x H sub y flowing into the mixture is measured by the flowmeter conversion factor is to be determined. These measured values are used to calculate the conversion factor.

  18. GAS CURTAIN EXPERIMENTAL TECHNIQUE AND ANALYSIS METHODOLOGIES

    SciTech Connect

    J. R. KAMM; ET AL

    2001-01-01

    The qualitative and quantitative relationship of numerical simulation to the physical phenomena being modeled is of paramount importance in computational physics. If the phenomena are dominated by irregular (i. e., nonsmooth or disordered) behavior, then pointwise comparisons cannot be made and statistical measures are required. The problem we consider is the gas curtain Richtmyer-Meshkov (RM) instability experiments of Rightley et al. (13), which exhibit complicated, disordered motion. We examine four spectral analysis methods for quantifying the experimental data and computed results: Fourier analysis, structure functions, fractal analysis, and continuous wavelet transforms. We investigate the applicability of these methods for quantifying the details of fluid mixing.

  19. GAS CURTAIN EXPERIMENTAL TECHNIQUE AND ANALYSIS METHODOLOGIES.

    SciTech Connect

    Kamm, J. R.; Rider, William; Rightley, P. M.; Prestridge, K. P.; Benjamin, R. F.; Vorobieff, P. V.

    2001-01-01

    The qualitative and quantitative relationship of numerical simulation to the physical phenomena being modeled is of paramount importance in computational physics. If the phenomena are dominated by irregular (i.e., nonsmooth or disordered) behavior, then pointwise comparisons cannot be made and statistical measures are required. The problem we consider is the gas curtain Richtmyer-Meshkov (RM) instability experiments of Rightley et al. [13], which exhibit complicated, disordered motion. We examine four spectral analysis methods for quantifying the experimental data and computed results: Fourier analysis, structure functions, fractal analysis, and continuous wavelet transforms. We investigate the applicability of these methods for quantifying the details of fluid mixing.

  20. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    2000-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  1. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    1999-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  2. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  3. Distension-stimulated propagated contractions in human colon.

    PubMed

    Bassotti, G; Gaburri, M; Imbimbo, B P; Morelli, A; Whitehead, W E

    1994-09-01

    To investigate the mechanisms for elicitation of peristaltic activity in the human colon, we studied the effect of balloon distension of the transverse, descending, and sigmoid colon and the rectum. Fifteen healthy subjects were studied by means of a colonoscopically positioned probe carrying a 5-cm latex balloon. After positioning of the probe, stepwise distension was performed for each colonic segment (transverse, descending, sigmoid, rectum), and the onset of large (> 50 mm Hg) and small (< 50 mm Hg) propagated waves was observed. Analysis of the tracings showed: (1) In 8/15 subjects (53.3%), balloon distension elicited propagated contractions, but these contractions were qualitatively different from the spontaneously occurring high-amplitude propagated contractions previously found to occur in association with defecation. Therefore, intraluminal distension is probably not the cause of defecation-associated high-amplitude propagated contractions. (2) Pain reports were poorly correlated with propagated contractions elicited by balloon distension, suggesting that these contractions are not the cause of the pain produced by balloon distension. (3) The transverse colon shows lower pressures, fewer pain reports, and fewer large propagated contractions in response to balloon distension as compared to the descending and the sigmoid colon.

  4. Automated measurement of respiratory gas exchange by an inert gas dilution technique

    NASA Technical Reports Server (NTRS)

    Sawin, C. F.; Rummel, J. A.; Michel, E. L.

    1974-01-01

    A respiratory gas analyzer (RGA) has been developed wherein a mass spectrometer is the sole transducer required for measurement of respiratory gas exchange. The mass spectrometer maintains all signals in absolute phase relationships, precluding the need to synchronize flow and gas composition as required in other systems. The RGA system was evaluated by comparison with the Douglas bag technique. The RGA system established the feasibility of the inert gas dilution method for measuring breath-by-breath respiratory gas exchange. This breath-by-breath analytical capability permits detailed study of transient respiratory responses to exercise.

  5. Management Strategies for Abdominal Bloating and Distension.

    PubMed

    Foley, Anna; Burgell, Rebecca; Barrett, Jacqueline S; Gibson, Peter R

    2014-09-01

    Bloating and distension are among the most common gastrointestinal complaints reported by patients with functional gut disorders and by the general population. These 2 complaints are also among the most prevalent of the severe symptoms reported by patients with irritable bowel syndrome. Nonetheless, only a limited number of published studies have specifically addressed bloating; it is infrequently studied as a primary endpoint, and what little systematic information exists has often been garnered from the assessment of secondary endpoints or the dissection of composite endpoints. This lack of data, and our consequent limited understanding of the pathophysiology of bloating, had hampered the quest for effective and targeted therapies until recently. Advances in the knowledge of underlying mechanisms, particularly with regard to the roles of diet, poorly absorbed fermentable carbohydrates, dysbiosis of the gut bacteria, alterations in visceral hypersensitivity, and abnormal viscerosomatic reflexes, have enabled the development of improved treatment options. The most significant recent advance has been a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols, which significantly reduces patients' symptoms and improves quality of life. Given the prevalence of bloating and its perceived severity, it is clear that further studies regarding the pathogenesis and treatment of this problem are needed.

  6. Management Strategies for Abdominal Bloating and Distension

    PubMed Central

    Foley, Anna; Burgell, Rebecca; Barrett, Jacqueline S.

    2014-01-01

    Bloating and distension are among the most common gastrointestinal complaints reported by patients with functional gut disorders and by the general population. These 2 complaints are also among the most prevalent of the severe symptoms reported by patients with irritable bowel syndrome. Nonetheless, only a limited number of published studies have specifically addressed bloating; it is infrequently studied as a primary endpoint, and what little systematic information exists has often been garnered from the assessment of secondary endpoints or the dissection of composite endpoints. This lack of data, and our consequent limited understanding of the pathophysiology of bloating, had hampered the quest for effective and targeted therapies until recently. Advances in the knowledge of underlying mechanisms, particularly with regard to the roles of diet, poorly absorbed fermentable carbohydrates, dysbiosis of the gut bacteria, alterations in visceral hypersensitivity, and abnormal viscerosomatic reflexes, have enabled the development of improved treatment options. The most significant recent advance has been a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols, which significantly reduces patients’ symptoms and improves quality of life. Given the prevalence of bloating and its perceived severity, it is clear that further studies regarding the pathogenesis and treatment of this problem are needed. PMID:27551250

  7. Quantification of pulmonary arterial wall distensibility using parameters extracted from volumetric micro-CT images

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Dawson, Christopher A.

    1999-09-01

    Stiffening, or loss of distensibility, of arterial vessel walls is among the manifestations of a number of vascular diseases including pulmonary arterial hypertension. We are attempting to quantify the mechanical properties of vessel walls of the pulmonary arterial tree using parameters derived from high-resolution volumetric x-ray CT images of rat lungs. The pulmonary arterial trees of the excised lungs are filled with a contrast agent. The lungs are imaged with arterial pressures spanning the physiological range. Vessel segment diameters are measured from the inlet to the periphery, and distensibilities calculated from diameters as a function of pressure. The method shows promise as an adjunct to other morphometric techniques such as histology and corrosion casting. It possesses the advantages of being nondestructive, characterizing the vascular structures while the lungs are imaged rapidly and in a near-physiological state, and providing the ability to associate mechanical properties with vessel location in the intact tree hierarchy.

  8. Inverse-dispersion technique for assessing lagoon gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions, such as those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish equilib...

  9. Practical Techniques for Modeling Gas Turbine Engine Performance

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.

    2016-01-01

    The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.

  10. Extended electrode technique. [gas metal arc welding of metal plates

    NASA Technical Reports Server (NTRS)

    Schaper, V. D.; Pollack, A.

    1972-01-01

    The extended electrode technique is a unique welding process which utilizes manual gas-metal-arc (GMAW) semi-automatic equipment and close, square butt joints to effectively produce a weld. The technique takes advantage of the resistance heating of the electode extension to effect the root pass. Weldments as large as 72-X30-X2-inch have been fabricated with this technique under normal shipyard welding conditions. Mechanical properties and explosion bulge tests indicate that satisfactory results are obtained with this process. Potential savings of approximately 50 percent can be achieved in flat welding and repair of heavy structural steel members.

  11. [Endoscopic sclerosis with pneumatic distension for pyriform sinus fistula treatment].

    PubMed

    Sanchís Blanco, G; Gutiérrez San Román, C; Bordallo Vázquez, M; Cortés Sáez, J; Barrios Fontoba, J E; Lluna González, J; Esteban Ricós, M J; Vila Carbó, J J

    2014-01-01

    Classic treatment for pyriform sinus fistula (PSF) has been surgical excision; however, less invasive therapeutic alternatives whose aim is the obliteration of the sinus have been described subsequently. The authors present a technical modification of endoscopic sclerosis with diathermy (ESD): continuous infusion of air flow through the flexible endoscope was used to distend the pyriform sinus and facilitate recognition of the fistula opening. The sinus obliteration was performed with a wire guide and diathermy. In the last 15 years, 9 patients were diagnosed of suffering from PSF in our institution. Initial treatment was antibiotics therapy associated in some cases to cervical abscess drainage. Fistulectomy was performed in 4 cases and ESD in 4. The ninth patient received both treatments, performing electrocauterization after a surgical recurrence. Three of the patients who underwent surgery relapsed; none treated by ESD did, or had any complications. In our experience, endoscopic sclerosis with pneumatic distension is a simple technique, reproducible, not invasive and very effective; hence we consider it might become a first line therapy for PSF.

  12. Assessment of arterial distension based on continuous wave Doppler ultrasound with an improved Hilbert-Huang processing.

    PubMed

    Zhang, Yufeng; Su, Nafeng; Li, Zhiyao; Gou, Zhengpin; Chen, Qiuying; Zhang, Yan

    2010-01-01

    A novel approach based on continuous wave (CW) Doppler ultrasound and the Hilbert-Huang transform with end-effect restraint by mirror extending is proposed to assess arterial distension. In the approach, bidirectional Doppler signals were first separated using the phasing-filter technique from the mixed quadrature Doppler signals, which were produced by bidirectional blood and vessel wall movements. Each separated unidirectional signal was decomposed into intrinsic mode functions (IMFs) using the empirical mode decomposition with end effect restraint by mirror extending algorithm, and then the relevant IMFs that contribute to the vessel wall components were identified. Finally, the displacement waveforms of the vessel wall were calculated by integrating its moving velocity waveforms, which were extracted from the bidirectional Hilbert spectrum estimated from the identified wall IMFs. This approach was applied to simulated and clinical Doppler signals from normal common carotid arteries (CCAs). In the simulation study, the estimated wall moving velocity and displacement waveforms were compared with the theoretical ones, respectively. The mean and standard deviation of the root-mean-square errors between the estimated and theoretical wall distension of the 30 realizations was 4.2 +/- 0.4 microm. In the clinical study, peak-to-peak distension was extracted in a subject and then averaged over 15 cardiac cycles, resulting in 603 +/- 22 microm. The mean and standard deviation of the CCA distension averaged over the experimental measurements of 12 healthy subjects gave the result of 620 +/- 154 microm. The clinical results were in agreement with those measured by using the multigate Doppler ultrasound and echo tracking systems. The results show that based on the CW Doppler ultrasound, the proposed approach is practical for extracting arterial wall peak-to-peak distension correctly and could be an alternative method for the vessel wall distension estimation.

  13. Esophagogastric junction distensibility assessed using the functional lumen imaging probe

    PubMed Central

    Chen, Joan W; Rubenstein, Joel H

    2017-01-01

    AIM To assess reference values in the literature for esophageal distensibility and cross-sectional area in healthy and diseased subjects measured by the functional lumen imaging probe (FLIP). METHODS Systematic search and review of articles in Medline and Embase pertaining to the use of FLIP in the esophagus was conducted in accordance with the PRISMA guidelines. Cross-sectional area and distensibility at the esophagogastric junction (EGJ) were abstracted for normal subjects, achalasia, and gastroesophageal reflux disease (GERD) patients, stratified by balloon length and volume of inflation. RESULTS Six achalasia studies (n = 154), 3 GERD (n = 52), and 5 studies including healthy controls (n = 98) were included in the systematic review. Normative data varied widely amongst studies of healthy volunteers. In contrast, studies in achalasia patients uniformly demonstrated low point estimates in distensibility ≤ 1.6 mm2/mmHg prior to treatment that increased to ≥ 3.4 mm2/mmHg following treatment at 40mL bag volume. In GERD patients, distensibility fell to the range of untreated achalasia (≤ 2.85 mm2/mmHg) following fundoplication. CONCLUSION FLIP may be a useful tool in assessment of treatment efficacy in achalasia. The drastic drop in EGJ distensibility after fundoplication suggests that FLIP measurements need to be interpreted in the context of esophageal body motility and highlights the importance of pre-operative screening for dysmotility. Future studies using standardized FLIP protocol and balloon size are needed. PMID:28275309

  14. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  15. Non-invasive quantification of peripheral arterial volume distensibility and its non-linear relationship with arterial pressure.

    PubMed

    Zheng, Dingchang; Murray, Alan

    2009-05-29

    arm positioning procedure, with the greatest effect at low pressures. This work is an important step in developing a simple non-invasive technique for assessing peripheral arterial volume distensibility.

  16. The effect of gas assisted length on polymer melt extrusion based on the gas-assisted extrusion technique

    NASA Astrophysics Data System (ADS)

    Wan, B.; Ren, Z.; Liu, G. D.; Huang, X. Y.

    2017-02-01

    In this study, the gas-assisted technique was used into the process of polymer melt extrusion to overcome the extrudate swell problem. The gas length is an important factors in the gas-assisted extrusion technique. To ascertain the mechanism of the gas-assisted extrusion technique, and to determine the optimal gas length, the effect of gas length on the extrudate swell ratio of melt was numerically investigated. In finite element numerical simulation, PTT constitutive model and full slip boundary condition were used to achieve the gas-assisted mode. Compared with the traditional no gas-assisted extrusion, numerical results showed that the extrudate swell problem was well eliminated by the gas-assisted method. Moreover, the extrudate swell of melt decreased with the increasing of the gas length because the pressure and shear stress of melt were greatly decreased. Moreover, the flow velocity of melt is uniform at the die outlet.

  17. Arterial distensibility in children and teenagers: normal evolution and the effect of childhood vasculitis

    PubMed Central

    Cheung, Y; Brogan, P; Pilla, C; Dillon, M; Redington, A

    2002-01-01

    Background: Polyarteritis nodosa is a necrotising vasculitis of the medium sized and small muscular arteries. The inflammatory and subsequent reparative processes may alter the arterial mechanical properties. The effect of vasculitic damage on arterial distensibility has never been explored however. Aim: To determine the normal values and the effect of childhood vasculitis on arterial distensibility in children and teenagers. Methods: Distensibility of the brachioradial arterial segment was studied using pulse wave velocity (PWV ∝1/√distensibility), in 13 children with polyarteritis nodosa at a median age of 11.8 (range 4.9–16) years. As a control group, 155 healthy schoolchildren (6–18 years, 81 boys) were studied. PWV was assessed using a photoplethysmographic technique; blood pressure was measured by an automatic sphygmomanometer (Dinamap). Data from patients were expressed as z scores adjusted for age and compared to a population mean of 0 by a single sample t test. Determinants of PWV in normal children were assessed by univariate and multivariate linear regression analyses. Results: Age, height, weight, and systolic blood pressure correlated individually with the brachioradial PWV. Multivariate analysis identified age as the only independent determinant. Ten of the patients were in clinical remission, while three had evidence of disease activity at the time of study. The PWV in the patient group as a whole was significantly greater than those in healthy children (mean z score +0.99). Raised C reactive protein concentration (>2 mg/dl) in the three patients with active disease was associated with a higher PWV when compared to those in remission (z score +2.78 v +0.45). The diastolic blood pressure of the patients was higher than those of the controls (z score +1.04) while the systolic pressure was similar (z score -0.36). Conclusions: PWV in the brachioradial arterial segment increases gradually during childhood independent of body weight, height, mass

  18. Development of the gas gun driven expanding cylinder technique

    NASA Astrophysics Data System (ADS)

    Jones, David Robert; Eakins, Daniel E.; Hazell, Paul; Chapman, David James; Appleby-Thomas, Gareth James

    2012-03-01

    Using a gas gun to create rapid expansion in metal cylinders to investigate fracture and fragmentaion has been commonplace for the last several decades. Results from such experiments alongside data from explosive and electromagnetic expansion techniques have produced several models for fragment size and mass distributions. We present a new geometry for expansion that can be applied to cylinders at elevated & reduced temperatures whilst keeping the drive mechanism constant, enabling us in the future to experiment over a range of sample temperatures at a fixed strain rate and loading path. This new geometry has been investigated through a series of gas gun experiments employing X-ray radiography and AUTODYN simulations to reveal the deformation and failure behaviour within the cylinder.

  19. Unit vent airflow measurements using a tracer gas technique

    SciTech Connect

    Adams, D.G.; Lagus, P.L.; Fleming, K.M.

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  20. Impact of airway gas exchange on the multiple inert gas elimination technique: theory.

    PubMed

    Anderson, Joseph C; Hlastala, Michael P

    2010-03-01

    The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.

  1. New techniques will take the sting out of flue gas

    SciTech Connect

    Not Available

    1980-10-08

    A discussion covers some new techniques for reducing NO/sub x/ and/or sulfur dioxide emissions from stack gases, including the installation by Champlin Petroleum Co. of Exxon Research and Engineering Co.'s catalyst-free DeNox system, which relies on ammonia addition, at its Wilmington, California, refinery; UOP Inc.'s demonstration of the Shell Flue Gas Desulfurization (and NO/sub x/ removal) process at a Tampa, Florida, coal-fired unit owned by Tampa Electric Co.; and Sumitomo Chemical Co. Ltd.'s and Mitsui and Co. Ltd.'s plans to use Bergbau-Forschung G.m.b.H. technology, which removes both NO/sub x/ and sulfur dioxide.

  2. [The respiratory muscles in emphysema. The effects of thoracic distension].

    PubMed

    Cassart, M; Estenne, M

    2000-04-01

    Besides increasing the work of ventilation, emphysema increases lung volume which in itself has a deleterious effect on the inspiratory muscles. We review here the effects of an acute change in lung volume on the configuration of the rib cage and muscle function. We also discuss the effects of the chronic distension associated with emphysema. The effects produced by changes in muscle length and configuration on the mechanical force and action of inspiratory muscles is detailed with particular focus on the diaphragm and its structural adaptations to experimental emphysema. We also analyze the activation pattern of inspiratory and expiratory muscles during the breathing process in patients with emphysema. Finally, we discuss the effects of single-lung transplantation and reduction surgery on chest distension and improved inspiratory muscle function.

  3. Mechanism of UES relaxation initiated by gastric air distension.

    PubMed

    Lang, Ivan M; Medda, Bidyut K; Shaker, Reza

    2014-08-15

    The aim of this study was to determine the mechanism of initiation of transient upper esophageal sphincter relaxation (TUESR) caused by gastric air distension. Cats (n = 31) were decerebrated, EMG electrodes were placed on the cricopharyngeus, a gastric fistula was formed, and a strain gauge was sewn on the lower esophageal sphincter (n = 8). Injection of air (114 ± 13 ml) in the stomach caused TUESR (n = 18) and transient lower esophageal sphincter relaxation (TLESR, n = 6), and this effect was not significantly (P > 0.05) affected by thoracotomy. Free air or bagged air (n = 6) activated TLESR, but only free air activated TUESR. Closure of the gastroesophageal junction blocked TUESR (9/9), but not TLESR (4/4), caused by air inflation of the stomach. Venting air from distal esophagus during air inflation of the stomach prevented TUESR (n = 12) but did not prevent air escape from the stomach to the esophagus (n = 4). Rapid injection of air on the esophageal mucosa always caused TUESR (9/9) but did not always (7/9) cause an increase in esophageal pressure. The time delay between the TUESR and the rapid air pulse was significantly more variable (P < 0.05) than the time delay between the rapid air pulse and the rise in esophageal pressure. We concluded that the TUESR caused by gastric air distension is dependent on air escape from the stomach, which stimulates receptors in the esophagus, but is not dependent on distension of the stomach or esophagus, or the TLESR. Therefore, the TUESR caused by gastric air distension is initiated by stimulation of receptors in the esophageal mucosa.

  4. Sudden onset abdominal pain and distension: an imaging sparkler.

    PubMed

    Klair, Jagpal Singh; Girotra, M; Medarametla, S; Shah, H R

    2014-11-01

    We present a case of a middle-aged patient presenting with acute onset abdominal pain and distension who had signs of bowel obstruction on physical exam. He was afebrile, hemodynamically stable with no peritoneal signs. Abdominal radiograph and CT scan were pathognomic for sigmoid volvulus. Through this case report we want to discuss the presentation, diagnosis, management options for sigmoid volvulus and importance of features suggestive of ischemic bowel that necessitates different management options.

  5. Transitional Flow in an Arteriovenous Fistula: Effect of Wall Distensibility

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto

    2012-11-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with end-stage renal disease. Transitional flow and the subsequent pressure and shear stress fluctuations are thought to be causative in the fistula failure. Since 50% of fistulae require surgical intervention before year one, understanding the altered hemodynamic stresses is an important step toward improving clinical outcomes. We perform numerical simulations of a patient-specific model of a functioning fistula reconstructed from 3D ultrasound scans. Rigid wall simulations and fluid-structure interaction simulations using an in-house finite element solver for the wall deformations were performed and compared. In both the rigid and distensible wall cases, transitional flow is computed in fistula as evidenced by aperiodic high frequency velocity and pressure fluctuations. The spectrum of the fluctuations is much more narrow-banded in the distensible case, however, suggesting a partial stabilizing effect by the vessel elasticity. As a result, the distensible wall simulations predict shear stresses that are systematically 10-30% lower than the rigid cases. We propose a possible mechanism for stabilization involving the phase lag in the fluid work needed to deform the vessel wall. Support from an NIDDK R21 - DK08-1823.

  6. New fracturing techniques reduce tight gas sand completion problems

    SciTech Connect

    Bruce, P.L.; Hunter, J.L. ); Kuhlman, R.D. ); Weinheimer, D.D. )

    1992-10-12

    This paper reports on new fracturing stimulation technology which contributed to solving problems in completing tight gas sands in the Carthage Cotton Valley field in Texas. These technologies included improved fluid systems, computer-controlled proppant placement, multiple isotope radioactive logs, mechanical properties logs, and innovative casing design. Drilling activity in the Carthage field commenced on a large scale in 1978 and 1979. At that time, the Natural Gas Policy Act of 1978 (NGPA) first allowed higher gas prices. In 1980, low-permeability sandstones officially were classified as tight gas sands by the Federal Energy Regulatory Commission (FERC). This classification qualified the sands for NGPA incentive gas prices. After the Texas Railroad Commission (RRC) changed the field rules to 320 acre spacing, another round of development drilling began. In 1981 and 1982, Pennzoil drilled and completed 22 infill development wells before the gas market crashed in 1982.

  7. Comparison of gas chromatographic hyphenated techniques for mercury speciation analysis.

    PubMed

    Nevado, J J Berzas; Martín-Doimeadios, R C Rodríguez; Krupp, E M; Bernardo, F J Guzmán; Fariñas, N Rodríguez; Moreno, M Jiménez; Wallace, D; Ropero, M J Patiño

    2011-07-15

    In this study, we evaluate advantages and disadvantages of three hyphenated techniques for mercury speciation analysis in different sample matrices using gas chromatography (GC) with mass spectrometry (GC-MS), inductively coupled plasma mass spectrometry (GC-ICP-MS) and pyrolysis atomic fluorescence (GC-pyro-AFS) detection. Aqueous ethylation with NaBEt(4) was required in all cases. All systems were validated with respect to precision, with repeatability and reproducibility <5% RSD, confirmed by the Snedecor F-test. All methods proved to be robust according to a Plackett-Burnham design for 7 factors and 15 experiments, and calculations were carried out using the procedures described by Youden and Steiner. In order to evaluate accuracy, certified reference materials (DORM-2 and DOLT-3) were analyzed after closed-vessel microwave extraction with tetramethylammonium hydroxide (TMAH). No statistically significant differences were found to the certified values (p=0.05). The suitability for water samples analysis with different organic matter and chloride contents was evaluated by recovery experiments in synthetic spiked waters. Absolute detection and quantification limits were in the range of 2-6 pg for GC-pyro-AFS, 1-4 pg for GC-MS, with 0.05-0.21 pg for GC-ICP-MS showing the best limits of detection for the three systems employed. However, all systems are sufficiently sensitive for mercury speciation in environmental samples, with GC-MS and GC-ICP-MS offering isotope analysis capabilities for the use of species-specific isotope dilution analysis, and GC-pyro-AFS being the most cost effective alternative.

  8. Low Cost Gas Turbine Off-Design Prediction Technique

    NASA Astrophysics Data System (ADS)

    Martinjako, Jeremy

    This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis.

  9. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  10. A Safe and Efficient Technique for the Production of HCl/DCl Gas

    ERIC Educational Resources Information Center

    Mayer, Steven G.; Bard, Raymond R.; Cantrell, Kevin

    2008-01-01

    We present a safe and efficient technique to generate HCl/DCl gas for use in the classic physical chemistry experiment that introduces students to ro-vibrational spectroscopy. The reaction involves thionyl chloride and a mixture of water and deuterium oxide to produce HCl/DCl gas with SO[subscript 2] gas as a byproduct. The entire reaction is…

  11. Risk management technique for liquefied natural gas facilities

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.

    1975-01-01

    Checklists have been compiled for planning, design, construction, startup and debugging, and operation of liquefied natural gas facilities. Lists include references to pertinent safety regulations. Methods described are applicable to handling of other hazardous materials.

  12. A Technique for Murine Irradiation in a Controlled Gas Environment

    PubMed Central

    Walb, M. C.; Moore, J. E.; Attia, A.; Wheeler, K. T.; Miller, M. S.; Munley, M. T.

    2013-01-01

    NASA’s extra-vehicular activities (EVAs) involve exposure to high energy photons while breathing 100% oxygen. Using previously verified mouse models, our laboratory is studying whether low dose irradiation under these hyperoxic conditions could lead to an increase in carcinogenic potential. To simulate the environment astronauts encounter during an EVA, enclosed chambers were constructed that allowed for mouse movement, controlled gas conditions, and uniform radiation dose delivery. Custom-built gas chambers with input/output gas valves and dividers that allowed for uniform gas flow were used to keep 6 unanesthetized mice separated while they were irradiated. The chambers were supplied with 100% oxygen or air using ball valves linked together with T-splitters. A calibrated ion chamber was used to verify the radiation dose distribution across an entire chamber. Mice were placed in the gas environments for 0.5 h, irradiated with a 10 or 18 MV photon beam from a medical linear accelerator, and left in their gas environment for 2 h post-irradiation. We irradiated 200 mice (5 different doses between 0–1000 mGy) under normoxic or 100% oxygen conditions. For the next step of this research, these mice will be euthanized 9 months post-irradiation, and lung tumors will be counted and sized to determine if hyperoxia increases the carcinogenic effect for this model. PMID:22846321

  13. Magnetic sensor for arterial distension and blood pressure monitoring.

    PubMed

    Ruhhammer, Johannes; Herbstritt, Tamara; Ruh, Dominic; Foerster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Goldschmidtboeing, Frank; Seifert, Andreas; Woias, Peter

    2014-12-01

    A novel sensor for measuring arterial distension, pulse and pressure waveform is developed and evaluated. The system consists of a magnetic sensor which is applied and fixed to arterial vessels without any blood vessel constriction, hence avoiding stenosis. The measurement principle could be validated by in vitro experiments on silicone tubes, and by in vivo experiments in an animal model, thereby indicating the non-linear viscoelastic characteristics of real blood vessels. The sensor is capable to provide absolute measurements of the dynamically varying arterial diameter. By calibrating the sensor, a long-term monitoring system for continuously measuring blood pressure and other cardiovascular parameters could be developed based on the method described. This will improve diagnostics for high risk patients and enable a better, specific treatment.

  14. Computational device design: measuring esophageal distensibility using EndoFLIP

    NASA Astrophysics Data System (ADS)

    Acharya, Shashank; Kou, Wenjun; Kahrilas, Peter J.; Pandolfino, John E.; Patankar, Neelesh A.

    2016-11-01

    Characterizing the strength of sphincters in the human body is valuable from a diagnostic and surgical standpoint. We develop a numerical model for the EndoFLIP device (Endolumenal Functional Lumen Imaging Probe) that is crucial to the biomechanical study of the Lower Esophageal Sphincter (LES). The simulations demonstrate how the device operates in vivo. From this model, we suggest additional use cases for the device that can give insight into the state of the esophageal wall. Currently, the device measures a single steady quantity (distensibility) that is calculated from pressure and area. Our analysis shows that by capturing and analyzing spatio-temporal pressure variations during peristalsis, the effectiveness of the contractions and health of the surrounding tissue can be quantified. Furthermore, there is an opportunity to validate tissue models by comparing dilation results with clinical data from the device. This work is supported by the Cabell Fellowship at Northwestern Unviersity.

  15. Retention of lung distension information in pump cell spike trains.

    PubMed

    Marchenko, Vitaliy; Rogers, Robert F

    2007-07-01

    Respiratory control requires feedback signals from the viscera, including mechanoreceptors and chemoreceptors. We previously showed that typical pulmonary stretch receptor (PSR) spike trains provide the central nervous system with approximately 31% of the theoretical maximum information regarding the amplitude of lung distension. However, it is unknown whether the spatiotemporal convergence of many PSR inputs onto second-order neurons (e.g., pump cells) results in more, or less, information about the stimulus carried by second-order cell spike trains. We recorded pump cell activity in adult, anesthetized, paralyzed, artificially ventilated rabbits during continuous manipulation of ventilator rate and volume to test the hypothesis that less information is carried by spike trains of individual pump cells than PSRs. Using previously developed analytic methods, we quantified the information carried by the pump cell spike trains and compared it with the same values derived from PSR data. Our results provide evidence that rejects our hypothesis: pump cells as a group did not carry significantly less information about the lung distension stimulus than PSRs, although that trend was implied by the data. By comparing the response variances with the theoretical minimum, we discovered that the trend toward information loss depends on response strength, with higher mean responses associated with larger response variances in pump cells than in PSRs. Thus spatiotemporal integration may result in information loss within certain analytic/stimulus parameters, but this is counterbalanced by the consistency of pump cell responses during brief integration times and/or low stimulus amplitudes, resulting in retention of total information.

  16. Comparing and assessing different measurement techniques for mercury in coal systhesis gas

    SciTech Connect

    Maxwell, D.P.; Richardson, C.F.

    1995-11-01

    Three mercury measurement techniques were performed on synthesis gas streams before and after an amine-based sulfur removal system. The syngas was sampled using (1) gas impingers containing a nitric acid-hydrogen peroxide solution, (2) coconut-based charcoal sorbent, and (3) an on-line atomic absorption spectrophotometer equipped with a gold amalgamation trap and cold vapor cell. Various impinger solutions were applied upstream of the gold amalgamation trap to remove hydrogen sulfide and isolate oxidized and elemental species of mercury. The results from these three techniques are compared to provide an assessment of these measurement techniques in reducing gas atmospheres.

  17. Comparing two micrometeorological techniques for estimating trace gas emissions from distributed sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring trace gas emission from distributed sources such as treatment lagoons, treatment wetlands, land spread of manure, and feedlots requires micrometeorological methods. In this study, we tested the accuracy of two relatively new micrometeorological techniques, vertical radial plume mapping (VR...

  18. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  19. Optimal sensor locations for the backward Lagrangian stochastic technique in measuring lagoon gas emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of the backward Lagrangian stochastic inverse-dispersion technique (bLS) for measuring gas emission rates from a typical lagoon environment. Path-integrated concentrations (PICs) and 3-dimensional (3D) wi...

  20. Offshore Adriatic marginal gas fields: An approach to the technique of reservoir development

    SciTech Connect

    Montanari, A.; Bolelli, V.; Piccoli, G.

    1986-01-01

    The application of accelerated gas blowdown and wire line techniques in reservoir development and exploitation is presented for an off-shore Adriatic marginal gas field. The approach discussed in this paper utilizes selective completion, very low reserves/production ratio, sequential production, Through Tubing Bridge Plug and Through Tubing Perforation techniques to avoid the use of costly workover rigs and to allow economically convenient exploitation of a structure which otherwise would have been abandoned.

  1. Crural diaphragm inhibition during esophageal distension correlates with contraction of the esophageal longitudinal muscle in cats.

    PubMed

    Liu, Jianmin; Puckett, James L; Takeda, Torahiko; Jung, Hwoon-Yong; Mittal, Ravinder K

    2005-05-01

    Esophageal distension causes simultaneous relaxation of the lower esophageal sphincter (LES) and crural diaphragm. The mechanism of crural diaphragm relaxation during esophageal distension is not well understood. We studied the motion of crural and costal diaphragm along with the motion of the distal esophagus during esophageal distension-induced relaxation of the LES and crural diaphragm. Wire electrodes were surgically implanted into the crural and costal diaphragm in five cats. In two additional cats, radiopaque markers were also sutured into the outer wall of the distal esophagus to monitor esophageal shortening. Under light anesthesia, animals were placed on an X-ray fluoroscope to monitor the motion of the diaphragm and the distal esophagus by tracking the radiopaque markers. Crural and costal diaphragm electromyograms (EMGs) were recorded along with the esophageal, LES, and gastric pressures. A 2-cm balloon placed 5 cm above the LES was used for esophageal distension. Effects of baclofen, a GABA(B) agonist, were also studied. Esophageal distension induced LES relaxation and selective inhibition of the crural diaphragm EMG. The crural diaphragm moved in a craniocaudal direction with expiration and inspiration, respectively. Esophageal distension-induced inhibition of the crural EMG was associated with sustained cranial motion of the crural diaphragm and esophagus. Baclofen blocked distension-induced LES relaxation and crural diaphragm EMG inhibition along with the cranial motion of the crural diaphragm and the distal esophagus. There is a close temporal correlation between esophageal distension-mediated LES relaxation and crural diaphragm inhibition with the sustained cranial motion of the crural diaphragm. Stretch caused by the longitudinal muscle contraction of the esophagus during distension of the esophagus may be important in causing LES relaxation and crural diaphragm inhibition.

  2. Management of left ventricular distension during peripheral extracorporeal membrane oxygenation for cardiogenic shock.

    PubMed

    Soleimani, B; Pae, W E

    2012-07-01

    The application of peripheral veno-arterial extracorporeal membrane oxygenation in the management of inotrope-refractory cardiogenic shock has proven controversial because of concerns about sub-optimal drainage of the left heart, resulting in left ventricular distension and pulmonary oedema. In this article, we will discuss the pathophysiological basis and clinical implications of left ventricular distension following institution of peripheral extracorporeal life support. We will also review the clinical strategies used to circumvent left ventricular distension and pulmonary oedema in these patients.

  3. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    PubMed

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  4. Evaluation of regional aortic distensibility using color kinesis.

    PubMed

    Kato, Yoshimasa; Kotoh, Keiju; Yamashita, Akio; Furuta, Hidetoshi; Shimazu, Chikasi; Misaki, Takurou

    2003-01-01

    Regional aortic stiffness cannot be evaluated by conventional methods. Regional aortic wall velocity during systole in the descending aorta was evaluated by using transesophageal echocardiography with color kinesis. The authors defined regional aortic distensibility (RAD) by considering pulse pressure, with RAD (microm/s/mm Hg) = (regional aortic wall velocity)/(pulse pressure). RAD was evaluated in 38 patients who had coronary artery disease (CAD) and 10 who did not. RAD decreased depending on aging (partial regression coefficient was -5.39 x 10(-1), p<0.001), and RAD was lower in the CAD group than that in the no-CAD group (p<0.05). In the CAD group, 19 patients had a single fixed plaque (4 calcified and 15 noncalcified plaques). RAD in the calcified plaque was lower than that in the noncalcified plaque (p<0.01), and RAD was lower in the noncalcified plaque than that in the no-plaque region (p<0.05). In noncalcified plaques, the relation between RAD and maximum intimal thickness had a significant correlation, r=0.7, p<0.001. The residual of RAD from the regression line was significantly larger in the calcified plaque than that in the noncalcified plaque (p<0.001). In conclusion, RAD can express increasing regional aortic wall stiffness brought about by arteriosclerosis quantitatively. Color kinesis provides information on characteristic difference between calcified and noncalcified plaque.

  5. Nongray gas analyses for reflecting walls utilizing a flux technique

    NASA Technical Reports Server (NTRS)

    Menart, J. A.; Lee, Haeok S.

    1993-01-01

    A flux formulation for a planar slab of molecular gas radiation bounded by diffuse reflecting walls is developed. While this formulation is limited to the planar geometry, it is useful for studying approximations necessary in modeling nongray radiative heat transfer. The governing equations are derived by considering the history of multiple reflections between the walls. Accurate solutions are obtained by explicitly accounting for a finite number of reflections and approximating the spectral effects of the remaining reflections. Four approximate methods are presented and compared using a single absorption band of H2O. All four methods reduce to an identical zeroth-order formulation, which accounts for all reflections approximately but does handle nonreflected radiation correctly. A single absorption band of CO2 is also considered using the best-behaved approximation for higher orders. A zeroth-order formulation is sufficient to predict the radiative transfer accurately for many cases considered. For highly reflecting walls, higher order solutions are necessary for better accuracy. Including all the important bands of H2O, the radiative source distributions are also obtained for two different temperature and concentration profiles.

  6. Validity of using backward Lagrangian Stochastic technique in measuring trace gas emission from treatment lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluates the accuracy of measuring trace gas emission from treatment lagoons using backward Lagrangian stochastic (bLs) technique. The bLs technique was originally developed for relatively homogeneous terrains without any obstacles causing significant windflow disturbance. The errors ass...

  7. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  8. Application of a Dense Gas Technique for Sterilizing Soft Biomaterials

    PubMed Central

    Karajanagi, Sandeep S.; Yoganathan, Roshan; Mammucari, Raffaella; Park, Hyoungshin; Cox, Julian; Zeitels, Steven M.; Langer, Robert; Foster, Neil R.

    2017-01-01

    Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility assurance levels (SAL), may compromise their physicochemical properties and biocompatibility. New methods that effectively sterilize soft biomaterials without compromising their properties are therefore required. In this report, a dense-carbon dioxide (CO2)-based technique was used to sterilize soft polyethylene glycol (PEG)-based hydrogels while retaining their structure and physicochemical properties. Conventional sterilization methods such as gamma irradiation and steam sterilization severely compromised the structure of the hydrogels. PEG hydrogels with high water content and low elastic shear modulus (a measure of stiffness) were deliberately inoculated with bacteria and spores and then subjected to dense CO2. The dense CO2-based methods effectively sterilized the hydrogels achieving a SAL of 10−7 without compromising the viscoelastic properties, pH, water-content, and structure of the gels. Furthermore, dense CO2-treated gels were biocompatible and non-toxic when implanted subcutaneously in ferrets. The application of novel dense CO2-based methods to sterilize soft biomaterials has implications in developing safe sterilization methods for soft biomedical implants such as dermal fillers and viscosupplements. PMID:21337339

  9. Using High-Field Magnetic Resonance Imaging to Estimate Distensibility of the Middle Cerebral Artery

    PubMed Central

    Warnert, Esther A.H.; Verbree, Jasper; Wise, Richard G.; van Osch, Matthias J.P.

    2016-01-01

    Background Although cerebral arterial stiffness may be an important marker for cerebrovascular health, there is not yet a measurement that accurately reflects the distensibility of major intracranial arteries. Herein, we aim to noninvasively measure distension of the human middle cerebral artery (MCA). Methods Ten healthy volunteers (age: 30.3 ± 10.8 years) underwent ultra-high-field (7-tesla) MRI scanning. Time-of-flight angiography and phase-contrast flow imaging were used to locate the M1 segment of the MCA and to determine the occurrence of systole and diastole. High-resolution cross-sectional cardiac triggered T2-weighted images of the M1 segment of the MCA were acquired in systole and diastole. Results The average distension of the MCA area from diastole to systole was 2.58% (range: 0.08%-6.48%). There was no significant correlation between MCA distension and the pulsatility index, calculated from the phase-contrast flow velocity profiles. Conclusion These results lead to the first noninvasive image-based estimation of distensibility of the MCA (approx. 5.8 × 10-4 mm Hg-1) and demonstrate that ultra-high-field MRI could be a promising tool for investigating distensibility of intracranial arteries in relation to cerebrovascular pathology. PMID:27449212

  10. Peripheral arterial volume distensibility changes with applied external pressure: significant difference between arteries with different compliance

    PubMed Central

    Chen, Mengyan; Chen, Aiqing; Si, Xiaoshui; Ji, Mingxia; Zheng, Dingchang

    2017-01-01

    This study aimed to quantify the different effect of external cuff pressure on arterial volume distensibility between peripheral arteries with different compliance. 30 healthy subjects were studied with the arm at two positions (0° and 45° from the horizontal level) to introduce different compliance of arteries. The electrocardiogram and finger and ear photoplethysmograms were recorded simultaneously under five external cuff pressures (0, 10, 20, 30 and 40 mmHg) on the whole arm to obtain arterial volume distensibility. With the applied external cuff pressures of 10, 20, 30 and 40 mmHg, the overall changes in arterial volume distensibility referred to those without external pressure were 0.010, 0.029, 0.054 and 0.108% per mmHg for the arm at the horizontal level, and 0.026, 0.071, 0.170 and 0.389% per mmHg for the arm at 45° from the horizontal level, confirming the non-linearity between arterial volume distensibility and external pressure. More interestingly, the significant differences in arterial volume distensibility changes were observed between the two arm positions, which were 0.016, 0.043, 0.116 and 0.281% per mmHg (all P < 0.01). Our findings demonstrated that arterial volume distensibility of peripheral arm arteries increased with external pressure, with a greater effect for more compliant arteries. PMID:28094277

  11. Leak testing of bubble-tight dampers using tracer gas techniques

    SciTech Connect

    Lagus, P.L.; DuBois, L.J.; Fleming, K.M.

    1995-02-01

    Recently tracer gas techniques have been applied to the problem of measuring the leakage across an installed bubble-tight damper. A significant advantage of using a tracer gas technique is that quantitative leakage data are obtained under actual operating differential pressure conditions. Another advantage is that leakage data can be obtained using relatively simple test setups that utilize inexpensive materials without the need to tear ducts apart, fabricate expensive blank-off plates, and install test connections. Also, a tracer gas technique can be used to provide an accurate field evaluation of the performance of installed bubble-tight dampers on a periodic basis. Actual leakage flowrates were obtained at Zion Generating Station on four installed bubble-tight dampers using a tracer gas technique. Measured leakage rates ranged from 0.01 CFM to 21 CFM. After adjustment and subsequent retesting, the 21 CFM damper leakage was reduced to a leakage of 3.8 CFM. In light of the current regulatory climate and the interest in Control Room Habitability issues, imprecise estimates of critical air boundary leakage rates--such as through bubble-tight dampers--are not acceptable. These imprecise estimates can skew radioactive dose assessments as well as chemical contaminant exposure calculations. Using a tracer gas technique, the actual leakage rate can be determined. This knowledge eliminates a significant source of uncertainty in both radioactive dose and/or chemical exposure assessments.

  12. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography.

    PubMed

    Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran

    2013-10-15

    The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

  13. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.

    PubMed

    Huang, Guanhua; Chen, Feng; Kuang, Yali; He, Huan; Qin, An

    2016-03-01

    The soaring increase of flue gas emission had caused global warming, environmental pollution as well as climate change. Widespread concern on reduction of flue gas released from industrial plants had considered the microalgae as excellent biological materials for recycling the carbon dioxide directly emitted from exhaust industries. Microalgae also have the potential to be the valuable feedback for renewable energy production due to their high growth rate and abilities to sequester inorganic carbon through photosynthetic process. In this review article, we will illustrate important relative mechanisms in the metabolic processes of biofixation by microalgae and their recent experimental researches and advances of sequestration of carbon dioxide by microalgae on actual industrial and stimulate flue gases, novel photobioreactor cultivation systems as well as the perspectives and limitations of microalgal cultivation in further development.

  14. A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Patel, Vipul; Reeves, Daniel R.; Holt, James M.

    2005-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.

  15. Evaluation of soil gas sampling and analysis techniques at a former petrochemical plant site.

    PubMed

    Hers, I; Li, L; Hannam, S

    2004-07-01

    Methods for soil gas sampling and analysis are evaluated as part of a research study on soil vapour intrusion into buildings, conducted at a former petro-chemical plant site ("Chatterton site"). The evaluation process was designed to provide information on reliability and selection of appropriate methods for soil gas sampling and analysis, and was based on a literature review of data and methods, and experiments completed as part of the research study. The broader context of this work is that soil gas characterization is increasingly being used for input into risk assessment of contaminated sites, particularly when evaluating the potential intrusion of soil vapour into buildings. There are only a limited number of research studies and protocols addressing soil gas sampling and analysis. There is significant variability in soil gas probe design and sample collection and analysis methods used by practitioners. The experimental studies conducted to evaluate soil gas methods address the permeation or leakage of gases from Tedlar bags, time-dependent sorption of volatile organic compound (VOC)-vapours onto probe surfaces and sampling devices, and analytical and quality control issues for light gas and VOC analyses. Through this work, common techniques for soil gas collection and analysis are described together with implications for data quality arising from the different methods used. Some of the potential pitfalls that can affect soil gas testing are identified, and recommendations and guidance for improved protocols are provided.

  16. Distension of the esophagogastric junction augments triggering of transient lower esophageal sphincter relaxation.

    PubMed

    van Wijk, Michiel P; Blackshaw, L Ashley; Dent, John; Benninga, Marc A; Davidson, Geoffrey P; Omari, Taher I

    2011-10-01

    Patients with gastroesophageal reflux disease show an increase in esophagogastric junction (EGJ) distensibility and in frequency of transient lower esophageal sphincter relaxations (TLESR) induced by gastric distension. The objective was to study the effect of localized EGJ distension on triggering of TLESR in healthy volunteers. An esophageal manometric catheter incorporating an 8-cm internal balloon adjacent to a sleeve sensor was developed to enable continuous recording of EGJ pressure during distension of the EGJ. Inflation of the balloon doubled the cross-section of the trans-sphincteric portion of the catheter from 5 mm OD (round) to 5 × 11 mm (oval). Ten healthy subjects were included. After catheter placement and a 30-min adaptation period, the EGJ was randomly distended or not, followed by a 45-min baseline recording. Subjects consumed a refluxogenic meal, and recordings were made for 3 h postprandially. A repeat study was performed on another day with EGJ distension status reversed. Additionally, in one subject MRI was performed to establish the exact position of the balloon in the inflated state. The number of TLESR increased during periods of EGJ distension with the effect being greater after a meal [baseline: 2.0(0.0-4.0) vs. 4.0(1.0-11.0), P=0.04; postprandial: 15.5(10.0-33.0) vs. 22.0(17.0-58.0), P=0.007 for undistended and distended, respectively]. EGJ distension augments meal-induced triggering of TLESR in healthy volunteers. Our data suggest the existence of a population of vagal afferents located at sites in/around the EGJ that may influence triggering of TLESR.

  17. Disruption of the jejunal migrating motor complex by gastric distension and feeding in the dog.

    PubMed Central

    Bull, J S; Grundy, D; Scratcherd, T

    1987-01-01

    1. The jejunal motor response to gastric distension has been quantified in the conscious dog and compared with that of feeding in order to determine the role of the physical bulk of a meal in the conversion from fasted to fed motor activity. 2. In six dogs gastric distension abolished the cyclical migrating motor complex (m.m.c.) and evoked a pattern of continuous irregular jejunal motility similar to that seen postprandially, but only after a latency of 21.5 +/- 2.7 min compared to that of 7.1 +/- 1.2 min for the response to feeding. Computer analysis of distension and fed jejunal motility revealed similar distributions of intervals between contractions and contraction amplitudes with comparable mean values for both. 3. In two dogs with antrum and corpus surgically divided distension of the corpus had a similar effect on jejunal motility although the latency to both distension and feeding were considerably less. 4. By varying the period of distension it has been possible to control accurately the duration of the jejunal motor response and so assess its effectiveness in disrupting the timing of the m.m.c. The return to m.m.c. cycling following deflation was independent of preceding complexes. The occurrence of the post-distension activity front was closely related to the act of deflation itself (R = 0.94) following a latency of 26.2 +/- 2.1 min (n = 39). 5. It is concluded that the bulk of a meal contributes significantly to the early part of postprandial motility and is capable of disrupting the timing of subsequent migrating motor complexes. PMID:3443971

  18. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.

  19. Detection of localized cable damage using a preionized gas technique. Final report

    SciTech Connect

    Vigil, R.A.; Jacobus, M.J.; Bustard, L.

    1994-10-01

    Because of the absence of a nearby, well-defined ground plane, performing electrical tests on unshielded cables installed in conduits is difficult. Experiments were run to develop a preionized gas troubleshooting technique to detect localized degradation of unshielded cables in conduits. This was achieved by introducing a readily ionizable gas like helium (or argon) in the conduit air space and then applying a moderately high voltage to the test cable, thus ionizing the gas surrounding the cable. Breakdown testing was performed on various types of damaged and undamaged cables. Other parameters necessary for practical implementation of the technique were also examined, including gas type, position of the cable with respect to the conduit wall, length of cable, conduit configuration, conduit size, and gas propagation in conduits. High potential testing of cables in the presence of preionized helium gas provides essentially the same information as high potential testing in water. A test criterion of 30 kVdc or 10 kVac would detect when 5-mils of insulation remain on one particular tested cable. No undamaged cable was noted to break down at these voltages. A high concentration of helium is required to perform the test, but this is easily attained with straightforward preparations. A cable with through-wall damage can easily be detected with a test criterion of approximately 1.5 kvac.

  20. Development of Local Gas Temperature Measurement Technique inside a Combustion Chamber Using Two-Wire Thermocouple

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigemi; Moriyoshi, Yasuo; Enomoto, Yoshiteru

    Thermocouples are widely used to measure the local gas temperature due to its accuracy and convenience. However, it is difficult to use thermocouples in a transient phenomenon such as reacting fields. In this study, the unsteady gas temperature inside a combustion chamber was measured by using an improved two-wire thermocouple technique. Based on previous two-wire methods, some modifications were examined. Firstly, numerical analysis of heat transfer between transient flow and thermocouple was performed to see what kind of modification was required. Secondly, a correction term was added to the basic equation, which was validated by experiments using a Rapid Compression and Expansion Machine. Finally, an improved two-wire thermocouple technique was evaluated by measuring the transient gas temperature inside a combustion chamber and compared to the estimated temperature using measured pressure data and assumptions of chemical equilibrium.

  1. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    SciTech Connect

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  2. Measuring gas emissions from animal waste lagoons with an inverse-dispersion technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques due to non-ideal conditions such as trees and crops surrounding the lagoons, and short fetch to establish equilibrated microclimate conditions within the water bo...

  3. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, the U.S. Environmental Protection Agency (USEPA) posted a ground-based optical remote sensing method on its website called OTM 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to c...

  4. Current Developments in Analyzing Food Volatiles by Multidimensional Gas Chromatographic Techniques.

    PubMed

    Cordero, Chiara; Schmarr, Hans-Georg; Reichenbach, Stephen E; Bicchi, Carlo

    2017-02-02

    This paper presents current developments and future perspectives on the spread of advanced analytical tasks in the field of food volatile analysis. The topics outlined comprise (a) recent advances on miniaturized sampling techniques; (b) the potential and challenges of multidimensional gas chromatography coupled with mass spectrometric detection for volatile identification and quantitation in samples with complex matrices;

  5. Oesophageal heat transfer properties indication of segmental blood flow changes during distension.

    PubMed

    Liao, D; Frøkjaer, J B; Brock, C; Andersen, S D; Drewes, A M; Gregersen, H

    2008-04-01

    The pain perception to distension of the oesophagus can be explained by activation of receptors responding to mechanical deformation or to distension-induced ischaemia. The aim of this study was to develop a new method for detection of changes in segmental blood flow during distension based on measurement of heat transfer. A bag was distended in the distal oesophagus of six healthy subjects followed by cooling or heating of the bag fluid to 5 or 60 degrees C. After equilibrium, the temperature was allowed to change back to body temperature. The temperature was recorded together with intraluminal ultrasound imaging, allowing assessment of the heat transfer properties at different bag volumes. The heat transfer constants were higher after heating the bag than after cooling the bag (Tukey, P < 0.05). The heat transfer constants after heating the bag decreased as function of bag volumes whereas the heat transfer during cooling was not affected by the bag volume (F = 0.9, P = 0.4). The findings indicate that segmental blood flow can be assessed indirectly by calculating the heat transfer properties. Distension induced a drop in regional blood flow. Hence, ischaemia may contribute to distension-induced pain. Furthermore, heat increased segmental blood flow and cold decreased segmental blood flow. This method may in the future be used to explore the mechanisms behind oesophageal pain.

  6. Oral contrast agents for small bowel MRI: comparison of different additives to optimize bowel distension.

    PubMed

    Ajaj, Waleed; Goehde, Susanne C; Schneemann, Hubert; Ruehm, Stefan G; Debatin, Jörg F; Lauenstein, Thomas C

    2004-03-01

    The purpose of this study was to compare two osmotic carbohydrate sugar alcohols (mannitol 2.5% and sorbitol 2.5%, 2.0%, and 1.5% watery solutions) in combination with 0.2% locust bean gum (LBG) for small bowel distension for MR imaging. Small bowel distension was quantified on coronal 2D TrueFISP images by measuring the diameters of 16 small bowel loops in each of 12 healthy subjects (age range 31-55 years). Additionally, the grade of small bowel distension was rated qualitatively. Patient acceptance concerning nausea, vomiting, flatulence, and diarrhea was noted for each solution, and all results were compared by a Wilcoxon test or t test, respectively. The ingestion of water combined with LBG and either 2.5% mannitol or 2.0% sorbitol showed the best distension of the small bowel. The lowest side effect rate was observed following ingestion of sorbitol in a concentration of 2.0 and 1.5%. Based on these data, we recommend a combination of LBG and 2% sorbitol use for optimal bowel distension and minimal side effects resulting in enhanced patient acceptance.

  7. The clinical effect of hydraulic distension plus manual therapy on patients with frozen shoulder.

    PubMed

    Kwak, Kwang-Il; Kim, Eun-Kyung

    2016-08-01

    [Purpose] This study aimed to develop a clinical protocol for the treatment of frozen shoulder using applied hydraulic distension plus manual therapy. [Subjects and Methods] Patients were randomly assigned to 2 groups: 60 patients in group A were treated with hydraulic distension plus manual therapy, and 61 in group B were treated with hydraulic distension alone. Treatment effects were assessed using the Visual Analog Scale (VAS) (pain and satisfaction), and active range of motion of the shoulder (forward flexion, internal and external rotation) before treatments and at 2, 6, 12, 24 weeks, and 1 year after the last injections. [Results] Patients in group A achieved faster pain relief and better satisfaction than patients in group B during the 6 weeks after treatment. However, no significant difference in VAS was observed between the groups at final follow-up. AROM of the shoulder was improved at final follow-up in both groups. [Conclusion] Hydraulic distension plus manual therapy provided faster pain relief, a higher level of patient satisfaction, and an earlier improvement in AROM of the shoulder than hydraulic distension alone in patients with frozen shoulder.

  8. The role of left atrial receptors in the diuretic response to left atrial distension

    PubMed Central

    Ledsome, J. R.; Linden, R. J.

    1968-01-01

    1. The diuretic response to distension of the whole left atrium caused by obstruction of the mitral orifice has been compared with the effects of distension (by means of small balloons) of the left pulmonary vein/left atrial junctions. 2. Distension of the pulmonary vein/atrial junctions caused an increase in heart rate and a diuresis similar to but smaller than that caused by mitral obstruction. 3. Section of both ansae subclaviae prevented the increase in heart rate produced by distension of the pulmonary vein/left atrial junctions but had little effect on the diuretic response either to pulmonary vein distension or to mitral obstruction. 4. A diuretic response to mitral obstruction could be demonstrated after all nerves from the lungs had been cut but not after the vagus nerves had been cut at levels likely to interrupt the majority of afferent fibres from left atrial receptors. 5. The results support the view that stimulation of left atrial receptors is a major factor in the production of a diuretic response to mitral obstruction. PMID:5698283

  9. Temporary feeding inhibition caused by artificial abdominal distension in the bedbug, Cimex lectularius.

    PubMed

    Wintle, Kenneth; Reinhardt, Klaus

    2008-07-01

    Abdominal distension of haematophagous insects caused by ingested blood has been recognised as an important contributor to triggering meal termination, feeding inhibition and further susceptibility to host signals. Factors that regulate feeding behaviour of the common bedbug, Cimex lectularius, are poorly understood. By injecting air directly into the body cavity of virgin female C. lectularius we artificially induced abdominal distension without providing chemical cues of the blood meal and without applying gut distension. Body length increased to 138% after feeding and 147% after inflation. The early decline in body volume is similar in blood-fed bugs but after between 8 and 24h became faster in inflated than fed bedbugs. Artificially inflated individuals remained feeding-inhibited at lower abdominal distensions than those that terminate blood ingestion (to ca. 135% initial body length, or up to about 5h). Feeding activity resumed earlier in inflated than blood-fed bugs. These results suggest that artificial abdominal distension has an inhibitory effect on feeding but is not the sole mechanism in preventing further feeding.

