Measurements of alkali concentrations in an oxygen-natural gas-fired soda-lime-silica glass furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. G. Buckley; P. M. Walsh; D. w. Hahn
1999-10-18
Sodium species vaporized from melting batch and molten glass in tank furnaces are the principal agents of corrosion of superstructure refractory and main contributors to emissions of particulate matter from glass melting. The use of oxygen in place of air for combustion of natural gas reduces particulate emissions, but is thought to accelerate corrosion in some melting tanks. Methods for measuring sodium are under investigation as means for identifying the volatilization, transport, and deposition mechanisms and developing strategies for control. Three separate methods were used to measure the concentrations of sodium species at various locations in an oxygen-natural gas-fired soda-lime-silicamore » glass melting tank. Measurements were made inside the furnace using the absorption of visible light and in the flue duct using Laser-Induced Breakdown Spectroscopy (LIBS). Measurements in both the furnace and flue were also made by withdrawing and analyzing samples of the furnace gas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing processmore » that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.« less
Advanced multispectral dynamic thermography as a new tool for inspection of gas-fired furnaces
NASA Astrophysics Data System (ADS)
Pregowski, Piotr; Goleniewski, Grzegorz; Komosa, Wojciech; Korytkowski, Waldemar
2004-04-01
The main special feature of elaborated method is that the dynamic IR thermography (DIRT) bases on forming of single image consisting of pixels of chosen minimum (IMAX) or maximum (IMAX) value, noted during adequately long sequence of thermograms with total independence to the moment of its (image's) capture. In this way, additive or suppressed interferences of fluctuating character become bypassed. Due to this method thereafter elaborated in classic way such "artificial thermogram" offers the quality impossible to achieve with a classic "one shot" method. Although preliminary, results obtained clearly show great potential of the method. and confirmed the validity in decreasing errors caused by fluctuating disturbances. In the case of process furnaces of gas-fired type and especially of coal-fired, application of presented solutions should result in significant increasing the reliability of IR thermography application. By use of properly chosen optical filters and algorithm, elaborated method offers a new potential attractive to test temperature problems other than in tubes , as for example symmetry and efficiency of the furnace heaters.
BPM Motors in Residential Gas Furnaces: What are theSavings?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, James; Franco, Victor; Lekov, Alex
2006-05-12
Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured staticmore » pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss.more » The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.« less
CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN ...
CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN REROLL BAY. CAKES FROM THE CASTING SHOP ARE BROUGHT UP TO ROLLING TEMPERATURE IN ONE OF TWO (#130 AND 146) GAS-FIRED FURNACES. A RADIO-CONTROLLED OVERHEAD CRANE TRANSFERS CAKES FROM FLATCARS TO THE ROLLER LINE LEADING INTO THE FURNACE. CAKES ARE HEATED AT 900-1000 DEGREES FAHRENHEIT FOR THREE TO FOUR HOURS. RATED FURNACE CAPACITY IS 100,000 LBS.\\HOUR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY
Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian
2014-01-01
Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the
Looking Northwest at Furnace Control Panels and Gas Control Furnace ...
Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
An improved gas extraction furnace
NASA Technical Reports Server (NTRS)
Wilkin, R. B.
1972-01-01
Design of glass furnace for analysis of rocks to determine nature and amount of trapped gas is described. Furnace heats specimen in vacuum conditions by radio frequency induction. Diagram of apparatus to show construction and operation is provided.
Energy Saving Devices on Gas Furnaces.
1980-03-01
AO-A082 0715 JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND DEV--ETC FIG 1311 ENERGY SAVING DEVICES ON GAS FURNACES.(U) MAR B0 T E BRISBANE, P B...DEVICES FOR GAS FURNACES THOMAS E. BRISBANE ,o"’ P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION RESEARCH & DEVELOPMENT CENTER KEN-CARYL RANCH, DENVER
Analysis of thermal radiation in coal-fired furnaces
NASA Astrophysics Data System (ADS)
Miles, Jonathan J.; Hammaker, Robert G.; Madding, Robert P.; Sunderland, J. E.
