Science.gov

Sample records for gas engines

  1. Small Gas Engine Repair.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    Instructional materials are provided for a small gas engine course. A list of objectives appears first, followed by a list of internal parts and skills/competencies related to those parts for engine work, ignition and electrical systems, fuel system, crankcase lubrication system, arc welding skills, and gas welding skills. Outlines are provided…

  2. Gas turbine engine

    SciTech Connect

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  3. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  4. Small gas turbine engine technology

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.; Meitner, Peter L.

    1988-01-01

    Performance of small gas turbine engines in the 250 to 1,000 horsepower size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for the lower efficiencies of a smaller engine are well known: component efficients are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it was recognized that a focused effort addressing technologies for small engies was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken at the NASA Lewis Research Center to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. The results of both in-house research and contract studies are presented. In summary, projected fuel savings of 22 to 42 percent could be obtained. Accompanying direct operating cost reductions of 11 to 17 percent, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.

  5. Gas turbine engine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. S. (Inventor)

    1973-01-01

    A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.

  6. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  7. Hot gas engine heater head

    DOEpatents

    Berntell, John O.

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  8. Gas flow path for a gas turbine engine

    DOEpatents

    Montgomery, Matthew D.; Charron, Richard C.; Snyder, Gary D.; Pankey, William W.; Mayer, Clinton A.; Hettinger, Benjamin G.

    2017-03-14

    A duct arrangement in a can annular gas turbine engine. The gas turbine engine has a gas delivery structure for delivering gases from a plurality of combustors to an annular chamber that extends circumferentially and is oriented concentric to a gas turbine engine longitudinal axis for delivering the gas flow to a first row of blades A gas flow path is formed by the duct arrangement between a respective combustor and the annular chamber for conveying gases from each combustor to the first row of turbine blades The duct arrangement includes at least one straight section having a centerline that is misaligned with a centerline of the combustor.

  9. Regenerator for gas turbine engine

    DOEpatents

    Lewakowski, John J.

    1979-01-01

    A rotary disc-type counterflow regenerator for a gas turbine engine includes a disc-shaped ceramic core surrounded by a metal rim which carries a coaxial annular ring gear. Bonding of the metal rim to the ceramic core is accomplished by constructing the metal rim in three integral portions: a driving portion disposed adjacent the ceramic core which carries the ring gear, a bonding portion disposed further away from the ceramic core and which is bonded thereto by elastomeric pads, and a connecting portion connecting the bonding portion to the driving portion. The elastomeric pads are bonded to radially flexible mounts formed as part of the metal rim by circumferential slots in the transition portion and lateral slots extending from one end of the circumferential slots across the bonding portion of the rim.

  10. Baseline automotive gas turbine engine development program

    NASA Technical Reports Server (NTRS)

    Wagner, C. E. (Editor); Pampreen, R. C. (Editor)

    1979-01-01

    Tests results on a baseline engine are presented to document the automotive gas turbine state-of-the-art at the start of the program. The performance characteristics of the engine and of a vehicle powered by this engine are defined. Component improvement concepts in the baseline engine were evaluated on engine dynamometer tests in the complete vehicle on a chassis dynamometer and on road tests. The concepts included advanced combustors, ceramic regenerators, an integrated control system, low cost turbine material, a continuously variable transmission, power-turbine-driven accessories, power augmentation, and linerless insulation in the engine housing.

  11. Multiple volume compressor for hot gas engine

    SciTech Connect

    Stotts, Robert E.

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  12. Control apparatus for hot gas engine

    SciTech Connect

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  13. F-1 Engine Gas Generator Testing

    NASA Video Gallery

    The gas generator from an F-1 engine is test-fired at the Marshall Space Flight Center in Huntsville, Ala., on Jan. 24, 2013. Data from the 30 second test will be used in the development of advance...

  14. Magnetic bearing systems for gas turbine engines

    SciTech Connect

    Iannello, V.

    1995-12-31

    As the thrust-to-weight ratio for next generation gas turbine engines is increased, engine designers are requiring lower weight, higher temperature lubrication systems. Magnetic bearing systems are under development to meet these needs. This paper describes some of the advanced features of these systems.

  15. Small Gas Turbine Engine Technology

    DTIC Science & Technology

    1991-01-01

    Highly advanced small turbine engines will require novel and innovative concepts that minimize the cost and complexity of variable geometry if full...Enhanced computational tools development, verification and application to advanced concepts are rsquired to provide highly advanced, effi- cient... concepts . 3 EFFICIENT ENGINE CYCLES Small vs. large. - Previous investments in technology programs by govern- ment and industry have led to significant

  16. Gas turbine engines with particle traps

    DOEpatents

    Boyd, Gary L.; Sumner, D. Warren; Sheoran, Yogendra; Judd, Z. Daniel

    1992-01-01

    A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

  17. Improved automobile gas turbine engine

    NASA Technical Reports Server (NTRS)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.

    1976-01-01

    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  18. Gas compressor for jet engine

    SciTech Connect

    Hartman, N.W.

    1987-02-24

    A gas compressor is described including: (a) a housing defining a passage therethrough, the housing having an inlet and an outlet; (b) means disposed near the inlet for producing a stream of gas flowing at supersonic velocity in a direction from the inlet toward the outlet; (c) a mixing chamber, internal to the housing, downstream from and in fluid communication with the inlet, which mixing chamber is also in communication with the gas producing means and into which passes the stream of gas; (d) a source of liquid coolant and means for injecting the coolant into the mixing chamber to accomplish modification of stagnation enthalpy and temperature of the gases in the mixing chamber; (e) a converging, diverging nozzle disposed internal to the housing between and in fluid communication with the housing inlet and the mixing chamber for providing a passage for inlet gases from the inlet to the mixing chamber. The supersonic velocity gas stream which flows through the mixing chamber creates a partial vacuum in the mixing chamber causing the inlet gases to flow through the inlet and through the converging, diverging nozzle into the mixing chamber at supersonic velocity; (f) a diffuser internal to the housing disposed downstream of and in fluid communication with the mixing chamber, the diffuser including: (1) a supersonic diffuser defining a chamber of decreasing volume; (2) a subsonic diffuser defining a chamber of increasing volume; and (3) a throat connecting the supersonic diffuser and the subsonic diffuser.

  19. Multi-cylinder hot gas engine

    DOEpatents

    Corey, John A.

    1985-01-01

    A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

  20. Gas Path Sealing in Turbine Engines

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.

    1978-01-01

    A survey of gas path seals is presented with particular attention given to sealing clearance effects on engine component efficiency. The effects on compressor pressure ratio and stall margin are pointed out. Various case-rotor relative displacements, which affect gas path seal clearances, are identified. Forces produced by nonuniform sealing clearances and their effect on rotor stability are discussed qualitatively, and recent work on turbine-blade-tip sealing for high temperature is described. The need for active clearance control and for engine structural analysis is discussed. The functions of the internal-flow system and its seals are reviewed.

  1. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect

    Zigler, B.T.

    2014-03-01

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  2. Mixer Assembly for a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Smith, Lance L. (Inventor); Hautman, Donald J. (Inventor)

    2015-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  3. Wave rotor-enhanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Scott, Jones M.; Paxson, Daniel E.

    1995-01-01

    The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshaft engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-toppings is shown to significantly enhance the specific fuel consumption and specific power of small and intermediate size turboshaft engines. The specific fuel consumption of the wave rotor-enhanced large turbofan engine can be reduced while operating at significantly reduced turbine inlet temperature. The wave rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies tenable technical challenges.

  4. Gas turbine engine with supersonic compressor

    SciTech Connect

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  5. Combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Claus, R. W.

    1985-01-01

    Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.

  6. Rotor assembly for a gas turbine engine

    SciTech Connect

    Antonellis, S. M.; Breunig, R. D.

    1985-07-02

    A rotor assembly for a gas turbine engine is disclosed. The rotor assembly includes a pair of axially spaced apart rotor disks such as the rotor disks. An inner air seal extends axially between the adjacent rotor disks. A member extends axially between the disks to join the disks together and is attached to the inner air seal at a mid span location to restrain the seal against outward movement.

  7. Power control for hot gas engines

    NASA Technical Reports Server (NTRS)

    Macglashan, W. F. (Inventor)

    1980-01-01

    A hot gas engine in which the expander piston of the engine is connected to an expander crankshaft. A displacer piston of the engine is connected to a separate displacer crankshaft which may or may not be coaxial with the expander crankshaft. A phase angle control mechanism used as a power control for changing the phase angle between the expander and displacer crankshaft is located between the two crankshafts. The phase angle control mechanism comprises a differential type mechanism comprised of a pair of gears, as for example, bevel gears, one of which is connected to one end of the expander crankshaft and the other of which is connected to the opposite end of the displacer crankshaft. A mating bevel gear is disposed in meshing engagement with the first two level gears to provide a phase angle control between the two crankshafts. Other forms of differential mechanisms may be used including conventional spur gears connected in a differential type arrangement.

  8. External combustor for gas turbine engine

    DOEpatents

    Santanam, Chandran B.; Thomas, William H.; DeJulio, Emil R.

    1991-01-01

    An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.

  9. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  10. Advanced bristle seals for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Cabe, Jerry L.

    1993-01-01

    A seven month proof-of-concept program was conducted for an advanced bristle seal, called a bush seal, for use in gas turbine engines. This program was performed as a Small Business Innovation Research (SBIR) Phase 1 project. Bush seal specimen and a full ring bush seal were designed, evaluated, and manufactured for testing. An analytical study of the potential of the bush seal relative to a labyrinth seal was conducted. Static and dynamic testing of the bush seal was performed to determine the behavior of the bristles under pressurization and during contact with a rotating labyrinth tooth. Stable behavior of the bristle elements was observed during static pressurization of a full ring bush seal. The dynamic testing of various configurations of bush seal against a rotating labyrinth tooth showed minimal wear of the bristles relative to a conventional labyrinth seal. The development and application of the bush seal concept to gas turbine engines has the potential of improving the engine's performance while decreasing the degradation of the seal performance over time.

  11. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2013-02-19

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  12. Hot gas engine with dual crankshafts

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R. (Inventor)

    1981-01-01

    A hot gas engine, such as a Stirling engine is described which comprises a displacer portion and an expander portion with a heat exchanger connected between them. The expander portion has a piston which is operatively connected to and rotates an expander crankshaft. In like manner, the displacer portion is provided with a piston which is also operatively connected to and rotates with a separate displacer crankshafts. The two crankshafts are synchronized with respect to each other preferably by means of an idler gear. Banks of displacer pistons can also be provided for operation on a common displacer crankshaft and banks of cooperating expander pistons also can be provided for operation on a common expander crankshaft.

  13. Gas Turbine Engine Inlet Wall Design

    NASA Technical Reports Server (NTRS)

    Florea, Razvan Virgil (Inventor); Matalanis, Claude G. (Inventor); Stucky, Mark B. (Inventor)

    2016-01-01

    A gas turbine engine has an inlet duct formed to have a shape with a first ellipse in one half and a second ellipse in a second half. The second half has an upstream most end which is smaller than the first ellipse. The inlet duct has a surface defining the second ellipse which curves away from the first ellipse, such that the second ellipse is larger at an intermediate location. The second ellipse is even larger at a downstream end of the inlet duct leading into a fan.

  14. Heat exchangers of gas turbine engines

    NASA Astrophysics Data System (ADS)

    Baranov, Iu. F.; Mitin, B. M.

    1991-07-01

    The papers presented in this volume focus on methods for studying the thermal and hydraulic characteristics of heat exchangers used in gas turbine engines and methods for the analysis and experimental investigation of the dynamic characteristics of heat exchangers with different coolant flow schemes, including cryogenic heat exchangers. In particular, attention is given to the effect of tube bundle parameters on the dimensional and mass characteristics of high-temperature heat exchangers, a numerical method for calculating the dynamic characteristics of a fuel-air heat exchanger with a buffer cavity, and an experimental study of the air drying process in air coolers.

  15. A Versatile Rocket Engine Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1993-01-01

    The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

  16. Fatigue Reliability of Gas Turbine Engine Structures

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas A.; Mahadevan, Sankaran; Tryon, Robert G.

    1997-01-01

    The results of an investigation are described for fatigue reliability in engine structures. The description consists of two parts. Part 1 is for method development. Part 2 is a specific case study. In Part 1, the essential concepts and practical approaches to damage tolerance design in the gas turbine industry are summarized. These have evolved over the years in response to flight safety certification requirements. The effect of Non-Destructive Evaluation (NDE) methods on these methods is also reviewed. Assessment methods based on probabilistic fracture mechanics, with regard to both crack initiation and crack growth, are outlined. Limit state modeling techniques from structural reliability theory are shown to be appropriate for application to this problem, for both individual failure mode and system-level assessment. In Part 2, the results of a case study for the high pressure turbine of a turboprop engine are described. The response surface approach is used to construct a fatigue performance function. This performance function is used with the First Order Reliability Method (FORM) to determine the probability of failure and the sensitivity of the fatigue life to the engine parameters for the first stage disk rim of the two stage turbine. A hybrid combination of regression and Monte Carlo simulation is to use incorporate time dependent random variables. System reliability is used to determine the system probability of failure, and the sensitivity of the system fatigue life to the engine parameters of the high pressure turbine. 'ne variation in the primary hot gas and secondary cooling air, the uncertainty of the complex mission loading, and the scatter in the material data are considered.

  17. Two-tank working gas storage system for heat engine

    DOEpatents

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  18. Increased use of gas turbines as commercial marine engines

    NASA Astrophysics Data System (ADS)

    Brady, C. O.; Luck, D. L.

    1994-04-01

    Over the last three decades, aeroderivative gas turbines have become established naval ship propulsion engines, but use in the commercial marine field has been more limited. Today, aeroderivative gas turbines are being increasingly utilized as commercial marine engines. The primary reason for the increased use of gas turbines is discussed and several recent GE aeroderivative gas turbine commercial marine applications are described with particular aspects of the gas turbine engine installations detailed. Finally, the potential for future commercial marine aeroderivative gas turbine applications is presented.

  19. Advanced Natural Gas Reciprocating Engines(s)

    SciTech Connect

    Zurlo, James

    2012-04-05

    The ARES program was initiated in 2001 to improve the overall brake thermal efficiency of stationary, natural gas, reciprocating engines. The ARES program is a joint award that is shared by Dresser, Inc., Caterpillar and Cummins. The ARES program was divided into three phases; ARES I (achieve 44% BTE), ARES II (achieve 47% BTE) and ARES III (achieve 50% BTE). Dresser, Inc. completed ARES I in March 2005 which resulted in the commercialization of the APG1000 product line. ARES II activities were completed in September 2010 and the technology developed is currently being integrated into products. ARES III activities began in October 2010. The ARES program goal is to improve the efficiency of natural gas reciprocating engines. The ARES project is structured in three phases with higher efficiency goals in each phase. The ARES objectives are as follows: 1. Achieve 44% (ARES I), 47% (ARES II), and 50% brake thermal efficiency (BTE) as a final ARES III objective 2. Achieve 0.1 g/bhp-hr NOx emissions (with after-treatment) 3. Reduce the cost of the produced electricity by 10% 4. Improve or maintain reliability, durability and maintenance costs

  20. Power control for hot gas engines

    SciTech Connect

    Frosch, R.A.; Macglashan, W.F.

    1980-10-21

    A hot gas engine is described in which the expander piston of the engine is connected to an expander crankshaft. A displacer piston of the engine is connected to a separate displacer crankshaft which may or may not be coaxial with the expander crankshaft. A phase angle control mechanism used as a power control for changing the phase angle between the expander and displacer crankshaft is located between the two crankshafts. The phase angle control mechanism comprises a differential-type mechanism comprised of a pair of gears, as for example, bevel gears, one of which is connected to one end of the expander crankshaft and the other of which is connected to the opposite end of the displacer crankshaft. A mating bevel gear is disposed in meshing engagement with the first two bevel gears to provide a phase-angle control between the two crankshafts. Other forms of differential mechanisms may be used including conventional spur gears connected in a differential type arrangement.

  1. Thermal barrier coatings for gas turbine and diesel engines

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Brindley, William J.; Bailey, M. Murray

    1989-01-01

    The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.

  2. Power control system for a hot gas engine

    DOEpatents

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  3. Increasing interest in the gas engine heat pump

    SciTech Connect

    Not Available

    1980-10-01

    Increasing primary-energy prices and the availability of untapped heat sources have sparked interest in using a high-efficiency natural gas-driven engine as the power source in a heatpump system. This approach is being studied using a 37-kW Waukesha gas engine; one recently completed installation at Schiedam, Netherlands, extracts heat from a nearby waterway and utilizes the gas engine's waste heat as well.

  4. Detail exterior view looking southwest of gas cooling system. Engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail exterior view looking southwest of gas cooling system. Engine house is shown in right background. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  5. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2015-04-28

    A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.

  6. Ceramic Bearings For Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1989-01-01

    Report reviews data from three decades of research on bearings containing rolling elements and possibly other components made of ceramics. Ceramic bearings attractive for use in gas-turbine engines because ceramics generally retain strengths and resistances to corrosion over range of temperatures greater than typical steels used in rolling-element bearings. Text begins with brief description of historical developments in field. Followed by discussion of effects of contact stress on fatigue life of rolling element. Supplemented by figures and tables giving data on fatigue lives of rolling elements made of various materials. Analyzes data on effects of temperature and speed on fatigue lives for several materials and operating conditions. Followed by discussion of related topic of generation of heat in bearings, with consideration of effects of bearing materials, lubrication, speeds, and loads.

  7. Casing for a gas turbine engine

    SciTech Connect

    Wiebe, David J.; Little, David A.; Charron, Richard C.

    2016-07-12

    A casing for a can annular gas turbine engine, including: a compressed air section (40) spanning between a last row of compressor blades (26) and a first row of turbine blades (28), the compressed air section (40) having a plurality of openings (50) there through, wherein a single combustor/advanced duct assembly (64) extends through each opening (50); and one top hat (68) associated with each opening (50) configured to enclose the associated combustor/advanced duct assembly (64) and seal the opening (50). A volume enclosed by the compressed air section (40) is not greater than a volume of a frustum (54) defined at an upstream end (56) by an inner diameter of the casing at the last row of compressor blades (26) and at a downstream end (60) by an inner diameter of the casing at the first row of turbine blades (28).

  8. Exhaust gas recirculation system for an internal combustion engine

    SciTech Connect

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  9. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  10. Small scale rice hull gas producer-gasoline engine performance

    SciTech Connect

    Creamer, K.S.; Jenkins, B.M.; Goss, J.R.; Chancellor, W.J.

    1986-01-01

    In this study, a unique rice hull gas producer fueled a 3.7 kW, single cylinder, gasoline engine. At 3600 RPM and WOT, the engine developed 43% of the rated power on gasoline. Brake thermal efficiency was 16.8%. System thermal efficiency was 9.4%. Optimal spark advance for producer gas was 23/sup 0/.

  11. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  12. Practical Techniques for Modeling Gas Turbine Engine Performance

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.

    2016-01-01

    The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.

  13. Internal combustion engine for natural gas compressor operation

    SciTech Connect

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  14. Airfoil for a gas turbine engine

    DOEpatents

    Liang, George

    2011-05-24

    An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.

  15. On-Board Hydrogen Gas Production System For Stirling Engines

    DOEpatents

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  16. Fuel economy screening study of advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1980-01-01

    Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.

  17. Ceramic regenerator systems development program. [for automobile gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1977-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  18. Topology optimization of a gas-turbine engine part

    NASA Astrophysics Data System (ADS)

    Faskhutdinov, R. N.; Dubrovskaya, A. S.; Dongauzer, K. A.; Maksimov, P. V.; Trufanov, N. A.

    2017-02-01

    One of the key goals of aerospace industry is a reduction of the gas turbine engine weight. The solution of this task consists in the design of gas turbine engine components with reduced weight retaining their functional capabilities. Topology optimization of the part geometry leads to an efficient weight reduction. A complex geometry can be achieved in a single operation with the Selective Laser Melting technology. It should be noted that the complexity of structural features design does not affect the product cost in this case. Let us consider a step-by-step procedure of topology optimization by an example of a gas turbine engine part.

  19. State of technology on hydrogen fueled gas turbine engines

    NASA Technical Reports Server (NTRS)

    Esgar, J. B.

    1974-01-01

    A series of investigations was conducted episodically from the 1950's to the early 1970's to investigate the feasibility and potential problem areas in the use of hydrogen fuel for gas turbine engines. A brief summary and bibliography are presented of the research that has been conducted by NASA, its predecessor NACA, and by industry under U. S. Air Force sponsorship. Although development efforts would be required to provide hydrogen fueled gas turbine engines for aircraft, past research has shown that hydrogen fueled engines are feasible, and except for flight weight liquid hydrogen pumps, there are no problem areas relating to engines requiring significant research.

  20. Particulate Emissions from Gas Turbine Engines. Revision.

    DTIC Science & Technology

    1992-02-01

    with ferrocene additive) Particulate mass emissions from a J79-GE-IOB engine A-48 to A-64 Particulate mass emissions from a J52-P-6B engine A-65 to A...J79-CE-8D engine 4-9 1 with ferrocene additive (Summary of Files 34 through 45) 6 Particulate emissions from the ,J/7-G;E8f) engine 4 - 0l with... ferrocene additive (Summary of Files 46 and 47) 7 Particulate emissions from the J79-GE-8D engine 4-1i with ferrocene additive (Summary of Files 34 through

  1. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  2. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  3. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  4. Feasibility of magnetic bearings for advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Hibner, David; Rosado, Lewis

    1992-01-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  5. Feasibility of magnetic bearings for advanced gas turbine engines

    NASA Astrophysics Data System (ADS)

    Hibner, David; Rosado, Lewis

    1992-05-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  6. Exhaust gas recirculation method for internal combustion engines

    SciTech Connect

    Kawanabe, T.; Kimura, K.; Asakura, M.; Shiina, T.

    1988-07-19

    This patent describes a method of controlling exhaust gas recirculation in an internal combustion engine having an exhaust passage, an intake passage, an exhaust gas recirculating passage communicating the exhaust passage with the intake passage, and exhaust gas recirculating valve; and a transmission having a shift lever. The valve opening of the exhaust gas recirculating valve is controlled in response to operating conditions of the engine so as to regulate the amount of exhaust gas recirculation to values appropriate to the operating conditions of the engine. The method comprising the steps of (1) determining whether or not the engine is in at least one of a predetermined accelerating condition and a predetermined decelerating condition; (2) varying the valve opening of the exhaust gas recirculating valve by a predetermined value when the engine is determined to be in at least one of the predetermined accelerating condition and the predetermined decelerating condition; (3) detecting a position of the shift lever of the transmission; and (4) correcting the predetermined value in accordance with the detected position of the shift lever so as to increase the valve opening of the exhaust gas recirculating valve as the shift lever of the transmission is set to a higher speed position.

  7. Uncooled two-stroke gas engine for heat pump drive

    NASA Astrophysics Data System (ADS)

    Badgley, Patrick; McNulty, Dave; Woods, Melvin

    This paper describes the design and analysis of a family of natural gas fueled, uncooled, two-stroke, lean burn, thermal-ignition engines. The engines were designed specifically to meet the requirements dictated by the commercial heat pump application. The engines have a power output ranging from 15 to 100 kW; a thermal efficiency of 36 percent; a mean time between failure greater than 3 years; and a life expectancy of 45,000 hours. To meet these specifications a family of very simple, uncooled, two-stroke cycle engines were designed which have no belts, gears or pumps. The engines utilize crankcase scavenging, lubrication, stratified fuel introduction to prevent raw fuel from escaping with the exhaust gas, and use of ceramic rolling contact bearings. The Thermal Ignition Combustion System (TICS) is used for ignition to enable the engines to operate with a lean mixture and eliminate spark plug erosion.

  8. Serial cooling of a combustor for a gas turbine engine

    DOEpatents

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  9. Optimization and analysis of gas turbine engine blades

    NASA Technical Reports Server (NTRS)

    Vandenbrink, D. J.; Hopkins, D. A.

    1987-01-01

    A gas turbine engine blade design is optimized using STAEBL. To validate the STAEBL analysis, the optimized blade design is analyzed using MARC, MHOST and BEST3D. The results show good agreement between STAEBL, MARC, and MHOST. The conclusion is that STAEBL can be used to optimize an engine blade design.

  10. Hydraulically actuated gas exchange valve assembly and engine using same

    DOEpatents

    Carroll, Thomas S.; Taylor, Gregory O.

    2002-09-03

    An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

  11. Curved centerline air intake for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Ruehr, W. C.; Younghans, J. L.; Smith, E. B. (Inventor)

    1980-01-01

    An inlet for a gas turbine engine was disposed about a curved centerline for the purpose of accepting intake air that is flowing at an angle to engine centerline and progressively turning that intake airflow along a curved path into alignment with the engine. This curved inlet is intended for use in under the wing locations and similar regions where airflow direction is altered by aerodynamic characteristics of the airplane. By curving the inlet, aerodynamic loss and acoustic generation and emission are decreased.

  12. Method for detecting gas turbine engine flashback

    DOEpatents

    Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

    2012-09-04

    A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

  13. The Combination of Internal-Combustion Engine and Gas Turbine

    NASA Technical Reports Server (NTRS)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  14. Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou (Compiler)

    1999-01-01

    In response to the National Research Council (NRC) recommendations, the Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines was organized by the NASA Lewis Research Center and held on July 29-30, 1997 at the Ohio Aerospace Institute in Cleveland, Ohio. The objective is to develop consensus among experts in the field of aerosols from gas turbine combustors and engines as to important issues and venues to be considered. Workshop participants' expertise included engine and aircraft design, combustion processes and kinetics, atmospheric science, fuels, and flight operations and instrumentation.

  15. Electronic fuel injection for gas engine/compressors

    SciTech Connect

    Wertheimer, H.P.

    1998-12-31

    Conventional gas engine/compressors use cam operated fuel injectors. Fuel delivery to the engine is controlled by throttling the pressure to the fuel gas manifold that feeds the injectors. A mechanical or electronic governor regulates the position of the throttle. Power cylinder balance is adjusted with manual valves in the fuel feed pipes to each injector. This paper describes a recently introduced electronic fuel gas injection (EFGI{trademark}) system that modulates fuel delivery by controlling the open duration of the injectors. Balancing is achieved by electronically apportioning the pulses to the individual injectors. The camshaft, pushrods, rocker arms, cam followers, and balance valves, as well as the separate governor and throttle are not needed when EFGI is applied to two stroke engines. The system`s most striking feature is its ability to rebalance an engine in minutes. Emission reductions stem from balanced power cylinders, and optimized injection timing, which enhances fuel air mixing.

  16. Engine with pulse-suppressed dedicated exhaust gas recirculation

    SciTech Connect

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  17. Turbofan gas turbine engine with variable fan outlet guide vanes

    NASA Technical Reports Server (NTRS)

    Wood, Peter John (Inventor); Zenon, Ruby Lasandra (Inventor); LaChapelle, Donald George (Inventor); Mielke, Mark Joseph (Inventor); Grant, Carl (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  18. Stirling engines for gas fired micro-cogen and cooling

    SciTech Connect

    Lane, N.W.; Beale, W.T.

    1996-12-31

    This paper describes the design and performance of free-piston Stirling engine-alternators particularly suited for use as natural gas fired micro-cogen and cooling devices. Stirling based cogen systems offer significant potential advantages over internal combustion engines in efficiency, to maintain higher efficiencies at lower power levels than than combustion engines significantly expands the potential for micro-cogen. System cost reduction and electric prices higher than the U.S. national average will have a far greater effect on commercial success than any further increase in Stirling engine efficiency. There exist niche markets where Stirling engine efficiency. There exist niche markets where Stirling based cogen systems are competitive. Machines of this design are being considered for production in the near future as gas-fired units for combined heat and power in sufficiently large quantities to assure competitive prices for the final unit.

  19. Gas-Generator Augmented Expander Cycle Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2011-01-01

    An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.

  20. Methods For Delivering Liquified Gas To An Engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2003-09-16

    A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

  1. Methods For Delivering Liquified Gas To An Engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2005-10-11

    A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

  2. Ceramic Composite Development for Gas Turbine Engine Hot Section Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; VANrOODE, mARK

    2006-01-01

    The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.

  3. General Performance Calculations for Gas Turbine Engines

    DTIC Science & Technology

    1946-08-01

    enfilno upon the ideal perfojsnanoe for the cycle given in pera ^-apn 2. It vri.ll be assumed tliat the ty^e of enfiine considered is one in which eo...turbine engines FORGN. TITU : ORIGINATING AGENCY: Power Jets (Research and Development), Ltd. TRANSLATION: ORG’NXtASd U. S.CLASS. I DATE I

  4. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  5. Performance Benefits for Wave Rotor-Topped Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.; Welch, Gerard E.