  10. Growth of single wall carbon nanotubes using PECVD technique: An efficient chemiresistor gas sensor

    NASA Astrophysics Data System (ADS)

    Lone, Mohd Yaseen; Kumar, Avshish; Husain, Samina; Zulfequar, M.; Harsh; Husain, Mushahid

    2017-03-01

    In this work, the uniform and vertically aligned single wall carbon nanotubes (SWCNTs) have been grown on Iron (Fe) deposited Silicon (Si) substrate by plasma enhanced chemical vapor deposition (PECVD) technique at very low temperature of 550 °C. The as-grown samples of SWCNTS were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and Raman spectrometer. SWCNT based chemiresistor gas sensing device was fabricated by making the proper gold contacts on the as-grown SWCNTs. The electrical conductance and sensor response of grown SWCNTs have been investigated. The fabricated SWCNT sensor was exposed to ammonia (NH3) gas at 200 ppm in a self assembled apparatus. The sensor response was measured at room temperature which was discussed in terms of adsorption of NH3 gas molecules on the surface of SWCNTs. The achieved results are used to develope a miniaturized gas sensor device for monitoring and control of environment pollutants.

  11. Application of the can technique and radon gas analyzer for radon exhalation measurements.

    PubMed

    Fazal-ur-Rehman; Al-Jarallah, M I; Musazay, M S; Abu-Jarad, F

    2003-01-01

    A passive "can technique" and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bqm(-2)h(-1) with an average of 1.35+/-1.40 Bqm(-2)h(-1). The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  12. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  13. Association of parity with carotid diameter and distensibility: multi-ethnic study of atherosclerosis.

    PubMed

    Vaidya, Dhananjay; Bennett, Wendy L; Sibley, Christopher T; Polak, Joseph F; Herrington, David M; Ouyang, Pamela

    2014-08-01

    Pregnancy and childbirth are associated with hemodynamic changes and vascular remodeling. It is not known whether parity is associated with later adverse vascular properties such as larger arterial diameter, wall thickness, and lower distensibility. We used baseline data from 3283 women free of cardiovascular disease aged 45 to 84 years enrolled in the population-based Multi-Ethnic Study of Atherosclerosis. Participants self-reported parity status. Ultrasound-derived carotid artery lumen diameters and brachial artery blood pressures were measured at peak-systole and end-diastole. Common carotid intima-media thickness was also measured. Regression models to determine the association of carotid distensibility coefficient, lumen diameter, and carotid intima-media thickness with parity were adjusted for age, race, height, weight, diabetes mellitus, current smoking, blood pressure medication use, and total and high-density lipoprotein cholesterol levels. The prevalence of nulliparity was 18%. In adjusted models, carotid distensibility coefficient was 0.09×10−5 Pa−1 lower (P=0.009) in parous versus nulliparous women. Among parous women, there was a nonlinear association with the greatest carotid distensibility coefficient seen in women with 2 live births and significantly lower distensibility seen in primiparas (P=0.04) or with higher parity >2 (P=0.005). No such pattern of association with parity was found for lumen diameter or carotid intima-media thickness. Parity is associated with lower carotid artery distensibility, suggesting arterial remodeling that lasts beyond childbirth. These long-term effects on the vasculature may explain the association of parity with cardiovascular events later in life.

  14. Regional aortic distensibility and its relationship with age and aortic stenosis: a computed tomography study.

    PubMed

    Wong, Dennis T L; Narayan, Om; Leong, Darryl P; Bertaso, Angela G; Maia, Murilo G; Ko, Brian S H; Baillie, Timothy; Seneviratne, Sujith K; Worthley, Matthew I; Meredith, Ian T; Cameron, James D

    2015-06-01

    Aortic distensibility (AD) decreases with age and increased aortic stiffness is independently associated with adverse cardiovascular outcomes. The association of severe aortic stenosis (AS) with AD in different aortic regions has not been evaluated. Elderly subjects with severe AS and a cohort of patients without AS of similar age were studied. Proximal aortic cross-sectional-area changes during the cardiac cycle were determined using retrospective-ECG-gating on 128-detector row computed-tomography. Using oscillometric-brachial-blood-pressure measurements, the AD at the ascending-aorta (AA), proximal-descending-aorta (PDA) and distal-descending-aorta (DDA) was determined. Linear mixed effects modelling was used to determine the association of age and aortic stenosis on regional AD. 102 patients were evaluated: 36 AS patients (70-85 years), 24 AS patients (>85 years) and 42 patients without AS (9 patients <50 years, 20 patients between 51-70 years and 13 patients 70-85 years). When comparing patients 70-85 years, AA distensibility was significantly lower in those with AS compared to those without AS (0.9 ± 0.9 vs. 1.4 ± 1.1, P = 0.03) while there was no difference in the PDA (1.0 ± 1.1 vs. 1.0 ± 1.2, P = 0.26) and DDA (1.1 ± 1.2 vs. 1.2 ± 0.8, P = 0.97). In patients without AS, AD decreased with age in all aortic regions (P < 0.001). The AA in patients <50 years were the most distensible compared to other aortic regions. There is regional variation in aortic distensibility with aging. Patients with aortic stenosis demonstrated regional differences in aortic distensibility with lower distensibility demonstrated in the proximal ascending aorta compared to an age-matched cohort.

  15. Studies on gas transport through dry cellulose acetate membranes prepared by solvent exchange technique

    SciTech Connect

    Lui, A.; Talbot, F.D.F.; Sourirajan, S.; Fouda, A.; Matsuura, T.

    1988-10-01

    The mechanism of gas transport through pores on the surface of dry cellulose acetate membranes under pressure was identified for membranes prepared by the solvent exchange technique using pure gas permeation rate data. The pure gases were helium, methane and carbon dioxide. The variables involved in the membrane preparation variables involved in the membrane preparation are the shrinkage temperature, the first solvent, the second solvent and the combinations thereof. Different conditions of membrane preparation produce different pore sizes. Depending on this pore size, one of the following mechanisms becomes dominant: Knudsen, surface and size exclusion.

  16. Renal clearance studies of effect of left atrial distension in the dog.

    NASA Technical Reports Server (NTRS)

    Kinney, M. J.; Discala, V. A.

    1972-01-01

    Investigation of the water diuresis of left atrial distension in 16 dogs on the basis of clearance studies employing hydration, chronic and acute salt loading, deoxycorticosterone (DOCA) in excess, and distal tubular nephron blockade with diuretics. The diuresis was found in hydrated and salt-loaded dogs and was independent of DOCA and presumed renin depletion. It was not found in five dogs after distal tubular blockade. No significant reproducible saluresis was ever documented. The water diuresis was always stopped by exogenous vasopressin (seven dogs). Antidiuretic hormone inhibition with distal tubular nephron water permeability changes appears to be the sole mechanism of the diuresis of left atrial distension in the dog.

  17. Monte Carlo uncertainty analyses of a bLS inverse-dispersion technique for measuring gas emissions from livestock operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The backward Lagrangian stochastic (bLS) inverse-dispersion technique has been used to measure fugitive gas emissions from livestock operations. The accuracy of the bLS technique, as indicated by the percentages of gas recovery in various tracer-release experiments, has generally been within ± 10% o...

  18. Development of an in situ calibration technique for combustible gas detectors

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Wynveen, R. A.; Lance, N., Jr.; Lantz, J. B.

    1977-01-01

    This paper describes the development of an in situ calibration procedure for combustible gas detectors (CGD). The CGD will be a necessary device for future space vehicles as many subsystems in the Environmental Control/Life Support System utilize or produce hydrogen (H2) gas. Existing calibration techniques are time-consuming and require support equipment such as an environmental chamber and calibration gas supply. The in situ calibration procedure involves utilization of a water vapor electrolysis cell for the automatic in situ generation of a H2/air calibration mixture within the flame arrestor of the CGD. The development effort concluded with the successful demonstration of in situ span calibrations of a CGD.

  19. Nanoparticle films made by gas phase synthesis: comparison of various techniques and sensor applications

    NASA Astrophysics Data System (ADS)

    Heszler, Peter; Reyes, L. F.; Hoel, Anders; Landstrom, Lars; Lantto, V.; Granqvist, Claes-Goran

    2003-07-01

    Nanoparticles can be generated by several different gas phase methods, such as gas deposition, laser-assisted chemical vapor deposition, and laser ablation. Some of the most important aspects - such as size-distribution, structure, and chemical composition of the generated nanoparticles (specifically W and WO3) - are presented and compared. WO3 nanoparticle films were deposited by an advanced gas deposition technique and were tested for sensor applications. Two different sensor devices were fabricated: Firstly, a thin Au-WO3 nanoparticle sandwich film was constructed, and conductance fluctuations of the Au film were measured as the sensor was exposed to alcohol vapor. Secondly, conductivity changes of a thick WO3 nanoparticle film were detected as it was exposed to test gases (H2S, NO2, and CO).

  20. Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment.

    PubMed

    Poursamar, S Ali; Hatami, Javad; Lehner, Alexander N; da Silva, Cláudia L; Ferreira, Frederico Castelo; Antunes, A P M

    2015-03-01

    The current study presents an effective and simple strategy to obtain stable porous scaffolds from gelatin via a gas foaming method. The technique exploits the intrinsic foaming ability of gelatin in the presence of CO2 to obtain a porous structure stabilised with glutaraldehyde. The produced scaffolds were characterised using physical and mechanical characterisation methods. The results showed that gas foaming may allow the tailoring of the 3-dimensional structure of the scaffolds with an interconnected porous structure. To assess the effectiveness of the preparation method in mitigating the potential cytotoxicity risk of using glutaraldehyde as a crosslinker, direct and in-direct cytotoxicity assays were performed at different concentrations of glutaraldehyde. The results indicate the potential of the gas foaming method, in the preparation of viable tissue engineering scaffolds.

  1. Sabots, Obturator and Gas-In-Launch Tube Techniques for Heat Flux Models in Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Wilder, Michael C.

    2013-01-01

    For thermal protection system (heat shield) design for space vehicle entry into earth and other planetary atmospheres, it is essential to know the augmentation of the heat flux due to vehicle surface roughness. At the NASA Ames Hypervelocity Free Flight Aerodynamic Facility (HFFAF) ballistic range, a campaign of heat flux studies on rough models, using infrared camera techniques, has been initiated. Several phenomena can interfere with obtaining good heat flux data when using this measuring technique. These include leakage of the hot drive gas in the gun barrel through joints in the sabot (model carrier) to create spurious thermal imprints on the model forebody, deposition of sabot material on the model forebody, thereby changing the thermal properties of the model surface and unknown in-barrel heating of the model. This report presents developments in launch techniques to greatly reduce or eliminate these problems. The techniques include the use of obturator cups behind the launch package, enclosed versus open front sabot designs and the use of hydrogen gas in the launch tube. Attention also had to be paid to the problem of the obturator drafting behind the model and impacting the model. Of the techniques presented, the obturator cups and hydrogen in the launch tube were successful when properly implemented

  2. Atmospheric Transmission Measurements Using IR Lasers, Fourier Transform Spectroscopy, and Gas-Filter Correlation Techniques,

    DTIC Science & Technology

    2007-11-02

    J. A. DOWLING , K. M. HAUGHT, R. F. HORTON, S. T. HANLEY, J. A. CURCIO, D. H. GARCIA, AND C. O. GOTT Optical Sciences Division and W. L. AGAMBAR...Spectroscopy, and Gas-Filter Correlation Techniques Personal Author: Dowling , JA.; Haught, K.M.; Horton, R.F; et al. Corporate Author Or Publisher: Naval... Dowling , K. M. Haught, R. F. Horton, S. T. Hanley, J. A. Curcio, D. H. Garcia, and C. 0. Gott Optical Sciences Division and W. L. Agambar

  3. Short-term temporal variations of soil gas radon concentration and comparison of measurement techniques.

    PubMed

    Neznal, Martin; Matolín, Milan; Just, Günther; Turek, Karel

    2004-01-01

    Short-term temporal variations of soil gas radon concentration have been studied using different measuring techniques--instantaneous methods (grab sampling) using Lucas cells, continuous monitors, and integral nuclear track-etch detectors. A relatively low variability appeared during a 72-h follow-up. Different temporal changes were observed by using different methods. A substantial part of these changes was probably caused by fluctuations and errors connected with measuring methods themselves and did not reflect real variations of the measured parameter.

  4. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Arvay, A.; Yli-Rantala, E.; Liu, C.-H.; Peng, X.-H.; Koski, P.; Cindrella, L.; Kauranen, P.; Wilde, P. M.; Kannan, A. M.

    2012-09-01

    The gas diffusion layer (GDL) in a proton exchange membrane fuel cell (PEMFC) is one of the functional components that provide a support structure for gas and water transport. The GDL plays a crucial role when the oxidant is air, especially when the fuel cell operates in the higher current density region. There has been an exponential growth in research and development because the PEMFC has the potential to become the future energy source for automotive applications. In order to serve in this capacity, the GDL requires due innovative analysis and characterization toward performance and durability. It is possible to achieve the optimum fuel cell performance only by understanding the characteristics of GDLs such as structure, pore size, porosity, gas permeability, wettability, thermal and electrical conductivities, surface morphology and water management. This review attempts to bring together the characterization techniques for the essential properties of the GDLs as handy tools for R&D institutions. Topics are categorized based on the ex-situ and in-situ characterization techniques of GDLs along with related modeling and simulation. Recently reported techniques used for accelerated durability evaluation of the GDLs are also consolidated within the ex-situ and in-situ methods.

  5. Unusual well control techniques pay off. [Well drilling techniques in the Elgin gas condensate field, North Sea

    SciTech Connect

    Idelovici, J.L.

    1993-07-01

    Well control and completion operations were seriously complicated by an unusual pressure phenomena encountered while drilling an appraisal well through Jurassic sandstones in a high-pressure, high-temperature (HPHT), gas and condensate field located in the United Kingdom continental shelf. The HPHT sandstone reservoir is located in the Upper Jurassic Franklin formation. Unorthodox well-control techniques were used because it was determined that the abnormally high pressure was generated by a mechanical reaction of the rock under the effect of heavy mud and equivalent circulating density, rather than by entry into the wellbore of formation fluids. This paper reviews the complex drilling fluid control procedures which had to be utilized to maintain an open bore hole during drilling.

  6. An effusive molecular beam technique for studies of polyatomic gas-surface reactivity and energy transfer.

    PubMed

    Cushing, G W; Navin, J K; Valadez, L; Johánek, V; Harrison, I

    2011-04-01

    An effusive molecular beam technique is described to measure alkane dissociative sticking coefficients, S(T(g), T(s); ϑ), on metal surfaces for which the impinging gas temperature, T(g), and surface temperature, T(s), can be independently varied, along with the angle of incidence, ϑ, of the impinging gas. Effusive beam experiments with T(g) = T(s) = T allow for determination of angle-resolved dissociative sticking coefficients, S(T; ϑ), which when averaged over the cos (ϑ)/π angular distribution appropriate to the impinging flux from a thermal ambient gas yield the thermal dissociative sticking coefficient, S(T). Nonequilibrium S(T(g), T(s); ϑ) measurements for which T(g) ≠ T(s) provide additional opportunities to characterize the transition state and gas-surface energy transfer at reactive energies. A resistively heated effusive molecular beam doser controls the T(g) of the impinging gas striking the surface. The flux of molecules striking the surface from the effusive beam is determined from knowledge of the dosing geometry, chamber pressure, and pumping speed. Separate experiments with a calibrated leak serve to fix the chamber pumping speed. Postdosing Auger electron spectroscopy is used to measure the carbon of the alkyl radical reaction product that is deposited on the surface as a result of alkane dissociative sticking. As implemented in a typical ultrahigh vacuum chamber for surface analysis, the technique has provided access to a dynamic range of roughly 6 orders of magnitude in the initial dissociative sticking coefficient for small alkanes on Pt(111).

  7. Modulation by peripheral opioids of basal and distension-stimulated gastric acid secretion in the rat.

    PubMed Central

    Esplugues, J. V.; Barrachina, M. D.; Esplugues, J.

    1992-01-01

    1. The influence of opioids in modulating gastric acid secretory responses has been investigated in the continuously perfused stomach of the anaesthetized rat. 2. Intravenous administration of morphine (0.75-3 mg kg-1) or the peripherally acting enkephalin analogue, BW443C (0.75-3 mg kg-1), substantially augmented acid secretion in basal conditions. These effects were significantly inhibited by the opioid antagonists naloxone (1 mg kg-1) and the peripherally acting N-methylnalorphine (2 mg kg-1). When administered alone, neither opioid antagonist influenced basal acid output. 3. Acid secretory responses to different levels of gastric distension (5-20 cmH2O) were significantly and dose-dependently reduced in rats pretreated with morphine (3 mg kg-1) or BW443C (1.5 mg kg-1). Previous administration of either naloxone or N-methyl nalorphine reversed the inhibitory effects of opioids on gastric acid secretion stimulated by distension. Likewise, blockade of opioid receptors with naloxone or N-methylnalorphine significantly increased acid output induced by distension. 4. Levels of serum gastrin in control animals were not increased after intragastric distension (20 cmH2O). Pretreatment with BW443C (1.5 mg kg-1) did not modify the levels of gastrin present during basal or distension stimulated conditions. 5. Pretreatment with morphine or BW443C did not influence the acid responses to i.v. injection of pentagastrin (100 micrograms kg-1), histamine (5 mg kg-1) or carbachol (4 micrograms kg-1). Acid secretion induced by i.v. administration of 2-deoxy-D-glucose (150 mg kg-1) was reduced in rats pretreated with morphine but not with BW443C. Gastric secretory responses to insulin (0.3 i.u. kg-1) were not modified by i.v. morphine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504729

  8. Distension of the uterus induces HspB1 expression in rat uterine smooth muscle.

    PubMed

    White, B G; MacPhee, D J

    2011-11-01

    The uterine musculature, or myometrium, demonstrates tremendous plasticity during pregnancy under the influences of the endocrine environment and mechanical stresses. Expression of the small stress protein heat shock protein B1 (HspB1) has been reported to increase dramatically during late pregnancy, a period marked by myometrial hypertrophy caused by fetal growth-induced uterine distension. Thus, using unilaterally pregnant rat models and ovariectomized nonpregnant rats with uteri containing laminaria tents to induce uterine distension, we examined the effect of uterine distension on myometrial HspB1 expression. In unilaterally pregnant rats, HspB1 mRNA and Ser(15)-phosphorylated HspB1 (pSer(15) HspB1) protein expression were significantly elevated in distended gravid uterine horns at days 19 and 23 (labor) of gestation compared with nongravid horns. Similarly, pSer(15) HspB1 protein in situ was only readily detectable in the distended horns compared with the nongravid horns at days 19 and 23; however, pSer(15) HspB1 was primarily detectable in situ at day 19 in membrane-associated regions, while it had primarily a cytoplasmic localization in myometrial cells at day 23. HspB1 mRNA and pSer(15) HspB1 protein expression were also markedly increased in ovariectomized nonpregnant rat myometrium distended for 24 h with laminaria tents compared with empty horns. Therefore, uterine distension plays a major role in the stimulation of myometrial HspB1 expression, and increased expression of this small stress protein could be a mechanoadaptive response to the increasing uterine distension that occurs during pregnancy.

  9. New seismic reflection techniques applied to gas recognition in the Rharb Basin, Morocco

    SciTech Connect

    Jabour, H.; Dakki, M. )

    1994-07-01

    The Rharb basin in Morocco is a Tertiary foreland filled by clastic series during the Miocene and Pliocene. This terrigenous influx, derived from the prerif to the northeast and the Meseta to the south, is characterized by a sandy episode during much of the Messinian and the Tortonian. The sand deposits were probably related to the uplift and major erosion of a part of the prerif during the sliding of an olistostrome (prerif nappe). Although most of the wells drilled in the basin have encountered biogenic gas accumulations, the problem still facing exploration in the area is seismic resolution and thin-bed tuning analysis. Recent studies using high seismic resolution techniques have permitted the authors to gain a deep insight into the stratigraphy and depositional environment of the thin sand reservoirs and their fluid content. AVO stratigraphy, inversion of seismic traces into acoustic impedance traces and seismic attributes calculation, and computing provide a remarkable example of the possibilities of depicting the lateral and vertical evolution of reservoir facies and localizing biogenic gas accumulations. Out of five recent exploratory wells drilled based on this new technique, three encountered gas-bearing sands with economic potential. Fifty-three amplitude anomalies have been identified and await processing.

  10. A tidal breathing model of the inert gas sinewave technique for inhomogeneous lungs.

    PubMed

    Whiteley, J P; Gavaghan, D J; Hahn, C E

    2001-01-01

    The tidal breathing model conservation of mass equations for the sinewave technique have been described for a homogeneous alveolar compartment by Gavaghan and Hahn, 1996 [Gavaghan, D.J., Hahn, C.E.W., 1996. A tidal breathing model of the forced inspired gas sinewave technique. Respir. Physiol. 106, 209-221]. We develop these equations first to a multi-discrete alveolar compartment lung model and then to a lung model with a continuous distribution of volume, ventilation and perfusion. The effect on the output parameters of a multi-compartment model is discussed, and the results are compared to those derived from the conventional continuous-ventilation model. Using the barely soluble gas argon as the tracer gas, an empirical index of alveolar inhomogeneity is presented which uses the end-expired and mixed-expired partial pressures on each breath. This index distinguishes between a narrow unimodal distribution of ventilation-volume, a wide unimodal distribution of ventilation-volume and a bimodal distribution of ventilation-volume. By using Monte Carlo simulations, this index is shown to be stable to experimental error of realistic magnitude.

  11. A novel decomposition technique of friable asbestos by CHClF2-decomposed acidic gas.

    PubMed

    Yanagisawa, Kazumichi; Kozawa, Takahiro; Onda, Ayumu; Kanazawa, Masazumi; Shinohara, Junichi; Takanami, Tetsuro; Shiraishi, Masatsugu

    2009-04-30

    Asbestos was widely used in numerous materials and building products due to their desirable properties. It is, however, well known that asbestos inhalation causes health damage and its inexpensive decomposition technique is necessary to be developed for pollution prevention. We report here an innovative decomposition technique of friable asbestos by acidic gas (HF and HCl) generated from the decomposition of CHClF(2) by the reaction with superheated steam at 800 degrees C. Chrysotile-asbestos fibers were completely decomposed to sellaite and magnesium silicofluoride hexahydrate by the reaction with CHClF(2)-decomposed acidic gas at 150 degrees C for 30 min. At high temperatures beyond 400 degrees C, sellaite and hematite were detected in the decomposed product. In addition, crocidolite containing wastes and amosite containing wastes were decomposed at 500 degrees C and 600 degrees C for 30 min, respectively, by CHClF(2)-decomposed acidic gas. The observation of the reaction products by phase-contrast microscopy (PCM) and scanning electron microscopy (SEM) confirmed that the resulting products did not contain any asbestos.

  12. Separation techniques: membranes for natural gas sweetening and CO/sub 2/ enrichment

    SciTech Connect

    Mazur, W.H.; Chan, M.C.

    1982-10-01

    The ability of polymeric membranes to separate gases has been poor since the 19th century. Early polymeric membranes showed poor selectivity (separation); even the most permeable of gases exhibited poor productivities (fluxes). Due to the inability to perfect a process to produce uniformly good membranes in quantity, practical industrial gas separation systems were not successful. In 1960, a technical breakthrough came with the development of asymmetric membranes for reverse osmosis and their subsequent adaptation to gaseous separation. Based upon development and commercialization of membranes for water desalination by reverse osmosis, Envirogenics Systems Co. has developed gas separation membranes suitable for large-scale industrial applications. The cellulose acetate membrane is produced in flat sheet form and to retain its asymmetric character the membrane is heat-treated and dried by proprietary techniques. This produces a highly selective, dense, active layer with a thick porous support layer having high mechanical stability to withstand high feed gas pressures and high pressure differentials. The membrane is incorporated into spiral-wound elements similar to those for reverse osmosis applications. The membrane, which has been field tested for sweetening natural gas, also can be used for enhanced oil recovery and oxygen enrichment.

  13. Estimating the gas and dye quantities for modified tracer technique measurements of stream reaeration coefficients

    USGS Publications Warehouse

    Rathbun, R.E.

    1979-01-01

    Measuring the reaeration coefficient of a stream with a modified tracer technique has been accomplished by injecting either ethylene or ethylene and propane together and a rhodamine-WT dye solution into the stream. The movement of the tracers through the stream reach after injection is described by a one-dimensional diffusion equation. The peak concentrations of the tracers at the downstream end of the reach depend on the concentrations of the tracers in the stream at the injection site, the longitudinal dispersion coefficient, the mean water velocity, the length of the reach, and the duration of the injection period. The downstream gas concentrations also depend on the gas desorption coefficients of the reach. The concentrations of the tracer gases in the stream at the injection site depend on the flow rates of the gases through the injection diffusers, the efficiency of the gas absorption process, and the stream discharge. The concentration of dye in the stream at the injection site depends on the flow rate of the dye solution, the concentration of the dye solution, and the stream discharge. Equations for estimating the gas flow rates, the quantities of the gases, the dye concentration, and the quantity of dye together with procedures for determining the variables in these equations are presented. (Woodard-USGS)

  14. Compact multilaser TDLAS for trace gas flux measurements based on a micrometeorological technique

    NASA Astrophysics Data System (ADS)

    Kormann, Robert; Fischer, Horst; Wienhold, Frank G.

    1999-10-01

    A novel Tunable Diode Laser Absorption Spectrometer has been developed for trace gas flux measurements based on micrometeorological techniques. Up to 2 different species can be measured simultaneously with high temporal resolution (< 1 sec) using individual lead-salt diode lasers. The instruments response time is ultimately determined by the gas exchange time through the compact multi-reflection cell (Aerodyne Model AMAC-36 Astigmatic Herriott Cell, 0.3 l volume, total path 36 m). The lasers are operated in a time multiplexed mode using a novel modulation scheme, which combines laser operation in a pulsed-current mode with a combination of rapid scanning and two-tone frequency modulation. The latter has the potential to improve the signal-to-noise ratio of phase-sensitive detection when compared to standard lock-in techniques because of the reduction of instrument noise at higher detection frequencies. The stability and the detection limit of the instrument will be characterized. It has been used to measure CH4 and N2O fluxes via the eddy covariance technique from rice paddies and tropical ecosystems during two recent field campaigns.

  15. Techniques for Equation-of-State Measurements on a Three-Stage Light-Gas Gun

    SciTech Connect

    REINHART,WILLIAM D.; CHHABILDAS,LALIT C.; THORNHILL,T.G.

    2000-09-14

    Understanding high pressure behavior materials is necessary in order to address the physical processes associated with hypervelocity impact events related to space science applications including orbital debris impact and impact lethality. Until recently the highest-pressure states in materials have been achieved from impact loading techniques from two-stage light gas guns with velocity limitations of approximately 81cm/s. In this paper, techniques that are being developed and implemented to obtain the needed shock loading parameters (Hugoniot states) for material characterization studies, namely shock velocity and particle velocity, will be described at impact velocities up to 11 kds. The determination of equation-of-state (EOS) and thermodynamic states of materials in the regimes of extreme high pressures is now attainable utilizing the three-stage launcher. What is new in this report is that these techniques are being implemented for use at engagement velocities never before attained utilizing two-stage light-gas gun technology. The design and test methodologies used to determine Hugoniot states are described in this paper.

  16. Free-breathing black-blood CINE fast-spin echo imaging for measuring abdominal aortic wall distensibility: A feasibility study.

    PubMed

    Lin, Jyh-Miin; Patterson, Andrew; Chao, Tzu-Cheng; Zhu, Chengcheng; Chang, Hing-Chiu; Mendes, Jason; Chung, Hsiao-Wen; Gillard, Jonathan; Graves, Martin

    2017-03-22

    The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: 1) variable-density sampling with fast iterative reconstruction; 2) inner-volume imaging; and 3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p = 0.015). The quantitative measurements were a diameter of 16.3 ± 2.8 mm and wall distensibility of 2.0 ± 0.4 mm (12.5 ± 3.4%) and 0.7 ± 0.3 mm (4.1 ± 1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35 ± 15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.

  17. Sounding rocket thermal analysis techniques applied to GAS payloads. [Get Away Special payloads (STS)

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1979-01-01

    Simplified analytical techniques of sounding rocket programs are suggested as a means of bringing the cost of thermal analysis of the Get Away Special (GAS) payloads within acceptable bounds. Particular attention is given to two methods adapted from sounding rocket technology - a method in which the container and payload are assumed to be divided in half vertically by a thermal plane of symmetry, and a method which considers the container and its payload to be an analogous one-dimensional unit having the real or correct container top surface area for radiative heat transfer and a fictitious mass and geometry which model the average thermal effects.

  18. Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography.

    PubMed

    Kremser, Andreas; Jochmann, Maik A; Schmidt, Torsten C

    2016-09-01

    Six automated, headspace-based sample preparation techniques were used to extract volatile analytes from water with the goal of establishing a systematic comparison between commonly available instrumental alternatives. To that end, these six techniques were used in conjunction with the same gas chromatography instrument for analysis of a common set of volatile organic carbon (VOC) analytes. The methods were thereby divided into three classes: static sampling (by syringe or loop), static enrichment (SPME and PAL SPME Arrow), and dynamic enrichment (ITEX and trap sampling). For PAL SPME Arrow, different sorption phase materials were also included in the evaluation. To enable an effective comparison, method detection limits (MDLs), relative standard deviations (RSDs), and extraction yields were determined and are discussed for all techniques. While static sampling techniques exhibited sufficient extraction yields (approx. 10-20 %) to be reliably used down to approx. 100 ng L(-1), enrichment techniques displayed extraction yields of up to 80 %, resulting in MDLs down to the picogram per liter range. RSDs for all techniques were below 27 %. The choice on one of the different instrumental modes of operation (aforementioned classes) was thereby the most influential parameter in terms of extraction yields and MDLs. Individual methods inside each class showed smaller deviations, and the least influences were observed when evaluating different sorption phase materials for the individual enrichment techniques. The option of selecting specialized sorption phase materials may, however, be more important when analyzing analytes with different properties such as high polarity or the capability of specific molecular interactions. Graphical Abstract PAL SPME Arrow during the extraction of volatile analytes from the headspace of an aqueous sample.

  19. New alnico magnets fabricated from pre-alloyed gas-atomized powder through diverse consolidation techniques

    DOE PAGES

    Tang, W.; Zhou, L.; Kassen, A. G.; ...

    2015-05-25

    Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (Hcj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology. Asmore » a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.« less

  20. New alnico magnets fabricated from pre-alloyed gas-atomized powder through diverse consolidation techniques

    SciTech Connect

    Tang, W.; Zhou, L.; Kassen, A. G.; Palasyuk, A.; White, E. M.; Dennis, K. W.; Kramer, M. J.; McCallum, R. W.; Anderson, I. E.

    2015-05-25

    Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (Hcj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology. As a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.

  1. Fault diagnosis in gas turbines using a model-based technique

    NASA Astrophysics Data System (ADS)

    Merrington, G. L.

    1994-04-01

    Reliable methods for diagnosing faults and detecting degraded performance in gas turbine engines are continually being sought. In this paper, a model-based technique is applied to the problem of detecting degraded performance in a military turbofan engine from take-off acceleration-type transients. In the past, difficulty has been experienced in isolating the effects of some of the physical processes involved. One such effect is the influence of the bulk metal temperature on the measured engine parameters during large power excursions. It will be shown that the model-based technique provides a simple and convenient way of separating this effect from the faster dynamic components. The important conclusion from this work is that good fault coverage can be gleaned from the resultant pseudo-steady-state gain estimates derived in this way.

  2. Understanding Methane Emission from Natural Gas Activities Using Inverse Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Abdioskouei, M.; Carmichael, G. R.

    2015-12-01

    Natural gas (NG) has been promoted as a bridge fuel that can smooth the transition from fossil fuels to zero carbon energy sources by having lower carbon dioxide emission and lower global warming impacts in comparison to other fossil fuels. However, the uncertainty around the estimations of methane emissions from NG systems can lead to underestimation of climate and environmental impacts of using NG as a replacement for coal. Accurate estimates of methane emissions from NG operations is crucial for evaluation of environmental impacts of NG extraction and at larger scale, adoption of NG as transitional fuel. However there is a great inconsistency within the current estimates. Forward simulation of methane from oil and gas operation sites for the US is carried out based on NEI-2011 using the WRF-Chem model. Simulated values are compared against measurements of observations from different platforms such as airborne (FRAPPÉ field campaign) and ground-based measurements (NOAA Earth System Research Laboratory). A novel inverse modeling technique is used in this work to improve the model fit to the observation values and to constrain methane emission from oil and gas extraction sites.

  3. Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels

    NASA Astrophysics Data System (ADS)

    Fang, Haiping; Wang, Zuowei; Lin, Zhifang; Liu, Muren

    2002-05-01

    A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady flow agree with the analytical prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the aortic flows observed experimentally. The model is expected to find many applications for studying blood flows in large distensible arteries, especially in those suffering from atherosclerosis, stenosis, aneurysm, etc.

  4. Antinociceptive action against colonic distension by brain orexin in conscious rats.

    PubMed

    Okumura, Toshikatsu; Nozu, Tsukasa; Kumei, Shima; Takakusaki, Kaoru; Miyagishi, Saori; Ohhira, Masumi

    2015-02-19

    Increasing evidence has suggested that brain orexins are implicated in a wide variety of physiological functions. With regard to gastrointestinal functions, orexin-A acts centrally to regulate gastrointestinal functions such as gastric and pancreatic secretion, and gastrointestinal motility. Visceral sensation is also known as one of key gastrointestinal functions which are controlled by the central nervous system. Little is, however, known about a role of central orexin in visceral sensation. This study was therefore performed to clarify whether brain orexin may be involved in the process of visceral sensation. Visceral sensation was evaluated by colonic distension-induced abdominal withdrawal reflex (AWR) in conscious rats. Intracisternally administered orexin-A dose-dependently increased the threshold volume of colonic distension-induced AWR. In contrast, neither intraperitoneal injection of orexin-A nor intracisternal orexin-B altered the threshold volume. While intracisternal SB334867, an orexin 1 receptor antagonist, by itself failed to change the threshold volume, SB334867 injected centrally completely blocked the morphine-induced antinociceptive action against colonic distension. These results suggest for the first time that orexin-A specifically acts centrally in the brain to enhance antinociceptive response to colonic distension. We would furthermore suggest that endogenous orexin-A indeed mediates the antinociceptive effect of morphine on visceral sensation through the orexin 1 receptors. All these evidence might indicate that brain orexin plays a role in the pathophysiology of functional gastrointestinal disorders such as irritable bowel syndrome because visceral hypersensitivity of the gut is considered to play a vital role in the diseases.

  5. RESOLVE Survey Photometry and Volume-limited Calibration of the Photometric Gas Fractions Technique

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Norris, Mark A.; Snyder, Elaine M.; Hoversten, Erik A.

    2015-09-01

    We present custom-processed ultraviolet, optical, and near-infrared photometry for the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey, a volume-limited census of stellar, gas, and dynamical mass within two subvolumes of the nearby universe (RESOLVE-A and RESOLVE-B). RESOLVE is complete down to baryonic mass ˜ {10}9.1-9.3 {M}⊙ , probing the upper end of the dwarf galaxy regime. In contrast to standard pipeline photometry (e.g., SDSS), our photometry uses optimal background subtraction, avoids suppressing color gradients, and employs multiple flux extrapolation routines to estimate systematic errors. With these improvements, we measure brighter magnitudes, larger radii, bluer colors, and a real increase in scatter around the red sequence. Combining stellar mass estimates based on our optimized photometry with the nearly complete H i mass census for RESOLVE-A, we create new z = 0 volume-limited calibrations of the photometric gas fractions (PGF) technique, which predicts gas-to-stellar mass ratios (G/S) from galaxy colors and optional additional parameters. We analyze G/S-color residuals versus potential third parameters, finding that axial ratio is the best independent and physically meaningful third parameter. We define a “modified color” from planar fits to G/S as a function of both color and axial ratio. In the complete galaxy population, upper limits on G/S bias linear and planar fits. We therefore model the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies. These distributions have two-component structure in the red color regime. Finally, we use the RESOLVE-B 21 cm census to test several PGF calibrations, finding that most systematically under- or overestimate gas masses, but the full probability density method performs well.

  6. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans.

    PubMed

    Cui, Jian; McQuillan, Patrick M; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2012-08-15

    We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P < 0.01) and more sustained MSNA and blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects.

  7. Developing Repair Materials for Stress Urinary Incontinence to Withstand Dynamic Distension

    PubMed Central

    Hillary, Christopher J.; Roman, Sabiniano; Bullock, Anthony J.; Green, Nicola H; Chapple, Christopher R.; MacNeil, Sheila

    2016-01-01

    Background Polypropylene mesh used as a mid-urethral sling is associated with severe clinical complications in a significant minority of patients. Current in vitro mechanical testing shows that polypropylene responds inadequately to mechanical distension and is also poor at supporting cell proliferation. Aims and Objectives Our objective therefore is to produce materials with more appropriate mechanical properties for use as a sling material but which can also support cell integration. Methods Scaffolds of two polyurethanes (PU), poly-L-lactic acid (PLA) and co-polymers of the two were produced by electrospinning. Mechanical properties of materials were assessed and compared to polypropylene. The interaction of adipose derived stem cells (ADSC) with the scaffolds was also assessed. Uniaxial tensiometry of scaffolds was performed before and after seven days of cyclical distension. Cell penetration (using DAPI and a fluorescent red cell tracker dye), viability (AlamarBlue assay) and total collagen production (Sirius red assay) were measured for ADSC cultured on scaffolds. Results Polypropylene was stronger than polyurethanes and PLA. However, polypropylene mesh deformed plastically after 7 days of sustained cyclical distention, while polyurethanes maintained their elasticity. Scaffolds of PU containing PLA were weaker and stiffer than PU or polypropylene but were significantly better than PU scaffolds alone at supporting ADSC. Conclusions Therefore, prolonged mechanical distension in vitro causes polypropylene to fail. Materials with more appropriate mechanical properties for use as sling materials can be produced using PU. Combining PLA with PU greatly improves interaction of cells with this material. PMID:26981860

  8. Correlations between MRI findings and outcome of capsular distension in adhesive capsulitis of the shoulder

    PubMed Central

    Park, Yun Hee; Park, Young Sook; Chang, Hyun Jung; Kim, Yeongmi

    2016-01-01

    [Purpose] The aim of this study was to investigate the association between magnetic resonance imaging (MRI) findings in patients with adhesive shoulder capsulitis and the therapeutic effect of capsular distension. [Subjects and Methods] We retrospectively reviewed the medical records of 57 patients who underwent capsular distension therapy after a diagnosis of adhesive capsulitis with clinical and MRI scans. Axillary joint capsular thickness by MRI was graded as I (≤3.6 mm), II (3.7–4.2 mm), and III (≥4.3 mm). Subcoracoid fat obliteration of the rotator interval was graded subjectively as absent, partial, and complete. [Results] Capsular thickness and fat replacement were correlated with passive range of motion (PROM) and pain score on a visual analog scale (VAS) by analysis of variance with a Bonferroni correction before treatment and by analysis of covariance with a Bonferroni correction after treatment. Visual analog scale (VAS) for patients with all grades decreased significantly after treatment and passive range of motion (PROM) for patients with all grades improved. No difference was detected between grades. [Conclusion] Although MRI is useful to evaluate adhesive capsulitis, MRI findings of shoulder did not predict the prognosis after capsular distension treatment. PMID:27821938

  9. Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique

    NASA Astrophysics Data System (ADS)

    Fuke, K.; Tona, M.; Fujihara, A.; Sakurai, M.; Ishikawa, H.

    2012-08-01

    Nuclear magnetic resonance (NMR) technique is a well-established powerful tool to study the physical and chemical properties of a wide range of materials. However, presently, NMR applications are essentially limited to materials in the condensed phase. Although magnetic resonance was originally demonstrated in gas phase molecular beam experiments, no application to gas phase molecular ions has yet been demonstrated. Here, we present a novel principle of NMR detection for gas phase ions based on a "magnetic resonance acceleration" technique and describe the design and construction of an apparatus which we are developing. We also present an experimental technique and some results on the formation and manipulation of cold ion packets in a strong magnetic field, which are the key innovations to detect NMR signal using the present method. We expect this novel method to lead new realm for the study of mass-selected gas-phase ions with interesting applications in both fundamental and applied sciences.

  10. Combined FTIR-micrometeorological techniques for long term measurements of greenhouse gas fluxes from agriculture

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Griffith, D.; Harvey, M.; Naylor, T.; Smith, M.

    2009-04-01

    The exchange of trace gases between the biosphere and the atmosphere affects the atmospheric concentrations of gases such as methane, carbon dioxide, nitrous oxide, carbon monoxide, ammonia, volatile organic compounds, nitrogen dioxide and others. The quantification of the exchange between a biogenic system and the atmosphere is necessary for the evaluation of the impact of these interactions. This is of special interest for agricultural systems which can be sources or sinks of trace gases, and the measurement of the fluxes is necessary when evaluating both the environmental impact of agricultural activities and the impact of atmospheric pollution on agricultural production and sustainability. With the exception of CO2, micrometeorological measurements of the fluxes of greenhouse gases from agricultural activities are still mostly possible only in campaign mode due to the complexity and logistical requirements of the existing measurement techniques. This limitation precludes studies of fluxes which run for longer periods, for example over full seasonal or growing cycles for both animal- and crop-based agriculture. We have developed an instrument system for long-term flux measurements through a combination of micrometeorological flux measurement techniques such as Relaxed Eddy Accumulation (REA) and Flux-Gradient (FG) with the high precision multi-species detection capabilities of FTIR spectroscopy. The combined technique is capable of simultaneous flux measurements of N2O, CH4 and CO2 at paddock to regional scales continuously, over longer terms (months, seasonal cycles, years). The system was tested on a 3 weeks field campaign in NSW, Australia on a flat, homogeneous circular grass paddock with grazing cattle. The flux of the atmospheric trace gas CO2 was measured with three different micrometeorological techniques: Relaxed Eddy Accumulation, Flux-Gradient, and Eddy Correlation. Simultaneously, fluxes of CH4 and N2O were measured by REA and FG technique.

  11. Distensibility and Strength of the Pelvic Floor Muscles of Women in the Third Trimester of Pregnancy

    PubMed Central

    Petricelli, Carla Dellabarba; Resende, Ana Paula Magalhães; Elito Júnior, Julio; Araujo Júnior, Edward; Alexandre, Sandra Maria; Zanetti, Miriam Raquel Diniz; Nakamura, Mary Uchiyama

    2014-01-01

    Objective. The objective of this study was to compare the role of the pelvic floor muscles between nulliparous and multiparous women in the third trimester of pregnancy, by analyzing the relationship between electrical activity (surface electromyography—EMG), vaginal palpation (modified Oxford scale), and perineal distensibility (Epi-no). Methods. This was an observational cross-sectional study on a sample of 60 healthy pregnant women with no cervical dilation, single fetus, gestational age between 35 and 40 weeks, and maternal age ranging from 15 to 40 years. The methods used were bidigital palpation (modified Oxford scale, graded 0–5), surface EMG (electrical activity during maximal voluntary contraction), and perineal distensibility (Epi-no device). The Pearson correlation coefficient (r) was used to analyze the Epi-no values and the surface EMG findings. The Kruskal-Wallis test was used to compare the median values from surface EMG and Epi-no, using the modified Oxford scale scores. Results. Among the 60 patients included in this study, 30 were nulliparous and 30 multiparous. The average maternal age and gestational age were 26.06 (±5.58) and 36.56 (±1.23), respectively. It was observed that nulliparous women had both higher perineal muscle strength (2.53 ± 0.57 versus 2.06 ± 0.64; P = 0.005) and higher electrical activity (45.35 ± 12.24 μV versus 35.79 ± 11.66 μV; P = 0.003), while among the multiparous women, distensibility was higher (19.39 ± 1.92 versus 18.05 ± 2.14; P = 0.013). We observed that there was no correlation between perineal distensibility and electrical activity during maximal voluntary contraction (r = − 0.193; P = 0.140). However, we found a positive relationship between vaginal palpation and surface electromyography (P = 0.008), but none between Epi-no values (P = 0.785). Conclusion. The electrical activity and muscle strength of the pelvic floor muscles of the multiparous women were damaged, in relation to the

  12. Characterization of ultrafast hard x-ray pulses for LCLS using gas phase techniques

    NASA Astrophysics Data System (ADS)

    Hertlein, Marcus P.; Kienberger, Reinhard; Adaniya, Hidehito

    2005-05-01

    The availability of ultrafast (sub-100 fs) hard x-ray pulses (E > 1000 eV) promises new experimental opportunities, but also requires new techniques for their use. The Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC) is such a source that is expected to provide a high flux of 230 fs monochromatic x-ray photons with energy between 0.8 and 8 keV. Characterization methods for beams with such characteristics still need to be developed. We are presenting several techniques that show promise for the spatial and temporal characterization of ultrafast hard x-rays. They were developed and used at the Advanced Light Source (ALS), and will undergo further testing at the Sub-Picosecond Photon Source (SPPS) at SLAC. Our methods exploit effects such as ultrafast core-hole binding energy changes in atoms after laser excitation, and creation of energy sidebands on Auger electrons that are emitted in a laser field. We have demonstrated the usefulness of these effects on a picosecond time scale, but their use can be extended well into the femtosecond domain. We will also discuss time-of-flight techniques which offer the possibility of nondestructive x-ray spatial mode characterization. Our focus is on gas phase experiments, since they offer the possibility of nondestructive, transparent monitoring of the x-rays, leaving the main beam nearly undisturbed and available for experiments.

  13. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  14. From comic relief to real understanding; how intestinal gas causes symptoms.

    PubMed

    Quigley, E M M

    2003-12-01

    Gas content and transit appear to conspire with the motor and sensory responses of the gut to produce gas related symptoms, both in normal individuals and especially in patients with irritable bowel syndrome (IBS). In relation to gas in IBS, two questions need to be addressed: do IBS patients produce more gas and what are the relationships between intestinal gas and symptoms? The balance of evidence seems to indicate that distension is a real phenomenon in IBS and that such distension accurately reflects gas content. More problematic is extrapolation of the observations relating symptoms to gas transit and retention.

  15. Gas in Hepatic Portal Veins with Gastric Massive Dilatation and Pneumatosis in Acute Pancreatitis

    PubMed Central

    Mushtaq, Nadeem; Pateria, Vibhor; Ahmad, Imtiyaz; Kulshreshtha, Nitin

    2015-01-01

    Gas in portal veins is a rare phenomenon observed secondary to bowel ischaemia and necrosis. A young girl with history of pica ingestion presented with acute abdomen with huge distension. Investigation revealed air in hepatic portal veins, air within stomach wall, and massive distension of stomach secondary to acute pancreatitis. Successful conservative treatment confirmed the current concept that all cases of hepatic portal venous gas do not warrant immediate surgical intervention. PMID:26557565

  16. Simulation Based on Negative ion pair Techniques of Electric propulsion In Satellite Mission Using Chlorine Gas

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    R.Bakkiyaraj,Assistant professor,Government college of Engineering ,Bargur,Tamilnadu. *C.Sathiyavel, PG Student and Department of Aeronautical Engineering/Branch of Avionics, PSN college of Engineering and Technology,Tirunelveli,India. Abstract: Ion propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because of their stimulated of low propellant, Design of repulsive between negative ions with low electric power and high efficiency. A Negative ion pair of ion propulsion rocket system is proposed in this work .Negative Ion Based Rocket system consists of three parts 1.ionization chamber 2. Repulsion force and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negatively gas are produced by attachment of the gas ,such as chlorine with electron emitted from a Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). When a neutral chlorine atom in the gaseous form picks up an electron to form a cl- ion, it releases energy of 349 kJ/mol or 3.6 eV/atom. It is said to have an electron affinity of -349 kJ/mol ,the negative sign indicating that energy is released during this process .The distance between negative ions pair is important for the evaluation of the rocket thrust and is also determined by the exhaust velocity of the propellant. The mass flow rate of ions is related to the ion beam current. Accelerate the Negative ions to a high velocity in the thrust vector direction with a significantly intense grids and the exhaust of negative ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we have found that the proposed method is achieved of thrust value with low electric power for simulating the ion propulsion rocket system

  17. New technique for determining the parameters of gas permeation through solids

    SciTech Connect

    Kohls, J.F.

    1980-01-01

    The solution of Fick's equation for gas permeation through solid flat membranes yields a throughput rate equation with two unknown parameters, diffusivity and solubility. The common methods used to evaluate these parameters rely on knowing the equilibrium throughout rate. This equilibrium rate is in some cases rapidly established (on the order of seconds), in other cases slowly established (order of months). Thus, permeation measurements may require equipment usage over a long time period, precluding its use for other experience. A mathematical technique for predicting the permeation parameters using the unequilibrated portion of the permeation throughout curve has been developed which overcomes this difficulty. The method developed (termed stabilized search) was tested with data simulated using a known amount of error. The predicted parameters were as accurate as the data, but the values were generated in only 20 to 40% of the time required for other methods.

  18. New mathematical technique for determining the parameters of gas permeation through solids

    SciTech Connect

    Kohls, J.F.

    1980-01-01

    The solution of Fick's equation for gas permeation through solid flat membranes yields a throughput rate equation with two unknown parameters, diffusivity and solubility. The common methods used to evaluate these parameters rely on knowing the equilibrium throughput rate. This equilibrium rate is in some cases rapidly established (on the order of seconds), in other cases slowly established (order of months). Thus, permeation measurements may require equipment usage over a long time period, precluding its use for other experiments. A mathematical technique for predicting the permeation parameters using the unequilibrated portion of the permeation throughput curve has been developed which overcomes this difficulty. The method developed (termed stabilized search) was tested with data simulated using a known amount of error. The predicted parameters were as accurate as the data, but the values were generated in only 20 to 40% of the time required for other methods.

  19. Differential correction technique for removing common errors in gas filter radiometer measurements

    NASA Technical Reports Server (NTRS)

    Wallio, H. A.; Chan, Caroline C.; Gormsen, Barbara B.; Reichle, Henry G., Jr.

    1992-01-01

    The Measurement of Air Pollution from Satellites (MAPS) gas filter radiometer experiment was designed to measure CO mixing ratios in the earth's atmosphere. MAPS also measures N2O to provide a reference channel for the atmospheric emitting temperature and to detect the presence of clouds. In this paper we formulate equations to correct the radiometric signals based on the spatial and temporal uniformity of the N2O mixing ratio in the atmosphere. Results of an error study demonstrate that these equations reduce the error in inferred CO mixing ratios. Subsequent application of the technique to the MAPS 1984 data set decreases the error in the frequency distribution of mixing ratios and increases the number of usable data points.

  20. A novel acoustic method for gas flow measurement using correlation techniques

    NASA Astrophysics Data System (ADS)

    Knuuttila, Matti Tapani

    The study demonstrates a new kind of acoustic method for gas flow measurement. The method uses upstream and downstream propagating low frequency plane wave and correlation techniques for volume flow rate determination. The theory of propagating low frequency plane waves in the pipe is introduced and is proved empirically to be applicable for flow measurement. The flow profile dependence of the method is verified and found to be negligible at least in the region of moderate perturbations. The physical principles of the method were applied in practice in the form of a flowmeter with new design concepts. The developed prototype meters were verified against the reference standard of NMI (Nederlands Meetinstituut), which showed that a wide dynamic range of 1:80 is achievable with total expanded uncertainty below 0.3%. Also the requirements used for turbine meters of linearity, weighted mean error and stability were shown to be well fulfilled. A brief comparison with other flowmeter types shows the new flowmeter to be competitive. The advantages it offers are a small pressure drop over the meter, no blockage of flow in possible malfunction, no pulsation to flow, essentially no moving parts, and the possibility for bidirectional measurements. The introduced flowmeter is also capable of using the introduced flowmeter is also capable of using the telephone network or a radio-modem to read the consumption of gas and report its operation to the user.

  1. Technique for harvesting unicellular algae using colloidal gas aphrons. [Chlorella vulgaris

    SciTech Connect

    Honeycutt, S.S.; Wallis, D.A.; Sebba, F.

    1983-01-01

    A novel technique using colloidal gas aphron (CGA) dispersions has been investigated for harvesting Chlorella vulgaris, a unicellular green algae, from dilute suspension. CGA are very small gas bubbles, on the order of 25 ..mu..m in diameter, that are each encapsulated in an aqueous shell of surfactant solution. The process is based on the technology of CGA flotation, which involves the formation of algae-bubble complexes and their subsequent flotation to the surface. At neutral pH, the efficiency of algae removal was maximized when a cationic surfactant (lauryl pyridinium chloride) was used for CGA generation. At pH 10, both the cationic and anionic (sodium dodecyl benzene sulfonate) CGA dispersions yielded comparable removals. Addition of small quantities of alum (to 10/sup -4/M) improved removals using the cationic CGA, and at pH 10 this combination yielded the maximum removals that were achieved: 52.1% removal after a single application of CGA dispersion (1 to 1, dispersion to sample volume ratio), and 89.2% removal after an additional application. 12 references, 1 figure, 2 tables.

  2. The contribution of gas chromatography to the resynthesis of the post-Byzantine artist's technique.

    PubMed

    Kouloumpi, Eleni; Lawson, Graham; Pavlidis, Vassilios

    2007-02-01

    Gas chromatographic analysis of ethyl chloroformate derivatives of samples taken from the paint layers of post-Byzantine panel paintings permitted the successful characterisation of the different binding media used in them. This paper describes an analytical study of various post-Byzantine binding media such as egg yolk and egg/oil emulsion, using gas chromatography. The characterisation of these icons' binding media is an important task, as it contributes to our understanding of and the reconstruction of the post-Byzantine artists' palette. It also enables us to investigate the validity of our assumptions about the influences of Venetian style on Greek icon painting techniques from the sixteenth to the early nineteenth century, which up to now have been based on information in artists' handbooks. The methodology involves two experimental steps: (1) hydrolysis of the proteins and triglycerides in the binding media to obtain free amino acids and fatty acids, and (2) the formation of ethyl chloroformate derivatives via derivatization with ethyl chloroformate (ECF). This methodology is of considerable interest, since it permits the identifcation of the nature of the proteinaceous binders used in these works through the simultaneous derivatization and determination of amino acids and fatty acids. Advantages of this methodology include the small quantity of sample required and the minimum preparation time involved. The proteinaceous media can be determined based on the ratios of seven stable amino acids, while the type of emulsions and drying oils used can be determined from the fatty acid ratio.

  3. Optimal sensor locations for the backward lagrangian stochastic technique in measuring lagoon gas emission.

    PubMed

    Ro, Kyoung S; Stone, Kenneth C; Johnson, Melvin H; Hunt, Patrick G; Flesch, Thomas K; Todd, Richard W

    2014-07-01

    This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of measuring gas emission rates from a lagoon environment using the backward Lagrangian stochastic (bLS) inverse-dispersion technique. Path-integrated concentrations (PICs) and three-dimensional (3D) wind vector data were collected at different locations within the lagoon landscape. A floating 45 m × 45 m perforated pipe network on an irrigation pond was used as a synthetic distributed emission source for the controlled release of methane. A total of 961 15-min datasets were collected under different atmospheric stability conditions over a 2-yr period. The PIC location had a significant impact on the accuracy of the bLS technique. The location of the 3D sonic anemometer was generally not a factor for the measured accuracies with the PIC positioned on the downwind berm. The PICs across the middle of the pond consistently produced the lowest accuracy with any of the 3D anemometer locations (<69% accuracy). The PICs located on the downwind berm consistently yielded the best bLS accuracy regardless of whether the 3D sonic anemometer was located on the upwind, side, or downwind berm (accuracies ranged from 79 to 108%). The accuracies of the emission measurements with the berm PIC-berm 3D setting were statistically similar to that found in a more ideal homogeneous grass field. Considering the practical difficulties of setting up equipment and the accuracies associated with various sensor locations, we recommend that wind and concentration sensors be located on the downwind berm.

  4. Wellsite, laboratory, and mathematical techniques for determining sorbed gas content of coals and gas shales utilizing well cuttings

    USGS Publications Warehouse

    Newell, K.D.

    2007-01-01

    Drill cuttings can be used for desorption analyses but with more uncertainty than desorption analyses done with cores. Drill cuttings are not recommended to take the place of core, but in some circumstances, desorption work with cuttings can provide a timely and economic supplement to that of cores. The mixed lithologic nature of drill cuttings is primarily the source of uncertainty in their analysis for gas content, for it is unclear how to apportion the gas generated from both the coal and the dark-colored shale that is mixed in usually with the coal. In the Western Interior Basin Coal Basin in eastern Kansas (Pennsylvanian-age coals), dark-colored shales with normal (??? 100 API units) gamma-ray levels seem to give off minimal amounts of gas on the order of less than five standard cubic feet per ton (scf/ton). In some cuttings analyses this rule of thumb for gas content of the shale is adequate for inferring the gas content of coals, but shales with high-gamma-ray values (>150 API units) may yield several times this amount of gas. The uncertainty in desorption analysis of drill cuttings can be depicted graphically on a diagram identified as a "lithologic component sensitivity analysis diagram." Comparison of cuttings desorption results from nearby wells on this diagram, can sometimes yield an unique solution for the gas content of both a dark shale and coal mixed in a cuttings sample. A mathematical solution, based on equating the dry, ash-free gas-contents of the admixed coal and dark-colored shale, also yields results that are correlative to data from nearby cores. ?? 2007 International Association for Mathematical Geology.

  5. Reactive gas pulsing sputtering process, a promising technique to elaborate silicon oxynitride multilayer nanometric antireflective coatings

    NASA Astrophysics Data System (ADS)

    Farhaoui, A.; Bousquet, A.; Smaali, R.; Moreau, A.; Centeno, E.; Cellier, J.; Bernard, C.; Rapegno, R.; Réveret, F.; Tomasella, E.