1997-04-01
Many utilities throughout the United States have added infrared scanning to their arsenal of techniques for inspection and predictive maintenance programs. Commercial infrared scanners are not designed, however, to withstand the searing interiors of boilers, which can exceed 2500 degrees Fahrenheit. Two high-temperature lenses designed to withstand the hostile environment inside a boiler for extended periods of time were developed by the EPRI M&D Center, thus permitting real-time measurement of steam tube temperatures and subsequent analysis of tube condition, inspection of burners, and identification of hot spots. A study was conducted by Sunderland Engineering, Inc. and EPRI M&D in order to characterize the radiative interactions that affect infrared measurements made inside a commercial, coal- fired, water-tube boiler. A comprehensive literature search exploring the existing record of results pertaining to analytical and experimental determination of radiative properties of coal-combustion byproducts was performed. An experimental component intended to provide data for characterization of the optical properties of hot combustion byproducts inside a coal-fired furnace was carried out. The results of the study indicate that hot gases, carbon particles, and fly ash, which together compose the medium inside a boiler, affect to varying degrees the transport of infrared radiation across a furnace. Techniques for improved infrared measurement across a coal-fired furnace are under development.
NATURAL GAS REBURNING FOR NOX CONTROL ON A CYCLONE-FIRED BOILER
The paper discusses natural gas reburning (fuel staging) for nitrogen oxide (NOx) control on a cyclone-fired boiler. eburning is an in-furnace NOx combustion modification technology that has been shown to reduce NOx by 50-60%. eburning is accomplished by injecting fuel downstream...
Numerical and Experimental Study on the Effect of Over Fire Air on NOx Distribution in Furnace
NASA Astrophysics Data System (ADS)
Wang, Qian; Deng, Yong-qiang; Xia, Yong-jun; Wu, Ying
2018-05-01
In this paper, a numerical investigation and experimental study was used to research the effect of a power plant 600MW supercritical four walls tangentially fired boiler furnace over fire air opening size on the inside furnace NOx concentration distribution and the results coincide. There are four cases in all. The influence and formation of NOx that was produced by pulverized coal furnace during combustion processes were analyzed. The research was proved that the over fire air has great effect on the concentration distribution of NOx in the furnance.
Measure Guideline. High Efficiency Natural Gas Furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, L.; Rose, W.
2012-10-01
This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.
Measure Guideline: High Efficiency Natural Gas Furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, L.; Rose, W.
2012-10-01
This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.
Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaman, John
2013-01-14
The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel;more » however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... different in mathematical form, is conceptually the same as the integrated AFUE for fossil fueled furnaces... that gas-fired and oil-fried furnaces and boilers consume both fossil fuel and electricity, while electric furnaces and boilers only consume electricity. The current test procedure accounts for all fossil...
Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces
NASA Astrophysics Data System (ADS)
Hassan, Mohamed I.; Al Kindi, Rashid
2014-09-01
Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.
Production of durable expanded perlite microspheres in a Vertical Electrical Furnace
NASA Astrophysics Data System (ADS)
Panagiotis, M.; Angelopoulos, P.; Taxiarchou, M.; Paspaliaris, I.
2016-04-01
Expanded perlite constitutes one of the most competitive insulating materials that is widely used in construction and manufacturing industry due to its unique properties combination; it is white, natural, lightweight, chemically inert, and exhibits superior insulating properties (thermal and acoustic) and fire resistance. Conventionally, perlite expansion is performed in vertical gas-fired furnaces; the conventional perlite expansion process has certain disadvantages which affect expanded products quality, thus limiting their performance and range of applications. In order to overcome the drawbacks of the conventional expansion technique, a new perlite expansion process has been designed based on a vertical electrical furnace (VEF). In the current study, fine perlite samples (-150 μm) from Milos Island, Greece, were expansed in the novel VEF and a conventional gas-fired furnace with the aim to evaluate and compare the main physical properties of the expanded products. The novel expanded perlite particles were characterised by superior properties, namely increased compression strength, competitive water and oil absorption capability, size homogeneity, spherical shape and decreased surface porosity in comparison to conventionally expanded samples.
Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru
2015-09-15
Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.
Design and Development of a Residential Gas-Fired Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac
2017-01-01
Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less
Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Chenn Zhou
2012-08-15
The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has beenmore » developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.« less
Pre-fired, refractory block slag dams for wet bottom furnace floors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vihnicka, R.S.; Meskimen, R.L.
1998-12-31
Slagging (wet bottom), utility boilers count on a refractory coating over the furnace floor tube structure for protection from corrosion damage from both the harsh, hot gas atmosphere from the burning fuel and the acidic coal slag. To protect and extend the life of this protective refractory coating the boiler original equipment manufacturers (OEMs) utilized a water-cooled monkey ring or slag chill ring (typically a 6--8 inch high ring of small diameter tubes) surrounding the slag tap locations on most wet bottom furnace floors (both utility and package boilers). The old water-cooled tube ring was such a high maintenance item,more » however, that it`s use has been discontinued in all but the most extreme environments throughout both utility and industrial applications. Where the use of the ring was discontinued, there has been a corresponding shortening of life on the protective floor refractory coatings (high maintenance cost), further aggravated by recent OSHA restrictions limiting the use of chrome oxide refractory materials in these types of boilers. This paper describes the developmental process and the final resultant product (a non-watercooled, slag dam made from pre-fired refractory shapes), undertaken by the inventors. Derived operational benefits a concept 2 project, with NO{sub x} Title 4 and Title 1 significance (which is currently underway) will also be detailed.« less
16 CFR Appendix G4 to Part 305 - Mobile Home Furnaces-Gas
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Mobile Home Furnaces-Gas G4 Appendix G4 to... LABELING RULEâ) Appendix G4 to Part 305—Mobile Home Furnaces—Gas Type Range of annual fuel utilization efficiencies (AFUEs) Low High Mobile Home Gas Furnaces Manufactured Before the Compliance Date of DOE Regional...
Residential Two-Stage Gas Furnaces - Do They Save Energy?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lekov, Alex; Franco, Victor; Lutz, James
2006-05-12
Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in themore » DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.« less
Gas dynamics of reactive gases in swirling-type furnace
NASA Astrophysics Data System (ADS)
Akhmetshina, A. I.; Pavlov, G. I.; Sabirzyanov, A. N.; Tikhonov, O. A.
2017-09-01
It is known from the literature that for the complete reaction of two gases (fuel and oxidizer), it is necessary to fulfill three basic conditions: the stoichiometric ratio of reactive gases, qualitative mixing and ensuring the cooling of combustion products without "quenching". Of the above-stated conditions it is more difficult to organize a qualitative mixture formation. This physical process requires additional expenditure of energy flow. In this work we present the results of experimental and theoretical studies of the gas dynamics of a reactive gas mixture in a swirling-type furnace. The design scheme of the furnace includes two reaction zones for combustible components: the first zone is the zone of generation of combustible gases which composition is constant; the second zone of the furnace - zone of a homogeneous combustion reaction.
Looking east at the basic oxygen furnace building with gas ...
Looking east at the basic oxygen furnace building with gas cleaning plants in foreground on the left and the right side of the furnace building. - U.S. Steel Edgar Thomson Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA
An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.
Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W
2000-02-01
The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.
Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, L.; Yee, S.; Baker, J.
2015-02-01
In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the lifemore » of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.« less
The impact of oil burning on kraft recovery furnace SO sub 2 emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Someshwar, A.V.; Pinkerton, J.E.; Caron, A.L.