    1996-01-01

    The benefits of wave rotor-topping in turboshaft engines, subsonic high-bypass turbofan engines, auxiliary power units, and ground power units are evaluated. The thermodynamic cycle performance is modeled using a one-dimensional steady-state code; wave rotor performance is modeled using one-dimensional design/analysis codes. Design and off-design engine performance is calculated for baseline engines and wave rotor-topped engines, where the wave rotor acts as a high pressure spool. The wave rotor-enhanced engines are shown to have benefits in specific power and specific fuel flow over the baseline engines without increasing turbine inlet temperature. The off-design steady-state behavior of a wave rotor-topped engine is shown to be similar to a conventional engine. Mission studies are performed to quantify aircraft performance benefits for various wave rotor cycle and weight parameters. Gas turbine engine cycles most likely to benefit from wave rotor-topping are identified. Issues of practical integration and the corresponding technical challenges with various engine types are discussed.

  6. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250...

  7. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250...

  8. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250...

  9. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250...

  10. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250...

  11. Thermal barrier coatings for gas-turbine engine applications.

    PubMed

    Padture, Nitin P; Gell, Maurice; Jordan, Eric H

    2002-04-12

    Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities.

  12. Ceramic Gas Turbine Engine Demonstration Program

    DTIC Science & Technology

    1982-05-01

    H. C. Mongia , N. R. Nelson, M. W. Robare, J. W. Sanborn, R. E. Sas, J. J. Schuldies, R. A. Solomon, W. H. Spaulding, A. J. Stone, D. J. Tree, F. B...6 H 476 A hybrid rotor concept consisting of ceramic rotor blades inserted into a superalloy disk resulted from 3-D finite-element design analysis. NC...thermodynamic cycle selection through engine development testing. In the analytical phases of preliminary and detailed design, an optimum concept and

  13. Airfoil seal system for gas turbine engine

    SciTech Connect

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  14. Effect of Swirl on an Unstable Single-Element Gas-gas Rocket Engine (Briefing Charts)

    DTIC Science & Technology

    2014-07-01

    Single-Element Gas-gas Rocket Engine 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Matt Harvazinski, Venke...the Apollo program > 2000 full scale tests > $400 million for propellants alone (2010 prices) 4 Approved for public release; distribution unlimited

  15. Fundamental heat transfer research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Metzger, D. E. (Editor)

    1980-01-01

    Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.

  16. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  17. Internal combustion engine for natural gas compressor operation

    SciTech Connect

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  18. Enhanced efficiency of internal combustion engines by employing spinning gas.

    PubMed

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  19. Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas

    SciTech Connect

    Geyko, Vasily; Fisch, Nathaniel

    2014-02-27

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

  20. Advanced controls for airbreathing engines, volume 3: Allison gas turbine

    NASA Technical Reports Server (NTRS)

    Bough, R. M.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.

  1. Micro-combustor for gas turbine engine

    DOEpatents

    Martin, Scott M.

    2010-11-30

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  2. Single shaft automotive gas turbine engine characterization test

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1979-01-01

    An automotive gas turbine incorporating a single stage centrifugal compressor and a single stage radial inflow turbine is described. Among the engine's features is the use of wide range variable geometry at the inlet guide vanes, the compressor diffuser vanes, and the turbine inlet vanes to achieve improved part load fuel economy. The engine was tested to determine its performance in both the variable geometry and equivalent fixed geometry modes. Testing was conducted without the originally designed recuperator. Test results were compared with the predicted performance of the nonrecuperative engine based on existing component rig test maps. Agreement between test results and the computer model was achieved.

  3. Full hoop casing for midframe of industrial gas turbine engine

    DOEpatents

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  4. Gas turbine engine with radial diffuser and shortened mid section

    SciTech Connect

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  5. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the

  6. Compressive stress system for a gas turbine engine

    DOEpatents

    Hogberg, Nicholas Alvin

    2015-03-24

    The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket attached to a rotor, a second bucket attached to the rotor, the first and the second buckets defining a shank pocket therebetween, and a compressive stress spring positioned within the shank pocket.

  7. Nickel base alloy. [for gas turbine engine stator vanes

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J. (Inventor)

    1977-01-01

    A nickel base superalloy for use at temperatures of 2000 F (1095 C) to 2200 F (1205 C) was developed for use as stator vane material in advanced gas turbine engines. The alloy has a nominal composition in weight percent of 16 tungsten, 7 aluminum, 1 molybdenum, 2 columbium, 0.3 zirconium, 0.2 carbon and the balance nickel.

  8. Performance of Gas-Engine Driven Heat Pump Unit

    SciTech Connect

    Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

    2008-09-30

    Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater

  9. Power recovery from turbine and gas engine exhausts

    SciTech Connect

    Lawson, G.L.

    1985-02-01

    Due to the energy consciousness of the United States and to the ever increasing cost of engine fuels, power recovery from turbine and gas engine exhausts has come of age. The addition of waste recovery systems to these exhausts increases the thermal efficiencies of typical systems from the range of 21% to 39% up to the range of 28% to 49%. The new ''expander'' type power recovery system includes a waste heat recovery exchanger which will transfer heat from the engine exhaust into any of numerous thermal fluids. The recovered heat energy now in the thermal fluid medium can, in turn, be used to produce power for any desired application (i.e. gas compression, process refrigeration, electrical power generation, etc.). The particular systems put forth in this paper concentrate on the use of expansion fluids (other than steam) driving ''expanders'' as motive devices.

  10. NO(x) reduction additives for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc

    1993-01-01

    The reduction of oxides of nitrogen (NO(x)) emissions from aircraft gas turbine engines is a vital part of the NASA High Speed Research Program. Emissions reductions are critical to the feasibility of future High Speed Civil Transports which operate at supersonic speeds in the stratosphere. It is believed that large fleets of such aircraft using conventional gas turbine engines would emit levels of NO(x) that would be harmful to the stratospheric ozone layer. Previous studies have shown that NO(x) emissions can be reduced from stationary powerplant exhausts by the addition of additives such as ammonia to the exhaust gases. Since the exhaust residence times, pressures and temperatures may be different for aircraft gas turbines, a study has been made of additive effectiveness for high speed, high altitude flight.

  11. Thermal barrier coating on high temperature industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  12. Oil cooling system for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  13. Non-intrusive measurement of hot gas temperature in a gas turbine engine

    DOEpatents

    DeSilva, Upul P.; Claussen, Heiko; Yan, Michelle Xiaohong; Rosca, Justinian; Ulerich, Nancy H.

    2016-09-27

    A method and apparatus for operating a gas turbine engine including determining a temperature of a working gas at a predetermined axial location within the engine. An acoustic signal is encoded with a distinct signature defined by a set of predetermined frequencies transmitted as a non-broadband signal. Acoustic signals are transmitted from an acoustic transmitter located at a predetermined axial location along the flow path of the gas turbine engine. A received signal is compared to one or more transmitted signals to identify a similarity of the received signal to a transmitted signal to identify a transmission time for the received signal. A time-of-flight is determined for the signal and the time-of-flight for the signal is processed to determine a temperature in a region of the predetermined axial location.

  14. Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Kratz, Jonathan; Guo, Ten-Huei; Litt, Jonathan

    2016-01-01

    Gas turbine compressor and turbine blade tip clearance (i.e., the radial distance between the blade tip of an axial compressor or turbine and the containment structure) is a major contributing factor to gas path sealing, and can significantly affect engine efficiency and operational temperature. This paper details the creation of a generic but realistic high pressure turbine tip clearance model that may be used to facilitate active tip clearance control system research. This model uses a first principles approach to approximate thermal and mechanical deformations of the turbine system, taking into account the rotor, shroud, and blade tip components. Validation of the tip clearance model shows that the results are realistic and reflect values found in literature. In addition, this model has been integrated with a gas turbine engine simulation, creating a platform to explore engine performance as tip clearance is adjusted. Results from the integrated model explore the effects of tip clearance on engine operation and highlight advantages of tip clearance management.

  15. Radial inflow gas turbine engine with advanced transition duct

    DOEpatents

    Wiebe, David J

    2015-03-17

    A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).

  16. Exhaust gas purification system for lean burn engine

    DOEpatents

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  17. Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Paxson, Daniel E.; Wilson, Jack; Synder, Philip H.

    1999-01-01

    The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%. respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine.

  18. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  19. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, T.

    2000-01-01

    Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.

  20. Variable cycle stirling engine and gas leakage control system therefor

    SciTech Connect

    Otters, J.

    1984-12-25

    An improved thermal engine of the type having a displacer body movable between the hot end and the cold end of a chamber for subjecting a fluid within that chamber to a thermodynamic cycle and having a work piston driven by the fluid for deriving a useful work output. The work piston pumps a hydraulic fluid and a hydraulic control valve is connected in line with the hydraulic output conduit such that the flow of hydraulic fluid may be restricted to any desired degree or stopped altogether. The work piston can therefore be controlled by means of a controller device independently from the movement of the displacer such that a variety of engine cycles can be obtained for optimum engine efficiency under varying load conditions. While a Stirling engine cycle is particularly contemplated, other engine cycles may be obtained by controlling the movement of the displacer and work pistons. Also disclosed are a working gas recovery system for controlling leakage of working gas from the displacer chamber, and a compound work piston arrangement for preventing leakage of hydraulic fluid around the work piston into the displacer chamber.

  1. The open-cycle gas-core nuclear rocket engine - Some engineering considerations.

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyk, L. C.

    1971-01-01

    A preliminary design study of a conceptual 6000-MW open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 44,200 lb and a specific impulse of 4400 sec. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel) and the waste heat rejection system were considered conceptually and were sized.

  2. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    NASA Technical Reports Server (NTRS)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  3. Exhaust gas treatment in testing nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.

    1993-01-01

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  4. New trends in combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1983-01-01

    Research on combustion is being conducted to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines, in order to enable engine manufacturers to reduce the development time of these concepts. The elements of the combustion fundamentals program is briefly discussed with examples of research projects described more fully. Combustion research will continue to emphasize the development of analytical models and the support of these models with fundamental flow experiments to assess the models accuracy and shortcomings.

  5. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep; Pfefferle, William

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines

  6. Ceramic bearings for use in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1988-01-01

    Three decades of research by U.S. industry and government laboratories have produced a vast body of data related to the use of ceramic rolling element bearings and bearing components for aircraft gas turbine engines. Materials such as alumina, silicon carbide, titanium carbide, silicon nitride, and a crystallized glass ceramic have been investigated. Rolling-element endurance tests and analysis of full-complement bearings have been performed. Materials and bearing design methods have continuously improved over the years. This paper reviews a wide range of data and analyses with emphasis on how early NASA contributions as well as more recent data can enable the engineer or metallurgist to determine just where ceramic bearings are most applicable for gas turbines.

  7. Sensor and Actuator Needs for More Intelligent Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Schadow, Klaus; Horn, Wolfgang; Pfoertner, Hugo; Stiharu, Ion

    2010-01-01

    This paper provides an overview of the controls and diagnostics technologies, that are seen as critical for more intelligent gas turbine engines (GTE), with an emphasis on the sensor and actuator technologies that need to be developed for the controls and diagnostics implementation. The objective of the paper is to help the "Customers" of advanced technologies, defense acquisition and aerospace research agencies, understand the state-of-the-art of intelligent GTE technologies, and help the "Researchers" and "Technology Developers" for GTE sensors and actuators identify what technologies need to be developed to enable the "Intelligent GTE" concepts and focus their research efforts on closing the technology gap. To keep the effort manageable, the focus of the paper is on "On-Board Intelligence" to enable safe and efficient operation of the engine over its life time, with an emphasis on gas path performance

  8. Operation of gas turbine engines in volcanic ash clouds

    SciTech Connect

    Dunn, M.G.; Baran, A.J.; Miatech, J.

    1996-10-01

    Results are reported for a technology program designed to determine the behavior of gas turbine engines when operating in particle-laden clouds. There are several ways that such clouds may be created, i.e., explosive volcanic eruption, sand storm, military conflict, etc. The response of several different engines, among them the Pratt and Whitney JT3D turbofan, the Pratt and Whitney J57 turbojet, a Pratt and Whitney engine of the JT9 vintage, and an engine of the General Electric CF6 vintage has been determined. The particular damage mode that will be dominant when an engine experiences a dust cloud depends upon the particular engine (the turbine inlet temperature at which the engine is operating when it encounters the dust cloud), the concentration of foreign material in the cloud, and the constituents of the foreign material (the respective melting temperature of the various constituents). Further, the rate at which engine damage will occur depends upon all of the factors given above, and the damage is cumulative with continued exposure. An important part of the Calspan effort has been to identify environmental warning signs and to determine which of the engine parameters available for monitoring by the flight crew can provide an early indication of impending difficulty. On the basis of current knowledge, if one knows the location of a particle-laden cloud, then that region should be avoided. However, if the cloud location is unknown, which is generally the case, then it is important to know how to recognize when an encounter has occurred and to understand how to operate safely, which is another part of the Calspan effort.

  9. Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor)

    2015-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.

  10. Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor)

    2016-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.

  11. The impact of air-fuel mixture composition on SI engine performance during natural gas and producer gas combustion

    NASA Astrophysics Data System (ADS)

    Przybyła, G.; Postrzednik, S.; Żmudka, Z.

    2016-09-01

    The paper summarizers results of experimental tests of SI engine fuelled with gaseous fuels such as, natural gas and three mixtures of producer gas substitute that simulated real producer gas composition. The engine was operated under full open throttle and charged with different air-fuel mixture composition (changed value of air excess ratio). The spark timing was adjusted to obtain maximum brake torque (MBT) for each fuel and air-fuel mixture. This paper reports engine indicated performance based on in-cylinder, cycle resolved pressure measurements. The engine performance utilizing producer gas in terms of indicated efficiency is increased by about 2 percentage points when compared to fuelling with natural gas. The engine power de-rating when producer gas is utilized instead the natural gas, varies from 24% to 28,6% under stoichiometric combustion conditions. For lean burn (λ=1.5) the difference are lower and varies from 22% to 24.5%.

  12. A Comprehensive Prognostics Approach for Predicting Gas Turbine Engine Bearing Life

    DTIC Science & Technology

    2004-06-01

    PROGNOSTICS APPROACH FOR PREDICTING GAS TURBINE ENGINE BEARING LIFE Rolf Orsagh, Michael Roemer, Jeremy Sheldon Impact Technologies, LLC 125...Wright-Patterson AFB, OH 45433 ABSTRACT Development of practical and verifiable prognostic approaches for gas turbine engine bearings will play...unnecessary maintenance on engines that operate under unusually mild conditions. A comprehensive engine bearing prognostic approach is presented

  13. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    SciTech Connect

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  14. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  15. Oil cooling system for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess fuel control requirements back to the aircraft fuel tank. This increases the fuel pump heat sink and decreases the pump temperature rise without the addition of valving other than normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. In one embodiment, a divider valve is provided to take all excess fuel from either upstream or downstream of the fuel filter and route it back to the tanks, the ratio of upstream to downstream extraction being a function of fuel pump discharge pressure.

  16. Acoustic Pyrometry Applied to Gas Turbines and Jet Engines

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.

    1999-01-01

    Internal gas temperature is one of the most fundamental parameters related to engine efficiency and emissions production. The most common methods for measuring gas temperature are physical probes, such as thermocouples and thermistors, and optical methods, such as Coherent Anti Stokes Raman Spectroscopy (CARS) or Rayleigh scattering. Probes are relatively easy to use, but they are intrusive, their output must be corrected for errors due to radiation and conduction, and their upper use temperature is limited. Optical methods are nonintrusive, and they measure some intrinsic property of the gas that is directly related to its temperature (e.g., lifetime or the ratio of line strengths). However, optical methods are usually difficult to use, and optical access is not always available. Lately, acoustic techniques have been receiving some interest as a way to overcome these limitations.

  17. Swirl nozzle for a cooling system in gas turbine engines

    SciTech Connect

    Hook, R.B. Jr.; Montanye, R.D.

    1987-05-19

    This patent describes an improved gas turbine engine of the type comprising an outer casing, axially spaced apart turbine wheels rotatably mounted within the casing and having radially outwardly extending blades mounted thereon. A stationary annular member includes air foil vanes positioned between each of the turbine wheels. The bladed turbine wheels and the stationary annular members define a hot gas path. An annular plenum is defined between the hot gas path and an outer wall of the stationary member and a diaphragm is depending from an inner wall of the stationary member. Air passageways through at least some of the air foil vanes for conducting cooling air from the annular plenum to the diaphragm.

  18. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    PubMed Central

    Tougas, Ian M.; Amani, Matin; Gregory, Otto J.

    2013-01-01

    Temperatures of hot section components in today's gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges) for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today's engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire) thermocouples. PMID:24217356

  19. Metallic and ceramic thin film thermocouples for gas turbine engines.

    PubMed

    Tougas, Ian M; Amani, Matin; Gregory, Otto J

    2013-11-08

    Temperatures of hot section components in today's gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges) for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today's engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire) thermocouples.

  20. Organic positive ions in aircraft gas-turbine engine exhaust

    NASA Astrophysics Data System (ADS)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  1. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  2. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor W. Wong; Tian Tian; Grant Smedley

    2003-08-28

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelines for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.

  3. Development of a gas engine-driven chiller

    NASA Astrophysics Data System (ADS)

    Panora, R.; Koplow, M.; Gehret, J.; Morgan, J.

    1990-05-01

    A development of a natural gas engine-driven chiller with a nominal capacity of 150 tons and an optional engine and exhaust waste-heat recovery system totaling approximately 700,000 Btu/hr is described. The design is based on a conventional vapor-compression cycle, which uses an oil-flooded twin-screw compressor. Three program phases are presented: (1) initial development of the product and assessment of its market viability; (2) final laboratory development and field experiment of an early prototype; and (3) a nationwide field test of 7 production prototypes. The reliability and serviceability of the chiller have met expectations and have proven to be within the bounds of acceptability for this type of equipment.

  4. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  5. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  6. NDE of titanium alloy MMC rings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Percival, Larry D.; Yancey, Robert N.; Kautz, Harold E.

    1993-01-01

    Progress in the processing and fabrication of metal matrix composites (MMC's) requires appropriate mechanical and nondestructive testing methods. These methods are needed to characterize properties, assess integrity, and predict the life of engine components such as compressor rotors, blades, and vanes. Capabilities and limitations of several state-of-the-art nondestructive evaluation (NDE) technologies are investigated for characterizing titanium MMC rings for gas turbine engines. The use of NDE technologies such as x-ray computed tomography, radiography, and ultrasonics in identifying fabrication-related problems that caused defects in components is examined. Acousto-ultrasonics was explored to assess degradation of material mechanical properties by using stress wave factor and ultrasonic velocity measurements before and after the burst testing of the rings.

  7. High-Temperature Magnetic Bearings for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and coordination with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of the bearing times rpm) limit on engine speed and allow active vibration cancellation systems to be used--resulting in a more efficient, "more electric" engine. Finally, the Integrated High-Performance Turbine Engine Technology (IHPTET) Program, a joint Department of Defense/industry program, identified a need for a hightemperature (as high as 1200 F) magnetic bearing that could be demonstrated in a phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator are a series of electrical wire coils that form a series of electric magnets around the circumference. The magnets exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it in the center of the cavity. The engine rotor, bearings, and case form a flexible structure that contains a large number of modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system. Cobalt steel has a curie point greater than 1700 F, and copper wire has a melting point beyond that. Therefore, practical limitations associated with the maximum magnetic field strength in the cobalt steel and the stress in the rotating components limit the temperature to about 1200 F. The objective of this effort is to determine the limits in temperature and speed of a magnetic bearing operating in an engine. Our approach is to use our in

  8. Object-oriented approach for gas turbine engine simulation

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Felder, James L.

    1995-01-01

    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  9. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  10. Ceramic thermal barrier coatings for electric utility gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1986-01-01

    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  11. Fuel premixing module for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Chin, Jushan (Inventor); Rizk, Nader K. (Inventor); Razdan, Mohan K. (Inventor); Marshall, Andre W. (Inventor)

    2005-01-01

    A fuel-air premixing module is designed to reduce emissions from a gas turbine engine. In one form, the premixing module includes a central pilot premixer module with a main premixer module positioned thereround. Each of the portions of the fuel-air premixing module include an axial inflow swirler with a plurality of fixed swirler vanes. Fuel is injected into the main premixer module between the swirler vanes of the axial inflow swirler and at an acute angle relative to the centerline of the premixing module.

  12. Survey of inlet noise reduction concepts for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Lansing, D. L.; Chestnutt, D.

    1976-01-01

    An overview is given of advanced concepts for the suppression of noise in the inlets of gas turbine engines. Inlet geometric and operating parameters are presented and design criteria for suppression methods are discussed. Noise suppression concepts are described, the directions of current research are reviewed. Problem areas requiring further work are indicated. Well established approaches to inlet noise reduction - namely, acoustic liners and high subsonic Mach number inlets which are the focus of considerable current research activity are considered along with the acoustic absorption and watet vapor injection.

  13. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  14. Methods of Si based ceramic components volatilization control in a gas turbine engine

    SciTech Connect

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  15. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

  16. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    EPA Science Inventory

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  17. 40 CFR 1042.670 - Special provisions for gas turbine engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Special provisions for gas turbine... AND VESSELS Special Compliance Provisions § 1042.670 Special provisions for gas turbine engines. The provisions of this section apply for gas turbine engines. (a) Implementation schedule. The requirements...

  18. 40 CFR 1042.670 - Special provisions for gas turbine engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Special provisions for gas turbine... AND VESSELS Special Compliance Provisions § 1042.670 Special provisions for gas turbine engines. The provisions of this section apply for gas turbine engines. (a) Implementation schedule. The requirements...

  19. Gas Engine-Driven Heat Pump with Desiccant Dehumidification

    SciTech Connect

    Shen, Bo; Abu-Heiba, Ahmad

    2017-01-01

    About 40% of total U.S. energy consumption was consumed in residential and commercial buildings. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. This paper describes the development of an innovative natural gas, propane, LNG or bio-gas IC engine-driven heat pump (GHP) with desiccant dehumidification (GHP/DD). This integrated system has higher overall efficiencies than conventional equipment for space cooling, addresses both new and existing commercial buildings, and more effectively controls humidity in humid areas. Waste heat is recovered from the GHP to provide energy for regenerating the desiccant wheel and to augment heating capacity and efficiency. By combining the two technologies, an overall source COP of greater that 1.5 (hot, humid case) can be achieved by utilizing waste heat from the engine to reduce the overall energy required to regenerate the desiccant. Moreover, system modeling results show that the sensible heat ratio (SHR- sensible heat ratio) can be lowered to less 60% in a dedicated outdoor air system application with hot, humid cases.

  20. Catalytic combustion for the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.; Mroz, T. S.

    1977-01-01

    Fuel injectors to provide a premixed prevaporized fuel-air mixture are studied. An evaluation of commercial catalysts was performed as part of a program leading to the demonstration of a low emissions combustor for an automotive gas turbine engine. At an inlet temperature of 800 K, a pressure of 500,000 Pa and a velocity of 20 m/s a multiple-jet injector produced less than + or - 10 percent variation in Jet-A fuel-air ratio and 100 percent varporization with less than 0.5 percent pressure drop. Fifteen catalytic reactors were tested with propane fuel at an inlet temperature of 800 K, a pressure of 300,000 Pa and inlet velocities of 10 to 25 m/s. Seven of the reactors had less than 2 percent pressure drop while meeting emissions goals of 13.6 gCO/kg fuel and 1.64 gHC/kg fuel at the velocities and exit temperatures required for operation in an automotive gas turbine engine. NO sub x emissions at all conditions were less than 0.5 ppm. All tests were performed with steady state conditions.

  1. Sand effects on thermal barrier coatings for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Walock, Michael; Barnett, Blake; Ghoshal, Anindya; Murugan, Muthuvel; Swab, Jeffrey; Pepi, Marc; Hopkins, David; Gazonas, George; Kerner, Kevin

    Accumulation and infiltration of molten/ semi-molten sand and subsequent formation of calcia-magnesia-alumina-silicate (CMAS) deposits in gas turbine engines continues to be a significant problem for aviation assets. This complex problem is compounded by the large variations in the composition, size, and topology of natural sands, gas generator turbine temperatures, thermal barrier coating properties, and the incoming particulate's momentum. In order to simplify the materials testing process, significant time and resources have been spent in the development of synthetic sand mixtures. However, there is debate whether these mixtures accurately mimic the damage observed in field-returned engines. With this study, we provide a direct comparison of CMAS deposits from both natural and synthetic sands. Using spray deposition techniques, 7% yttria-stabilized zirconia coatings are deposited onto bond-coated, Ni-superalloy discs. Each sample is coated with a sand slurry, either natural or synthetic, and exposed to a high temperature flame for 1 hour. Test samples are characterized before and after flame exposure. In addition, the test samples will be compared to field-returned equipment. This research was sponsored by the US Army Research Laboratory, and was accomplished under Cooperative Agreement # W911NF-12-2-0019.

  2. ENGINEERING EVALUATION OF HOT-GAS DESULFURIZATION WITH SULFUR RECOVERY

    SciTech Connect

    G.W. ROBERTS; J.W. PORTZER; S.C. KOZUP; S.K. GANGWAL

    1998-05-31

    Engineering evaluations and economic comparisons of two hot-gas desulfurization (HGD) processes with elemental sulfur recovery, being developed by Research Triangle Institute, are presented. In the first process, known as the Direct Sulfur Recovery Process (DSRP), the SO{sub 2} tail gas from air regeneration of zinc-based HGD sorbent is catalytically reduced to elemental sulfur with high selectivity using a small slipstream of coal gas. DSRP is a highly efficient first-generation process, promising sulfur recoveries as high as 99% in a single reaction stage. In the second process, known as the Advanced Hot Gas Process (AHGP), the zinc-based HGD sorbent is modified with iron so that the iron portion of the sorbent can be regenerated using SO{sub 2} . This is followed by air regeneration to fully regenerate the sorbent and provide the required SO{sub 2} for iron regeneration. This second-generation process uses less coal gas than DSRP. Commercial embodiments of both processes were developed. Process simulations with mass and energy balances were conducted using ASPEN Plus. Results show that AHGP is a more complex process to operate and may require more labor cost than the DSRP. Also capital costs for the AHGP are higher than those for the DSRP. However, annual operating costs for the AHGP appear to be considerably less than those for the DSRP with a potential break-even point between the two processes after just 2 years of operation for an integrated gasification combined cycle (IGCC) power plant using 3 to 5 wt% sulfur coal. Thus, despite its complexity, the potential savings with the AHGP encourage further development and scaleup of this advanced process.

  3. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  4. A study of external fuel vaporization. [for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.; Baker, C. E.

    1981-01-01

    Candidate external vaporizer designs for an aircraft gas turbine engine are evaluated with respect to fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. The selected concept is shown to offer potential gains in engine performance in terms of reduced specific fuel consumption and improved engine thrust/weight ratio. The thrust/weight improvement can be traded against vaporization system weight.

  5. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines

    SciTech Connect

    2009-06-01

    This factsheet describes a research project whose goal is to test and substantiate erosion-resistant (ER) nanocoatings for application on compressor airfoils for gas turbine engines in both industrial gas turbines and commercial aviation.

  6. GasTurbnLab: a multidisciplinary problem solving environment for gas turbine engine design on a network of nonhomogeneous machines

    NASA Astrophysics Data System (ADS)

    Houstis, E. N.; Catlin, A. C.; Tsompanopoulou, P.; Gottfried, D.; Balakrishnan, G.; Su, K.; Rice, J. R.

    2002-12-01

    Gas turbine engines are very complex (with 20-40,000 parts) and have extreme operating conditions. The important physical phenomena take place on scales from 10-100 microns to meters. A complete and accurate dynamic simulation of an entire engine is enormously demanding. Designing a complex system, like a gas turbine engine, will require fast, accurate simulations of computational models from multiple engineering disciplines along with sophisticated optimization techniques to help guide the design process. In this paper, we describe the architecture of an agent-based software framework for the simulation of various aspects of a gas turbine engine, utilizing a "network" of collaborating numerical objects through a set of interfaces among the engine parts. Moreover, we present its implementation using the Grasshopper agent middleware and provide simulation results that show the feasibility of the computational paradigm implemented.

  7. Airfoil for a turbine of a gas turbine engine

    DOEpatents

    Liang, George

    2010-12-21

    An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

  8. Swirling midframe flow for gas turbine engine having advanced transitions

    DOEpatents

    Montgomery, Matthew D.; Charron, Richard C.; Rodriguez, Jose L.; Kusters, Bernhard W.; Morrison, Jay A.; Beeck, Alexander R.

    2016-12-27

    A gas turbine engine can-annular combustion arrangement (10), including: an axial compressor (82) operable to rotate in a rotation direction (60); a diffuser (100, 110) configured to receive compressed air (16) from the axial compressor; a plenum (22) configured to receive the compressed air from the diffuser; a plurality of combustor cans (12) each having a combustor inlet (38) in fluid communication with the plenum, wherein each combustor can is tangentially oriented so that a respective combustor inlet is circumferentially offset from a respective combustor outlet in a direction opposite the rotation direction; and an airflow guiding arrangement (80) configured to impart circumferential motion to the compressed air in the plenum in the direction opposite the rotation direction.