    2017-01-01

    The oxynitride materials present a high versatility, which enables their properties to be controlled by tuning their elemental composition. This is the case for silicon oxynitrides used for multilayer antireflective coatings (ARCs), where several thin films with various refractive indexes are needed. Different techniques allow for the modification of the thin film composition. In this paper, we investigate the reactive gas pulsing sputtering process to easily tune the thin film composition, from an oxide to a nitride, by controlling the averaged oxygen flow rate, without reducing the deposition rate, compared to a conventional reactive process (CP). We then demonstrated that the refractive indexes of films deposited by this pulsing process (PP) can be varied in the same range compared to films obtained by CP (from 1.83 to 1.45 at 1.95 eV), whereas their extinction coefficients remain low. Finally, the multilayer ARC has been simulated and optimized by a genetic algorithm for wavelength at 600 nm and for the silicon substrate. Various optimized multilayer (mono-, bi- and tri-layers) structures have been deposited by the PP technique and characterized. They are presented in good agreement with the simulated reflectivity. Hence, the PP allows for an easy depositing tri-layer system with a reasonable deposition rate and low reflectivity (8.1% averaged on 400-750 nm visible light range).

  6. Concentration measurements in molecular gas mixtures with a two-pump pulse femtosecond polarization spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Hertz, E.; Chaux, R.; Faucher, O.; Lavorel, B.

    2001-08-01

    Recently, we have demonstrated the ability of the Raman-induced polarization spectroscopy (RIPS) technique to accurately determine concentration or polarizability anisotropy ratio in low-pressure binary molecular mixtures [E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000)]. It has been also pointed out that macroscopic interference, occurring when two revivals associated to different molecules time overlap, can be used to achieve measurements with picosecond time resolution. The applicability of the technique is intrinsically limited to a concentration range where the signals of both molecules are of the same magnitude. In this paper, a two-pump pulse sequence with different intensities is used to overcome this limitation. The relative molecular responses are weighted by the relative laser pump intensities to give comparable signals. Furthermore, by tuning the time delay between the two-pump pulses, macroscopic interference can be produced regardless of the accidental coincidences between the two molecular temporal responses. The study is performed in a CO2-N2O gas mixture and the concentration is measured with and without macroscopic interference. Applications of the method in the field of noninvasive diagnostics of combustion media are envisaged.

  7. Development of techniques to characterize particulates emitted from gas turbine exhausts

    NASA Astrophysics Data System (ADS)

    Johnson, M. P.; Hilton, M.; Waterman, D. R.; Black, J. D.

    2003-07-01

    Particles emitted from aircraft play a role in the formation of contrails and it is essential to characterize them to understand the physical and chemical processes that are happening. Current methods for measuring aircraft particulate emissions study the reflectance of samples collected in filter papers. A series of experiments to more fully characterize particulates has been performed on a small-scale gas turbine engine. An intrusive sampling system conforming to current ICAO regulations for aircraft emissions was used with a scanning mobility particle sizer (SMPS). Non-intrusive measurements were made using laser induced incandescence (LII) and samples were taken from the exhaust to analyse using a transmission electron microscope. Results obtained from different techniques showed good agreement with each other. As engine power conditions increased, both the SMPS and LII indicated that the mass of soot had decreased. Differences were observed between measurements of diluted and undiluted samples. The mean particle size decreased with dilution but the size distribution became bi-modal. The study has shown how significant the sampling environment is for measuring particulates and careful techniques need to be used to ensure that accurate, consistent results can be obtained.

  8. Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques

    NASA Astrophysics Data System (ADS)

    Bhatia, Sonik; Verma, Neha; Bedi, R. K.

    Nowadays, applications of nanosized materials have been an important issue in basic and applied sciences. In this investigation, Zinc Oxide (ZnO) nanoparticles were prepared by two different techniques (simple heat treatment, thermal evaporation-two zone furnaces). In order to control shape and size - ZnO nanoparticles prepared from heat treatment were used as a source for thermal evaporation method by using two zone split furnace by varying zone temperature (Zone 1-800 °C and Zone 2-400 °C). For both techniques 0.17 M of Zn acetate dihydrate is used as main precursor and film is deposited on glass substrate. Synthesized ZnO were characterized for XRD, FESEM, FTIR and UV-Vis spectrophotometer and LCR meter. XRD revealed hexagonal wurtzite structure with preferential orientation along (1 0 1) plane. FESEM observed that grain size in the range of range of ∼50 ± 5 nm. FTIR spectra showed that the peaks between 400 and 500 cm-1 for ZnO stretching modes. Optical properties has been studied and found that the observed band gap lies in the range of 3.32-3.36 eV. The higher value of capacitance is observed at lower frequency. Gas sensing properties showed the higher response in case of thermal evaporation as compared to simple heat treatment at an operating temperature of 250 °C.

  9. An accurate optical technique for measuring the nuclear polarisation of 3He gas

    NASA Astrophysics Data System (ADS)

    Talbot, C.; Batz, M.; Nacher, P.-J.; Tastevin, G.

    2011-06-01

    In the metastability exchange optical pumping cells of our on-site production unit and of our other experimental set-ups, we use a light absorption technique to measure the 3He nuclear polarisation. It involves weak probe beams at 1083 nm, that are either perpendicular or parallel to the magnetic field and cell axis, with suitable light polarisations. When metastability exchange collisions control the populations of the sublevels in the 23S state, absolute values of the 3He ground state nuclear polarisation are directly inferred from the ratio of the absorption rates measured for these probe beams. Our report focuses on the transverse detection scheme for which this ratio, measured at low magnetic field for σ and π light polarisations, hardly depends on gas pressure or the presence of an intense pump beam. This technique has been systematically tested both in pure 3He and isotopic mixtures and it is routinely used for accurate control of the optical pumping efficiency as well as for calibration of the NMR system.

  10. Synergistic Separation Behavior of Boron in Metallurgical Grade Silicon Using a Combined Slagging and Gas Blowing Refining Technique

    NASA Astrophysics Data System (ADS)

    Wu, Jijun; Zhou, Yeqiang; Ma, Wenhui; Xu, Min; Yang, Bin

    2017-02-01

    A combined slagging and gas blowing refining technique for boron removal from metallurgical grade silicon using the CaO-SiO2-CaCl2 slag and the mixed Ar-O2-H2O gas is investigated. The oxygen gas blowing in combination with water vapor shows a wonderful removal efficiency of boron compared with the single oxygen or the single water vapor blowing. It is analyzed from the thermodynamics that a synergistic separation behavior of boron is resulted from CaCl2 and O2. Boron is removed and reduced from 22 to 0.75 ppmw with a removal efficiency of 96.6 pct.

  11. Neuronal correlates of gastric pain induced by fundus distension: a 3T-fMRI study.

    PubMed

    Lu, C-L; Wu, Y-T; Yeh, T-C; Chen, L-F; Chang, F-Y; Lee, S-D; Ho, L-T; Hsieh, J-C

    2004-10-01

    Visceral hypersensitivity in gastric fundus is a possible pathogenesis for functional dyspepsia. The cortical representation of gastric fundus is still unclear. Growing evidence shows that the insula, but not the primary or secondary somatosensory region (SI or SII), may be the cortical target for visceral pain. Animal studies have also demonstrated that amygdala plays an important role in processing visceral pain. We used fMRI to study central projection of stomach pain from fundus balloon distension. We also tested the hypothesis that there will be neither S1 nor S2 activation, but amygdala activation with the fundus distension. A 3T-fMRI was performed on 10 healthy subjects during baseline, fullness (12.7 +/- 0.6 mmHg) and moderate gastric pain (17.0 +/- 0.8 mmHg). fMRI signal was modelled by convolving the predetermined psychophysical response. Statistical comparisons were performed between conditions on a group level. Gastric pain activated a wide range of cortical and subcortical structures, including thalamus and insula, anterior and posterior cingulate cortices, basal ganglia, caudate nuclei, amygdala, brain stem, cerebellum and prefrontal cortex (P < 0.001). A subset of these neuronal substrates was engaged in the central processing of fullness sensation. SI and SII were not activated during the fundus stimulation. In conclusion, the constellation of neuronal structures activated by fundus distension overlaps the pain matrices induced musculocutaneous pain, with the exception of the absence of SI or SII activation. This may account for the vague nature of visceral sensation/pain. Our data also confirms that the insula and amygdala may act as the central role in visceral sensation/pain, as well as in the proposed sensory-limbic model of learning and memory of pain.

  12. Effects of gastric distension and feeding on cardiovascular variables in the shorthorn sculpin (Myoxocephalus scorpius).

    PubMed

    Seth, Henrik; Axelsson, Michael

    2009-01-01

    We have previously shown in rainbow trout (Oncorhynchus mykiss) that gastric distension induces an instantaneous alpha-adrenoceptor-mediated increase in the dorsal aortic blood pressure (P(da)), with no change in cardiac output (CO), gut blood flow (Q(cma)), or heart rate. To investigate if feeding habits affect these patterns and to compare the differences between gastric distension alone and feeding in the same experimental setting, we used the short-horn sculpin (Myoxocephalus scorpius), an inactive ambush predator with a capacity to eat large meals. An inflatable balloon was placed in the stomach of one group while another group was fed fish meat. When distending the stomach with a volume corresponding to a meal of 8-10% body weight, there is a profound and long-lasting increase in systemic (123 +/- 27%) and gastrointestinal (R(cma); 82 +/- 24%) vascular resistance, leading to an increase in P(da) (19%) without any change in CO or Q(cma). After force-feeding, there is a rapid transient increase in R(cma) (24 +/- 4%) and an even larger P(da) response (53%). There is also a subsequent increase in both CO (28 +/- 8%) and Q(cma) (27 +/- 9%) after 30 min. By 15 h, CO and Q(cma) increase further (41 +/- 11 and 63 +/- 14%, respectively), and this increase persists for up to 60 h. The increase in Q(cma) is mediated via both an increase in CO and a shunting of blood from the systemic circulation via a decrease in R(cma) (34 +/- 7%). In conclusion, the response to mechanical distension of the stomach is similar to what we have described in rainbow trout, and the postprandial gastrointestinal hyperemia is most likely chemically induced.

  13. Identification of the visceral pain pathway activated by noxious colorectal distension in mice.

    PubMed

    Kyloh, Melinda; Nicholas, Sarah; Zagorodnyuk, Vladimir P; Brookes, Simon J; Spencer, Nick J

    2011-01-01

    In patients with irritable bowel syndrome, visceral pain is evoked more readily following distension of the colorectum. However, the identity of extrinsic afferent nerve pathway that detects and transmits visceral pain from the colorectum to the spinal cord is unclear. In this study, we identified which extrinsic nerve pathway(s) underlies nociception from the colorectum to the spinal cord of rodents. Electromyogram recordings were made from the transverse oblique abdominal muscles in anesthetized wild type (C57BL/6) mice and acute noxious intraluminal distension stimuli (100-120 mmHg) were applied to the terminal 15 mm of colorectum to activate visceromotor responses (VMRs). Lesioning the lumbar colonic nerves in vivo had no detectable effect on the VMRs evoked by colorectal distension. Also, lesions applied to the right or left hypogastric nerves failed to reduce VMRs. However, lesions applied to both left and right branches of the rectal nerves abolished VMRs, regardless of whether the lumbar colonic or hypogastric nerves were severed. Electrical stimulation applied to either the lumbar colonic or hypogastric nerves in vivo, failed to elicit a VMR. In contrast, electrical stimulation (2-5 Hz, 0.4 ms, 60 V) applied to the rectum reliably elicited VMRs, which were abolished by selective lesioning of the rectal nerves. DiI retrograde labeling from the colorectum (injection sites 9-15 mm from the anus, measured in unstretched preparations) labeled sensory neurons primarily in dorsal root ganglia (DRG) of the lumbosacral region of the spinal cord (L6-S1). In contrast, injection of DiI into the mid to proximal colon (injection sites 30-75 mm from the anus, measured in unstretched preparations) labeled sensory neurons in DRG primarily of the lower thoracic level (T6-L2) of the spinal cord. The visceral pain pathway activated by acute noxious distension of the terminal 15 mm of mouse colorectum is transmitted predominantly, if not solely, through rectal

  14. A Case Report of Postmortem Radiography of Acute, Fatal Abdominal Distension After Binge Eating.

    PubMed

    Usui, Akihito; Kawasumi, Yusuke; Ishizuka, Yuya; Hosokai, Yoshiyuki; Ikeda, Tomoya; Saito, Haruo; Funayama, Masato

    2016-12-01

    This case report describes a woman who developed fatal gastric dilatation after binge eating. She called an ambulance because of stomach pain. When she arrived at the hospital, she did not look seriously ill. However, she rapidly became unconscious and collapsed immediately after she was laid on the examination table in a supine position. Postmortem chest x-ray and computed tomography showed right shift of the mediastinum and raised left diaphragm caused by massive gastric distension. Computed tomography showed no visible inferior vena cava. We think that her sudden deterioration was caused by movement of her stomach contents. Radiographic images provided some clues to the cause of her rapid collapse and death.

  15. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique.

    PubMed

    Ji, Chengdong; Annabi, Nasim; Hosseinkhani, Maryam; Sivaloganathan, Sobana; Dehghani, Fariba

    2012-02-01

    The aim of this study was to prepare poly-DL-lactide/polyethylene glycol (PDLLA/PEG) blends to improve medium absorption and cell proliferation in the three-dimensional (3-D) structure of their scaffolds. Carbon dioxide (CO2) was used as a foaming agent to create porosity in these blends. The results of Fourier transform infrared (FTIR) spectroscopy demonstrated that the blends were homogeneous mixtures of PDLLA and PEG. The peak shifts at 1092 and 1744 cm(-1) confirmed the presence of molecular interactions between these two compounds. Increasing the PEG weight ratio enhanced the relative crystallinity and hydrophilicity. The PDLLA/PEG blends (especially 80/20 and 70/30 weight ratios) exhibited linear degradation profiles over an incubation time of 8 weeks. The mechanical properties of PDLLA/PEG blends having less than 30 wt.% PEG were suitable for the fabrication of porous scaffolds. Increasing the concentration of PEG to above 50% resulted in blends that were brittle and had low mechanical integrity. Highly porous scaffolds with controllable pore size were produced for 30 wt.% PEG samples using the gas foaming technique at temperatures between 25 and 55 °C and pressures between 60 and 160 bar. The average pore diameters achieved by gas foaming process were between 15 and 150 μm, and had an average porosity of 84%. The medium uptake and degradation rate of fabricated PDLLA/PEG scaffolds were increased compared with neat PDLLA film due to the presence of PEG and porosity. The porous scaffolds also demonstrated a lower modulus of elasticity and a higher elongation at break compared to the non-porous film. The fabricated PDLLA/PEG scaffolds have high potential for various tissue-engineering applications.

  16. Use of the gas-filled-magnet technique for particle identification at low energies

    SciTech Connect

    Rehm, K.K.; Jiang, C.L.; Paul, M.

    1995-08-01

    Reaction studies of interest to astrophysics with radioactive ion beams will be done mainly in inverse reaction kinematics, i.e., heavy particles bombarding a hydrogen target. The low energy of the outgoing heavy reaction products makes particle identification with respect to mass and nuclear charge a major challenge. For the planned {sup 18}F(p,{alpha}) experiment one expects five different types of particles in the outgoing channels: {sup 18}F and {sup 18}O (from elastic scattering of {sup 18}F and {sup 18}O on {sup 12}C), {sup 15}O and {sup 15}N (from the {sup 18}F and {sup 18}O induced (p,{alpha}) reactions) and {sup 12}C recoils from the polypropylene target. While mass determination can be achieved easily by time-of-flight (TOF) measurements, a determination of the nuclear charge presents a challenge, especially if the energy of the particles is below 500 keV/u. We studied the gas-filled magnet technique for Z-identification of light ions between Z = 6-9. In a gas-filled magnet the particles move with an average charge state {bar q} which in one parameterization is given by {bar q} = Z ln(avZ{sup {alpha}})/ln(bZ{sup {beta}}) where Z is the nuclear charge of the ions and v their velocity. Introducing into the expression for the magnetic rigidity B{rho} = mv/{bar q} results in a Z dependence of B{rho} which is valid to very low velocities. As a magnet we used the Enge split-pole spectrograph which was filled with nitrogen gas at a pressure of 0.5 Torr. The particles were detected in the focal plane with a 50 x 10 cm{sup 2} parallel-grid-avalanche counter which measured TOF and magnetic rigidity. The mass and Z separation was tested with {sup 13}C and {sup 18}O beams at energies of about 600 keV/u and recoil particles ranging from {sup 12}C to {sup 19}F. The Z-separation obtained at these energies was {triangle}Z/Z = 0.28 which is sufficient to separate individual elements for Z < 10.

  17. Involvement of the dopaminergic system in the central orexin-induced antinociceptive action against colonic distension in conscious rats.

    PubMed

    Okumura, Toshikatsu; Nozu, Tsukasa; Kumei, Shima; Takakusaki, Kaoru; Miyagishi, Saori; Ohhira, Masumi

    2015-09-25

    We have recently demonstrated that orexin acts centrally in the brain to induce antinociceptive action against colonic distension through orexin 1 receptors in conscious rats. Although the dopaminergic system can induce antinociceptive action for somatic pain, the association between changes in the dopaminergic system and visceral pain perception has not been investigated. In the present study, we hypothesized that the dopaminergic system may be involved in visceral nociception, and if so, the dopaminergic system may mediate the orexin-induced visceral antinociception. Visceral sensation was evaluated using the colonic distension-induced abdominal withdrawal reflex (AWR) in conscious rats. Intracisternal injection of D1 (SKF38398) or D2 (quinpirole) dopamine receptor agonist increased the threshold volume of colonic distension-induced AWR in a dose-dependent manner. Pretreatment with either the D1 or D2 dopamine receptor antagonist (SCH23390 or sulpiride, respectively) potently blocked the centrally injected orexin-A-induced antinociceptive action against colonic distension. These results suggest for the first time that dopaminergic signaling via D1 and D2 dopamine receptors in the brain may induce visceral antinociception and that the dopaminergic signaling may be involved in the central orexin-induced antinociceptive action against colonic distension.

  18. Estimating starch availability and protein degradation of steam-flaked and reconstituted sorghum grain through a gas production technique.

    PubMed

    Xiong, Y; Bartle, S J; Preston, R L; Meng, Q

    1990-11-01

    Five steam-flaked sorghum grain (SFSG) samples with bulk densities of 476, 412, 347, 309 and 283 g/liter made by adjusting tension between mill rollers and three reconstituted sorghum grain (RSG) samples with reconstitution times of 10, 20 and 30 d and a control sample were analyzed for gas production kinetics (rumen liquor fermentation) and enzymatic glucose release (amyloglucosidase). Protein degradation was estimated from 6-h gas production and residual ammonia in the liquid. Gas production followed first-order kinetics (r2 greater than .98; P less than .01) and was used to describe rate and extent of digestion kinetics. Rate of gas production increased as processing degree increased. The magnitude of increase in gas production, however, was much less for RSG than for SFSG. Linear relationships were observed between enzymatic glucose release and the gas production rate constant k as well as gas production at 4,6 and 8 h (r2 greater than .98; P less than .01). Protein degradation decreased with processing degree of SFSG but increased with reconstitution time. A technique based on 6-h gas production and residual ammonia in the liquid is proposed to estimate both ruminal starch availability and ruminal protein degradability for processed sorghum grain.

  19. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques

    SciTech Connect

    Mastalerz, Maria; He, Lilin; Melnichenko, Yuri B; Rupp, John A

    2012-01-01

    Two Pennsylvanian coal samples (Spr326 and Spr879-IN1) and two Upper Devonian-Mississippian shale samples (MM1 and MM3) from the Illinois Basin were studied with regard to their porosity and pore accessibility. Shale samples are early mature stage as indicated by vitrinite reflectance (R{sub o}) values of 0.55% for MM1 and 0.62% for MM3. The coal samples studied are of comparable maturity to the shale samples, having vitrinite reflectance of 0.52% (Spr326) and 0.62% (Spr879-IN1). Gas (N{sub 2} and CO{sub 2}) adsorption and small-angle and ultrasmall-angle neutron scattering techniques (SANS/USANS) were used to understand differences in the porosity characteristics of the samples. The results demonstrate that there is a major difference in mesopore (2-50 nm) size distribution between the coal and shale samples, while there was a close similarity in micropore (<2 nm) size distribution. Micropore and mesopore volumes correlate with organic matter content in the samples. Accessibility of pores in coal is pore-size specific and can vary significantly between coal samples; also, higher accessibility corresponds to higher adsorption capacity. Accessibility of pores in shale samples is low.

  20. Sympathetic and cardiovascular responses to venous distension in an occluded limb.

    PubMed

    Cui, Jian; Leuenberger, Urs A; Gao, Zhaohui; Sinoway, Lawrence I

    2011-12-01

    We recently showed that a fixed volume (i.e., 40 ml) of saline infused into the venous circulation of an arterially occluded vascular bed increases muscle sympathetic nerve activity (MSNA) and blood pressure. In the present report, we hypothesized that the volume and rate of infusion would influence the magnitude of the sympathetic response. Blood pressure, heart rate, and MSNA were assessed in 13 young healthy subjects during forearm saline infusions (arrested circulation). The effects of different volumes of saline (i.e., 2%, 3%, 4%, or 5% forearm volume at 30 ml/min) and different rates of infusion (i.e., 5% forearm volume at 10, 20, or 30 ml/min) were evaluated. MSNA and blood pressure responses were linked with the infusion volume. Infusion of 5% of forearm volume evoked greater MSNA responses than did infusion of 2% of forearm volume (Δ11.6 ± 1.9 vs. Δ3.1 ± 1.8 bursts/min and Δ332 ± 105 vs. Δ38 ± 32 units/min, all P < 0.05). Moreover, greater MSNA responses were evoked by saline infusion at 30 ml/min than 10 ml/min (P < 0.05). Sonographic measurements confirmed that the saline infusions induced forearm venous distension. The results suggest that volume and rate of saline infusion are important factors in evoking sympathetic activation. We postulate that venous distension contributes to cardiovascular autonomic adjustment in humans.

  1. Stress and strain analysis of contractions during ramp distension in partially obstructed guinea pig jejunal segments.

    PubMed

    Zhao, Jingbo; Liao, Donghua; Yang, Jian; Gregersen, Hans

    2011-07-28

    Previous studies have demonstrated morphological and biomechanical remodeling in the intestine proximal to an obstruction. The present study aimed to obtain stress and strain thresholds to initiate contraction and the maximal contraction stress and strain in partially obstructed guinea pig jejunal segments. Partial obstruction and sham operations were surgically created in mid-jejunum of male guinea pigs. The animals survived 2, 4, 7 and 14 days. Animals not being operated on served as normal controls. The segments were used for no-load state, zero-stress state and distension analyses. The segment was inflated to 10 cmH(2)O pressure in an organ bath containing 37°C Krebs solution and the outer diameter change was monitored. The stress and strain at the contraction threshold and at maximum contraction were computed from the diameter, pressure and the zero-stress state data. Young's modulus was determined at the contraction threshold. The muscle layer thickness in obstructed intestinal segments increased up to 300%. Compared with sham-obstructed and normal groups, the contraction stress threshold, the maximum contraction stress and the Young's modulus at the contraction threshold increased whereas the strain threshold and maximum contraction strain decreased after 7 days obstruction (P<0.05 and 0.01). In conclusion, in the partially obstructed intestinal segments, a larger distension force was needed to evoke contraction likely due to tissue remodeling. Higher contraction stresses were produced and the contraction deformation (strain) became smaller.

  2. New models of experimental parotitis and parotid gland distension in rats.

    PubMed

    Okada-Ogawa, Akiko; Shinoda, Masamichi; Honda, Kuniya; Iwata, Koichi

    2012-01-01

    A significant reduction of the escape threshold to mechanical stimulation of the lateral facial skin was observed bilaterally at days 2 and 3 after unilateral complete Freund's adjuvant (CFA) administration into parotid gland. A slight reduction of mechanical escape threshold was also observed in rats with saline administration. The parotid gland inflammation was verified and quantified by measuring the tissue Evans' blue dye extravasation. The Evans' blue concentration in the parotid gland tissues was significantly greater in the CFA-injected rats than that of the saline-injected rats at 72 h after treatment. On day 10 after CFA administration into the parotid gland, the Evans' blue concentration was recovered to the control level. The administration of capsaicin into the parotid gland did not alter neuronal activities in the transition zone between the trigeminal spinal subnucleus interpolaris and caudalis (Vi/Vc). In contrast, capsaicin administration induced significant increases in the receptive field size and mechanical and cold responses of neurons located in superficial laminae of the C1/C2. The subgroup of C1/C2 neurons responded to mechanical distension of the parotid gland, whereas no Vi/Vc neurons responded to parotid distension.

  3. Stress and strain analysis of contractions during ramp distension in partially obstructed guinea pig jejunal segments

    PubMed Central

    Zhao, Jingbo; Liao, Donghua; Yang, Jian; Gregersen, Hans

    2011-01-01

    Previous studies have demonstrated morphological and biomechanical remodeling in the intestine proximal to an obstruction. The present study aimed to obtain stress and strain thresholds to initiate contraction and the maximal contraction stress and strain in partially obstructed guinea pig jejunal segments. Partial obstruction and sham operations were surgically created in mid-jejunum of male guinea pigs. The animals survived 2, 4, 7, and 14 days, respectively. Animals not being operated on served as normal controls. The segments were used for no-load state, zero-stress state and distension analyses. The segment was inflated to 10 cmH2O pressure in an organ bath containing 37°C Krebs solution and the outer diameter change was monitored. The stress and strain at the contraction threshold and at maximum contraction were computed from the diameter, pressure and the zero-stress state data. Young’s modulus was determined at the contraction threshold. The muscle layer thickness in obstructed intestinal segments increased up to 300%. Compared with sham-obstructed and normal groups, the contraction stress threshold, the maximum contraction stress and the Young’s modulus at the contraction threshold increased whereas the strain threshold and maximum contraction strain decreased after 7 days obstruction (P<0.05 and 0.01). In conclusion, in the partially obstructed intestinal segments, a larger distension force was needed to evoke contraction likely due to tissue remodeling. Higher contraction stresses were produced and the contraction deformation (strain) became smaller. PMID:21632056

  4. Size controlled deposition of Cu and Si nano-clusters by an ultra-high vacuum sputtering gas aggregation technique

    NASA Astrophysics Data System (ADS)

    Banerjee, A. N.; Krishna, R.; Das, B.

    2008-02-01

    In this paper we have reported the syntheses of copper and silicon nano-clusters by a sputtering-gas-aggregation type growth technique. The process involves typical magnetron sputtering vaporization of target materials followed by an inert gas condensation to form clusters of varying sizes. The size-distributions of the clusters typically follow a normal-distribution and the peak cluster sizes of the distributions depends on several factors, which include gas-flow rate, length of the growth region, deposition pressure etc. We have observed a variation in the peak cluster size with the variation of the gas (argon) flow rates. The experimental values are compared with the existing models and the results are found to be in good agreement. The results are significant since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster-size distributions.

  5. 3D Numerical study on the hollow profile polymer extrusion forming based on the gas-assisted technique

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Huang, X. Y.; Liu, H. S.

    2016-07-01

    In this study, gas-assisted extrusion method was introduced into the extrusion of the hollow profiles. To validate the feasibility of the new extrusion method, 3D numerical simulation of the hollow profiles based on gas-assisted technique was carried out by using the finite element method. The Phan-Thien-Tanner (PTT) mode was selected as the construction equation. In the simulations, the physical field distributions of four different extrusion modes were obtained and analyzed. Results showed that the extrudate effect of traditional no gas- assisted mode was poor because the extrudate swell phenomenon is obvious and the physical field values are larger. For the gas-assisted of the inner wall, the extrudate swell of the melt was more obvious than that of the traditional no gas-assisted mode on account of the no-slip boundary condition on the outer wall. For the gas-assisted of the outer wall, the dimple effect of the inner wall is more obvious owing to the no-slip boundary condition on the inner wall. However, the extrusion effect of the double walls gas-assisted mode is very good because of the full-slip effect on the both walls.

  6. Techniques and problems associated with the storage of natural gas in coal mining areas

    SciTech Connect

    Griffith, H.D. Jr.

    1980-01-01

    Six of Texas Gas's 10 storage fields along its pipeline system have coal-mining operations going on above the reservoirs; consequently, Texas Gas has cooperated closely with the coal industry to attain the maximum possible degree of safety and protection while meeting the mutual objectives of conservation and production. After discussing some of the problems encountered and the day-to-day obstacles to expect, Texas Gas concludes that intimate coordination between the coal and storage operations is the only real solution.

  7. Direct Experimental Evaluation of the Grain Boundaries Gas Content in PWR fuels: New Insight and Perspective of the ADAGIO Technique

    SciTech Connect

    Pontillon, Y.; Noirot, J.; Caillot, L.

    2007-07-01

    Over the last decades, many analytical experiments (in-pile and out-of-pile) have underlined the active role of the inter-granular gases on the global fuel transient behavior under accidental conditions such as RIA and/or LOCA. In parallel, the improvement of fission gas release modeling in nuclear fuel performance codes needs direct experimental determination/validation regarding the local gas distribution inside the fuel sample. In this context, an experimental program, called 'ADAGIO' (French acronym for Discriminating Analysis of Accumulation of Inter-granular and Occluded Gas), has been initiated through a joint action of CEA, EDF and AREVA NP in order to develop a new device/technique for quantitative and direct measurement of local fission gas distribution within an irradiated fuel pellet. ADAGIO technique is based on the fact that fission gas inventory (intra and inter-granular parts) can be distinguished by controlled fuel oxidation, since grain boundaries oxidize faster than the bulk. The purpose of the current paper is to present both the methodology and the associated results of the ADAGIO program performed at CEA. It has been divided into two main parts: (i) feasibility (UO{sub 2} and MOX fuels), (ii) application on high burn up UO{sub 2} fuel. (authors)

  8. Stark effect spectrophone for continuous absorption spectra monitoring. [a technique for gas analysis

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1981-01-01

    A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.

  9. Measurement techniques investigated for detection of hydrogen chloride gas in ambient air

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.

    1976-01-01

    Nine basic techniques are discussed, ranging from concentration (parts per million) to dosage only (parts per million-seconds) measurement techniques. Data for each technique include lower detection limit, response time, instrument status, and in some cases, specificity. Several techniques discussed can detect ambient hydrogen chloride concentrations below 1 part per million with a response time of seconds.

  10. Chemical Ionization Mass Spectrometry Techniques for Measurements of Gas-Phase Ammonia

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Neuman, J. A.; Yoshida, K.; Ryerson, T. B.; Huey, L. G.; Tanner, D. J.; Sjostedt, S. J.; Hubler, G.; Fortin, T. J.; Sueper, D. J.; Fehsenfeld, F. C.

    2005-12-01

    Chemical Ionization Mass Spectrometry (CIMS) can be a highly selective technique with fast time response for measuring many atmospheric trace gases (e.g., hydroxyl radical (OH), sulfuric acid (H2SO4), nitric acid (HNO3)). CIMS is highly versatile and has been used under a wide variety of conditions with many different ion-molecule detection schemes, even for detecting the same molecule. Because of its high proton affinity (853.6 kJ/mol), ammonia (NH3) is another ideal candidate for detection by CIMS. NH3, the dominant gas-phase base in the atmosphere, is a precursor of ammonium nitrate and ammonium sulfates, compounds that are important constituents of airborne fine particulate matter that affect air quality. The characterization of three NH3 CIMS instruments: an atmospheric pressure ionization instrument and a low-pressure flow tube reactor instrument, both utilizing protonated ethanol cluster ion chemistry, and a different low-pressure flow tube reactor instrument using protonated acetone dimer ion chemistry, is presented here. Instrument performance is assessed using ambient data from both ground-based and airborne field programs to examine detection sensitivity, background signal, and time response. Laboratory characterization of different inlet materials is also presented. All three instruments used PFA Teflon sampling inlets. Instrumental backgrounds were determined by scrubbing NH3 from ambient air using silicon phosphates that release phosphoric acid when exposed to ambient levels of humidity. Standard addition calibrations were performed using NH3 permeation devices whose output was determined via 185nm optical absorption. Regardless of CIMS technique or ion chemistry used, the observed detection sensitivities were all adequate for detecting changes in NH3 at the 10 pptv level on a 1s timescale. The time responses, defined by a 1/e2 decay in the calibration signal, ranged from 5s to 45s for the different sampling inlet configurations and are rapid enough

  11. [Determination of acetanilide herbicide residues in tea by gas chromatography-mass spectrometry with two different ionization techniques].

    PubMed

    Shen, Weijian; Xu, Jinzhong; Yang, Wenquan; Shen, Chongyu; Zhao, Zengyun; Ding, Tao; Wu, Bin

    2007-09-01

    An analytical method of solid phase extraction-gas chromatography-mass spectrometry with two different ionization techniques was established for simultaneous determination of 12 acetanilide herbicide residues in tea-leaves. Herbicides were extracted from tea-leaf samples with ethyl acetate. The extract was cleaned-up on an active carbon SPE column connected to a Florisil SPE column. Analytical screening was determined by the technique of gas chromatography (GC)-mass spectrometry (MS) in the selected ion monitoring (SIM) mode with either electron impact ionization (EI) or negative chemical ionization (NCI). It is reliable and stable that the recoveries of all herbicides were in the range from 50% to 110% at three spiked levels, 10 microg/kg, 20 microg/kg and 40 microg/kg, and the relative standard deviations (RSDs) were no more than 10.9%. The two different ionization techniques are complementary as more ion fragmentation information can be obtained from the EI mode while more molecular ion information from the NCI mode. By comparison of the two techniques, the selectivity of NCI-SIM was much better than that of EI-SIM method. The sensitivities of the both techniques were high, the limit of quantitative (LOQ) for each herbicide was no more than 2.0 microg/kg, and the limit of detection (LOD) with NCI-SIM technique was much lower than that of EI-SIM when analyzing herbicides with several halogen atoms in the molecule.

  12. An unusual cause of abdominal distension: intraperitoneal bladder perforation secondary to intermittent self-catheterisation.

    PubMed

    Martin, Jennifer; Convie, Liam; Mark, David; McClure, Mark

    2015-02-25

    We report a strikingly unusual case of traumatic intraperitoneal perforation of an augmented bladder from clean intermittent self-catheterisation (CISC), which presented a unique diagnostic challenge. This case describes a 48-year-old T1 level paraplegic, who had undergone clamshell ileocystoplasty for detrusor overactivity, presenting with abdominal distension, vomiting and diarrhoea. Initial investigations were suggestive of disseminated peritoneal malignancy with ascitic fluid collections, but the ascitic fluid was found to be intraperitoneal urine from a perforation of the urinary bladder. This was associated with an inflammatory response in the surrounding structures causing an appearance of colonic thickening and omental disease. Although the diagnostic process was complex due to this patient's medical history, the treatment plan initiated was non-operative, with insertion of an indwelling urinary catheter and radiologically guided drainage of pelvic and abdominal collections. Overdistension perforations of augmented urinary bladders have been reported, but few have described perforation from CISC.

  13. Polycyclic aromatic hydrocarbons, brachial artery distensibility and blood pressure among children residing near an oil refinery

    PubMed Central

    Trasande, Leonardo; Urbina, Elaine M.; Khoder, Mamdouh; Alghamdi, Mansour; Shabaj, Ibrahim; Alam, Mohammed S.; Harrison, Roy M.; Shamy, Magdy

    2017-01-01

    Background Polycyclic aromatic hydrocarbons (PAH) are produced by the burning and processing of fuel oils, and have been associated with oxidant stress, insulin resistance and hypertension in adults. Few studies have examined whether adolescents are susceptible to cardiovascular effects of PAHs. Objective To study associations of PAH exposure with blood pressure (BP) and brachial artery distensibility (BAD), an early marker of arterial wall stiffness, in young boys attending three schools in Jeddah, Saudi Arabia in varying proximity to an oil refinery. Methods Air samples collected from the three schools were analyzed for PAHs. PAH metabolites (total hydroxyphenanthrenes and 1-hydroxypyrene) were measured in urine samples from 184 adolescent males, in whom anthropometrics, heart rate, pulse pressure, brachial artery distensibility and blood pressure were measured. Descriptive, bivariate and multivariable analyses were performed to assess relationships of school location and urinary PAH metabolites with cardiovascular measures. Results Total suspended matter was significantly higher (444 ± 143 µg/m3) at the school near the refinery compared to a school located near a ring road (395 ± 65 µg/m3) and a school located away from vehicle traffic (232 ± 137 µg/m3), as were PAHs. Systolic (0.47 SD units, p = 0.006) and diastolic (0.53 SD units, p < 0.001) BP Z-scores were highest at the school near the refinery, with a 4.36-fold increase in prehypertension (p = 0.001), controlling for confounders. No differences in pulse pressure, BAD and heart rate were noted in relationship to school location. Urinary total hydroxyphenanthrenes and 1-hydroxypyrene were not associated with cardiovascular outcomes. Conclusions Proximity to an oil refinery in Saudi Arabia is associated with prehypertension and increases in PAH and particulate matter exposures. Further study including insulin resistance measurements, better control for confounding, and longitudinal measurement is

  14. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; R., Ahmad; Shafiq, M.; Saleem, S.; S. Shah, M.; Hussain, T.; A. Khan, I.; K., Abbas; S. Abbas, M.

    2014-10-01

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.

  15. Comparison of inert-gas-fusion and modified Kjeldahl techniques for determination of nitrogen in niobium alloys

    NASA Technical Reports Server (NTRS)

    Merkle, E. J.; Graab, J. W.; Davis, W. F.

    1974-01-01

    This report compares results obtained for the determination of nitrogen in a selected group of niobium-base alloys by the inert-gas-fusion and the Kjeldahl procedures. In the inert-gas-fusion procedure the sample is heated to approximately 2700 C in a helium atmosphere in a single-use graphite crucible. A platinum flux is used to facilitate melting of the sample. The Kjeldahl method consisted of a rapid decomposition with a mixture of hydrofluoric acid, phosphoric acid, and potassium chromate; distillation in the presence of sodium hydroxide; and highly sensitive spectrophotometry with nitroprusside-catalyzed indophenol. In the 30- to 80-ppm range, the relative standard deviation was 5 to 7 percent for the inert-gas-fusion procedure and 2 to 8 percent for the Kjeldahl procedure. The agreement of the nitrogen results obtained by the two techniques is considered satisfactory.

  16. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned

  17. A technique for administering xenon gas anesthesia during surgical procedures in mice.

    PubMed

    Ruder, Arne Mathias; Schmidt, Michaela; Ludiro, Alessia; Riva, Marco A; Gass, Peter

    2014-11-01

    Carrying out invasive procedures in animals requires the administration of anesthesia. Xenon gas offers advantages as an anesthetic agent compared with other agents, such as its protection of the brain and heart from hypoxia-induced damage. The high cost of xenon gas has limited its use as an anesthetic in animal experiments, however. The authors designed and constructed simple boxes for the induction and maintenance of xenon gas and isoflurane anesthesia in small rodents in order to minimize the amount of xenon gas that is wasted. While using their anesthesia delivery system to anesthetize pregnant mice undergoing caesarean sections, they measured the respiratory rates of the anesthetized mice, the survival of the pups and the percentages of oxygen and carbon dioxide within the system to confirm the system's safety.

  18. A Technique to Measure Energy Partitioning and Absolute Gas Pressures of Strombolian Explosions Using Doppler Radar at Erebus Volcano

    NASA Astrophysics Data System (ADS)

    Gerst, A.; Hort, M.; Kyle, P. R.; Voege, M.

    2008-12-01

    In 2005/06 we deployed three 24GHz (K-Band) continuous wave Doppler radar instruments at the crater rim of Erebus volcano in Antarctica. At the time there was a ~40 m wide, ~1000°C hot convecting phonolite lava lake, which was the source of ~0-6 Strombolian gas bubble explosions per day. We measured the velocities of ~50 explosions using a sample rate of 1-15 Hz. Data were downloaded in real-time through a wireless network. The measurements provide new insights into the still largely unknown mechanism of Strombolian eruptions, and help improve existing eruption models. We present a technique for a quasi in-situ measurement of the absolute pressure inside an eruption gas bubble. Pressures were derived using a simple eruption model and measured high resolution bubble surface velocities during explosions. Additionally, this technique allows us to present a comprehensive energy budget of a volcanic explosion as a time series of all important energy terms (i.e. potential, kinetic, dissipative, infrasonic, surface, seismic and thermal energy output). The absolute gas pressure inside rising expanding gas bubbles rapidly drops from ~3-10 atm (at the time when the lake starts to bulge) to ~1 atm before the bubble bursts, which usually occurs at radii of ~15-20m. These pressures are significantly lower than previously assumed for such explosions. The according internal energy of the gas agrees well with the observed total energy output. The results show that large explosions released about 109 to 1010 J each (equivalent to about 200-2000 kg of TNT), at a peak discharge rate frequently exceeding 109 W (the power output of a typical nuclear power plant). This dynamic output is mainly controlled by the kinetic and potential energy of the exploding magma shell, while other energy types were found to be much smaller (with the exception of thermal energy). Remarkably, most explosions at Erebus show two distinct surface acceleration peaks separated by ~0.3 seconds. This suggests

  19. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    USGS Publications Warehouse

    Bohlke, Johnkarl F.; Harvey, Judson W.; Busenberg, Eurybiades; Tobias, Craig R.

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  20. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    USGS Publications Warehouse

    Tobias, C.R.; Böhlke, J.K.; Harvey, J.W.; Busenberg, E.

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF 6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF 6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  1. [A review of mixed gas detection system based on infrared spectroscopic technique].

    PubMed

    Dang, Jing-Min; Fu, Li; Yan, Zi-Hui; Zheng, Chuan-Tao; Chang, Yu-Chun; Chen, Chen; Wang, Yi-Din

    2014-10-01

    In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.

  2. Measuring Humidity in Methane and Natural Gas with a Microwave Technique

    NASA Astrophysics Data System (ADS)

    Gavioso, R. M.; Madonna Ripa, D.; Benyon, R.; Gallegos, J. G.; Perez-Sanz, F.; Corbellini, S.; Avila, S.; Benito, A. M.

    2014-04-01

    The results of microwave measurements with a quasi-spherical resonator in humid methane samples realized under laboratory conditions at the Istituto Nazionale di Ricerca Metrologica (INRiM) and under industrial conditions in a natural gas sample made available at the facilities of the Technical Manager of the Spanish Gas System and main supplier of natural gas in Spain (ENAGAS) are reported. Measurements at INRiM included vapor phase and condensation tests on methane samples prepared with amount fractions of water between 600 ppm and 5000 ppm at temperatures between 273 K and 295 K and pressures between 150 kPa and 1 MPa. ENAGAS measurements were performed at ambient temperature, 750 kPa on natural gas sampled from the pipeline and successively humidified at amount fractions of water between 140 ppm and 250 ppm for completeness of the comparison with several humidity sensors and instrumentation based on different technologies. To enhance the sensitivity of the microwave method at low humidity, an experimental procedure based on the relative comparison of the dielectric permittivity of the humid gas sample before and after being subject to a chemical drying process was conceived and implemented. The uncertainty budget and the final sensitivity of this procedure are discussed.

  3. CHARACTERIZATION OF CONDITIONS OF NATURAL GAS STORAGE RESERVOIRS AND DESIGN AND DEMONSTRATION OF REMEDIAL TECHNIQUES FOR DAMAGE MECHANISMS FOUND THEREIN

    SciTech Connect

    J.H. Frantz; K.E. Brown

    2003-02-01

    There are four primary goals of contract DE-FG26-99FT40703: (1) We seek to better understand how and why two damage mechanisms--(1) inorganic precipitants, and (2) hydrocarbons and organic residues, occur at the reservoir/wellbore interface in gas storage wells. (2) We plan on testing potential prevention and remediation strategies related to these two damage mechanisms in the laboratory. (3) We expect to demonstrate in the field, cost-effective prevention and remediation strategies that laboratory testing deems viable. (4) We will investigate new technology for the gas storage industry that will provide operators with a cost effective method to reduce non-darcy turbulent flow effects on flow rate. For the above damage mechanisms, our research efforts will demonstrate the diagnostic technique for determining the damage mechanisms associated with lost deliverability as well as demonstrate and evaluate the remedial techniques in the laboratory setting and in actual gas storage reservoirs. We plan on accomplishing the above goals by performing extensive lab analyses of rotary sidewall cores taken from at least two wells, testing potential remediation strategies in the lab, and demonstrating in the field the applicability of the proposed remediation treatments. The benefits from this work will be quantified from this study and extrapolated to the entire storage industry. The technology and project results will be transferred to the industry through DOE dissemination and through the industry service companies that work on gas storage wells. Achieving these goals will enable the underground gas storage industry to more cost-effectively mitigate declining deliverability in their storage fields. Work completed to date includes the following: (1) Solicited potential participants from the gas storage industry; (2) Selected one participant experiencing damage from inorganic precipitates; (3) Developed laboratory testing procedures; (4) Collected cores from National Fuel Gas

  4. Removal of H2S from gas stream using combined plasma photolysis technique at atmospheric pressure.

    PubMed

    Huang, Li; Xia, Lanyan; Ge, Xiaoxue; Jing, Hengye; Dong, Wenbo; Hou, Huiqi

    2012-06-01

    In this paper, H(2)S in gas stream was successfully decomposed at atmospheric pressure by dielectric barrier discharge plasma and VUV-UV radiation from a combined plasma photolysis reactor (CDBD). In comparison with DBD, CDBD enhanced H(2)S removal efficiency significantly at the same applied voltage, inlet H(2)S concentration and gas residence time. H(2)S removal efficiency was determined as a function of Kr pressure, applied voltage, inlet H(2)S concentration, and gas residence time. H(2)S removal efficiency could reach as high as 93% at inlet H(2)S concentration of 27.1 mg m(-3), residence time of 0.4 s, and applied voltage of 7.5 kV. The main products were discerned as H(2)O and SO(4)(2-) based on FTIR and IC analysis.

  5. Methods and techniques for measuring gas emissions from agricultural and animal feeding operations.

    PubMed

    Hu, Enzhu; Babcock, Esther L; Bialkowski, Stephen E; Jones, Scott B; Tuller, Markus

    2014-01-01

    Emissions of gases from agricultural and animal feeding operations contribute to climate change, produce odors, degrade sensitive ecosystems, and pose a threat to public health. The complexity of processes and environmental variables affecting these emissions complicate accurate and reliable quantification of gas fluxes and production rates. Although a plethora of measurement technologies exist, each method has its limitations that exacerbate accurate quantification of gas fluxes. Despite a growing interest in gas emission measurements, only a few available technologies include real-time, continuous monitoring capabilities. Commonly applied state-of-the-art measurement frameworks and technologies were critically examined and discussed, and recommendations for future research to address real-time monitoring requirements for forthcoming regulation and management needs are provided.

  6. Improved Experimental and Mathematical Techniques for Measurement of Solvent Gas Diffusivity in Heavy Oils

    NASA Astrophysics Data System (ADS)

    Elliott, Ethan Robert

    This dissertation describes the first experimental measurement of the energy and interaction dependent shear viscosity eta and bulk viscosity zeta in the hydrodynamic expansion of a two-component Fermi gas near a broad collisional (Feshbach) resonance. This expansion also provides a precise test of scale invariance and an examination of local thermal equilibrium as a function of interaction strength. After release from an anisotropic optical trap, we observe that a resonantly interacting gas obeys scale-invariant hydrodynamics, where the mean square cloud size + + expands ballistically (like a noninteracting gas) and the energy-averaged bulk viscosity is consistent with zero, $0.00(0.04) ℎ n, with n the density. In contrast, the aspect ratios of the cloud exhibit anisotropic "elliptic"flow with an energy-dependent shear viscosity. Tuning away from resonance, we observe conformal symmetry breaking, where deviates from ballistic flow. We find that eta has both a quadratic and a linear dependence on the interaction strength 1/(kFIa ), where a is the s-wave scattering length and kFI is the Fermi wave vector for an ideal gas at the trap center. At low energy, the minimum is less than the resonant value and is significantly shifted toward the BEC side of resonance, to 1/(k FIa) = 0.2.

  7. Investigation Of A Mercury Speciation Technique For Flue Gas Desulfurization Materials

    EPA Science Inventory

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to bene...

  8. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  9. Cortical deactivations during gastric fundus distension in health: visceral pain-specific response or attenuation of 'default mode' brain function? A H2 15O-PET study.

    PubMed

    van Oudenhove, L; Vandenberghe, J; Dupont, P; Geeraerts, B; Vos, R; Bormans, G; van Laere, K; Fischler, B; Demyttenaere, K; Janssens, J; Tack, J

    2009-03-01

    Gastric distension activates a cerebral network including brainstem, thalamus, insula, perigenual anterior cingulate, cerebellum, ventrolateral prefrontal cortex and potentially somatosensory regions. Cortical deactivations during gastric distension have hardly been reported. To describe brain areas of decreased activity during gastric fundus distension compared to baseline, using data from our previously published study (Gastroenterology, 128, 2005 and 564). H(2) (15)O-brain positron emission tomography was performed in 11 healthy volunteers during five conditions (random order): (C(1)) no distension (baseline); isobaric distension to individual thresholds for (C(2)) first, (C(3)) marked, (C(4)) unpleasant sensation and (C(5)) sham distension. Subtraction analyses were performed (in SPM2) to determine deactivated areas during distension compared to baseline, with a threshold of P(uncorrected_voxel_level) < 0.001 and P(corrected_cluster_level) < 0.05. Baseline-maximal distension (C(1)-C(4)) yielded significant deactivations in: (i) bilateral occipital, lateral parietal and temporal cortex as well as medial parietal lobe (posterior cingulate and precuneus) and medial temporal lobe (hippocampus and amygdala), (ii) right dorsolateral and dorso- and ventromedial PFC, (iii) left subgenual ACC and bilateral caudate head. Intragastric pressure and epigastric sensation score correlated negatively with brain activity in similar regions. The right hippocampus/amygdala deactivation was specific to sham. Gastric fundus distension in health is associated with extensive cortical deactivations, besides the activations described before. Whether this represents task-independent suspension of 'default mode' activity (as described in various cognitive tasks) or an visceral pain/interoception-specific process remains to be elucidated.

  10. Investigation of entrainment and thermal properties of a cryogenic dense-gas cloud using optical measurement techniques.

    PubMed

    Kunsch, J P; Rösgen, T

    2006-09-01

    Cryogenic dense-gas clouds have been investigated in a heavy-gas channel under controlled source and ambient conditions. Advantage is taken from new, non-intrusive optical measurement techniques (e.g. image correlation velocimetry, ICV, and background oriented Schlieren, BOS) providing detailed pictures of the temperature and velocity field in relevant regions of the cloud. The ice particles in the cloud, formed by nucleation, represent a natural seeding to be used as tracers, which have the advantage of behaving passively. Two layers can be identified in a cryogenic gas cloud: a lower cold layer, which is visible due to the presence of ice particles, and an invisible upper layer, where the ice particles have melted, mostly due to heat addition by air entrainment into the upper layer. A two-layer model has been applied to a generic element of the cloud, where detailed experimental data regarding velocity and temperature are available. Thermal- and dilution behaviour can be interpreted by means of the model which is presented in detail. A global entrainment parameter is deduced allowing a simple comparison with existing experimental information obtained by other traditional experimental techniques. The numerical values of the present entrainment parameter agree well with the correlations proposed by other authors. Thermal effects, such as heat transfer from the ground, appear to be very important. In addition, the visible height of the cloud can be predicted in relative good agreement with the experimental observations, by means of a thermal balance including the phase transition of the ice particles.

  11. Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats.

    PubMed

    Tanahashi, Masayuki; Karicheti, Venkateswarlu; Thor, Karl B; Marson, Lesley

    2012-10-01

    The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats (n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts

  12. Laser Frequency Stabilization for Coherent Lidar Applications using Novel All-Fiber Gas Reference Cell Fabrication Technique

    NASA Technical Reports Server (NTRS)

    Meras, Patrick, Jr.; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Levin, Jason; Spiers, Gary D.

    2008-01-01

    Compact hollow-core photonic crystal fiber (HC-PCF)gas frequency reference cell was constructed using a novel packaging technique that relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers. The use of this gas cell for laser frequency stabilization was demonstrated by locking a tunable diode laser to the center of the P9 line from the (nu)1+(nu)3 band of acetylene with RMS frequency error of 2.06 MHz over 2 hours. This effort was performed in support of a task to miniaturize the laser frequency stabilization subsystem of JPL/LMCT Laser Absorption Spectrometer (LAS) instrument.

  13. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    PubMed Central

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  14. Solid phase micro extraction - A new technique coupled with gas chromatograph for chloroethene analysis from aqueous samples

    SciTech Connect

    Xu, N.; Sewell, G.W.

    1996-10-01

    Once the chloroethenes (tetrachloroethene and trichloroethene) contamination occurs in the subsurface environment, they tend to retain and form a Pollution plum in the aquifer because of their recalcitrance to aerobic oxidation. Currently, the most promising bioremediation method for chlorinated compounds is through anaerobic reductive biotransformation, in which each chlorine is replaced by a hydrogen. To study the biodegradation process, it is essential to monitor tetrachloroethene and its degradation daughter products frequently. An analytical method has been modified for chloroethene analysis by gas chromatography. Solid Phase Micro Extraction technique has been used to extract aqueous sample onto a fiber and then to desorb the sample directly into a gas chromatograph injection port. The total run time is less than 17 minutes.

  15. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    SciTech Connect

    Farrington, S.P.; Bratton, W.L.; Akard, M.L.

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  16. Difficulties in applying laser technique to measure drop sizes in vertical and inclined Annular gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Zaidi, Sohail H.

    1996-11-01

    Annular two phase flow is one of the most common regimes of gas/liquid flow found in industrial equipment. In this regime, the liquid flows in part as a film on the channel walls while the rest of the liquid is carried as drops by the gas flowing in the center of the channel. Detailed knowledge of the liquid drops particularly their sizes and velocities is essential in processes involving heat and mass transfer. This information is of great importance for the oil industry where inclined drilling has recently become a common practice. The effect of inclination on the drop sizes is still unknown and requires further investigation. Laser diffraction is one of the few available techniques which is widely used for the measurement of droplet size distribution. Although the technique is simple to use, it is not free from problems. This paper highlights the practical difficulties encountered when the technique was used to measure the drop size distribution in an inclinable flow column. The laser system was mounted on the rig and the flow column was rotated from vertical to horizontal position. Liquid drops appearing on the optical windows prohibited laser measurements. Other problems included the glass reflections and vibration when the rig was in operation. In this paper some practical suggestions have been made to overcome these problems and some useful results have been included.

  17. A transient liquid crystal thermography technique for gas turbine heat transfer measurements

    NASA Astrophysics Data System (ADS)

    Ekkad, Srinath V.; Han, Je-Chin

    2000-07-01

    This paper presents in detail the transient liquid crystal technique for convective heat transfer measurements. A historical perspective on the active development of liquid crystal techniques for convective heat transfer measurement is also presented. The experimental technique involves using a thermochromic liquid crystal coating on the test surface. The colour change time of the coating at every pixel location on the heat transfer surface during a transient test is measured using an image processing system. The heat transfer coefficients are calculated from the measured time responses of these thermochromic coatings. This technique has been used for turbine blade internal coolant passage heat transfer measurements as well as turbine blade film cooling heat transfer measurements. Results can be obtained on complex geometry surfaces if visually accessible. Some heat transfer results for experiments with jet impingement, internal cooling channels with ribs, flow over simulated TBC spallation, flat plate film cooling, cylindrical leading edge and turbine blade film cooling are presented for demonstration.

  18. Development of techniques for complex mixture analysis by means of gas chromatography/triple quadrupole mass spectrometry

    SciTech Connect

    Schubert, A.J.

    1988-01-01

    Current technology in several phases of organic mixture analysis have been integrated to demonstrate the analytical power of the combined technique of gas chromatography/triple quadrupole mass spectrometry (GC/TQMS). This research has included capillary gas chromatography, chemical ionization, triple quadrupole mass spectrometry, and the high speed instrument control and data systems which are required to make such a powerful instrument feasible. The feasibility of GC/TQMS was enhanced by an increase in overall system speed and the development of programs to allow trace-level targeted component analyses on time variant samples introduced via the gas chromatograph. The performance of the instrument control system was achieved by dividing instrument control tasks among multiple processors rather than by increasing the power of the processor being used. Methanol chemical ionization was investigated as a tool for the mass spectrometric determination of trace level polar components in petroleum products. Results from this study indicate that methanol enhances both the selectivity and sensitivity of the ionization when compared to the more conventional technique of methane chemical ionization. Studies on the effect of varying the pressure of the methanol reagent demonstrated a simple approach through which the analyst can adjust both the sensitivity and selectivity of the ionization. Detection limits were determined for the determination of several thiophenes in a commercial jet aviation fuel by means of GC/TQMS. The combined use of capillary gas chromatography, methanol chemical ionization, and TQMS with specialized data acquisition programs, enabled the detection of these targeted components down to the low parts per million.

  19. The German collaborative project SUGAR Utilization of a natural treasure - Developing innovative techniques for the exploration and production of natural gas from hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Haeckel, M.; Bialas, J.; Wallmann, K. J.