1991-04-01
Auxiliary fossil fuel, either natural gas or fuel oil, is burned in kraft recovery furnaces during furnace startups and shutdowns, furnace upsets, and periods of substantially reduced rates of black liquor firing. The efficiency of sulfur capture and retention during normal operation of a kraft recovery furnace is inherently high. Consequently, not all the SO{sub 2} from occasional burning of sulfur-containing fuel oil in the furnace would be expected to end up in the stack gases. However, the extent to which such SO{sub 2} is captured by the alkali fume generation processes has not been well documented. In this paper,more » the authors examines the impact that burning oil in kraft recovery furnaces has on the SO{sub 2} emissions. The work included analyses of long-term SO{sub 2} data from a continuous emission monitoring system (CEMS) obtained for four furnaces that burned medium sulfur fuel oil as auxiliary fuel. It also included tests conducted on four furnaces in which varying amounts of oil were co-fired with black liquor.« less
The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces
NASA Astrophysics Data System (ADS)
Vuik, C.; Saghir, A.; Boerstoel, G. P.
2000-08-01
Numerical modeling of the melting and combustion process is an important tool in gaining understanding of the physical and chemical phenomena that occur in a gas- or oil-fired glass-melting furnace. The incompressible Navier-Stokes equations are used to model the gas flow in the furnace. The discrete Navier-Stokes equations are solved by the SIMPLE(R) pressure-correction method. In these applications, many SIMPLE(R) iterations are necessary to obtain an accurate solution. In this paper, Krylov accelerated versions are proposed: GCR-SIMPLE(R). The properties of these methods are investigated for a simple two-dimensional flow. Thereafter, the efficiencies of the methods are compared for three-dimensional flows in industrial glass-melting furnaces. Copyright
Preparation of pyrolysis reference samples: evaluation of a standard method using a tube furnace.
Sandercock, P Mark L
2012-05-01
A new, simple method for the reproducible creation of pyrolysis products from different materials that may be found at a fire scene is described. A temperature programmable steady-state tube furnace was used to generate pyrolysis products from different substrates, including softwoods, paper, vinyl sheet flooring, and carpet. The temperature profile of the tube furnace was characterized, and the suitability of the method to reproducibly create pyrolysates similar to those found in real fire debris was assessed. The use of this method to create proficiency tests to realistically test an examiner's ability to interpret complex gas chromatograph-mass spectrometric fire debris data, and to create a library of pyrolsates generated from materials commonly found at a fire scene, is demonstrated. © 2011 American Academy of Forensic Sciences.
Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T
2014-10-21
A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.
Wang, Xi-fen; Zhou, Huai-chun
2005-01-01
The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.
NASA Astrophysics Data System (ADS)
Roslyakov, P. V.; Proskurin, Y. V.; Khokhlov, D. A.; Zaichenko, M. N.
2018-03-01
The aim of this work is to research operations of modern combined low-emission swirl burner with a capacity of 2.2 MW for fire-tube boiler type KV-GM-2.0, to ensure the effective burning of natural gas, crude oil and diesel fuel. For this purpose, a computer model of the burner and furnace chamber has been developed. The paper presents the results of numerical investigations of the burner operation, using the example of natural gas in a working load range from 40 to 100%. The basic features of processes of fuel burning in the cramped conditions of the flame tube have been identified to fundamentally differ from similar processes in the furnaces of steam boilers. The influence of the design of burners and their operating modes on incomplete combustion of fuel and the formation of nitrogen oxides has been determined.
Effect of Outside Combustion Air on Gas Furnace Efficiency.
1981-10-15
Support Agency REPORT FESA-TS-2104 EFFECT OF OUTSIDE COMBUSTION AIR ON GAS FURNACE EFFICIENCY THOMAS E. BRISBANE Q KATHLEEN L. HANCOCK u JOHNS - MANVILLE SALES...and Dilution Air With No Furnace Setback. 93 AO-A113 4~84 . JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND OEV--ETC F/6 13/ 1 EFFECT OF OUTSIDE...NUMBER(S) Thomas E. Brisbane, Kathleen L. Hancock DAAK 70-78-D-0002 9. PERFORMING ORGANIZATION NAME AND ADDRESS 1O. PROGRAM ELEMENT. PR.;ECT, TASK Johns
PILOT SCALE PROCESS EVALUATION OF REBURNING FOR IN-FURNACE NOX REDUCTION
The report gives results of coal and natural gas reburning application tests to a pilot scale 3.0 MWt furnace to provide the scaling information required for commercial application of reburning to pulverized-coal-fired boilers. Initial parametric studies had been conducted in a 2...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golchert, B.; Shell, J.; Jones, S.