  9. Engineering a new material for hot gas cleanup

    SciTech Connect

    Wheelock, T.D.; Doraiswamy, L.K.; Constant, K.

    2000-03-01

    The engineering development of a promising sorbent for desulfurizing hot coal gas was initiated and preliminary results are presented. The sorbent is calcium-based and is designed to be regenerated and reused repeatedly. It is prepared by pelletizing powdered limestone in a rotating drum pelletizer followed by the application of a coating which becomes a strong, porous shell upon further treatment. The resulting spherical pellets combine the high reactivity of lime with the strength of an inert protective shell. Preliminary work indicates that a satisfactory shell material is comprised of a mixture of ultrafine alumina powder, somewhat coarser alumina particles, and pulverized limestone which upon heating to 1,373 K (1,100 C) becomes a coherent solid through the mechanism of particle sintering. Several batches of core-in-shell pellets were prepared and tested with encouraging results.

  10. Ceramic thermal barrier coatings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Bratton, R. J.; Lau, S. K.; Andersson, C. A.; Lee, S. Y.

    1982-01-01

    The results of studies concerning the high temperature corrosion resistance of ZrO2-Y2O3, ZrO2-MgO, and Ca2SiO4 plasma-sprayed coatings, which may be used as gas turbine engine thermal barriers, are reported. The coatings were evaluated in atmospheric burner rig and pressurized passage tests, using GT No. 2 fuel in pure form and with sodium, sulfur and vanadium corrosive impurities doping. It is found that, while the coatings performed well in both pressurized passage and burner rig tests with pure fuel chemical reactions between the ceramic coatings and combustion gases/condensates resulted in coating degradation with impure fuels. Chemical reactions between the ceramic coatings and vanadium compounds played a critical role in coating degradation.

  11. Combustor for a low-emissions gas turbine engine

    DOEpatents

    Glezer, Boris; Greenwood, Stuart A.; Dutta, Partha; Moon, Hee-Koo

    2000-01-01

    Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

  12. Fuel injector for use in a gas turbine engine

    SciTech Connect

    Wiebe, David J.

    2012-10-09

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  13. Free-piston regenerative hot gas hydraulic engine

    NASA Technical Reports Server (NTRS)

    Beremand, D. G. (Inventor)

    1980-01-01

    A displacer piston which is driven pneumatically by a high-pressure or low-pressure gas is included in a free-piston regenerative hydraulic engine. Actuation of the displacer piston circulates the working fluid through a heater, a regenerator and a cooler. The present invention includes an inertial mass such as a piston or a hydraulic fluid column to effectively store and supply energy during portions of the cycle. Power is transmitted from the working fluid to a hydraulic fluid across a diaphragm or lightweight piston to achieve a hydraulic power out-put. The displacer piston of the present invention may be driven pneumatically, hydraulically or electromagnetically. In addition, the displacer piston and the inertial mass of the present invention may be positioned on the same side of the diaphragm member or may be separated by the diaphragm member.

  14. Axially staged combustion system for a gas turbine engine

    DOEpatents

    Bland, Robert J.

    2009-12-15

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  15. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    NASA Technical Reports Server (NTRS)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  16. LES of an ignition sequence in a gas turbine engine

    SciTech Connect

    Boileau, M.; Staffelbach, G.; Cuenot, B.; Poinsot, T.; Berat, C.

    2008-07-15

    Being able to ignite or reignite a gas turbine engine in a cold and rarefied atmosphere is a critical issue for many manufacturers. From a fundamental point of view, the ignition of the first burner and the flame propagation from one burner to another are phenomena that are usually not studied. The present work is a large eddy simulation (LES) of these phenomena. To simulate a complete ignition sequence in an annular chamber, LES has been applied to the full 360 geometry, including 18 burners. This geometry corresponds to a real gas turbine chamber. Massively parallel computing (700 processors on a Cray XT3 machine) was essential to perform such a large calculation. Results show that liquid fuel injection has a strong influence on the ignition times. Moreover, the rate of flame progress from burner to burner is much higher than the turbulent flame speed due to a major effect of thermal expansion. This flame speed is also strongly modified by the main burner aerodynamics due to the swirled injection. Finally, the variability of the combustor sectors and quadrant ignition times is highlighted. (author)

  17. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    SciTech Connect

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  18. Development of a Gas-Fed Pulse Detonation Research Engine

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Hutt, John (Technical Monitor)

    2001-01-01

    In response to the growing need for empirical data on pulse detonation engine performance and operation, NASA Marshall Space Flight Center has developed and placed into operation a low-cost gas-fed pulse detonation research engine. The guiding design strategy was to achieve a simple and flexible research apparatus, which was inexpensive to build and operate. As such, the engine was designed to operate as a heat sink device, and testing was limited to burst-mode operation with run durations of a few seconds. Wherever possible, maximum use was made of standard off-the-shelf industrial or automotive components. The 5-cm diameter primary tube is about 90-cm long and has been outfitted with a multitude of sensor and optical ports. The primary tube is fed by a coaxial injector through an initiator tube, which is inserted directly into the injector head face. Four auxiliary coaxial injectors are also integrated into the injector head assembly. All propellant flow is controlled with industrial solenoid valves. An automotive electronic ignition system was adapted for use, and spark plugs are mounted in both tubes so that a variety of ignition schemes can be examined. A microprocessor-based fiber-optic engine control system was developed to provide precise control over valve and ignition timing. Initial shakedown testing with hydrogen/oxygen mixtures verified the need for Schelkin spirals in both the initiator and primary tubes to ensure rapid development of the detonation wave. Measured pressure wave time-of-flight indicated detonation velocities of 2.4 km/sec and 2.2 km/sec in the initiator and primary tubes, respectively. These values implied a fuel-lean mixture corresponding to an H2 volume fraction near 0.5. The axial distribution for the detonation velocity was found to be essentially constant along the primary tube. Time-resolved thrust profiles were also acquired for both underfilled and overfilled tube conditions. These profiles are consistent with previous time

  19. Materials Selection in Gas Turbine Engine Design and the Role of Low Thermal Expansion Materials

    NASA Astrophysics Data System (ADS)

    Lagow, Benjamin W.

    2016-11-01

    Materials selection criteria in gas turbine engine design are reviewed, and several design challenges are introduced where selection of low coefficient of thermal expansion (CTE) materials can help improve engine performance and operability. This is followed by a review of the types of low CTE materials that are suitable for gas turbine engine applications, and discussion of their advantages and disadvantages. The primary limitation of low CTE materials is their maximum use temperature; if higher temperature materials could be developed, this could result in novel turbine system designs for gas turbine engines.

  20. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  1. ElectroSpark Deposition Studies for Gas Turbine Engine Component Repair

    DTIC Science & Technology

    2004-07-20

    July 20, 2004 1 ElectroSpark Deposition studies for gas turbine engine component repair Hard Chrome Alternatives Team Canadian Hard...2004 to 00-00-2004 4. TITLE AND SUBTITLE ElectroSpark Deposition studies for gas turbine engine component repair 5a. CONTRACT NUMBER 5b. GRANT...Cornelius, Oregon Norma Price – Mechanical Engineer, Project Manager John Kelley – VP R&D July 20, 2004 3 ElectroSpark Deposition (ESD

  2. Impact of Dissociation and Sensible Heat Release on Pulse Detonation and Gas Turbine Engine Performance

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2001-01-01

    A thermodynamic cycle analysis of the effect of sensible heat release on the relative performance of pulse detonation and gas turbine engines is presented. Dissociation losses in the PDE (Pulse Detonation Engine) are found to cause a substantial decrease in engine performance parameters.

  3. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 2: Users manual

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. A user oriented description of the program input requirements, program output, deck setup, and operating instructions is presented.

  4. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  5. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  6. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data is described. The method estimates the installed performance of aircraft gas turbine engines. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag.

  7. High temperature strain gage technology for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Fichtel, Edward J.; Mcdaniel, Amos D.

    1994-01-01

    This report summarizes the results of a six month study that addressed specific issues to transfer the Pd-13Cr static strain sensor to a gas turbine engine environment. The application issues that were addressed include: (1) evaluation of a miniature, variable potentiometer for use as the ballast resistor, in conjunction with a conventional strain gage signal conditioning unit; (2) evaluation of a metal sheathed, platinum conductor leadwire assembly for use with the three-wire sensor; and (3) subjecting the sensor to dynamic strain cyclic testing to determine fatigue characteristics. Results indicate a useful static strain gage system at all temperature levels up to 1350 F. The fatigue characteristics also appear to be very promising, indicating a potential use in dynamic strain measurement applications. The procedure, set-up, and data for all tests are presented in this report. This report also discusses the specific strain gage installation technique for the Pd-13Cr gage because of its potential impact on the quality of the output data.

  8. Counterrotatable booster compressor assembly for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Moniz, Thomas Ory (Inventor); Orlando, Robert Joseph (Inventor)

    2004-01-01

    A counterrotatable booster compressor assembly for a gas turbine engine having a counterrotatable fan section with a first fan blade row connected to a first drive shaft and a second fan blade row axially spaced from the first fan blade row and connected to a second drive shaft, the counterrotatable booster compressor assembly including a first compressor blade row connected to the first drive shaft and a second compressor blade row interdigitated with the first compressor blade row and connected to the second drive shaft. A portion of each fan blade of the second fan blade row extends through a flowpath of the counterrotatable booster compressor so as to function as a compressor blade in the second compressor blade row. The counterrotatable booster compressor further includes a first platform member integral with each fan blade of the second fan blade row at a first location so as to form an inner flowpath for the counterrotatable booster compressor and a second platform member integral with each fan blade of the second fan blade row at a second location so as to form an outer flowpath for the counterrotatable booster compressor.

  9. An Overview of Magnetic Bearing Technology for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Clark, Daniel J.; Jansen, Mark J.; Montague, Gerald T.

    2004-01-01

    The idea of the magnetic bearing and its use in exotic applications has been conceptualized for many years, over a century, in fact. Patented, passive systems using permanent magnets date back over 150 years. More recently, scientists of the 1930s began investigating active systems using electromagnets for high-speed ultracentrifuges. However, passive magnetic bearings are physically unstable and active systems only provide proper stiffness and damping through sophisticated controllers and algorithms. This is precisely why, until the last decade, magnetic bearings did not become a practical alternative to rolling element bearings. Today, magnetic bearing technology has become viable because of advances in micro-processing controllers that allow for confident and robust active control. Further advances in the following areas: rotor and stator materials and designs which maximize flux, minimize energy losses, and minimize stress limitations; wire materials and coatings for high temperature operation; high-speed micro processing for advanced controller designs and extremely robust capabilities; back-up bearing technology for providing a viable touchdown surface; and precision sensor technology; have put magnetic bearings on the forefront of advanced, lubrication free support systems. This paper will discuss a specific joint program for the advancement of gas turbine engines and how it implies the vitality of magnetic bearings, a brief comparison between magnetic bearings and other bearing technologies in both their advantages and limitations, and an examination of foreseeable solutions to historically perceived limitations to magnetic bearing.

  10. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  11. Low NO(x) potential of gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1990-01-01

    The purpose is to correlate emission levels of gas turbine engines. The predictions of NO(x) emissions are based on a review of the literature of previous low NO(x) combustor programs and analytical chemical kinetic calculations. Concepts included in the literature review consisted of lean-premixed-prevaporized (LPP), rich burn/quick quench/lean burn (RQL), and direct injection. The NO(x) emissions were found to be an exponential function of adiabatic combustion temperature over a wide range of inlet temperatures, pressures and (lean) fuel-air ratios. A simple correlation of NO(x) formation with time was not found. The LPP and direct injection (using gaseous fuels) concepts have the lowest NO(x) emissions of the three concepts. The RQL data has higher values of NO(x) than the LPP concept, probably due to the stoichiometric temperatures and NO(x) production that occur during the quench step. Improvements in the quick quench step could reduce the NO(x) emissions to the LPP levels. The low NO(x) potential of LPP is offset by the operational disadvantages of its narrow stability limits and its susceptibility to autoignition/flashback. The Rich-Burn/Quick-Quench/Lean-Burn (RQL) and the direct injection concepts have the advantage of wider stability limits comparable to conventional combustors.

  12. Gas core nuclear thermal rocket engine research and development in the former USSR

    SciTech Connect

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept.

  13. 46 CFR 11.510 - Service requirements for national endorsement as chief engineer of steam, motor, and/or gas...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... engineer of steam, motor, and/or gas turbine-propelled vessels. 11.510 Section 11.510 Shipping COAST GUARD... endorsement as chief engineer of steam, motor, and/or gas turbine-propelled vessels. (a) The minimum service required to qualify an applicant for endorsement as chief engineer of steam, motor, and/or gas...

  14. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the...

  15. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the...

  16. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the...

  17. The industrial RB211-24 gas engine: initial experience in service offshore

    SciTech Connect

    Soinne, P.E.

    1983-01-01

    The Industrial RB211 gas engine is derived from the RB211 turbofan aero engine which in its various marks powers all Lockheed Tristars and a proportion of Boeing 747 airliners. The design and development programme of the industrial engine commenced in 1972. It arose out of an earlier feasibility study for a second generation marine propulsion engine. The industrial programme was specifically aimed at the production of a gas-fuelled base load machine for gas pumping and transmission applications. The engine was designated the Industrial RB211-22, being derived from the RB211-22 aero engine, the single mark of engine available at that time. The first field trials gas generator entered service in late 1974 in a transmission pipeline gas pumping application in Canada. Since then the RB211-22 engine has accumulated over 140,000 hours of operation in twelve onshore installations. Design and development of an uprated version of the engine began in early 1976. This was designated RB211-24, since it utilized the improved turbine technology of the RB211-524 aero engine introduced for the Boeing 747 and later versions of Tristar. With offshore applications in mind, the validation of improved corrosion resistant turbine materials was an integral part of the development programme. In consequence of this, the engine was available for both offshore and onshore applications as released for production. The first RB211-24 engines entered service in late 1980 in offshore applications on the Leman AK platform and another North Sea Gas production platform. There are now a total of fifteen RB211-24 installations which have accumulated over 53,000 hours of operation both onshore and offshore.

  18. Potential impact of future fuels on small gas turbine engines

    SciTech Connect

    Saintsbury, J.A.; Sampath, P.

    1982-01-01

    A review is made of the consequences of shortages of aviation gasoline on small aircraft turbine engines and the air traffic. Since the future of fuels is uncertain and supplies deplete the design modification for alternate fuels are considered. The need to develop approximate engines is emphasized. Data are given of some experimental engines with fuels not currently considered as aviation fuels. 11 refs.

  19. CMC Technology Advancements for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2013-01-01

    CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.

  20. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  1. An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis

    SciTech Connect

    Kariolis, Mihalis S.; Miao, Yu Rebecca; Jones, Douglas S.; Kapur, Shiven; Mathews, Irimpan I.; Giaccia, Amato J.; Cochran, Jennifer R.

    2014-09-21

    Aberrant signaling through the Axl receptor tyrosine kinase has been associated with a myriad of human diseases, most notably metastatic cancer, identifying Axl and its ligand Gas6 as important therapeutic targets. Using rational and combinatorial approaches, we engineered an Axl ‘decoy receptor’ that binds Gas6 with high affinity and inhibits its function, offering an alternative approach from drug discovery efforts that directly target Axl. Four mutations within this high affinity Axl variant caused structural alterations in side chains across the Gas6/Axl binding interface, stabilizing a conformational change on Gas6. When reformatted as an Fc-fusion, the engineered decoy receptor bound to Gas6 with femtomolar affinity, an 80-fold improvement compared to the wild-type Axl receptor, allowing effective sequestration of Gas6 and specific abrogation of Axl signaling. Additionally, increased Gas6 binding affinity was critical and correlative with the ability of decoy receptors to potently inhibit metastasis and disease progression in vivo.

  2. Thermal stress analysis of a graded zirconia/metal gas path seal system for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Taylor, C. M.

    1977-01-01

    A ceramic/metallic aircraft gas turbine outer gas path seal designed to enable improved engine performance is studied. Flexible numerical analysis schemes suitable for the determination of transient temperature profiles and thermal stress distributions in the seal are outlined. An estimation of the stresses to which a test seal is subjected during simulated engine deceleration from sea level takeoff to idle conditions is made. Experimental evidence has indicated that the surface layer of the seal is probably subjected to excessive tensile stresses during cyclic temperature loading. This assertion is supported by the analytical results presented. Brief consideration is given to means of mitigating this adverse stressing.

  3. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    NASA Technical Reports Server (NTRS)

    Zerkle, Ronald D.; Prakash, Chander

    1995-01-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  4. ElectroSpark Deposition Studies for Gas Turbine Engine Component Repair

    DTIC Science & Technology

    2005-03-17

    March 17, 2005 1 ElectroSpark Deposition studies for gas turbine engine component repair Norma Price Advanced Surfaces and Processes, Inc. HCAT...4. TITLE AND SUBTITLE ElectroSpark Deposition studies for gas turbine engine component repair 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM... ElectroSpark Deposition (ESD) as technically feasible and commercially viable for a production-scale process, and to perform the tests necessary

  5. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 3: Library of maps

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. The use of two data base files to represent the engine and the inlet/nozzle/aftbody performance characteristics is discussed. The existing library of performance characteristics for inlets and nozzle/aftbodies and an example of the 1000 series of engine data tables is presented.

  6. Simulation and testing of new control methods for achieving low emissions in gas turbine engines

    SciTech Connect

    Boyce, P.M.

    1995-09-01

    In the past few years, development of clean burning land-based industrial gas turbines have been the focus for many manufacturers. This effort lead to the development of the LM6000 dry low emission engine. As a part of the control system, a real time mathematical model of the engine was included. This model is used to control the air and fuel low paths to the engine`s new combustor. A real time simulator was needed to simulate the control system hardware and engine. A brief discussion and some basic concepts of the combustor, along with a full discussion on the development of the real time simulator, follows in this paper.

  7. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  8. Gas absorption/desorption temperature-differential engine

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1981-01-01

    Continuously operating compressor system converts 90 percent of gas-turbine plant energy to electricity. Conventional plants work in batch mode, operating at 40 percent efficiency. Compressor uses metal hydride matrix on outside of rotating drum to generate working gas, hydrogen. Rolling valve seals allow continuous work. During operation, gas is absorbed, releasing heat, and desorbed with heat gain. System conserves nuclear and fossil fuels, reducing powerplant capital and operating costs.

  9. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect

    1998-07-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

  10. Geometry and Simulation Results for a Gas Turbine Representative of the Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Beach, Tim; Turner, Mark; Siddappaji, Kiran; Hendricks, Eric S.

    2015-01-01

    This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.

  11. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  12. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  13. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  14. The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schweitzer, P H; Deluca, Frank, Jr

    1942-01-01

    A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.

  15. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey

    NASA Technical Reports Server (NTRS)

    Cairelli, J.; Horvath, D.

    1981-01-01

    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  16. CHaracteristics of Two-Stage Absorption Heat Pump Cycler Driven by Waste Heat From Gas Engine

    NASA Astrophysics Data System (ADS)

    Kojima, Hiroshi; Akisawa, Atsushi; Kashiwagi, Takao

    Recently the energy conservation is expected from the global environment protection view point. In this study, a new concept of a compound gas cooling system using treated sewage water combining a gas engine heat pump and an absorption heat pump is proposed. In this system, the absorption heat pump is driven by the waste heat from the gas engine. In this paper, first, the best absorption cycle for this absorption heat pump is selected for the cooling and heating mode. And finally the simulation model of the two-stage absorption heat pumps for heating mode is demonstrated and the static characteristics are clarified.

  17. Lean-rich axial stage combustion in a can-annular gas turbine engine

    SciTech Connect

    Laster, Walter R.; Szedlacsek, Peter

    2016-06-14

    An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustion in the gas turbine engine (10) is also presented.

  18. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  19. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  20. Turbine engine exhaust gas measurements using in-situ FT-IR emission/transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Marran, David F.; Cosgrove, Joseph E.; Neira, Jorge; Markham, James R.; Rutka, Ronald; Strange, Richard R.

    2001-02-01

    12 An advanced multiple gas analyzer based on in-situ Fourier transform infrared spectroscopy has been used to successfully measure the exhaust plume composition and temperature of an operating gas turbine engine at a jet engine test stand. The sensor, which was optically coupled to the test cell using novel broadband hollow glass waveguides, performed well in this harsh environment (high acoustical noise and vibration, considerable temperature swings in the ambient with engine operation), providing quantitative gas phase information. Measurements were made through the diameter of the engine's one meter exhaust plume, about 0.7 meters downstream of the engine exit plane. The sensor performed near simultaneous infrared transmission and infrared emission measurements through the centerline of the plume. Automated analysis of the emission and transmission spectra provided the temperature and concentration information needed for engine tuning and control that will ensure optimal engine operation and reduced emissions. As a demonstration of the utility and accuracy of the technique, carbon monoxide, nitric oxide, water, and carbon dioxide were quantified in spite of significant variations in the exhaust gas temperature. At some conditions, unburned fuel, particulates (soot/fuel droplets), methane, ethylene and aldehydes were identified, but not yet quantified.

  1. More Intelligent Gas Turbine Engines (Des turbomoteurs plus intelligents)

    DTIC Science & Technology

    2009-04-01

    and open systems communications will reverse the growing trend of increasing ratio of control system weight to engine weight and also will be a major...distributed control architecture to reduce the weight ratio of control system to engine and simplify the complexity of a centralized FADEC. The...stalled compressor and can be traded against higher compressor efficiency. Possible AFC devices are deployable vortex generators, pulsed micro jets or an

  2. Integrated gas analyzer for complete monitoring of turbine engine test cells.

    PubMed

    Markham, James R; Bush, Patrick M; Bonzani, Peter J; Scire, James J; Zaccardi, Vincent A; Jalbert, Paul A; Bryant, M Denise; Gardner, Donald G

    2004-01-01

    Fourier transform infrared (FT-IR) spectroscopy is proving to be reliable and economical for the quantification of many gas-phase species during testing and development of gas turbine engines in ground-based facilities such as sea-level test cells and altitude test cells. FT-IR measurement applications include engine-generated exhaust gases, facility air provided as input to engines, and ambient air in and around test cells. Potentially, the traditionally used assembly of many gas-specific single gas analyzers will be eliminated. However, the quest for a single instrument capable of complete gas-phase monitoring at turbine engine test cells has previously suffered since the FT-IR method cannot measure infrared-inactive oxygen molecules, a key operational gas to both air-breathing propulsion systems and test cell personnel. To further the quest, the FT-IR sensor used for the measurements presented in this article was modified by integration of a miniature, solid-state electrochemical oxygen sensor. Embedded in the FT-IR unit at a location near the long-effective-optical-path-length gas sampling cell, the amperometric oxygen sensor provides simultaneous, complementary information to the wealth of spectroscopic data provided by the FT-IR method.

  3. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  4. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    SciTech Connect

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  5. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in

  6. Vacuum rated flow controllers for inert gas ion engines

    NASA Technical Reports Server (NTRS)

    Pless, L. C.

    1987-01-01

    Electrical propulsion systems which use a gas as a propellant require a gas flowmeter/controller which is capable of operating in a vacuum environment. The presently available instruments in the required flow ranges are designed and calibrated for use at ambient pressure. These instruments operate by heating a small diameter tube through which the gas is flowing and then sensing the change in temperature along the length of the tube. This temperature change is a function of the flow rate and the gas heat capacity. When installed in a vacuum, the change in the external thermal characteristics cause the tube to overheat and the temperature sensors are then operating outside their calibrated range. In addition, the variation in heat capacity with temperature limit the accuracy obtainable. These problems and the work in progress to solve them are discussed.

  7. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  8. Application and life prediction of titanium alloys in military gas turbine engines

    SciTech Connect

    Cowles, B.A.

    1999-07-01

    Since initial introduction in the 1950's, application of titanium alloys has steadily increased in aircraft gas turbine engines. The low density and high specific strength of titanium alloys have contributed significantly toward attainment of today's high thrust, lightweight, fuel-efficient engines. Today, titanium alloys comprise more than one-third of total engine weight, much of it in structurally critical parts such as fan and compressor rotors and airfoils, and engine mainframe structures. Materials processing, and structural design, durability, and life prediction practices have continuously evolved to facilitate such applications. This paper presents an overview of current titanium applications in gas turbine engines, the current durability and life prediction challenges and areas that appear significant for future applications.

  9. Influence of quantum degeneracy on the performance of a gas Stirling engine cycle

    NASA Astrophysics Data System (ADS)

    He, Ji-Zhou; Mao, Zhi-Yuan; Wang, Jian-Hui

    2006-09-01

    Based on the state equation of an ideal quantum gas, the regenerative loss of a Stirling engine cycle working with an ideal quantum gas is calculated. Thermal efficiency of the cycle is derived. Furthermore, under the condition of quantum degeneracy, several special thermal efficiencies are discussed. Ratios of thermal efficiencies versus the temperature ratio and volume ratio of the cycle are made. It is found that the thermal efficiency of the cycle not only depends on high and low temperatures but also on maximum and minimum volumes. In a classical gas state the thermal efficiency of the cycle is equal to that of the Carnot cycle. In an ideal quantum gas state the thermal efficiency of the cycle is smaller than that of the Carnot cycle. This will be significant for deeper understanding of the gas Stirling engine cycle.

  10. The effect of prechambers on flame propagation in a natural-gas powered engine

    SciTech Connect

    Tonse, S.R.; Cloutman, L.D.

    1995-08-01

    Large-bore two-stroke natural-gas-fueled engines commonly are located along natural gas pipelines, siphoning off a small portion of gas from the pipeline for use as a fuel, in order to pump the remaining gas along the pipeline. The KIVA-3 computational fluid dynamics program was used to simulate the compression stroke, combustion, and power stroke in a natural-gas-fueled engine by solving the full Navier-Stokes equations. These calculations include cases with and without prechambers. Prechamber stoichiometry and spark locations were independently varied with the goal of understanding how various prechamber parameters influence the ignition of the fuel-air charge in the main chamber. The goal is to allow the use of very lean main-chamber charges to minimize nitrogen oxide (NO{sub x}) production. These calculations were performed in both two and three dimensions.

  11. Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is managing a task to numerically simulate overnight, on a parallel computing testbed, the aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The model solves the three-dimensional Navier- Stokes flow equations through all the components within the LPS, as well as the external flow around the engine nacelle. The LPS modeling task is being performed by Allison Engine Company under the Small Engine Technology contract. The large computer simulation was evaluated on networked computer systems using 8, 16, and 32 processors, with the parallel computing efficiency reaching 75 percent when 16 processors were used.

  12. Reduction of aircraft gas turbine engine pollutant emissions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.

    1978-01-01

    To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.

  13. Structures, performance, benefit, cost study. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Feder, E.

    1981-01-01

    Aircraft engine structures were studied to identify the advanced structural technologies that would provide the most benefits to future aircraft operations. A series of studies identified engine systems with the greatest potential for improvements. Based on these studies, six advanced generic structural concepts were selected and conceptually designed. The benefits of each concept were quantitatively assessed in terms of thrust specific fuel consumption, weight, cost, maintenance cost, fuel burned and direct operating cost plus interest. The probability of success of each concept was also determined. The concepts were ranked and the three most promising were selected for further study which consisted of identifying and comprehensively outlining the advanced technologies required to develop these concepts for aircraft engine application. Analytic, fabrication, and test technology developments are required. The technology programs outlined emphasize the need to provide basic, fundamental understanding of technology to obtain the benefit goals.

  14. Gas engine bottoming cycles with ammonia-water mixtures as working fluid

    SciTech Connect

    Jonsson, M.; Thorin, E.; Svedberg, G.

    1999-07-01

    Gas engines and diesel engines can be used for power generation in small-scale industrial and utility power plants. A bottoming cycle recovering heat from the exhaust gas, charge air, jacket water and lubrication oil can increase the power output of a gas or diesel engine power plant. The current study investigates ammonia-water power cycles as bottoming cycles to natural gas fired gas engines. The engines used in the calculations are 16V25SG and 18V34SG from Wartsila NSD. The configurations of the bottoming processes have been changed in order to achieve better temperature matching in the heat exchangers. The ammonia-water cycles have been compared to a simple Rankine steam cycle. All cycles have been optimized to give maximum power output. The ammonia-water bottoming cycles generate 18--54% more power than a simple Rankine steam cycle. An economic estimation of the bottoming cycles shows that the extra equipment needed for an ammonia-water cycle may be justified by the extra amount of power generated.

  15. Gas Turbine Engine Carbon Oil Seals Computerized Assembly

    NASA Technical Reports Server (NTRS)

    Lee, Robert

    2006-01-01

    In a bearing compartment there are a series of parts when assembled determine the location of the bearing and seal as related to the centerline of rotation. We see part datums that do not establish A coincident path from the bearing to the seal. High engine vibration can cause severe oil leakage. The inability of the seal to respond fast enough to the rotating element Radial Seal: Sensitive to housing air pressure Sensitive to seal runout ? Axial Seal: Very sensitive to seal perpendicularity to shaft. Goals include: 1) Repeatable assembly process; 2) Accurate assembly process; 3) Minimize seal runout; 4) Design to engine centerline of rotation, i.e. bearings.