    2009-12-01

    Gas hydrates occur in nature at all active and passive continental margins as well as in permafrost regions, and vast amounts of natural gas are bound in those deposits. Geologists estimate that twice as much carbon is bound in gas hydrates than in any other fossil fuel reservoir, such as gas, oil and coal. Hence, natural gas hydrates represent a huge potential energy resource that, in addition, could be utilized in a CO2-neutral and therefore environmentally friendly manner. However, the utilization of this natural treasure is not as easy as the conventional production of oil or natural gas and calls for new and innovative techniques. In the framework of the large-scale collaborative research project SUGAR (Submarine Deposits of Gas Hydrates - Exploration, Production and Transportation), we aim to produce gas from methane hydrates and to sequester carbon dioxide from power plants and other industrial sources as CO2 hydrates in the same host sediments. Thus, the SUGAR project addresses two of the most pressing and challenging topics of our time: development of alternative energy strategies and greenhouse gas mitigation techniques. The SUGAR project is funded by two federal German ministries and the German industry for an initial period of three years. In the framework of this project new technologies starting from gas hydrate exploration techniques over drilling technologies and innovative gas production methods to CO2 storage in gas hydrates and gas transportation technologies will be developed and tested. Beside the performance of experiments, numerical simulation studies will generate data regarding the methane production and CO2 sequestration in the natural environment. Reservoir modelling with respect to gas hydrate formation and development of migration pathways complete the project. This contribution will give detailed information about the planned project parts and first results with focus on the production methods.

  20. Neuroanatomic and behavioral correlates of urinary dysfunction induced by vaginal distension in rats.

    PubMed

    Palacios, J L; Juárez, M; Morán, C; Xelhuantzi, N; Damaser, M S; Cruz, Y

    2016-05-01

    The aim of the present study was to use a model of simulated human childbirth in rats to determine the damage to genitourinary structures and behavioral signs of urinary dysfunction induced by vaginal distension (VD) in female rats. In experiment 1, the length of the genitourinary tract and the nerves associated with it were measured immediately after simulated human delivery induced by VD or sham (SH) procedures. Electroneurograms of the dorsal nerve of the clitoris (DNC) were also recorded. In experiment 2, histological characteristics of the bladder and major pelvic ganglion of VD and SH rats were evaluated. In experiment 3, urinary parameters were determined in conscious animals during 6 h of dark and 6 h of light before and 3 days after VD or SH procedures. VD significantly increased distal vagina width (P < 0.001) and the length of the motor branch of the sacral plexus (P < 0.05), DNC (P < 0.05), and vesical nerves (P < 0.01) and decreased DNC frequency and amplitude of firing. VD occluded the pelvic urethra, inducing urinary retention, hematomas in the bladder, and thinness of the epithelial (P < 0.05) and detrusor (P < 0.01) layers of the bladder. Major pelvic ganglion parameters were not modified after VD. Rats dripped urine in unusual places to void, without the stereotyped behavior of micturition after VD. The neuroanatomic injuries after VD occur alongside behavioral signs of urinary incontinence as determined by a new behavioral tool for assessing micturition in conscious animals.

  1. Effects of wall distensibility in hemodynamic simulations of an arteriovenous fistula.

    PubMed

    McGah, Patrick M; Leotta, Daniel F; Beach, Kirk W; Aliseda, Alberto

    2014-06-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis patients suffering from end-stage renal disease. It has long been hypothesized that the rapid blood vessel remodeling occurring after fistula creation is in part a process to restore the mechanical stresses to some preferred level, i.e., mechanical homeostasis. The current study presents fluid-structure interaction (FSI) simulations of a patient-specific model of a mature arteriovenous fistula reconstructed from 3D ultrasound scans. The FSI results are compared with previously published data of the same model but with rigid walls. Ultrasound-derived wall motion measurements are also used to validate the FSI simulations of the wall motion. Very large time-averaged shear stresses, 10-15 Pa, are calculated at the fistula anastomosis in the FSI simulations, values which are much larger than what is typically thought to be the normal homeostatic shear stress in the peripheral vasculature. Although this result is systematically lower by as much as 50% compared to the analogous rigid-walled simulations, the inclusion of distensible vessel walls in hemodynamic simulations does not reduce the high anastomotic shear stresses to "normal" values. Therefore, rigid-walled analyses may be acceptable for identifying high shear regions of arteriovenous fistulae.

  2. Effects of Wall Distensibility in Hemodynamic Simulations of an Arteriovenous Fistula

    PubMed Central

    McGah, Patrick M.; Leotta, Daniel F.; Beach, Kirk W.; Aliseda, Alberto

    2013-01-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis patients suffering from end-stage renal disease. It has long been hypothesized that the rapid blood vessel remodeling occurring after fistula creation is in part a process to restore the mechanical stresses to some preferred level, i.e. mechanical homeostasis. The current study presents fluid-structure interaction (FSI) simulations of a patient-specific model of a mature arteriovenous fistula reconstructed from 3D ultrasound scans. The FSI results are compared with previously published data of the same model but with rigid walls. Ultrasound-derived wall motion measurements are also used to validate the FSI simulations of the wall motion. Very large time-averaged shear stresses, 10–15 Pa, are calculated at the fistula anastomosis in the FSI simulations, values which are much larger than what is typically thought to be the normal homeostatic shear stress in the peripheral vasculature. Although this result is systematically lower by as much as 50% compared to the analogous rigid-walled simulations, the inclusion of distensible vessel walls in hemodynamic simulations does not reduce the high anastomotic shear stresses to “normal” values. Therefore, rigid-walled analyses may be acceptable for identifying high shear regions of arteriovenous fistulae. PMID:24037281

  3. Gas Membrane Sensor Technique for in-situ Downhole Detection of Gases Applied During Geological Storage of CO2

    NASA Astrophysics Data System (ADS)

    Zimmer, M.; Erzinger, J.; Kujawa, C.; Group, C.

    2008-12-01

    The geological storage of CO2 in deep saline aquifers is regarded as a possible technology for the reduction of anthropogenic greenhouse gases. However, comprehensive research is still needed to better understand the behaviour of CO2 during and after storage. Therefore, we developed and applied a new, innovative geochemical monitoring tool for the real time and in-situ determination of CO2 and other gases in the underground and in bore holes. The method uses a phase separating silicone membrane, permeable for gases, in order to separate gases dissolved in borehole fluids, water and brines. Argon is used as a carrier gas to conduct the collected gases through capillaries to the surface. Here, the gas phase is analyzed in real-time with a portable mass spectrometer for all permanent gases. In addition, gas samples may be collected for detailed investigations in the laboratory. Downhole extraction and on-line determination of gases dissolved in brines using this gas membrane sensor (GMS) technique was successful applied at the scientific CO2SINK test site in Ketzin, Germany (sandstone aquifer). GMSs together with temperature and pressure probes were installed in two approx. 700m deep observation holes, drilled in 50m and 100m distance from the CO2 injection well. Hydraulic pressure in the observation wells rose gradually during injection of CO2. Increasing reservoir gas concentrations of helium, hydrogen, methane, and nitrogen as well as the arrival of the added krypton tracer were determined shortly before the injected CO2 appeared. The breakthrough of CO2 into the observation well, in 50m distance, was recorded after 531.5 tons of CO2 were injected.

  4. Multiple inert gas elimination technique for determining ventilation/perfusion distributions in rat during normoxia, hypoxia and hyperoxia.

    PubMed

    Alfaro, V; Roca-Acín, J; Palacios, L; Guitart, R

    2001-01-01

    1. The use of the multiple inert gas elimination technique (MIGET) in quantifying ventilation/perfusion distributions (V*A/Q*) in small animals, such as the rat, may cause results to be biased due to haemodilution produced by the large volume of liquid infused intravenously. 2. We tested two methods of administering inert gases in rats using the MIGET: (i) standard continuous intravenous administration of inert gases (method A); and (ii) a new method based on the physicochemical properties of each inert gas (method B). This method included acute simultaneous inert gas administration using three pathways: inhalation, intravenous infusion and rectal infusion. Both MIGET methods were applied to obtain data while breathing three different inspiratory fractions of oxygen (FIO2): normoxia, hypoxia and hyperoxia. 3. Inert gas levels obtained from blood or expired air samples were sufficient for chromatographic measurement, at least during a 2 h period. The V*A/Q* distributions reported using both methods were acceptable for all the physiological conditions studied; therefore, the alternative method used here may be useful in further MIGET studies in rats because haemodilution resulting from continuous intravenous infusion of less-soluble gases can be avoided. 4. Normoxic rats showed lower mean values of the V*A/Q* ratio of ventilation distribution and higher mean values of the V*A/Q* ratio of perfusion distribution with the usual method of inert gas administration (method A). These non-significant differences were observed under almost all physiological conditions studied and they could be caused by haemodilution. Nevertheless, the effect of interindividual differences cannot be discarded. An additional effect of the low haematocrit on cardiovascular changes due to low FIO2, such as pulmonary vasoconstriction or increased cardiac output, may explain the lower dispersion of perfusion distributions found in group A during hypoxia.

  5. Application of capillary gas chromatography mass spectrometry/computer techniques to synoptic survey of organic material in bed sediment

    USGS Publications Warehouse

    Steinheimer, T.R.; Pereira, W.E.; Johnson, S.M.

    1981-01-01

    A bed sediment sample taken from an area impacted by heavy industrial activity was analyzed for organic compounds of environmental significance. Extraction was effected on a Soxhlet apparatus using a freeze-dried sample. The Soxhlet extract was fractionated by silica gel micro-column adsorption chromatography. Separation and identification of the organic compounds was accomplished by capillary gas chromatography/mass spectrometry techniques. More than 50 compounds were identified; these include saturated hydrocarbons, olefins, aromatic hydrocarbons, alkylated polycyclic aromatic hydrocarbons, and oxygenated compounds such as aldehydes and ketones. The role of bed sediments as a source or sink for organic pollutants is discussed. ?? 1981.

  6. Water deprivation increases Fos expression in hypothalamic corticotropin-releasing factor neurons induced by right atrial distension in awake rats.

    PubMed

    Benedetti, Mauricio; Rorato, Rodrigo; Castro, Margaret; Machado, Benedito H; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2008-11-01

    Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.

  7. multiplex gas chromatography: A novel analytical technique for future planetary studies

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.; Carle, G. C.; Phillips, J. B.

    1986-01-01

    Determination of molecular species comprised of the biogenic elements in the atmospheres of planets and moons of the solar system is one the foremost requirements of the exobiologist studying chemical evolution and the origin of life. Multiplex chromatography is a technique where many samples are pseudo-randomly introduced to the chromatograph without regard to elution of preceding components. The resulting data are then reduced using mathematical techniques such as cross correlation or Fourier Transforms. To demonstrate the utility of this technique for future solar system exploration, chemical modulators were developed. Several advantages were realized from this technique in combination with these modulators: improvement in detection limits of several orders of magnitude, improvement in the analysis of complex mixtures by selectively modulating some of the components present in the sample, increase in the number of analyses that can be conducted in a given period of time, and reduction in the amount of expendables needed to run an analysis. In order to apply this technique in a real application, methane in ambient air was monitored continuously over a period of one week. By using ambient air as its own carrier all expendables beyond power were eliminated.

  8. A Remote Sensing Technique For Combustion Gas Temperature Measurement In Black Liquor Recovery Boilers

    NASA Astrophysics Data System (ADS)

    Charagundla, S. R.; Semerjian, H. G.

    1986-10-01

    A remote sensing technique, based on the principles of emission spectroscopy, is being developed for temperature measurements in black liquor recovery boilers. Several tests have been carried out, both in the laboratory and at a number of recovery boilers, to characterize the emission spectra in the wavelength range of 300 nm to 800 nm. These tests have pointed out the potential for temperature measurements using the line intensity ratio technique based on a pair of emission lines at 404.4 nm and 766.5 nm observed in the recovery boiler combustion zone; these emission lines are due to potassium, a common constituent found in all the black liquors. Accordingly, a fiber optics based four-color system has been developed. This in-situ, nonintrusive temperature measurement technique, together with some of the more recent results, is described in this paper.

  9. A new technique for in situ measurement of the composition of neutral gas in interplanetary space

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1993-01-01

    Neutral atoms in interplanetary space play an important role in many processes relevant to the formation and evolution of the Solar System. An experimental approach is proposed for in situ atom detection based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free mode. The use of the technique for in situ study of the composition of neutral interstellar atoms is considered. It is shown that interstellar H, D, and O atoms and possibly H2 molecules can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe. Possible applications of the technique are discussed.

  10. The Multiple Inert Gas Elimination Technique: Current Methodology at the US Army Institute of Surgical Research

    DTIC Science & Technology

    2007-11-02

    observed by one of us in the lab of Dr. Wagner. The study involved a human vigorously exercising on a bicycle. The subject salivated excessively and...hematocrit, oxygen consumption, CO2 production, 99000 for tolerance, FIO2, FICO2, P50, PaO2, PaCO2 and pH from the blood gas machine data. IMPORTANT: the...program requires entry of the VO2 and VCO2 once again 62 62 here after the pH value. Each data value should be followed by pressing the Enter key. We

  11. Production of ultra clean gas-atomized powder by the plasma heated tundish technique

    SciTech Connect

    Tingskog, T.A.; Andersson, V.

    1996-12-31

    The paper describes the improvements in cleanliness for different types of gas atomized powders produced by holding the melt in a Plasma Heated Tundish (PHT) before atomization. The cleanliness is measured on Hot Isostatically Pressed (HIP) or extruded samples. Significant improvements in slag levels and material properties have been achieved. On extruded powder metallurgy stainless steel and nickel alloy tubes, the rejection rate in ultra-sonic testing was reduced drastically. Tool steels and high speed steels have greatly improved ductility and bend strength.

  12. A high-resolution numerical technique for inviscid gas-dynamic problems with weak solutions

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1982-01-01

    The shock resolution of Harten's (1982) second-order explicit method for one-dimensional hyperbolic conservation laws is investigated for a two-dimensional gas-dynamic problem. The possible extension to a high resolution implicit method for both one- and two-dimensional problems is also investigated. Applications of Harten's method to the quasi-one-dimensional nozzle problem with two nozzle shapes (divergent and convergent-divergent) and the two-dimensional shock-reflection problem resulted in high shock resolution steady-state numerical solutions.

  13. Micro-CT image-derived metrics quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Haworth, Steven T.; Dawson, Christopher A.

    2000-04-01

    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension.

  14. Optical diagnostics of gas-dynamic flows using advanced laser measurement techniques

    NASA Technical Reports Server (NTRS)

    Gross, K. P.

    1985-01-01

    Using laser-induced fluorescence to probe nitrogen flows seeded with small amounts of nitric oxide, simultaneous measurements of all three thermodynamic scalar quantities temperature, density, and pressure, were demonstrated in a supersonic turbulent boundary layer. Instrumental uncertainty is 1% for temperature and 2% for density and pressure, making the techniques suitable for measurements of turbulent fluctuations. This technology is currently being transferred to an experimental program designed to use these optical techniques in conjunction with traditional methods to make measurements in turbulent flowfields that were not possible before. A detailed descritpion of the research progress and pertinent results are presented.

  15. Investigation of liquid and gas chromatography techniques for separation of diastereomers of beta-(alpha-methylbenzyl) amino isobutyric acid.

    PubMed

    Held, Charles B; Robbins, David K

    2003-09-01

    Cryptophycins are macrolides investigated as potential anticancer agents. These large cyclic molecules are generated via a convergent process, utilizing the coupling of several smaller fragments synthesized individually. During early synthetic development of the beta-amino acid fragment C, analytical methods are necessary for the characterization of products resulting from the various routes being studied. One route being evaluated produces (RR) and (RS) diastereomers of beta-(alpha-methylbenzyl) amino isobutyric acid as intermediates. To measure diastereomeric excess (%de), assay conditions using high-performance liquid chromatography (HPLC) and capillary gas chromatographic (GC) techniques are explored. Derivatization methods using trifluoroacetyl- and silyl-derivatives are investigated for use with capillary GC. The results of the GC investigations are found to be only partially successful. Ion-pair HPLC is determined to be the optimal technique, utilizing pentanesulfonic acid as the counter ion to the amine group of beta-(alpha-methylbenzyl) amino isobutyric acid.

  16. Identification of wood between Phoebe zhennan and Machilus pingii using the gas chromatography-mass spectrometry direct injection technique.

    PubMed

    Xu, Bin; Zhu, Tao; Li, Jingya; Liu, Shuai

    2013-01-01

    In this paper, the technique of direct injection gas chromatography-mass spectrometer (GC-MS) was employed to discriminate between two batches of wood (Phoebe zhennan and Machilus pingii) with characteristic smells. Based on the GC-MS fingerprints obtained, similarities between samples were evaluated via correlation coefficient, hierarchical clustering and characteristic constituents analysis. The results showed that distinct differences in total ion chromatograms existed between the two species of wood and their correlation coefficients were low; however, the relationship between the same species of different batches showed the opposite; meanwhile, the analysis of hierarchical clustering and characteristic constituents also demonstrated an interrelationship. All the analytical methods achieved the goal of identification between the two species of wood, which verified that the technique can be used to identify different species of wood with characteristic smells.

  17. Gas Chromatographic-Mass Spectrometric Analysis of Volatiles Obtained by Four Different Techniques from Salvia rosifolia Sm. and Evaluation for Biological Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile constituents from the aerial parts of Salvia rosifolia Sm. (Lamiaceae), endemic to Turkey, were obtained by four different isolation techniques and then analyzed by gas chromatography (GC/FID) and gas chromatography – mass spectrometry (GC/MS) methods. Also in scope of the present work, the...

  18. A technique to control mercury from flue gas: The Thief Process

    SciTech Connect

    O'Dowd, W.J.; Pennline, H.W.; Freeman, M.C.; Granite, E.J.; Hargis, R.A.; Lacher, C.J.; Karash, A.

    2006-12-01

    The Thief Process is a mercury removal process that may be applicable to a broad range of pulverized coal-fired combustion systems. This is one of several sorbent injection technologies under development by the U.S. Department of Energy for capturing mercury from coal-fired electric utility boilers. A unique feature of the Thief Process involves the production of a thermally activated sorbent in situ at the power plant. The sorbent is obtained by inserting a lance, or thief, into the combustor, in or near the flame, and extracting a mixture of partially combusted coal and gas. The partially combusted coal or sorbent has adsorptive properties suitable for the removal of vapor-phase mercury at flue gas temperatures that are typical downstream of a power plant preheater. One proposed scenario, similar to activated carbon injection (ACI), involves injecting the extracted sorbent into the downstream ductwork between the air preheater and the particulate collection device of the power plant. Initial laboratory-scale and pilot-scale testing, using an eastern bituminous coal, focused on the concept validation. Subsequent pilot-scale testing, using a Powder River Basin (PRB) coal, focused on the process development and optimization. The results of the experimental studies, as well as an independent experimental assessment, are detailed. In addition, the results of a preliminary economic analysis that documents the costs and the potential economic advantages of the Thief Process for mercury control are discussed.

  19. Non-destructive evaluation techniques, high temperature ceramic component parts for gas turbines

    NASA Technical Reports Server (NTRS)

    Reiter, H.; Hirsekorn, S.; Lottermoser, J.; Goebbels, K.

    1984-01-01

    This report concerns studies conducted on various tests undertaken on material without destroying the material. Tests included: microradiographic techniques, vibration analysis, high-frequency ultrasonic tests with the addition of evaluation of defects and structure through analysis of ultrasonic scattering data, microwave tests and analysis of sound emission.

  20. Isotopic and Geochemical Investigation of Two Distinct Mars Analog Environments Using Evolved Gas Techniques in Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer Claire; Mcadam, Amy Catherine; Ten Kate, Inge L.; Bish, David L.; Blake, David F.; Morris, Richard V.; Bowden, Roxane; Fogel, Marilyn L.; Glamoclija, Mihaela; Mahaffy, Paul R.; Steele, Andrew; Amundsen, Hans E. F.

    2013-01-01

    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASErelated research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis- Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks.

  1. Increased carotid intima-media thickness and reduced distensibility in human class III obesity: independent and differential influences of adiposity and blood pressure on the vasculature.

    PubMed

    Moore, Xiao L; Michell, Danielle; Lee, Sabrina; Skilton, Michael R; Nair, Rajesh; Dixon, John B; Dart, Anthony M; Chin-Dusting, Jaye

    2013-01-01

    Carotid intima-media-thickness (cIMT) and carotid distensibility (distensibility), structural and functional properties of carotid arteries respectively, are early markers, as well as strong predictors of cardiovascular disease (CVD). The characteristic of these two parameters in individuals with BMI>40.0 kg/m(2) (Class III obesity), however, are largely unknown. The present study was designed to document cIMT and distensibility in this population and to relate these to other factors with established association with CVD in obesity. The study included 96 subjects (65 with BMI>40.0 kg/m(2) and 31, age- and gender-matched, with BMI of 18.5 to 30.0 kg/m(2)). cIMT and distensibility were measured by non-invasive high resolution ultrasonography, circulatory CD133(+)/KDR(+) angiogenic cells and endothelial microparticles (EMP) by flow cytometry, and plasma levels of adipokines, growth factors and cytokines by Luminex immunoassay kits. The study results demonstrated increased cIMT (0.62±0.11 mm vs. 0.54±0.08 mm, P = 0.0002) and reduced distensibility (22.52±10.79 10(-3)kpa(-1)vs. 29.91±12.37 10(-3)kpa(-1), P<0.05) in individuals with BMI>40.0 kg/m(2). Both cIMT and distensibility were significantly associated with traditional CVD risk factors, adiposity/adipokines and inflammatory markers but had no association with circulating angiogenic cells. We also demonstrated, for the first time, elevated plasma EMP levels in individuals with BMI>40.0 kg/m(2). In conclusion, cIMT is increased and distensibility reduced in Class III obesity with the changes predominantly related to conventional CVD risk factors present in this condition, demonstrating that both cIMT and distensibility remain as CVD markers in Class III obesity.

  2. Intercomparison of ultraviolet photometry and gas-phase titration techniques for ozone reference standards at ambient levels

    NASA Astrophysics Data System (ADS)

    Tanimoto, Hiroshi; Mukai, Hitoshi; Hashimoto, Shigeru; Norris, James E.

    2006-08-01

    Intercomparison experiments were made between two independent techniques for ozone (O3) reference standards often used as the primary standards in air quality monitoring networks. These techniques include ultraviolet absorption photometry of O3 at the 253.7-nm Hg line and gas-phase titration of O3 with excess NO. For ultraviolet photometry, a well-designed and maintained standard reference photometer (SRP) built by the National Institute of Standards and Technology (USA) was employed. For gas-phase titration (GPT), an existing system was significantly modified by the National Institute for Environmental Studies (Japan) by using gravimetric NO/N2 standard gases, accurate flow measurement systems based on laminar flow elements, and two chemiluminescence NO detectors to minimize uncertainty in the measurements, which had previously been a major shortcoming of this method. Uncertainty in the improved GPT system was reduced to less than 0.4% above 100 nmol mol-1 O3 mole fraction. A series of comparison runs between the two methods over the course of 13 months from August 2004 to August 2005 showed a significant discrepancy, which cannot be explained by the measurement uncertainties attributed to either SRP or GPT in the range of 80-800 nmol mol-1 O3, where GPT was about 2% higher than SRP. This result indicates possible biases in the currently existing O3 reference standards and warrants further studies to identify and characterize possible sources of the systematic discrepancy.

  3. DSMC simulation of rarefied gas flows under cooling conditions using a new iterative wall heat flux specifying technique

    NASA Astrophysics Data System (ADS)

    Akhlaghi, H.; Roohi, E.; Myong, R. S.

    2012-11-01

    Micro/nano geometries with specified wall heat flux are widely encountered in electronic cooling and micro-/nano-fluidic sensors. We introduce a new technique to impose the desired (positive/negative) wall heat flux boundary condition in the DSMC simulations. This technique is based on an iterative progress on the wall temperature magnitude. It is found that the proposed iterative technique has a good numerical performance and could implement both positive and negative values of wall heat flux rates accurately. Using present technique, rarefied gas flow through micro-/nanochannels under specified wall heat flux conditions is simulated and unique behaviors are observed in case of channels with cooling walls. For example, contrary to the heating process, it is observed that cooling of micro/nanochannel walls would result in small variations in the density field. Upstream thermal creep effects in the cooling process decrease the velocity slip despite of the Knudsen number increase along the channel. Similarly, cooling process decreases the curvature of the pressure distribution below the linear incompressible distribution. Our results indicate that flow cooling increases the mass flow rate through the channel, and vice versa.

  4. [Research on diagnosis of gas-liquid detonation exhaust based on double optical path absortion spectroscopy technique].

    PubMed

    Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-03-01

    The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.

  5. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    NASA Astrophysics Data System (ADS)

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca F.; Johnson, Darren J.; Neubauer, Scott C.; Raynie, Richard C.

    2016-06-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 yr-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 yr-1 resulted from net CH4 emissions and the remaining 171 g C m-2 yr-1 resulted from net CO2 emissions. In contrast, -290 g C m2 yr-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 yr-1 emitted as CH4 and -337 g C m-2 yr-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  6. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques.

    PubMed

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Xiaowei, Huang; Jiyong, Shi; Mariod, Abdalbasit Adam

    2016-09-01

    Aroma profiles of six honey varieties of different botanical origins were investigated using colorimetric sensor array, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis. Fifty-eight aroma compounds were identified, including 2 norisoprenoids, 5 hydrocarbons, 4 terpenes, 6 phenols, 7 ketones, 9 acids, 12 aldehydes and 13 alcohols. Twenty abundant or active compounds were chosen as key compounds to characterize honey aroma. Discrimination of the honeys was subsequently implemented using multivariate analysis, including hierarchical clustering analysis (HCA) and principal component analysis (PCA). Honeys of the same botanical origin were grouped together in the PCA score plot and HCA dendrogram. SPME-GC/MS and colorimetric sensor array were able to discriminate the honeys effectively with the advantages of being rapid, simple and low-cost. Moreover, partial least squares regression (PLSR) was applied to indicate the relationship between sensory descriptors and aroma compounds.

  7. Bird interactions with offshore oil and gas platforms: review of impacts and monitoring techniques.

    PubMed

    Ronconi, Robert A; Allard, Karel A; Taylor, Philip D

    2015-01-01

    Thousands of oil and gas platforms are currently operating in offshore waters globally, and this industry is expected to expand in coming decades. Although the potential environmental impacts of offshore oil and gas activities are widely recognized, there is limited understanding of their impacts on migratory and resident birds. A literature review identified 24 studies and reports of bird-platform interactions, most being qualitative and half having been peer-reviewed. The most frequently observed effect, for seabirds and landbirds, is attraction and sometimes collisions associated with lights and flares; episodic events have caused the deaths of hundreds or even thousands of birds. Though typically unpredictable, anecdotally, it is known that poor weather, such as fog, precipitation and low cloud cover, can exacerbate the effect of nocturnal attraction to lights, especially when coincidental with bird migrations. Other effects include provision of foraging and roosting opportunities, increased exposure to oil and hazardous environments, increased exposure to predators, or repulsion from feeding sites. Current approaches to monitoring birds at offshore platforms have focused on observer-based methods which can offer species-level bird identification, quantify seasonal patterns of relative abundance and distribution, and document avian mortality events and underlying factors. Observer-based monitoring is time-intensive, limited in spatial and temporal coverage, and suffers without clear protocols and when not conducted by trained, independent observers. These difficulties are exacerbated because deleterious bird-platform interaction is episodic and likely requires the coincidence of multiple factors (e.g., darkness, cloud, fog, rain conditions, occurrence of birds in vicinity). Collectively, these considerations suggest a need to implement supplemental systems for monitoring bird activities around offshore platforms. Instrument-based approaches, such as radar

  8. Anterior Chamber Depth and Refractive Change in Late Postoperative Capsular Bag Distension Syndrome: A Retrospective Analysis

    PubMed Central

    Yang, Min Kyu; Wee, Won Ryang; Kwon, Ji-Won; Han, Young Keun

    2015-01-01

    Purpose To assess the characteristic findings and effects of laser capsulotomy in patients with late postoperative capsular bag distension syndrome (CBDS). Methods Twenty patients diagnosed with late postoperative CBDS between July 2010 and August 2013 were retrospectively reviewed. Before and 1 week after capsulotomy, changes in the anterior chamber depth (ACD) were assessed using ultrasound biomicroscopy. Changes in the refractive status and uncorrected visual acuity (UCVA) were also measured 1 week and 1 month after capsulotomy. For patients who received bilateral cataract surgery, preoperative ACD and axial length measured by IOLMaster were compared between the two eyes. Results Twenty-two eyes from 20 patients who had undergone laser capsulotomy showed a mean UCVA improvement of 0.27 ± 0.24 logMAR (range, 0.00–0.90). ACD was increased by an average of +0.04 mm (95% confidence interval, +0.01 to +0.06 mm, p = 0.034), equivalent to predicted refractive change of +0.10 D. The discrepancy between actual (+1.33 D) and predicted refractive change after capsulotomy suggests that refractive change may not be generated from IOL displacement in late postoperative CBDS. Preoperative ACD was deeper in the eye with late postoperative CBDS in all bilaterally pseudophakic patients (mean, 3.68 mm vs. 3.44 mm in the fellow eye, p = 0.068). Conclusions Late postoperative CBDS showed refractive changes that were resolved successfully after laser capsulotomy. The convex lens effects of opalescent material in the distended capsular bag may play a major role in myopic shift. A larger preoperative ACD is possibly associated with the development of late postoperative CBDS. PMID:25910003

  9. Case control study to identify risk factors for simple colonic obstruction and distension colic in horses.

    PubMed

    Hillyer, M H; Taylor, F G R; Proudman, C J; Edwards, G B; Smith, J E; French, N P

    2002-07-01

    A case control study was performed to identify risk factors for colic caused by simple colonic obstruction and distension (SCOD) in the horse. Case horses were recruited from 2 veterinary school clinics. Control horses were population based and matched by time of year. A number of risk factors were considered in the following areas: general carer and premises information; exercise information; husbandry information (housing- and pasture-related); feeding information; breeding information; behavioural information; travel information; preventive medicine information and previous medical information. All variables with a P value of <0.2 in the univariable analysis were considered for possible inclusion in a multivariable model. A final model, produced by a forward stepwise method, identified crib-biting or windsucking, an increasing number of hours spent in a stable, a recent change in a regular exercise programme, the absence of administration of an ivermectin or moxidectin anthelmintic in the previous 12 months and a history of travel in the previous 24 h as associated with a significantly increased risk of SCOD. An alternative final model, produced by a backwards elimination method, identified the same variables as the forward model with, in addition, a history of residing on the current establishment for less than 6 months, a history of a previous colic episode and the fewer times per year the teeth were checked/treated as associated with a significantly increased risk of SCOD. Three of the risk factors in this model were associated with a large increase in risk: stabling for 24 h/day, crib-biting/windsucking and travel in the previous 24 h.

  10. A smog chamber comparison of a microfluidic derivatization measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques

    NASA Astrophysics Data System (ADS)

    Pang, X.; Lewis, A. C.; Richard, A.; Baeza-Romero, M. T.; Adams, T. J.; Ball, S. M.; Daniels, M. J. S.; Goodall, I. C. A.; Monks, P. S.; Peppe, S.; Ródenas García, M.; Sánchez, P.; Muñoz, A.

    2013-06-01

    A microfluidic lab-on-a-chip derivatization technique has been developed to measure part per billion volume (ppbV) mixing ratios of gaseous glyoxal (GLY) and methylglyoxal (MGLY), and the method compared with other techniques in a smog chamber experiment. The method uses o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) as a derivatization reagent and a microfabricated planar glass micro-reactor comprising an inlet, gas and fluid splitting and combining channels, mixing junctions, and a heated capillary reaction microchannel. The enhanced phase contact area-to-volume ratio and the high heat transfer rate in the micro-reactor result in a fast and highly efficient derivatization reaction, generating an effluent stream ready for direct introduction to a gas chromatograph-mass spectrometer (GC-MS). A linear response for GLY was observed over a calibration range 0.7 to 400 ppbV, and for MGLY of 1.2 to 300 ppbV, when derivatized under optimal reaction conditions. The method detection limits (MDLs) were 80 pptV and 200 pptV for GLY and MGLY respectively, calculated as 3 times the standard deviation of the S/N of the blank sample chromatograms. These MDLs are below or close to typical concentrations in clean ambient air. The feasibility of the technique was assessed by applying the methodology under controlled conditions to quantify of α-dicarbonyls formed during the photo-oxidation of isoprene in a large scale outdoor atmospheric simulation chamber (EUPHORE). Good general agreement was seen between microfluidic measurements and Fourier Transform Infra Red (FTIR), Broad Band Cavity Enhanced Absorption Spectroscopy (BBCEAS) and a detailed photochemical chamber box modelling calculation for both GLY and MGLY. Less good agreement was found with Proton-Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) and Solid Phase Microextraction (SPME) derivatization methods for MGLY measurement.

  11. Analysis of Low-Pressure Gas-Phase Pyrolytic Reactions by Mass Spectrometric Techniques,

    DTIC Science & Technology

    1989-01-01

    cRE.ccrs Porn 3. T_ C.a1iseo. H Egsnrd E. ;h.ua.na- H L37 , .N’ Hopp na D --fo-nsaoncureresus C-,, L. . Easeo B. Holu c.. 6 Cat.. s-da. s’. 9. alt., 31. 073...system car. according atnon iass spectremeren ic t -f i tos Si technique, ish", to tfte can: I Koffnequation. be c alcolatetl to he loge.- has [ teen ...can be rationatized in nbeilniot tawcrse of -e-i suutnoI dlioit itc ucid terms of two concurrent meactins. wnich are (a) esters hate pieviuiv teen

  12. Characterization of Atypical Off-Flavor Compounds in Natural Cork Stoppers by Multidimensional Gas Chromatographic Techniques.

    PubMed

    Slabizki, Petra; Fischer, Claus; Legrum, Charlotte; Schmarr, Hans-Georg

    2015-09-09

    Natural cork stoppers with sensory deviations other than the typical cork taint were subgrouped according to their sensory descriptions and compared with unaffected control cork stoppers. The assessment of purge and trap extracts obtained from corresponding cork soaks was performed by heart-cut multidimensional gas chromatography-olfactometry (MDGC-O). The identification of compounds responsible for atypical cork taint detected in MDGC-O was further supported with additional multidimensional GC analysis in combination with mass spectrometric detection. Geosmin and 2-methylisoborneol were mainly found in cork stoppers described as moldy and cellarlike; 3-isopropyl-2-methoxypyrazine and 3-isobutyl-2-methoxypyrazine were found in cork stoppers described with green attributes. Across all cork subgroups, the impact compound for typical cork taint, 2,4,6-trichloroanisole (TCA), was present and is therefore a good marker for cork taint in general. Another potent aroma compound, 3,5-dimethyl-2-methoxypyrazine (MDMP), was also detected in each subgroup, obviously playing an important role with regard to the atypical cork taint. Sensory deviations possibly affecting the wine could be generated by MDMP and its presence should thus be monitored in routine quality control.

  13. Valid internal standard technique for arson detection based on gas chromatography-mass spectrometry.

    PubMed

    Salgueiro, Pedro A S; Borges, Carlos M F; Bettencourt da Silva, Ricardo J N

    2012-09-28

    The most popular procedures for the detection of residues of accelerants in fire debris are the ones published by the American Society for Testing and Materials (ASTM E1412-07 and E1618-10). The most critical stages of these tests are the conservation of fire debris from the sampling to the laboratory, the extraction of residues of accelerants from the debris to the activated charcoal strips (ACS) and from those to the final solvent, as well as the analysis of sample extract by gas chromatography-mass spectrometry (GC-MS) and the interpretation of the instrumental signal. This work proposes a strategy for checking the quality of the sample conservation, the accelerant residues transference to final solvent and GC-MS analysis, using internal standard additions. It is used internal standards ranging from a highly volatile compound for checking debris conservation to low volatile compound for checking GC-MS repeatability. The developed quality control (QC) parameters are not affected by GC-MS sensitivity variation and, specifically, the GC-MS performance control is not affected by ACS adsorption saturation that may mask test performance deviations. The proposed QC procedure proved to be adequate to check GC-MS repeatability, ACS extraction and sample conservation since: (1) standard additions are affected by negligible uncertainty and (2) observed dispersion of QC parameters are fit for its intended use.

  14. Investigation of a mercury speciation technique for flue gas desulfurization materials.

    PubMed

    Lee, Joo-Youp; Cho, Kyungmin; Cheng, Lei; Keener, Tim C; Jegadeesan, Gautham; Al-Abed, Souhail R

    2009-08-01

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method. Potential candidates of pure mercury standards including mercuric chloride (HgCl2), mercurous chloride (Hg2Cl2), mercury oxide (HgO), mercury sulfide (HgS), and mercuric sulfate (HgSO4) were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg2Cl2 and HgCl2 could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury.

  15. Investigation of a mercury speciation technique for flue gas desulfurization materials

    SciTech Connect

    Lee, J.Y.; Cho K.; Cheng L.; Keener, T.C.; Jegadeesan G.; Al-Abed, S.R.

    2009-08-15

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidates of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.

  16. Determination of Synthetic Cathinones in Urine Using Gas Chromatography-Mass Spectrometry Techniques.

    PubMed

    Hong, Wei-Yin; Ko, Ya-Chun; Lin, Mei-Chih; Wang, Po-Yu; Chen, Yu-Pen; Chiueh, Lih-Ching; Shih, Daniel Yang-Chih; Chou, Hsiu-Kuan; Cheng, Hwei-Fang

    2016-01-01

    In recent years, the abuse of synthetic cathinones has increased considerably. This study proposes a method, based on gas chromatography/mass spectrometry (GC-MS), to analyze and quantify six synthetic cathinones in urine samples: mephedrone (4-MMC), methylone (bk-MDMA), butylone, ethylone, pentylone and methylenedioxypyrovalerone (MDPV). In our procedure, the urine samples undergo solid-phase extraction (SPE) and derivatization prior to injection into the GC-MS device. Separation is performed using a HP-5MS capillary column. The use of selective ion monitoring (SIM mode) makes it is good sensitivity in this method, and the entire analysis process is within 18 min. In addition, the proposed method maintains linearity in the calibration curve from 50 to 2,000 ng/mL (r(2) > 0.995). The limit of detection of this method is 5 ng/mL, with the exception of MDPV (20 ng/mL); the limit of quantification is 20 ng/mL, with the exception of MDPV (50 ng/mL). In testing, the extraction performance of SPE was between 82.34 and 104.46%. Precision and accuracy results were satisfactory <15%. The proposed method was applied to six real urine samples, one of which was found to contain 4-MMC and bk-MDMA. Our results demonstrate the efficacy of the proposed method in the identification of synthetic cathinones in urine, with regard to the limits of detection and quantification. This method is highly repeatable and accurate.

  17. Formation of ordered CoAl alloy clusters by the plasma-gas condensation technique

    NASA Astrophysics Data System (ADS)

    Konno, Toyohiko J.; Yamamuro, Saeki; Sumiyama, Kenji

    2001-09-01

    CoxAl1-x alloy clusters were synthesized from a mixture of Co and Al metal vapors generated by the sputtering of pure metal targets. We observed that the produced alloy clusters were uniform in size, ranging from approximately 20 nm for Al-rich clusters to 10 nm for Co-rich clusters. For a wide average composition range (x≈0.4-0.7), the alloy clusters have the ordered B2 (CsCl-type) structure. In the Co-rich cluster aggregates (x=0.76), the clusters are composed of face-centered-cubic (fcc) Co and minor CoAl(B2) clusters. In the Al-rich aggregates (x=0.23), the clusters are mainly composed of the fcc-Al phase, although clusters occasionally possess a "core-shell structure" with the CoAl(B2) phase surrounded by an Al-rich amorphous phase. These observations are in general agreement with our prediction based on the equilibrium phase diagram. We also noticed that the average composition depends not only on the relative amount of Co and Al vapors, but also on their absolute amount, and even on the Ar gas flow rate, which promotes mixing and cooling the two vapors. These findings show that the formation of alloy clusters in vapor phase is strongly influenced by the kinetics of cluster formation, and is a competing process between the approach to equilibrium and the quenching of the whole system.

  18. Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography.

    PubMed

    Cho, Deok-Hee; Kong, Sung-Ho; Oh, Seong-Geun

    2003-01-01

    In many drinking water treatment plants, the chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of trihalomethanes (THMs) such as chloroform, dichlorobromomethane, chlorodibromomethane and bromoform. In this study, headspace-solid-phase microextraction (HS-SPME, 85 microm carboxen/polydimethylsiloxane fiber) technique was applied for the analysis of THMs in drinking water. The effects of experimental parameters such as kinds of SPME fiber, the volume ratio of sample to headspace, the addition of salts, magnetic stirring, extraction temperature, extraction time and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The results of THMs from the survey of Seongnam (Korea) drinking water samples showed that the highest total trihalomethane and chloroform were 24.03 and 13.34 microg/l, which were well within the Korean drinking water quality standard of 100 and 80 microg/l, respectively.

  19. Challenges to Laser-Based Imaging Techniques in Gas Turbine Combustor Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Anderson, Robert C.; Zaller, Michelle M.; Hicks, Yolanda R.

    1998-01-01

    Increasingly severe constraints on emissions, noise and fuel efficiency must be met by the next generation of commercial aircraft powerplants. At NASA Lewis Research Center (LeRC) a cooperative research effort with industry is underway to design and test combustors that will meet these requirements. To accomplish these tasks, it is necessary to gain both a detailed understanding of the combustion processes and a precise knowledge of combustor and combustor sub-component performance at close to actual conditions. To that end, researchers at LeRC are engaged in a comprehensive diagnostic investigation of high pressure reacting flowfields that duplicate conditions expected within the actual engine combustors. Unique, optically accessible flame-tubes and sector rig combustors, designed especially for these tests. afford the opportunity to probe these flowfields with the most advanced, laser-based optical diagnostic techniques. However, these same techniques, tested and proven on comparatively simple bench-top gaseous flame burners, encounter numerous restrictions and challenges when applied in these facilities. These include high pressures and temperatures, large flow rates, liquid fuels, remote testing, and carbon or other material deposits on combustor windows. Results are shown that document the success and versatility of these nonintrusive optical diagnostics despite the challenges to their implementation in realistic systems.

  20. A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques

    NASA Astrophysics Data System (ADS)

    Pang, xiaobing; Lewis, Alastair; Rickard, Andrew R.; Baeza-Romero, Maria Teresa; Adams, Thomas J.; Ball, Stephen M.; Goodall, Iain C. A.; Monks, Paul S.; Peppe, Salvatore; Ródenas García, Milagros; Sánchez, Pilar; Muñoz, Amalia

    2014-05-01

    A microfluidic lab-on-a-chip derivatisation technique has been developed to measure part per billion (ppbV) mixing ratios of gaseous glyoxal (GLY) and methylglyoxal (MGLY), and the method is compared with other techniques in a smog chamber experiment. The method uses o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) as a derivatisation reagent and a microfabricated planar glass micro-reactor comprising an inlet, gas and fluid splitting and combining channels, mixing junctions, and a heated capillary reaction microchannel. The enhanced phase contact area-to-volume ratio and the high heat transfer rate in the micro-reactor result in a fast and highly efficient derivatisation reaction, generating an effluent stream ready for direct introduction to a gas chromatograph-mass spectrometer (GC-MS). A linear response for GLY was observed over a calibration range 0.7 to 400 ppbV, and for MGLY of 1.2 to 300 ppbV, when derivatised under optimal reaction conditions. The analytical performance shows good accuracy (6.6 % for GLY and 7.5 % for MGLY), suitable precision (< 12.0 %) and method detection limits (MDLs) (75 pptV for GLY and 185 pptV for MGLY) with a time resolution of 30 minutes. These MDLs are below or close to typical concentrations of these compounds observed in ambient air. The microfluidic derivatisation technique would be appropriate for ambient α-dicarbonyl measurements in a range of field environments based on its performance in a large-scale outdoor atmospheric simulation chamber (EUPHORE). The feasibility of the technique was assessed by applying the methodology to quantify of α-dicarbonyls formed during the photo-oxidation of isoprene in the EUPHORE chamber. Good correlations were found between microfluidic measurements and Fourier Transform InfraRed spectroscopy (FTIR) with the correlation coefficient (r2) of 0.84, Broad Band Cavity Enhanced Absorption Spectroscopy (BBCEAS) (r2 = 0.75), solid phase micro extraction (SPME) (r2 = 0.89), and a

  1. Measuring trace gas emission from multi-distributed sources using vertical radial plume mapping (VRPM) and backward Lagrangian stochastic (bLS) techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The accuracy of the vertical radial plume mapping (VRPM) and the backward Lagrangian (bLS) techniques with an open-path optical spectrosco...

  2. Influence of Rain Tree Pod Meal Supplementation on Rice Straw Based Diets Using In vitro Gas Fermentation Technique.

    PubMed

    Anantasook, N; Wanapat, M

    2012-03-01

    The objective of this study was to determine the roughage to concentrate (R:C) ratio with rain tree pod meal (RPM) supplementation on in vitro fermentation using gas production technique. The experiment design was a 6×4 factorial arrangement in a CRD. Factor A was 6 levels of R:C ratio (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100) and factor B was 4 levels of RPM (0, 4, 8 and 12 mg). It was found that gas kinetic, extent rate (c) was linearly increased (p<0.01) with an increasing level of concentrate while cumulative gas production (96 h) was higher in R:C of 40:60. In addition, interaction of R:C ratio and RPM level affected NH3-N and IVDMD and were highest in R:C of 0:100 with 0, 4 mg of RPM and 40:60 with 8 mg of RPM, respectively. Moreover, interaction of R:C ratio and RPM level significantly increased total volatile fatty acids and propionate concentration whereas lower acetate, acetate to propionate ratios and CH4 production in R:C of 20:80 with 8 mg of RPM. Moreover, the two factors, R:C ratio and RPM level influenced the protozoal population and the percentage of methanogens in the total bacteria population. In addition, the use of real-time PCR found that a high level of concentrate in the diet remarkably decreased three cellulolytic bacteria numbers (F. succinogenes, R. flavefaciens and R. albus). Based on this study, it is suggested that the ratio of R:C at 40:60 and RPM level at 12 mg could improve ruminal fluid fermentation in terms of reducing fermentation losses, thus improving VFA profiles and ruminal ecology.

  3. Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique

    NASA Astrophysics Data System (ADS)

    Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K.

    2016-09-01

    Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO2 3D substrates obtained in the oxidation process of Ti-foil in 30% H2O2. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  4. Comparison of Techniques for Non-Intrusive Fuel Drop Size Measurements in a Subscale Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Anderson, Robert C.; Hicks, Yolanda R.; Locke, Randy J.

    1999-01-01

    In aviation gas turbine combustors, many factors, such as the degree and extent of fuel/air mixing and fuel vaporization achieved prior to combustion, influence the formation of undesirable pollutants. To assist in analyzing the extent of fuel/air mixing, flow visualization techniques have been used to interrogate the fuel distributions during subcomponent tests of lean-burning fuel injectors. Discrimination between liquid and vapor phases of the fuel was determined by comparing planar laser-induced fluorescence (PLIF) images, elastically-scattered light images, and phase/Doppler interferometer measurements. Estimates of Sauter mean diameters are made by ratioing PLIF and Mie scattered intensities for various sprays, and factors affecting the accuracy of these estimates are discussed. Mie calculations of absorption coefficients indicate that the fluorescence intensities of individual droplets are proportional to their surface areas, instead of their volumes, due to the high absorbance of the liquid fuel for the selected excitation wavelengths.

  5. Ion mobility-mass spectrometry and orthogonal gas-phase techniques to study amyloid formation and inhibition.

    PubMed

    Hoffmann, Waldemar; von Helden, Gert; Pagel, Kevin

    2017-03-23

    Amyloidogenic peptide oligomers are responsible for a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Due to their dynamic, polydisperse, and polymorphic nature, these oligomers are very challenging to characterize using traditional condensed-phase methods. In the last decade, ion mobility-mass spectrometry (IM-MS) and related gas-phase techniques have emerged as a powerful alternative to disentangle the structure and assembly characteristics of amyloid forming systems. This review highlights recent advances in which IM-MS was used to characterize amyloid oligomers and their underlying assembly pathway. In addition, we summarize recent studies in which IM-MS was used to size- and mass-select species for a further spectroscopic investigation and outline the potential of IM-MS as a tool for the screening of amyloid inhibitors.

  6. Ambient Atmospheric Hydrocarbon Content as Determined by Gas Chromatographic Techniques from Rural Tidewater Virginia in Late Spring 1974

    NASA Technical Reports Server (NTRS)

    Copeland, G. E.; Davis, R.; Maroulis, P.; Bandy, A. R.; Denyszyn, R.; Kindle, E. C.

    1975-01-01

    In an attempt to ascertain the naturally generated hydrocarbon contribution to the air quality of the Hampton Roads region of Tidewater Virginia, a series of 27 air samples was obtained in two rural locations during late spring of 1974. These samples were analyzed for their hydrocarbon content (carbon number range C5 to C10) using gas chromatographic techniques. The thirty different hydrocarbon species were identified and monitored in the experiment. Preliminary analysis of the data indicates an average concentration of 397 parts per billion by weight (carbon) for the total non-methane hydrocarbon loading for C5 to C10 during the experiment. This value exceeds the National Primary Air Quality Standards as set by the Environmental Protection Agency.

  7. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  8. Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism.

    PubMed

    Wallace, Robert J; Snelling, Timothy J; McCartney, Christine A; Tapio, Ilma; Strozzi, Francesco

    2017-01-16

    Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all

  9. Determination of organophosphorus pesticides by gas chromatography with mass spectrometry using a large-volume injection technique after magnetic extraction.

    PubMed

    Nedaei, Maryam; Salehpour, Ali-Reza; Mozaffari, Shahla; Yousefi, Seyedeh Mahboobeh; Yousefi, Seyed Reza

    2014-09-01

    A fast and efficient method was developed for the extraction and determination of organophosphorus pesticides in water samples. Organophosphorus pesticides were extracted by solid-phase extraction using magnetic multi-walled carbon nanotubes and determined by gas chromatography with ion-trap mass spectrometry. Parameters affecting the extraction were investigated. Under optimum conditions of the method, 10 mg magnetic multi-walled carbon nanotubes were added into 10 mL sample. After 2 min, adsorbent particles settled at the bottom of test tube with a magnet. After removing aqueous supernatant, the analytes were desorbed with acetonitrile. Then, 70 μL of acetonitrile phase was injected into the gas chromatography and mass spectrometry system that had an ion-trap analyzer. To achieve high sensitivity, the large-volume-injection technique was used with a programmed temperature vaporization inlet, and the ion-trap mass spectrometer was operated in single ion storage mode. Under the best conditions, the enrichment factors and extraction recoveries were in the range of 113-124 and 74-103%, respectively. The limits of detection were between 3 and 15 ng/L, and the relative standard deviations were < 10%. This method was successfully used for the determination of organophosphorus pesticides in dam water, lagoon water, and river water samples with good reproducibility and recovery.

  10. Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition.

    PubMed

    Vekeman, Bram; Dumolin, Charles; De Vos, Paul; Heylen, Kim

    2017-02-01

    Cultivation of microbial representatives of specific functional guilds from environmental samples depends largely on the suitability of the applied growth conditions. Especially the cultivation of marine methanotrophs has received little attention, resulting in only a limited number of ex situ cultures available. In this study we investigated the effect of adhesion material and headspace composition on the methane oxidation activity in methanotrophic enrichments obtained from marine sediment. Addition of sterilized natural sediment or alternatively the addition of acid-washed silicon dioxide significantly increased methane oxidation. This positive effect was attributed to bacterial adhesion on the particles via extracellular compounds, with a minimum amount of particles required for effect. As a result, the particles were immobilized, thus creating a stratified environment in which a limited diffusive gas gradients could build up and various microniches were formed. Such diffusive gas gradient might necessitate high headspace concentrations of CH4 and CO2 for sufficient concentrations to reach the methane-oxidizing bacteria in the enrichment culture technique. Therefore, high concentrations of methane and carbon dioxide, in addition to the addition of adhesion material, were tested and indeed further stimulated methane oxidation. Use of adhesion material in combination with high concentrations of methane and carbon dioxide might thus facilitate the cultivation and subsequent enrichment of environmentally important members of this functional guild. The exact mechanism of the observed positive effects on methane oxidation and the differential effect on methanotrophic diversity still needs to be explored.

  11. Gas purge-microsyringe extraction: a rapid and exhaustive direct microextraction technique of polycyclic aromatic hydrocarbons from plants.

    PubMed

    Wang, Juan; Yang, Cui; Li, Huijie; Piao, Xiangfan; Li, Donghao

    2013-12-17

    Gas purge-microsyringe extraction (GP-MSE) is a rapid and exhaustive microextraction technique for volatile and semivolatile compounds. In this study, a theoretical system of GP-MSE was established by directly extracting and analyzing 16 kinds of polycyclic aromatic hydrocarbons (PAHs) from plant samples. On the basis of theoretical consideration, a full factorial experimental design was first used to evaluate the main effects and interactions of the experimental parameters affecting the extraction efficiency. Further experiments were carried out to determine the extraction kinetics and desorption temperature-dependent. The results indicated that three factors, namely desorption temperature (temperature of sample phase) Td, extraction time t, and gas flow rate u, had a significantly positive effect on the extraction efficiency of GP-MSE for PAHs. Extraction processes of PAHs in plant samples followed by first-order kinetics (relative coefficient R(2) of simulation curves were 0.731-1.000, with an average of 0.958 and 4.06% relative standard deviation), and obviously depended on the desorption temperature. Furthermore, the effect of the matrix was determined from the difference in Eapp,d. Finally, satisfactory recoveries of 16 PAHs were obtained using optimal parameters. The study demonstrated that GP-MSE could provide a rapid and exhaustive means of direct extraction of PAHs from plant samples. The extraction kinetics were similar that of the inverse process of the desorption kinetics of the sample phase.

  12. Correction of Dynamic Errors of a Gas Sensor Based on a Parametric Method and a Neural Network Technique

    PubMed Central

    Roj, Jerzy

    2016-01-01

    The paper presents two methods of dynamic error correction applied to transducers used for the measurement of gas concentration. One of them is based on a parametric model of the transducer dynamics, and the second one uses the artificial neural network (ANN) technique. This article describes research of the dynamic properties of the gas concentration measuring transducer with a typical sensor based on tin dioxide. Its response time is about 8 min, which may be not acceptable in many applications. On the basis of these studies, a parametric model of the transducer dynamics and an adequate correction algorithm has been developed. The results obtained in the research of the transducer were also used for learning and testing ANN, which were implemented in the dynamic correction task. Despite the simplicity of the used models, both methods allowed a significant reduction of the transducer’s response time. For the algorithm based on the parametric model the response time was shorter by approximately eight-fold (reduced up to 40–80 s, i.e., about 2–4 sample periods), whereas with the use of an ANN the output signal was practically fixed after a time equal to one sampling period, i.e., 20 s. In addition, the use of ANN has allowed reducing the impact of the transducer dynamic non-linearity on the correction effectiveness. PMID:27517933

  13. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  14. A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques

    NASA Astrophysics Data System (ADS)

    Pang, X.; Lewis, A. C.; Rickard, A. R.; Baeza-Romero, M. T.; Adams, T. J.; Ball, S. M.; Daniels, M. J. S.; Goodall, I. C. A.; Monks, P. S.; Peppe, S.; Ródenas García, M.; Sánchez, P.; Muñoz, A.

    2014-02-01

    A microfluidic lab-on-a-chip derivatisation technique has been developed to measure part per billion (ppbV) mixing ratios of gaseous glyoxal (GLY) and methylglyoxal (MGLY), and the method is compared with other techniques in a smog chamber experiment. The method uses o-(2, 3, 4, 5, 6-pentafluorobenzyl) hydroxylamine (PFBHA) as a derivatisation reagent and a microfabricated planar glass micro-reactor comprising an inlet, gas and fluid splitting and combining channels, mixing junctions, and a heated capillary reaction microchannel. The enhanced phase contact area-to-volume ratio and the high heat transfer rate in the micro-reactor resulted in a fast and highly efficient derivatisation reaction, generating an effluent stream ready for direct introduction to a gas chromatograph-mass spectrometer (GC-MS). A linear response for GLY was observed over a calibration range 0.7 to 400 ppbV, and for MGLY of 1.2 to 300 ppbV, when derivatised under optimal reaction conditions. The analytical performance shows good accuracy (6.6% for GLY and 7.5% for MGLY), suitable precision (<12.0%) with method detection limits (MDLs) of 75 pptV for GLY and 185 pptV for MGLY, with a time resolution of 30 min. These MDLs are below or close to typical concentrations of these compounds observed in ambient air. The feasibility of the technique was assessed by applying the methodology to quantify α-dicarbonyls formed during the photo-oxidation of isoprene in the EUPHORE chamber. Good correlations were found between microfluidic measurements and Fourier Transform InfraRed spectroscopy (FTIR) with a correlation coefficient (r2) of 0.84, Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS) (r2 = 0.75), solid phase micro extraction (SPME) (r2 = 0.89), and a photochemical chamber box modelling calculation (r2 = 0.79) for GLY measurements. For MGLY measurements, the microfluidic technique showed good agreement with BBCEAS (r2 = 0.87), SPME (r2 = 0.76), and the modeling simulation (r2 = 0.83), FTIR

  15. Characterization of thermal desorption with the Deans-switch technique in gas chromatographic analysis of volatile organic compounds.

    PubMed

    Ou-Yang, Chang-Feng; Huang, Ying-Xue; Huang, Ting-Jyun; Chen, Yong-Shen; Wang, Chieh-Heng; Wang, Jia-Lin

    2016-09-02

    This study presents a novel application based on the Deans-switch cutting technique to characterize the thermal-desorption (TD) properties for gas chromatographic (GC) analysis of ambient volatile organic compounds (VOCs). Flash-heating of the sorbent bed at high temperatures to desorb trapped VOCs to GC may easily produce severe asymmetric or tailing GC peaks affecting resolution and sensitivity if care is not taken to optimize the TD conditions. The TD peak without GC separation was first examined for the quality of the TD peak by analyzing a standard gas mixture from C2 to C12 at ppb level. The Deans switch was later applied in two different stages. First, it was used to cut the trailing tail of the TD peak, which, although significantly improved the GC peak symmetry, led to more loss of the higher boiling compounds than the low boiling ones, thus suggesting compound discrimination. Subsequently, the Deans switch was used to dissect the TD peak into six 30s slices in series, and an uneven distribution in composition between the slices were found. A progressive decrease in low boiling compounds and increase in higher boiling ones across the slices indicated severe inhomogeneity in the TD profile. This finding provided a clear evidence to answer the discrimination problem found with the tail cutting approach to improve peak symmetry. Through the use of the innovated slicing method based on the Deans-switch cutting technique, optimization of TD injection for highly resolved, symmetric and non-discriminated GC peaks can now be more quantitatively assessed and guided.