2006-09-06
The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation intomore » the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.« less
Calculation of gas release from DC and AC arc furnaces in a foundry
NASA Astrophysics Data System (ADS)
Krutyanskii, M. M.; Nekhamin, S. M.; Rebikov, E. M.
2016-12-01
A procedure for the calculation of gas release from arc furnaces is presented. The procedure is based on the stoichiometric ratios of the oxidation of carbon in liquid iron during the oxidation heat period and the oxidation of iron from a steel charge by oxygen in the period of solid charge melting during the gas exchange of the furnace cavity with the external atmosphere.
Modelling of nitrogen oxides distribution in the hearth of gas-fired industrial furnace
NASA Astrophysics Data System (ADS)
Zhubrin, S.; Glazov, V.; Guzhov, S.
2017-11-01
A model is proposed for calculating the formation and transportation of nitrogen oxides in the combustion chamber of an industrial furnace heated by gaseous fuels burning. The calculations use a three-dimensional stationary description of turbulent flow and mixing of fuel and oxidizer flows in the presence of heat transfer, mass transfer, and momentum between them transfer. Simulation of the spatial pattern of nitrogen oxides formation in the working space of the furnace is performed in the programming and computing suite SCAN. It is shown that the temperature non-uniformity over the hearth surface is not too pronounced due to the organization of the inclined flow inlet in the direction of the hearth, which is a desirable feature of the furnace operation. The highest concentration of combustion products is observed in the zone of maximum temperatures. In addition, the existence of two zones of the highest generation of oxides has been determined. The first zone is located approximately in the center of the hearth, and the second is located on the far external surface of the furnace. The possibility of using the developed model in the SCAN complex for carrying out parametric studies and engineering calculations, as well as for modification in the direction of adjusting and adapting the model to the regime-constructive features of specific energy technological devices, is noted.
Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing
2010-05-15
A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency.
16 CFR Appendix G1 to Part 305 - Furnaces-Gas
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Furnaces-Gas G1 Appendix G1 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Gas Manufacturer's rated heating capacities (Btu's/hr.) Range of annual fuel...
Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet) (in Chinese; English)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from themore » furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air
NASA Astrophysics Data System (ADS)
Crnomarkovic, Nenad; Belosevic, Srdjan; Tomanovic, Ivan; Milicevic, Aleksandar
2017-12-01
The effects of the number of significant figures (NSF) in the interpolation polynomial coefficients (IPCs) of the weighted sum of gray gases model (WSGM) on results of numerical investigations and WSGM optimization were investigated. The investigation was conducted using numerical simulations of the processes inside a pulverized coal-fired furnace. The radiative properties of the gas phase were determined using the simple gray gas model (SG), two-term WSGM (W2), and three-term WSGM (W3). Ten sets of the IPCs with the same NSF were formed for every weighting coefficient in both W2 and W3. The average and maximal relative difference values of the flame temperatures, wall temperatures, and wall heat fluxes were determined. The investigation showed that the results of numerical investigations were affected by the NSF unless it exceeded certain value. The increase in the NSF did not necessarily lead to WSGM optimization. The combination of the NSF (CNSF) was the necessary requirement for WSGM optimization.
The adaption of coal quality to furnace structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Shun, X.