  16. Stirling Engine Natural Gas Combustion Demonstration Program. Final report, October 1989-January 1991

    SciTech Connect

    Ernst, W.; Moryl, J.; Riecke, G.

    1991-02-01

    Fueled on natural gas, the Stirling engine is an inherently clean, quiet, and efficient engine. With increasing environmental concern for air quality and the increasingly more stringent requirements for low engine exhaust emissions, the Stirling engine may be an attractive alternative to internal combustion (IC) engines. The study has demonstrated that ultra low emissions can be attained with a Stirling-engine-driven electric generator configured to burn natural gas. Combustion parameters were optimized to produce the lowest possible exhaust emissions for a flame-type combustor without compromising overall engine thermal efficiency. A market application survey and manufacturing cost analysis indicate that a market opportunity potentially exists in the volumes needed to economically manufacture a newly designed Stirling engine (Mod III) for stationary applications and hybrid vehicles. The translation of such potential markets into actual markets does, however, pose difficult challenges as substantial investments are required. Also, the general acceptance of a new engine type by purchasers requires a considerable amount of time.

  17. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  18. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  19. Overview of advanced Stirling and gas turbine engine development programs and implications for solar thermal electrical applications

    SciTech Connect

    Alger, D.

    1984-03-01

    The DOE automotive advanced engine development projects managed by the NASA Lewis Research Center were described. These included one Stirling cycle engine development and two air Brayton cycle development. Other engine research activities included: (1) an air Brayton engine development sponsored by the Gas Research Institute, and (2) plans for development of a Stirling cycle engine for space use. Current and potential use of these various engines with solar parabolic dishes were discussed.

  20. Overview of Advanced Stirling and Gas Turbine Engine Development Programs and Implications for Solar Thermal Electrical Applications

    NASA Technical Reports Server (NTRS)

    Alger, D.

    1984-01-01

    The DOE automotive advanced engine development projects managed by the NASA Lewis Research Center were described. These included one Stirling cycle engine development and two air Brayton cycle development. Other engine research activities included: (1) an air Brayton engine development sponsored by the Gas Research Institute, and (2) plans for development of a Stirling cycle engine for space use. Current and potential use of these various engines with solar parabolic dishes were discussed.

  1. Tracking and Control of Gas Turbine Engine Component Damage/Life

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.; Wu, Dong N.; Bryg, David J.

    2003-01-01

    This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.

  2. Temperature distributions and thermal stresses in a graded zirconia/metal gas path seal system for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Taylor, C. M.; Bill, R. C.

    1978-01-01

    A ceramic/metallic aircraft gas turbine outer gas path seal designed for improved engine performance was studied. Transient temperature and stress profiles in a test seal geometry were determined by numerical analysis. During a simulated engine deceleration cycle from sea-level takeoff to idle conditions, the maximum seal temperature occurred below the seal surface, therefore the top layer of the seal was probably subjected to tensile stresses exceeding the modulus of rupture. In the stress analysis both two- and three-dimensional finite element computer programs were used. Predicted trends of the simpler and more easily usable two-dimensional element programs were borne out by the three-dimensional finite element program results.

  3. COMETBOARDS Can Optimize the Performance of a Wave-Rotor-Topped Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.

    1997-01-01

    A wave rotor, which acts as a high-technology topping spool in gas turbine engines, can increase the effective pressure ratio as well as the turbine inlet temperature in such engines. The wave rotor topping, in other words, may significantly enhance engine performance by increasing shaft horse power while reducing specific fuel consumption. This performance enhancement requires optimum selection of the wave rotor's adjustable parameters for speed, surge margin, and temperature constraints specified on different engine components. To examine the benefit of the wave rotor concept in engine design, researchers soft coupled NASA Lewis Research Center's multidisciplinary optimization tool COMETBOARDS and the NASA Engine Performance Program (NEPP) analyzer. The COMETBOARDS-NEPP combined design tool has been successfully used to optimize wave-rotor-topped engines. For illustration, the design of a subsonic gas turbine wave-rotor-enhanced engine with four ports for 47 mission points (which are specified by Mach number, altitude, and power-setting combinations) is considered. The engine performance analysis, constraints, and objective formulations were carried out through NEPP, and COMETBOARDS was used for the design optimization. So that the benefits that accrue from wave rotor enhancement could be examined, most baseline variables and constraints were declared to be passive, whereas important parameters directly associated with the wave rotor were considered to be active for the design optimization. The engine thrust was considered as the merit function. The wave rotor engine design, which became a sequence of 47 optimization subproblems, was solved successfully by using a cascade strategy available in COMETBOARDS. The graph depicts the optimum COMETBOARDS solutions for the 47 mission points, which were normalized with respect to standard results. As shown, the combined tool produced higher thrust for all mission points than did the other solution, with maximum benefits

  4. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  5. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  6. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  7. A method to estimate weight and dimensions of small aircraft propulsion gas turbine engines: User's guide

    NASA Technical Reports Server (NTRS)

    Hale, P. L.

    1982-01-01

    The weight and major envelope dimensions of small aircraft propulsion gas turbine engines are estimated. The computerized method, called WATE-S (Weight Analysis of Turbine Engines-Small) is a derivative of the WATE-2 computer code. WATE-S determines the weight of each major component in the engine including compressors, burners, turbines, heat exchangers, nozzles, propellers, and accessories. A preliminary design approach is used where the stress levels, maximum pressures and temperatures, material properties, geometry, stage loading, hub/tip radius ratio, and mechanical overspeed are used to determine the component weights and dimensions. The accuracy of the method is generally better than + or - 10 percent as verified by analysis of four small aircraft propulsion gas turbine engines.

  8. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus

  9. Melt-infiltrated Sic Composites for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay V.

    2004-01-01

    SiC-SiC ceramic matrix composites (CMCs) manufactured by the slurry -cast melt-infiltration (MI) process are leading candidates for many hot-section turbine engine components. A collaborative program between Goodrich Corporation and NASA-Glenn Research Center is aimed at determining and optimizing woven SiC/SiC CMC performance and reliability. A variety of composites with different fiber types, interphases and matrix compositions have been fabricated and evaluated. Particular focus of this program is on the development of interphase systems that will result in improved intermediate temperature stressed-oxidation properties of this composite system. The effect of the different composite variations on composite properties is discussed and, where appropriate, comparisons made to properties that have been generated under NASA's Ultra Efficient Engine Technology (UEET) Program.

  10. Control method for turbocharged diesel engines having exhaust gas recirculation

    DOEpatents

    Kolmanovsky, Ilya V.; Jankovic, Mrdjan J; Jankovic, Miroslava

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  11. Thermal Energy Recovery in Gas Turbine Engine Test Cells.

    DTIC Science & Technology

    1983-11-01

    IN II NAVAVNWPNSFAC Sec Of fr St. Mawgan, England: Wpns Offr. St. Ma~gan. England NAVCHAPGRU CO Williamsburg VA: Engineering Of ficer. C’ode 61... Williamsburg , VA; Operations Officer. Code 30 Williamsburg , VA: Supply Officer. Code 70 Williamsburg . VA NAVCOASTSYSCEN CO). Panama ’i~y FL: (Code 423...8217A; Securitv Offr. Seattle WA NAVFACENGCOM CONTRACTS AROICC, NAVSTA Brooklyn , NY; AROIC(’. Quantico. VA;. Colts Neck. Ni; C’ontracts. AROICC. Lemoore

  12. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  13. Unbalance response of a two spool gas turbine engine with squeeze film bearings

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Barrett, L. E.; Li, D. F.

    1981-01-01

    This paper presents a dynamic analysis of a two-spool gas turbine helicopter engine incorporating intershaft rolling element bearings between the gas generator and power turbine rotors. The analysis includes the nonlinear effects of a squeeze film bearing incorporated on the gas generator rotor. The analysis includes critical speeds and forced response of the system and indicates that substantial dynamic loads may be imposed on the intershaft bearings and main bearing supports with an improperly designed squeeze film bearing. A comparison of theoretical and experimental gas generator rotor response is presented illustrating the nonlinear characteristics of the squeeze film bearing. It was found that large intershaft bearing forces may occur even though the engine is not operating at a resonant condition.

  14. Porous Media Combustors for Clean Gas Turbine Engines

    DTIC Science & Technology

    2007-11-02

    emissions , no cooling requirement for the! combustor itself and the potential to operate free from combustion- induced noise. The reduced combustion...that the combustor operates in a "super-adiabatic" mode, with low emissions . Intrinsic pressure loss is within values, commonly accepted for propulsion...principles for low emissions turbulent flame gas turbine combustors are well established. The preferred strategy remains lean burn, often with staging to

  15. Source Emission Test of Gas Turbine Engine Test Facility

    DTIC Science & Technology

    1990-04-01

    emission testing be conducted in accordance with Appendix A and B to Title 40, Code of Federal Regulations, Part 60 (40 CFR 60). Determination of gas...recovery, calculations and quality assurance were done in accordance with the methods and procedures outlined in 40 CFR 60 and 87. Five sampling...hook probe nozzle, heated inconel probe, heated glass filter, impingers and a pumping and metering device. The nozzle was sized prior to each stack test

  16. Piezo-fluidic Gaseous Fuel MPI System for Natural Gas Fuelled IC Engines

    NASA Astrophysics Data System (ADS)

    Chen, Rui

    A fast response piezo-fluidic gaseous fuel injector system designed for natural gas fuelled internal combustion (IC) engines is described in this paper. The system consists mainly of no moving part fluidic gas injector and piezo controlling interface. It can be arranged as a multi-point injection (MPI) system for IC engine fuel control. Both steady state and dynamic characteristics were investigated on a laboratory test rig. A comprehensive jet attachment and switching simulation model was also developed and reported. The agreement between predicted and experimental results is shown to be good.

  17. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  18. Combined coating for turbine blades of high-temperature gas turbine engines

    NASA Astrophysics Data System (ADS)

    Kolomytsev, P. T.; Samoilenko, V. M.

    2006-11-01

    A combined coating for protecting turbine blades of high-temperature gas turbine engines is studied. Comparative tests of coatings under laboratory conditions and of coated blades in engine operation are performed. The microstructure of the coating is studied and the concentration profiles of alloying elements are determined by the method of x-ray diffraction analysis. Tests for high-temperature strength are performed.

  19. A method to estimate weight and dimensions of large and small gas turbine engines

    NASA Technical Reports Server (NTRS)

    Onat, E.; Klees, G. W.

    1979-01-01

    A computerized method was developed to estimate weight and envelope dimensions of large and small gas turbine engines within + or - 5% to 10%. The method is based on correlations of component weight and design features of 29 data base engines. Rotating components were estimated by a preliminary design procedure which is sensitive to blade geometry, operating conditions, material properties, shaft speed, hub tip ratio, etc. The development and justification of the method selected, and the various methods of analysis are discussed.

  20. Conversion of an Existing Gas Turbine to an Intercooled Exhaust-Heated Coal-Burning Engine

    DTIC Science & Technology

    1990-12-01

    possibilities of using biomass is also included. The engine chosen for conversion is the 2.8 MW F olar 5650 industrial gas turbine. The conversion... alkali -laden gas which can result in particulate and chemical action on the turbine as well as pollution. Particulate matter has a powerful erosive effect...rate is then adjusted by altering the pressure difference between the tank and the carrier line at the orifice [45]. Pretreatment of the coal is

  1. Applicability and Performance Benefits of XD (Tradename) Titanium Aluminides to Expendable Gas Turbine Engines

    DTIC Science & Technology

    1993-08-01

    AD-A272 998 ARMY RESEARCH LABORATORY Applicability and Performance Benefits of XD® Titanium Aluminides to Expendable Gas Turbine Engines Pamela...Benefits of XD® Contract # Titanium Aluminides to Expendable Gas Turbine DAAL04-91-C-0034 Fnginpq 6. AUTHOR(S) Pamela Sadler, K. Sharvan Kumar, John A. S...vendor was identified to machine the final component. 14. SUBJECT TERMS IS. NUMBER OF PAGES XD® process, Titanium aluminide , Titanium diboride, Composites

  2. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  3. Proposal and Evaluation of a Gas Engine and Gas Turbine Hybrid Cogeneration System in which Cascaded Heat is Highly Utilized

    NASA Astrophysics Data System (ADS)

    Pak, Pyong Sik

    A high efficiency cogeneration system (CGS) is proposed for utilizing high temperature exhaust gas (HTEG) from a gas engine (GE). In the proposed system, for making use of heat energy of HTEG, H2O turbine (HTb) is incorporated and steam produced by utilizing HTEG is used as working fluid of HTb. HTb exhaust gas is also utilized for increasing power output and for satisfying heat demand in the proposed system. Both of the thermodynamic characteristics of the proposed system and a gas engine CGS (GE-CGS) constructed by using the original GE are estimated. Energy saving characteristics and CO2 reduction effects of the proposed CGS and the GE-CGS are also investigated. It was estimated that the net generated power of the proposed CGS has been increasd 25.5% and net power generation efficiency 6.7%, compared with the the original GE-CGS. It was also shown that the proposed CGS could save 27.0% of energy comsumption and reduce 1137 t-CO2/y, 1.41 times larger than those of GE-CGS, when a case syudy was set and investigated. Improvements of performance by increasing turbine inlet temperature were also investigated.

  4. STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES

    SciTech Connect

    Dunn, M

    2003-08-24

    Current, state of the art natural gas engines provide the lowest emission commercial technology for use in medium heavy duty vehicles. NOx emission levels are 25 to 50% lower than state of the art diesel engines and PM levels are 90% lower than non-filter equipped diesels. Yet, in common with diesel engines, natural gas engines are challenged to become even cleaner and more efficient to meet environmental and end-user demands. Cummins Westport is developing two streams of technologies to achieve these goals for medium-heavy and heavy-heavy duty applications. For medium-heavy duty applications, lowest possible emissions are sought on SI engines without significant increase in complexity and with improvements in efficiency and BMEP. The selected path builds on the capabilities of the CWI Plus technology and recent diesel engine advances in NOx controls, providing potential to reduce emissions to 2010 values in an accelerated manner and without the use of Selective Catalytic Reduction or NOx Storage and Reduction technology. For heavy-heavy duty applications where high torque and fuel economy are of prime concern, the Westport-Cycle{trademark} technology is in field trial. This technology incorporates High Pressure Direct Injection (HPDI{trademark}) of natural gas with a diesel pilot ignition source. Both fuels are delivered through a single, dual common rail injector. The operating cycle is entirely unthrottled and maintains the high compression ratio of a diesel engine. As a result of burning 95% natural gas rather than diesel fuel, NOx emissions are halved and PM is reduced by around 70%. High levels of EGR can be applied while maintaining high combustion efficiency, resulting in extremely low NOx potential. Some recent studies have indicated that DPF-equipped diesels emit less nanoparticles than some natural gas vehicles [1]. It must be understood that the ultrafine particles emitted from SI natural gas engines are generally accepted to consist predominantly of

  5. Integrated Heat Exchange For Recuperation In Gas Turbine Engines

    DTIC Science & Technology

    2016-12-01

    98 0 ‐ 150 Water 0 100 30 ‐ 200 Toluene ‐95 110 50 ‐ 200 Mercury ‐39 361 250 ‐ 650 Caesium 29 670 450 ‐ 900 Potassium 62 774 500 ‐ 1000 Sodium 98 892...combustion engines conduct heat transfer in the exhaust system. The exhaust valves have hollow stems containing sodium , which act as heat pipes with... sodium being the working fluid. These hollow stems remove heat from the face area of the valve, preventing damage [15]. C. OVERVIEW This thesis is

  6. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  7. Fuel nozzle for a combustor of a gas turbine engine

    SciTech Connect

    Belsom, Keith Cletus; McMahan, Kevin Weston; Thomas, Larry Lou

    2016-03-22

    A fuel nozzle for a gas turbine generally includes a main body having an upstream end axially separated from a downstream end. The main body at least partially defines a fuel supply passage that extends through the upstream end and at least partially through the main body. A fuel distribution manifold is disposed at the downstream end of the main body. The fuel distribution manifold includes a plurality of axially extending passages that extend through the fuel distribution manifold. A plurality of fuel injection ports defines a flow path between the fuel supply passage and each of the plurality of axially extending passages.

  8. Methods of calculating engineering parameters for gas separations

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1980-01-01

    A group additivity method has been generated which makes it possible to estimate, from the structural formulas alone, the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. From these two parameters and appropriate thermodynamic relationships it is then possible to predict the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids. The data are then used to evaluate organic and some inorganic liquids for use in gas separation stages or as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  9. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  10. Blade loss transient dynamics analysis, volume 1. Task 1: Survey and perspective. [aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.

    1981-01-01

    An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.

  11. Optimization of wave rotors for use as gas turbine engine topping cycles

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Paxson, Daniel E.

    1995-01-01

    Use of a wave rotor as a topping cycle for a gas turbine engine can improve specific power and reduce specific fuel consumption. Maximum improvement requires the wave rotor to be optimized for best performance at the mass flow of the engine. The optimization is a trade-off between losses due to friction and passage opening time, and rotational effects. An experimentally validated, one-dimensional CFD code, which includes these effects, has been used to calculate wave rotor performance, and find the optimum configuration. The technique is described, and results given for wave rotors sized for engines with sea level mass flows of 4, 26, and 400 lb/sec.

  12. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    NASA Astrophysics Data System (ADS)

    Pastore, Giovanni; Swiler, L. P.; Hales, J. D.; Novascone, S. R.; Perez, D. M.; Spencer, B. W.; Luzzi, L.; Van Uffelen, P.; Williamson, R. L.

    2015-01-01

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  13. An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis

    DOE PAGES

    Kariolis, Mihalis S.; Miao, Yu Rebecca; Jones, Douglas S.; ...

    2014-09-21

    Aberrant signaling through the Axl receptor tyrosine kinase has been associated with a myriad of human diseases, most notably metastatic cancer, identifying Axl and its ligand Gas6 as important therapeutic targets. Using rational and combinatorial approaches, we engineered an Axl ‘decoy receptor’ that binds Gas6 with high affinity and inhibits its function, offering an alternative approach from drug discovery efforts that directly target Axl. Four mutations within this high affinity Axl variant caused structural alterations in side chains across the Gas6/Axl binding interface, stabilizing a conformational change on Gas6. When reformatted as an Fc-fusion, the engineered decoy receptor bound tomore » Gas6 with femtomolar affinity, an 80-fold improvement compared to the wild-type Axl receptor, allowing effective sequestration of Gas6 and specific abrogation of Axl signaling. Additionally, increased Gas6 binding affinity was critical and correlative with the ability of decoy receptors to potently inhibit metastasis and disease progression in vivo.« less

  14. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    SciTech Connect

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; Novascone, Stephen R.; Perez, Danielle M.; Spencer, Benjamin W.; Luzzi, Lelio; Uffelen, Paul Van; Williamson, Richard L.

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  15. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    DOE PAGES

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; ...

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less

  16. Traction drive automatic transmission for gas turbine engine driveline

    DOEpatents

    Carriere, Donald L.

    1984-01-01

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  17. Low pressure cooling seal system for a gas turbine engine

    DOEpatents

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  18. Statistics on Aircraft Gas Turbine Engine Rotor Failures That Occurred in U.S. Commercial Aviation During 1984

    DTIC Science & Technology

    1989-06-01

    Accession No. 3 . Recipient s Cetlog No. DOT/FMA/CT-89/6 4. Tile nd Subtitle S. Report 06. STATISTICS ON AIRCRAFT GAS TURBINE ENGINE ROTOR June 1989...Special / iii TABLE OF CONTENTS Page EXECUTIVE SUMMARY vii INTRODUCTION 1 RESULTS 2 DISCUSSION AND CONCLUSIONS 3 APPENDIX A - Data of Engine Rotor...Incidence of Engine Rotor Failures in U.S. Commercial 6 Aviation According to Affected Engine Model and Engine Fleet Hours - 1984 3 Component and

  19. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... kilonewtons (kN) (76 FR 45012). The EPA also proposed adopting the gas turbine engine test procedures of the... 18, 2012 (77 FR 36342), and was effective July 18, 2012. On December 31, 2012, the FAA published a final rule with a request for comments (77 FR 76842) adopting the EPA's new emissions standards in...

  20. Development and test of combustion chamber for Stirling engine heated by natural gas

    NASA Astrophysics Data System (ADS)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  1. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    DTIC Science & Technology

    2007-11-02

    spray coatings as a replace- ment for hard chrome plating on gas turbine engine components. Extensive fatigue, fretting wear, salt-fog corrosion, and...17 Table 4-2 Alloys Selected for Testing and Their Compositions ...93 Table 4-39 Matrix of Fretting Wear Tests Indicating the

  2. Gas Turbine Engine Staged Fuel Injection Using Adjacent Bluff Body and Swirler Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Snyder, Timothy S. (Inventor)

    2015-01-01

    A fuel injection array for a gas turbine engine includes a plurality of bluff body injectors and a plurality of swirler injectors. A control operates the plurality of bluff body injectors and swirler injectors such that bluff body injectors are utilized without all of the swirler injectors at least at low power operation. The swirler injectors are utilized at higher power operation.

  3. Saturn V F-1 Engine Gas Generator Blazes Back To Life

    NASA Video Gallery

    On Jan. 10, 2013, a resurrected gas generator from a Saturn V F-1 engine completed two hot-fire tests that are part of a series of tests at Test Stand 116 located in the East Test Area at NASA's Ma...

  4. Development and testing of CMC components for automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1991-01-01

    Ceramic matrix composite (CMC) materials are currently being developed and evaluated for advanced gas turbine engine components because of their high specific strength and resistance to catastrophic failure. Components with 2D and 3D composite architectures have been successfully designed and fabricated. This is an overview of the test results for a backplate, combustor, and a rotor.

  5. Study and program plan for improved heavy duty gas turbine engine ceramic component development

    NASA Technical Reports Server (NTRS)

    Helms, H. E.

    1977-01-01

    Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.

  6. Membrane-based gas transfer: an environmental engineering laboratory.

    PubMed

    Kilduff, J; Liu, J X; Komisar, S J

    2004-01-01

    We propose an educational experience in which students design a membrane gas transfer reactor, construct a bench-scale version in the laboratory, and employ the reactor to measure mass transfer coefficients. The membrane reactor is useful for teaching mass transfer principles because the mass transfer interface is well defined and easily observed. The system can be modeled successfully using straightforward mathematics. The reactor can be designed and constructed by students, using the mathematical model as a basis, providing insight into the physical meaning of model parameters. The proposed membrane system can be readily operated to obtain data that can be employed to develop or modify existing mass transfer correlations. This can provide students with significant insight into the development of mass transfer correlations and how the constants in such correlations are typically determined. These features help promote a deeper understanding of mass transfer principles.

  7. Subcycle engineering of laser filamentation in gas by harmonic seeding

    NASA Astrophysics Data System (ADS)

    Béjot, P.; Karras, G.; Billard, F.; Doussot, J.; Hertz, E.; Lavorel, B.; Faucher, O.

    2015-11-01

    Manipulating at will the propagation dynamics of high power laser pulses is a long-standing dream whose accomplishment would lead to the control of fascinating physical phenomena emerging from laser-matter interaction. The present work represents a significant step towards such a control by manipulating the nonlinear optical response of the gas medium. This is accomplished by shaping an intense laser pulse experiencing filamentation at the subcycle level with a relatively weak (≃1 % ) third-harmonic radiation. The control results from quantum interference between a single- and a two-color (mixing the fundamental frequency with its third-harmonic) ionization channel. This mechanism, which depends on the relative phase between the two electric fields, is responsible for wide refractive index modifications in relation with significant enhancement or suppression of the ionization rate. As a first application, we demonstrate the production and control of an axially modulated plasma channel.

  8. Optical fiber sensor for temperature measurement from 600 to 1900 C in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tregay, G. W.; Calabrese, P. R.; Kaplin, P. L.; Finney, M. J.

    1991-01-01

    A temperature sensor system has been fabricated specifically for the harsh environment encountered in temperature measurement on gas turbine engines. Four components comprised the system: a thermally emissive source, a high temperature lightguide, a flexible optical cable and an electro-optic signal processor. The emissive source was located inside a sapphire rod so that the sapphire serves as both a lightguide and as a protective shroud. As the probe was heated, the thermal radiation from the emissive source increased with increasing temperature. The flexible optical cable was constructed with 200 micron core fiber and ruggedized for turbine engine applications. The electro-optic signal processor used the ratio of intensity in two wavelength intervals to determine a digital value of the temperature. The probe tip was operated above 1900 C in a low velocity propane flame and above 1500 C at Mach .37. Probe housings, optical cables, and signal processors were constructed and environmentally tested for the temperature and vibration experienced by turbine engine sensors. This technology was used to build an optical exhaust gas sensor for a General Electric Aircraft Engines F404 turbine. The four optical probes and optical cable were a functional replacement for four thermocouple probes. The system was ground tested for 50 hours with an excess of 1000 thermal cycles. This optical temperature sensor system measured gas temperature up to the operational limit of the turbine engine.

  9. Fifth Annual Workshop on the Application of Probabilistic Methods for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Briscoe, Victoria (Compiler)

    2002-01-01

    These are the proceedings of the 5th Annual FAA/Air Force/NASA/Navy Workshop on the Probabilistic Methods for Gas Turbine Engines hosted by NASA Glenn Research Center and held at the Holiday Inn Cleveland West. The history of this series of workshops stems from the recognition that both military and commercial aircraft engines are inevitably subjected to similar design and manufacturing principles. As such, it was eminently logical to combine knowledge bases on how some of these overlapping principles and methodologies are being applied. We have started the process by creating synergy and cooperation between the FAA, Air Force, Navy, and NASA in these workshops. The recent 3-day workshop was specifically designed to benefit the development of probabilistic methods for gas turbine engines by addressing recent technical accomplishments and forging new ideas. We accomplished our goals of minimizing duplication, maximizing the dissemination of information, and improving program planning to all concerned. This proceeding includes the final agenda, abstracts, presentations, and panel notes, plus the valuable contact information from our presenters and attendees. We hope that this proceeding will be a tool to enhance understanding of the developers and users of probabilistic methods. The fifth workshop doubled its attendance and had the success of collaboration with the many diverse groups represented including government, industry, academia, and our international partners. So, "Start your engines!" and utilize these proceedings towards creating safer and more reliable gas turbine engines for our commercial and military partners.

  10. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  11. Fuel/propellant mixing in an open-cycle gas core nuclear rocket engine

    NASA Astrophysics Data System (ADS)

    Guo, Xu; Wehrmeyer, Joseph A.

    1997-01-01

    A numerical investigation of the mixing of gaseous uranium and hydrogen inside an open-cycle gas core nuclear rocket engine (spherical geometry) is presented. The gaseous uranium fuel is injected near the centerline of the spherical engine cavity at a constant mass flow rate, and the hydrogen propellant is injected around the periphery of the engine at a five degree angle to the wall, at a constant mass flow rate. The main objective is to seek ways to minimize the mixing of uranium and hydrogen by choosing a suitable injector geometry for the mixing of light and heavy gas streams. Three different uranium inlet areas are presented, and also three different turbulent models (k-ɛ model, RNG k-V model, and RSM model) are investigated. The commercial CFD code, FLUENT, is used to model the flow field. Uranium mole fraction, axial mass flux, and radial mass flux contours are obtained.

  12. FUNDAMENTAL STUDIES OF IGNITION PROCESSES IN LARGE NATURAL GAS ENGINES USING LASER SPARK IGNITION

    SciTech Connect

    Azer Yalin; Morgan Defoort; Bryan Willson

    2005-01-01

    The current report details project progress made during the first quarterly reporting period of the DOE sponsored project ''Fundamental studies of ignition processes in large natural gas engines using laser spark ignition''. The goal of the overall research effort is to develop a laser ignition system for natural gas engines, with a particular focus on using fiber optic delivery methods. In this report we present our successful demonstration of spark formation using fiber delivery made possible though the use of novel coated hollow fibers. We present results of (high power) experimental characterizations of light propagation using hollow fibers using both a high power research grade laser as well as a more compact laser. Finally, we present initial designs of the system we are developing for future on-engine testing using the hollow fibers.

  13. Ceramic-coated components for the combustion zone of natural gas engines

    NASA Astrophysics Data System (ADS)

    Holloman, L.; Levy, A. V.

    1992-03-01

    The use of ceramic coatings on the combustion zone surfaces of large,natural gas-fueled,internal com-bustion engines is discussed. Unique handling and quality control systems are required for plasma spray-ing thin (0.25 mm,0.0010) in.coatings on up to 48.25(cm19)-in.diameter piston crowns and cylinder heads weighing up to(1200 lb).The in-service performance characteristics of two types of natural gas-fu-eled combustion engines powering natural gas compressors that had thin zirconia ceramic coatings ap-plied to their combustion zone surfaces are presented. Their performance was measured in the field be-fore and after coating. It was determined that the durability,power output,fuel consumption,exhaust emissions,and other operating characteristics all improved due to ceramic coating of the flame side sur-faces of cylinder heads,power pistons,and valves.