  16. Optimizing Gas Production in an Aquifer Using the Discrimination/Inference to Reduce Expected Cost Technique (DIRECT)

    NASA Astrophysics Data System (ADS)

    Ferre, P. A.; Hundt, S.

    2012-12-01

    Groundwater models are often developed as tools for environmental decision making, yet sparse data availability can limit a model's effectiveness by confounding efforts to calibrate the model or to select a single structural representation. As a result, quantifying uncertainty and identifying data collection strategies can be important results of a modeling effort. The Discrimination/Inference to Reduce Expected Cost Technique (DIRECT) is a new method for designing data collection efforts with the purpose of improving decision making that addresses structural model uncertainty through a multiple model approach. The DIRECT framework is applied to the modeling investigation of an aquifer system in Central Utah where a major Coalbed Methane gas field is located and a new approach is being proposed for stimulating gas production. This technique involves circulating a nutrient solution through the Coalbed with a system of injection and extraction wells. Simulations of groundwater flow and transport are run using MODFLOW and MT3D with the aims of assessing potential circulation systems, quantifying prediction uncertainty, and developing a data collection strategy. Multiple competing structural models are built, given a range of parameter values, and run with different circulation system designs. Models are given likelihood values based upon their fit to existing data and those which see the solution migrate beyond the circulation system or towards drinking supply wells are deemed critical models. Costs are also applied to these negative outcomes. A measurement strategy is developed by choosing potential observations which best discriminate between likely and important models and unlikely unimportant models. The proposed circulation systems are assessed by developing an expected cost function for each design.

  17. Use of Immunohistochemistry Techniques in Patients Exposed to Sulphur Mustard Gas

    PubMed Central

    Ghanei, Mostafa; Chilosi, Marco; Mohammad Hosseini Akbari, Hassan; Motiei-Langroudi, Rouzbeh; Harandi, Ali Amini; Shamsaei, Hassan; Bahadori, Moslem; Tazelaar, Henry D.

    2011-01-01

    We performed a pathologic study with further using an immunohistochemical technique (using anti-p63 and anti-CK5) on tissues obtained by open lung biopsy from 18 patients with previous exposure to sulphur mustard (SM) as case group and 8 unexposed patients (control group). The most frequent pathologic diagnosis was constrictive bronchiolitis (44.4%), followed by respiratory (22.2%) and chronic cellular bronchiolitis (16.7%) in the case group, and hypersensitivity bronchiolitis (50%) in the control group. The pathologic diagnoses were significantly different in the case and control groups (P = 0.042). In slides stained by anti-p63 and anti-CK5, the percent of stained cells and the mean number of epithelial cells were lower in the case group in comparison to the control group. This difference was significant for the mean number of cells stained by anti-CK5 (P = 0.042). Furthermore, there was a significant correlation between pathologic diagnosis and total number of cells and mean number of cells stained with anti-p63 and anti-CK5 (P  value = 0.002, <0.001, 0.044). These results suggest that constrictive bronchiolitis may be the major pathologic consequence of exposure to SM. Moreover, decrease of p63 in respiratory tissues affected by SM may suggest the lack of regenerative capacity in these patients. PMID:21776342

  18. Removal Dynamics of Nitric Oxide (NO) Pollutant Gas by Pulse-Discharged Plasma Technique

    PubMed Central

    Zhang, Lianshui; Wang, Xiaojun; Lai, Weidong; Cheng, Xueliang; Zhao, Kuifang

    2014-01-01

    Nonthermal plasma technique has drawn extensive attentions for removal of air pollutants such as NOx and SO2. The NO removal mechanism in pulse discharged plasma is discussed in this paper. Emission spectra diagnosis indicates that the higher the discharge voltage is, the more the NO are removed and transformed into O, N, N2, NO2, and so forth. Plasma electron temperature Te is ranged from 6400 K at 2.4 kV discharge voltage to 9500 K at 4.8 kV. After establishing a zero-dimensional chemical reaction kinetic model, the major reaction paths are clarified as the electron collision dissociation of NO into N and O during discharge and followed by single substitution of N on NO to form N2 during and after discharge, compared with the small fraction of NO2 formed by oxidizing NO. The reaction directions can be adjusted by N2 additive, and the optimal N2/NO mixing ratio is 2 : 1. Such a ratio not only compensates the disadvantage of electron competitive consumption by the mixed N2, but also heightens the total NO removal extent through accelerating the NO oxidization process. PMID:24737985

  19. Role of TRPV1 and TRPA1 in visceral hypersensitivity to colorectal distension during experimental colitis in rats.

    PubMed

    Vermeulen, Wim; De Man, Joris G; De Schepper, Heiko U; Bult, Hidde; Moreels, Tom G; Pelckmans, Paul A; De Winter, Benedicte Y

    2013-01-05

    The aim of the present study is to investigate the effects of TRPV1 and TRPA1 receptor antagonists and their synergism on the visceromotor responses during experimental colitis in rats. Colitis was induced in rats by a TNBS/ethanol enema at day 0 and was assessed at day 3 using endoscopy, histology and a myeloperoxidase assay. The visceromotor response to colorectal distension (10-80 mmHg) was evaluated in conscious rats before (control condition) and 3 days after 2,4,6-trinitrobenzene sulfonic acid (TNBS) administration (colitis condition). At day 3, visceromotor responses were assessed before and after treatment with a TRPV1 (BCTC) or TRPA1 (TCS-5861528) receptor antagonist either alone or in combination and either after intraperitoneal or intrathecal administration. Endoscopy, microscopy and myeloperoxidase activity indicated severe colonic tissue damage 3 days after TNBS administration. Colorectal distension-evoked visceromotor responses demonstrated a 2.9-fold increase during acute colitis (day 3) compared to control conditions. Intraperitoneal and intrathecal administration of BCTC or TCS-5861528 partially reversed the colitis-induced increase in visceromotor responses compared to control conditions (P<0.05). Intraperitoneal blockade of TRPA1 plus TRPV1 further decreased the enhanced visceromotor responses at high distension pressures (40-80 mmHg) compared to blockade of either TRPV1 or TRPA1 alone. This synergistic effect was not seen after combined intrathecal blockade of TRPA1 plus TRPV1. The present study demonstrates that in the rat, TRPV1 and TRPA1 play a pivotal role in visceral hypersensitivity at the peripheral and spinal cord level during acute TNBS colitis. Target interaction, however, is presumably mediated via a peripheral site of action.

  20. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    USGS Publications Warehouse

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C

    2016-01-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  1. Experimental and numerical test of the micrometeorological mass difference technique for the measurement of trace gas emissions from small plots.

    PubMed

    Magliulo, Vincenzo; Alterio, Giovanni; Peressotti, Alessandro

    2004-05-01

    Micrometeorological methods for measuring fluxes of gases between the land surface and the atmosphere are non-invasive: in fact, they do not interfere with natural processes of gas exchange. The Micrometeorological Mass Difference (MMD) approach can be used for many environmental monitoring purposes, such as to measure methane and carbon dioxide emission from landfills, methane production by grazing animals, trace gas emission from waste products and from agricultural soils, photosynthesis, and transpiration of plant canopies. The purpose of this study is to adapt the MMD technique, originally developed in Australia, to monitor CO2 and trace gases exchange rate at the plot level. Comparison of different treatments in replicated experiments requires plots of few rather than tens of meters. The tests reported here were performed on a square area (4 m x 4 m) in the meteorological field of the experimental farm of CNR-ISAFOM located in Vitulazio, province of Caserta, Italy (40 degrees 07' N, 14 degrees 50' E, 25 m above sea level) and consisted of the release of pure CO2 at different rates (1.7, 1.3, 0.6 L min(-1)) from a single source on the ground in the center of the experimental area and the consequent measurement of the environmental variables (wind speed and direction, CO2 concentration) at different times at four heights (up to 1.2 m) in order to compute the mass balance according to MMD technique. Measured flow rates well accounted for the mass of CO2 released. A flow underestimation occurred when wind speed dropped below 1.5 m s(-1), in accord with the previous findings obtained in Australia: this happened because anemometers can stall at low speeds, and their measurements are unreliable and because of significant loss of mass from the top of the apparatus. The experimental results were compared with outputs of Computational Fluid Dynamic (CFD) simulations. The commercial CFD package Fluent was used to evaluate performances and sources of errors. According to

  2. CHARACTERIZATION OF CONDITIONS OF NATURAL GAS STORAGE RESERVOIRS AND DESIGN AND DEMONSTRATION OF REMEDIAL TECHNIQUES FOR DAMAGE MECHANISMS FOUND THEREIN

    SciTech Connect

    J.H. Frantz Jr; K.G. Brown; W.K. Sawyer; P.A. Zyglowicz; P.M. Halleck; J.P. Spivey

    2004-12-01

    The underground gas storage (UGS) industry uses over 400 reservoirs and 17,000 wells to store and withdrawal gas. As such, it is a significant contributor to gas supply in the United States. It has been demonstrated that many UGS wells show a loss of deliverability each year due to numerous damage mechanisms. Previous studies estimate that up to one hundred million dollars are spent each year to recover or replace a deliverability loss of approximately 3.2 Bscf/D per year in the storage industry. Clearly, there is a great potential for developing technology to prevent, mitigate, or eliminate the damage causing deliverability losses in UGS wells. Prior studies have also identified the presence of several potential damage mechanisms in storage wells, developed damage diagnostic procedures, and discussed, in general terms, the possible reactions that need to occur to create the damage. However, few studies address how to prevent or mitigate specific damage types, and/or how to eliminate the damage from occurring in the future. This study seeks to increase our understanding of two specific damage mechanisms, inorganic precipitates (specifically siderite), and non-darcy damage, and thus serves to expand prior efforts as well as complement ongoing gas storage projects. Specifically, this study has resulted in: (1) An effective lab protocol designed to assess the extent of damage due to inorganic precipitates; (2) An increased understanding of how inorganic precipitates (specifically siderite) develop; (3) Identification of potential sources of chemical components necessary for siderite formation; (4) A remediation technique that has successfully restored deliverability to storage wells damaged by the inorganic precipitate siderite (one well had nearly a tenfold increase in deliverability); (5) Identification of the types of treatments that have historically been successful at reducing the amount of non-darcy pressure drop in a well, and (6) Development of a tool that can

  3. Inhibitory Effects and Sympathetic Mechanisms of Distension in the Distal Organs on Small Bowel Motility and Slow Waves in Canine.

    PubMed

    Song, Jun; Yin, Jieyun; Chen, Jiande D Z

    2015-12-01

    Rectal distension (RD) is known to induce intestinal dysmotility. Few studies were performed to compare effects of RD, colon distension (CD) and duodenal distension (DD) on small bowel motility. This study aimed to investigate effects and underlying mechanisms of distensions in these regions on intestinal motility and slow waves. Eight dogs chronically implanted with a duodenal fistula, a proximal colon fistula, and intestinal serosal electrodes were studied in six sessions: control, RD, CD, DD, RD + guanethidine, and CD + guanethidine. Postprandial intestinal contractions and slow waves were recorded for the assessment of intestinal motility. The electrocardiogram was recorded for the assessment of autonomic functions. (1) Isobaric RD and CD suppressed intestinal contractions (contractile index: 6.0 ± 0.4 with RD vs. 9.9 ± 0.9 at baseline, P = 0.001, 5.3 ± 0.2 with CD vs. 7.7 ± 0.8 at baseline, P = 0.008). Guanethidine at 3 mg/kg iv was able to partially block the effects. (2) RD and CD reduced the percentage of normal intestinal slow waves from 92.1 ± 2.8 to 64.2 ± 3.4 % (P < 0.001) and from 90 ± 2.7 to 69.2 ± 3.7 % (P = 0.01), respectively. Guanethidine could eliminate these inhibitory effects. (3) DD did not induce any changes in small intestinal contractions and slow waves (P > 0.05). (4) The spectral analysis of the heart rate variability showed that both RD and CD increased sympathetic activity (LF) and reduced vagal activity (HF) (P < 0.05). Isobaric RD and CD could inhibit postprandial intestinal motility and impair intestinal slow waves, which were mediated via the sympathetic pathway. However, DD at a site proximal to the measurement site did not seem to impair small intestinal contractions or slow waves.

  4. Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers.

    PubMed

    Matatagui, D; Fernández, M J; Fontecha, J; Sayago, I; Gràcia, I; Cané, C; Horrillo, M C; Santos, J P

    2014-03-01

    The electrospinning technique has allowed that very different materials are deposited as sensitive layers on Love-wave devices forming a low cost and successful sensor array. Their excellent sensitivity, good linearity and short response time are reported in this paper. Several materials have been used to produce the nanofibers: polymers as Polyvinyl alcohol (PVA), Polyvinylpyrrolidone (PVP) and Polystirene (PS); composites with polymers as PVA+SnCl4; combined polymers as PS+Poly(styrene-alt-maleic anhydride) (PS+PSMA) and metal oxides (SnO2). In order to test the array, well-known chemical warfare agent simulants (CWAs) have been chosen among the volatile organic compounds due to their importance in the security field. Very low concentrations of these compounds have been detected by the array, such as 0.2 ppm of DMMP, a simulant of sarin nerve gas, and 1 ppm of DPGME, a simulant of nitrogen mustard. Additionally, the CWA simulants used in the experiment have been discriminated and classified using pattern recognition techniques, such as principal component analysis and artificial neural networks.

  5. Technique of estimation of actual strength of a gas pipeline section at its deformation in landslide action zone

    SciTech Connect

    Tcherni, V.P.

    1996-12-31

    The technique is given which permits determination of stress and strain state (SSS) and estimation of actual strength of a section of a buried main gas pipeline (GP) in the case of its deformation in a landslide action zone. The technique is based on the use of three-dimensional coordinates of axial points of the deformed GP section. These coordinates are received by a full-scale survey. The deformed axis of the surveyed GP section is described by the polynomial. The unknown coefficients of the polynomial can be determined from the boundary conditions at points of connection with contiguous undeformed sections as well as by use of minimization methods in mathematical processing of full-scale survey results. The resulting form of GP section`s axis allows one to determine curvatures and, accordingly, bending moments along all the length of the considered section. The influence of soil resistance to longitudinal displacements of a pipeline is used to determine longitudinal forces. Resulting values of bending moments and axial forces as well as the known value of internal pressure are used to analyze all necessary components of an actual SSS of pipeline section and to estimate its strength by elastic analysis.

  6. Excessive coupling of the salience network with intrinsic neurocognitive brain networks during rectal distension in adolescents with irritable bowel syndrome: a preliminary report

    PubMed Central

    Liu, Xiaolin; Silverman, Alan; Kern, Mark; Ward, B. Douglas; Li, Shi-Jiang; Shaker, Reza; Sood, Manu R.

    2015-01-01

    Background The neural network mechanisms underlying visceral hypersensitivity in irritable bowel syndrome (IBS) are incompletely understood. It has been proposed that an intrinsic salience network plays an important role in chronic pain and IBS symptoms. Using neuroimaging, we examined brain responses to rectal distension in adolescent IBS patients, focusing on determining the alteration of salience network integrity in IBS and its functional implications in current theoretical frameworks. We hypothesized that (1) brain responses to visceral stimulation in adolescents are similar to those in adults, and (2) IBS is associated with an altered salience network interaction with other neurocognitive networks, particularly the default mode network (DMN) and executive control network (ECN), as predicted by the theoretical models. Methods IBS patients and controls received subliminal and liminal rectal distension during imaging. Stimulus-induced brain activations were determined. Salience network integrity was evaluated by functional connectivity of its seed regions activated by rectal distension in the insular and cingulate cortices. Key Results Compared with controls, IBS patients demonstrated greater activation to rectal distension in neural structures of the homeostatic afferent and emotional arousal networks, especially the anterior cingulate and insular cortices. Greater brain responses to liminal vs. subliminal distension were observed in both groups. Particularly, IBS is uniquely associated with an excessive coupling of the salience network with the DMN and ECN in their key frontal and parietal node areas. Conclusions & Inferences Our study provided consistent evidence supporting the theoretical predictions of altered salience network functioning as a neuropathological mechanism of IBS symptoms. PMID:26467966

  7. A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements

    SciTech Connect

    Jackson, S. L.; Weber, B. V.; Mosher, D.; Phipps, D. G.; Stephanakis, S. J.; Commisso, R. J.; Qi, N.; Failor, B. H.; Coleman, P. L.

    2008-10-15

    The distribution of argon gas injected by a 12-cm-diameter triple-shell nozzle was characterized using both planar, laser-induced fluorescence (PLIF) and high-sensitivity interferometry. PLIF is used to measure the density distribution at a given time by detecting fluorescence from an acetone tracer added to the gas. Interferometry involves making time-dependent, line-integrated gas density measurements at a series of chordal locations that are then Abel inverted to obtain the gas density distribution. Measurements were made on nominally identical nozzles later used for gas-puff Z-pinch experiments on the Saturn pulsed-power generator. Significant differences in the mass distributions obtained by the two techniques are presented and discussed, along with the strengths and weaknesses of each method.

  8. Simulation Based on Ion-Ion Plasma Techniques of Electric propulsion In Mars Mission Using Chlorine Gas

    NASA Astrophysics Data System (ADS)

    Sathiyavel, C.

    Abstract:The recently(Nov-5/2013) launched Mangalyan by the Indian space Research Organization (ISRO) to Mars orbit with Mankalyan contained by small liquid engine(MMH+N2O4).This will take long time to reach the Mars orbit that is around the 9 Months. Bi-Propellant rocket system has good thrust but low specific impulse and velocity. In future we need a rocket with good high specific impulse and high velocity of rocket system, to reduce the trip time to Mars. Electric propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because this needs low propellant, Design thrust range is 1.5 N with high efficiency. An ion - ion pair of Electric propulsion rocket system is proposed in this work. Ion-Ion(positive ion- negative ion) Based Rocket system consists of three parts 1.The negative ionization stage with electro negative propellant 2. Ion-Ion plasma formation and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negative gas are produced by adding up the gas, such as chlorine with electron emitted from an Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). When a neutral chlorine atom in the gaseous form picks up an electron to form a Cl- ion, it releases energy of 3.6eV. The negative ion density becomes several orders of magnitude larger than that of the electrons, hence forming ion-ion (positive ion - negative ion) plasma at the periphery of the discharge. The distance between ion- ions is important for the evaluate the rocket thrust and it also that the distance is determined by the exhaust velocity of the propellant. Accelerate the ion-ion plasma to a high velocity in the thrust vector direction via electron gun and the exhaust of ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we

  9. Characterisation and discrimination of various types of lac resin using gas chromatography mass spectrometry techniques with quaternary ammonium reagents.

    PubMed

    Sutherland, K; del Río, J C

    2014-04-18

    A variety of lac resin samples obtained from artists' suppliers, industrial manufacturers, and museum collections were analysed using gas chromatography mass spectrometry (GCMS) and reactive pyrolysis GCMS with quaternary ammonium reagents. These techniques allowed a detailed chemical characterisation of microgram-sized samples, based on the detection and identification of derivatives of the hydroxy aliphatic and cyclic (sesquiterpene) acids that compose the resin. Differences in composition could be related to the nature of the resin, e.g. wax-containing (unrefined), bleached, or aged samples. Furthermore, differences in the relative abundances of aliphatic hydroxyacids appear to be associated with the biological source of the resin. The diagnostic value of newly characterised lac components, including 8-hydroxyacids, is discussed here for the first time. Identification of derivatised components was aided by AMDIS deconvolution software, and discrimination of samples was enhanced by statistical evaluation of data using principal component analysis. The robustness of the analyses, together with the minimal sample size required, make these very powerful approaches for the characterisation of lac resin in museum objects. The value of such analyses for enhancing the understanding of museum collections is illustrated by two case studies of objects in the collection of the Philadelphia Museum of Art: a restorer's varnish on a painting by Luca Signorelli, and a pictorial inlay in an early nineteenth-century High Chest by George Dyer.

  10. Low-Cost Gas Sensors Produced by the Graphite Line-Patterning Technique Applied to Monitoring Banana Ripeness

    PubMed Central

    Manzoli, Alexandra; Steffens, Clarice; Paschoalin, Rafaella T.; Correa, Alessandra A.; Alves, William F.; Leite, Fábio L.; Herrmann, Paulo S. P.

    2011-01-01

    A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness. PMID:22163963

  11. Study of the Behaviors of Gunshot Residues from Spent Cartridges by Headspace Solid-Phase Microextraction-Gas Chromatographic Techniques.

    PubMed

    Chang, Kah Haw; Yew, Chong Hooi; Abdullah, Ahmad Fahmi Lim

    2015-07-01

    Gunshot residues, produced after shooting activity, have acquired their importance in analysis due to the notoriety of firearms-related crimes. In this study, solid-phase microextraction was performed to extract the headspace composition of spent cartridges using 85-μm polyacrylate fiber at 66°C for 21 min. Organic compounds, that is, naphthalene, 2,6-dinitrotoluene, 2,4-dinitrotoluene, diphenylamine, and dibutyl phthalate were detected and analyzed by gas chromatography-flame ionization detection technique. Evaluation of chromatograms for diphenylamine, dibutyl phthalate, and naphthalene indicates the period after a gunshot was discharged, whether it was 1 days, 2-4 days, <5 days, 10 days, 20 days, or more than 30 days ago. This study revealed the potential effects of environmental factors such as occasional wind blow and direct sunlight on the estimation of time after spent cartridges were discharged. In conclusion, we proposed reliable alternative in analyzing the headspace composition of spent cartridges in a simulated crime scene.

  12. Inter-comparison of laser photoacoustic spectroscopy and gas chromatography techniques for measurements of ethene in the atmosphere.

    PubMed

    Kuster, William C; Harren, Frans J M; de Gouw, Joost A

    2005-06-15

    Laser photoacoustic spectroscopy (LPAS) is highly suitable for the detection of ethene in air due to the overlap between its strongest absorption lines and the wavelengths accessible by high-powered CO2 lasers. Here, we test the ability of LPAS to measure ethene in ambient air by comparing the measurements in urban air with those from a gas chromatography flame-ionization detection (GC-FID) instrument. Over the course of several days, we obtained quantitative agreement between the two measurements. Over this period, the LPAS instrument had a positive offset of 330 +/- 140 pptv (parts-per-trillion by volume) relative to the GC-FID instrument, possibly caused by interference from other species. The detection limit of the LPAS instrument is currently estimated around 1 ppbv and is limited by this offset and the statistical noise in the data. We conclude that LPAS has the potential to provide fast-response measurements of ethene in the atmosphere, with significant advantages over existing techniques when measuring from moving platforms and in the vicinity of emission sources.

  13. Effects of sensor location and the atmospheric stability on the accuracy of an inverse-dispersion technique for lagoon gas emission measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emission rates from wastewater lagoons and storage ponds using currently available micrometeorological techniques can be an arduous task because typical lagoon environments contain a variety of obstructions (e.g., berm, trees, buildings) to wind flow. These non-homogeneous terrain cond...

  14. Sample Processing technique onboard ExoMars (MOMA) to analyze organic compounds by Gas Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Buch, A.; Freissinet, C.; Sternberg, R.; Szopa, C.; Coll, P. J.; Brault, A.; Pinnick, V.; Siljeström, S.; Raulin, F.; Steininger, H.; Goesmann, F.; MOMA Team

    2011-12-01

    With the aim of separating and detecting organic compounds from Martian soil onboard the Mars Organic Molecule Analyzer (MOMA) experiment of the ExoMars 2018 upcoming joint ESA/NASA mission, we have developed three different space compatible sample preparation techniques compatible with space missions, able to extract and analyze by GC-MS a wide range of volatile and refractory compounds, including chirality analysis. Then, a sample processing utilizing three derivatization/extraction reactions has been carried out. The first reaction is based on a silyl reagent N-Methyl-N- (Tert-Butyldimethylsilyl)trifluoroacetamide (MTBSTFA) [1], the second one, N,N-Dimethylformamide Dimethylacetal (DMF-DMA) [2,3] is dedicated to the chirality detection and the third one is a thermochemolysis based on the use of tetramethylammoniumhydroxide (TMAH). The sample processing system is performed in an oven, dedicated to the MOMA experiment containing the solid sample (50-100mg). The internal temperature of the oven ranges from 20 to 900 °C. The extraction step is achieved by using thermodesorption in the range of 100 to 300°C for 5 to 20 min. Then, the chemical derivatization of the extracted compounds is performed directly on the soil sample by using a derivatyization capsule which contains a mixture of MTBSTFA-DMF or DMF-DMA solution when enantiomeric separation is required. By decreasing the polarity of the targeted molecules, this step allows their volatilization at a temperature below 250°C without any thermal degradation. Once derivatized, the volatile target molecules are trapped in a chemical trap and promptly desorbed into the gas chromatograph coupled to a mass spectrometer. Thermochemolysis is directly performed in the oven at 400°C during 5 min with a 25% (w/w) methanol solution of tetramethylammonium hydroxide (TMAH). Then, pyrolysis in the presence of TMAH allows both an efficient cleavage of polar bonds and the subsequent methylation of COOH, OH and NH2 groups, hence

  15. A Comparative High-Resolution Electron Microscope Study of Ag Clusters Produced by a Sputter-Gas Aggregation and Ion Cluster Beam Technique

    NASA Astrophysics Data System (ADS)

    Hohl, Georg-Friedrich; Hihara, Takehiko; Sakurai, Masaki; Oishi, Takashi; Wakoh, Kimio; Sumiyama, Kenji; Suzuki, Kenji

    1994-03-01

    Ag clusters were formed by a sputter-gas-aggregation process [H. Haberland et al..: J. Vac. Sci. Technol. A 10 (1992) 3266] and the ionized cluster beam (ICB) [T. Takagi: Ionized-Cluster Beam Deposition and Epitaxy (Noyes, Park Ridge, 1988)] technique. The Ag clusters deposited on collodion-coated microgrids were investigated by high-resolution transmission electron microscopy. The diameter of those clusters, d, ranges from 1 nm up to about 10 nm for specimens produced by the sputter-gas aggregation technique, depending on the sputter condition and the deposition time. Comparable times of the ICB deposition lead to a broader distribution up to d≈20 nm, suggesting the formation of islands with extremely flat shapes. High percentages of crystalline particles obtained by both techniques are either single crystals or multiple twins with clear lattice images.

  16. A comparison of rigid registration methods for prostate localization on CBCT and the dependence on rectum distension

    NASA Astrophysics Data System (ADS)

    Boydev, C.; Pasquier, D.; Derraz, F.; Peyrodie, L.; Taleb-Ahmed, A.; Thiran, J. P.

    2014-03-01

    We evaluated automatic three-dimensional intensity-based rigid registration (RR) methods for prostate localization on CBCT scans and studied the impact of rectum distension on registration quality. 106 CBCT scans of 9 prostate patients were used. Each one was registered to the planning computed tomography (CT) scan using different methods: (a) global registration, (b) pelvis bony structure registration, (c) bony registration refined by a local prostate registration using the CT clinical target volume (CTV) expanded with 1, 3, 5, 8, 10, 12, 15 or 20-mm margin. Automatic CBCT contours were generated after propagation of the manual CT contours. To evaluate results, a radiation oncologist was asked to manually delineate the CTV on the CBCT scans (gold standard). The Dice similarity coefficients between propagated and manual CBCT contours were calculated.

  17. Mutually supportive use of stable isotope and gas chromatography techniques to understand ecohydrological interactions in dryland environments

    NASA Astrophysics Data System (ADS)

    Puttock, A.; Brazier, R. E.; Dungait, J. A. J.; Bol, R.; Dixon, E. R.; Macleod, C. J. A.

    2012-04-01

    Many drylands globally are experiencing extensive vegetation change. In the semi-arid Southwestern United States, this change is characterised by the encroachment of woody vegetation into environments previously dominated by grassland (Van Auken. 2009). The transition from grass to woody vegetation results in a change in ecosystem structure and function (Turnbull et al. 2008). Structural change is typically characterised by an increased heterogeneity of soil and vegetation resources, associated with reduced vegetation coverage and an increased vulnerability to soil erosion and the potential loss of key nutrients to adjacent fluvial systems. This project uses an ecohydrological approach, monitoring natural rainfall-runoff events and resulting water and sediment fluxes over six bounded plots with different vegetation coverage at the Sevilleta National Wildlife Refuge, New Mexico, USA. The experiment takes advantage of a shift in the photosynthetic pathway of dominant vegetation from C3 piñon-juniper (Pinus edulis-Juniperus monosperma) mixed stand through a C4 pure-grass (Bouteloua eriopoda) to C3 shrub (Larrea tridentate). This allows for the utilisation of natural abundance tracing techniques, specifically stable 13C isotope and gas chromatography lipid biomarker analyses. Results collected during the 2010 and 2011 monsoon seasons will be presented, using biogeochemical signatures, to trace and partition fluvial soil organic matter and carbon fluxes during runoff generating rainfall events. Results show that biogeochemical signatures specific to individual plant species can be used to define the provenance of carbon, quantifying whether more Pinus edulis-Juniperus monosperma derived carbon is mobilised from the upland plots, or whether more Larrea tridentata carbon is lost when compared to bouteloa eripoda losses in the lowlands. Results also show that biogeochemical signatures vary with event characteristics, raising the possibility of using these tracing

  18. Continuous monitoring of soil gas efflux with Forced Diffusion (FD) chamber technique in a tundra ecosystem, Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Park, S. J.; Lee, B. Y.

    2015-12-01

    Continuous measurements of soil carbon dioxide (CO2) efflux provide essential information about the soil carbon budget in response to an abruptly changing climate at Arctic and Subarctic scales. The Forced Diffusion (FD) chamber technique has a gas permeable membrane, which passively regulates the mixing of atmosphere and soil air in the chamber, in place of the active pumping system inside a regular dynamics efflux chamber system (Risk et al., 2011). Here the system has been modified the sampling routine to eliminate the problem of sensor drift. After that, we deployed the FD chamber system in a tundra ecosystem over the discontinuous permafrost regime of Council, Alaska. The representative understory plants are tussock (17 %), lichen (32 %), and moss (51 %), within a 40 נ40 m plot at an interval of five meters (81 points total) for efflux-measurement by dynamic chamber. The FD chamber monitored soil CO2 efflux from moss, lichen, and tussock regimes at an interval of 30 min during the growing season of 2015. As the results, mean soil CO2 effluxes in sphagnum moss, lichen, and tussock were 1.98 ± 1.10 (coefficient of variance: 55.8 %), 3.34 ± 0.84 (CV: 25.0 %), and 5.32 ± 1.48 (CV: 27.8 %) gCO2/m2/d, respectively. The difference between the 30-min efflux interval and the average efflux of three 10-min intervals is not significant for sphagnum (n = 196), lichen (n = 918), and tussock (n = 918) under a 95 % confidence level. The deploying interval was then set to 30 min and synchronized with eddy covariance tower data. During the deployment period of 2015, soil CO2 efflux over moss, lichen, and tussock using the FD chamber system were 44 ± 24, 73 ± 18, and 117 ± 33 gCO2/m2/period, respectively. Using the dynamic chamber, mean ecosystem respiration (Re) ranges for moss, lichen, and tussock were 2.2-2.6, 1.8-2.0, and 3.3-3.6 gCO2/m2/d, respectively, during June and July of 2015. These techniques provide the representativeness of spatiotemporal variation of soil

  19. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  20. [Determination of 10 sedative-hypnotics in human plasma using pulse splitless injection technique and gas chromatography-mass spectrometry].

    PubMed

    Chang, Qing; Ma, Hongying; Wang, Fangjie; Ou, Honglian; Zou, Ming

    2011-11-01

    A simple, precise and sensitive gas chromatography-mass spectrometry (GC-MS) method coupled with pulse splitless injection technique was developed for the determination of 10 sedative-hypnotics (barbital, amobarbital, phenobarbital, oxazepam, diazepam, nitrazepam, clonazepam, estazolam, alprazolam, triazolam) in human plasma. The drugs spiked in plasma were extracted with ethyl acetate after alkalization with 0.1 mol/L NaOH solution. The organic solvent was evaporated under nitrogen stream, and the residues were redissolved by ethyl acetate. The separation was performed on an HP-5MS column (30 m x 250 microm x 0.25 microm). The analytes were determined and identified using selected ion monitoring (SIM) mode and scan mode, respectively. The internal standard method was used for the determination. The target analytes were well separated from each other on their SIM chromatograms and also on the total ion current (TIC) chromatograms. The blank extract from human plasma gave no peaks that interfered with all the analytes on the chromatogram. The calibration curves for 10 sedative-hypnotics showed excellent linearity. The correlation coefficients of all the drugs were higher than 0.9954. The recoveries of the drugs spiked in human plasma ranged from 92.28% to 111.7%, and the relative standard deviations (RSDs) of intra-day and inter-day determinations were from 4.09% to 14.26%. The detection limits ranged from 2 to 20 microg/L. The method is simple, reliable, rapid and sensitive for the determination and the quantification of 10 sedative-hypnotics in human plasma and seems to be useful in the practice of clinical toxicological cases.

  1. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production.

    PubMed

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2016-01-01

    The objective of this paper is to review different risk assessment techniques applicable to onshore unconventional oil and gas production to determine the risks to water quantity and quality associated with hydraulic fracturing and produced water management. Water resources could be at risk without proper management of water, chemicals, and produced water. Previous risk assessments in the oil and gas industry were performed from an engineering perspective leaving aside important social factors. Different risk assessment methods and techniques are reviewed and summarized to select the most appropriate one to perform a holistic and integrated analysis of risks at every stage of the water life cycle. Constraints to performing risk assessment are identified including gaps in databases, which require more advanced techniques such as modeling. Discussions on each risk associated with water and produced water management, mitigation strategies, and future research direction are presented. Further research on risks in onshore unconventional oil and gas will benefit not only the U.S. but also other countries with shale oil and gas resources.

  2. The voluntary intake of hay and silage by lactating cows in response to ruminal infusion of acetate or propionate, or both, with or without distension of the rumen by a balloon.

    PubMed

    Mbanya, J N; Anil, M H; Forbes, J M

    1993-05-01

    In order to test the hypothesis that negative feedback signals from abdominal receptors are integrated in an additive manner in the control of voluntary food intake, cows with rumen fistulas were given intraruminal infusions of sodium acetate or sodium propionate, or both, with or without distension of the rumen by balloon. Intakes were monitored during the 3 h experimental period and for 2 h after and samples of rumen fluid were taken for estimation of short-chain fatty acid concentrations and osmolality. Six cows in mid-lactation were fed on hay and concentrates and given, into the rumen, 5.5 mol sodium acetate, 5.2 mol sodium propionate and 7.5 l of distension. Compared with the control (water infusion), neither acetate, propionate nor distension significantly depressed hay intake when given separately. When given in combination, however, the following significantly depressed intake during the 3 h treatment period: propionate + distension, acetate + distension, acetate + propionate + distension. Seven cows in early lactation were fed on silage and concentrates and given, into the rumen, 9.0 mol sodium acetate, 4.0 mol sodium propionate and 10.0 litres of distension. Again, none of the three given alone depressed silage intake to a significant extent during the 3 h treatment period, whereas the following combinations had a significant effect: propionate + distension, acetate + distension, acetate + propionate + distension. Basal rumen osmolalities were similar for the two types of feed but infusion of the sodium salts caused a very much greater increase with silage than with hay.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Quantification of aroma compounds in Parmigiano Reggiano cheese by a dynamic headspace gas chromatography-mass spectrometry technique and calculation of odor activity value.

    PubMed

    Qian, Michael; Reineccius, G A

    2003-03-01

    Potentially important aroma compounds in Parmigiano Reggiano cheese were quantified. Free fatty acids were isolated with ion-exchange chromatography and quantified by gas chromatography. Neutral aroma compounds were quantified with a purge-trap/gas chromatography-mass spectrometry with selective mass ion technique. Odor activity values were calculated based on sensory thresholds reported in literature. The calculated odor activity values suggest that 3-methylbutanal, 2-methylpropanal, 2-methylbutanal, dimethyl trisulfide, diacetyl, methional, phenylacetaldehyde, ethyl butanoate, ethyl hexanoate, ethyl octanoate, acetic, butanoic, hexanoic, and octanoic acids are the most important aroma contributors to Parmigiano Reggiano cheese.

  4. Estimating regional greenhouse gas fluxes: An uncertainty analysis of planetary boundary layer techniques and bottom-up inventories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of regional greenhouse gas (GHG) fluxes is essential for establishing mitigation strategies and evaluating their effectiveness. Here, we used multiple top-down approaches and multiple trace gas observations at a tall tower to estimate GHG regional fluxes and evaluate the GHG fluxes de...

  5. Applications of UT results to confirm defects findings by utilization of relevant metallurgical investigations techniques on gas/condensate pipeline working in wet sour gas environment

    NASA Astrophysics Data System (ADS)

    El-Azhari, O. A.; Gajam, S. Y.

    2015-03-01

    The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.

  6. A new gas detection technique utilizing amplified spontaneous emission light source from a ? co-doped silica fibre in the 2.0 ?m region

    NASA Astrophysics Data System (ADS)

    Oh, Kyunghwan; Morse, T. F.; Kilian, A.

    1998-09-01

    A new technique for the measurement of the concentration of gas species is presented. The method is based on absorption spectroscopy in the infrared region utilizing a high-power broad band amplified spontaneous emission source from an optical fibre. Vibrational bands of 0957-0233/9/9/007/img8 gas in the range 1.9-2.1 0957-0233/9/9/007/img9m were measured and the relative intensities of bands were calibrated in terms of concentration. The amplified spontaneous emission from a 0957-0233/9/9/007/img10 co-doped silica fibre pumped near 800 nm was used as a light source that consisted of the 0957-0233/9/9/007/img11 transition of the 0957-0233/9/9/007/img12 ion and the 0957-0233/9/9/007/img13 transition of the 0957-0233/9/9/007/img14 ion with a full width at half maximum of 225 nm and total output power over 1 mW. The technique has potential for the simultaneous detection of multiple gas species due to its high spectral energy density over a wide wavelength band in the infrared where the vibrational overtones of gas molecules are located.

  7. Analysis of biogenic carbonyl compounds in rainwater by stir bar sorptive extraction technique with chemical derivatization and gas chromatography-mass spectrometry.

    PubMed

    Pang, Xiaobing; Lewis, Alastair C; Shaw, Marvin D

    2017-02-01

    Stir bar sorptive extraction is a powerful technique for the extraction and analysis of organic compounds in aqueous matrices. Carbonyl compounds are ubiquitous components in rainwater, however, it is a major challenge to accurately identify and sensitively quantify carbonyls from rainwater due to the complex matrix. A stir bar sorptive extraction technique was developed to efficiently extract carbonyls from aqueous samples following chemical derivatization by O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride. Several commercial stir bars in two sizes were used to simultaneously measure 29 carbonyls in aqueous samples with detection by gas chromatography with mass spectrometry. A 100 mL aqueous sample was extracted by stir bars and the analytes on stir bars were desorbed into a 2 mL solvent solution in an ultrasonic bath. The preconcentration Coefficient for different carbonyls varied between 30 and 45 times. The limits of detection of stir bar sorptive extraction with gas chromatography mass spectrometry for carbonyls (10-30 ng/L) were improved by ten times compared with other methods such as gas chromatography with electron capture detection and stir bar sorptive extraction with high-performance liquid chromatography and mass spectrometry. The technique was used to determine carbonyls in rainwater samples collected in York, UK, and 20 carbonyl species were quantified including glyoxal, methylglyoxal, isobutenal, 2-hydroxy ethanal.

  8. Effect of the gas mixing technique on the plasma potential and emittance of the JYFL 14 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Suominen, P.; Ropponen, T.; Kalvas, T.; Heikkinen, P.; Koivisto, H.

    2005-09-01

    The effect of the gas mixing technique on the plasma potential, energy spread, and emittance of ion beams extracted from the JYFL 14 GHz electron cyclotron resonance ion source has been studied under various gas mixing conditions. The plasma potential and energy spread of the ion beams were studied with a plasma potential instrument developed at the Department of Physics, University of Jyväskylä (JYFL). With the instrument the effects of the gas mixing on different plasma parameters such as plasma potential and the energy distribution of the ions can be studied. The purpose of this work was to confirm that ion cooling can explain the beneficial effect of the gas mixing on the production of highly charged ion beams. This was done by measuring the ion-beam current as a function of a stopping voltage in conjunction with emittance measurements. It was observed that gas mixing affects the shape of the beam current decay curves measured with low charge-state ion beams indicating that the temperature and/or the spatial distribution of these ions is affected by the mixing gas. The results obtained in the emittance measurements support the conclusion that the ion temperature changes due to the gas mixing. The effect of the energy spread on the emittance of different ion beams was also studied theoretically. It was observed that the emittance depends considerably on the dispersive matrix elements of the beam line transfer matrix. This effect is due to the fact that the dipole magnet is a dispersive ion optical component. The effect of the energy spread on the measured emittance in the bending plane of the magnet can be several tens of percent.

  9. [Preparation technique of S2OF10 gas standard sample and determination method of the trace S2OF10 in SF6].

    PubMed

    Wang, L; Wang, J

    1999-09-01

    In this paper a series of methods and techniques for the S2OF10 standard sample preparation and quantitative determination are presented. They are, the preparation of S2OF10 by preparative chromatography with adsorption/thermal desorption, the standard sample of S2OF10 gas prepared by exponential dilution and the gas chromatography/flame photometric detector(GC/FPD) determination of trace S2OF10 from an SF6 sample with quantitative calibration factor. Especially, the S2OF10 gas from a used SF6 sample was directly separated and concentrated through a U-adsorbent-tube packed with 300 mg of Porasil A in a cold trap (-63 degrees C) with liquid-nitrogen and chloroform. Then it was purified by preparative-GC and to be injected into a preparative system of standard gas sample. In the meantime, the S2OF10 gas obtained was confirmed by the methods of GC/FPD, infrared spectrophotometer(IR) and gas chromatography/mass spectrometer(GC/MS) separately. The sub-ppm(by volume) level of the S2OF10 and SF6 mixture samples were prepared by use of the exponential dilution system. The GC/FPD experimental results showed that the detection linear range of S2OF10 gas concentration was 0.80 x 10(-6)-2.60 x 10(-4) (volume fraction) and the quantitative calibration factor of the S2OF10 was 0.197 based on SF6. The determination errors of quantitative calibration factor were 1.8%-20% and S2OF10 recovery of the adsorption/thermal desorption was 98.2% (n = 9) and its relative standard deviation was 6.2%. In addition, the results also showed that it is a simple and rapid method with good linearity and reproducibility.

  10. Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system--a fMRI study in healthy volunteers.

    PubMed

    Rubio, Amandine; Van Oudenhove, Lukas; Pellissier, Sonia; Ly, Huynh Giao; Dupont, Patrick; de Micheaux, Hugo Lafaye; Tack, Jan; Dantzer, Cécile; Delon-Martin, Chantal; Bonaz, Bruno

    2015-02-15

    The human brain responds both before and during the application of aversive stimuli. Anticipation allows the organism to prepare its nociceptive system to respond adequately to the subsequent stimulus. The context in which an uncomfortable stimulus is experienced may also influence neural processing. Uncertainty of occurrence, timing and intensity of an aversive event may lead to increased anticipatory anxiety, fear, physiological arousal and sensory perception. We aimed to identify, in healthy volunteers, the effects of uncertainty in the anticipation of uncomfortable rectal distension, and the impact of the autonomic nervous system (ANS) activity and anxiety-related psychological variables on neural mechanisms of anticipation of rectal distension using fMRI. Barostat-controlled uncomfortable rectal distensions were preceded by cued uncertain or certain anticipation in 15 healthy volunteers in a fMRI protocol at 3T. Electrocardiographic data were concurrently registered by MR scanner. The low frequency (LF)-component of the heart rate variability (HRV) time-series was extracted and inserted as a regressor in the fMRI model ('LF-HRV model'). The impact of ANS activity was analyzed by comparing the fMRI signal in the 'standard model' and in the 'LF-HRV model' across the different anticipation and distension conditions. The scores of the psychological questionnaires and the rating of perceived anticipatory anxiety were included as covariates in the fMRI data analysis. Our experiments led to the following key findings: 1) the subgenual anterior cingulate cortex (sgACC) is the only activation site that relates to uncertainty in healthy volunteers and is directly correlated to individual questionnaire score for pain-related anxiety; 2) uncertain anticipation of rectal distension involved several relevant brain regions, namely activation of sgACC and medial prefrontal cortex and deactivation of amygdala, insula, thalamus, secondary somatosensory cortex, supplementary

  11. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation.

    PubMed

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J

    2017-03-17

    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions. Graphical Abstract ᅟ.

  12. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2017-03-01

    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions.

  13. PIGC™ - A low cost fugitive emissions and methane detection system using advanced gas filter correlation techniques for local and wide area monitoring

    NASA Astrophysics Data System (ADS)

    Lachance, R. L.; Gordley, L. L.; Marshall, B. T.; Fisher, J.; Paxton, G.; Gubeli, J. F.

    2015-12-01

    Currently there is no efficient and affordable way to monitor gas releases over small to large areas. We have demonstrated the ability to accurately measure key greenhouse and pollutant gasses with low cost solar observations using the breakthrough sensor technology called the "Pupil Imaging Gas Correlation", PIGC™, which provides size and complexity reduction while providing exceptional resolution and coverage for various gas sensing applications. It is a practical implementation of the well-known Gas Filter Correlation Radiometry (GFCR) technique used for the HALOE and MOPITT satellite instruments that were flown on successful NASA missions in the early 2000s. This strong space heritage brings performance and reliability to the ground instrument design. A methane (CH4) abundance sensitivity of 0.5% or better of ambient column with uncooled microbolometers has been demonstrated with 1 second direct solar observations. These under $10 k sensors can be deployed in precisely balanced autonomous grids to monitor the flow of chosen gasses, and infer their source locations. Measureable gases include CH4, 13CO2, N2O, NO, NH3, CO, H2S, HCN, HCl, HF, HDO and others. A single instrument operates in a dual operation mode, at no additional cost, for continuous (real-time 24/7) local area perimeter monitoring for the detection of leaks for safety & security needs, looking at an artificial light source (for example a simple 60 W light bulb placed 100 m away), while simultaneously allowing solar observation for quasi-continuous wide area total atmospheric column scanning (3-D) for environmental monitoring (fixed and mobile configurations). The second mode of operation continuously quantifies the concentration and flux of specific gases over different ground locations, determined the amount of targeted gas being released from the area or getting into the area from outside locations, allowing better tracking of plumes and identification of sources. This paper reviews the

  14. An Ultra-Trace Analysis Technique for SF6 Using Gas Chromatography with Negative Ion Chemical Ionization Mass Spectrometry.

    PubMed

    Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M

    2015-07-01

    Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt.

  15. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats.

    PubMed

    Zhang, Gongliang; Zhao, Bing-Xue; Hua, Rong; Kang, Jie; Shao, Bo-Ming; Carbonaro, Theresa M; Zhang, Yong-Mei

    2016-03-01

    Visceral hypersensitivity is a common characteristic in patients suffering from irritable bowel syndrome (IBS) and other disorders with visceral pain. Although the pathogenesis of visceral hypersensitivity remains speculative due to the absence of pathological changes, the long-lasting sensitization in neuronal circuitry induced by early life stress may play a critical role beyond the digestive system even after complete resolution of the initiating event. The hippocampus integrates multiple sources of afferent inputs and sculpts integrated autonomic outputs for pain and analgesia regulation. Here, we examined the hippocampal mechanism in the pathogenesis of visceral hypersensitivity with a rat model induced by neonatal and adult colorectal distensions (CRDs). Neither neonatal nor adult CRD evoked behavioral abnormalities in adulthood; however, adult re-exposure to CRD induced persistent visceral hypersensitivity, depression-like behaviors, and spatial learning impairment in rats that experienced neonatal CRD. Rats that experienced neonatal and adult CRDs presented a decrease in hippocampal glucocorticoid receptor (GR) immunofluorescence staining and protein expression, and increases in hippocampal microglial activation and cytokine (IL-1β and TNF-α) accumulation. The decrease in hippocampal GR expression and increase in hippocampal IL-1β and TNF-α accumulation could be prevented by hippocampal local infusion of minocycline, a microglial inhibitor. These results suggest that neonatal CRD can increase the vulnerability of hippocampal microglia, and adult CRD challenge facilitates the hippocampal cytokine release from the sensitized microglia, which down-regulates hippocampal GR protein expression and, subsequently, precipitates visceral hypersensitivity.

  16. New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO(2) laser-induced gas plasma.

    PubMed

    Khumaeni, Ali; Ramli, Muliadi; Deguchi, Yoji; Lee, Yong Inn; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro

    2008-12-01

    Taking advantage of the differences between the interactions of transversely excited atmospheric (TEA) CO(2) lasers with metal and with organic powder, a new technique for the direct analysis of food powder samples has been developed. In this technique, the powder samples were placed into a small hole with a diameter of 2 mm and a depth of 3 mm and covered by a metal mesh. The TEA CO(2) laser (1500 mJ, 200 ns) was focused on the powder sample surfaces, passing through the metal mesh, at atmospheric pressure in nitrogen gas. It is hypothesized that the small hole functions to confine the powder particles and suppresses the blowing-off of sample, while the metal mesh works as the source of electrons to initiate the strong gas breakdown plasma. The confined powder particles are then ablated by laser irradiation and the ablated particles move into the strong gas breakdown plasma region to be atomized and excited; this method cannot be applied for the case of Nd:YAG lasers because in such case the metal mesh itself was ablated by the laser irradiation. A quantitative analysis of a milk powder sample containing different concentrations of Ca was successfully demonstrated, resulting in a good linear calibration curve with high precision.

  17. Generation and characterization of plasma channels in gas puff targets using soft X-ray radiography technique

    SciTech Connect

    Wachulak, P. W. Bartnik, A.; Jarocki, R.; Fok, T.; Węgrzyński, Ł.; Kostecki, J.; Szczurek, M.; Jabczyński, J.; Fiedorowicz, H.

    2014-10-15

    We present our recent results of a formation and characterization of plasma channels in elongated krypton and xenon gas puff targets. The study of their formation and temporal expansion was carried out using a combination of a soft X-ray radiography (shadowgraphy) and pinhole camera imaging. Two high-energy short laser pulses were used to produce the channels. When a pumping laser pulse was shaped into a line focus, using cylindrical and spherical lenses, the channels were not produced because much smaller energy density was deposited in the gas puff target. However, when a point focus was obtained, using just a spherical lens, the plasma channels appeared. The channels were up to 9 mm in length, had a quite uniform density profile, and expanded in time with velocities of about 2 cm/μs.

  18. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    PubMed

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  19. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A.; McNaghten, Edward D.

    2010-07-01

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f =1.35 kHz and Q ≈10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as α ≈4.4×10-9 cm-1 s1/2 (1 s integration time) and 2.6×10-11 cm-1 s1/2 W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  20. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  1. A 15N-aided artificial atmosphere gas flow technique for online determination of soil N2 release using the zeolite Köstrolith SX6.

    PubMed

    Spott, Oliver; Russow, Rolf; Apelt, Bernd; Stange, C Florian

    2006-01-01

    N2 is one of the major gaseous nitrogen compounds released by soils due to N-transformation processes. Since it is also the major constituent of the earth's atmosphere (78.08% vol.), the determination of soil N2 release is still one of the main methodological challenges with respect to a complete evaluation of the gaseous N-loss of soils. Commonly used approaches are based either on a C2H2 inhibition technique, an artificial atmosphere or a 15N-tracer technique, and are designed either as closed systems (non-steady state) or gas flow systems (steady state). The intention of this work has been to upgrade the current gas flow technique using an artificial atmosphere for a 15N-aided determination of the soil N2 release simultaneously with N2O. A 15N-aided artificial atmosphere gas flow approach has been developed, which allows a simultaneous online determination of N2 as well as N2O fluxes from an open soil system (steady state). Fluxes of both gases can be determined continuously over long incubation periods and with high sampling frequency. The N2 selective molecular sieve Köstrolith SX6 was tested successfully for the first time for dinitrogen collection. The presented paper mainly focuses on N2 flux determination. For validation purposes soil aggregates of a Haplic Phaeozem were incubated under aerobic (21 and 6 vol.% O2) and anaerobic conditions. Significant amounts of N2 were released only during anaerobic incubation (0.4 and 640.2 pmol N2 h(-1) g(-1) dry soil). However, some N2 formation also occurred during aerobic incubation. It was also found that, during ongoing denitrification, introduced [NO3]- will be more strongly delivered to microorganisms than the original soil [NO3]-.

  2. Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: II. Greenhouse gas emissions.

    PubMed

    Wulf, S; Maeting, M; Clemens, J

    2002-01-01

    The aim of this study was to investigate the effect of different application techniques on greenhouse gas emission from co-fermented slurry. Ammonia (NH3), nitrous oxide (N2O), and methane (CH4) emissions were measured in two field experiments with four different application techniques on arable and grassland sites. To gather information about fermentation effects, unfermented slurry was also tested, but with trail hose application only. Co-fermented slurry was applied in April at a rate of 30 m3 ha(-1). Measurements were made every 4 h on the first day after application and were continued for 6 wk with gradually decreasing sampling frequency. Methane emissions were <150 g C ha(-1) from co-fermentation products and seemed to result from dissolved CH4. Only in the grassland experiment were emissions from unfermented slurry significantly higher, with wetter weather conditions probably promoting CH4 production. Nitrous oxide emission was significantly increased by injection on arable and grassland sites two- and threefold, respectively. Ammonia emissions were smallest after injection or trail shoe application and are discussed in the preceding paper. We evaluated the climatic relevance of the measured gas emissions from the different application techniques based on the comparison of CO2 equivalents. It was evident that NH3 emission reduction, which can be achieved by injection, is at least compensated by increased N2O emissions. Our results indicate that on arable land, trail hose application with immediate shallow incorporation, and on grassland, trail shoe application, bear the smallest risks of high greenhouse gas emissions when fertilizing with co-fermented slurry.

  3. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique

    PubMed Central

    Reddy, Y. Ramana; Kumari, N. Nalini; Monika, T.; Sridhar, K.

    2016-01-01

    Aim: A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS) based complete diets for efficient microbial biomass production (EMBP) using in vitro gas production technique. Materials and Methods: MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer) in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of incubation. In vitro organic matter digestibility (IVOMD), metabolizable energy (ME), truly digestible organic matter (TDOM), partitioning factor (PF), and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs) production were analyzed in RL fluid-media mixture after 24 h of incubation. Results: In vitro gas production (ml) at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01) in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01) higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Conclusion: Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep. PMID:27397985

  4. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG)

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-11-01

    We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography-mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on

  5. A novel fully automated on-line coupled liquid chromatography-gas chromatography technique used for the determination of organochlorine pesticide residues in tobacco and tobacco products.

    PubMed

    Qi, Dawei; Fei, Ting; Sha, Yunfei; Wang, Leijun; Li, Gang; Wu, Da; Liu, Baizhan

    2014-12-29

    In this study, a novel fully automated on-line coupled liquid chromatography-gas chromatography (LC-GC) technique was reported and applied for the determination of organochlorine pesticide residues (OCPs) in tobacco and tobacco products. Using a switching valve to isolate the capillary pre-column and the analytical column during the solvent evaporation period, the LC solvent can be completely removed and prevented from reaching the GC column and the detector. The established method was used to determinate the OCPs in tobacco samples. By using Florisil SPE column and employing GPC technique, polarity impurities and large molecule impurities were removed. A dynamic range 1-100ng/mL was achieved with detection limits from 1.5 to 3.3μg/kg. The method exhibited good repeatability and recoveries. This technology may provide an alternative way for trace analysis of complex samples.

  6. Effect of Bladder Distension on Dose Distribution of Intracavitary Brachytherapy for Cervical Cancer: Three-Dimensional Computed Tomography Plan Evaluation

    SciTech Connect

    Cengiz, Mustafa Guerdalli, Salih; Selek, Ugur; Yildiz, Ferah; Saglam, Yuecel; Ozyar, Enis; Atahan, I. Lale

    2008-02-01

    Purpose: To quantify the effect of bladder volume on the dose distribution during intracavitary brachytherapy for cervical cancer. Methods and Patients: The study was performed on 10 women with cervical cancer who underwent brachytherapy treatment. After insertion of the brachytherapy applicator, the patients were transferred to the computed tomography unit. Two sets of computed tomography slices were taken, including the pelvis, one with an empty bladder and one after the bladder was filled with saline. The target and critical organs were delineated by the radiation oncologist and checked by the expert radiologist. The radiotherapy plan was run on the Plato planning system, version 14.1, to determine the dose distributions, dose-volume histograms, and maximal dose points. The doses and organ volumes were compared with the Wilcoxon signed ranks test on a personal computer using the Statistical Package for Social Sciences, version 11.0, statistical program. Results: No significant difference regarding the dose distribution and target volumes between an empty or full bladder was observed. Bladder fullness significantly affected the dose to the small intestine, rectum, and bladder. The median of maximal doses to the small intestine was significantly greater with an empty bladder (493 vs. 284 cGy). Although dosimetry revealed lower doses for larger volumes of bladder, the median maximal dose to the bladder was significantly greater with a full bladder (993 vs. 925 cGy). The rectal doses were also affected by bladder distension. The median maximal dose was significantly lower in the distended bladder (481vs. 628 cGy). Conclusions: Bladder fullness changed the dose distributions to the bladder, rectum, and small intestine. The clinical importance of these changes is not known and an increase in the use of three-dimensional brachytherapy planning will highlight the answer to this question.