1996-12-31
This paper gives the research result of coal quality adaption to furnace structure. The designing of a furnace is based on the coal quality that the furnace would fire. If the coal fired in the furnace differs from the design coal, there would be a lot of problems such as flame stability, coal burn-out rate and slagging problem for the furnace during its operation. In order to know the adaptional range of coal quality for an existing furnace the authors had chosen three different furnaces and 18 kinds of coals in their research work. To understand the coal combustion characteristicsmore » they introduce different indexes to show different processes of coal combustion. These indexes include Fz index which demonstrates the coal combustion based on its utility analyzed result, flame stability index, combustion characteristic index and char burn-out index which are based on the analyzed result of thermogravimetric characteristic. As a furnace is built up and set into operation its flame stability, burn-out rate and ash deposition are definite. If a furnace`s fuel changes its structure characteristics and operation condition will change. A relation between coal quality to furnace structure is based on a lot of regressional analysis results of existing furnaces and their fuels. Based on this relation the adaption of coal quality for a furnace are defined and the kinds of coal furnace fired are optimized to its design fuel.« less
Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, L.; Yee, S.; Baker, J.
2015-02-01
In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. Natural gas furnace performance can be measured in many ways. The annual fuel utilization efficiency (AFUE) rating provides a fixed value under specified conditions, akin to the EPA miles per gallon rating for new vehicles. The AFUE rating is providedmore » by the manufacturer to the consumer and is a way to choose between models tested on the same basis. This value is commonly used in energy modeling calculations. ASHRAE 103 is a consensus furnace testing standard developed by the engineering community. The procedure provided in the standard covers heat-up, cool down, condensate heat loss, and steady-state conditions and an imposed oversize factor. The procedure can be used to evaluate furnace performance with specified conditions or with some variation chosen by the tester. In this report the ASHRAE 103 test result will be referred to as Annualized Efficiency (AE) to avoid confusion, and any non-standard test conditions will be noted. Aside from these two laboratory tests, steady state or flue loss efficiency can be measured in the field under many conditions; typically as found or tuned to the manufacturers recommended settings. In this report, AE and steady-state efficiency will be used as measures of furnace performance.« less
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M.
1994-01-01
Flame diverted and extinguished without explosives. Oil-and-gas-fire snubber consists of pipe with two exit branches and large selector valve, positioned over well, on path of escaping fuel. Flame moved to one side; then flow of fuel moved to other side, away from flame. Two versions of snubber have different uses. First used only to extinguish fire. Exit branch only long enough to keep fuel away to prevent reignition. Second needed if well not capped after fire at well extinguished and oil and gas remained present in problem quantities. Exit branch long enough to extend to oil-storage tank, and gas separated from oil and vented or burned at convenient location.
BELL ANNEALING FURNACES FOR LIGHT GAUGE PRODUCTS (LESS THE 10/1000" ...
BELL ANNEALING FURNACES FOR LIGHT GAUGE PRODUCTS (LESS THE 10/1000" THICKNESS). COILS INSIDE COVERING SHELLS ARE HEATED BY GAS-FIRED JETS TO TEMPERATURES OF 280-400C., OVER 3-4 HOURS. AFTER COMPLETION OF THE HEATING CYCLE, COILS ARE COOLED SLOWLY TO BELOW 100 DEGREES CELSIUS BEFORE THE SHELL IS REMOVED AND THE COILS REMOVED. THE ENTIRE PROCESS TAKES 24 HOURS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY
NASA Astrophysics Data System (ADS)
Wu, Shengli; Du, Kaiping; Xu, Jian; Shen, Wei; Kou, Mingyin; Zhang, Zhekai
2014-07-01
In recent years, two parallel pipes of areal gas distribution (AGD) were installed into the COREX shaft furnace to improve the furnace efficiency. A three-dimensional mathematical model at steady state, which takes a modified three-interface unreacted core model into consideration, is developed in the current work to describe the effect of the AGD pipe on the inner characteristics of shaft furnace. The accuracy of the model is evaluated using the plant operational data. The AGD pipe effectively improves the uniformity of reducing gas distribution, which leads to an increase in gas temperature and concentration of CO or H2 around the AGD pipe, and hence it further contributes to the iron oxide reduction. As a result, the top gas utilization rate and the solid metallization rate (MR) at the bottom outlet are increased by 0.015 and 0.11, respectively. In addition, the optimizations of the flow volume ratio (FVR) of the reducing gas fed through the AGD inlet and the AGD pipe arrangement are further discussed based on the gas flow distribution and the solid MR. Despite the relative suitability of the current FVR (60%), it is still meaningful to enable a manual adjustment of FVR, instead of having it driven by pressure difference, to solve certain production problems. On the other hand, considering the flatter distribution of gas flow, the higher solid MR, and easy installation and replacement, the cross distribution arrangement of AGD pipe with a length of 3 m is recommended to replace the current AGD pipe arrangement.