  14. Predicting broadband noise from a stator vane of a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B. (Inventor)

    2002-01-01

    A computer-implemented model of fan section of a gas turbine engine accounts for the turbulence in the gas flow emanating from the rotor assembly and impinging upon an inlet to the stator vane cascade. The model allows for user-input variations in the sweep and/or lean angles for the stator vanes. The model determines the resulting acoustic response of the fan section as a function of the turbulence and the lean and/or sweep angles of the vanes. The model may be embodied in software that is rapidly executed in a computer. This way, an optimum arrangement in terms of fan noise reduction is quickly determined for the stator vane lean and sweep physical positioning in the fan section of a gas turbine engine.

  15. Lean Burn Natural Gas Engine R&D

    SciTech Connect

    2005-09-12

    The primary objective of this cooperative research is to develop and verify models of internal combustion engine spark ignition devices in order to improve combustion chamber fuel ignition characteristics and to improve spark plug durability. As a direct result of this joint research, a novel spark plug design was improved. A theory of spark arc motion was developed that explains experimentally observed effects not explained by other published theories. The knowledge developed by this research will be used to further improve spark plugs as well as improve the ignition process in a combustion chamber. The predictive models developed here are compared with experimental measurements, including high-speed photographs, of the spark as it translates across the gap. Two different spark plug configurations were investigated: the conventional or J-gap plug, and a novel spark ignition device (the FANG plug) invented by Cummins, Inc., the CRADA partner. A description of the physics of arc dynamic motion in a spark plug gap, including the effects of an imposed transverse magnetic field, appears here in Appendix A as a result of the analytical effort. The theory proposed here does explain experimentally observed effects not completely explained by other research publications appearing in the scientific literature. These effects are due to pressure and ion, electron, and electrode interactions. A dominant mechanism for electrode erosion is presented for both spark plug configurations. Reversing the polarity of both types of spark plugs has verified this proposed erosion mechanism, according to data collected at Cummins. An extensive series of experiments measured the arc position, voltage, and current as a function of time during the approximately 2 millisecond spark discharge. FANG plug data, obtained with the fast-framing camera experimental apparatus operating at 200,000 frames per second, are presented that show the transverse arc velocity varying directly as the inverse

  16. ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP

    SciTech Connect

    T.D. Wheelock; L.K. Doraiswamy; K.P. Constant

    2003-09-01

    The overall purpose of this project was to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas with the sorbent being in the form of small pellets made with a layered structure such that each pellet consists of a highly reactive lime core enclosed within a porous protective shell of strong but relatively inert material. The sorbent can be very useful for hot gas cleanup in advanced power generation systems where problems have been encountered with presently available materials. An economical method of preparing the desired material was demonstrated with a laboratory-scale revolving drum pelletizer. Core-in-shell pellets were produced by first pelletizing powdered limestone or other calcium-bearing material to make the pellet cores, and then the cores were coated with a mixture of powdered alumina and limestone to make the shells. The core-in-shell pellets were subsequently calcined at 1373 K (1100 C) to sinter the shell material and convert CaCO{sub 3} to CaO. The resulting product was shown to be highly reactive and a very good sorbent for H{sub 2}S at temperatures in the range of 1113 to 1193 K (840 to 920 C) which corresponds well with the outlet temperatures of some coal gasifiers. The product was also shown to be both strong and attrition resistant, and that it can be regenerated by a cyclic oxidation and reduction process. A preliminary evaluation of the material showed that while it was capable of withstanding repeated sulfidation and regeneration, the reactivity of the sorbent tended to decline with usage due to CaO sintering. Also it was found that the compressive strength of the shell material depends on the relative proportions of alumina and limestone as well as their particle size distributions. Therefore, an extensive study of formulation and preparation conditions was conducted to improve the performance of both the core and shell materials. It was subsequently determined that MgO tends to stabilize the high

  17. An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines.

    PubMed

    Amozegar, M; Khorasani, K

    2016-04-01

    In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies.

  18. Engineering the performance of mixed matrix membranes for gas separations

    NASA Astrophysics Data System (ADS)

    Shu, Shu

    Mixed matrix membranes that comprise domains of organic and inorganic components are investigated in this research. Such materials effectively circumvent the polymeric 'upper bound trade-off curve' and show properties highly attractive for industrial gas separations. Nevertheless, lack of intrinsic compatibility between the organic polymers and inorganic fillers poses the biggest challenge to successful fabrication of mixed matrix membranes. Consequently, control of the nanoscale interface between the sieve and polymer has been the key technical challenge to the implementation of composite membrane materials. The overarching goal of this research was to devise and explore approaches to enhance the performance of mixed matrix membranes by properly tailoring the sieve/polymer interface. In an effort to pursue the aforementioned objective, three approaches were developed and inspected: (i) use of silane coupling agents, (ii) hydrophobizing of sieve surface through alcohol etherification reactions, and (iii) a two-step modification sequence involving the use of a Grignard reagent. A comparison was drawn to evaluate these methodologies and the most effective strategy (Grignard treatment) was selected and further investigated. Successful formulation and characterization of mixed matrix membranes constituting zeolite 4A modified via the Grignard treatment are described in detail. Membranes with impressive improvements in gas separation efficiency and mechanical properties were demonstrated. The basis for the improvements in polymer/sieve compatibility enabled by this specific process were proposed and investigated. A key aspect of the present study was illuminating the detailed chemical mechanisms involved in the Grignard modification. Systematic characterization and carefully designed experiments revealed that the formation of distinctive surface structures is essentially a heterogeneous nucleation process, where Mg(OH)2 crystals grow from the nuclei previously extracted

  19. Optimizing power cylinder lubrication on a large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Luedeman, Matthew R.

    More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.

  20. Engineering Report on the Fission Gas Getter Concept

    SciTech Connect

    Ecker, Lynne; Ghose, Sanjit; Gill, Simerjeet; Thallapally, Praveen K.; Strachan, Denis M.

    2012-11-01

    In 2010, the Department of Energy (DOE) requested that a Brookhaven National Laboratory (BNL)-led team research the possibility of using a getter material to reduce the pressure in the plenum region of a light water reactor fuel rod. During the first two years of the project, several candidate materials were identified and tested using a variety of experimental techniques, most with xenon as a simulant for fission products. Earlier promising results for candidate getter materials were found to be incorrect, caused by poor experimental techniques. In May 2012, it had become clear that none of the initial materials had demonstrated the ability to adsorb xenon in the quantities and under the conditions needed. Moreover, the proposed corrective action plan could not meet the schedule needed by the project manager. BNL initiated an internal project review which examined three questions: 1. Which materials, based on accepted materials models, might be capable of absorbing xenon? 2. Which experimental techniques are capable of not only detecting if xenon has been absorbed but also determine by what mechanism and the resulting molecular structure? 3. Are the results from the previous techniques useable now and in the future? As part of the second question, the project review team evaluated the previous experimental technique to determine why incorrect results were reported in early 2012. This engineering report is a summary of the current status of the project review, description of newly recommended experiments and results from feasibility studies at the National Synchrotron Light Source (NSLS).

  1. Calculations of economy of 18-cylinder radial aircraft engine with exhaust-gas turbine geared to the crankshaft

    NASA Technical Reports Server (NTRS)

    Hannum, Richard W; Zimmerman, Richard H

    1945-01-01

    Calculations based on dynamometer test-stand data obtained on an 18-cylinder radial engine were made to determine the improvement in fuel consumption that can be obtained at various altitudes by gearing an exhaust-gas turbine to the engine crankshaft in order to increase the engine-shaft work.

  2. On-Road Development of John Deere 6081 Natural Gas Engine: Final Technical Report, July 1999 - January 2001

    SciTech Connect

    McCaw, D. L.; Horrell, W. A.

    2001-09-24

    Report that discusses John Deere's field development of a heavy-duty natural gas engine. As part of the field development project, Waste Management of Orange County, California refitted four existing trash packers with John Deere's prototype spark ignited 280-hp 8.1 L CNG engines. This report describes the project and also contains information about engine performance, emissions, and driveability.

  3. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  4. Natural Gas Engine Performance Ignited by a Passively Q-Switched Microlaser

    SciTech Connect

    Bihari, Bipin; Biruduganti, Munidhar; Gupta, Sreenath

    2015-04-01

    A robust end pumped, passively Q-switched, air-cooled, microlaser was designed and prototyped to yield a 1064 nm pulsed laser output of 21 mJ/P with a pulse width of 4.2 ns FWHM. This microlaser was coupled to a standard laser plug carrying a sapphire lens with 13 mm back focal length. This assembly was tested in a natural gas fueled single-cylinder engine, and in one cylinder of a turbocharged 6-cylinder engine. Single cylinder engine tests showed extension of the lean ignition limit which enabled an efficiency improvement of 0.2% while meeting emission regulations. The tests conducted in the 6-cylinder engine showed highly improved ignition stability.

  5. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles.

    PubMed

    Solovev, Alexander A; Mei, Yongfeng; Bermúdez Ureña, Esteban; Huang, Gaoshan; Schmidt, Oliver G

    2009-07-01

    Strain-engineered microtubes with an inner catalytic surface serve as self-propelled microjet engines with speeds of up to approximately 2 mm s(-1) (approximately 50 body lengths per second). The motion of the microjets is caused by gas bubbles ejecting from one opening of the tube, and the velocity can be well approximated by the product of the bubble radius and the bubble ejection frequency. Trajectories of various different geometries are well visualized by long microbubble tails. If a magnetic layer is integrated into the wall of the microjet engine, we can control and localize the trajectories by applying external rotating magnetic fields. Fluid (i.e., fuel) pumping through the microtubes is revealed and directly clarifies the working principle of the catalytic microjet engines.

  6. Performance of Blowdown Turbine Driven by Exhaust Gas of Nine-Cylinder Radial Engine

    NASA Technical Reports Server (NTRS)

    Turner, L Richard; Desmon, Leland G

    1944-01-01

    An investigation was made of an exhaust-gas turbine having four separate nozzle boxes each covering a 90 degree arc of the nozzle diaphragm and each connected to a pair of adjacent cylinders of a nine-cylinder radial engine. This type of turbine has been called a "blowdown" turbine because it recovers the kinetic energy developed in the exhaust stacks during the blowdown period, that is the first part of the exhaust process when the piston of the reciprocating engine is nearly stationary. The purpose of the investigation was to determine whether the blow turbine could develop appreciable power without imposing any large loss in engine power arising from restriction of the engine exhaust by the turbine.

  7. Integration of magnetic bearings in the design of advanced gas turbine engines

    SciTech Connect

    Storace, A.F.; Sood, D.; Lyons, J.P.; Preston, M.A.

    1995-10-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust-to-weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies and the test hardware currently in place for verifying the performance of advanced magnetic actuators, power electronics, and digital controls. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load-carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  8. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  9. Experimental performance of the regenerator for the Chrysler upgraded automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Winter, J. M.; Nussle, R. C.

    1982-01-01

    Automobile gas turbine engine regenerator performance was studied in a regenerator test facility that provided a satisfactory simulation of the actual engine operating environment but with independent control of airflow and gas flow. Velocity and temperature distributions were measured immediately downstream of both the core high-pressure-side outlet and the core low-pressure-side outlet. For the original engine housing, the regenerator temperature effectiveness was 1 to 2 percent higher than the design value, and the heat transfer effectiveness was 2 to 4 percent lower than the design value over the range of test conditions simulating 50 to 100 percent of gas generator speed. Recalculating the design values to account for seal leakage decreased the design heat transfer effectiveness to values consistent with those measured herein. A baffle installed in the engine housing high-pressure-side inlet provided more uniform velocities out of the regenerator but did not improve the effectiveness. A housing designed to provide more uniform axial flow to the regenerator was also tested. Although temperature uniformity was improved, the effectiveness values were not improved. Neither did 50-percent flow blockage (90 degree segment) applied to the high-pressure-side inlet change the effectiveness significantly.

  10. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Astrophysics Data System (ADS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-05-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  11. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  12. Dynamic pressure as a measure of gas turbine engine (GTE) performance

    NASA Astrophysics Data System (ADS)

    Rinaldi, G.; Stiharu, I.; Packirisamy, M.; Nerguizian, V.; Landry, R., Jr.; Raskin, J.-P.

    2010-04-01

    Utilizing in situ dynamic pressure measurement is a promising novel approach with applications for both control and condition monitoring of gas turbine-based propulsion systems. The dynamic pressure created by rotating components within the engine presents a unique opportunity for controlling the operation of the engine and for evaluating the condition of a specific component through interpretation of the dynamic pressure signal. Preliminary bench-top experiments are conducted with dc axial fans for measuring fan RPM, blade condition, surge and dynamic temperature variation. Also, a method, based on standing wave physics, is presented for measuring the dynamic temperature simultaneously with the dynamic pressure. These tests are implemented in order to demonstrate the versatility of dynamic pressure-based diagnostics for monitoring several different parameters, and two physical quantities, dynamic pressure and dynamic temperature, with a single sensor. In this work, the development of a dynamic pressure sensor based on micro-electro-mechanical system technology for in situ gas turbine engine condition monitoring is presented. The dynamic pressure sensor performance is evaluated on two different gas turbine engines, one having a fan and the other without.

  13. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2015-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  14. System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump

    SciTech Connect

    Mahderekal, Isaac; Vineyard, Edward

    2013-01-01

    To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

  15. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    A gas engine-driven heat pump (GHP) uses a natural gas-or LPG-powered engine to drive the compressor in a vapor-compression refrigeration cycle. The GHP has the benefits of being able to use the fuel energy effectively by recovering waste heat from the engine jacket coolant and exhaust gas and also to keep high efficiency even at part-load operation by varying the engine speed with relative ease. Hence, energy-efficient heat source systems for air-conditioning and hot water supply may be constructed with GHP chillers in place of conventional electrical-driven heat pump chillers. GHPs will necessarily contribute to the peak shaving of electrical demand in summer. In this study, the performance characteristics of a 457kW GHP chiller have been investigated by a simulation model analysis, for both cooling and heating modes. From the results of the analysis, it has been found that the part-load characteristics of the GHP chiller are fairly well. The evaluation of the heat source systems using GHP chillers will be described in Part 2.

  16. Removal of Sulfur from Natural Gas to Reduce Particulate Matter Emission from a Turbine Engine

    NASA Astrophysics Data System (ADS)

    Spang, Brent Loren

    The present work investigates the effect of natural gas fuel sulfur on particulate emissions from stationary gas turbine engines used for electricity generation. Fuel sulfur from standard line gas was scrubbed using a system of fluidized reactor beds containing a specially designed activated carbon purpose built for sulfur absorption. A sulfur injection system using sonic orifices was designed and constructed to inject methyl mercaptan into the scrubbed gas stream at varying concentrations. Using these systems, particulate emissions created by various fuel sulfur levels between 0 and 8.3 ppmv were investigated. Particulate samples were collected from a Capstone C65 microturbine generator system using a Horiba MDLT-1302TA micro dilution tunnel and analyzed using a Horiba MEXA-1370PM particulate analyzer. In addition, ambient air samples were collected to determine incoming particulate levels in the combustion air. The Capstone C65 engine air filter was also tested for particulate removal efficiency by sampling downstream of the filter. To further differentiate the particulate entering the engine in the combustion air from particulate being emitted from the exhaust stack, two high efficiency HEPA filters were installed to eliminate a large portion of incoming particulate. Variable fuel sulfur testing showed that there was a strong correlation between total particulate emission factor and fuel sulfur concentration. Using eleven variable sulfur tests, it was determined that an increase of 1 ppmv fuel sulfur will produce an increase of approximately 3.2 microg/m3 total particulate. Also, the correlation also predicted that, for this particular engine, the total particulate emission factor for zero fuel sulfur was approximately 19.1 microg/m3. With the EC and OC data removed, the correlation became 3.1 microg/m3 of sulfur particulate produced for each ppmv of fuel sulfur. The correlation also predicted that with no fuel sulfur present, 6.6 microg/m3 of particulate will

  17. Low-btu gas in the US Midcontinent: A challenge for geologists and engineers

    USGS Publications Warehouse

    Newell, K.D.; Bhattacharya, S.; Sears, M.S.

    2009-01-01

    Several low-btu gas plays can be defined by mapping gas quality by geological horizon in the Midcontinent. Some of the more inviting plays include Permian strata west of the Central Kansas uplift and on the eastern flank of Hugoton field and Mississippi chat and other pays that subcrop beneath (and directly overlie) the basal Pennsylvanian angular unconformity at the southern end of the Central Kansas uplift. Successful development of these plays will require the cooperation of reservoir geologists and process engineers so that the gas can be economically upgraded and sold at a nominal pipeline quality of 950 btu/scf or greater. Nitrogen is the major noncombustible contaminant in these gas fields, and various processes can be utilized to separate it from the hydrocarbon gases. Helium, which is usually found in percentages corresponding to nitrogen, is a possible ancillary sales product in this region. Its separation from the nitrogen, of course, requires additional processing. The engineering solution for low-btu gas depends on the rates, volumes, and chemistry of the gas needing upgrading. Cryogenic methods of nitrogen removal are classically used for larger feed volumes, but smaller feed volumes characteristic of isolated, low-pressure gas fields can now be handled by available small-scale PSA technologies. Operations of these PSA plants are now downscaled for upgrading stripper well gas production. Any nitrogen separation process should be sized, within reason, to match the anticipated flow rate. If the reservoir rock surprises to the upside, the modularity of the upgrading units is critical, for they can be stacked to meet higher volumes. If a reservoir disappoints (and some will), modularity allows the asset to be moved to another site without breaking the bank.

  18. Increasing reliability of gas-air systems of piston and combined internal combustion engines by improving thermal and mechanic flow characteristics

    NASA Astrophysics Data System (ADS)

    Brodov, Yu. M.; Grigor'ev, N. I.; Zhilkin, B. P.; Plotnikov, L. V.; Shestakov, D. S.

    2015-12-01

    Results of experimental study of thermal and mechanical characteristics of gas exchange flow in piston and combined engines are presented. Ways for improving intake and exhaust processes to increase reliability of gas-air engine systems are proposed.

  19. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines

    SciTech Connect

    Rhodes, M A; Kane, J; Loosmore, G; DeMuth, J; Latkowski, J

    2010-12-03

    ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.

  20. Altitude Investigation of Gas Temperature Distribution at Turbine of Three Similar Axial-Flow Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Prince, W.R.; Schulze, F.W.

    1952-01-01

    An investigation of the effect of inlet pressure, corrected engine speed, and turbine temperature level on turbine-inlet gas temperature distributions was conducted on a J40-WE-6, interim J40-WE-6, and prototype J40-WE-8 turbojet engine in the altitude wind tunnel at the NAC.4 Lewis laboratory. The engines were investigated over a range of simulated pressure altitudes from 15,000 to 55,000 feet, flight Mach numbers from 0.12 to 0.64, and corrected engine speeds from 7198 to 8026 rpm, The gas temperature distribution at the turbine of the three engines over the range of operating conditions investigated was considered satisfactory from the standpoint of desired temperature distribution with one exception - the distribution for the J40-WE-6 engine indicated a trend with decreasing engine-inlet pressure for the temperature to exceed the desired in the region of the blade hub. Installation of a compressor-outlet mixer vane assembly remedied this undesirable temperature distribution, The experimental data have shown that turbine-inlet temperature distributions are influenced in the expected manner by changes in compressor-outlet pressure or mass-flow distribution and by changes in combustor hole-area distribution. The similarity between turbine-inlet and turbine-outlet temperature distribution indicated only a small shift in temperature distribution imposed by the turbine rotors. The attainable jet thrusts of the three engines were influenced in different degrees and directions by changes in temperature distributions with change in engine-inlet pressure. Inability to match the desired temperature distribution resulted, for the J40-WE-6 engine, in an 11-percent thrust loss based on an average turbine-inlet temperature of 1500 F at an engine-inlet pressure of 500 pounds per square foot absolute. Departure from the desired temperature distribution in the Slade tip region results, for the prototype J40-WE-8 engine, in an attainable thrust increase of 3 to 4 percent as

  1. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1982-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.

  2. High-Temperature Magnetic Bearings Being Developed for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.

    1998-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and cooperation with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of bearing times the rpm) limit on engine speed and allow active vibration cancellation systems to be used, resulting in a more efficient, "more electric" engine. Finally, the Integrated High Performance Turbine Engine Technology (IHPTET) program, a joint Department of Defense/industry program, identified a need for a high-temperature (1200 F) magnetic bearing that could be demonstrated in their Phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator's circumference are a series of electrical wire coils which form a series of electric magnets that exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it centered in the cavity. The engine rotor, bearings, and casing form a flexible structure with many modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system.

  3. Development of engine activity cycles for the prime movers of unconventional natural gas well development.

    PubMed

    Johnson, Derek; Heltzel, Robert; Nix, Andrew; Barrow, Rebekah

    2017-03-01

    With the advent of unconventional natural gas resources, new research focuses on the efficiency and emissions of the prime movers powering these fleets. These prime movers also play important roles in emissions inventories for this sector. Industry seeks to reduce operating costs by decreasing the required fuel demands of these high horsepower engines but conducting in-field or full-scale research on new technologies is cost prohibitive. As such, this research completed extensive in-use data collection efforts for the engines powering over-the-road trucks, drilling engines, and hydraulic stimulation pump engines. These engine activity data were processed in order to make representative test cycles using a Markov Chain, Monte Carlo (MCMC) simulation method. Such cycles can be applied under controlled environments on scaled engines for future research. In addition to MCMC, genetic algorithms were used to improve the overall performance values for the test cycles and smoothing was applied to ensure regression criteria were met during implementation on a test engine and dynamometer. The variations in cycle and in-use statistics are presented along with comparisons to conventional test cycles used for emissions compliance.

  4. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor parts that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, and with plasma, atomic absorption, and emission spectrometers to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations (2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure. Previously announced in STAR as N83-12433

  5. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    SciTech Connect

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  6. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    NASA Astrophysics Data System (ADS)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  7. Development of a Thin Gauge Metallic Seal for Gas Turbine Engine Applications to 1700 F

    NASA Technical Reports Server (NTRS)

    England, Raymond O.

    2006-01-01

    The goal of doubling thrust-to-weight ratio for gas turbine engines has placed significant demands on engine component materials. Operating temperatures for static seals in the transition duct and turbine sections for instance, may well reach 2000 F within the next ten years. At these temperatures conventional age-hardenable superalloys lose their high strength via overaging and eventual dissolution of the gamma precipitate, and are well above their oxidation stability limit. Conventional solid-solution-strengthened alloys offer metallurgical stability, but suffer from rapid oxidation and little useful load bearing strength. Ceramic materials can theoretically be used at these temperatures, but manufacturing processes are in the developmental stages.

  8. An Experimental Investigation of Rectangular Exhaust-Gas Ejectors Applicable for Engine Cooling

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Bogatsky, Donald

    1945-01-01

    An experimental investigation of rectangular exhaust-gas ejector pumps was conducted to provide data that would serve as a guide to the design of ejector applications for aircraft engines with marginal cooling. The pumping characteristics of rectangular ejectors actuated by the exhaust of a single-cylinder aircraft engine were determined for a range of ejector mixing-section area from 20 to 50 square inches, over-all length from 12 to 42 inches, aspect ratio from 1 to 5, diffusing exit area from 20 to 81 square inches, and exhaust-nozzle aspect ratio from 1 to 42.

  9. Protection of gas engine or turbine from damage by changes in operating characteristics

    SciTech Connect

    Bolin, W.D.; Roper, R.L.

    1990-10-02

    This patent describes an apparatus for producing electrical power which comprises: combustion means for burning gaseous fuel; engine means powered by combustion products from the combustion means; throttle means for adjusting the relative amounts of gaseous fuel and oxygen-containing gas admitted to the combustion means; generator means powered by the engine means; and means for maintaining substantially constant current output from the generator. The means for maintaining comprise means for adjusting the throttle means to decrease the amount of fuel admitted to the combustion means when the current output from the generator increases, and to increase the amount of fuel admitted when the current output decreases.

  10. Thermal barrier coatings for thermal insulation and corrosion resistance in industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Hsu, L.; Stetson, A. R.

    1981-01-01

    Four thermal barrier coatings were subjected to a 500-hour gas turbine engine test. The coatings were two yttria stabilized zirconias, calcium ortho silicate and calcium meta titanate. The calcium silicate coating exhibited significant spalling. Yttria stabilized zirconia and calcium titanate coatings showed little degradation except in blade leading edge areas. Post-test examination showed variations in the coating due to manual application techniques. Improved process control is required if engineering quality coatings are to be developed. The results indicate that some leading edge loss of the coating can be expected near the tip.

  11. The selection of convertible engines with current gas generator technology for high speed rotorcraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D.

    1990-01-01

    NASA-Lewis has sponsored two studies to determine the most promising convertible engine concepts for high speed rotorcraft. These studies projected year 2000 convertible technology limited to present gas generator technology. Propulsion systems for utilization on aircraft needing thrust only during cruise and those aircraft needing both power and thrust at cruise were investigated. Mission calculations for the two contractors involved were based upon the fold tilt rotor concept. Analysis and comparison of the General Electric concepts (geared UDF, clutched fan, and VIGV fan), and the Allison Gas Turbine concepts (clutched fan, VIGV fan, variable pitch fan, single rotation tractor propfan, and counter rotation tractor propfan) are presented.

  12. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  13. The selection of convertible engines with current gas generator technology for high speed rotorcraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D.

    1990-01-01

    NASA-Lewis sponsored two studies to determine the most promising convertible engine concepts for high speed rotorcraft. These studies projected year 2000 convertible technology limited to present gas generator technology. Propulsion systems for utilization on aircraft needing thrust only during cruise and those aircraft needing both power and thrust at cruise were investigated. Mission calculations for the two contractors involved were based upon the fold tilt rotor concept. Analysis and comparison of the General Electric concepts (geared UDF, clutched fan, and Variable Inlet Guide Vane (VIGV) fan), and the Allison Gas Turbine concepts (clutched fan, VIGV fan, variable pitch fan, single rotation tractor propfan, and counter rotation tractor propfan) are presented.

  14. Dynamical mechanism in aero-engine gas path system using minimum spanning tree and detrended cross-correlation analysis

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Zhang, Hong; Gao, You

    2017-01-01

    Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.

  15. Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990

    SciTech Connect

    Mahrle, P.

    1990-12-01

    Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

  16. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  17. Device to lower NOx in a gas turbine engine combustion system

    DOEpatents

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  18. Method for Making Measurements of the Post-Combustion Residence Time in a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H (Inventor)

    2015-01-01

    A system and method of measuring a residence time in a gas-turbine engine is provided, whereby the method includes placing pressure sensors at a combustor entrance and at a turbine exit of the gas-turbine engine and measuring a combustor pressure at the combustor entrance and a turbine exit pressure at the turbine exit. The method further includes computing cross-spectrum functions between a combustor pressure sensor signal from the measured combustor pressure and a turbine exit pressure sensor signal from the measured turbine exit pressure, applying a linear curve fit to the cross-spectrum functions, and computing a post-combustion residence time from the linear curve fit.

  19. Consolidation of silicon nitride without additives. [for gas turbine engine efficiency increase

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Yeh, H. C.

    1976-01-01

    The use of ceramics for gas turbine engine construction might make it possible to increase engine efficiency by raising operational temperatures to values beyond those which can be tolerated by metallic alloys. The most promising ceramics being investigated in this connection are Si3N4 and SiC. A description is presented of a study which had the objective to produce dense Si3N4. The two most common methods of consolidating Si3N4 currently being used include hot pressing and reaction sintering. The feasibility was explored of producing a sound, dense Si3N4 body without additives by means of conventional gas hot isostatic pressing techniques and an uncommon hydraulic hot isostatic pressing technique. It was found that Si3N4 can be densified without additions to a density which exceeds 95% of the theoretical value

  20. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Programs initiated by NASA to develop and demonstrate low emission advanced technology combustors for reducing aircraft gas turbine engine pollution are reviewed. Program goals are consistent with urban emission level requirements as specified by the U. S. Environmental Protection Agency and with upper atmosphere cruise emission levels as recommended by the U. S. Climatic Impact Assessment Program and National Research Council. Preliminary tests of advanced technology combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft gas turbine engines without adverse effects on fuel consumption. Preliminary test results from fundamental studies indicate that extremely low emission combustion systems may be possible for future generation jet aircraft. The emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  1. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    The paper describes and discusses the results from some of the research and development programs for reducing aircraft gas turbine engine emissions. Although the paper concentrates on NASA programs only, work supported by other U.S. government agencies and industry has provided considerable data on low emission advanced technology for aircraft gas turbine engine combustors. The results from the two major NASA technology development programs, the ECCP (Experimental Clean Combustor Program) and the PRTP (Pollution Reduction Technology Program), are presented and compared with the requirements of the 1979 U.S. EPA standards. Emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  2. NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment

    SciTech Connect

    Parks, JE

    2005-02-11

    Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

  3. Experimental clean combustor program, phase 1. [aircraft exhaust/gas analysis - gas turbine engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1975-01-01

    A program of screening three low emission combustors for conventional takeoff and landing, by testing and analyzing thirty-two configurations is presented. Configurations were tested that met the emission goals at idle operating conditions for carbon monoxide and for unburned hydrocarbons (emission index values of 20 and 4, respectively). Configurations were also tested that met a smoke number goal of 15 at sea-level take-off conditions. None of the configurations met the goal for oxides of nitrogen emissions at sea-level take-off conditions. The best configurations demonstrated oxide of nitrogen emission levels that were approximately 61 percent lower than those produced by the JT9D-7 engine, but these levels were still approximately 24 percent above the goal of an emission index level of 10. Additional combustor performance characteristics, including lean blowout, exit temperature pattern factor and radial profile, pressure loss, altitude stability, and altitude relight characteristics were documented. The results indicate the need for significant improvement in the altitude stability and relight characteristics. In addition to the basic program for current aircraft engine combustors, seventeen combustor configurations were evaluated for advanced supersonic technology applications. The configurations were tested at cruise conditions, and a conceptual design was evolved.