  7. Regular physical activity is associated with improved small artery distensibility in young to middle-age stage 1 hypertensives.

    PubMed

    Saladini, Francesca; Benetti, Elisabetta; Mos, Lucio; Mazzer, Adriano; Casiglia, Edoardo; Palatini, Paolo

    2014-12-01

    The aim of the present study was to investigate the association of physical activity with small artery elasticity in the early stage of hypertension. We examined 366 young-to-middle-age stage 1 hypertensives (mean blood pressure 145.6±10.3/92.5±5.8 mmHg), divided into two categories of physical activity, sedentary (n=264) and non-sedentary (n=102) subjects. The augmentation index was measured using the Specaway DAT System. Small artery compliance (C2) was measured by applanation tonometry, at the radial artery, with an HDI CR2000 device. After 6 years of follow-up, arterial distensibility assessment was repeated in 151 subjects. Heart rate was lower in active than in sedentary subjects (71.2±8.9 vs 76.6±9.7 bpm, p<0.001). After adjusting for age, sex, heart rate, smoking, and blood pressure, C2 was higher (8.0±2.6 vs 6.4±3.0 ml/mmHg × 100, p=0.008) in non-sedentary than in sedentary patients. The augmentation index was smaller in the former (8.8±20.1 vs 16.8±26.5%, p=0.044) but the difference lost statistical significance after further adjustment for blood pressure. After 6 years, C2 was still higher in the non-sedentary than sedentary subjects. In addition, an improvement in the augmentation index accompanied by a decline in total peripheral resistance was found in the former. These data show that regular physical activity is associated with improved small artery elasticity in the early phase of hypertension. This association persists over time and is independent of blood pressure and heart rate.

  8. A Dual-Line Detection Rayleigh Scattering Diagnostic Technique for the Combustion of Hydrocarbon Fuels and Filtered UV Rayleigh Scattering for Gas Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Otugen, M. Volkan

    1997-01-01

    Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of

  9. A miniaturised electron ionisation time-of-flight mass spectrometer that uses a unique helium ion removal pulsing technique specifically for gas analysis.

    PubMed

    Qing, Jiang; Huang, Zhengxu; Zhang, Yan; Zhu, Hui; Tan, Guobin; Gao, Wei; Yang, Peng-yuan

    2013-06-21

    A miniaturised reflectron time-of-flight mass spectrometer combined with an electron ionisation ion source has been developed for the analysis of gases. An entirely new helium ion removal pulsing technique in this mass spectrometer is used to achieve an improved performance for the first time. The helium carrier gas, which enters into the source along with the gaseous sample, is simultaneously ionised and then orthogonally introduced into the time-of-fight mass analyser. Once the relatively light helium ions in the ion packet become extremely close to the reflectron plate (B-plate for short in this article), a modulated pulse is instantaneously applied on the B-plate and a negative reflectron voltage is set to the B-plate and lasts for a very short period, during which all the helium ions are directly bumped into the B-plate and subsequently removed. The helium ion removal pulsing technique can efficiently avoid saturation of the micro-channel plate caused by too many helium ions. A compact and durable instrument is designed, which has a mass resolving resolution greater than 400 FWHM for online gas analysis. The technology may also be further developed to remove other ions for TOF mass spectrometry.

  10. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-12-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.

  11. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique.

    PubMed

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-12-15

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.

  12. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    PubMed Central

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-01-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process. PMID:27976746

  13. Departures from local thermodynamic equilibrium in cutting arc plasmas derived from electron and gas density measurements using a two-wavelength quantitative Schlieren technique

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2011-03-15

    A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.

  14. Gas chromatographic-mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity.

    PubMed

    Ozek, Gulmira; Demirci, Fatih; Ozek, Temel; Tabanca, Nurhayat; Wedge, David E; Khan, Shabana I; Başer, Kemal Hüsnü Can; Duran, Ahmet; Hamzaoglu, Ergin

    2010-01-29

    Four different isolation techniques, conventional hydrodistillation (HD), microwave-assisted hydrodistillation (MWHD), microdistillation (MD) and micro-steam distillation-solid-phase microextraction (MSD-SPME), have been used to analyze the volatile constituents from the aerial parts of Salvia rosifolia Sm. by gas chromatography and gas chromatography coupled to mass spectrometry. HD and MWHD techniques produced quantitatively (yield, 0.39% and 0.40%) and qualitatively (aromatic profile) similar essential oils. alpha-Pinene (15.7-34.8%), 1,8-cineole (16.6-25.1%), beta-pinene (6.7-13.5%), beta-caryophyllene (1.4-5.0%) and caryophyllene oxide (1.4-4.4%) were identified as major constituents of this Turkish endemic species. Besides, the hydrodistilled oil of S. rosifolia was evaluated for antibacterial, antifungal, anticancer, antioxidant and cytotoxic activities. The hydrodistilled oil of S. rosifolia showed antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA) with a MIC value of 125microg/mL. Other human pathogenic microorganisms (Escherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Salmonella typhimurium, Staphylococcus epidermidis, Candida albicans) were also inhibited within a moderate range (MIC=125-1000microg/mL). Antifungal activity of the oil was also observed against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. No cytotoxicity was observed for S. rosifolia oil up to 25mg/mL against malignant melanoma, epidermal, ductal and ovary carcinoma.

  15. Gas Chromatography.

    ERIC Educational Resources Information Center

    Karasek, Francis W.; And Others

    1984-01-01

    This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…

  16. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: reliable techniques for analysis of Parthenium mediated vermicompost.

    PubMed

    Rajiv, P; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  17. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost

    NASA Astrophysics Data System (ADS)

    Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  18. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber.

    PubMed

    Mak, K F; Travers, J C; Joly, N Y; Abdolvand, A; Russell, P St J

    2013-09-15

    We demonstrate temporal pulse compression in gas-filled kagomé hollow-core photonic crystal fiber (PCF) using two different approaches: fiber-mirror compression based on self-phase modulation under normal dispersion, and soliton effect self-compression under anomalous dispersion with a decreasing pressure gradient. In the first, efficient compression to near-transform-limited pulses from 103 to 10.6 fs was achieved at output energies of 10.3 μJ. In the second, compression from 24 to 6.8 fs was achieved at output energies of 6.6 μJ, also with near-transform-limited pulse shapes. The results illustrate the potential of kagomé-PCF for postprocessing the output of fiber lasers. We also show that, using a negative pressure gradient, ultrashort pulses can be delivered directly into vacuum.

  19. Strategies and methodologies to develop techniques for computer-assisted analysis of gas phase formation during altitude decompression

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Hall, W. A.

    1993-01-01

    It would be of operational significance if one possessed a device that would indicate the presence of gas phase formation in the body during hypobaric decompression. Automated analysis of Doppler gas bubble signals has been attempted for 2 decades but with generally unfavorable results, except with surgically implanted transducers. Recently, efforts have intensified with the introduction of low-cost computer programs. Current NASA work is directed towards the development of a computer-assisted method specifically targeted to EVA, and we are most interested in Spencer Grade 4. We note that Spencer Doppler Grades 1 to 3 have increased in the FFT sonogram and spectrogram in the amplitude domain, and the frequency domain is sometimes increased over that created by the normal blood flow envelope. The amplitude perturbations are of very short duration, in both systole and diastole and at random temporal positions. Grade 4 is characteristic in the amplitude domain but with modest increases in the FFT sonogram and spectral frequency power from 2K to 4K over all of the cardiac cycle. Heart valve motion appears to characteristic display signals: (1) the demodulated Doppler signal amplitude is considerably above the Doppler-shifted blow flow signal (even Grade 4); and (2) demodulated Doppler frequency shifts are considerably greater (often several kHz) than the upper edge of the blood flow envelope. Knowledge of these facts will aid in the construction of a real-time, computer-assisted discriminator to eliminate cardiac motion artifacts. There could also exist perturbations in the following: (1) modifications of the pattern of blood flow in accordance with Poiseuille's Law, (2) flow changes with a change in the Reynolds number, (3) an increase in the pulsatility index, and/or (4) diminished diastolic flow or 'runoff.' Doppler ultrasound devices have been constructed with a three-transducer array and a pulsed frequency generator.

  20. Profiling analysis of volatile compounds from fruits using comprehensive two-dimensional gas chromatography and image processing techniques.

    PubMed

    Schmarr, Hans-Georg; Bernhardt, Jörg

    2010-01-22

    An image processing approach originating from the proteomics field has been transferred successfully to the processing of data obtained with comprehensive two-dimensional gas chromatographic separations data. The approach described here has proven to be a useful analytical tool for unbiased pattern comparison or profiling analyses, as demonstrated with the differentiation of volatile patterns ("aroma") from fruits such as apples, pears, and quince fruit. These volatile patterns were generated by headspace solid phase microextraction coupled to comprehensive two-dimensional gas chromatography (HS-SPME-GC x GC). The data obtained from GC x GC chromatograms were used as contour plots which were then converted to gray-scale images and analyzed utilizing a workflow derived from 2D gel-based proteomics. Run-to-run variations between GC x GC chromatograms, respectively their contour plots, have been compensated by image warping. The GC x GC images were then merged into a fusion image yielding a defined and project-wide spot (peak) consensus pattern. Within detected spot boundaries of this consensus pattern, relative quantities of the volatiles from each GC x GC image have been calculated, resulting in more than 700 gap free volatile profiles over all samples. These profiles have been used for multivariate statistical analysis and allowed clustering of comparable sample origins and prediction of unknown samples. At present state of development, the advantage of using mass spectrometric detection can only be realized by data processing off-line from the identified software packages. However, such information provides a substantial basis for identification of statistically relevant compounds or for a targeted analysis.

  1. [Comparison of standard methods for determination of pseudocumene in urine using gas chromatography with the headspace technique and a new method using a headspace automatic sampler].

    PubMed

    Kostrzewski, P; Wiaderna-Brycht, A; Czerski, B

    1996-01-01

    The biological indicators that have been proposed for monitoring occupational exposure are: concentration of the solvent or metabolized compounds in alveolar or expired air samples, in venous or arterial capillary blood samples and in urine samples. Recently, many researches have reported significant relationships between the time-weighted average exposure and the urinary concentrations for various solvents. The aim of our study was to compare two methods in which urinary concentrations of pseudocumene were determined by gas chromatography using headspace technique. The standard method was based on determining concentration of organic solvents in 100 mm3 or 1 cm3 samples of urine. The incubation conditions were as follows: equilibration temperature and time: 70 degrees C, 30 min., respectively. 1 cm3 of gas phase was sampled with a gas-tight syringe and injected into a gas chromatograph. The new method using Headspace Sampler was based on determining concentrations of solvents in 10 cm3 samples of urine. The operating conditions were: equilibration time 30 min.; equlibration temperature 80 degrees C; pressurization time 0.1 min.; loop fill time 0.1 min.; loop equilibration 0.1 min.; loop equilibration time 0.05 min.; inject time 1 min.; loop temperature 150 degrees C, transfer line temperature 150 degrees C. HP 7694 Headspace Sampler minimizes sample degradation with a chemically inert pathway extending from the sample loop to the column head. The analytical parameters of both methods (linearity, precision, reproducibility, stability and sensitivity) are fully compatible with the principles of biological monitoring. Application of the headspace autosampler eliminated interference from the biological matrix and made it possible to achieve very low detection limit.

  2. Influence of Yeast Fermented Cassava Chip Protein (YEFECAP) and Roughage to Concentrate Ratio on Ruminal Fermentation and Microorganisms Using In vitro Gas Production Technique.

    PubMed

    Polyorach, S; Wanapat, M; Cherdthong, A

    2014-01-01

    The objective of this study was to determine the effects of protein sources and roughage (R) to concentrate (C) ratio on in vitro fermentation parameters using a gas production technique. The experimental design was a 2×5 factorial arrangement in a completely randomized design (CRD). Factor A was 2 levels of protein sources yeast fermented cassava chip protein (YEFECAP) and soybean meal (SBM) and factor B was 5 levels of roughage to concentrate (R:C) ratio at 80:20, 60:40, 40:60, 20:80, and 0:100, respectively. Rice straw was used as a roughage source. It was found that gas production from the insoluble fraction (b) of YEFECAP supplemented group was significantly higher (p<0.05) than those in SBM supplemented group. Moreover, the intercept value (a), gas production from the insoluble fraction (b), gas production rate constants for the insoluble fraction (c), potential extent of gas production (a+b) and cumulative gas production at 96 h were influenced (p<0.01) by R:C ratio. In addition, protein source had no effect (p>0.05) on ether in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) while R:C ratio affected the IVDMD and IVOMD (p<0.01). Moreover, YEFECAP supplanted group showed a significantly increased (p<0.05) total VFA and C3 while C2, C2:C3 and CH4 production were decreased when compared with SBM supplemented group. In addition, a decreasing R:C ratio had a significant effect (p<0.05) on increasing total VFA, C3 and NH3-N, but decreasing the C2, C2:C3 and CH4 production (p<0.01). Furthermore, total bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus populations in YEFECAP supplemented group were significantly higher (p<0.05) than those in the SBM supplemented group while fungal zoospores, methanogens and protozoal population remained unchanged (p>0.05) as compared between the two sources of protein. Moreover, fungal zoospores and total bacteria population were significantly increased (p<0.01) while, F

  3. An investigation of the interaction of intense laser radiation with molecules of sulfur hexafluoride through the buffer gas technique

    NASA Astrophysics Data System (ADS)

    Eletskii, A. V.; Klimov, V. D.; Udalova, T. A.

    1981-02-01

    Measurements of the coefficient of the absorption of intense (approximately 10 to the 7th W/sq cm) radiation from a CO2 laser by SF6 molecules in the presence of noble gases and at pressures up to 40 bars are presented. The dependence of the coefficient of absorption on the pressure and type of buffer gas, as well as on the wavelength and intensity of the incident radiation, makes it possible to follow the formation of the vibrational state distribution function of the molecules. The character of the distribution function depends on the competition between vibrational relaxation processes and laser radiation absorption. At high pressures, that is, at helium pressures greater than approximately 20-40 bars, a two-level scheme for the interaction of intense laser radiation with SF6 is implemented experimentally for the first time. Here, molecules excited by light to the v = 1 state relax instantaneously upon collision. The dependence of the rate constant for the destruction of SF6 molecular states on the number of the vibrational level v upon collision with helium atoms can be evaluated from the experimental data. Taken as a whole, the data confirm the assumption of the linear, single-photon nature of the interaction of laser radiation with SF6 molecules.

  4. Field testing of fugitive dust control techniques at a uranium mill tailings pile - 1982 Field Test, Gas Hills, Wyoming.

    SciTech Connect

    Elmore, M.R.; Hartley, J.N.

    1983-12-01

    A field test was conducted on a uranium tailings pile to evaluate the effectiveness of 15 chemical stabilizers for control of fugitive dust from uranium mill tailings. A tailings pile at the Federal American Partners (FAP) Uranium Mill, Gas Hills, Wyoming, was used for the field test. Preliminary laboratory tests using a wing tunnel were conducted to select the more promising stabilizers for field testing. Fourteen of the chemical stabilizers were applied with a field spray system pulled behind a tractor; one--Hydro Mulch--was applied with a hydroseeder. A portable weather station and data logger were installed to record the weather conditions at the test site. After 1 year of monitoring (including three site visits), all of the stabilizers have degraded to some degree; but those applied at the manufacturers' recommended rate are still somewhat effective in reducing fugitive emissions. The following synthetic polymer emulsions appear to be the more effective stabilizers: Wallpol 40-133 from Reichold Chemicals, SP-400 from Johnson and March Corporation, and CPB-12 from Wen Don Corporation. Installed costs for the test plots ranged from $8400 to $11,300/ha; this range results from differences in stabilizer costs. Large-scale stabilization costs of the test materials are expected to range from $680 to $3600/ha based on FAP experience. Evaluation of the chemical stabilizers will continue for approximately 1 year. 2 references, 33 figures, 22 tables.

  5. Techniques for improving the performance of a simplified electronic fuel controller with incremental actuation for small gas turbine engines

    NASA Astrophysics Data System (ADS)

    Georgantas, Antanios Ioannou

    1990-04-01

    Concepts are introduced which improve the performance of an inexpensive electronic fuel control unit for small gas turbine engines suitable for use in small aircraft and helicopters. A conventional hydromechanical fuel control unit is modified and adapted for digital electronic control. The conversion involves the replacement of the pneumatic computing and actuating mechanism with digital computation and incremental electronic actuation of a flow metering valve. A mathematical model of the unit is developed, implemented, and validated. The model is used for simulation and study of the system dynamics. Some new methods are applied in the design and development of a digital controller. An optimization scheme for tuning the controller is formulated and implemented experimentally. As a next step toward improvement of the simple electronic fuel controller, a concept of two electronic actuators, one operating the metering valve and the other a bypass valve, is introduced and investigated. Higher flexibility and faster transient response, as compared to the conventional system and the single actuator unit, are demonstrated. The possibility of a backup scheme in case of failure of one of two actuating mechanisms is also discussed.

  6. Heat transfer measurements in an annular cascade of transonic gas turbine blades using the transient liquid crystal technique

    SciTech Connect

    Martinez-Botas, R.F.; Lock, G.D.; Jones, T.V.

    1995-07-01

    Heat transfer measurements have been made in the Oxford University Cold Heat transfer Tunnel employing the transient liquid crystal technique. Complete contours of that transfer coefficient have been obtained on the aerofoil surfaces of a large annular cascade of high-pressure nozzle guide vanes (mean blade diameter of 1.11 m and axial chord of 0.0664 m). The measurements are made at engine representative Mach and Reynolds numbers (exit Mach number 0.96 and Reynolds number 2.0 {times} 10{sup 6}). A novel mechanisms used to isolate five preheated blades in the annulus before an unheated flow of air passes over the vanes, creating a step change, in heat transfer. The surfaces of interest are coated with narrow-band thermochromic liquid crystals and the color crystal change is recorded during the run with a miniature CCD video camera. The heat transfer coefficient is obtained by solving the one-dimensional heat transfer equation for all the points of interest. This paper will describe the experimental technique and present results of heat transfer and flow visualization.

  7. Relation between coronary artery disease, risk factors and intima-media thickness of carotid artery, arterial distensibility, and stiffness index.

    PubMed

    Alan, Sait; Ulgen, Mehmet S; Ozturk, Onder; Alan, Bircan; Ozdemir, Levent; Toprak, Nizamettin

    2003-01-01

    Atherosclerosis is a diffuse process that involves vessel structures. In recent years, the relation of noninvasive parameters such as intima-media thickening (IMT), arterial distensibility (AD), and stiffness index (SI) to cardiovascular diseases has been researched. However, we have not found any study that has included all these parameters. The aim of this study is to examine the relation between the presence of coronary artery disease (CAD) and its risk factors to AD, SI, and IMT, which are the noninvasive predictors of atherosclerotic process in the carotid artery. Included in the study were 180 patients who were diagnosed as having CAD by coronary angiography (those with at least > or = 30% stenosis in the coronary arteries) and, as a control group, 53 persons who had normal appearing coronary angiographies. IMT, AD, and SI values of all the patients in the study were measured by echo-Doppler imaging (AD formula = 2 x (AoS - AoD)/PP x AoD, SI formula = (SBP/DBP)/([AoS - AoD]/AoD). Significantly increased IMT (0.82 +/- 0.1, 0.57 +/- 0.1, p<0.05), decreased AD (0.25 +/- 0.9, 0.37 +/- 0.1, p<0.05), and increased SI (13 +/- 4, 8 +/- 3, p<0.05) values were detected in the CAD group compared to the control group. A significant correlation was found between IMT and presence of diabetes mellitus (DM), systolic blood pressure, total cholesterol, and presence of plaque in carotids, and age. In the coronary artery disease group there was a significant correlation between AD and age, systolic blood pressure, and HDL cholesterol levels, while there was no significant correlation with plaque development. A significant correlation was also found between stiffness index and systolic blood pressure and age; however, there was no relation between number of involved vessels and IMT, AD, and SI. We found sensitivity, specificity, and positive predictive and negative predictive values for CAD diagnosis to be 70%, 75%, 77%, and 66%, respectively. In CAD cases, according to data in

  8. Comparison of the sensitivity of different aroma extraction techniques in combination with gas chromatography-mass spectrometry to detect minor aroma compounds in wine.

    PubMed

    Gamero, Amparo; Wesselink, Wilma; de Jong, Catrienus

    2013-01-11

    MicroVinification platforms are used for screening purposes to study aroma development in wine. These high-throughput methodologies require flavor analysis techniques that allow fast detection of a high number of aroma compounds which often appear in very low concentrations (μg/l). In this work, a selection of aroma extraction techniques in combination with gas chromatography-mass spectrometry (GC-MS) were evaluated to detect minor wine aroma compounds in low sample volume. The techniques evaluated were headspace (HS), headspace solid-phase dynamic extraction (HS-SPDE), headspace solid-phase microextraction (HS-SPME), direct immersion solid-phase microextraction (DI-SPME), stir bar sorptive extraction (SBSE) and monolithic material sorptive extraction (MMSE). DI-SPME showed the highest sensitivity as expressed by detection of the highest percentage of total aroma compounds at concentrations around 0.1 μg/l. SBSE and MMSE followed DI-SPME in terms of sensitivity. HS-SPME was less sensitive but considered sensitive enough for detection of most of the volatile compounds present in highly aromatic wines. Matrix effect was shown to strongly affect aroma extraction and therefore the sensitivity of the different extraction methods.

  9. Identification of potential antioxidant compounds in the essential oil of thyme by gas chromatography with mass spectrometry and multivariate calibration techniques.

    PubMed

    Masoum, Saeed; Mehran, Mehdi; Ghaheri, Salehe

    2015-02-01

    Thyme species are used in traditional medicine throughout the world and are known for their antiseptic, antispasmodic, and antitussive properties. Also, antioxidant activity is one of the interesting properties of thyme essential oil. In this research, we aim to identify peaks potentially responsible for the antioxidant activity of thyme oil from chromatographic fingerprints. Therefore, the chemical compositions of hydrodistilled essential oil of thyme species from different regions were analyzed by gas chromatography with mass spectrometry and antioxidant activities of essential oils were measured by a 1,1-diphenyl-2-picrylhydrazyl radical scavenging test. Several linear multivariate calibration techniques with different preprocessing methods were applied to the chromatograms of thyme essential oils to indicate the peaks responsible for the antioxidant activity. These techniques were applied on data both before and after alignment of chromatograms with correlation optimized warping. In this study, orthogonal projection to latent structures model was found to be a good technique to indicate the potential antioxidant active compounds in the thyme oil due to its simplicity and repeatability.

  10. Simultaneous planar measurement of droplet velocity and size with gas phase velocities in a spray by combined ILIDS and PIV techniques

    NASA Astrophysics Data System (ADS)

    Hardalupas, Yannis; Sahu, Srikrishna; Taylor, Alex M. K. P.; Zarogoulidis, Konstantinos

    2010-08-01

    A new approach for simultaneous planar measurement of droplet velocity and size with gas phase velocities is reported, which combines the out-of-focus imaging technique ‘Interferometric Laser Imaging Droplet Sizing’ (ILIDS) for planar simultaneous droplet size and velocity measurements with the in-focus technique ‘Particle Image Velocimetry’ (PIV) for gas velocity measurements in the vicinity of individual droplets. Discrimination between the gas phase seeding and the droplets is achieved in the PIV images by removing the glare points of focused droplet images, using the droplet position obtained through ILIDS processing. Combination of the two optical arrangements can result in a discrepancy in the location of the centre of a droplet, when imaging through ILIDS and PIV techniques, of up to about 1 mm, which may lead to erroneous identification of the glare points from droplets on the PIV images. The magnitude of the discrepancy is a function of position of the droplet’s image on the CCD array and the degree of defocus, but almost independent of droplet size. Specifically, it varies approximately linearly across the image along the direction corresponding to the direction of propagation of the laser sheet for a given defocus setting in ILIDS. The experimental finding is supported by a theoretical analysis, which was based on geometrical optics for a simple optical configuration that replicates the essential features of the optical system. The discrepancy in the location was measured using a monodisperse droplet generator, and this was subtracted from the droplet centres identified in the ILIDS images of a polydisperse spray without ‘seeding’ particles. This reduced the discrepancy between PIV and ILIDS droplet centres from about 1 mm to about 0.1 mm and hence increased the probability of finding the corresponding fringe patterns on the ILIDS image and glare points on the PIV image. In conclusion, it is shown that the proposed combined method can

  11. Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Monks, P. S.; Smallbone, K. L.; Hamilton, J. F.; Alfarra, M. R.; Rickard, A. R.; McFiggans, G. B.; Jenkin, M. E.; Bloss, W. J.; Ryan, A. C.; Hewitt, C. N.; MacKenzie, A. R.

    2015-07-01

    Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i

  12. Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric datasets

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Monks, P. S.; Smallbone, K. L.; Hamilton, J. F.; Alfarra, M. R.; Rickard, A. R.; McFiggans, G. B.; Jenkin, M. E.; Bloss, W. J.; Ryan, A. C.; Hewitt, C. N.; MacKenzie, A. R.

    2015-01-01

    Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modeling in order, ultimately, to identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least squares-discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Furthermore, a holistic view of results across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidized gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i.e. toluene) oxidation and "more realistic" plant mesocosm systems, demonstrates that such an ensemble of chemometric mapping has the potential to be

  13. The GABA(B) receptor agonist, baclofen, and the positive allosteric modulator, CGP7930, inhibit visceral pain-related responses to colorectal distension in rats.

    PubMed

    Brusberg, Mikael; Ravnefjord, Anna; Martinsson, Rakel; Larsson, Håkan; Martinez, Vicente; Lindström, Erik

    2009-02-01

    Activation of GABA(B) receptors by the selective agonist baclofen produces anti-nociceptive effects in animal models of somatic pain. The aim of the present study was to evaluate the effect of baclofen and the GABA(B) receptor positive allosteric modulator CGP7930 on pseudo-affective responses to colorectal distension in rats. Female Sprague-Dawley rats were subjected to repeated, noxious colorectal distension (CRD) (12 distensions at 80 mmHg, for 30 s with 5 min intervals). The visceromotor response (VMR) and cardiovascular responses (mean arterial blood pressure (ABP) and heart rate (HR)) to CRD were monitored in conscious, telemetrized animals. Baclofen (0.3-3 micromol/kg, i.v.) reduced the VMR to CRD dose-dependently, reaching a 61% maximal inhibition (p < 0.001). The highest doses of baclofen attenuated CRD-evoked increases in ABP by 17% (p > 0.05) and reduced the change in HR by 48% (p < 0.01). CGP7930 (3-30 micromol/kg, i.v.) reduced the VMR to CRD in a dose-dependent fashion with a maximal inhibition of 31% (p < 0.05). The highest dose of CGP7930 also attenuated the increase in ABP by 18% (p > 0.05) and inhibited the increase in HR by 24% (p < 0.05) associated with CRD. Neither baclofen nor CGP7930 affected colorectal compliance. The results suggest that activation of GABA(B) receptors produces anti-nociceptive effects in a rat model of mechanically induced visceral pain. While CGP7930 was less efficacious than baclofen overall, positive allosteric modulation of GABA(B) receptors may represent a valid approach in the treatment of visceral pain conditions, with the possibility of an improved safety profile compared to full agonism.

  14. A Novel Optimization Technique to Improve Gas Recognition by Electronic Noses Based on the Enhanced Krill Herd Algorithm

    PubMed Central

    Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan

    2016-01-01

    An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C6H6), toluene (C7H8), formaldehyde (CH2O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms’ applications in all E-nose application areas. PMID

  15. Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique

    NASA Astrophysics Data System (ADS)

    Sumangala, T. P.; Mahender, C.; Barnabe, A.; Venkataramani, N.; Prasad, Shiva

    2016-11-01

    Stoichiometric nano sized copper ferrite particles were synthesized by sol gel combustion technique. They were then calcined at various temperatures ranging from 300-800 °C and were either furnace cooled or quenched in liquid nitrogen. A high magnetisation value of 48.2 emu/g signifying the cubic phase of copper ferrite, was obtained for sample quenched to liquid nitrogen temperature from 800 °C. The ethanol sensing response of the samples was studied and a maximum of 86% response was obtained for 500 ppm ethanol in the case of a furnace cooled sample calcined at 800 °C. The chemical sensing is seen to be correlated with the c/a ratio and is best in the case of tetragonal copper ferrite.

  16. Measurement of trace gas emissions of spruce by different measuring techniques including PTR-MS at the BEWA field campaign 2002

    NASA Astrophysics Data System (ADS)

    Cojocariu, C.; Graus, M.; Grabmer, W.; Hansel, A.; Kreuzwieser, J.; Rennenberg, H.; Wisthaler, A.

    2003-04-01

    The capability of proton transfer reaction mass spectrometry (PTR-MS) for on-line measurements of volatile organic compounds (VOCs) such as isoprene, acetaldehyde, acetone, methyl vinyl ketone and metacrolein was used to measure VOC fluxes from spruce during BEWA field campaign 2002. The BEWA measuring tower is located in the Bavarian "Fichtelgebirge", which has an alpine-like climate and is situated at 776m a.s.l. at 50°09' N and 11°52' E. A dynamic cuvette system was used for the measurement of trace gas emissions. The cuvettes consisted of chemically inert teflon; one cuvette was kept empty as a reference; the plant cuvette contained a spruce twig of ca. 8 cm length at a height of about 13 m from the ground. The PTR-MS system continuously analysed all selected VOCs in the air from the plant cuvette over a 3 minute cycle, with measurement of the empty cuvette occurring every hour. Both cuvettes were flushed with ambient air at flow rates of 2-4 l/min. Emission rates were calculated taking into account the concentration differences between reference and plant cuvette, the air flow through the cuvettes and the leaf area of the twigs. In addition to PTR-MS, carbonyl concentrations were determined by DNPH-coated silica gel cartridges and subsequent HPLC-analysis. The duration of one measurement cycle was - depending on weather conditions - up to 36 hours without interruption. Simultaneously with trace gas exchange, the rates of photosynthesis and transpiration, stomatal conductance as well as meteorological parameters (PPFD, temperature, relative humidity) were determined. In order to identify factors controlling trace gas emissions from spruce, correlation analysis of emission data with meteorological and physiological parameters were performed. A comparison of the results obtained by cartridges and PTR-MS technique is given.

  17. Spectroscopy of low-energy atoms released from a solid noble-gas matrix: Proposal for a trap-loading technique

    SciTech Connect

    Lambo, R.; Rodegheri, C. C.; Silveira, D. M.; Cesar, C. L.

    2007-12-15

    We have studied the velocity distribution of chromium atoms released from a solid neon matrix at cryogenic temperatures via Doppler spectroscopy. The Ne matrix is grown by directing a small flux of gas onto a cold substrate, while Cr atoms are simultaneously implanted by laser ablation, with the resultant plume directed toward the growing matrix. The atoms are then released by a heat pulse. We have observed neutral Cr atoms at temperatures around 13 K with densities close to 10{sup 12} cm{sup -3}. The released atoms have a large initial drift velocity, explained by simple kinetic theory arguments, due to the light species' drag force. The scheme could be adapted to produce cryogenic beams of atoms, molecules, and possibly ions, for collisional studies and spectroscopy. However, our main motivation was the construction of a hydrogen trap, and here we discuss the prospects and problems of using this technique for this purpose.

  18. Rapid confirmation of enzyme multiplied immunoassay technique (EMIT) cocaine positive urine samples by capillary gas-liquid chromatography/nitrogen phosphorus detection (GLC/NPD).

    PubMed

    Verebey, K; DePace, A

    1989-01-01

    A rapid gas-liquid chromatographic (GLC) method was developed for the confirmation of benzoylecgonine (BE) positive urine samples screened by the enzyme multiplied immunoassay technique (EMIT) assay. The procedure is performed by solvent extraction of BE from 0.1 or 0.2 mL of urine, followed by an aqueous wash of the solvent and evaporation. The dried residue was derivatized with 50 microL of pentafluoropropionic anhydride and 25 microL of pentafluoropropropanol at 90 degrees C for 15 min. The derivatizing reagents were evaporated to dryness, and the derivatized BE, and cocaine if present, were reconstituted and injected into the gas chromatograph. The column was a 15-m by 0.2-mm fused silica capillary column, coated with 0.25 micron of DB-1, terminating in a nitrogen phosphorus detector (NPD). Cocaine and the pentafluoro BE derivatives retention times were 3.2 and 2.6 min, respectively. Nalorphine was used as reference or internal standard with a retention time of 4.78 min. The complete procedure can be performed in approximately 1.5 h. The EMIT cutoff between positive and negative urine samples is 300 ng/mL of BE. The lower limit of sensitivity of this method is 25 ng of BE extracted from urine. Validation studies resulted in confirmation of 101 out of 121 EMIT cocaine positive urine samples that could not be confirmed by thin-layer chromatography (TLC). This represents 84% confirmation efficiency.

  19. Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique.

    PubMed

    Liao, Tingting; Wang, Rui; Zheng, Xunhua; Sun, Yang; Butterbach-Bahl, Klaus; Chen, Nuo

    2013-11-01

    The gas-flow-soil-core (GFSC) technique allows to directly measure emission rates of denitrification gases of incubated soil cores. However, the technique was still suffering some drawbacks such as inadequate accuracy due to asynchronous detection of dinitrogen (N2) and other gases and low measurement frequency. Furthermore, its application was limited due to intensive manual operation. To overcome these drawbacks, we updated the GFSC system as described by Wang et al. (2011) by (a) using both a chemiluminescent detector and a gas chromatograph detector to measure nitric oxide (NO), (b) synchronizing the measurements of N2, NO, nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), and (c) fully automating the sampling/analysis of all the gases. These technical modifications significantly reduced labor demands by at least a factor of two, increased the measurement frequency from 3 to 6 times per day and resulted in remarkable improvements in measurement accuracy (with detection limits of 0.5, 0.01, 0.05, 2.3 and 0.2μgN or Ch(-1)kg(-1)ds, or 17, 0.3, 1.8, 82, and 6μgN or Cm(-2)h(-1), for N2, N2O, NO, CO2, and CH4, respectively). In some circumstances, the modified system measured significantly more N2 and CO2 and less N2O and NO because of the enhanced measurement frequency. The modified system distinguished the differences in emissions of the denitrification gases and CO2 due to a 20% change in initial carbon supplies. It also remarkably recovered approximately 90% of consumed nitrate during incubation. These performances validate the technical improvement, and indicate that the improved GFSC system may provide a powerful research tool for obtaining deeper insights into the processes of soil carbon and nitrogen transformation during denitrification.

  20. Assessment of inhalation and ingestion doses from exposure to radon gas using passive and active detecting techniques

    SciTech Connect

    Ismail, A. H.; Jafaar, M. S.

    2011-07-01

    The aim of this study was to assess an environmental hazard of radon exhalation rate from the samples of soil and drinking water in selected locations in Iraqi Kurdistan, passive (CR-39NTDs) and active (RAD7) detecting techniques has been employed. Long and short term measurements of emitted radon concentrations were estimated for 124 houses. High and lower radon concentration in soil samples was in the cities of Hajyawa and Er. Tyrawa, respectively. Moreover, for drinking water, high and low radon concentration was in the cities of Similan and Kelak, respectively. A comparison between our results with that mentioned in international reports had been done. Average annual dose equivalent to the bronchial epithelium, stomach and whole body in the cities of Kelak and Similan are estimated, and it was varied from 0.04{+-}0.01 mSv to 0.547{+-}0.018 mSv, (2.832{+-}0.22)x10{sup -5} to (11.972{+-}2.09)x10{sup -5} mSv, and (0.056 {+-}0.01) x10{sup -5} to (0.239{+-}0.01)x10{sup -5} mSv, respectively. This indicated that the effects of dissolved radon on the bronchial epithelium are much than on the stomach and whole body. (authors)

  1. Development of a rapid screening technique for organochlorine pesticides using solvent microextraction (SME) and fast gas chromatography (GC).

    PubMed

    de Jager, L S; Andrews, A R

    2000-11-01

    A novel, fast screening method for organochlorine pesticides (OCPs) in water samples has been developed. Total analysis time was less than 9 min, allowing 11 samples to be screened per hour. The relatively new technique of solvent microextraction (SME) was used to extract and preconcentrate the pesticides into a single drop of hexane. The use of a conventional carbon dioxide cryotrap was investigated for introduction of the extract onto a micro-bore (0.1 mm) capillary column for fast GC analysis. A pulsed-discharge electron capture detector was used which yielded selective and sensitive measurement of the pesticide peaks. Fast GC conditions were optimised and tested with the previously developed SME procedure. Calibration curves yielded good linearity and concentrations down to 0.25 ng mL-1 were detectable with RSD values ranging from 12.0 to 28% and LOD for most OCPs at 0.25 ng mL-1. Spiked river water samples were tested and using the developed screen we were able to differentiate between spiked samples and samples containing no OCPs.

  2. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  3. Theoretical approach for enhanced mass transfer effects in duct flue gas desulfurization processes. Topical report for Task 4, Novel techniques

    SciTech Connect

    Jozewicz, Wojciech; Rochelle, G.T.

    1991-09-17

    Novel techniques designed for the enhancement of Ca(OH){sub 2} utilization in dry-sorbent injection (DSI) and duct-spray drying (DSD) were investigated in the Long Time Differential Reactor (LTDR), Short Time Differential Reactor (STDR), and 50-cfm pilot plant. At 2000-ppm SO{sub 2} and 60 percent relative humidity, the presence of up to 30-percent initial free moisture significantly increased sorbent reactivity with SO{sub 2}, compared to sorbent with equilibrium amount of moisture. The conversion decreased when the initial free moisture increased beyond 30--50 percent. The initial free moisture content and corresponding level of maximum sorbent conversion with SO{sub 2} varied with the surface area of the sorbent. Sorbent moisture capacity tests indicated that agglomeration of damp calcium silicate sorbent was a function of sorbent pore volume. Critical moisture content was increasing with specific surface area. Very little improvement in SO{sub 2} removal was obtained by DSI recycle operation downstream of humidification. Significant enhancement was achieved by DSI recycle upstream of humidification. Grinding of DSI solids with and without fly ash resulted in significant increase of surface area and pore volume and resulting reactivity with SO{sub 2}. Organic buffer additives were tested as potential enhancement of Ca(OH){sub 2} utilization during the DSD process. Bench-scale results suggested that organic acids should be effective additives to enhance SO{sub 2} in slurry if SO{sub 2} absorption was controlled significantly by liquid film resistance. Pilot-plant tests did not demonstrate significant enhancement of Ca(OH){sub 2} conversion during spray drying as a result of buffer additives. Grinding of simulated DSD solids resulted in significant enhancement of Ca(OH){sub 2} reactivity with SO{sub 2}.

  4. Effects of foam or gauze on sternum wound contraction, distension and heart and lung damage during negative-pressure wound therapy of porcine sternotomy wounds.

    PubMed

    Malmsjö, Malin; Lindstedt, Sandra; Ingemansson, Richard

    2011-03-01

    The study was performed to compare the effects of negative-pressure wound therapy (NPWT) using gauze and foam on wound edge movement and the macroscopic appearance of the heart and lungs after NPWT. Sternotomy wounds were created in 6×70 kg pigs. Negative pressures of -40, -70, -120 and -160 mmHg were applied and the following were evaluated: wound contraction, distension and the macroscopic appearance of the heart and lungs after NPWT. Wound contraction was greater when using foam than gauze (3.5±0.3 cm and 1.3±0.2 cm, respectively, P<0.01). The application of traction to the lateral edges of the sternotomy resulted in greater wound distention with foam than with gauze (5.3±0.3 cm and 3.6±0.2 cm, respectively, P<0.001). After using foam, the surface of the heart was red and mottled, and lung emphysema and sometimes, lung rupture were observed. After using gauze, the organ surface had no markings. The study shows that foam allows greater wound contraction and distension than gauze. This movement of the wound edges may cause damage to the underlying organs. There is less damage to the heart and lungs when using gauze than foam.

  5. Multiclass pesticide analysis in fruit-based baby food: A comparative study of sample preparation techniques previous to gas chromatography-mass spectrometry.

    PubMed

    Petrarca, Mateus H; Fernandes, José O; Godoy, Helena T; Cunha, Sara C

    2016-12-01

    With the aim to develop a new gas chromatography-mass spectrometry method to analyze 24 pesticide residues in baby foods at the level imposed by established regulation two simple, rapid and environmental-friendly sample preparation techniques based on QuEChERS (quick, easy, cheap, effective, robust and safe) were compared - QuEChERS with dispersive liquid-liquid microextraction (DLLME) and QuEChERS with dispersive solid-phase extraction (d-SPE). Both sample preparation techniques achieved suitable performance criteria, including selectivity, linearity, acceptable recovery (70-120%) and precision (⩽20%). A higher enrichment factor was observed for DLLME and consequently better limits of detection and quantification were obtained. Nevertheless, d-SPE provided a more effective removal of matrix co-extractives from extracts than DLLME, which contributed to lower matrix effects. Twenty-two commercial fruit-based baby food samples were analyzed by the developed method, being procymidone detected in one sample at a level above the legal limit established by EU.

  6. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping.

    PubMed

    Ezeji, T C; Qureshi, N; Blaschek, H P

    2004-02-01

    Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H(2) and CO(2) as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l(-1) and 60 g l(-1), respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l(-1) and produced 17.6 g total solvents l(-1) (yield 0.39 g g(-1), productivity 0.29 g l(-1) h(-1)). Using the integrated fermentation-gas stripping product-recovery system with CO(2) and H(2) as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l(-1)) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g(-1) and 1.16 g l(-1) h(-1), respectively.

  7. Development and application of compact denuder sampling techniques with in situ derivatization followed by gas chromatography-mass spectrometry for halogen speciation in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten

    2015-04-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulphur and halogen containing species. The detailed knowledge of volcanic plume chemistry can give insights into subsurface processes and can be considered as a useful geochemical tool for monitoring of volcanic activity, especially halogen to sulphur ratios (e.g. Bobrowski and Giuffrida, 2012; Donovan et al., 2014). The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable by UV spectrometers at a safe distance. Furthermore it is formed in the plume by a multiphase reaction mechanism under depletion of ozone in the plume. The abundance of BrO changes as a function of the reaction time and therefore distance from the vent as well as the spatial position in the plume. Due to the lack of analytical approaches for the accurate speciation of certain halogens (HBr, Br2, Br, BrCl, HOBr etc.) there are still uncertainties about the magnitude of volcanic halogen emissions and in particular their specificationtheir species and therefore also in the understanding of the bromine chemistry in volcanic plumes (Bobrowski et al., 2007). In this study, the first application of a 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated gas diffusion denuder (Huang and Hoffmann, 2008) on volcanic gases proved to be suitable to collect selectively gaseous bromine species with oxidation states of +1 or 0 (Br2 and BrO(H)), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with bromine gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding products. The diffusion denuder technique allows sampling of gaseous compounds exclusively without collecting particulate matter. Choosing a flow rate of 500 mL-min-1 and a denuder length of 0.5 m a nearly quantitative collection efficiency was achieved. Solvent elution of the derivatized analytes and subsequent analysis with gas chromatography

  8. Technical note: Can the sulfur hexafluoride tracer gas technique be used to accurately measure enteric methane production from ruminally cannulated cattle?

    PubMed

    Beauchemin, K A; Coates, T; Farr, B; McGinn, S M

    2012-08-01

    An experiment was conducted to determine whether using ruminally cannulated cattle affects the estimate of enteric methane (CH(4)) emissions when using the sulfur hexafluoride (SF(6)) tracer technique with samples taken from a head canister. Eleven beef cattle were surgically fitted with several types of ruminal cannula (2C, 3C, 3C+washer, 9C; Bar Diamond, Parma, ID). The 2C and 3C models (outer and inner flanges with opposite curvature) had medium to high leakage, whereas the 9C models (outer and inner flanges with the same curvature) provided minimum to moderate leakage of gas. A total of 48 cow-day measurements were conducted. For each animal, a permeation tube containing sulfur hexafluoride (SF(6)) was placed in the rumen, and a sample of air from around the nose and mouth was drawn through tubing into an evacuated canister (head canister). A second sample of air was collected from outside the rumen near the cannula into another canister (cannula canister). Background concentrations were also monitored. The methane (CH(4)) emission was estimated from the daily CH(4) and SF(6) concentrations in the head canister (uncorrected). The permeation SF(6) release rate was then partitioned based on the proportion of the SF(6) concentration measured in the head vs. the cannula canister. The CH(4) emissions at each site were calculated using the two release rates and the two CH(4):SF(6) concentration ratios. The head and cannula emissions were summed to obtain the total emission (corrected). The difference (corrected - uncorrected) in CH4 emission was attributed to the differences in CH(4):SF(6) ratio at the 2 exit locations. The proportions of CH(4) and SF(6) recovered at the head were greater (P < 0.001) for the 9C cannulas (64% and 66%) compared with the other cannulas, which were similar (P > 0.05; 2C, 6% and 4%; 3C, 17% and 15%; 3C+washer, 19% and 14%). Uncorrected CH(4) emissions were ± 10% of corrected emissions for 53% of the cow-day measurements. Only when more

  9. Consistency of aortic distensibility and pulse wave velocity estimates with respect to the Bramwell-Hill theoretical model: a cardiovascular magnetic resonance study

    PubMed Central

    2011-01-01

    Background Arterial stiffness is considered as an independent predictor of cardiovascular mortality, and is increasingly used in clinical practice. This study aimed at evaluating the consistency of the automated estimation of regional and local aortic stiffness indices from cardiovascular magnetic resonance (CMR) data. Results Forty-six healthy subjects underwent carotid-femoral pulse wave velocity measurements (CF_PWV) by applanation tonometry and CMR with steady-state free-precession and phase contrast acquisitions at the level of the aortic arch. These data were used for the automated evaluation of the aortic arch pulse wave velocity (Arch_PWV), and the ascending aorta distensibility (AA_Distc, AA_Distb), which were estimated from ascending aorta strain (AA_Strain) combined with either carotid or brachial pulse pressure. The local ascending aorta pulse wave velocity AA_PWVc and AA_PWVb were estimated respectively from these carotid and brachial derived distensibility indices according to the Bramwell-Hill theoretical model, and were compared with the Arch_PWV. In addition, a reproducibility analysis of AA_PWV measurement and its comparison with the standard CF_PWV was performed. Characterization according to the Bramwell-Hill equation resulted in good correlations between Arch_PWV and both local distensibility indices AA_Distc (r = 0.71, p < 0.001) and AA_Distb (r = 0.60, p < 0.001); and between Arch_PWV and both theoretical local indices AA_PWVc (r = 0.78, p < 0.001) and AA_PWVb (r = 0.78, p < 0.001). Furthermore, the Arch_PWV was well related to CF_PWV (r = 0.69, p < 0.001) and its estimation was highly reproducible (inter-operator variability: 7.1%). Conclusions The present work confirmed the consistency and robustness of the regional index Arch_PWV and the local indices AA_Distc and AA_Distb according to the theoretical model, as well as to the well established measurement of CF_PWV, demonstrating the relevance of the regional and local CMR indices. PMID

  10. Floating matrix dosage form for dextromethorphan hydrobromide based on gas forming technique: in vitro and in vivo evaluation in healthy volunteers.

    PubMed

    Hu, Liandong; Li, Li; Yang, Xun; Liu, Wei; Yang, Jianxue; Jia, Yanhong; Shang, Chuang; Xu, Hongxin

    2011-01-18

    The objective of this study was to develop the dextromethorphan hydrobromide sustained-release (DMB-SR) tablets using floating technique to prolong the gastric residence time and compared their pharmacokinetic behavior with conventional sustained release tablets. DMB-SR floating tablets were prepared employing hydroxypropyl methylcellulose (HPMC) as hydrophilic gel material, sodium bicarbonate as gas-generating agent and hexadecanol as floating assistant agent. An orthogonal experiment design method was used to select the optimized formulation. The floating tablets were evaluated for uniformity of weight, hardness, friability, drug content, floating characteristics, in vitro release and in vivo bioavailability. The optimized tablets were prepared with HPMC K4M 25 mg, sodium bicarbonate 20 mg and hexadecanol 18 mg. The prepared tablets could float within 3 min and maintain for more than 24 h. The data of physical parameters were all lie within the limits. Drug release at 12 h was more than 85%. The comparative pharmacokinetic study was performed by administration of the DMB-SR floating tablets and conventional DMB-SR tablets. The area under curve of plasma concentration-time (AUC) of floating tablets was slightly higher than that of reference tablets, T(max) was prolonged apparently. The results showed the floating tablets are a feasible approach for the sustained-release preparation of drugs, which have limited absorption sites in the stomach.

  11. Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.

    2013-11-01

    Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.

  12. Structural characterization and X-ray analysis by Williamson-Hall method for Erbium doped Aluminum Nitride nanoparticles, synthesized using inert gas condensation technique

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha G.; Corbett, Joseph P.; Jadwisienczak, Wojciech M.; Kordesch, Martin E.

    2016-05-01

    We have synthesized AlN nanoparticles (NPs) doped in-situ with Er (AlN:Er) using inert gas condensation technique. Using x-ray diffraction (XRD) peak broadening analysis with the Williamson-Hall (W-H) Uniform Deformation Model (UDM) the crystallite size of the NPs and the strain in NPs were found to be 80±38 nm and 3.07×10-3±0.9×10-3 respectively. In comparison, using the Debye-Scherrer's (DS) formula, we have inferred that the crystallite size of the NPs was 23±6 nm and the average strain was 4.3×10-3±0.4×10-3. The scanning electron microscopy images show that the NPs are spherical and have an average diameter of ∼300 nm. The crystallite size is smaller than the size of the NPs revealing their polycrystalline behavior. In addition, the NPs strain, stress and energy density were also calculated using W-H analysis combined with the Uniform Deformation Stress Model (UDSM) and the Uniform Deformation Energy Density Model (UDEDM). Suggested by the spherical geometry and polycrystalline nature of the AlN NPs, the strain computed from UDM, UDSM and UDEDM were in agreement confirming an isotropic mechanical nature of the particle. Luminescence measurements revealed the temperature dependence of the optical emission of the Er3+ ions, confirming the use of AlN:Er NPs for nano-scale temperature sensing.

  13. Successful field evaluation of the efficiency of a gas gravity drainage process by applying recent developments in Sponge coring technique in a major oil field

    SciTech Connect

    Durandeau, M.; El-Emam, M.; Anis, A.H.; Fanti, G.

    1995-11-01

    This paper describes the application and integration of new technologies and recent developments in Sponge coring and presents the methodology used to carry out successfully the various phases of well designed Sponge coring project, including the coring phase, the on-site measurements and the full evaluation of the Sponge core samples. A field case is presented where a Sponge coring project was accomplished to obtain accurate fluids distribution and evaluate the gas gravity drainage efficiency in one of the Arab D sub-reservoirs of a major oil field offshore Abu Dhabi. A Sponge coring technology team was created to optimize the methodology used during Sponge coring an minimize the uncertainties which persisted on some of the previous operations. The effectiveness of the technique is discussed, with comparison to open hole logs and SCAL data. Realistic petrophysical parameters were obtained from non-invaded, native-state core samples. The effective oil saturation obtained from the Sponge core analysis results showed that the gravity segregation mechanism has been very active and efficient to recover the oil in the reservoir.

  14. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Federal Lands - A Field Evaluation At Big South Fork National River And Recreation Area, Scott County, Tennessee

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2000-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands so that sites may be prioritized for further, more formal assessment or remediation. These techniques should allow the field investigator to extend the assessment beyond the surface disturbances documented by simple observation and mapping using field-portable instruments and expendable materials that provide real-time data. The principal contaminants of current concern are hydrocarbons, produced water, and naturally occurring radioactive materials (NORM). Field investigators can examine sites for the impacts of hydrocarbon releases using a photoionization detector (PID) and a soil auger. Volatile organic carbon (VOC) in soil gases in an open auger hole or in the head space of a bagged and gently warmed auger soil sample can be measured by the PID. This allows detection of hydrocarbon movement in the shallow subsurface away from areas of obvious oil-stained soils or oil in pits at a production site. Similarly, a field conductivity meter and chloride titration strips can be used to measure salts in water and soil samples at distances well beyond areas of surface salt scarring. Use of a soil auger allows detection of saline subsoils in areas where salts may be flushed from the surface soil layers. Finally, a microRmeter detects the presence of naturally occurring radioactive materials (NORM) in equipment and soils. NORM often goes undetected at many sites although regulations limiting NORM in equipment and soils are being promulgated in several States and are being considered by the USEPA. With each technique, background sampling should be done for comparison with impacted areas. The authors examined sites in the Big South Fork National River and Recreation Area in November of 1999. A pit at one site at the edge of the flood plain of a small stream had received crude oil releases from a nearby tank. Auger holes down

  15. Aortic distensibility is reduced during intense lower body negative pressure and is related to low frequency power of systolic blood pressure.

    PubMed

    Phillips, Aaron A; Bredin, Shannon S D; Cote, Anita T; Drury, C Taylor; Warburton, Darren E R

    2013-03-01

    As sympathetic activity approximately doubles during intense lower body negative pressure (LBNP) of -60 mmHg or greater, we examined the relationship between surrogate markers of sympathetic activation and central arterial distensibility during severe LBNP. Eight participants were exposed to progressive 8-min stages of LBNP of increasing intensity (-20, -40, -60, and -80 mmHg), while recording carotid-femoral pulse wave velocity (cPWV), stroke volume (SV), heart rate, and beat-by-beat blood pressure. The spectral power of low frequency oscillations in SBP (SBP(LF)) was used as a surrogate indicator of sympathetically modulated vasomotor modulation. Total arterial compliance (C) was calculated as C = SV/pulse pressure. Both cPWV and C were compared between baseline, 50 % of the maximally tolerated LBNP stage (LBNP(50)), and the maximum fully tolerated stage of LBNP (LBNP(max)). No change in mean arterial pressure (MAP) occurred over LBNP. An increase in cPWV (6.5 ± 2.2; 7.2 ± 1.4; 9.0 ± 2.5 m/s; P = 0.004) occurred during LBNP(max). Over progressive LBNP, SBP(LF) increased (8.5 ± 4.6; 9.3 ± 5.8; 16.1 ± 12.9 mmHg(2); P = 0.04) and C decreased significantly (18.3 ± 6.8; 14.3 ± 4.1; 11.6 ± 4.8 ml/mmHg × 10; P = 0.03). The mean correlation (r) between cPWV and SBP(LF) was 0.9 ± 0.03 (95 % CI 0.79-0.99). Severe LBNP increased central stiffness and reduced total arterial compliance. It appears that increased sympathetic vasomotor tone during LBNP is associated with reduced aortic distensibility in the absence of changes in MAP.

  16. Stress-strain analysis of contractility in the ileum in response to flow and ramp distension in streptozotocin-induced diabetic rats--association with advanced glycation end product formation.

    PubMed

    Zhao, Jingbo; Chen, Pengmin; Gregersen, Hans

    2015-04-13

    This study compared the ileal contractility and analyzed the association between contractility with advanced glycation end product (AGE) formation in normal and streptozotocin (STZ)-induced diabetic rats. Nine STZ-induced diabetic rats (Diabetes group) and 9 normal rats (Normal group) were used. The motility experiments were carried out on ileums in organ baths containing physiological Krebs solution. Ileal pressure and diameter changes were obtained from basic, flow-induced and ramp distension-induced contractions. The frequency and amplitude of contractions were analyzed from pressure-diameter curves. Distension-induced contraction thresholds and maximum contraction amplitude of basic and flow-induced contractions were calculated in terms of stress and strain. AGE and its receptor (RAGE) in the layers were detected by immunohistochemistry staining. The maximum stress of flow-induced contractions was lowest in the Diabetes Group (P<0.05). During ramp distension, the pressure and stress thresholds and Young's modulus to induce phasic contraction were lowest in the Diabetes Group (P<0.05 and P<0.01). AGE and RAGE expressions in the different ileum layers were highest in the Diabetes group. The contraction pressure and stress thresholds were significantly associated with AGE expression in the muscle layer and RAGE expression in mucosa epithelium and neurons. The diabetic intestine was hypersensitive to distension for contraction induction. However, the contraction force produced by smooth muscle was lowest in diabetic rats. Increased AGE/RAGE expression was associated with the contractility changes in diabetic rats.

  17. Determination of polycyclic aromatic hydrocarbons in olive oil by a completely automated headspace technique coupled to gas chromatography-mass spectrometry.

    PubMed

    Arrebola, Francisco J; Frenich, A Garrido; González Rodríguez, Manuel J; Bolaños, Patricia Plaza; Martínez Vidal, José L

    2006-06-01

    A new and completely automated method for the determination of ten relevant polycyclic aromatic hydrocarbons (PAHs) in olive oil is proposed using an extraction by the headspace (HS) technique. Quantification and confirmation steps are carried out by gas chromatography-mass spectrometry (GC-MS) combining simultaneously selected-ion monitoring (SIM) and tandem mass spectrometry (MS/MS). This combination offers on one hand an increased sensitivity and on the other hand, selective and reliable qualitative information. Sample pretreatment or clean-up are not necessary because the olive oil sample is put directly into an HS vial, automatically processed by HS and introduced into the GC-MS instrument for analysis. Because of its high selectivity and sensitivity, a triple-quadrupole (QqQ) detector coupled with the gas chromatograph allows us to limit handling. Each sample is completely processed in approximately 63 min (45 min for HS isolation and 18 min for GC-MS determination), a reduced time compared with previously published methods. The chemical and instrumental variables were preliminarily optimized using uncontaminated olive oil samples spiked with 25 microg kg(-1) of each target compound. The final method was validated to ensure the quality of the results. The precision was satisfactory, with relative standard deviation (RSD) values in the range 3-9%. Recovery rates ranged from 96 to 99%. Limits of detection (LOD) were calculated as 0.02-0.06 microg kg(-1) and the limits of quantification (LOQ) were obtained as 0.07-0.26 microg kg(-1). It must be mentioned that the LOD and LOQ are much lower than the maximum levels established by the European Union (EU) in oils and fats intended for direct human consumption or for use as an ingredient in foods, which are set at 2 microg kg(-1). All the figures of merit are completely in accordance with the latest EU legislation. This fact makes it possible to consider the proposed method as a useful tool for the control of PAHs in

  18. A Comparison of Critical Regimes in Collapsible Tube, Pipe, Open Channel and Gas-Dynamic Flows

    NASA Astrophysics Data System (ADS)

    Arun, C. P.