CFD study of ejector flow behavior in a blast furnace gas galvanizing plant
NASA Astrophysics Data System (ADS)
Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio
2015-02-01
In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.
System using electric furnace exhaust gas to preheat scrap for steelmaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takai, K.; Iwasaki, K.
1987-09-08
A method is described for clean preheating of scrap contaminated with oil and organic matter, for steelmaking, using heat from exhaust gas flow from an electric furnace. It consists of: burning any combustibles present in the exhaust gas flow and simultanously separating out dust particles from the exhaust gas flow; heating a predetermined amount of the scrap by heat exchange with a predetermined portion of the exhaust gas flow; removing and collecting dust from the exhaust gas flow after preheating of scrap thereby; sensing the temperature of the exhaust flow; scrubbing the exhaust gas flow with an aqueous solution ofmore » a deodorant solvent flowing at a rate regulated to be in a predetermined relationship related to the exhaust gas temperature sensed prior to scrubbing, thereby generating saturated vapor and reducing the temperature of the exhaust gas flow by a predetermined amount; and electrostatically precipitating out oil mist attached to saturated water vapor and liquid droplets in the exhaust gas flow.« less
Rajh, Boštjan; Yin, Chungen; Samec, Niko; Hriberšek, Matjaž; Kokalj, Filip; Zadravec, Matej
2018-07-15
Grate-fired boilers are commonly used to burn biomass/wastes for heat and power production. In spite of the recent breakthrough in integration of advanced secondary air systems in grate boilers, grate-firing technology needs to be advanced for higher efficiency and lower emissions. In this paper, innovative staging of combustion air and recycled flue gas in a 13 MW th waste wood-fired grate boiler is comprehensively studied based on a numerical model that has been previously validated. In particular, the effects of the jet momentum, position and orientation of the combustion air and recycled flue gas streams on in-furnace mixing, combustion and pollutant emissions from the boiler are examined. It is found that the optimized air and recycled flue gas jets remarkably enhance mixing and heat transfer, result in a more uniform temperature and velocity distribution, extend the residence time of the combustibles in the hot zone and improve burnout in the boiler. Optimizing the air and recycled flue gas jet configuration can reduce carbon monoxide emission from the boiler by up to 86%, from the current 41.0 ppm to 5.7 ppm. The findings of this study can serve as useful guidelines for novel design and optimization of the combustion air supply and flue gas recycling for grate boilers of this type. Copyright © 2018 Elsevier Ltd. All rights reserved.
Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.
Suetens, T; Guo, M; Van Acker, K; Blanpain, B
2015-04-28
To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
High temperature aircraft research furnace facilities
NASA Technical Reports Server (NTRS)
Smith, James E., Jr.; Cashon, John L.
1992-01-01
Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.
Experimental gas-fired pulse-combustion studies
NASA Technical Reports Server (NTRS)
Blomquist, C. A.