  4. Conversion of low BMEP 4-cylinder to high BMEP 2-cylinder large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Ladd, John

    There are more than 6,000 integral compressor engines in use on US natural gas pipelines, operating 24 hours a day, 365 days a year. Many of these engines have operated continuously for more than 50 years, with little to no modifications. Due to recent emission regulations at the local, state and federal levels much of the aging infrastructure requires retrofit technology to remain within compliance. The Engines and Energy Conversion Laboratory was founded to test these retrofit technologies on its large bore engine testbed (LBET). The LBET is a low brake mean effective pressure (BMEP) Cooper Bessemer GMVTF-4. Newer GMV models, constructed in 1980's, utilize turbocharging to increase the output power, achieving BMEP's nearly double that of the LBET. To expand the lab's testing capability and to reduce the LBET's running cost: material testing, in-depth modeling, and on engine testing was completed to evaluate the feasibility of uprating the LBET to a high BMEP two cylinder engine. Due to the LBET's age, the crankcase material properties were not known. Material samples were removed from engine to conduct an in-depth material analysis. It was found that the crankcase was cast out of a specific grade of gray iron, class 25 meehanite. A complete three dimensional model of the LBET's crankcase and power cylinders was created. Using historical engine data, the force inputs were created for a finite element analysis model of the LBET, to determine the regions of high stress. The areas of high stress were instrumented with strain gauges to iterate and validate the model's findings. Several test cases were run at the high and intermediate BMEP engine conditions. The model found, at high BMEP conditions the LBET would operate at the fatigue limit of the class 25 meehanite, operating with no factor of safety but the intermediate case were deemed acceptable.

  5. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  6. Steady-state and dynamic analysis of a jet engine, gas lubricated shaft seal

    NASA Technical Reports Server (NTRS)

    Shapiro, W.; Colsher, R.

    1974-01-01

    Dynamic response of a gas-lubricated, jet-engine main shaft seal was analytically established as a function of collar misalignment and secondary seal friction. Response was obtained by a forward integration-in-time (time-transient) scheme, which traces a time history of seal motions in all its degrees of freedom. Results were summarized in the form of a seal tracking map which indicated regions of acceptable collar misalignments and secondary seal friction. Methodology, results and interpretations are comprehensively described.

  7. Replacement of Chromium Electroplating on Gas Turbine Engine Components using Thermal Spray Coatings

    DTIC Science & Technology

    2006-05-01

    very effective ear protection. For this reason the unit is usually installed on a six-axis robot arm in a soundproof booth, programmed, and...coatings to components such as shafts from gas turbine engines. Facility design: The installation requires: • A soundproof booth. Booths are...HVOF systems are installed in soundproof booths and are computer-controlled. Therefore, no operator is exposed to the noise of the HVOF gun. 47

  8. High performance fibers for structurally reliable metal and ceramic composites. [advanced gas turbine engine materials

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    Very few of the commercially available high performance fibers with low densities, high Young's moduli, and high tensile strengths possess all the necessary property requirements for providing either metal matrix composites (MMC) or ceramic matrix composites (CMC) with high structural reliability. These requirements are discussed in general and examples are presented of how these property guidelines are influencing fiber evaluation and improvement studies at NASA aimed at developing structurally reliable MMC and CMC for advanced gas turbine engines.

  9. Evaluation of emission toxicity of urban bus engines: compressed natural gas and comparison with liquid fuels.

    PubMed

    Turrio-Baldassarri, Luigi; Battistelli, Chiara Laura; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2006-02-15

    Emissions from a spark-ignition (SI) heavy-duty (HD) urban bus engine with a three-way catalyst (TWC), fuelled with compressed natural gas (CNG), were chemically analyzed and tested for genotoxicity. The results were compared with those obtained in a previous study on an equivalent diesel engine, fuelled with diesel oil (D) and a blend of the same with 20% vegetable oil (B20). Experimental procedures were identical, so that emission levels of the CNG engine were exactly comparable to the ones of the diesel engine. The experimental design was focused on carcinogenic compounds and genotoxic activity of exhausts. The results obtained show that the SI CNG engine emissions, with respect to the diesel engine fuelled with D, were nearly 50 times lower for carcinogenic polycyclic aromatic hydrocarbons (PAHs), 20 times lower for formaldehyde, and more than 30 times lower for particulate matter (PM). A 20-30 fold reduction of genotoxic activity was estimated from tests performed. A very high reduction of nitrogen oxides (NO(X)) was also measured. The impact of diesel powered transport on urban air quality, and the potential benefits deriving from the use of CNG for public transport, are discussed.

  10. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    SciTech Connect

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  11. A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang

    2016-09-01

    A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.

  12. Gas turbine engine prognostics using Bayesian hierarchical models: A variational approach

    NASA Astrophysics Data System (ADS)

    Zaidan, Martha A.; Mills, Andrew R.; Harrison, Robert F.; Fleming, Peter J.

    2016-03-01

    Prognostics is an emerging requirement of modern health monitoring that aims to increase the fidelity of failure-time predictions by the appropriate use of sensory and reliability information. In the aerospace industry it is a key technology to reduce life-cycle costs, improve reliability and asset availability for a diverse fleet of gas turbine engines. In this work, a Bayesian hierarchical model is selected to utilise fleet data from multiple assets to perform probabilistic estimation of remaining useful life (RUL) for civil aerospace gas turbine engines. The hierarchical formulation allows Bayesian updates of an individual predictive model to be made, based upon data received asynchronously from a fleet of assets with different in-service lives and for the entry of new assets into the fleet. In this paper, variational inference is applied to the hierarchical formulation to overcome the computational and convergence concerns that are raised by the numerical sampling techniques needed for inference in the original formulation. The algorithm is tested on synthetic data, where the quality of approximation is shown to be satisfactory with respect to prediction performance, computational speed, and ease of use. A case study of in-service gas turbine engine data demonstrates the value of integrating fleet data for accurately predicting degradation trajectories of assets.

  13. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  14. Fabrication and Use of Thin-film Thermocouples on Nonmetallics in Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Niska, Raymond H.

    2003-09-01

    The gas turbine engine industry has been developing nonmetallics such as ceramic matrix composites (CMCs) and monolithic silicon nitride for use in hot-section hardware. New product development requires characterization of the hardware during component and engine testing. Of primary importance in propulsion engine hot sections such as the combustor and turbines is knowledge of thermal patterns and profiles, identification of hot streaks, and component maximum temperatures. This is especially critical information to estimate hardware life and time-in-service between required maintenance inspections and teardowns. Thin-film thermocouples and flame-sprayed aluminum oxide installation methods have been developed and are being used for temperature measurements on these new materials.

  15. Utilization of compressed natural gas in medium- and heavy-duty engine route vehicles

    NASA Astrophysics Data System (ADS)

    Koplow, M.; Norman, T.

    1991-12-01

    The final report describes the early development process of a dedicated compressed natural gas medium-duty truck. The three key technological developments successfully undertaken were: (1) The design and implementation of an optimized CNG spark ignition engine to meet the performance requirements of the marketplace. (2) The design and development of an electronically controlled, electronically injected fuel system specifically for compressed natural gas utilizing pulse width modulated fuel injector technology. (3) The adaptation of a production OEM electronic engine controller to perform closed loop engine control for the CNG engine. The overarching technical goal was to provide a clear path to OEM production levels of performance reliability and economy for CNG vehicles. In this way it was intended that the OEM would commit to a production intent CNG vehicle program. The successful completion of the three technological tasks described in the report allowed the integration into a first test vehicle which has performed well. The manufacturer, by witnessing and participating in the rapid progress, has committed to pursue production of CNG vehicles. A brief description of this follow-on effort is also found in the report.

  16. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  17. Effects of injection pressure and injection timing to exhaust gas opacity for a conventional indirect diesel engine

    NASA Astrophysics Data System (ADS)

    Budiman, Agus; Majid, Akmal Irfan; Pambayun, Nirmala Adhi Yoga; Yuswono, Lilik Chaerul; Sukoco

    2016-06-01

    In relation to pollution control and environmental friendliness, the quality of exhaust gas from diesel engine needs to be considered. The influences of injection pressure and timing to exhaust gas opacity were investigated. A series of experiments were conducted in a one-cylinder conventional diesel engine with a naturally aspirated system and indirect injection. The default specification of injection pressure was 120 kg/cm2. To investigate the injection pressure, the engine speed was retained on 1000 rpm with pressure variations from 80 to 215 kg/cm2. On the other hand, the various injection timing (8, 10, 12, 16 degrees before TDC point and exact 18 degrees before TDC point) were used to determine their effects to exhaust gas opacity. In this case, the engine speed was varied from 1000 to 2400 rpm. The injector tester was used to measure injection pressure whereas the exhaust gas opacity was determined by the smoke meter. Those data were also statistically analyzed by product moment correlation. As the results, the injection pressure of diesel engine had a non-significant positive correlation to the exhaust gas opacity with r = 0.113 and p > 5 %. Injection pressure should be adjusted to the specification listed on the diesel engine as if it was too high or too low will lead to the higher opacity. Moreover, there was a significant positive correlation between injection timing and the exhaust gas opacity in all engine speeds.

  18. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review

    NASA Astrophysics Data System (ADS)

    Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet

    2016-05-01

    It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.

  19. Combustion Stability of the Gas Generator Assembly from J-2X Engine E10001 and Powerpack Tests

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Kenny, R. L.; Casiano, M. J.

    2013-01-01

    Testing of a powerpack configuration (turbomachinery and gas generator assembly) and the first complete engine system of the liquid oxygen/liquid hydrogen propellant J-2X rocket engine have been completed at the NASA Stennis Space Center. The combustion stability characteristics of the gas generator assemblies on these two systems are of interest for reporting since considerable effort was expended to eliminate combustion instability during early development of the gas generator assembly with workhorse hardware. Comparing the final workhorse gas generator assembly development test data to the powerpack and engine system test data provides an opportunity to investigate how the nearly identical configurations of gas generator assemblies operate with two very different propellant supply systems one the autonomous pressure-fed test configuration on the workhorse development test stand, the other the pump-fed configurations on the powerpack and engine systems. The development of the gas generator assembly and the elimination of the combustion instability on the pressure-fed workhorse test stand have been reported extensively in the two previous Liquid Propulsion Subcommittee meetings 1-7. The powerpack and engine system testing have been conducted from mid-2011 through 2012. All tests of the powerpack and engine system gas generator systems to date have been stable. However, measureable dynamic behavior, similar to that observed on the pressure-fed test stand and reported in Ref. [6] and attributed to an injection-coupled response, has appeared in both powerpack and engine system tests. As discussed in Ref. [6], these injection-coupled responses are influenced by the interaction of the combustion chamber with a branch pipe in the hot gas duct that supplies gaseous helium to pre-spin the turbine during the start transient. This paper presents the powerpack and engine system gas generator test data, compares these data to the development test data, and provides additional

  20. Silicon-slurry/aluminide coating. [protecting gas turbine engine vanes and blades

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1983-01-01

    A low cost coating protects metallic base system substrates from high temperatures, high gas velocity ovidation, thermal fatigue and hot corrosion and is particularly useful fo protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrates from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue and increased the resistance of certain superalloys to hot corrosion.

  1. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  2. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions.

  3. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  4. Ion beam analyses of particulate matter in exhaust gas of a ship diesel engine

    NASA Astrophysics Data System (ADS)

    Furuyama, Yuichi; Fujita, Hirotsugu; Taniike, Akira; Kitamura, Akira

    2011-12-01

    There is an urgent need to reduce emission of the particulate matter (PM) in the exhaust gas from ship diesel engines causing various health hazards and serious environmental pollution. Usually the heavy fuel oil (HFO) for ships is of low quality, and contains various kinds of impurities. Therefore, the emission of PM along with exhaust gas from ship diesel engines is one of the most serious environmental issues. However, the PM fundamental properties are not well known. Therefore, it is important to perform elemental analysis of the PM. The HFO contains sulfur with a relatively high concentration of a few percent. It is important to make quantitative measurements of sulfur in the PM, because this element is poisonous for the human body. In the present work, PM samples were collected from exhaust gas of a test engine, and RBS and PIXE analyses were applied successfully to quantitative analysis of the PM samples. The RBS analysis enabled quantitative analysis of sulfur and carbon in the collected PM, while heavier elements such as vanadium and iron were analyzed quantitatively with the PIXE analysis. It has been found that the concentration ratio of sulfur to carbon was between 0.007 and 0.012, and did not strongly depend on the output power of the engine. The S/ C ratio is approximately equal to the original composition of the HFO used in the present work, 0.01. From the known conversion ratio 0.015 of sulfur in the HFO to sulfates, the conversion ratio of carbon in the HFO to the PM is found to be 0.01-0.02 by the RBS measurements. On the other hand, the PIXE analysis revealed a vanadium enrichment of one order of magnitude in the PM.

  5. Evaluation of Start Transient Oscillations with the J-2X Engine Gas Generator Assembly

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Morgan, C. J.; Casiano, M. J.

    2015-01-01

    During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, distinctive and oftentimes high-amplitude pressure oscillations and hardware vibrations occurred during the start transient of nearly every workhorse gas generator assembly test, as well as during many tests of engine system hardware. These oscillations appeared whether the steady-state conditions exhibited stable behavior or not. They occurred similarly with three different injector types, and with every combustion chamber configuration tested, including chamber lengths ranging over a 5:1 range, several different nozzle types, and with or without a side branch line simulating a turbine spin start gas supply line. Generally, two sets of oscillations occurred, one earlier in the start transient and at higher frequencies, and the other almost immediately following and at lower frequencies. Multiple dynamic pressure measurements in the workhorse combustion chambers indicated that the oscillations were associated with longitudinal acoustic modes of the combustion chambers, with the earlier and higher frequency oscillation usually related to the second longitudinal acoustic mode and the later and lower frequency oscillation usually related to the first longitudinal acoustic mode. Given that several early development gas generator assemblies exhibited unstable behavior at frequencies near the first longitudinal acoustic modes of longer combustion chambers, the start transient oscillations are presumed to provide additional insight into the nature of the combustion instability mechanisms. Aspects of the steadystate oscillations and combustion instabilities from development and engine system test programs have been reported extensively in the three previous JANNAF Liquid Propulsion Subcommittee meetings (see references below). This paper describes the hardware configurations, start transient sequence operations, and transient and dynamic test data during the start

  6. Development and application of noninvasive technology for study of combustion in a combustion chamber of gas turbine engine

    NASA Astrophysics Data System (ADS)

    Inozemtsev, A. A.; Sazhenkov, A. N.; Tsatiashvili, V. V.; Abramchuk, T. V.; Shipigusev, V. A.; Andreeva, T. P.; Gumerov, A. R.; Ilyin, A. N.; Gubaidullin, I. T.

    2015-05-01

    The paper formulates the issue of development of experimental base with noninvasive optical-electronic tools for control of combustion in a combustion chamber of gas turbine engine. The design and specifications of a pilot sample of optronic system are explained; this noninvasive system was created in the framework of project of development of main critical technologies for designing of aviation gas turbine engine PD-14. The testbench run data are presented.

  7. Epoxy-free high-temperature fiber optic pressure sensors for gas turbine engine applications

    NASA Astrophysics Data System (ADS)

    Xu, Juncheng; Pickrell, Gary; Yu, Bing; Han, Ming; Zhu, Yizheng; Wang, Xingwei; Cooper, Kristie L.; Wang, Anbo

    2004-12-01

    Pressure measurements at various locations of a gas turbine engine are highly desirable to improve the operational performance and reliability. However, measurement of dynamic pressure (1psi (6.9kPa) variation superimposed on the static bias) in the operating environment of the engine, where temperatures might exceed 600°C and pressures might exceed 100psi (690kPa), is a great challenge to currently available sensors. To meet these requirements, a novel type of fiber optic engine pressure sensor has been developed. This pressure sensor functions as a diaphragm-based extrinsic Fabry-Perot interferometric (EFPI) sensor. The structure of the sensor head, composed entirely of fused silica, allows a much higher operating temperature to be achieved in conjunction with a low temperature dependence. The sensor head and the fiber tail have been packaged in a metal fitting connected to a piece of metal extension tubing, which improves the mechanical strength of the sensor and facilitates easy sensor installation. The sensor exhibited very good performance in an engine field test, demonstrating not only that the sensors' package is robust enough for engine operation, but also that its performance is consistent with that of a commercial Kulite sensor.

  8. Autoignition and Combustion of Natural Gas in a 4 Stroke HCCI Engine

    NASA Astrophysics Data System (ADS)

    Jun, Daesu; Ishii, Kazuaki; Iida, Norimasa

    Homogeneous charge compression ignition (HCCI) is regarded as the next generation combustion regime in terms of high thermal efficiency and low emissions. It is difficult to control autoignition timing and combustion duration because they are controlled primarily by the chemical kinetics of fuel-air mixture. In this study, it was investigated the characteristics of autoignition and combustion of natural gas in a 4 stroke HCCI engine. And also, to clarify the influence of n-butane on autoignition and combustion of natural gas, it was changed the blend ratio of n-butane from 0mol% to 10mol% in methane/n-butane/air mixtures. Autoignition strongly depends on in-cylinder gas temperature. Autoignition of natural gas occurs when in-cylinder gas temperature reaches in a range of 1000±100K under this experimental condition. To realize high thermal efficiency and low CO emissions, it is necessary to prepare operation conditions that maximum cycle temperature is over 1500K. Autoignition temperature is 25K lower by increasing n-butane blend ratio of 10%. As the blend ratio of n-butane increases, the maximum cycle temperature increases, and THC, CO emissions reduce.

  9. Development of Gas-Lubricated Pistons for Heavy Duty Diesel Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Shapiro, W.

    1984-01-01

    Static testing of a segmented, gas-lubricated, piston-ring was accomplished. The ring utilizes high-pressure gas generated during the diesel cycle to energize a hydrostatic gas film between the piston and cylinder liner. The configuration was deficient in overall performance, because all segments of a ring set failed to form a fluid-film simultaneously, when exposed to internal preload. The difficulty was traced to the moment balance required to prevent the segments from overturning and contacting the cylinder walls. Some individual sectors formed a film and performed well in every respect including load capability to 6,000 N. These results produce optimism as to the ultimate feasibility of hydrostatic, gas-lubricated piston rings. In addition to test results, the principles of operation, and theoretical developments are presented. Breathable liner concepts are suggested for future consideration. In these configurations, solid hydrostatic pistons are coupled with flexible liners that elastically deform to form a gas-film under hydrostatic pressurization. Breathable liners afford the mechanical simplicity required for mass produced engines, and initial examination indicates satisfactory operation.

  10. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  11. ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL

    SciTech Connect

    David K. Irick; Ke Nguyen

    2004-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  12. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  13. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  14. Effect of persistent trace compounds in landfill gas on engine performance during energy recovery: a case study.

    PubMed

    Sevimoğlu, Orhan; Tansel, Berrin

    2013-01-01

    Performances of gas engines operated with landfill gas (LFG) are affected by the impurities in the LFG, reducing the economic viability of energy recovery. The purpose of this study was to characterize the trace compounds in the LFG at the Odayeri Landfill, Istanbul, Turkey which is used for energy recovery. Composite gas samples were collected and analyzed for trace compounds (hydrocarbons, siloxanes, and volatile halogenated hydrocarbons) over a 3-year period. Trace compounds entering the gas engines, their impact on the engine performance were evaluated. The operational problems included deposit formation in the combustion chamber, turbocharger, and intercooler of engine before the scheduled maintenance times. High levels of hydrogen sulfide, as well as chlorinated and fluorinated compounds cause corrosion of the engine parts and decrease life of the engine oils. Persistence of siloxanes results in deposit formation, increasing engine maintenance costs. Pretreatment of LFG is necessary to protect the engines at the waste-to-energy facilities with persistence levels of siloxanes and volatile halogenated hydrocarbons.

  15. Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and Hythane-fueled engine

    SciTech Connect

    Larsen, J.F.; Wallace, J.S.

    1997-01-01

    An experiment was conducted to evaluate the potential for reduced exhaust emissions and improved efficiency, by way of lean-burn engine fueling with hydrogen supplemented natural gas (Hythane). The emissions and efficiency of the Hythane fuel (15% hydrogen, 85% natural gas by volume), were compared to the emissions and efficiency of pure natural gas using a turbocharged, spark ignition, 3.1 L, V-6 engine. The feasibility of heavy duty engine fueling with Hythane was assessed through testing conducted at engine speed and load combinations typical of heavy-duty engine operation. Comparison of the efficiency and emissions at MBT spark timing revealed that Hythane fueling of the test engine resulted in consistently lower brake specific energy consumption and emissions of total hydrocarbons (THC), carbon monoxide (CO), and carbon dioxide (CO{sub 2}), at a given equivalence ratio. There was no clear trend with respect to MBT oxides of nitrogen (NO{sub x}) emissions. It was also discovered that an improved NO{sub x}-THC tradeoff resulted when Hythane was used to fuel the test engine. Consequently, Hythane engine operating parameters can be adjusted to achieve a concurrent reduction in NO{sub x} and THC emissions relative to natural gas fueling.

  16. Gas-engine Heat-Recovery Unit. Final report, September 1983-July 1991

    SciTech Connect

    Kubasco, A.J.

    1991-07-01

    The objective of Gas Engine Heat Recovery Unit was to design, fabricate and test an efficient, compact, and corrosion resistant heat recovery unit (HRU) for use on exhaust of natural gas-fired reciprocating engine-generator sets in the 50-500 kW range. The HRU would be a core component of a factory pre-packaged cogeneration system designed around component optimization, reliability and efficiency. The HRU uses finned high alloy, stainless steel tubing wound into a compact helical coil heat exchanger. The corrosion resistance of the tubing allows more heat to be taken from the exhaust gas without fear of the effects of acid condensation. One HRU is currently installed in a cogeneration system at the Henry Ford Hospital Complex in Dearborn, Michigan. A second unit underwent successful endurance testing for 850 hours. The plan was to commercialize the HRU through its incorporation into a Caterpillar pre-packaged cogeneration system. Caterpillar is not proceeding with the concept at this time because of a downturn in the small size cogeneration market.

  17. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  18. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer

  19. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME II. APPENDICES A-I

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  20. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... associated valves, pressure and temperature sensors. The temperature of the sample lines shall be more than 5... from similar tests.) The temperature measuring system (sensors and readout) shall have an accuracy...

  1. Performance sensitivity analysis of Department of Energy-Chrysler upgraded automotive gas turbine engine, S/N 5-4

    NASA Technical Reports Server (NTRS)

    Johnsen, R. L.

    1979-01-01

    The performance sensitivity of a two-shaft automotive gas turbine engine to changes in component performance and cycle operating parameters was examined. Sensitivities were determined for changes in turbomachinery efficiency, compressor inlet temperature, power turbine discharge temperature, regenerator effectiveness, regenerator pressure drop, and several gas flow and heat leaks. Compressor efficiency was found to have the greatest effect on system performance.

  2. Bleed cycle propellant pumping in a gas-core nuclear rocket engine system

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.; Easley, A. J.

    1972-01-01

    The performance of ideal and real staged primary propellant pumps and bleed-powered turbines was calculated for gas-core nuclear rocket engines over a range of operating pressures from 500 to 5000 atm. This study showed that for a required engine operating pressure of 1000 atm the pump work was about 0.8 hp/(lb/sec), the specific impulse penalty resulting from the turbine propellant bleed flow as about 10 percent; and the heat required to preheat the propellant was about 7.8 MN/(lb/sec). For a specific impulse above 2400 sec, there is an excess of energy available in the moderator due to the gamma and neutron heating that occurs there. Possible alternative pumping cycles are the Rankine or Brayton cycles.

  3. Establishing a Ballistic Test Methodology for Documenting the Containment Capability of Small Gas Turbine Engine Compressors

    NASA Technical Reports Server (NTRS)

    Heady, Joel; Pereira, J. Michael; Ruggeri, Charles R.; Bobula, George A.

    2009-01-01

    A test methodology currently employed for large engines was extended to quantify the ballistic containment capability of a small turboshaft engine compressor case. The approach involved impacting the inside of a compressor case with a compressor blade. A gas gun propelled the blade into the case at energy levels representative of failed compressor blades. The test target was a full compressor case. The aft flange was rigidly attached to a test stand and the forward flange was attached to a main frame to provide accurate boundary conditions. A window machined in the case allowed the projectile to pass through and impact the case wall from the inside with the orientation, direction and speed that would occur in a blade-out event. High-peed, digital-video cameras provided accurate velocity and orientation data. Calibrated cameras and digital image correlation software generated full field displacement and strain information at the back side of the impact point.

  4. Liquid chromatographic analysis of a formulated ester from a gas-turbine engine test

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography (SEC) utilizing mu-Bondagel and mu-Styragel columns with a tetrahydrofuran mobile phase was used to determine the chemical degradation of lubricant samples from a gas-turbine engine test. A MIL-L-27502 candidate, ester-based lubricant was run in a J57-29 engine at a bulk oil temperature of 216 C. In general, the analyses indicated a progressive loss of primary ester, additive depletion, and formation of higher molecular weight material. An oil sample taken at the conclusion of the test showed a reversal of this trend because of large additions of new oil. The high-molecular-weight product from the degraded ester absorbed strongly in the ultraviolet region at 254 nanometers. This would indicate the presence of chromophoric groups. An analysis of a similar ester lubricant from a separate high-temperature bearing test yielded qualitatively similar results.

  5. Instabilities in uranium plasma and the gas-core nuclear rocket engine

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1972-01-01

    The nonlinear evolution of unstable sound waves in a uranium plasma has been calculated using a multiple time-scale asymptotic expansion scheme. The fluid equations used include the fission power density, radiation diffusion, and the effects of the changing degree of ionization of the uranium atoms. The nonlinear growth of unstable waves is shown to be limited by mode coupling to shorter wavelength waves which are damped by radiation diffusion. This mechanism limits the wave pressure fluctuations to values of order delta P/P approximates 0.00001 in the plasma of a typical gas-core nuclear rocket engine. The instability is thus not expected to present a control problem for this engine.

  6. Novel sensors to enable closed-loop active clearance control in gas turbine engines

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan; Holst, Tom

    2014-06-01

    Active clearance control within the turbine section of gas turbine engines presents and opportunity within aerospace and industrial applications to improve operating efficiencies and the life of downstream components. Open loop clearance control is currently employed during the development of all new large core aerospace engines; however, the ability to measure the gap between the blades and the case and close down the clearance further presents as opportunity to gain even greater efficiencies. The turbine area is one of the harshest environments for long term placement of a sensor in addition to the extreme accuracy requirements required to enable closed loop clearance control. This paper gives an overview of the challenges of clearance measurements within the turbine as well as discusses the latest developments of a microwave sensor designed for this application.

  7. Influence of working liquid on the onset characteristics of a thermoacoustic engine with gas and liquid

    NASA Astrophysics Data System (ADS)

    Tang, Ke; Lei, Tian; Jin, Tao

    2012-11-01

    This paper analyzes the influence of working liquid on the onset characteristics in a thermoacoustic engine with gas and liquid. The governing equations have been derived by the electro-acoustic analogy with thermoacoustics. According to the formulation of the liquid column impedance, we focus on the impact of density and kinematic viscosity of the working liquid on the onset characteristics. The calculations show that the onset temperature increases with a rise in the liquid's kinematic viscosity, and the oscillation frequency decreases with a rise in the liquid's density. Three liquids, i.e., water, potassium formate aqueous solution, and [EMIM][BF4], are used in the experiments to observe the onset characteristics of the engine. The comparison between calculation and experimental results confirms that the liquid's viscosity should be included in the calculation to obtain a better agreement with the experiment.

  8. Evaluation of the design, construction and operation of a gas fuelled engine driven heat pump. Research report

    SciTech Connect

    Phillips, C.A.