    2003-11-01

    Though of considerable interest to clinical scientists, collapsible tubes are only recently receiving due interest by fluid physicists. The subject of critical phenomena in collapsible tube flow appears not to have been examined critically. For example, it has been proposed in the past that shock waves in physiological tubes are abnormal. We propose a classification of flow through collapsible tubes recognising that compressibility in gas-dynamic and pipe flow (cf.waterhammer) corresponds to distensibility in collapsible tube flow. Thus, opening and closing waves of collapsible tube flow (predistension regime) is subcritical flow and the post-distension regime, supercritical. Physiological tubes are often hyperelastic and contractile and often, when distension is very significant, a hypercritical regime corresponding to hypersonic gas-dynamic flow is admissible. Such a hypercritical regime would allow storage of energy and muscle contraction in the wall of the tube and hence continuance of propulsion in the essentially intermittent flow that is seen in collapsible tubes. Such a mechanism appears to be in operation in the human aorta, bowel and urethra. The present work offers a comparison of critical regimes in various fluid flow situations including collapsible tubes, that is in harmony with known phenomena seen in nature.

  19. Techniques for Elastic Properties Measurements of Partial Molten Rocks, Hydrous Minerals and Melts in Gas Pressure Vessels and Multi-Anvil Devices

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Roetzler, K.; Schilling, F. R.; Wehber, M.; Lathe, C.

    2008-12-01

    The interpretation of highly resolved seismic data from Earth's deep interior require measurements of the physical properties of Earth materials under experimental simulated mantle conditions. For deep crustal to uppermost mantle conditions high performance gas pressure vessels enable a virtually unrestricted optimization of the measuring configurations for high p-T-conditions [1]. Exhumed high pressure rocks can be used as representative samples. The paper presents transient measurements of elastic wave velocities for granulite facies rocks under partial melting conditions. Despite the compact natural rock samples as a result of long-term experiments exceeding pressures of 1.5 GPa and temperatures of 1,000°C newly-formed garnets, orthopyroxenes and potash feldspars could be found in the samples after the experiments. Discovering the huge water storage capacity of nominally anhydrous minerals (NAMs) under high pressure conditions dramatically changed our image of state and dynamics of Earth's deep interior [2]. The simulation of these in situ conditions require using of diamond anvil cells (DAC) and multi-anvil devices (MAD) as well as mostly synthetical samples. MADs are more limited in pressure, but provide sample volumes 3 to 7 orders of magnitude bigger. They offer small and even adjustable temperature gradients over the whole sample. The bigger samples make anisotropy and structural effects in complex systems accessible for measurements in principle. Using ultrasonic interferometry the measurement of both elastic wave velocities have no limits for opaque and encapsulated samples. Using the 6 to 8 anvils of a MAD as buffers allow the simultaneous recording of acoustic emissions from different directions of space and consequently the localization of the spikes during ongoing phase transitions and dehydration. The recent development of deformation-DIA MADs (D-DIA) make not only deformation measurements under simulated mantle conditions possible, but also the

  20. Determination of the analytical performance of a headspace capillary gas chromatographic technique and karl Fischer coulometric titration by system calibration using oil samples containing known amounts of moisture.

    PubMed

    Jalbert, J; Gilbert, R; Tétreault, P

    1999-08-01

    Over the past few years, concerns have been raised in the literature about the accuracy of the Karl Fischer (KF) method for assessing moisture in transformer mineral oils. To better understand this issue, the performance of a static headspace capillary gas chromatographic (HS-CGC) technique was compared to that of KF coulometric titration by analyzing moisture in samples containing known amounts of water and various samples obtained from the National Institute of Standards and Technology (NIST). Two modes of adding samples into the KF vessel were used:  direct injection and indirect injection via an azeotropic distillation of the moisture with toluene. Under the conditions used for direct injection, the oil matrix was totally dissolved in the anolyte, which allowed the moisture to be titrated in a single-phase solution rather than in a suspension. The results have shown that when HS-CGC and combined azeotropic distillation/KF titration are calibrated with moisture-in-oil standards, a linear relation is observed over 0-60 ppm H(2)O with a correlation coefficient better than 0.9994 (95% confidence), with the regression line crossing through zero. A similar relation can also be observed when calibration is achieved by direct KF addition of standards prepared with octanol-1, but in this case an intercept of 4-5 ppm is noted. The amount of moisture determined by curve interpolation in NIST reference materials by the three calibrated systems ranges from 13.0 to 14.8 ppm for RM 8506 and 42.5 to 46.4 ppm for RM 8507, and in any case, the results were as high as those reported in the literature with volumetric KF titration. However, titration of various dehydrated oil and solvent samples showed that direct KF titration is affected by a small bias when samples contain very little moisture. The source of error after correction for the large sample volume used for the determination (8 mL) is about 6 ppm for Voltesso naphthenic oil and 4 ppm for toluene, revealing a matrix

  1. Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine.

    PubMed

    Desfontaine, Vincent; Nováková, Lucie; Ponzetto, Federico; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2016-06-17

    This work describes the development of two methods involving supported liquid extraction (SLE) sample treatment followed by ultra-high performance liquid chromatography or ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS and UHPSFC-MS/MS) for the screening of 43 anabolic agents in human urine. After evaluating different stationary phases, a polar-embedded C18 and a diol columns were selected for UHPLC-MS/MS and UHPSFC-MS/MS, respectively. Sample preparation, mobile phases and MS conditions were also finely tuned to achieve highest selectivity, chromatographic resolution and sensitivity. Then, the performance of these two methods was compared to the reference routine procedure for steroid analyses in anti-doping laboratories, which combines liquid-liquid extraction (LLE) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For this purpose, urine samples spiked with the compounds of interest at five different concentrations were analyzed using the three analytical platforms. The retention and selectivity of the three techniques were very different, ensuring a good complementarity. However, the two new methods displayed numerous advantages. The overall procedure was much faster thanks to high throughput SLE sample treatment using 48-well plates and faster chromatographic analysis. Moreover, the highest sensitivity was attained using UHPLC-MS/MS with 98% of the doping agents detected at the lowest concentration level (0.1ng/mL), against 76% for UHPSFC-MS/MS and only 14% for GC-MS/MS. Finally, the weakest matrix effects were obtained with UHPSFC-MS/MS with 76% of the analytes displaying relative matrix effect between -20 and 20%, while the GC-MS/MS reference method displayed very strong matrix effects (over 100%) for all of the anabolic agents.

  2. Accurate measurements of Primary Standard Gas Mixtures (PSMs) of CH4 in synthetic and scrubbed real air analyzed by two independent measuring techniques: CRDS and GC-FID

    NASA Astrophysics Data System (ADS)

    Flores, Edgar; Viallon, Joële; Moussay, Philippe; Choteau, Tiphaine; Wielgosz, Robert Ian

    2014-05-01

    In 2013 the BIPM organized the international comparison CCQM-K82 designed to evaluate the level of comparability between National Metrology Institutes (NMI) preparative capabilities for gravimetric methane in air primary reference mixtures in the range (1800-2200) nmol mol-1. This required the development of a measurement facility to compare standards, which was validated prior to the comparison with a suite of ten standards of methane in air prepared gravimetrically by NIST. The mixtures were intentionally prepared in two different air matrices, half in scrubbed real air and half in synthetic, to demonstrate that the use of synthetic air based standards did not introduced any bias for the measurement of atmospheric methane concentrations. The BIPM facility is based on two analytical techniques used under repeatability conditions, namely, cavity ring-down spectroscopy (CRDS) and gas chromatography (GC-FID). GC-FID measurements were performed following a traditional protocol including ratios to a stable control cylinder, giving a typical relative uncertainty of 0.025%. CRDS measurements were performed with the same protocol, but also in a much shorter process that did not use any control cylinder, allowing the reduction of the relative uncertainty to 0.01%. Using the ten standards as references to construct a calibration line, all protocols resulted in a good linearity with very similar residuals. In particular, no effect of the air matrix was observed, as could be especially expected in CRDS due to different pressure broadening parameters, demonstrating the close matching between synthetic and scrubbed real air matrices.

  3. Modern approach to an old technique: Narrative revision of techniques used to locate the epidural space.

    PubMed

    Brogly, N; Guasch Arévalo, E; Kollmann Camaiora, A; Alsina Marcos, E; García García, C; Gilsanz Rodríguez, F

    2017-03-16

    Since the first description of the epidural technique during the 1920s, the continuous progress of knowledge of the anatomy and physiology of the epidural space has allowed the development of different techniques to locate this space while increasing both the safety and efficacy of the procedure. The most common techniques used today are based on the two main characteristics of the epidural space: the difference in distensibility between the ligamentum flavum and the epidural space, and the existence of negative pressure within the epidural space. However, over recent years, technological advances have allowed the development of new techniques to locate the epidural space based on other physical properties of tissues. Some are still in the experimental phase, but others, like ultrasound-location have reached a clinical phase and are being used increasingly in daily practice.

  4. One-step multiple component isolation from the oil of Crinitaria tatarica (Less) Sojak by preparative capillary gas chromatography with characterization by spectroscopic and spectrometric techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the present work multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by Preparative Capillary Gas Chromatography (PCGC) with characterization by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have been carried out. Gas chromatography (GC-FID) ...

  5. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.

    PubMed

    Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D

    2014-05-01

    The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.

  6. Aspects of High-Resolution Gas Chromatography as Applied to the Analysis of Hydrocarbon Fuels and Other Complex Organic Mixtures. Volume 2. Survey of Sample Insertion Techniques.

    DTIC Science & Technology

    1985-06-01

    AD-A158 772 ASPECTS OF HIGH-RESOL.UTION GAS CHROMATOGRAPHY S 1ll APPLIED0 TO THE ANALYSIS 0..(U)1 DAYTON UNIV ON RESEARCH INST W A RUSEY ET AL. JUN...RESOLUTION GAS CHROMATOGRAPHY AS APPLIED TO THE ANALYSIS OF HYDROCARBON FUELS AND OTHER COMPLEX ORGANIC MIXTURES Volume II - Survey of Sample Insertion...NO. NO. 45433-6563 62203F 3048 05 91 11. TITLE (Include Security Classification) (cont’ d on reverse) ASPECTS OF HIGH-RESOLUTION GAS CHROMATOGRAPHY T

  7. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Public Lands: A Field Evaluation Of A Photoionization Detector (PID) At A Condensate Release Site, Padre Island National Seashore, Texas

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2001-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air

  8. Impact of the Application Technique on Nitrogen Gas Emissions and Nitrogen Budgets in Case of Energy Maize Fertilized with Biogas Residues

    NASA Astrophysics Data System (ADS)

    Andres, Monique; Fränzke, Manuel; Schuster, Carola; Kreuter, Thomas; Augustin, Jürgen

    2014-05-01

    Despite an increasing cultivation of energy maize fertilized with ammonia-rich biogas residues (BR), little is known about the impact of the application technique on gaseous nitrogen (N) losses as well as N budgets, indicative of N use efficiency. To contribute to closing this knowledge gap we conducted a field experiment supplemented by a laboratory incubation study. The field experiment was carried out in Dedelow, located in the Northeastern German Lowlands and characterized by well-drained loamy sand (haplic luvisol). Two treatments with different application technique for BR fertilization - i) trail hoses and ii) injection - were compared to an unfertilized control (0% N). Seventy percent of the applied N-BR was assumed to be plant-available. In 2013, biweekly nitrous oxide (N2O) measurements were conducted during the time period between BR application and maize harvest (18.04.-11.09.2013; 147 days) using non-flow-through non-steady-state chamber measurements. To quantify soil Nmin status, soil samples were taken from 0-30 cm soil depth in the spring (before fertilization) and autumn (after maize harvest). Immediately after BR application, ammonia (NH3) volatilization was measured intensively using the open dynamic chamber Dräger-Tube method. Export of N due to harvest was determined via plant N content (Nharvest). Based on the measured N gas fluxes, N soil and plant parameters, soil N budgets were calculated using a simple difference approach. Values of N output (Nharvest, NN2O_cum and NNH3_cum) are subtracted from N input values (Nfertilizer and Nmin_autumnminus Nmin_spring). In order to correctly interpret N budgets, other N fluxes must be integrated into the budget calculation. Apart from soil-based mobilization and immobilization turnover processes and nitrate leaching, this applies specifically to N2 losses due to denitrification. Therefore, we measured the N2 emissions from laboratory-incubated undisturbed soil cores (250 cm3) by means of the helium

  9. Data reduction analysis and application technique development for atmospheric trace gas constituents derived from remote sensors on satellite or airborne platforms

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Campbell, S. A.

    1981-01-01

    The applicability of the gas filter correlation radiometer (GFCR) to the measurement of tropospheric carbon monoxide gas was investigated. An assessment of the GFRC measurement system to a regional measurement program was conducted through extensive aircraft flight-testing of several versions of the GFRC. Investigative work in the following areas is described: flight test planning and coordination, acquisition of verifying CO measurements, determination and acquisition of supporting meteorological data requirements, and development of supporting computational software.

  10. Oxygen partial pressures on gas-diffusion layer surface and gas-flow channel wall in polymer electrolyte fuel cell during power generation studied by visualization technique combined with numerical simulation

    NASA Astrophysics Data System (ADS)

    Ishigami, Yuta; Waskitoaji, Wihatmoko; Yoneda, Masakazu; Takada, Kenji; Hyakutake, Tsuyoshi; Suga, Takeo; Uchida, Makoto; Nagumo, Yuzo; Inukai, Junji; Nishide, Hiroyuki; Watanabe, Masahiro

    2014-12-01

    Visualization of the oxygen partial pressures was carried out at the surface of a gas diffusion layer (GDL) for the first time together with the upper part of the gas-flow channel of the cathode of a running polymer electrolyte fuel cell (PEFC) using two different oxygen-sensitive luminescent dye films. The visualized distributions of the oxygen partial pressures at the GDL and the upper gas-flow channel during the PEFC operation were very different in a conventional test cell. The change in the distribution of the oxygen partial pressures was observed by changing the oxygen utilization, which should be connected with the reactive locations in the membrane-electrode assembly (MEA). A numerical calculation was carried out to understand the distributions of water and current density inside the MEA. The water distribution inside the MEA was confirmed to strongly affect the distributions of the current density and the oxygen /partial pressure.

  11. A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source.

    PubMed

    Naik, V; Chakrabarti, A; Bhattacharjee, M; Karmakar, P; Bandyopadhyay, A; Bhattacharjee, S; Dechoudhury, S; Mondal, M; Pandey, H K; Lavanyakumar, D; Mandi, T K; Dutta, D P; Kundu Roy, T; Bhowmick, D; Sanyal, D; Srivastava, S C L; Ray, A; Ali, Md S

    2013-03-01

    Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms∕molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms∕molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of (14)O (71 s), (42)K (12.4 h), (43)K (22.2 h), and (41)Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 10(3) particles per second (pps). About 3.2 × 10(3) pps of 1.4 MeV (14)O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future.

  12. Regional alveolar pressure during periodic flow. Dual manifestations of gas inertia.

    PubMed Central

    Allen, J L; Frantz, I D; Fredberg, J J

    1985-01-01

    We measured pressure excursions at the airway opening and at the alveoli (PA) as well as measured the regional distribution of PA during forced oscillations of six excised dog lungs while frequency (f[2-32 Hz]), tidal volume (VT [5-80 ml]), and mean transpulmonary pressure (PL [25, 10, and 6 cm H2O]) were varied. PA's were measured in four alveolar capsules glued to the pleura of different lobes. The apex-to-base ratio of PA's was used as an index of the distribution of dynamic lung distension. At low f, there was slight preferential distension of the lung base which was independent of VT, but at higher f, preferential distension of the lung apex was found when VT's were small, whereas preferential distension of the lung base was found when VT's approached or exceeded dead space. These VT-related changes in distribution at high frequencies seem to depend upon the branching geometry of the central airways and the relative importance of convective momentum flux vs. unsteady inertia of gas residing therein, which, in this study, we showed to be proportional to the ratio VT/VD*, where VD* is an index of dead space. Furthermore, they imply substantial alteration in the distribution of ventilation during high frequency ventilation as f, VT, and PL vary. The data also indicate that alveolar and airway opening pressure costs per unit flow delivered at the airway opening exhibit weakly nonlinear behavior and that resonant amplification of PA's, which has been described previously for the case of very small VT's, persists but is damped as VT's approach dead space values. PMID:4031066

  13. Empirical Methods for Detecting Regional Trends and Other Spatial Expressions in Antrim Shale Gas Productivity, with Implications for Improving Resource Projections Using Local Nonparametric Estimation Techniques

    USGS Publications Warehouse

    Coburn, T.C.; Freeman, P.A.; Attanasi, E.D.

    2012-01-01

    The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data and (2) determine whether or not incorporating additional knowledge of a regional trend in a suite of previously established local nonparametric resource prediction algorithms influences assessment results. Three different trend detection methods were applied to publicly available production data (well EUR aggregated to 80-acre cells) from the Devonian Antrim Shale gas play in the Michigan Basin. This effort led to the identification of a southeast-northwest trend in cell EUR values across the play that, in a very general sense, conforms to the primary fracture and structural orientations of the province. However, including this trend in the resource prediction algorithms did not lead to improved results. Further analysis indicated the existence of clustering among cell EUR values that likely dampens the contribution of the regional trend. The reason for the clustering, a somewhat unexpected result, is not completely understood, although the geological literature provides some possible explanations. With appropriate data, a better understanding of this clustering phenomenon may lead to important information about the factors and their interactions that control Antrim Shale gas production, which may, in turn, help establish a more general protocol for better estimating resources in this and other shale gas plays. ?? 2011 International Association for Mathematical Geology (outside the USA).

  14. High-pressure/high-temperature gas-solubility study in hydrogen-phenanthrene and methane-phenanthrene systems using static and chromatographic techniques

    SciTech Connect

    Malone, P.V.

    1987-01-01

    The design and discovery of sources for alternative energy such as coal liquefaction has become of major importance over the past two decades. One of the major problems in such design in the lack of available data, particularly, for gas solubility in polycyclic aromatics at high temperature and pressure. Static and gas-liquid partition chromatographic methods were used for the study of hydrogen-phenanthrene and methane-phenanthrene systems. The static data for these two binaries were taken along 398.2, 423.2, 448.2, and 473.2 K isotherms up to 25.23 MPa. Gas-liquid partition chromatography was used to study the infinite dilution behavior of methane, ethane, propane, n-butane, and carbon dioxide in the hydrogen-phenanthrene system as well as hydrogen, ethane, n-butane, and carbon dioxide in the methane-phenanthrene binary. The principle objective was to examine the role of the elution gas. Temperatures were along the same isotherms as the static data and up to 20.77 MPa. With the exception of carbon dioxide, Henry's constants were calculated for all systems. Expressions for the heat of solution as a function of pressure were derived for both binary and chromatographic data. Estimates of delta H/sub i/sup sol/ at high pressure were presented.

  15. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuntoro, Hadiyan Yusuf; Hudaya, Akhmad Zidni; Dinaryanto, Okto; Majid, Akmal Irfan; Deendarlianto

    2016-06-01

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (hL) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.

  16. Development and Experimental Validation of Large Eddy Simulation Techniques for the Prediction of Combustion-Dynamic Process in Syngas Combustion: Characterization of Autoignition, Flashback, and Flame-Liftoff at Gas-Turbine Relevant Operating Conditions

    SciTech Connect

    Ihme, Matthias; Driscoll, James

    2015-08-31

    The objective of this closely coordinated experimental and computational research effort is the development of simulation techniques for the prediction of combustion processes, relevant to the oxidation of syngas and high hydrogen content (HHC) fuels at gas-turbine relevant operating conditions. Specifically, the research goals are (i) the characterization of the sensitivity of syngas ignition processes to hydrodynamic processes and perturbations in temperature and mixture composition in rapid compression machines and ow-reactors and (ii) to conduct comprehensive experimental investigations in a swirl-stabilized gas turbine (GT) combustor under realistic high-pressure operating conditions in order (iii) to obtain fundamental understanding about mechanisms controlling unstable flame regimes in HHC-combustion.

  17. Temperature-programmed technique accompanied with high-throughput methodology for rapidly searching the optimal operating temperature of MOX gas sensors.

    PubMed

    Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen

    2014-09-08

    A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT.

  18. Parallel decrease in arterial distensibility and in endothelium-dependent dilatation in young women with a history of pre-eclampsia.

    PubMed

    Pàez, Olga; Alfie, José; Gorosito, Marta; Puleio, Pablo; de Maria, Marcelo; Prieto, Noemì; Majul, Claudio

    2009-10-01

    Pre-eclampsia not only complicates 5 to 8% of pregnancies but also increases the risk of maternal cardiovascular disease and mortality later in life. We analyzed three different aspects of arterial function (pulse wave velocity, augmentation index, and flow-mediated dilatation), in 55 nonpregnant, normotensive women (18-33 years old) according to their gestational history: 15 nulliparous, 20 with a previous normotensive, and 20 formerly pre-eclamptic pregnancy. Former pre-eclamptic women showed a significantly higher augmentation index and pulse wave velocity (P < 0.001 and P < 0.05, respectively) and lower flow-mediated dilatation (p = 0.01) compared to control groups. In contrast, sublingual nitroglycerine elicited a comparable vasodilatory response in the three groups. The augmentation index correlated significantly with pulse wave velocity and flow-mediated dilatation (R = 0.28 and R = -0.32, respectively, P < 0.05 for both). No significant correlations were observed between augmentation index or flow-mediated dilatation with age, body mass index (BMI), brachial blood pressure, heart rate, or metabolic parameters (plasma cholesterol, glucose, insulin, or insulin resistance). Birth weight maintained a significantly inverse correlation with the augmentation index (R = -0.51, p < 0.002) but not with flow-mediated dilatation. Our findings revealed a parallel decrease in arterial distensibility and endothelium-dependent dilatation in women with a history of pre-eclampsia compared to nulliparous women and women with a previous normal pregnancy. A high augmentation index was the most consistent alteration associated with a history of pre-eclampsia. The study supports the current view that the generalized arterial dysfunction associated with pre-eclampsia persists subclinically after delivery.

  19. The effect of distension pressure on endothelial injury and vasodilatation response in saphenous vein grafts: conversion of a bypass graft to a dead pipe

    PubMed Central

    Gur, Ozcan; Yuksel, Volkan; Tastekin, Ebru; Huseyin, Serhat; Gur, Demet Ozkaramanli; Canbaz, Suat

    2014-01-01

    Introduction Endothelial damage caused by high pressure applied for spasm relaxation during graft preparation is one of the most plausible theories explaining early graft failure. Aim of the study We aimed to demonstrate the extent of endothelial damage in saphenous vein grafts distended to different pressure levels by using immunohistochemical methods and in vitro tissue baths. Material and methods Saphenous vein grafts (SVGs) of 25 patients who underwent isolated elective CABG surgery were used in this study. By using a specific mechanism, SVGs were distended to five different pressure levels for two minutes: 0 mmHg, 50 mmHg, 100 mmHg, 200 mmHg, 300 mmHg. In vitro tissue baths and immunohistochemical examinations were performed. Results None of the grafts distended to 300 mmHg pressure were functional in the tissue bath system. The relaxation response to carbachol of SVGs distended to 0, 50, 100 and 200 mmHg was 97.87 ± 4.47%, 98.52 ± 3.95%, 93.78 ± 3.64%, and 30.87 ± 4.11%, respectively. There were no statistically significant differences in terms of relaxation responses between samples distended to 0, 50, and 100 mmHg (p = 0.490). The relaxation response of samples distended to 200 mmHg was significantly decreased (p = 0.021). The endothelia of samples distended to 0 mmHg were almost intact in CD31 staining. Endothelial cell loss occurred at all tested distension pressures at different degrees. Conclusion In vitro and immunohistochemical studies revealed that distending an SVG used for coronary artery bypass grafting with pressures of 100 mmHg or less results in less endothelial damage and increases graft patency. PMID:26336407

  20. Is serotonin in enteric nerves required for distension-evoked peristalsis and propulsion of content in guinea-pig distal colon?

    PubMed

    Sia, T C; Flack, N; Robinson, L; Kyloh, M; Nicholas, S J; Brookes, S J; Wattchow, D A; Dinning, P; Oliver, J; Spencer, N J

    2013-06-14

    Recent studies have shown genetic deletion of the gene that synthesizes 5-HT in enteric neurons (tryptophan hydroxylase-2, Tph-2) leads to a reduction in intestinal transit. However, deletion of the Tph-2 gene also leads to major developmental changes in enteric ganglia, which could also explain changes in intestinal transit. We sought to investigate this further by acutely depleting serotonin from enteric neurons over a 24-h period, without the confounding influences induced by genetic manipulation. Guinea-pigs were injected with reserpine 24h prior to euthanasia. Video-imaging and spatio-temporal mapping was used to record peristalsis evoked by natural fecal pellets, or slow infusion of intraluminal fluid. Immunohistochemical staining for 5-HT was used to detect the presence of serotonin in the myenteric plexus. It was found that endogenous 5-HT was always detected in myenteric ganglia of control animals, but never in guinea-pigs treated with reserpine. Interestingly, peristalsis was still reliably evoked by either intraluminal fluid, or fecal pellets in reserpine-treated animals that also had their entire mucosa and submucosal plexus removed. In these 5-HT depleted animals, there was no change in the frequency of peristalsis or force generated during peristalsis. In control animals, or reserpine treated animals, high concentrations (up to 10 μM) of ondansetron and SDZ-205-557, or granisetron and SDZ-205-557 had no effect on peristalsis. In summary, acute depletion of serotonin from enteric nerves does not prevent distension-evoked peristalsis, nor propulsion of luminal content. Also, we found no evidence that 5-HT3 and 5-HT4 receptor activation is required for peristalsis, or propulsion of contents to occur. Taken together, we suggest that the intrinsic mechanisms that generate peristalsis and entrain propagation along the isolated guinea-pig distal colon are independent of 5-HT in enteric neurons or the mucosa, and do not require the activation of 5-HT3 or 5

  1. Lateral hypothalamic area orexin-A influence the firing activity of gastric distension-sensitive neurons and gastric motility in rats.

    PubMed

    Hao, Heling; Luan, Xiao; Guo, Feifei; Sun, Xiangrong; Gong, Yanling; Xu, Luo

    2016-06-01

    The orexins system consists of two G-protein coupled receptors (the orexin-1 and the orexin-2 receptor) and two neuropeptides, orexin-A and orexin-B. Orexin-A is an excitatory neuropeptide that regulates arousal, wakefulness and appetite. Recent studies have shown that orexin-A may promote gastric motility. We aim to explore the effects of orexin-A on the gastric -distension (GD) sensitive neurons and gastric motility in the lateral hypothalamic area (LHA), and the possible regulation by the paraventricular nucleus (PVN). Extracellular single unit discharges were recorded and the gastric motility was monitored by administration of orexin-A into the LHA and electrical stimulation of the PVN. There were GD neurons in the LHA, and administration of orexin-A to the LHA could increase the firing rate of both GD-excitatory (GD-E) and GD-inhibited (GD-I) neurons. The gastric motility was significantly enhanced by injection of orexin-A into the LHA with a dose dependent manner, which could be completely abolished by pre-treatment with orexin-A receptor antagonist SB334867. Electrical stimulation of the PVN could significantly increase the firing rate of GD neurons responsive to orexin-A in the LHA as well as promote gastric motility of rats. However, those effects could be partly blocked by pre-treatment with SB334867 in the LHA. It is suggested that orexin-A plays an important role in promoting gastric motility via LHA. The PVN may be involved in regulation of LHA on gastric motility.

  2. The antinociceptive effects of intravenous tianeptine in colorectal distension-induced visceral pain in rats: the role of 5-HT₃ receptors.

    PubMed

    Bilge, S Sırrı; Bozkurt, Ayhan; Ilkaya, Fatih; Ciftcioğlu, Engin; Kesim, Yüksel; Uzbay, Tayfun I

    2012-04-15

    Tianeptine is an unusual tricyclic antidepressant drug. In this study, we aimed to investigate the antinociceptive effect of tianeptine on visceral pain in rats and to determine whether possible antinociceptive effect of tianeptine is mediated by serotonergic (5-HT(2,3)) and noradrenergic (α(1,2)) receptor subtypes. Male Sprague Dawley rats (250-300 g) were supplied with a venous catheter, for drug administrations, and enameled nichrome electrodes, for electromyography, at external oblique musculature. Colorectal distension (CRD) was employed as the noxious visceral stimulus and the visceromotor response (VMR) to CRD was quantified electromyographically before and 5, 15, 30, 60, 90 and 120 min after tianeptine administration. Antagonists were administered 10 min before tianeptine for their ability to change tianeptine antinociception. Intravenous administration of tianeptine (2.5-20 mg/kg) produced a dose-dependent reduction in VMR. Administration of 5-HT(3) receptor antagonist ondansetron (0.5, 1 and 2 mg/kg), but not 5-HT(2) receptor antagonist ketanserine (0.5, 1 and 2 mg/kg), reduced the antinociceptive effect of tianeptine (10mg/kg). In addition, administration of α(1)-adrenoceptor antagonist prazosin (1 mg/kg) or α(2)-adrenoceptor antagonist yohimbine (1 mg/kg) did not cause any significant effect on the tianeptine-induced antinociception. Our data indicate that intravenous tianeptine exerts a pronounced antinociception against CRD-induced visceral pain in rats, and suggests that the antinociceptive effect of tianeptine appears to be mediated in part by 5-HT(3) receptors, but does not involve 5-HT(2) receptors or α-adrenoceptors.

  3. Water quality studied in areas of unconventional oil and gas development, including areas where hydraulic fracturing techniques are used, in the United States

    USGS Publications Warehouse

    Susong, David D.; Gallegos, Tanya J.; Oelsner, Gretchen P.

    2012-01-01

    The U.S. Geological Survey (USGS) John Wesley Powell Center for Analysis and Synthesis is hosting an interdisciplinary working group of USGS scientists to conduct a temporal and spatial analysis of surface-water and groundwater quality in areas of unconventional oil and gas development. The analysis uses existing national and regional datasets to describe water quality, evaluate water-quality changes over time where there are sufficient data, and evaluate spatial and temporal data gaps.

  4. Measurement of N2, N2O, NO, and CO2 emissions from soil with the gas-flow-soil-core technique.

    PubMed

    Wang, Rui; Willibald, Georg; Feng, Qi; Zheng, Xunhua; Liao, Tingting; Brüggemann, Nicolas; Butterbach-Bahl, Klaus

    2011-07-15

    Here we describe a newly designed system with three stand-alone working incubation vessels for simultaneous measurements of N(2), N(2)O, NO, and CO(2) emissions from soil. Due to the use of a new micro thermal conductivity detector and the redesign of vessels and gas sampling a so-far unmatched sensitivity (0.23 μg N(2)-N h(-1) kg(-1) ds or 8.1 μg N(2)-N m(-2) h(-1)) for detecting N(2) gas emissions and repeatability of experiments could be achieved. We further tested different incubation methods to improve the quantification of N(2) emission via denitrification following the initialization of soil anaerobiosis. The best results with regard to the establishment of a full N balance (i.e., the changes in mineral N content being offset by simultaneous emission of N gases) were obtained when the anaerobic soil incubation at 25 °C was preceded by soil gas exchange under aerobic conditions at a lower incubation temperature. The ratios of N and C gas emission changed very dynamically following the initialization of anaerobiosis. For soil NO(3)(-) contents of 50 mg N kg(-1) dry soil (ds) and dissolved organic carbon (DOC) concentrations of approximately 300 mg C kg(-1) ds, the cumulative emissions of N(2), N(2)O, and NO were 24.3 ± 0.1, 12.6 ± 0.4, and 10.1 ± 0.3 mg N kg(-1) ds, respectively. Thus, N gas emissions accounted (on average) for 46.2% (N(2)), 24.0% (N(2)O), and 19.2% (NO) of the observed changes in soil NO(3)(-). The maximum N(2) emission reached 1200 μg N h(-1) kg(-1) ds, whereas the peak emissions of N(2)O and NO were lower by a factor of 2-3. The overall N(2):N(2)O and NO:N(2)O molar ratios were 1.6-10.0 and 1.6-2.3, respectively. The measurement system provides a reliable tool for studying denitrification in soil because it offers insights into the dynamics and magnitude of gaseous N emissions due to denitrification under various incubation conditions.

  5. Identifying different mechanisms of circular photogalvanic effect in GaAs/Al0.3Ga0.7As two dimensional electron gas by photo-modulation technique

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Jiang, Chongyun; Liu, Yu; Zhu, Laipan; Qin, Xudong; Chen, Yonghai

    2013-06-01

    We investigate the circular photogalvanic effect (CPGE) excited by sub-bandgap radiation in a GaAs/Al0.3Ga0.7As two dimensional electron gas and tune its amplitude by synchronously imposing an above-bandgap unpolarized light at normal incidence. With this photo-modulation technique, we identify two microscopic mechanisms of CPGE according to the dramatic change of apparent Rashba and Dresselhaus effects. We suggest the optical transitions to be Franz-Keldysh and intraband regime, respectively. Both regimes coexist in conventional CPGE and the intraband regime dominates at sufficient modulation power.

  6. Nondestructive evaluation of creep damage and life prediction of Ni-base superalloy used in advanced gas turbine blades by electrochemical technique

    NASA Astrophysics Data System (ADS)

    Komazaki, Shin-ichi; Shoji, Tetsuo; Abe, Iwao; Okada, Ikuo

    1999-12-01

    In order to develop a creep life assessment technique for directionally solidified Ni-base superalloy CM247LC, changes in electrochemical properties due to creep have been investigated. Experimental results on electrochemical polarization measurements revealed that the peak current density "Ip" and "Ipr" which appeared at a specific potential during potentiodynamic polarization reactivation measurements in dilute glyceregia solution linearly increased with a life fraction in early stage of the creep life and were uniquely correlated with Arrhenius type parameter "(t/tr)exp(-Qc/RT)." As a consequence, the creep life fraction can be estimated with high accuracy by the electrochemical technique.

  7. Nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) of liposomes: applicability of the technique for nano vesicle batch control

    PubMed Central

    Weiss, Victor U.; Urey, Carlos; Gondikas, Andreas; Golesne, Monika; Friedbacher, Gernot; von der Kammer, Frank; Hofmann, Thilo; Andersson, Roland; Marko-Varga, György; Marchetti-Deschmann, Martina

    2016-01-01

    Liposomes are biodegradable nanoparticle vesicles consisting of a lipid bilayer encapsulating an aqueous core. Entrapped cargo material is shielded from the extra-vesicular medium and sustained release of encapsulated material can be achieved. However, application of liposomes as nano-carriers demands their characterization concerning size and size distribution, particle-number concentration, occurrence of vesicle building blocks in solution and determination of the resulting vesicle encapsulation capacity. These questions can be targeted via gas-phase electrophoretic mobility molecular analysis (GEMMA) based on a nano electrospray (nES) charge-reduction source. This instrument separates single-charged nanoparticles in the gas-phase according to size in a high-laminar sheath-flow by means of an orthogonal, tunable electric field. nES GEMMA analysis enables to confirm liposome integrity after passage through the instrument (in combination with atomic force microscopy) as well as to exclude vesicle aggregation. Additionally, nanoparticle diameters at peak apexes and size distribution data are obtained. Differences of hydrodynamic and dry particle diameter values, as well as the effect of number- and mass-based concentration data analysis on obtained liposome diameters are shown. Furthermore, the repeatability of liposome preparation is studied, especially upon incorporation of PEGylated lipids in the bilayer. Finally, the instruments applicability to monitor mechanical stress applied to vesicles is demonstrated. PMID:27549027

  8. Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using in vitro technique.

    PubMed

    Wang, Min; Wang, Rong; Yang, Shan; Deng, Jin Ping; Tang, Shao Xun; Tan, Zhi Liang

    2016-02-01

    Methane (CH4 ) can be mitigated through directly inhibiting methanogen activity and starving methanogens by hydrogen (H2 ) sink. Three types of mechanism (i.e. bromoethanesulphonate (BES), nitrate and emodin) and doses of CH4 mitigation agents were employed to investigate their pathways of CH4 inhibition. Results indicated that both BES and emodin inhibited CH4 production and altered H2 balance, which could be accompanied by decreased dry matter disappearance (DMD), fractional rate of gH2 formation, volatile fatty acid (VFA) production, ability to produce and use reducing equivalences and molecular H2 , and increased final asymptotic gH2 production, time to the peak of gH2 , discrete lag time of gH2 production and fermentation efficiency. However, emodin decreased gas volume produced by rapidly fermentable components of substrate and the rate of fermentation at early stage of incubation, while BES supplementation inhibited gas volume produced by both rapidly and slowly fermentable components of substrate and the rate of fermentation at middle or late stage of incubation. The nitrate supplementation inhibited CH4 production without affecting VFA profile, because of its dual role as H2 sink and being toxic to methanogens. Nitrate supplementation had more complicated pattern of fermentation, VFA production and profile and H2 balance in comparison to BES and emodin supplementation.

  9. Nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) of liposomes: applicability of the technique for nano vesicle batch control.

    PubMed

    Weiss, Victor U; Urey, Carlos; Gondikas, Andreas; Golesne, Monika; Friedbacher, Gernot; von der Kammer, Frank; Hofmann, Thilo; Andersson, Roland; Marko-Varga, György; Marchetti-Deschmann, Martina; Allmaier, Günter

    2016-10-17

    Liposomes are biodegradable nanoparticle vesicles consisting of a lipid bilayer encapsulating an aqueous core. Entrapped cargo material is shielded from the extra-vesicular medium and sustained release of encapsulated material can be achieved. However, application of liposomes as nano-carriers demands their characterization concerning size and size distribution, particle-number concentration, occurrence of vesicle building blocks in solution and determination of the resulting vesicle encapsulation capacity. These questions can be targeted via gas-phase electrophoretic mobility molecular analysis (GEMMA) based on a nano electrospray (nES) charge-reduction source. This instrument separates single-charged nanoparticles in the gas-phase according to size in a high-laminar sheath-flow by means of an orthogonal, tunable electric field. nES GEMMA analysis enables to confirm liposome integrity after passage through the instrument (in combination with atomic force microscopy) as well as to exclude vesicle aggregation. Additionally, nanoparticle diameters at peak apexes and size distribution data are obtained. Differences of hydrodynamic and dry particle diameter values, as well as the effect of number- and mass-based concentration data analysis on obtained liposome diameters are shown. Furthermore, the repeatability of liposome preparation is studied, especially upon incorporation of PEGylated lipids in the bilayer. Finally, the instruments applicability to monitor mechanical stress applied to vesicles is demonstrated.

  10. Modification of Inert Gas Condensation Technique to Achieve Wide Area Distribution of Nanoparticles and Synthesis and Characterization of Nanoparticles for Semiconductor Applications

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha G.

    The aim of this dissertation is to develop a versatile experimental technique for synthesis of nanoparticles (NPs), which can be used to deposit NPs in various patterns for semiconductor device applications. In addition, the dissertation also aims at the synthesis and characterization of semiconductor NPs capable of nano-scale temperature measurement and infrared sensing. (Abstract shortened by ProQuest.).

  11. Inter-laboratory calibration of natural gas round robins for δ2H and δ13C using off-line and on-line techniques

    USGS Publications Warehouse

    Dai, Jinxing; Xia, Xinyu; Li, Zhisheng; Coleman, Dennis D.; Dias, Robert F.; Gao, Ling; Li, Jian; Deev, Andrei; Li, Jin; Dessort, Daniel; Duclerc, Dominique; Li, Liwu; Liu, Jinzhong; Schloemer, Stefan; Zhang, Wenlong; Ni, Yunyan; Hu, Guoyi; Wang, Xiaobo; Tang, Yongchun

    2012-01-01

    Compound-specific carbon and hydrogen isotopic compositions of three natural gas round robins were calibrated by ten laboratories carrying out more than 800 measurements including both on-line and off-line methods. Two-point calibrations were performed with international measurement standards for hydrogen isotope ratios (VSMOW and SLAP) and carbon isotope ratios (NBS 19 and L-SVEC CO2). The consensus δ13C values and uncertainties were derived from the Maximum Likelihood Estimation (MLE) based on off-line measurements; the consensus δ2H values and uncertainties were derived from MLE of both off-line and on-line measurements, taking the bias of on-line measurements into account. The calibrated consensus values in ‰ relative to VSMOW and VPDB are: NG1 (coal-related gas): Methane: δ2HVSMOW = − 185.1‰ ± 1.2‰, δ13CVPDB = − 34.18‰ ± 0.10‰ Ethane: δ2HVSMOW = − 156.3‰ ± 1.8‰, δ13CVPDB = − 24.66‰ ± 0.11‰ Propane: δ2HVSMOW = − 143.6‰ ± 3.3‰, δ13CVPDB = − 22.21‰ ± 0.11‰ i-Butane: δ13CVPDB = − 21.62‰ ± 0.12‰ n-Butane: δ13CVPDB = − 21.74‰ ± 0.13‰ CO2: δ13CVPDB = − 5.00‰ ± 0.12‰ NG2 (biogas): Methane: δ2HVSMOW = − 237.0‰ ± 1.2‰, δ13CVPDB = − 68.89‰ ± 0.12‰ NG3 (oil-related gas): Methane: δ2HVSMOW = − 167.6‰ ± 1.0‰, δ13CVPDB = − 43.61‰ ± 0.09‰ Ethane: δ2HVSMOW = − 164.1‰ ± 2.4‰, δ13CVPDB = − 40.24‰ ± 0.10‰ Propane: δ2HVSMOW = − 138.4‰ ± 3.0‰, δ13CVPDB = − 33.79‰ ± 0.09‰ All of the assigned values are traceable to the international carbon isotope standard of VPDB and hydrogen isotope standard of VSMOW.

  12. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    NASA Astrophysics Data System (ADS)

    Sgouridis, Fotis; Stott, Andrew; Ullah, Sami

    2016-03-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilized agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in-house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps and a copper-based reduction furnace, and allows the analysis of small gas injection volumes (4 µL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Preconcentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N gas-flux method was adapted for application in natural and semi-natural land use types (peatlands, forests, and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. The minimum detectable flux rates were 4 µg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. Total denitrification rates measured by the acetylene inhibition technique in the same land use types correlated (r = 0.58) with the denitrification rates measured under the 15N gas-flux method, but were underestimated by a factor of 4, and this was partially attributed to the incomplete inhibition of N2O reduction to N2, under a relatively high soil moisture content, and/or the catalytic NO decomposition in the presence of acetylene. Even though relatively robust for in situ denitrification measurements, methodological

  13. Identification of organic sulfur compounds in coal bitumen obtained by different extraction techniques using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometric detection.

    PubMed

    Machado, Maria Elisabete; Fontanive, Fernando Cappelli; de Oliveira, José Vladimir; Caramão, Elina Bastos; Zini, Cláudia Alcaraz

    2011-11-01

    The determination of organic sulfur compounds (OSC) in coal is of great interest. Technically and operationally these compounds are not easily removed and promote corrosion of equipment. Environmentally, the burning of sulfur compounds leads to the emission of SO(x) gases, which are major contributors to acid rain. Health-wise, it is well known that these compounds have mutagenic and carcinogenic properties. Bitumen can be extracted from coal by different techniques, and use of gas chromatography coupled to mass spectrometric detection enables identification of compounds present in coal extracts. The OSC from three different bitumens were tentatively identified by use of three different extraction techniques: accelerated solvent extraction (ASE), ultrasonic extraction (UE), and supercritical-fluid extraction (SFE). Results obtained from one-dimensional gas chromatography (1D GC) coupled to quadrupole mass spectrometric detection (GC-qMS) and from two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC-TOFMS) were compared. By use of 2D GC, a greater number of OSC were found in ASE bitumen than in SFE and UE bitumens. No OSC were identified with 1D GC-qMS, although some benzothiophenes and dibenzothiophenes were detected by use of EIM and SIM modes. GC × GC-TOFMS applied to investigation of OSC in bitumens resulted in analytical improvement, as more OSC classes and compounds were identified (thiols, sulfides, thiophenes, naphthothiophenes, benzothiophenes, and benzonaphthothiophenes). The roof-tile effect was observed for OSC and PAH in all bitumens. Several co-elutions among analytes and with matrix interferents were solved by use of GC × GC.

  14. Gas chromatography in space

    NASA Technical Reports Server (NTRS)

    Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.

    1999-01-01

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  15. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys.

  16. A nitro-arginine derivative of trimebutine (NO2-Arg-Trim) attenuates pain induced by colorectal distension in conscious rats.

    PubMed

    Distrutti, Eleonora; Mencarelli, Andrea; Renga, Barbara; Caliendo, Giuseppe; Santagada, Vincenzo; Severino, Beatrice; Fiorucci, Stefano

    2009-05-01

    Irritable bowel syndrome (IBS) is characterized by dysfunction of the afferent pathways that may lead to visceral hypersensitivity. Trimebutine is a weak opioid receptor agonist used in the treatment of IBS. We report on the effects of a novel derivative in which trimebutine has been salified with nitro-arginine(NO2-Arg-Trim), in modulating nociception to colorectal distension (CRD) in intact and post-colitis rats,an animal model that mimics some features of IBS. Colorectal sensitivity and pain were assessed by measuring the abdominal withdrawal score (AWR) during CRD. Healthy rats were treated with vehicle,trimebutine (10 mg/kg i.p.) or NO2-Arg-Trim (4, 8 and 16 mg/kg i.p.). Post-colitis, allodynic rats were investigated 4 weeks after colitis induction. Treating healthy rats with NO2-Arg-Trim resulted in a dose-dependent attenuation of CRD-induced nociception and in an inhibition of CRD-induced overexpression of spinal cFOS mRNA. NO2-Arg-Trim-induced antinociception was reversed by the opioid receptor antagonist naloxone and by the NO synthase-cGMP pathway inhibitor methylene blue, while L-NAME had no effect.The antinociceptive effect of NO2-Arg-Trim was maintained in a rodent model of post-inflammatory allodynia. In this setting,NO2-Arg-Trim but not trimebutine, significantly down-regulated the spinal cFOS mRNA expression and increased blood concentrations of NO2 +NO3. Moreover, the expression of several genes involved in inflammation and pain, as IL-1beta, TNFalpha, COX2 and iNOS, was up-regulated in colonic tissue from post-colitis rats and NO2-Arg-Trim, but not trimebutine, effectively reversed this effect. In summary, these data suggest that NO2-Arg-Trim inhibits nociception induced by CRD in both healthy and post-colitis, allodynic rats. The NO2-arginine moiety interacts with the opioid agonist trimebutine to potentiate its analgesic activity. This study provides evidence that NO2-arginine derivative of trimebutine might have beneficial effect in the

  17. The antinociceptive effect of intravenous imipramine in colorectal distension-induced visceral pain in rats: the role of serotonergic and noradrenergic receptors.

    PubMed

    İlkaya, Fatih; Bilge, S Sırrı; Bozkurt, Ayhan; Baş, Duygu B; Erdal, Arzu; Çiftçioğlu, Engin; Kesim, Yüksel

    2014-07-01

    It has been shown that imipramine, a tricyclic antidepressant (TCA), is a potent analgesic agent. However, the effect of imipramine on visceral pain has not been extensively investigated. In the current study, our aim was to characterise the putative analgesic effect of intravenous imipramine on visceral pain in rats. Our second aim was to assess the involvement of serotonergic (5-HT₂,₃,₄) and noradrenergic (α(2A, 2B, 2C)) receptor subtypes in this putative antinociceptive effect of imipramine. Male Sprague Dawley rats (250-300 g) were implanted with venous catheters for drug administration and implanted with enamelled nichrome electrodes for electromyography of the external oblique muscles. Noxious visceral stimulation was applied via by colorectal distension (CRD). The visceromotor responses (VMRs) to CRD were quantified electromyographically before and after imipramine administration at 5, 15, 30, 60, 90 and 120 min. In the antagonist groups, the agents were administered 10 min before imipramine. The administration of imipramine (5-40 mg/kg) produced a dose-dependent reduction in VMR. The administration of yohimbine (a nonselective α₂-adrenoceptor antagonist, 1 mg/kg), BRL-44408 (an α(2A)-adrenoceptor antagonist, 1 mg/kg) or MK-912 (an α2C-adrenoceptor antagonist, 300 μg/kg) but not imiloxan (an α(2B)-adrenoceptor antagonist, 1 mg/kg) inhibited the antinociceptive effect of imipramine (20 mg/kg). Additionally, ketanserin (a 5-HT₂ receptor antagonist, 0.5, 1, and 2 mg/kg) and GR113808 (a 5-HT₄ receptor antagonist, 1 mg/kg) enhanced, and ondansetron (a 5-HT₃ receptor antagonist, 0.5, 1, and 2 mg/kg) failed to alter the imipramine-induced antinociceptive effect. Our data demonstrated that, in the CDR-induced rat visceral pain model, intravenous imipramine appeared to have antinociceptive potential and that α(2A)-/α(2C)-adrenoceptors and 5-HT₂/5-HT₄ receptors may be responsible for the antinociceptive effect of imipramine on visceral pain

  18. Effects of Bladder Distension on Organs at Risk in 3D Image-Based Planning of Intracavitary Brachytherapy for Cervical Cancer

    SciTech Connect

    Kim, Robert Y.; Shen Sui; Lin Huiyi; Spencer, Sharon A.; De Los Santos, Jennifer

    2010-02-01

    Purpose: To investigate the effects of bladder distension on organs at risk (OARs) in the image-based planning of intracavitary brachytherapy for cervical cancer. Methods and Materials: Thirteen patients with cancer of the cervix were treated with high-dose radiation brachytherapy (800 cGy/fraction for 3 fractions). For the three-dimensional (3D) analysis, pelvic CT scans were obtained from patients with indwelling catheters in place (defined as empty bladder) and from patients who received 180-cc injections of sterile water in their bladders (defined as full bladder). To compare the International Commission on Radiation Units and Measurements (ICRU) point doses with 3D-volume doses, the volume dose was defined by using two different criteria, D{sub 2cc} (the minimum dose value in a 2.0-cm{sup 3} volume receiving the highest dose) and D{sub 50%} (the dose received by 50% of the volume of the OAR) for OARs. Results: The bladder D{sub 2cc} was located more cranially in the bladder base and was distributed in multiple spots in 46% of patients. The rectal D{sub 2cc} was located in the area of the ICRU point as a single 'hot spot.' For patients with a full bladder, the mean bladder D{sub 2cc} increased from 634 to 799 cGy (28.8%, p = 0.002). However, the bowel D{sub 2cc} decreased from 475 to 261 cGy (45.0%, p < 0.001). There were no substantial differences in rectal and sigmoid D{sub 2cc} values. However, the mean D{sub 50%} values of both the bladder and the bowel decreased from 108 to 80 cGy (23.7%, p < 0.001) and from 282 to 221 cGy (19.7%, p = 0.004) with a full bladder, respectively. Conclusions: An increase in bladder volume resulted in a significant reduction in bowel D{sub 2cc} values at the expense of an increase in bladder D{sub 2cc} values. Treatment with a distended bladder is preferable to protect the bowel.

  19. Gas and Gas Pains

    MedlinePlus

    ... your gas and bloating occur mainly after eating dairy products, it may be because your body isn' ... able to break down the sugar (lactose) in dairy foods. Other food intolerances, especially to gluten — a ...

  20. Structural, morphological, gas sensing and photocatalytic characterization of MoO3 and WO3 thin films prepared by the thermal vacuum evaporation technique

    NASA Astrophysics Data System (ADS)

    Arfaoui, A.; Touihri, S.; Mhamdi, A.; Labidi, A.; Manoubi, T.

    2015-12-01

    Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO3 and WO3 were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO3 and WO3 thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV-visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.

  1. Recent advances in experimental techniques to probe fast excited-state dynamics in biological molecules in the gas phase: dynamics in nucleotides, amino acids and beyond

    PubMed Central

    Staniforth, Michael; Stavros, Vasilios G.

    2013-01-01

    In many chemical reactions, an activation barrier must be overcome before a chemical transformation can occur. As such, understanding the behaviour of molecules in energetically excited states is critical to understanding the chemical changes that these molecules undergo. Among the most prominent reactions for mankind to understand are chemical changes that occur in our own biological molecules. A notable example is the focus towards understanding the interaction of DNA with ultraviolet radiation and the subsequent chemical changes. However, the interaction of radiation with large biological structures is highly complex, and thus the photochemistry of these systems as a whole is poorly understood. Studying the gas-phase spectroscopy and ultrafast dynamics of the building blocks of these more complex biomolecules offers the tantalizing prospect of providing a scientifically intuitive bottom-up approach, beginning with the study of the subunits of large polymeric biomolecules and monitoring the evolution in photochemistry as the complexity of the molecules is increased. While highly attractive, one of the main challenges of this approach is in transferring large, and in many cases, thermally labile molecules into vacuum. This review discusses the recent advances in cutting-edge experimental methodologies, emerging as excellent candidates for progressing this bottom-up approach. PMID:24204191

  2. Comparative study of different clean-up techniques for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with electron capture detection.

    PubMed

    Muhamad, Halimah; Zainudin, Badrul Hisyam; Abu Bakar, Nor Kartini

    2012-10-15

    Solid phase extraction (SPE) and dispersive solid-phase extraction (d-SPE) were compared and evaluated for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with an electron capture detector (GC-ECD). Several SPE sorbents such as graphitised carbon black (GCB), primary secondary amine (PSA), C(18), silica, and florisil were tested in order to minimise fat residues. The results show that mixed sorbents using GCB and PSA obtained cleaner extracts than a single GCB and PSA sorbents. The average recoveries obtained for each pesticide ranged between 81% and 114% at five fortification levels with the relative standard deviation of less than 7% in all cases. The limits of detection for these pesticides were ranged between 0.025 and 0.05 μg/g. The proposed method was applied successfully for the residue determination of both λ-cyhalothrin and cypermethrin in crude palm oil samples obtained from local mills throughout Malaysia.

  3. Trace analysis of impurities in bulk gases by gas chromatography-pulsed discharge helium ionization detection with "heart-cutting" technique.

    PubMed

    Weijun, Yao

    2007-10-12

    A method has been developed for the detection of low-nL/L-level impurities in bulk gases such as H(2), O(2), Ar, N(2), He, methane, ethylene and propylene, respectively. The solution presented here is based upon gas chromatography-pulsed discharge helium ionization detection (GC-PDHID) coupled with three two-position valves, one two-way solenoid valve and four packed columns. During the operation, the moisture and heavy compounds are first back-flushed via a pre-column. Then the trace impurities (except CO(2) which is diverted to a separate analytical column for separation and detection) together with the matrix enter onto a main column, followed by the heart-cut of the impurities onto a longer analytical column for complete separation. Finally the detection is performed by PDHID. This method has been applied to different bulk gases and the applicability of detecting impurities in H(2), Ar, and N(2) are herewith demonstrated. As an example, the resulting detection limit of 100 nL/L and a dynamic range of 100-1000 nL/L have been obtained using an Ar sample containing methane.

  4. Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography - Mass spectrometry combined with high concentration capacity sample preparation techniques: Toward a fully automated sensomic assessment.

    PubMed

    Magagna, Federico; Cordero, Chiara; Cagliero, Cecilia; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara; Bicchi, Carlo

    2017-06-15

    Tea prepared by infusion of dried leaves of Camellia sinensis (L.) Kuntze, is the second world's most popular beverage, after water. Its consumption is associated with its chemical composition: it influences its sensory and nutritional quality addressing consumer preferences, and potential health benefits. This study aims to obtain an informative chemical signature of the volatile fraction of black tea samples from Ceylon by applying the principles of sensomics. In particular, several high concentration capacity (HCC) sample preparation techniques were tested in combination with GC×GC-MS to investigate chemical signatures of black tea volatiles. This platform, using headspace solid phase microextraction (HS-SPME) with multicomponent fiber as sampling technique, recovers 95% of the key-odorants in a fully automated work-flow. A group 123 components, including key-odorants, technological and botanical tracers, were mapped. The resulting 2D fingerprints were interpreted by pattern recognition tools (i.e. template matching fingerprinting and scripting) providing highly informative chemical signatures for quality assessment.

  5. Analysis of organochlorines in harbor seal (Phoca vitulina) tissue samples from Alaska using gas chromatography/ion trap mass spectrometry by an isotopic dilution technique.