    1980-10-01

    The heat pump, using air as its source of heat is driven by a 360 cc single cylinder marine engine converted to run on natural gas. The heat pump works well and justifies the design assumptions made, having allowed for a poor performance from the particular engine used. At 6C (ambient) the author achieved an output of 14kW with an overall efficiency or C.O.P. (total heat output/gas input) of 1.1 which compares favorably with a seasonal efficiency of a gas boiler of around 0.65 - 0.70.

  9. Thermal Load Considerations for Detonative Combustion-Based Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Perkins, H. Douglas

    2004-01-01

    An analysis was conducted to assess methods for, and performance implications of, cooling the passages (tubes) of a pulse detonation-based combustor conceptually installed in the core of a gas turbine engine typical of regional aircraft. Temperature-limited material stress criteria were developed from common-sense engineering practice, and available material properties. Validated, one-dimensional, numerical simulations were then used to explore a variety of cooling methods and establish whether or not they met the established criteria. Simulation output data from successful schemes were averaged and used in a cycle-deck engine simulation in order to assess the impact of the cooling method on overall performance. Results were compared to both a baseline engine equipped with a constant-pressure combustor and to one equipped with an idealized detonative combustor. Major findings indicate that thermal loads in these devices are large, but potentially manageable. However, the impact on performance can be substantial. Nearly one half of the ideally possible specific fuel consumption (SFC) reduction is lost due to cooling of the tubes. Details of the analysis are described, limitations are presented, and implications are discussed.

  10. Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris; Pinkus, Oscar

    2000-01-01

    The following report represents a compendium of selected speaker presentation materials and observations made by Prof O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on Tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic beatings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.

  11. The line-emitting gas in active galaxies - A probe of the nuclear engine

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain

    1993-01-01

    This paper reviews some of the basic questions regarding the structure of the engine powering active galactic nuclei (AGN), the nature of the interaction between the AGN and the host galaxy, and the origin and evolution of AGN. The study of the dynamics and physical characteristics of the line-emitting gas in these objects has proven fruitful in addressing many of these issues. Recent advances in optical and infrared detector technology combined with the development of superior ground-based instruments have produced efficient new tools for the study of the line-emitting gas on nuclear and Galactic scales. Programs which take advantage of two of these new techniques, Fabry-Perot imaging spectroscopy and infrared spectroscopy, are described in this paper. The origin of nuclear activity in galaxies is also addressed in a third project which aims at determining the nature of luminous infrared galaxies.

  12. Evaluation Of Rotation Frequency Gas-Diesel Engines When Using Automatic Control System

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A.; Efremov, A.

    2017-01-01

    A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of gas-diesel engine may be reduced at 25-30 times at optimal settings of the controller in all the power range. The results of modeling showing a considerable quality improvement of transient processes in the investigated system at a sharp change of loading are presented in this article.

  13. Active bypass flow control for a seal in a gas turbine engine

    DOEpatents

    Ebert, Todd A.; Kimmel, Keith D.

    2017-03-14

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.

  14. Active bypass flow control for a seal in a gas turbine engine

    DOEpatents

    Ebert, Todd A.; Kimmel, Keith D.

    2017-01-10

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears. In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.

  15. Effect of technological heredity on the fatigue strength in the manufacture of gas turbine engine blades

    NASA Astrophysics Data System (ADS)

    Smirnov, G. V.; Pronichev, N. D.; Nekhoroshev, M. V.

    2017-02-01

    In the study, the task of researching of the finishing-strengthening machining stage of gas turbine engine compressor blades manufactured of titanium and nickel-chromium alloys in order to extend their service life was solved. The application of electrochemical pulse machining as a technological heredity barrier was substantiated since this method allows a considerable decrease of the residual stress and surface layer work hardening. To ensure the extended service life of blades, the conditions for the subsequent finishing-strengthening machining were identified.

  16. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.

  17. A Navier-Stokes flow simulation of the Space Shuttle Main Engine Hot Gas Manifold

    NASA Technical Reports Server (NTRS)

    Yang, Ruey-Jen; Chang, James L. C.; Kwak, Dochan

    1987-01-01

    Incompressible viscous flow inside the turnaround duct, the fuel bowl, the transfer duct and the racetrack of the Space Shuttle Main Engine (SSME) Hot Gas Manifold (HGM) has been computed using the method of pseudo-compressibility together with an implicit, approximate-factorization algorithm. A multiple-zone method is used to make solution of flows in complex geometries easy. A model which predicts the pressure loading for the shield and the injector post arrangement without solving the complex flow field in the main injector region is proposed. The computed results show good qualitative agreement with experimental data.

  18. Multiroller Traction Drive Speed Reducer. Evaluation for Automotive Gas Turbine Engine

    DTIC Science & Technology

    1982-06-01

    for Automotive Gas Turbine Engine Douglas A. Rohn lewi’s Research Center Cleveland, Ohow Neil E. Anderson lProputsiou Laboratory AURADCOAI Research and...3 0 5 WO 1• 000 0 M 30 200 3ODD 350 4 0OO Output torqlue, In- lbl Figure IO. - Sun-roller displacem’ent as a function of output torque and output...Oigantzittior Report No Douglas A. Rohn, Neil F. Anderson, and Stuart H1. Loewenthal E-1002 10. Work Unit Ncr. 9. Performing Organization Name and Address

  19. Cooling system having reduced mass pin fins for components in a gas turbine engine

    DOEpatents

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  20. Variable area nozzle for gas turbine engines driven by shape memory alloy actuators

    NASA Technical Reports Server (NTRS)

    Rey, Nancy M. (Inventor); Miller, Robin M. (Inventor); Tillman, Thomas G. (Inventor); Rukus, Robert M. (Inventor); Kettle, John L. (Inventor); Dunphy, James R. (Inventor); Chaudhry, Zaffir A. (Inventor); Pearson, David D. (Inventor); Dreitlein, Kenneth C. (Inventor); Loffredo, Constantino V. (Inventor)

    2001-01-01

    A gas turbine engine includes a variable area nozzle having a plurality of flaps. The flaps are actuated by a plurality of actuating mechanisms driven by shape memory alloy (SMA) actuators to vary fan exist nozzle area. The SMA actuator has a deformed shape in its martensitic state and a parent shape in its austenitic state. The SMA actuator is heated to transform from martensitic state to austenitic state generating a force output to actuate the flaps. The variable area nozzle also includes a plurality of return mechanisms deforming the SMA actuator when the SMA actuator is in its martensitic state.

  1. Laboratory Performance Evaluation of Residential Scale Gas Engine Driven Heat Pump

    SciTech Connect

    Abu-Heiba, Ahmad; Mehdizadeh Momen, Ayyoub; Mahderekal, Dr. Isaac

    2016-01-01

    Building space cooling is, and until 2040 is expected to continue to be, the single largest use of electricity in the residential sector in the United States (EIA Energy Outlook 2015 .) Increases in electric-grid peak demand leads to higher electricity prices, system inefficiencies, power quality problems, and even failures. Thermally-activated systems, such as gas engine-driven heat pump (GHP), can reduce peak demand. This study describes the performance of a residential scale GHP. It was developed as part of a cooperative research and development agreement (CRADA) that was authorized by the Department of Energy (DOE) between OAK Ridge National Laboratory (ORNL) and Southwest Gas. Results showed the GHP produced 16.5 kW (4.7 RT) of cooling capacity at 35 C (95 F) rating condition with gas coefficient of performance (COP) of 0.99. In heating, the GHP produced 20.2 kW (5.75 RT) with a gas COP of 1.33. The study also discusses other benefits and challenges facing the GHP technology such as cost, reliability, and noise.

  2. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  3. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  4. Thermal design of a natural gas - diesel dual fuel turbocharged V18 engine for ship propulsion and power plant applications

    NASA Astrophysics Data System (ADS)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    A detailed method is presented on the thermal design of a natural gas - diesel dual fuel internal combustion engine. An 18 cylinder four stroke turbocharged engine is considered to operate at a maximum speed of 500 rpm for marine and power plant applications. Thermodynamic, heat transfer and fluid flow phenomena are mathematically analyzed to provide a real cycle analysis together with a complete set of calculated operation conditions, power characteristics and engine efficiencies. The method is found to provide results in close agreement to published data for the actual performance of similar engines such as V18 MAN 51/60DF.

  5. Damage tolerance based life prediction in gas turbine engine blades under vibratory high cycle fatigue

    SciTech Connect

    Walls, D.P.; deLaneuville, R.E.; Cunningham, S.E.

    1997-01-01

    A novel fracture mechanics approach has been used to predict crack propagation lives in gas turbine engine blades subjected to vibratory high cycle fatigue (HCF). The vibratory loading included both a resonant mode and a nonresonant mode, with one blade subjected to only the nonresonant mode and another blade to both modes. A life prediction algorithm was utilized to predict HCF propagation lives for each case. The life prediction system incorporates a boundary integral element (BIE) derived hybrid stress intensity solution, which accounts for the transition from a surface crack to corner crack to edge crack. It also includes a derivation of threshold crack length from threshold stress intensity factors to give crack size limits for no propagation. The stress intensity solution was calibrated for crack aspect ratios measured directly from the fracture surfaces. The model demonstrates the ability to correlate predicted missions to failure with values deduced from fractographic analysis. This analysis helps to validate the use of fracture mechanics approaches for assessing damage tolerance in gas turbine engine components subjected to combined steady and vibratory stresses.

  6. Use of pyrolysis-derived fuel in a gas turbine engine

    SciTech Connect

    Kasper, J.M.; Jasas, G.B.; Trauth, R.L.

    1983-01-01

    Combustion of a pyrolytically derived oil has been demonstrated in a J69-T-29 gas turbine combustor rig. The fuel was derived from agricultural and forest products/wastes through a pyrolysis conversion process which yields the oil and a residual char. The char was ground to a mean size of 25 microns and mixed with the oil and JP-4 in additional combustor rig tests. Analysis of the oil and char showed that both have hydrogen/carbon ratios less than 1.0 for the combustible components. The oil has a water content of 29%, a room temperature viscosity of 250 cS, and a pH of 2.9. The combustion system of the J69 consists of an annular combustor and a centrifugal fuel injector rotating as shaft speed. The centrifugal fuel injector can use slurry fuels without clogging and provides good atomization with viscous fuels. The combustor rig was operated at pressures and temperatures lower than those of the engine, and JP-4 was used as a baseline fuel. Test results indicate that use of pyrolytic oil will result in engine combustion efficiencies of over 99%. The pyrolytic oil may also be used as a supplement to JP-4. Additional development will be necessary to use the pyrolytic char as a gas turbine fuel.

  7. Human factors engineering in oil and gas--a review of industry guidance.

    PubMed

    Robb, Martin; Miller, Gerald

    2012-01-01

    Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This

  8. Solutions for VOC and HAPS control on natural gas fired internal combustion engines

    SciTech Connect

    Marcus, J.Z.; Sleigh, S.; Cotherman, R.

    1996-12-31

    Natural gas fired stationary internal combustion engines (IC engines) emit volatile organic compounds (VOC) and hazardous air pollutants (HAP) as part of their normal operations. VOC and HAP emissions are coming under increased scrutiny with the advent of such Clean Air Act Amendments of 1990 regulations as Title I`s Reasonably Available Control Technology (RACT), Title III`s Maximum Achievable Control Technology (MACT) and Title V`s Operating Permit Program (Title V). In addition, many states are imposing more stringent emission limits on these sources. These emissions may also contribute to the reportable chemicals from the total facility under SARA Title III. Numerous facilities nationwide are interested in reducing these emissions in order to comply with current requirements, to opt out of requirements or to reduce reportable chemicals. This paper will examine the source of these emissions, and discuss combustion control technologies and system operating flexibility, end-of-pipe control technologies, and system tuning opportunities which have the potential to reduce VOC and HAP emissions from IC engines. Data will be presented on potential emission reduction efficiencies achievable using the various control options. 7 refs., 4 tabs.

  9. Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy

    PubMed Central

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  10. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    PubMed

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  11. Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Tuma, J.; Kubata, J.; Betak, V.; Hybl, R.

    2013-04-01

    New combustion chamber concept (based on burner JETIS-JET Induced Swirl) for small gas turbine engine (up to 200kW) is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary jets are oriented partially opposite to the main exhaust gasses flow, this enhances hot product recirculation and fuel-air mixing necessary for low NOx production and flame stability. To evaluate the designed concept a JETIS burner demonstrator (methane fuel) was manufactured and atmospheric experimental measurements of CO, NOx for various fuel nozzles and jet tubes the configuration were done. Results of these experiments and comparison with CFD simulation are presented here. Practical application of the new chamber concept in small gas turbine liquid fuel combustor was evaluated (verified) on 3 nozzles planar combustor sector test rig at atmospheric conditions results of the experiment and numerical simulation are also presented.

  12. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel.

    PubMed

    Geng, Peng; Tan, Qinming; Zhang, Chunhui; Wei, Lijiang; He, Xianzhong; Cao, Erming; Jiang, Kai

    2016-12-01

    In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO2 emission decreases. Meanwhile, the ratio of NO2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel.

  13. Impact of Variations on 1-D Flow in Gas Turbine Engines via Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Ngo, Khiem Viet; Tumer, Irem

    2004-01-01

    The unsteady compressible inviscid flow is characterized by the conservations of mass, momentum, and energy; or simply the Euler equations. In this paper, a study of the subsonic one-dimensional Euler equations with local preconditioning is presented using a modal analysis approach. Specifically, this study investigates the behavior of airflow in a gas turbine engine using the specified conditions at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine, to determine the impact of variations in pressure, velocity, temperature, and density at low Mach numbers. Two main questions motivate this research: 1) Is there any aerodynamic problem with the existing gas turbine engines that could impact aircraft performance? 2) If yes, what aspect of a gas turbine engine could be improved via design to alleviate that impact and to optimize aircraft performance? This paper presents an initial attempt to model the flow behavior in terms of their eigenfrequencies subject to the assumption of the uncertainty or variation (perturbation). The flow behavior is explored using simulation outputs from a customer-deck model obtained from Pratt & Whitney. Variations of the main variables (i.e., pressure, temperature, velocity, density) about their mean states at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine are modeled. Flow behavior is analyzed for the high-pressure compressor and combustion chamber utilizing the conditions on their left and right boundaries. In the same fashion, similar analyses are carried out for the high-pressure and low-pressure turbines. In each case, the eigenfrequencies that are obtained for different boundary conditions are examined closely based on their probabilistic distributions, a result of a Monte Carlo 10,000 sample simulation. Furthermore, the characteristic waves and wave response are analyzed and contrasted among different cases, with and without preconditioners. The results reveal

  14. Preliminary investigation of the control of a gas-turbine engine for a helicopter / Richard P. Krebs

    NASA Technical Reports Server (NTRS)

    Krebs, Richard P

    1951-01-01

    An analog investigation of the power plant for a gas-turbine powered helicopter indicates that currently proposed turbine-propeller engine controls are satisfactory for helicopter application. Power increases from one-half to full rated at altitudes from sea level to 15,000 feet could be made in less than 4 seconds with either the rotor or propellers absorbing the engine power.

  15. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  16. Air/fuel supply system for use in a gas turbine engine

    DOEpatents

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  17. Industry tests of NASA ceramic thermal barrier coating. [for gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1979-01-01

    Ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical, marine, and ground-based gas turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt. percent) and a ceramic coating of yttria-stabilized zirconia (ZrO2-12Y2O3, in wt. percent). Seven tests evaluated the system's thermal protection and durability. Five other tests determined thermal conductivity, vibratory fatigue characteristics, and corrosion resistance of the system. The information presented includes test results and photographs of the coated parts. Recommendations are made for improving the coating procedures.

  18. Apparatus and method for suppressing sound in a gas turbine engine powerplant

    NASA Technical Reports Server (NTRS)

    Wynosky, Thomas A. (Inventor); Mischke, Robert J. (Inventor)

    1992-01-01

    A method and apparatus for suppressing jet noise in a gas turbine engine powerplant 10 is disclosed. Various construction details are developed for providing sound suppression at sea level take-off operative conditions and not providing sound suppression at cruise operative conditions. In one embodiment, the powerplant 10 has a lobed mixer 152 between a primary flowpath 44 and a second flowpath 46, a diffusion region downstream of the lobed mixer region (first mixing region 76), and a deployable ejector/mixer 176 in the diffusion region which forms a second mixing region 78 having a diffusion flowpath 72 downstream of the ejector/mixer and sound absorbing structure 18 bounding the flowpath throughout the diffusion region. The method includes deploying the ejector/mixer 176 at take-off and stowing the ejector/mixer at cruise.

  19. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOEpatents

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  20. Seal plate with concentrate annular segments for a gas turbine engine

    SciTech Connect

    Harris, D.P.; Light, S.H.

    1991-12-24

    This patent describes a gas turbine engine. It comprises a radial outflow, rotary compressor; a radial inflow turbine wheel; means coupling the compressor and the turbine wheel in slightly spaced back to back relating so that the turbine wheel may drive the compressor; a housing surrounding the compressor and the turbine wheel; and a stationary seal mounted on the housing and extending into the space between the compressor and the turbine wheel, the seal including a main sealing and support section adjacent the compressor and a multiple piece diaphragm mounted to the main section, but generally spaced therefrom, the pieces of the diaphragm being movable with respect to each other and with respect to the main section, and including a radially inner ring and a radially outer ring, one of the rings including a lip which overlaps an edge of the other of the rings, the lip and the edge being in sliding, sealing engagement.

  1. Durability testing at 5 atmospheres of advanced catalysts and catalyst supports for gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.

    1980-01-01

    The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.

  2. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE PAGES

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  3. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A NASA ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical marine, and ground-based gas-turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt %) and a ceramic coating of yttria stabilized zirconia (ZrO2-12Y2O3, in wt %). Tests (Liebert and Stenka, 1979) have been conducted to determine corrosion resistance, thermal protection, durability, thermal conductivity, and fatigue characteristics. The information presented covers some of the significant test results obtained on the first three items. The information also includes photographs of coated parts after tests, measurements of coating loss, amount of metal wall temperature reduction when the TBC is used, and extent of base metal corrosion.

  4. Experimental and Analytical Study of Balanced-Diaphragm Fuel Distributors for Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Straight, David M.; Gold, Harold

    1950-01-01

    A method of distributing fuel equally to a plurality of spray nozzles in a gas-turbine engine by means of balanced-diaphragm fuel distributors is presented. The experimental performance of three of eight possible distributor arrangements are discussed. An analysis of all eight arrangements is included. Criterions are given for choosing a fuel-distributor arrangement to meet specific fuel-system requirements of fuel-distribution accuracy, spray-nozzle pressure variations, and fuel-system pressures. Data obtained with a model of one distributor arrangement indicated a maximum deviation from perfect distribution of 3.3 percent for a 44 to 1 range (19.5 to 862 lb/hr) of fuel-flow rates. The maximum distributor pressure drop was 125 pounds per square inch. The method used to obtain the required wide range of flow control in the distributor valves consisted in varying the length of a constant-area flow path.

  5. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    SciTech Connect

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  6. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    SciTech Connect

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-06-19

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

  7. Colloidal gas aphron foams: A novel approach to a hydrogel based tissue engineered myocardial patch

    NASA Astrophysics Data System (ADS)

    Johnson, Elizabeth Edna

    Cardiovascular disease currently affects an estimated 58 million Americans and is the leading cause of death in the US. Over 2.3 million Americans are currently living with heart failure a leading cause of which is acute myocardial infarction, during which a part of the heart muscle is damaged beyond repair. There is a great need to develop treatments for damaged heart tissue. One potential therapy involves replacement of nonfunctioning scar tissue with a patch of healthy, functioning tissue. A tissue engineered cardiac patch would be ideal for such an application. Tissue engineering techniques require the use of porous scaffolds, which serve as a 3-D template for initial cell attachment and grow-th leading to tissue formation. The scaffold must also have mechanical properties closely matching those of the tissues at the site of implantation. Our research presents a new approach to meet these design requirements. A unique interaction between poly(vinyl alcohol) and amino acids has been discovered by our lab, resulting in the production of novel gels. These unique synthetic hydrogels along with one natural hydrogel, alginate (derived from brown seaweed), have been coupled with a new approach to tissue scaffold fabrication using solid colloidal gas aphrons (CGAs). CGAs are colloidal foams containing uniform bubbles with diameters on the order of micrometers. Upon solidification the GCAs form a porous, 3-D network suitable for a tissue scaffold. The project encompasses four specific aims: (I) characterize hydrogel formation mechanism, (II) use colloidal gas aphrons to produce hydrogel scaffolds, (III) chemically and physically characterize scaffold materials and (IV) optimize and evaluate scaffold biocompatibility.

  8. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect

    Srinivasan, K. K.; Krishnan, S. R.; Qi, Y.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas₋air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed "relative combustion phasing" ). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60° BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  9. PV output smoothing using a battery and natural gas engine-generator.

    SciTech Connect

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2013-02-01

    In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

  10. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    SciTech Connect

    McIntyre, D. L.

    2007-05-01

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and explored in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling

  11. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    NASA Technical Reports Server (NTRS)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  12. Characterization of particulate matter emissions from a current technology natural gas engine.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc C; Yoon, Seungju; Collins, John; Kappanna, Hemanth; Carder, Daniel K; Ayala, Alberto; Herner, Jorn; Gautam, Mridul

    2014-07-15

    Experiments were conducted to characterize the particulate matter (PM)-size distribution, number concentration, and chemical composition emitted from transit buses powered by a USEPA 2010 compliant, stoichiometric heavy-duty natural gas engine equipped with a three-way catalyst (TWC). Results of the particle-size distribution showed a predominant nucleation mode centered close to 10 nm. PM mass in the size range of 6.04 to 25.5 nm correlated strongly with mass of lubrication-oil-derived elemental species detected in the gravimetric PM sample. Results from oil analysis indicated an elemental composition that was similar to that detected in the PM samples. The source of elemental species in the oil sample can be attributed to additives and engine wear. Chemical speciation of particulate matter (PM) showed that lubrication-oil-based additives and wear metals were a major fraction of the PM mass emitted from the buses. The results of the study indicate the possible existence of nanoparticles below 25 nm formed as a result of lubrication oil passage through the combustion chamber. Furthermore, the results of oxidative stress (OS) analysis on the PM samples indicated strong correlations with both the PM mass calculated in the nanoparticle-size bin and the mass of elemental species that can be linked to lubrication oil as the source.

  13. LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE

    SciTech Connect

    Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei; Xue, Qingluan; Som, Sibendu

    2015-01-01

    The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects have received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.

  14. Fuel property effects on USAF gas turbine engine combustors and afterburners

    NASA Technical Reports Server (NTRS)

    Reeves, C. M.

    1984-01-01

    Since the early 1970s, the cost and availability of aircraft fuel have changed drastically. These problems prompted a program to evaluate the effects of broadened specification fuels on current and future aircraft engine combustors employed by the USAF. Phase 1 of this program was to test a set of fuels having a broad range of chemical and physical properties in a select group of gas turbine engine combustors currently in use by the USAF. The fuels ranged from JP4 to Diesel Fuel number two (DF2) with hydrogen content ranging from 14.5 percent down to 12 percent by weight, density ranging from 752 kg/sq m to 837 kg/sq m, and viscosity ranging from 0.830 sq mm/s to 3.245 sq mm/s. In addition, there was a broad range of aromatic content and physical properties attained by using Gulf Mineral Seal Oil, Xylene Bottoms, and 2040 Solvent as blending agents in JP4, JP5, JP8, and DF2. The objective of Phase 2 was to develop simple correlations and models of fuel effects on combustor performance and durability. The major variables of concern were fuel chemical and physical properties, combustor design factors, and combustor operating conditions.

  15. Uncertainty of measurement for large product verification: evaluation of large aero gas turbine engine datums

    NASA Astrophysics Data System (ADS)

    Muelaner, J. E.; Wang, Z.; Keogh, P. S.; Brownell, J.; Fisher, D.

    2016-11-01

    Understanding the uncertainty of dimensional measurements for large products such as aircraft, spacecraft and wind turbines is fundamental to improving efficiency in these products. Much work has been done to ascertain the uncertainty associated with the main types of instruments used, based on laser tracking and photogrammetry, and the propagation of this uncertainty through networked measurements. Unfortunately this is not sufficient to understand the combined uncertainty of industrial measurements, which include secondary tooling and datum structures used to locate the coordinate frame. This paper presents for the first time a complete evaluation of the uncertainty of large scale industrial measurement processes. Generic analysis and design rules are proven through uncertainty evaluation and optimization for the measurement of a large aero gas turbine engine. This shows how the instrument uncertainty can be considered to be negligible. Before optimization the dominant source of uncertainty was the tooling design, after optimization the dominant source was thermal expansion of the engine; meaning that no further improvement can be made without measurement in a temperature controlled environment. These results will have a significant impact on the ability of aircraft and wind turbines to improve efficiency and therefore reduce carbon emissions, as well as the improved reliability of these products.

  16. Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.

    1986-01-01

    Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

  17. Spark anemometry of bulk gas velocity at the plug gap of a firing engine

    SciTech Connect

    Kim, J.; Anderson, R.W.

    1995-12-31

    The objective of the present work was to investigate a rapid method of obtaining the convection velocity of the bulk gas near the spark plug gap of a firing engine at the time of ignition. To accomplish this, a simple model was developed which utilized both the secondary current and voltage signals, from a conventional spark discharge. The model assumed the spark path was elongated in a rectangular U-shape by the flow. Based on experimentally measured electrical signals, the mean convection velocity was computed. The convection velocity calculated by the model first needed calibration which was accomplished with a bench test that used a hot wire anemometer. The technique has a weak correlation at low velocities of 1--2 m/s, but correlates well as higher velocities up to 15 m/s. Although the accuracy of prediction by the technique is moderate, it is shown to be suitable for rapidly studying the bulk flow velocity ear the plug gap in an operating engine without modification of the combustion system. It is also shown to favorably compare with data taken with a fiber optic equipped spark plug.

  18. Characterization of Synthetic GTL Jet Fuel for use in Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Sadr, Reza; Kannaiyan, Kumaran

    2010-11-01

    Stringent emission regulations have instigated the search for alternative-clean source of energy. Recently, Gas-to-Liquid (GTL) fuel has grabbed the global attention by its clean combustion characteristics owing to the absence of aromatics and Sulphur. However, this will introduce potential risks and benefits. Last fall Qatar airways has proven the feasibility of using GTL as a potential alternative clean fuel by a 3200 mile flight using a fuel blend of 50% JetA + 50% GTL. Researchers from Texas A & M University at Qatar (TAMUQ) in collaboration with their counterparts in Rolls-Royce (RR), UK, and German Aerospace Laboratory (DLR) are in a joint effort to establish an in-depth characterization of the combustion performance of GTL fuel in gas turbine engines. In TAMUQ, the research focus is to investigate the spray characteristics of GTL fuels. The results will be compared with that of standard fuel and correlate with combustion results to gain insights on GTL performance. This will help designers to optimize the nozzle geometry to improve the combustor performance. The objective of this talk is to introduce this ongoing effort and to discuss the experimental facility and preliminary results.

  19. Engineering and Economics of the USGS Circum-Arctic Oil and Gas Resource Appraisal (CARA) Project

    USGS Publications Warehouse

    Verma, Mahendra K.; White, Loring P.; Gautier, Donald L.

    2008-01-01

    This Open-File report contains illustrative materials, in the form of PowerPoint slides, used for an oral presentation given at the Fourth U.S. Geological Survey Workshop on Reserve Growth of petroleum resources held on March 10-11, 2008. The presentation focused on engineering and economic aspects of the Circum-Arctic Oil and Gas Resource Appraisal (CARA) project, with a special emphasis on the costs related to the development of hypothetical oil and gas fields of different sizes and reservoir characteristics in the North Danmarkshavn Basin off the northeast coast of Greenland. The individual PowerPoint slides highlight the topics being addressed in an abbreviated format; they are discussed below, and are amplified with additional text as appropriate. Also included in this report are the summary results of a typical ?run? to generate the necessary capital and operating costs for the development of an offshore oil field off the northeast coast of Greenland; the data are displayed in MS Excel format generated using Questor software (IHS Energy, Inc.). U.S. Geological Survey (USGS) acknowledges that this report includes data supplied by IHS Energy, Inc.; Copyright (2008) all rights reserved. IHS Energy has granted USGS the permission to publish this report.

  20. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  1. Fast exhaust channel optical absorption method and apparatus to study the gas exchange in large diesel engines

    NASA Astrophysics Data System (ADS)

    Vattulainen, J.; Hernberg, R.; Hattar, C.; Gros, S.