    PubMed

    Wang, Dongli; Atkinson, Shannon; Hoover-Miller, Anne; Li, Qing X

    2005-01-01

    A gas chromatography/ion trap mass spectrometry (GC/ITMS) method was developed for the determination of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in harbor seal (Phoca vitulina) tissues. Tissue samples were homogenized, lyophilized and fortified with (13)C-PCBs 28, 123, 169 and 170, and then extracted with an accelerated solvent extractor with a mixture of hexane and methylene chloride (1:1, v/v). After lipid removal using a 40% H(2)SO(4)-modified silica gel column, all organochlorines were collected in one fraction and further fractionated with an activated carbon/silica gel (1:20) column into a first fraction containing OCPs, non-coplanar PCBs and (13)C-PCBs 28, 123 and 170, and a second containing PCNs, coplanar PCBs and (13)C-PCB 169. Prior to GC/MS/MS analysis, (13)C-PCB 169 was added into the first fraction as an injection standard and (13)C-PCB 170 into the second fraction to calibrate the recoveries of the fortified internal standards. This method can effectively eliminate matrix interferences, and has high selectivity and sensitivity. Recoveries averaged 45-86% for OCPs with relative standard deviations (RSDs) of 2-14%, 52-137% for PCBs with RSDs of 3-29% and 36-152% for PCNs with RSDs of 7-29% from lard and chicken heart samples, which were used as alternative matrices to harbor seal samples in recovery studies. The limits of detection for OCPs, PCBs and PCNs were 0.7-1.9, 1.5-8.9 and 0.5-10 pg/g dry weight, respectively. This method can be used to analyze OCPs, PCBs and PCNs in harbor seal blubber, liver and kidney samples.

  6. A purge and trap technique to capture volatile compounds combined with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry to investigate the effect of sulfur-fumigation on Radix Angelicae Dahuricae.

    PubMed

    Cao, Gang; Li, Qinglin; Zhang, Jida; Cai, Hao; Cai, Baochang

    2014-09-01

    Sulfur-fumigation is known to reduce volatile compounds that are the main active components in herbs used in herbal medicine. We investigated changes in chemical composition between sun-dried and sulfur-fumigated Radix Angelicae Dahuricae using a purge and trap technique to capture volatile compounds, and two-dimensional gas chromatography/time-of-flight mass spectrometry for identification. Using sun-dried Radix Angelicae Dahuricae samples as a reference, the results showed that 73 volatile compounds, including 12 sulfide compounds, were found to be present only in sulfur-fumigated samples. Furthermore, 32 volatile compounds that were found in sun-dried Radix Angelicae Dahuricae samples disappeared after sulfur-fumigation. The proposed method can be applied to accurately discriminate sulfur-fumigated Radix Angelicae Dahuricae from different commercial sources.

  7. 1,1-dimethylhydrazine as a high purity nitrogen source for MOVPE-water reduction and quantification using nuclear magnetic resonance, gas chromatography-atomic emission detection spectroscopy and cryogenic-mass spectroscopy analytical techniques

    SciTech Connect

    Odedra, R.; Smith, L.M.; Rushworth, S.A.

    2000-01-01

    Hydrazine derivatives are attractive low temperature nitrogen sources for use in MOVPE due to their low thermal stability. However their purification and subsequent analysis has not previously been investigated in depth for this application. A detailed study on 1,1-dimethylhydrazine {l{underscore}brace}(CH{sub 3}){sub 2}N-NH{sub 2}{r{underscore}brace} purified by eight different methods and the subsequent quantitative measurements of water present in the samples obtained is reported here. A correlation between {sup 1}H nuclear magnetic resonance spectroscopy (NMR), gas chromatography-atomic emission detection (GC-AED) and cryogenic mass spectroscopy (Cryogenic-MS) has been performed. All three analysis techniques can be used to measure water in the samples and with the best purification the water content can be lowered well below 100 ppm. The high purity of this material has been demonstrated by growth results and the state-of-the-art performance of laser diodes.

  8. Estimation of organophosphoric acid triesters in soft polyurethane foam using a concentrated sulfuric acid dissolution technique and gas chromatography with flame photometric detection.

    PubMed

    Nagase, Makoto; Toba, Mineki; Kondo, Hiroyuki; Yasuhara, Akio; Hasebe, Kiyoshi

    2003-12-01

    A concentrated sulfuric acid dissolution technique and a GC method are described for the estimation of tributyl phosphate, tris(2-chloroethyl) phosphate, tris(chloropropyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, triphenyl phosphate and tris(butoxyethyl) phosphate in soft polyurethane foam. A soft polyurethane foam sample containing organophosphoric acid triesters was dissolved in concentrated sulfuric acid. The solution was added to water, where only the polyurethane was separated out. The pH of the solution was adjusted, and organophosphoric acid triesters were extracted with toluene. After purification, the compounds were determined by GC. The detection limits of the organophosphoric acid triesters were 0.3 - 0.9 microg g(-1). The recoveries of the organophosphoric acid triesters from a 0.05 g sample of soft polyurethane foam were 80.0 - 90.0%, when the spiked amounts were 0.25 - 1 microg. The compounds were detected from soft polyurethane foam at the level of 0.4 - 23.3 microg g(-1).

  9. New designer drug alpha-pyrrolidinovalerophenone (PVP): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques.

    PubMed

    Sauer, Christoph; Peters, Frank T; Haas, Claudia; Meyer, Markus R; Fritschi, Giselher; Maurer, Hans H

    2009-06-01

    The aim of the present study was to identify the metabolites of the new designer drug alpha-pyrrolidinovalerophenone (PVP) in rat urine using GC/MS techniques. Eleven metabolites of PVP could be identified suggesting the following metabolic steps: hydroxylation of the side chain followed by dehydrogenation to the corresponding ketone; hydroxylation of the 2''-position of the pyrrolidine ring followed by dehydrogenation to the corresponding lactam or followed by ring opening to the respective aliphatic aldehyde and further oxidation to the respective carboxylic acid; degradation of the pyrrolidine ring to the corresponding primary amine; and hydroxylation of the phenyl ring, most probably in the 4'-position. The authors' screening procedure for pyrrolidinophenones allowed the detection of PVP metabolites after application of a dose corresponding to a presumed user's dose. In addition, the involvement of nine different human cytochrome P450 (CYP) isoenzymes in the side chain hydroxylation of PVP was investigated and CYP 2B6, 2C19, 2D6, and 3A4 were found to catalyze this reaction.

  10. Trans fat labeling and levels in U.S. foods: assessment of gas chromatographic and infrared spectroscopic techniques for regulatory compliance.

    PubMed

    Mossoba, Magdi M; Moss, Julie; Kramer, John K G

    2009-01-01

    Trans fatty acids are found in a variety of foods like dairy and meat products, but the major dietary sources are products that contain commercially hydrogenated fats. There has been a renewed need for accurate analytical methods for the quantitation of total trans fat since mandatory requirements to declare the amount of trans fat present in food products and dietary supplements were issued in many countries. Official capillary GC and IR methodologies are the two most common validated methods used to identify and quantify trans fatty acids for regulatory compliance. The present article provides a comprehensive discussion of the GC and IR techniques, including the latest attenuated total reflection (ATR)-FTIR methodology called the negative second derivative ATR-FTIR procedure, which is currently being validated in an international collaborative study. The identification and quantitation of trans fatty acid isomers by GC is reviewed and an alternative GC method is proposed using two temperature programs and combining their results; this proposed method deals more effectively with the resolution of large numbers of geometric and positional monoene, diene, and triene fatty acid isomers present in ruminant fats. In addition, the different methylation procedures that affect quantitative conversion to fatty acid methyl esters are reviewed. There is also a lack of commercial chromatographic standards for many trans fatty acid isomers. This review points to potential sources of interferences in the FTIR determination that may lead to inaccurate results, particularly at low trans levels. The presence of high levels of saturated fats may lead to interferences in the FTIR spectra observed for trans triacylglycerols (TAGs). TAGs require no derivatization, but have to be melted prior to IR measurement. While GC is currently the method of choice, ATR-FTIR spectroscopy is a viable, rapid alternative, and a complementary method to GC for a more rapid determination of total trans

  11. Tracking pulmonary gas exchange by breathing control during exercise: role of muscle blood flow

    PubMed Central

    Haouzi, Philippe

    2014-01-01

    Populations of group III and IV muscle afferent fibres located in the adventitia of the small vessels appear to respond to the level of venular distension and to recruitment of the vascular bed within the skeletal muscles. The CNS could thus be informed on the level of muscle hyperaemia when the metabolic rate varies. As a result, the magnitude and kinetics of the change in peripheral gas exchange – which translates into pulmonary gas exchange – can be sensed. We present the view that the respiratory control system uses these sources of information of vascular origin, among the numerous inputs produced by exercise, as a marker of the metabolic strain imposed on the circulatory and the ventilatory systems, resulting in an apparent matching between pulmonary gas exchange and alveolar ventilation. PMID:23981720

  12. Short communication: Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted.

    PubMed

    Dorich, C D; Varner, R K; Pereira, A B D; Martineau, R; Soder, K J; Brito, A F

    2015-04-01

    The objective of this study was to measure enteric CH4 emissions using a new portable automated open-circuit gas quantification system (GQS) and the sulfur hexafluoride tracer technique (SF6) in midlactation Holstein cows housed in a tiestall barn. Sixteen cows averaging 176 ± 34 d in milk, 40.7 ± 6.1 kg of milk yield, and 685 ± 49 kg of body weight were randomly assigned to 1 out of 2 treatments according to a crossover design. Treatments were (1) ad libitum (adjusted daily to yield 10% orts) and (2) restricted feed intake [set to restrict feed by 10% of baseline dry matter intake (DMI)]. Each experimental period lasted 22d, with 14 d for treatment adaptation and 8d for data and sample collection. A common diet was fed to the cows as a total mixed ration and contained 40.4% corn silage, 11.2% grass-legume haylage, and 48.4% concentrate on a dry matter basis. Spot 5-min measurements using the GQS were taken twice daily with a 12-h interval between sampling and sampling times advanced 2h daily to account for diurnal variation in CH4 emissions. Canisters for the SF6 method were sampled twice daily before milking with 4 local background gas canisters inside the barn analyzed for background gas concentrations. Enteric CH4 emissions were not affected by treatments and averaged 472 and 458 g/d (standard error of the mean = 18 g/d) for ad libitum and restricted intake treatments, respectively (data not shown). The GQS appears to be a reliable method because of the relatively low coefficients of variation (ranging from 14.1 to 22.4%) for CH4 emissions and a moderate relationship (coefficient of determination = 0.42) between CH4 emissions and DMI. The SF6 resulted in large coefficients of variation (ranging from 16.0 to 111%) for CH4 emissions and a poor relationship (coefficient of determination = 0.17) between CH4 emissions and DMI, likely because of limited barn ventilation and high background gas concentration. Research with improved barn ventilation systems or

  13. Sweet gas

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    When poisonous hydrogen sulfide contaminates a natural gas deposit, the drilling company usually caps the well and moves on to other areas that may contain larger reserves and offer stronger economic incentives. Chemical and biological methods exist to purify these wells, but most are complex and costly. However, a group of scientists now is developing what could be a cheaper, easier method to clean up and utilize this polluted natural gas.The technique—which involves growing “enrichment” cultures of bacteria that metabolize the hydrogen sulfide into harmless compounds—could be particularly useful to poor and energy-starved developing nations, says Norman Wainwright, a senior scientist at the Woods Hole Marine Biological Laboratory. “We're hoping the technique can be robust enough and inexpensive enough to be used in a developing country,” Wainwright says. Other scientists involved with the project are Porter Anderson, a University of Rochester professor emeritus associated with the lab and Ben Ebenhack, also of Rochester.

  14. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    NASA Astrophysics Data System (ADS)

    Sgouridis, F.; Ullah, S.; Stott, A.

    2015-08-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilised agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps, a copper based reduction furnace, and allows the analysis of small gas injection volumes (4 μL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Pre-concentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N Gas-Flux method was adapted for application in natural and semi-natural land use types (peatlands, forests and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. For our chamber design (volume / surface = 8:1) and a 20 h incubation period, the minimum detectable flux rates were 4 μg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. The N2 flux ranged between 2.4 and 416.6 μg N m-2 h-1, and the grassland soils showed on average 3 and 14 times higher denitrification rates than the woodland and organic soils respectively. The N2O flux was on average 20 to 200 times lower than the N2 flux, while the denitrification product ratio (N2O/N2 + N2O) was low, ranging between 0.03 and 13 %. Total denitrification rates measured by the acetylene inhibition technique under the same field conditions

  15. Gas Interference in Sucker Rod Pump

    NASA Astrophysics Data System (ADS)

    Samad, Abdus

    2010-10-01

    Commonly used artificial lift or dewatering system is sucker rod pump and gas interference of the pump is the biggest issue in the oil and gas industry. Gas lock or fluid pound problems occur due to the gas interference when the pump has partially or completely unfilled plunger barrel. There are several techniques available in the form of patents to solve these problems but those techniques have positive as well as negative aspects. Some of the designs rely on the leakage and some of the designs rely on the mechanical arrangements etc to break the gas lock. The present article compares the existing gas interference handling techniques.

  16. Safer Liquid Natural Gas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    After the disaster of Staten Island in 1973 where 40 people were killed repairing a liquid natural gas storage tank, the New York Fire Commissioner requested NASA's help in drawing up a comprehensive plan to cover the design, construction, and operation of liquid natural gas facilities. Two programs are underway. The first transfers comprehensive risk management techniques and procedures which take the form of an instruction document that includes determining liquid-gas risks through engineering analysis and tests, controlling these risks by setting up redundant fail safe techniques, and establishing criteria calling for decisions that eliminate or accept certain risks. The second program prepares a liquid gas safety manual (the first of its kind).

  17. Right Pulmonary Artery Distensibility Index (RPAD Index). A field study of an echocardiographic method to detect early development of pulmonary hypertension and its severity even in the absence of regurgitant jets for Doppler evaluation in heartworm-infected dogs.

    PubMed

    Venco, Luigi; Mihaylova, Liliya; Boon, June A

    2014-11-15

    Despite the term "heartworm disease" Dirofilaria immitis infection in dogs should be considered a pulmonary arterial disease that might only involve the right heart structures in its late stage. Chronic infection by adult heartworms in dogs results in proliferative endoarteritis leading to progressively increasing pulmonary artery pressure due to reduced elasticity. Elasticity allows the pulmonary arteries to stretch in response to each pulse and helps maintain a relatively constant pressure in the arteries despite the pulsating nature of the blood flow. Pulmonary artery distensibility for both acute and chronic pulmonary hypertension has been investigated in humans using MRI and has been correlated with the severity of hypertension and its outcome and treatment response. The aim of the present study was to investigate whether echocardiographic measurement of the percentage change in diameter of the right pulmonary artery in systole and diastole (distensibility) may be of value in assessing the presence and severity of pulmonary hypertension in heartworm-infected dogs. The Right Pulmonary Artery Distensibility Index (RPAD Index) (which is calculated as the difference in diameter of the right pulmonary artery in systole and diastole) was calculated in healthy and naturally infected heartworm-positive dogs. The right pulmonary artery was chosen because it is usually affected earlier and to a greater degree. Data were obtained from healthy heartworm-free dogs without any clinical, radiographic, or echocardiographic signs of pulmonary hypertension; naturally infected heartworm-positive dogs in different stages of the disease in which pulmonary pressure could be measured by Doppler echocardiography (using tricuspid and or pulmonary regurgitation velocity and pressure gradient); and naturally infected heartworm-positive dogs in different stages of the disease (with or without tricuspid and or pulmonary regurgitation) in which the pulmonary pressure was measured

  18. Tuning of the internal energy and isomer distribution in small protonated water clusters H(+)(H2O)(4-8): an application of the inert gas messenger technique.

    PubMed

    Mizuse, Kenta; Fujii, Asuka

    2012-05-24

    Infrared spectroscopy of gas-phase hydrated clusters provides us much information on structures and dynamics of water networks. However, interpretation of spectra is often difficult because of high internal energy (vibrational temperature) of clusters and coexistence of many isomers. Here we report an approach to vary these factors by using the inert gas (so-called "messenger")-mediated cooling technique. Protonated water clusters with a messenger (M), H(+)(H(2)O)(4-8)·M (M = Ne, Ar, (H(2))(2)), are formed in a molecular beam and probed with infrared photodissociation spectroscopy in the OH stretch region. Observed spectra are compared with each other and with bare H(+)(H(2)O)(n). They show clear messenger dependence in their bandwidths and relative band intensities, reflecting different internal energy and isomer distribution, respectively. It is shown that the internal energy follows the order H(+)(H(2)O)(n) > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·Ne, while the isomer-selectivity, which changes the isomer distribution in the bare system, follows the order H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ne ~ (H(+)(H(2)O)(n)). Although the origin of the isomer-selectivity is unclear, comparison among spectra measured with different messengers is very powerful in spectral analyses and makes it possible to easily assign spectral features of each isomer.

  19. PAH determination based on a rapid and novel gas purge-microsyringe extraction (GP-MSE) technique in road dust of Shanghai, China: Characterization, source apportionment, and health risk assessment.

    PubMed

    Zheng, Xin; Yang, Yi; Liu, Min; Yu, Yingpeng; Zhou, John L; Li, Donghao

    2016-07-01

    A novel cleanup technique termed as gas purge-microsyringe extraction (GP-MSE) was evaluated and applied for polycyclic aromatic hydrocarbon (PAH) determination in road dust samples. A total of 68 road dust samples covering almost the entire Shanghai area were analyzed for 16 priority PAHs using gas chromatography-mass spectrometry. The results indicate that the total PAH concentrations over the investigated sites ranged from 1.04μg/g to 134.02μg/g dw with an average of 13.84μg/g. High-molecular-weight compounds (4-6 rings PAHs) were significantly dominant in the total mass of PAHs, and accounted for 77.85% to 93.62%. Diagnostic ratio analysis showed that the road dust PAHs were mainly from the mixture of petroleum and biomass/coal combustions. Principal component analysis in conjunction with multiple linear regression indicated that the two major origins of road dust PAHs were vehicular emissions and biomass/fossil fuel combustions, which contributed 66.7% and 18.8% to the total road dust PAH burden, respectively. The concentration of benzo[a]pyrene equivalent (BaPeq) varied from 0.16μg/g to 24.47μg/g. The six highly carcinogenic PAH species (benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene) accounted for 98.57% of the total BaPeq concentration. Thus, the toxicity of PAHs in road dust was highly associated with high-molecular-weight compounds.

  20. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  1. Gas separating

    DOEpatents

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  2. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  3. A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Tuomi, M.

    2012-12-01

    Context. Several M dwarfs are targets of systematical monitoring in searches for Doppler signals caused by low-mass exoplanet companions. As a result, an emerging population of high-multiplicity planetary systems around low-mass stars are being detected as well. Aims: We optimize classic data analysis methods and develop new ones to enhance the sensitivity towards lower amplitude planets in high-multiplicity systems. We apply these methods to the public HARPS observations of GJ 676A, a nearby and relatively quiet M dwarf with one reported gas giant companion. Methods: We rederived Doppler measurements from public HARPS spectra using the recently developed template matching method (HARPS-TERRA software). We used refined versions of periodograms to assess the presence of additional low-mass companions. We also analysed the same dataset with Bayesian statistics tools and compared the performance of both approaches. Results: We confirm the already reported massive gas giant candidate and a long period trend in the Doppler measurements. In addition to that, we find very secure evidence in favour of two new candidates in close-in orbits and masses in the super-Earth mass regime. Also, the increased time-span of the observations allows the detection of curvature in the long-period trend. suggesting the presence of a massive outer companion whose nature is still unclear. Conclusions: Despite the increased sensitivity of our new periodogram tools, we find that Bayesian methods are significantly more sensitive and reliable in the early detection of candidate signals, but more work is needed to quantify their robustness against false positives. While hardware development is important in increasing the Doppler precision, development of data analysis techniques can help to reveal new results from existing data sets with significantly fewer resources. This new system holds the record of minimum-mass range (from Msini ~ 4.5 M ⊕ to 5 Mjup) and period range (from P ~ 3.6 days to

  4. Modified Technique For Chemisorption Measurements

    NASA Technical Reports Server (NTRS)

    Schryer, David R.; Brown, Kenneth G.; Schryer, Jacqueline

    1989-01-01

    In measurements of chemisorption of CO on Pt/SnO2 catalyst observed that if small numbers of relatively large volumes of adsorbate gas are passed through sample, very little removal of CO detected. In these cases little or no CO has been chemisorbed on Pt/SnO2. Technique of using large number of small volumes of adsorbate gas to measure chemisorption applicable to many gas/material combinations other than CO on Pt/SnO2. Volume used chosen so that at least 10 percent of adsorbate gas removed during each exposure.

  5. Halogen speciation in volcanic plumes - Development of compact denuder sampling techniques with in-situ derivatization followed by gas chromatography-mass spectrometry and their application at Mt. Etna, Mt. Nyiragongo and Mt. Nyamulagira in 2015.

    NASA Astrophysics Data System (ADS)

    Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten

    2016-04-01

    products. The diffusion denuder technique allows sampling of gaseous compounds exclusively without collecting particulate matter. Solvent elution of the derivatized analytes and subsequent analysis with gas chromatography-mass spectrometry gives a limit of detection below 1 ng of bromine. The method was applied in 2015 on volcanic gas plumes at Mt. Etna (Italy), Mt. Nyiragongo and Mt. Nyamulagira (DR Congo) giving reactive bromine mixing ratios from 0.3 ppb (Nyiragongo) up to 22 ppb (Etna, NEC). Compared with total halogen data derived by alkaline trap sampling (Raschig-tube) and ion-chromatography analysis the reactive bromine mixing ratios allow the investigation of the conversion of HBr into reactive species due to plume chemistry with progressing plume age. The new method will be described in detail and the first results on the reactive halogen to total halogen output will be discussed (for bromine and chlorine) and compared to earlier volcanic plume chemistry model studies. References Bobrowski, N. and G. Giuffrida: Bromine monoxide / sulphur dioxide ratios in relation to volcanological observations at Mt. Etna 2006-2009. Solid Earth, 3, 433-445, 2012 Bobrowski, N., R. von Glasow, A. Aiuppa, S. Inguaggiato, I. Louban, O. W. Ibrahim and U. Platt: Reactive halogen chemistry in volcanic plumes. J. Geophys. Res., 112, 2007 Donovan A., V. Tsanev, C. Oppenheimer and M. Edmonds: Reactive halogens (BrO and OClO) detected in the plume of Soufrière Hills Volcano during an eruption hiatus. Geochem. Geophys. Geosyst., 15, 3346-3363, 2014 Rüdiger, J., N. Bobrowski, T. Hoffmann (2015), Development and application of compact denuder sampling techniques with in situ derivatization followed by gas chromatography-mass spectrometry for halogen speciation in volcanic plumes (EGU2015-2392-2), EGU General Assembly 2015

  6. The reversed-flow gas chromatography technique as a tool for the study of the evaporation retardation of SO2 and (CH3)2S from water by soluble surfactants.

    PubMed

    Sevastos, D; Kotsalos, E; Koliadima, A

    2017-02-01

    In the present work the evaporation retardation of SO2 and (CH3)2S (=DMS) from water by soluble surfactants was studied by the Reversed-Flow Gas Chromatography (R.F.G.C.) technique. Using suitable mathematical analysis, rate coefficients, kc, for the transfer of SO2 and DMS from pure or artificial sea water to the atmospheric environment were determined in the presence or the absence of surfactants. The efficiency of the three surfactants used (CTAB, TRITON X-100 and SDS) to retard the evaporation rate of SO2 and DMS from water was estimated by the decrease of the kc values in the presence of the three surfactants, compared to those in the absence of surfactants. The more efficient surfactant for the retardation evaporation of SO2 from both the pure and the artificial sea water was found to be the cationic CTAB surfactant, as the maximum decreases of the kc values were found to be 4.61×10(-3)cms(-1) (number of films, n=1) and 3.07×10(-3)cms(-1) (n=3), respectively. On the other hand, more efficient surfactant for the retardation evaporation of DMS from pure water was found to be the non-ionic TRITON X-100, in which the decrease of the kc value was estimated to be 18.20×10(-3)cms(-1) (n=3) and from artificial sea water the cationic CTAB surfactant in which the decrease of the kc value was found to be 8.24×10(-3)cms(-1) (n=3). Finally, the precision of the R.F.G.C. method in studying the retardation effect of various surfactants in the transfer of SO2 and DMS from the water body to the atmosphere is estimated (mean value 96.69%), and the experimental values of kc are compared with those given in the literature.

  7. GAS BEARING

    DOEpatents

    Skarstrom, C.W.

    1960-09-01

    A gas lubricated bearing for a rotating shaft is described. The assembly comprises a stationary collar having an annular member resiliently supported thereon. The collar and annular member are provided with cooperating gas passages arranged for admission of pressurized gas which supports and lubricates a bearing block fixed to the rotatable shaft. The resilient means for the annular member support the latter against movement away from the bearing block when the assembly is in operation.

  8. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  9. One-step multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by preparative capillary gas with characterization by spectroscopic and spectrometric techniques and evaluation of biological activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the present work multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by Preparative Capillary Gas Chromatography (PCGC) with characterization by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have been carried out. Gas chromatography (GC-FID) ...

  10. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  11. Gas Chromatograph.

    DTIC Science & Technology

    Patents, * Gas chromotography , *Hydrocarbons, *Carbon monoxide, *Carbon dioxide, *Water, Field equipment, Portable equipment, Sensitivity, Halogenated hydrocarbons, Test methods, Gases, Liquids, Purity

  12. Gas magnetometer

    SciTech Connect

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  13. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  14. Gas Blowing: Mass Transfer in Gas and Melt

    NASA Astrophysics Data System (ADS)

    Sortland, Øyvind Sunde; Tangstad, Merete

    2014-09-01

    Metallurgical routes for solar grade silicon production are being developed as alternatives to chemical processes for their potential to achieve cost reductions, increased production volume, and reduced environmental and safety concerns. An important challenge in the development of metallurgical routes relates to the higher impurity concentrations in the silicon product, particularly for boron and other elements that are not efficiently segregated in solidification techniques. The reactive gas refining process is studied for its potential to remove boron below the solar grade silicon target concentration in a single step by blowing steam and hydrogen gas jets onto the melt surface. Boron in a silicon melt is extracted to HBO gas in parallel to active oxidation of silicon. The literature is not unified regarding the rate determining step in this process. Relevant theories and equations for gas blowing in induction furnaces are combined and used to explain mass transfer in experiments. Mass transfer in the melt and gas is investigated by comparing resistance and induction heating of the melt, and varying gas flow rate, crucible diameter, diameter of the gas lance, and the position of the gas lance above the melt surface. The rate of boron removal is found to increase with increasing gas flow rate and crucible diameter. A relatively high fraction of the reactive gas is utilized in the process, and supply of steam in the bulk gas is the only identified rate determining step.

  15. Sterile technique

    MedlinePlus

    ... technique. In: Perry AG, Potter PA, eds. Clinical Nursing Skills and Techniques . 8th ed. Philadelphia, PA: Elsevier Mosby; 2014:chap 8. Read More Stress urinary incontinence Urge incontinence Urinary incontinence Patient Instructions ...

  16. Retained gas inventory comparison

    SciTech Connect

    BARTON, W.B.

    1999-05-18

    Gas volume data derived from four different analytical methods were collected and analyzed for comparison to volumes originally used in the technical basis for the Basis for Interim Operations (BIO). The original volumes came from Hodgson (1996) listed in the reference section of this document. Hodgson (1996) screened all 177 single and double-shell tanks for the presence of trapped gas in waste via two analytical methods: Surface Level Rise (SLR), and Barometric Pressure Effect (BPE). More recent gas volume projections have been calculated using different analytical techniques along with updates to the parameters used as input to the SLR and BPE models. Gas volumes derived from new analytical instruments include those as measured by the Void Fraction Instrument (VFI) and Retained Gas Sampler (RGS). The results of this comparison demonstrate that the original retained gas volumes of Hodgson (1996) used as a technical basis in developing the BIO were conservative, and were conservative from a safety analysis standpoint. These results represent only comparisons to the original reported volumes using the limited set of newly acquired data that is available.

  17. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  18. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  19. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper

  20. Remote Raman measurement techniques

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.

    1981-01-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  1. Modulation techniques

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1982-01-01

    Bandwidth efficient digital modulation techniques, proposed for use on and/or applied to satellite channels, are reviewed. In a survey of recent works on digital modulation techniques, the performance of several schemes operating in various environments are compared. Topics covered include: (1) quadrature phase shift keying; (2) offset - QPSK and MSK; (3) combined modulation and coding; and (4) spectrally efficient modulation techniques.

  2. Effects of DA-9701, a Novel Prokinetic Agent, on Phosphorylated Extracellular Signal-Regulated Kinase Expression in the Dorsal Root Ganglion and Spinal Cord Induced by Colorectal Distension in Rats

    PubMed Central

    Lee, Sang Pyo; Lee, Kang Nyeong; Lee, Hang Lak; Jun, Dae Won; Yoon, Byung Chul; Choi, Ho Soon; Hwang, Se Jin; Lee, Seo Eun

    2014-01-01

    Background/Aims DA-9701, a standardized extract of Pharbitis Semen and Corydalis Tuber, is a new prokinetic agent that exhibits an analgesic effect on the abdomen. We investigated whether DA-9701 affects visceral pain induced by colorectal distension (CRD) in rats. Methods A total of 21 rats were divided into three groups: group A (no CRD+no drug), group B (CRD+no drug), and group C (CRD+DA-9701). Expression of pain-related factors, substance P (SP), c-fos, and phosphorylated extracellular signal-regulated kinase (p-ERK) in the dorsal root ganglion (DRG) and spinal cord was determined by immunohistochemical staining and Western blotting. Results The proportions of neurons in the DRG and spinal cord expressing SP, c-fos, and p-ERK were higher in group B than in group A. In the group C, the proportion of neurons in the DRG and spinal cord expressing p-ERK was lower than that in group B. Western blot results for p-ERK in the spinal cord indicated a higher level of expression in group B than in group A and a lower level of expression in group C than in group B. Conclusions DA-9701 may decrease visceral pain via the downregulation of p-ERK in the DRG and spinal cord. PMID:24672654

  3. Dismantling techniques

    SciTech Connect

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  4. Slip length measurement of gas flow

    NASA Astrophysics Data System (ADS)

    Maali, Abdelhamid; Colin, Stéphane; Bhushan, Bharat

    2016-09-01

    In this paper, we present a review of the most important techniques used to measure the slip length of gas flow on isothermal surfaces. First, we present the famous Millikan experiment and then the rotating cylinder and spinning rotor gauge methods. Then, we describe the gas flow rate experiment, which is the most widely used technique to probe a confined gas and measure the slip. Finally, we present a promising technique using an atomic force microscope introduced recently to study the behavior of nanoscale confined gas.

  5. Graphene gas osmometers

    NASA Astrophysics Data System (ADS)

    Dolleman, Robin J.; Cartamil-Bueno, Santiago J.; van der Zant, Herre S. J.; Steeneken, Peter G.

    2017-03-01

    We show that graphene membranes that separate two gases at identical pressure are deflected by osmotic pressure. The osmotic pressure is a consequence of differences in gas permeation rates into a few-layer graphene enclosed cavity. The deflection of the membrane is detected by measuring the tension-induced resonance frequency with an interferometric technique. Using a calibration measurement of the relation between resonance frequency and pressure, the time dependent osmotic pressure on the graphene is extracted. The time dependent osmotic pressure for different combinations of gases shows large differences that can be accounted for by a model based on the different gas permeation rates. In this way, a graphene-membrane based gas osmometer with a responsivity of ˜60 kHz mbar-1 and nanoscale dimensions is demonstrated.

  6. The CARIBU gas catcher

    SciTech Connect

    Savard, G.; Levand, A. F.; Zabransky, B. J.

    2016-06-01

    The CARIBU upgrade of the ATLAS facility provides radioactive beams of neutron-rich isotopes for experiments at low and Coulomb barrier energies. It creates these beam using a large RF gas catcher that collects and cools fission fragments from an intense Cf-252 fission source and transforms them into a low-emittance monoenergetic beam. This beam can then be purified, reaccelerated and delivered to experiments. This technique is fast and universal, providing access to all fission fragment species independently of their chemical properties. The CARIBU gas catcher has been built to operate at high ionization density and in the presence of the contamination from the source. A brief overview of the CARIBU concept is given below, together with a more detailed description of the CARIBU gas catcher and the performance it has now achieved.

  7. The CARIBU gas catcher

    NASA Astrophysics Data System (ADS)

    Savard, G.; Levand, A. F.; Zabransky, B. J.

    2016-06-01

    The CARIBU upgrade of the ATLAS facility provides radioactive beams of neutron-rich isotopes for experiments at low and Coulomb barrier energies. It creates these beam using a large RF gas catcher that collects and cools fission fragments from an intense 252 Cf fission source and transforms them into a low-emittance monoenergetic beam. This beam can then be purified, reaccelerated and delivered to experiments. This technique is fast and universal, providing access to all fission fragment species independently of their chemical properties. The CARIBU gas catcher has been built to operate at high ionization density and in the presence of the contamination from the source. A brief overview of the CARIBU concept is given below, together with a more detailed description of the CARIBU gas catcher and the performance it has now achieved.

  8. Multiplex gas chromatography

    NASA Technical Reports Server (NTRS)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  9. Gas Chromatography.

    ERIC Educational Resources Information Center

    Cram, Stuart P.; And Others

    1980-01-01

    Selects fundamental developments in theory, methodology, and instrumentation in gas chromatography (GC). A special section reviews GC in the People's Republic of China. Over 1,000 references are cited. (CS)

  10. Volcanic Gas

    MedlinePlus

    ... Hazards Tephra/Ash Lava Flows Lahars Volcanic Gas Climate Change Pyroclastic Flows Volcanic Landslides Preparedness Volcano Hazard Zones ... Please see our discussion of volcanic gases and climate change for additional information. Hydrogen sulfide (H 2 S) is ...

  11. Gas exchange

    MedlinePlus Videos and Cool Tools

    ... during exhalation. Gas exchange is the delivery of oxygen from the lungs to the bloodstream, and the ... share a membrane with the capillaries in which oxygen and carbon dioxide move freely between the respiratory ...

  12. Gas Jets

    NASA Technical Reports Server (NTRS)

    Chaplygin, S.

    1944-01-01

    A brief summary of the contents of this paper is presented here. In part I the differential equations of the problem of a gas flow in two dimensions is derived and the particular integrals by which the problem on jets is solved are given. Use is made of the same independent variables as Molenbroek used, but it is found to be more suitable to consider other functions. The stream function and velocity potential corresponding to the problem are given in the form of series. The investigation on the convergence of these series in connection with certain properties of the functions entering them forms the subject of part II. In part III the problem of the outflow of a gas from an infinite vessel with plane walls is solved. In part IV the impact of a gas jet on a plate is considered and the limiting case where the jet expands to infinity changing into a gas flow is taken up in more detail. This also solved the equivalent problem of the resistance of a gaseous medium to the motion of a plate. Finally, in part V, an approximate method is presented that permits a simpler solution of the problem of jet flows in the case where the velocities of the gas (velocities of the particles in the gas) are not very large.

  13. Optimizing positive end-expiratory pressure by oscillatory mechanics minimizes tidal recruitment and distension: an experimental study in a lavage model of lung injury

    PubMed Central

    2012-01-01

    Introduction It is well established that during mechanical ventilation of patients with acute respiratory distress syndrome cyclic recruitment/derecruitment and overdistension are potentially injurious for lung tissues. We evaluated whether the forced oscillation technique (FOT) could be used to guide the ventilator settings in order to minimize cyclic lung recruitment/derecruitment and cyclic mechanical stress in an experimental model of acute lung injury. Methods We studied six pigs in which lung injury was induced by bronchoalveolar lavage. The animals were ventilated with a tidal volume of 6 ml/kg. Forced oscillations at 5 Hz were superimposed on the ventilation waveform. Pressure and flow were measured at the tip and at the inlet of the endotracheal tube respectively. Respiratory system reactance (Xrs) was computed from the pressure and flow signals and expressed in terms of oscillatory elastance (EX5). Positive end-expiratory pressure (PEEP) was increased from 0 to 24 cm H2O in steps of 4 cm H2O and subsequently decreased from 24 to 0 in steps of 2 cm H2O. At each PEEP step CT scans and EX5 were assessed at end-expiration and end-inspiration. Results During deflation the relationship between both end-expiratory and end-inspiratory EX5 and PEEP was a U-shaped curve with minimum values at PEEP = 13.4 ± 1.0 cm H2O (mean ± SD) and 13.0 ± 1.0 cm H2O respectively. EX5 was always higher at end-inspiration than at end-expiration, the difference between the average curves being minimal at 12 cm H2O. At this PEEP level, CT did not show any substantial sign of intra-tidal recruitment/derecruitment or expiratory lung collapse. Conclusions Using FOT it was possible to measure EX5 both at end-expiration and at end-inspiration. The optimal PEEP strategy based on end-expiratory EX5 minimized intra-tidal recruitment/derecruitment as assessed by CT, and the concurrent attenuation of intra-tidal variations of EX5 suggests that it may also minimize tidal mechanical stress

  14. Passive gas separator and accumulator device

    DOEpatents

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  15. Well log evaluation of gas hydrate saturations

    USGS Publications Warehouse

    Collett, T.S.

    1998-01-01

    The amount of gas sequestered in gas hydrates is probably enormous, but estimates are highly speculative due to the lack of previous quantitative studies. Gas volumes that may be attributed to a gas hydrate accumulation within a given geologic setting are dependent on a number of reservoir parameters; one of which, gas-hydrate saturation, can be assessed with data obtained from downhole well logging devices. The primary objective of this study was to develop quantitative well-log evaluation techniques which will permit the calculation of gas-hydrate saturations in gas-hydrate-bearing sedimentary units. The "standard" and "quick look" Archie relations (resistivity log data) yielded accurate gas-hydrate and free-gas saturations within all of the gas hydrate accumulations assessed in the field verification phase of the study. Compressional wave acoustic log data have been used along with the Timur, modified Wood, and the Lee weighted average acoustic equations to calculate accurate gas-hydrate saturations in all of the gas hydrate accumulations assessed in this study. The well log derived gas-hydrate saturations calculated in the field verification phase of this study, which range from as low as 2% to as high as 97%, confirm that gas hydrates represent a potentially important source of natural gas.

  16. Mass Spectral Investigations on Toxins. 2. Simultaneous Detection and Quantification of Ultra-Trace Levels of Simple Trichothecenes in Environmental and Fermentation Samples by Gas Chromatographic/Negative Ion Chemical Ionization-Mass Spectrometric Techniques

    DTIC Science & Technology

    1987-01-01

    macrocyclic trichothecenes or semisynthetic compounds. Scirpentriol (3a-HOVER), deoxynivalenol (DON), fusarinon-X (FUSX), monoacetoxyscirpenol (MAS) and...S.R. Gas Chromhtog- raphy with Electron Capture and Mass Spectrometric Detection of Deoxynivalenol in Wheat and Other Grains. J. Assoc. Off. Anal. Chem

  17. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  18. Enhanced gas recovery from a moderately strong water drive reservoir

    SciTech Connect

    Chesney, T.P.; Lewis, R.C.; Trice, M.L. Jr.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    Blowdown performance of several South Texas water drive gas reservoirs indicated a substantial quantity of gas was trapped in water invaded regions. Depressuring of the reservoir by withdrawing large volumes of water in order to recover trapped gas was evaluated. The evaluation, implementation, and results of this enhanced gas recovery technique are discussed for one of these reservoirs.

  19. Fiber Techniques

    ERIC Educational Resources Information Center

    Nalle, Leona

    1976-01-01

    Describes a course in fiber techniques, which covers design methods involving fibers and fabric, that students in the Art Department at Sleeping Giant Junior High School had the opportunity to learn. (Author/RK)

  20. Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A miniature gas chromatograph, a system which separates a gaseous mixture into its components and measures the concentration of the individual gases, was designed for the Viking Lander. The technology was further developed under National Institute for Occupational Safety and Health (NIOSH) and funded by Ames Research Center/Stanford as a toxic gas leak detection device. Three researchers on the project later formed Microsensor Technology, Inc. to commercialize the product. It is a battery-powered system consisting of a sensing wand connected to a computerized analyzer. Marketed as the Michromonitor 500, it has a wide range of applications.

  1. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  2. Gas sensor

    SciTech Connect

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  3. Passive gas separator and accumulator device

    DOEpatents

    Choe, Hwang; Fallas, Thomas T.

    1994-01-01

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  4. Well log evaluation of gas hydrate saturations

    USGS Publications Warehouse

    Collett, Timothy S.

    1998-01-01

    The amount of gas sequestered in gas hydrates is probably enormous, but estimates are highly speculative due to the lack of previous quantitative studies. Gas volumes that may be attributed to a gas hydrate accumulation within a given geologic setting are dependent on a number of reservoir parameters; one of which, gas-hydrate saturation, can be assessed with data obtained from downhole well logging devices. The primary objective of this study was to develop quantitative well-log evaluation techniques which will permit the calculation of gas-hydrate saturations in gas-hydrate-bearing sedimentary units. The `standard' and `quick look' Archie relations (resistivity log data) yielded accurate gas-hydrate and free-gas saturations within all of the gas hydrate accumulations assessed in the field verification phase of the study. Compressional wave acoustic log data have been used along with the Timur, modified Wood, and the Lee weighted average acoustic equations to calculate accurate gas-hydrate saturations in this study. The well log derived gas-hydrate saturations calculated in the field verification phase of this study, which range from as low as 2% to as high as 97%, confirm that gas hydrates represent a potentially important source of natural gas.

  5. Remote Leak Detection: Indirect Thermal Technique

    NASA Technical Reports Server (NTRS)

    Clements, Sandra

    2002-01-01

    Remote sensing technologies are being considered for efficient, low cost gas leak detection. Eleven specific techniques have been identified for further study and evaluation of several of these is underway. The Indirect Thermal Technique is one of the techniques that is being explored. For this technique, an infrared camera is used to detect the temperature change of a pipe or fitting at the site of a gas leak. This temperature change is caused by the change in temperature of the gas expanding from the leak site. During the 10-week NFFP program, the theory behind the technique was further developed, experiments were performed to determine the conditions for which the technique might be viable, and a proof-of-concept system was developed and tested in the laboratory.

  6. A young woman with abdominal distension

    PubMed Central

    Appleby, Richard; Saroya, Haseeb; Postgate, Aymer; Meer, Ziad

    2014-01-01

    We present the case of a 34-year-old woman with haemorrhagic ascites and an extrinsic rectal mass on endoscopy. Endometrioma was subsequently confirmed by laparoscopy and biopsy. Intestinal endometriosis is common, and often mimics other gastrointestinal pathology. Haemorrhagic ascites or intestinal masses are rare presentations of endometriosis, and this is the only reported case of both occurring together. Endometriosis and ascites are more common in women of African descent, and although histological diagnosis requires laparoscopy, MRI has a high negative predictive value; 95% for intestinal endometriosis. Re-accumulation of ascites were prevented by starting a gonadotrophin antagonist. PMID:24717582

  7. GAS SEAL

    DOEpatents

    Monson, H.; Hutter, E.

    1961-07-11

    A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

  8. Volcanic gas

    USGS Publications Warehouse

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  9. Gas chromatography.

    PubMed

    Eiceman, G A; Hill, H H; Gardea-Torresdey, J

    1998-06-15

    This review of the fundamental developments in gas chromatography (GC) includes articles published from 1996 and 1997 and an occasional citation prior to 1996. The literature was reviewed principally using CA Selects for Gas Chromatography from Chemical Abstracts Service, and some significant articles from late 1997 may be missing from the review. In addition, the online SciSearch Database (Institute for Scientific Information) capability was used to abstract review articles or books. As with the prior recent reviews, emphasis has been given to the identification and discussion of selected developments, rather than a presentation of a comprehensive literature search, now available widely through computer-based resources. During the last two years, several themes emerged from a review of the literature. Multidimensional gas chromatography has undergone transformation encompassing a broad range of activity, including attempts to establish methods using chromatographic principles rather than a totally empirical approach. Another trend noted was a comparatively large effort in chromatographic theory through modeling efforts; these presumably became resurgent with inexpensive and powerful computing tools. Finally, an impressive level of activity was noted through the themes highlighted in this review, and this was particularly true with detectors and field instruments.

  10. Argentine gas system underway for Gas del Estado

    SciTech Connect

    Bosch, H.

    1980-10-01

    Gas del Estado's giant 1074-mile Centro-Oeste pipeline project - designed to ultimately transport over 350 million CF/day of natural gas from the Neuquen basin to the Campo Duran-Buenos Aires pipeline system - is now underway. The COGASCO consortium of Dutch and Argentine companies awarded the construction project will also operate and maintain the system for 15 years after its completion. In addition to the 30-in. pipelines, the agreement calls for a major compressor station at the gas field, three intermediate compressor stations, a gas-treatment plant, liquids-recovery facilities, and the metering, control, communications, and maintenance equipment for the system. Fabricated in Holland, the internally and externally coated pipe will be double-jointed to 80-ft lengths after shipment to Argentina; welders will use conventional manual-arc techniques to weld the pipeline in the field.

  11. Innovative techniques in evaluating the esophagus; imaging of esophageal morphology and function; and drugs for esophageal disease.

    PubMed

    Neumann, Helmut; Neurath, Markus F; Vieth, Michael; Lever, Frederiek M; Meijer, Gert J; Lips, Irene M; McMahon, Barry P; Ruurda, J P; van Hillegersberg, R; Siersema, P; Levine, Marc S; Scharitzer, Martina; Pokieser, Peter; Zerbib, Frank; Savarino, Vincenzo; Zentilin, Patrizia; Savarino, Edoardo; Chan, Walter W

    2013-10-01

    This paper reporting on techniques for esophageal evaluation and imaging and drugs for esophageal disease includes commentaries on endoscopy techniques including dye-based high-resolution and dye-less high-definition endoscopy; the shift from CT to MRI guidance in tumor delineation for radiation therapy; the role of functional lumen imaging in measuring esophageal distensibility; electrical stimulation of the lower esophageal sphincter (LES) as an alternative to fundoduplication for treatment of gastroesophageal reflux disease (GERD); the morphological findings of reflux esophagitis and esophageal dysmotility on double-contrast esophagography; the value of videofluoroscopy in assessing protecting mechanisms in patients with chronic reflux or swallowing disorders; targeting visceral hypersensitivity in the treatment of refractory GERD; and the symptoms and treatments of nighttime reflux and nocturnal acid breakthrough (NAB).

  12. Noncircular orifice holes and advanced fabrication techniques for liquid rocket injectors. Phase 3: Analytical and cold-flow experimental evaluation of rectangular concentric tube injector elements for gas/liquid application. Phase 4: Analytical and experimental evaluation of noncircular injector elements for gas/liquid and liquid/liquid application

    NASA Technical Reports Server (NTRS)

    Mchale, R. M.

    1974-01-01

    Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.

  13. Calibration Techniques

    NASA Astrophysics Data System (ADS)

    Wurz, Peter; Balogh, Andre; Coffey, Victoria; Dichter, Bronislaw K.; Kasprzak, Wayne T.; Lazarus, Alan J.; Lennartsson, Walter; McFadden, James P.

    Calibration and characterization of particle instruments with supporting flight electronics is necessary for the correct interpretation of the returned data. Generally speaking, the instrument will always return a measurement value (typically in form of a digital number), for example a count rate, for the measurement of an external quantity, which could be an ambient neutral gas density, an ion composition (species measured and amount), or electron density. The returned values are used then to derive parameters associated with the distribution such as temperature, bulk flow speed, differential energy flux and others. With the calibration of the instrument the direct relationship between the external quantity and the returned measurement value has to be established so that the data recorded during flight can be correctly interpreted. While calibration and characterization of an instrument are usually done in ground-based laboratories prior to integration of the instrument in the spacecraft, it can also be done in space.

  14. Aseptic technique.

    PubMed

    Bykowski, Tomasz; Stevenson, Brian

    2008-11-01

    This chapter describes common laboratory procedures that can reduce the risk of culture contaminations (sepsis), collectively referred as "aseptic technique." Two major strategies of aseptic work are described: using a Bunsen burner and a laminar flow hood. Both methods are presented in the form of general protocols applicable to a variety of laboratory tasks such as pipetting and dispensing aliquots, preparing growth media, and inoculating, passaging, and spreading microorganisms on petri dishes.

  15. Electrochemical Techniques

    SciTech Connect

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  16. Laser and gas centrifuge enrichment

    SciTech Connect

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  17. One-step multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak by preparative capillary gas chromatography with characterization by spectroscopic and spectrometric techniques and evaluation of biological activity.

    PubMed

    Özek, Gulmira; Ishmuratova, Margarita; Tabanca, Nurhayat; Radwan, Mohammed M; Göger, Fatih; Özek, Temel; Wedge, David E; Becnel, James J; Cutler, Stephen J; Can Başer, Kemal H

    2012-03-01

    Gas chromatographic analysis revealed that the oil of Crinitaria tatarica was rich in sabinene (32.1%), β-pinene (8.8%), and two unknown (M+200) compounds (I) and (II) (21.4% and 3.4%). One-step multiple fractionation of the oil and separation of two unknown constituents were performed using preparative capillary gas chromatography connected to preparative fraction collector system. This combination allowed separation and recover of sufficient quantities of two unknown compounds with high purity from complex oil matrix. Separation conditions (column temperature, cooling temperature, flow rate, injection volume, cut time) were optimized to achieve the best isolation and successful collection. The target compounds were separated from the oil using a HP Innowax (Walt & Jennings Scientific, Wilmington, DE, USA) preparative capillary column in rapid one-step manner with 95.0% purity. Trapping of the isolated compounds in collector system was facilitated by cooling with liquid nitrogen. Structure determination was accomplished by spectral analysis including ultraviolet, nuclear magnetic rezonance, and high-resolution electrospray ionization mass spectrometry. Z- (I) and E-artemidin (II) were isolated for the first time from this species. Crinitaria tatarica oil and Z- (I) and E-artemidin (II) were evaluated for biological activity.

  18. Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sulfur hexafluoride tracer technique (SF**6) is a commonly used method for measuring CH**4 enteric emissions in ruminants. Studies using SF**6 have shown large variation in CH**4 emissions data, inconsistencies in CH**4 emissions across studies, and potential methodological errors. Therefore, th...

  19. Finding and Producing Oil and Gas

    ERIC Educational Resources Information Center

    Geotimes, 1974

    1974-01-01

    Condenses the current research in exploration for gas and oil as described at a symposium at Case Western Reserve University. Briefly discusses reserves, oil exploration and extraction techniques. (BR)

  20. Modified MBE hardware and techniques and role of gallium purity for attainment of two dimensional electron gas mobility >35×106 cm2/V s in AlGaAs/GaAs quantum wells grown by MBE

    NASA Astrophysics Data System (ADS)

    Gardner, Geoffrey C.; Fallahi, Saeed; Watson, John D.; Manfra, Michael J.

    2016-05-01

    We provide evidence that gallium purity is the primary impediment to attainment of ultra-high mobility in a two-dimensional electron gas (2DEG) in AlGaAs/GaAs heterostructures grown by molecular beam epitaxy (MBE). The purity of gallium can be enhanced dramatically by in-situ high temperature outgassing within an operating MBE. Based on analysis of data from an initial growth campaign in a new MBE system and modifications employed for a 2nd growth campaign, we have produced 2DEGs with low temperature mobility μ in excess of 35×106 cm2/V s at density n=3.0×1011/cm2 and μ=18×106 cm2/V s at n=1.1×1011/cm2. Our 2nd campaign data indicate that gallium purity remains the factor currently limiting μ<40×106 cm2/V s. We describe strategies to overcome this limitation.

  1. Gas Turbine Fault Diagnosis Using Probabilistic Neural Networks

    NASA Astrophysics Data System (ADS)

    Loboda, Igor; Olivares Robles, Miguel Angel

    2015-05-01

    Efficiency of gas turbine monitoring systems primarily depends on the accuracy of employed algorithms, in particular, pattern classification techniques for diagnosing gas path faults. In recent investigations many techniques have been applied to classify gas path faults, but recommendations for selecting the best technique for real monitoring systems are still insufficient and often contradictory. In our previous work, three classification techniques were compared under different conditions of gas turbine diagnosis. The comparative analysis has shown that all these techniques yield practically the same accuracy for each comparison case. The present contribution considers a new classification technique, Probabilistic Neural Network (PNN), and we compare it with the techniques previously examined. The results for all comparison cases show that the PNN is not inferior to the other techniques. We recommend choosing the PNN for real monitoring systems because it has an important advantage of providing confidence estimation for every diagnostic decision made.

  2. Ion plating technique improves thin film deposition

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1968-01-01

    Ion plating technique keeps the substrate surface clean until the film is deposited, allows extensive diffusion and chemical reaction, and joins insoluble or incompatible materials. The technique involves the deposition of ions on the substrate surface while it is being bombarded with inert gas ions.

  3. Ambient air contamination: Characterization and detection techniques

    NASA Technical Reports Server (NTRS)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  4. Gas chromatographic analysis of trace gas impurities in tungsten hexafluoride.

    PubMed

    Laurens, J B; de Coning, J P; Swinley, J M

    2001-03-09

    Highly reactive fluorinated gaseous matrices require special equipment and techniques for the gas chromatographic analysis of trace impurities in these gases. The impurities that were analysed at the low-microg/l levels included oxygen, nitrogen, carbon dioxide, carbon monoxide, sulfur hexafluoride and hydrogen. This paper describes the use of a system utilising backflush column switching to protect the columns and detectors in the analysis of trace gas impurities in tungsten hexafluoride. Two separate channels were used for the analysis of H2, O2, N2, CO, CO2 and SF6 impurities with pulsed discharge helium ionisation detection.

  5. Harmonization of the quantitative determination of volatile fatty acids profile in aqueous matrix samples by direct injection using gas chromatography and high-performance liquid chromatography techniques: Multi-laboratory validation study.

    PubMed

    Raposo, Francisco; Borja, Rafael; Cacho, Jesús A; Mumme, Jan; Mohedano, Ángel F; Battimelli, Audrey; Bolzonella, David; Schuit, Anthony D; Noguerol-Arias, Joan; Frigon, Jean-Claude; Peñuela, Gustavo A; Muehlenberg, Jana; Sambusiti, Cecilia

    2015-09-25

    The performance parameters of volatile fatty acids (VFAs) measurements were assessed for the first time by a multi-laboratory validation study among 13 laboratories. Two chromatographic techniques (GC and HPLC) and two quantification methods such as external and internal standard (ESTD/ISTD) were combined in three different methodologies GC/ESTD, HPLC/ESTD and GC/ISTD. Linearity evaluation of the calibration functions in a wide concentration range (10-1000mg/L) was carried out using different statistical parameters for the goodness of fit. Both chromatographic techniques were considered similarly accurate. The use of GC/ISTD, despite showing similar analytical performance to the other methodologies, can be considered useful for the harmonization of VFAs analytical methodology taking into account the normalization of slope values used for the calculation of VFAs concentrations. Acceptance criteria for VFAs performance parameters of the multi-laboratory validation study should be established as follows: (1) instrument precision (RSDINST≤1.5%); (2) linearity (R(2)≥0.998; RSDSENSITIVITY≤4%; REMAX≤8%; REAVER≤ 3%); (3) precision (RSD≤1.5%); (4) trueness (recovery of 97-103%); (5) LOD (≤3mg/L); and (6) LOQ (10mg/L).

  6. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  7. Asymmetric membranes for gas separations

    SciTech Connect

    Finken, H.

    1985-01-01

    Recent membrane developments for gaseous mixture separations are compared to the development of reverse osmosis membranes for water desalination. The goals of these developments have been the search for ideal permselective polymeric materials, techniques for producing ultrathin membrane layers free of imperfections and transforming gelled reverse osmosis membranes into solid gas permeation membranes. A novel approach to meeting the basic requirements of high permselectivity is attempted by altering the physical polymer structure within the membrane prior to application for gas separation. The influence of these physical interactions on membrane properties is presented. 47 references, 11 figures, 6 tables.

  8. EXPERIMENTAL DESIGN OF A FLUID-CONTROLLED HOT GAS VALVE

    DTIC Science & Technology

    Effort is described toward development of a hot gas jet reaction valve utilizing boundary layer techniques to control a high pressure, high...temperature gas stream. The result has been the successful design of a hot gas valve in a reaction control system utilizing fluid-controlled bi-stable

  9. Comparison of air-agitated liquid-liquid microextraction technique and conventional dispersive liquid-liquid micro-extraction for determination of triazole pesticides in aqueous samples by gas chromatography with flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Mogaddam, Mohammad Reza Afshar; Aghdam, Abdollah Abdollahi

    2013-07-26

    Two micro-extraction methods, air-agitated liquid-liquid microextraction (AALLME) and dispersive liquid-liquid microextraction (DLLME), have been compared with each other by applying them for the analysis of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole and triticonazole) in aqueous samples by gas chromatography with flame ionization detection (GC-FID). In the AALLME method, which excludes any disperser solvent, much less volume of organic solvent is used. In order to form fine and dispersed organic droplets in the aqueous phase, the mixture of aqueous sample solution and extraction solvent is repeatedly aspirated and dispensed with a syringe. In the DLLME method, an appropriate mixture of extraction solvent and disperser solvent is rapidly injected by a syringe into the aqueous sample. Effect of the pertinent experimental factors on DLLME (i.e. identity and volume of the extraction and disperser solvents and ionic strength) and on AALLME (identity and volume of the extraction solvent, number of agitations, and ionic strength) were investigated. Under optimal conditions, limits of detection for the five target pesticides obtained by AALLME-GC-FID and DLLME-GC-FID ranged from 0.20 to 1.1ngmL(-1) and 1.9 to 5.9ngmL(-1), respectively. The relative standard deviations (RSDs, n=5) were in the range of 1-4% and 3-5% with the enrichment factors of 449-504 and 79-143 for AALLME-GC-FID and DLLME-GC-FID, respectively. Both of the compared methods are simple, fast, efficient, inexpensive and can be applied to the analysis of the five pesticides in different aqueous samples in which penconazole and hexaconazole were found. For spiked samples, the recoveries were in the ranges of 92-105%, and 92-104% for AALLME and DLLME, respectively.