    1998-01-01

    An optical absorption spectroscopic method and apparatus with shorter than 1 ms response time have been used to study the gas exchange processes in realistic conditions for a single cylinder of a large diesel engine. The method is based on measuring the differential line-of-sight optical uv absorption of the exhaust-gas-contained SO2 as a function of time in the exhaust port area just after the exhaust valves. The optical absorption by SO2 is determined from light transmission measurements at 280 and 340 nm performed through optical probes installed into the exhaust channel wall. The method has been applied to a continuously fired, large, medium speed production-line-type diesel engine with 990 kW rated power. The test engine was operated with standard light fuel oil (MDO Termoshell) and with light fuel oil treated with a sulfur additive {Di-Tert-Butyldisulfid [(CH3)3C]2S2}. The latter was to improve the optical absorption signals without increasing the fouling of the exhaust channel optical probes as in the case of heavier fuel oil qualities. In the reported case of a four-stroke diesel engine measurement results show that the method can provide time-resolved information of the SO2 density in the exhaust channel and thus give information on the single-cylinder gas exchange. During the inlet and exhaust valve overlap period the moment of fresh air entering into the measurement volume can be detected. If independent exhaust gas temperature and pressure data are available, the absorption measurements can readily be used for determining the burnt gas fraction in the exhaust channel. In this work the possibility of using the optical absorption measurement to determine the instaneous exhaust gas temperature was studied. Based on known fuel properties and conventional averaged SO2 measurements from the exhaust channel a known concentration of SO2 was assumed in the exhaust gas after the exhaust valves opening and before the inlet and exhaust valves overlap period

  2. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Aircraft Turbine Engines.

    PubMed

    Kilic, Dogushan; Brem, Benjamin T; Klein, Felix; El-Haddad, Imad; Durdina, Lukas; Rindlisbacher, Theo; Setyan, Ari; Huang, Rujin; Wang, Jing; Slowik, Jay G; Baltensperger, Urs; Prevot, Andre S H

    2017-04-04

    Nonmethane organic gas emissions (NMOGs) from in-service aircraft turbine engines were investigated using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at an engine test facility at Zurich Airport, Switzerland. Experiments consisted of 60 exhaust samples for seven engine types (used in commercial aviation) from two manufacturers at thrust levels ranging from idle to takeoff. Emission indices (EIs) for more than 200 NMOGs were quantified, and the functional group fractions (including acids, carbonyls, aromatics, and aliphatics) were calculated to characterize the exhaust chemical composition at different engine operation modes. Total NMOG emissions were highest at idling with an average EI of 7.8 g/kg fuel and were a factor of ∼40 lower at takeoff thrust. The relative contribution of pure hydrocarbons (particularly aromatics and aliphatics) of the engine exhaust decreased with increasing thrust while the fraction of oxidized compounds, for example, acids and carbonyls increased. Exhaust chemical composition at idle was also affected by engine technology. Older engines emitted a higher fraction of nonoxidized NMOGs compared to newer ones. Idling conditions dominated ground level organic gas emissions. Based on the EI determined here, we estimate that reducing idle emissions could substantially improve air quality near airports.

  3. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    SciTech Connect

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  4. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  5. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions

  6. System Engineering Program Applicability for the High Temperature Gas-Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect

    Jeffrey Bryan

    2009-06-01

    This white paper identifies where the technical management and systems engineering processes and activities to be used in establishing the High Temperature Gas-cooled Reactor (HTGR) Component Test Capability (CTC) should be addressed and presents specific considerations for these activities under each CTC alternative

  7. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    SciTech Connect

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  8. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    SciTech Connect

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Perfetto, Anthony; Geckler, Sam; Partridge, William P.

    2015-09-01

    One effective method of reducing NOx emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  9. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  10. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    DOE PAGES

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; ...

    2015-09-01

    One effective method of reducing NOx emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in themore » intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.« less

  11. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  12. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    NASA Astrophysics Data System (ADS)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-09-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  13. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  14. Air-to-fuel ratio control and its effects in a lean-burn natural gas engine

    SciTech Connect

    Hassaneen, A.E.; Varde, K.S.; Bawady, A.H.; Abdul Aziz, A.A.M.

    1996-12-31

    An experimental investigation was undertaken to examine air-to-fuel (A/F) ratio effects on performance and emission of a fuel injected, lean-burn natural gas engine. An eight cylinder, 4.6 liter spark ignited (SI) engine was used in the study. The engine had a compression ratio of 10.6 and was fuel injected with multi-point injection system. The injection and ignition systems of the engine were controlled by an external controller allowing the engine to operate on equivalence ratios as lean as 0.6. A wide range oxygen sensor, calibrated for natural gas, was used to monitor A/F ratio and its variation at steady state engine operation. The overall A/F ratio variations at lean, steady state operating condition, were found to be very low, an average of about {+-}1%, at an equivalence ratio of 0.6. At these conditions hydrocarbons in engine out exhaust, which were primarily made up of methane, increased to about 13 g/kW-h at medium and relatively high loads while the oxides of nitrogen were significantly reduced to below 0.6 g/kW-h. Furthermore, coefficient of variation in hydrocarbons and oxides of nitrogen were much lower than those realized in an earlier study where a four cylinder engine with gaseous carburetion system was used. The fuel injection system was found to maintain the overall A/F ratio much better than in a gaseous carburetion system thus resulting in very stable engine operation.

  15. GETRAN: A generic, modularly structured computer code for simulation of dynamic behavior of aero- and power generation gas turbine engines

    NASA Astrophysics Data System (ADS)

    Schobeiri, M. T.; Attia, M.; Lippke, C.

    1994-07-01

    The design concept, the theoretical background essential for the development of the modularly structured simulation code GETRAN, and several critical simulation cases are presented in this paper. The code being developed under contract with NASA Lewis Research Center is capable of simulating the nonlinear dynamic behavior of single- and multispool core engines, turbofan engines, and power generation gas turbine engines under adverse dynamic operating conditions. The modules implemented into GETRAN correspond to components of existing and new-generation aero- and stationary gas turbine engines with arbitrary configuration and arrangement. For precise simulation of turbine and compressor components, row-by-row diabatic and adiabatic calculation procedures are implemented that account for the specific turbine and compressor cascade, blade geometry, and characteristics. The nonlinear, dynamic behavior of the subject engine is calculated solving a number of systems of partial differential equations, which describe the unsteady behavior of each component individually. To identify each differential equation system unambiguously, special attention is paid to the addressing of each component. The code is capable of executing the simulation procedure at four levels, which increase with the degree of complexity of the system and dynamic event. As representative simulations, four different transient cases with single- and multispool thrust and power generation engines were simulated. These transient cases vary from throttling the exit nozzle area, operation with fuel schedule, rotor speed control, to rotating stall and surge.

  16. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  17. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing

  18. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  19. A Theoretical and Experimental Analysis of Post-Compression Water Injection in a Rolls-Royce M250 Gas Turbine Engine

    DTIC Science & Technology

    2015-05-18

    gas turbine. In a split-shaft gas turbine engine, such as the Naval Academy’s Rolls-Royce Model 250, the expansion of the air mixture generates power...that a low level of nitric oxides, carbon monoxide, and unburned hydrocarbons can be achieved. Figure 7 displays the general relationship between...ABSTRACT The gas turbine engine is one of the most common methods of energy generation and propulsion used by the military today due to its high

  20. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    PubMed

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-05

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.

  1. Development of a phenomenological cycle simulation for a natural gas-fuelled, compression-ignited, internal combustion engine

    NASA Astrophysics Data System (ADS)

    Liu, Yafeng

    Engine cycle simulations have been developed for modeling both diesel and dual fuel combustion in compression ignition engines. The primary objective of this work was to investigate the dual fuel combustion process in an engine and to better understand the processes of ignition, flame propagation, and pollutant formation in the engine. A multizone diesel combustion model was first developed to predict the diesel combustion process and emissions for diesel fueling. A phenomenological combustion model for dual fuel operation was then developed to simulate the combustion process and emissions of a micro-pilot diesel ignition natural gas fueled engine. Coupled with the chemical equilibrium reactions for emission formation (i.e., extended Zeldovich NOx mechanism, soot formation and destruction submodeling, unburned hydrocarbon emissions submodeling), models for diesel droplet evaporation, air entrainment, cylinder heat transfer, piston work, mass flow rates, flame propagation, crevice flow, and flame quenching have been combined with a thermodynamic analysis of the engine to yield instantaneous cylinder conditions, engine performance, and emissions. Parametric and comparison studies of diesel operation, dual fuel combustion, and micro-pilot combustion have been conducted. The major conclusions that can be drawn from this work include (1) diesel evaporation and air entrainment can have significant influence on the ignition and combustion processes, (2) pressure and temperature of inlet air, compression ratio, and the start of fuel injection are important engine operating and design parameters, (3) the combustion process of the mixture of natural gas and air is dominantly premixed-combustion, and (4) the processes of crevice flow and flame quenching can have a substantial impact on the dual fuel/micro-pilot combustion and emission formation processes.

  2. Emissions and performance of catalysts for gas turbine catalytic combustors. [automobile engines

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1977-01-01

    Three noble-metal monolithic catalysts were tested in a 12-cm-dia. combustion test rig to obtain emissions and performance data at conditions simulating the operation of a catalytic combustor for an automotive gas turbine engine. Tests with one of the catalysts at 800 K inlet mixture temperature, 3 x 10 to the 5th Pa pressure, and a reference velocity (catalyst bed inlet velocity) of 10 m/sec demonstrated greater than 99 percent combustion efficiency for reaction temperatures higher than 1300 K. With a reference velocity of 25 m/sec the reaction temperature required to achieve the same combustion-efficiency increased to 1380 K. The exit temperature pattern factors for all three catalysts were below 0.1 when adiabatic reaction temperatures were higher than 1400 K. The highest pressure drop was 4.5 percent at 25 m/sec reference velocity. Nitrogen oxides emissions were less than 0.1 g NO2/kg fuel for all test conditions.

  3. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  4. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    NASA Technical Reports Server (NTRS)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  5. Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2004-01-01

    This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling.

  6. Detection of greenhouse gas precursors from diesel engines using electrochemical and photoacoustic sensors.

    PubMed

    Mothé, Geórgia; Castro, Maria; Sthel, Marcelo; Lima, Guilherme; Brasil, Laisa; Campos, Layse; Rocha, Aline; Vargas, Helion

    2010-01-01

    Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO(2) Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NO(x) and SO(2) from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel) at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range.

  7. Coal gasification systems engineering and analysis. Appendix B: Medium B+U gas design

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A four module, 20,000 TPD, based on KT coal gasification technology was designed. The plant processes Kentucky No. 9 coal with provisions for up to five percent North Alabama coal. Medium BTU gas with heat content of 305 BTU/SCF and not more than 200 ppm sulfur is the primary plant product. Sulfur is recovered for scale as prilled sulfur. Ash disposal is on site. The plant is designed for zero water discharge. Trade studies provided the basis for not using boiler produced steam to drive prime movers. Thus process derived steam in excess of process requirements in superheated for power use in prime movers. Electricity from the TVA grid is used to supply the balance of the plant prime mover power requirements. A study of the effect of mine mouth coal cleaning showed that coal cleaning is not an economically preferred route. The design procedure involved defining available processes to meet the requirements of each system, technical/economic trade studies to select the preferred processes, and engineering design and flow sheet development for each module. Cost studies assumed a staggered construction schedule for the four modules beginning spring 1981 and a 90% on stream factor.

  8. Evaluation of ceramics for stator applications: Gas turbine engines interim report. Stator fabrication and evaluation

    NASA Technical Reports Server (NTRS)

    Arnon, N.; Trela, W.

    1983-01-01

    The objective was to assess current ceramic materials, fabrication processes, reliability prediction, and stator durability when subjected to simulated automotive gas turbine engine operating conditions. Ceramic one-piece stators were fabricated of two materials, silicon nitride and silicon carbide, using two near-net-shape processes, slip casting and injection molding. Non-destructive evaluation tests were conducted on all stators identifying irregularities which could contribute to failures under durability testing. Development of the test rig and automatic control system for repeatably controlling air flow rate and temperature over a highly transient durability duty cycle is discussed. Durability results are presented for repeated thermal cycle testing of the ceramic one-piece stators. Two duty cycles were used, encompassing the temperature ranges of 704 to 1204 C (1300 to 2200 F) and 871 to 1371 C (1600 to 2500 F). Tests were conducted on 28 stators, accumulating 135,551 cycles in 2441 hours of hot testing. Cyclic durability for the ceramic one-piece stator was demonstrated to be in excess of 500 hours, accumulating over 28,850 thermal cycles. Ceramic interface forces were found to be the significant factor in limiting stator life rather than the scatter in material strength properties or the variation in component defects encountered.

  9. Field comparison of conventional HVAC systems with a residential gas-engine-driven heat pump

    SciTech Connect

    Miller, J.D.

    1994-08-01

    Through its Office of Federal Energy Management Program (FEMP), the US Department of Energy (DOE) provides technical and administrative support to federal agency programs directed at reducing energy consumption and cost in federal buildings and facilities. One such program is the New Technology Demonstration Program (NTDP). In this context, NTDP is a demonstration of a US energy-related technology at a federal site. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate new technologies. The partnership of these interests is secured through a Cooperative Research and Development Agreement (CRADA). The Fort Sam Houston (San Antonio, Texas) NTDP is a field evaluation of a 3-ton gas-engine-driven residential heat pump. Details of the technical approach used in the evaluation, including instrumentation and methodology, are presented. Dynamic performance maps, based on field data, are developed for the existing residential furnaces and air conditioners at Fort Sam Houston. These maps are the basis for comparisons between the candidate and current equipment. The approach offers advantages over pre/post-measure evaluations by decoupling the measured equipment performance from the effects of different envelope characteristics, occupant behavior, and weather.

  10. Optimization of an oxide dispersion strengthened Ni-Cr-Al alloy for gas turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Klarstrom, D. L.; Grierson, R.

    1975-01-01

    The investigation was carried out to determine the optimum alloy within the Ni-16Cr-Al-Y2O3 system for use as a vane material in advanced aircraft gas turbine engines. Six alloys containing nominally 4%, 5% and 6% Al with Y2O3 levels of 0.8% and 1.2% were prepared by mechanical attrition. Six small-scale, rectangular extrusions were produced from each powder lot for property evaluation. The approximate temperatures for incipient melting were found to be 1658 K (2525 F), 1644 K (2500 F) and 1630 K (2475 F) for the 4%, 5% and 6% aluminum levels, respectively. With the exception of longitudinal crystallographic texture, the eight extrusions selected for extensive evaluation either exceeded or were close to mechanical property goals. Major differences between the alloys became apparent during dynamic oxidation testing, and in particular during the 1366 K (2000 F)/500 hour Mach 1 tests carried out by NASA-Lewis. An aluminum level of 4.75% was subsequently judged to be optimum based on considerations of dynamic oxidation resistance, susceptibility to thermal fatigue cracking and melting point.

  11. Detection of Greenhouse Gas Precursors from Diesel Engines Using Electrochemical and Photoacoustic Sensors

    PubMed Central

    Mothé, Geórgia; Castro, Maria; Sthel, Marcelo; Lima, Guilherme; Brasil, Laisa; Campos, Layse; Rocha, Aline; Vargas, Helion

    2010-01-01

    Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO2 Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NOx and SO2 from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel) at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range. PMID:22163437

  12. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  13. Dynamic characterization of partially saturated engineered porous media and gas diffusion layers using hydraulic admittance

    NASA Astrophysics Data System (ADS)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    2012-09-01

    Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.

  14. Impact Resistance of Lightweight Hybrid Structures for Gas Turbine Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Noebe, Ronald D.; Revilock, Duane M.

    2003-01-01

    The ballistic impact resistance of hybrid composite sandwich structures was evaluated with the ultimate goal of developing new materials or structures for potential gas turbine engine fan containment applications. The sandwich structures investigated consisted of GLARE-5 laminates as face sheets with lightweight cellular metallic materials such as honeycomb, foam, and lattice block as a core material. The impact resistance of these hybrid sandwich structures was compared to GLARE-5 laminates and 2024-T3 Al sheet, which were tested as a function of areal weight (material thickness). The GLARE-5 laminates exhibited comparable impact properties to that of 2024-T3 Al at low areal weights, even though there were significant differences in the static tensile properties of these materials. The GLARE-5, however, did have a greater ballistic limit than straight aluminum sheet at higher areal weights. Furthermore, there is up to a 25% advantage in ballistic limit for the GLARE-5/foam sandwich structures compared to straight 2024-T3 Al. But no advantage in ballistic limit was observed between any of the hybrid sandwich structures and thicker versions of GLARE-5. Recommendations for future work are provided, based on these preliminary data.

  15. Development of advanced combustion technology for medium- and high-speed natural gas engines. Final report, January 1985-February 1989

    SciTech Connect

    Snyder, W.E.

    1989-07-01

    The project investigated the several variables which influence the performance of pre-chamber equipped, lean-burn natural gas engines in general, and of the pre-chamber in particular. The effort was divided into four closely inter-related phases: Theoretical Analysis, Constant Volume Combustion (CVC) Rig Tests, Single Cylinder Engine Tests and Multi-Cylinder Engine Tests. The Theoretical Analysis was directed toward development of a computer program, called COGEN, which was then used to predict output performance trends resulting from changes to input parameters. The CVC Rig Test program was directed towards an improved understanding of the pre-chamber combustion process using high speed photography and simultaneous measurement of instantaneous pressures. Variations of pre-chamber size, throat design and air-fuel ratio were studied to guide the later engine test programs. The Single Cylinder Engine Tests were directed towards bridging the gap between the CVC Test Rig and the performance to be expected from a commercial multi-cylinder engine. Variations in pre-chamber design as well as engine compression ratio, Intake Manifold Temperature and load were investigated.

  16. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 1: gaseous and particulate matter emissions.

    PubMed

    Lobo, Prem; Rye, Lucas; Williams, Paul I; Christie, Simon; Uryga-Bugajska, Ilona; Wilson, Christopher W; Hagen, Donald E; Whitefield, Philip D; Blakey, Simon; Coe, Hugh; Raper, David; Pourkashanian, Mohamed

    2012-10-02

    Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number.

  17. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... true mass of both gaseous and particulate emissions in the exhaust of petroleum-fueled, natural gas... integrated system is required for THC (petroleum-fueled, natural gas-fueled, and liquefied petroleum gas... heated sample system (375 ±20 °F (191 ±11 °C)). For natural gas-fueled and liquefied petroleum...

  18. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine.

    PubMed

    Yan, Zhao-Da; Zhou, Chong-Guang; Su, Shi-Chuan; Liu, Zhen-Tao; Wang, Xi-Zhen

    2003-01-01

    In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.

  19. Substitution of ceramics for high temperature alloys. [advantages of using silicon carbides and silicon nitrides in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1978-01-01

    The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.

  20. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Smith, A. L.

    1980-01-01

    The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.

  1. Rotor burst protection program: Statistics on aircraft gas turbine engine rotor failures that occurred in US commercial aviation during 1975

    NASA Technical Reports Server (NTRS)

    Delucia, R. A.; Mangano, G. J.

    1977-01-01

    Statistics on gas turbine rotor failures that have occurred in U.S. commercial aviation during 1975 are presented. The compiled data were analyzed to establish: (1) The incidence of rotor failures and the number of contained and uncontained rotor bursts; (2) The distribution of rotor bursts with respect to engine rotor component; i.e., fan, compressor or turbine; (3) The type of rotor fragment (disk, rim or blade) typically generated at burst; (4) The cause of failure; (5) The type of engines involved; and (6) The flight condition at the time of failure.

  2. Rotor burst protection program: Statistics on aircraft gas turbine engine failures that occurred in commercial aviation during 1971

    NASA Technical Reports Server (NTRS)

    Delucia, R. A.; Mangano, G. J.

    1973-01-01

    A program to develop criteria for the design of devices that will be used on aircraft to protect passengers and the aircraft structure from the lethal and devastating fragments generated by the disintegration of a gas turbine engine rotor is discussed. Statistics on gas rotor turbine failures that have occurred in commercial aviation in 1971 are presented. It is shown that 124 rotor failures occurred and 35 of these were uncontained. This figure is considered significantly high to justify continuation of the development program.

  3. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 1

    SciTech Connect

    2000-03-02

    The transportation sector accounts for approximately 65% of US petroleum consumption. Consumption for light-duty vehicles has stabilized in the last 10--15 years; however, consumption in the heavy-duty sector has continued to increase. For various reasons, the US must reduce its dependence on petroleum. One significant way is to substitute alternative fuels (natural gas, propane, alcohols, and others) in place of petroleum fuels in heavy-duty applications. Most alternative fuels have the additional benefit of reduced exhaust emissions relative to petroleum fuels, thus providing a cleaner environment. The best long-term technology for heavy-duty alternative fuel engines is the 4-stroke cycle, direct injected (DI) engine using a single fuel. This DI, single fuel approach maximizes the substitution of alternative fuel for diesel and retains the thermal efficiency and power density of the diesel engine. This report summarizes the results of the first year (Phase 1) of this contract. Phase 1 focused on developing a 4-stroke cycle, DI single fuel, alternative fuel technology that will duplicate or exceed diesel power density and thermal efficiency, while having exhaust emissions equal to or less than the diesel. Although the work is currently on a 3500 Series DING engine, the work is viewed as a basic technology development that can be applied to any engine. Phase 1 concentrated on DING engine component durability, exhaust emissions, and fuel handling system durability. Task 1 focused on identifying primary areas (e.g., ignition assist and gas injector systems) for future durability testing. In Task 2, eight mode-cycle-averaged NO{sub x} emissions were reduced from 11.8 gm/hp-hr (baseline conditions) to 2.5 gm/hp-hr (modified conditions) on a 3501 DING engine. In Task 3, a state-of-the-art fuel handling system was identified.

  4. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-01-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  5. An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.

    2007-01-01

    This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).

  6. Mid-section of a can-annular gas turbine engine with a cooling system for the transition

    SciTech Connect

    Wiebe, David J.; Rodriguez, Jose L.

    2015-12-08

    A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.

  7. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    SciTech Connect

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  8. Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Warren, E. L.

    1980-01-01

    The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.

  9. Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)

    2012-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.

  10. Structural changes and damage of single-crystal turbine blades during life tests of an aviation gas turbine engine

    NASA Astrophysics Data System (ADS)

    Ospennikova, O. G.; Orlov, M. R.; Kolodochkina, V. G.; Nazarkin, R. M.

    2015-04-01

    The irreversible structural changes of the single-crystal ZhS32-VI nickel superalloy blades of a high-pressure turbine that occur during life tests of a gas turbine engine are studied. The main operation damages in the hottest section of the blade airfoil are found to be the fracture of the heat-resistant coating in the leading edge and the formation of thermomechanical fatigue cracks. The possibility of reconditioning repair of the blades is considered.

  11. Rotor fragment protection program: Statistics on aircraft gas turbine engine rotor failures that occurred in US commercial aviation during 1979

    NASA Technical Reports Server (NTRS)

    Delucia, R. A.; Salvino, J. T.

    1982-01-01

    Statistical information relating to the number of gas turbine engine rotor failures which occurred during 1979 in commercial aviation service use is provided. The predominant failure mode involved blade fragments, 84 percent of which were contained. No uncontained disk failures occurred and although fewer rotor rim and seal failures occurred, 100 percent and 50 percent, respectively, were uncontained. Sixty-eight percent of the 157 rotor failures occurred during the take-off and climb stages of flight.

  12. Analysis of a MIL-L-27502 lubricant from a gas-turbine engine test by size-exclusion chromatography

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography was used to determine the chemical degradation of MIL-L-27502 oil samples from a gas turbine engine test run at a bulk oil temperature of 216 C. Results revealed a progressive loss of primary ester and additive depletion and the formation of higher molecular weight products with time. The high molecular weight products absorbed strongly in the ultraviolet indicating the presence of chromophoric groups.

  13. Gas Station Pricing Game: A Lesson in Engineering Economics and Business Strategies.

    ERIC Educational Resources Information Center

    Sin, Aaron; Center, Alfred M.

    2002-01-01

    Describes an educational game designed for engineering majors that demonstrates engineering economics and business strategies, specifically the concepts of customer perception of product value, convenience, and price differentiation. (YDS)

  14. Application of multicriteria decision making methods to compression ignition engine efficiency and gaseous, particulate, and greenhouse gas emissions.

    PubMed

    Surawski, Nicholas C; Miljevic, Branka; Bodisco, Timothy A; Brown, Richard J; Ristovski, Zoran D; Ayoko, Godwin A

    2013-02-19

    Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints. Three data sets are analyzed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of (1) an ethanol fumigation system, (2) alternative fuels (20% biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and (3) various biodiesel fuels made from 3 feedstocks (i.e., soy, tallow, and canola) tested at several blend percentages (20-100%) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20% by energy) at moderate load, high percentage soy blends (60-100%), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most "preferred" solutions to this multicriteria engine design problem. Further research is, however, required to reduce reactive oxygen species (ROS) emissions with alternative fuels and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

  15. Chemometric methods applied to the calibration of a Vis-NIR sensor for gas engine's condition monitoring.

    PubMed

    Villar, Alberto; Gorritxategi, Eneko; Otaduy, Deitze; Ciria, Jose I; Fernandez, Luis A

    2011-10-31

    This paper describes the calibration process of a Visible-Near Infrared sensor for the condition monitoring of a gas engine's lubricating oil correlating transmittance oil spectra with the degradation of a gas engine's oil via a regression model. Chemometric techniques were applied to determine different parameters: Base Number (BN), Acid Number (AN), insolubles in pentane and viscosity at 40 °C. A Visible-Near Infrared (400-1100 nm) sensor developed in Tekniker research center was used to obtain the spectra of artificial and real gas engine oils. In order to improve sensor's data, different preprocessing methods such as smoothing by Saviztky-Golay, moving average with Multivariate Scatter Correction or Standard Normal Variate to eliminate the scatter effect were applied. A combination of these preprocessing methods was applied to each parameter. The regression models were developed by Partial Least Squares Regression (PLSR). In the end, it was shown that only some models were valid, fulfilling a set of quality requirements. The paper shows which models achieved the established validation requirements and which preprocessing methods perform better. A discussion follows regarding the potential improvement in the robustness of the models.

  16. A Study of the Factors Affecting Deposition Characteristics of Synthetic Lubricants for Gas Turbine Engines

    DTIC Science & Technology

    1976-04-01

    seriously jeopardize engine performance since decomposition products , such as coke and sludge, interfere with the proper functioning of bearings, seals...harmful coke deposits Vas investigated. This study consisted of an engineering evaluation of the lubricant deposition-degradation characteristics...guideline for avoiding those environments which are most conducive to the generation of lubricant degradation products that can jeopardize engine

  17. Evaluation results of the 700 deg C Chinese strain gauges. [for gas turbine engine

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1985-01-01

    Gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire in the Republic of China were evaluated for use in static strain measurement of hot gas turbine engines. Gauge factor variation with temperature, apparent strain, and drift were included. Results of gauge factor versus temperature tests show gauge factor decreasing with increasing temperature. The average slope is -3-1/2 percent/100 K, with an uncertainty band of + or - 8 percent. Values of room temperature gauge factor for the Chinese and Kanthal A-1 gauges averaged 2.73 and 2.12, respectively. The room temperature gauge factor of the Chinese gauges was specified to be 2.62. The apparent strain data for both the Chinese alloy and Kanthal A-1 showed large cycle to cycle nonrepeatability. All apparent strain curves had a similar S-shape, first going negative and then rising to positive value with increasing temperatures. The mean curve for the Chinese gauges between room temperature and 100 K had a total apparent strain of 1500 microstrain. The equivalent value for Kanthal A-1 was about 9000 microstrain. Drift tests at 950 K for 50 hr show an average drift rate of about -9 microstrain/hr. Short-term (1 hr) rates are higher, averaging about -40 microstrain for the first hour. In the temperature range 700 to 870 K, however, short-term drift rates can be as high as 1700 microstrain for the first hour. Therefore, static strain measurements in this temperature range should be avoided.

  18. Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Heywood,J.; Rabinovich, A.

    2002-08-25

    Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.

  19. Effective standards and regulatory tools for respiratory gas monitors and pulse oximeters: the role of the engineer and clinician.

    PubMed

    Weininger, Sandy

    2007-12-01

    Developing safe and effective medical devices involves understanding the hazardous situations that can arise in clinical practice and implementing appropriate risk control measures. The hazardous situations may have their roots in the design or in the use of the device. Risk control measures may be engineering or clinically based. A multidisciplinary team of engineers and clinicians is needed to fully identify and assess the risks and implement and evaluate the effectiveness of the control measures. In this paper, I use three issues, calibration/accuracy, response time, and protective measures/alarms, to highlight the contributions of these groups. This important information is captured in standards and regulatory tools to control risk for respiratory gas monitors and pulse oximeters. This paper begins with a discussion of the framework of safety, explaining how voluntary standards and regulatory tools work. The discussion is followed by an examination of how engineering and clinical knowledge are used to support the assurance of safety.

  20. Engineering Hydrogen Gas Production from Formate in a Hyperthermophile by Heterologous Production of an 18-Subunit Membrane-bound Complex*

    PubMed Central

    Lipscomb, Gina L.; Schut, Gerrit J.; Thorgersen, Michael P.; Nixon, William J.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications. PMID:24318960