1982-01-01
Experimental studies conducted at Argonne National Laboratory on a gas-fired, water-cooled, Helmholtz-type pulse combustion burner are discussed. In addition to the experimental work, information is presented on the evolution of pulse combustion, the types of pulse combustion burners and their applications, and the types of fuels used. Also included is a survey of other pertinent studies of gas-fired pulse combustion. The burner used in the Argonne research effort was equipped with adjustable air and gas flapper valves and was operated stably over a heat-input range of 30,000 to 200,000 Btu/h. The burner's overall heat transfer in the pulsating mode was 22 to 31% higher than when the unit was operated in the steady mode. Important phenomena discussed include (1) effects on performance produced by inserting a corebustor to change tailpipe diameter, (2) effects observed following addition of an air-inlet decoupling chamber to the unit, and (3) occurrence of carbon monoxide in the exhaust gas.
AMTEC powered residential furnace and auxiliary power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.
1996-12-31
Residential gas furnaces normally rely on utility grid electric power to operate the fans and/or the pumps used to circulate conditioned air or water and they are thus vulnerable to interruptions of utility grid service. Experience has shown that such interruptions can occur during the heating season, and can lead to serious consequences. A gas furnace coupled to an AMTEC conversion system retains the potential to produce heat and electricity (gas lines are seldom interrupted during power outages), and can save approximately $47/heating season compared to a conventional gas furnace. The key to designing a power system is understanding, andmore » predicting, the cell performance characteristics. The three main processes that must be understood and modeled to fully characterize an AMTEC cell are the electro-chemical, sodium vapor flow, and heat transfer. This paper will show the results of the most recent attempt to model the heat transfer in a multi-tube AMTEC cell and then discusses the conceptual design of a self-powered residential furnace.« less
Direct fired absorption machine flue gas recuperator
Reimann, Robert C.; Root, Richard A.
1985-01-01
A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.
Numerical Study of the Reduction Process in an Oxygen Blast Furnace
NASA Astrophysics Data System (ADS)
Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng
2016-02-01
Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.
Predictive control of thermal state of blast furnace
NASA Astrophysics Data System (ADS)
Barbasova, T. A.; Filimonova, A. A.
2018-05-01
The work describes the structure of the model for predictive control of the thermal state of a blast furnace. The proposed model contains the following input parameters: coke rate; theoretical combustion temperature, comprising: natural gas consumption, blasting temperature, humidity, oxygen, blast furnace cooling water; blast furnace gas utilization rate. The output parameter is the cast iron temperature. The results for determining the cast iron temperature were obtained following the identification using the Hammerstein-Wiener model. The result of solving the cast iron temperature stabilization problem was provided for the calculated values of process parameters of the target area of the respective blast furnace operation mode.
Design and Development of Tilting Rotary Furnace
NASA Astrophysics Data System (ADS)
Sai Varun, V.; Tejesh, P.; Prashanth, B. N.
2018-02-01
Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken
Toxic fluoride gas emissions from lithium-ion battery fires.
Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik
2017-08-30
Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.
Development of gas fire detection system using tunable diode laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Jiang, Y. L.; Li, G.; Yang, T.; Wang, J. J.
2017-01-01
The conventional fire detection methods mainly produce an alarm through detecting the changes in smoke concentration, flame radiation, heat and other physical parameters in the environment, but are unable to provide an early warning of a fire emergency. We have designed a gas fire detection system with a high detection sensitivity and high selectivity using the tunable semiconductor diode laser as a light source and combining wavelength modulation and harmonic detection technology. This system can invert the second harmonic signal obtained to obtain the concentration of carbon monoxide gas (a fire characteristic gas) so as to provide an early warning of fire. We reduce the system offset noise and the background noise generated due to the laser interference by deducting the system background spectrum lines from the second harmonic signal. This can also eliminate the interference of other gas spectral lines to a large extent. We detected the concentration of the carbon monoxide gas generated in smoldering sandalwood fire and open beech wood fire with the homemade fire simulator, and tested the lowest detectable limit of system. The test results show that the lowest detectable limit can reach 5×10-6 the system can maintain stable operation for a long period of time and can automatically trigger a water mist fire extinguishing system, which can fully meet the needs of early fire warning.
Method for treating reactive metals in a vacuum furnace
Hulsey, W.J.
1975-10-28
The invention is directed to a method for reducing the contamination of reactive metal melts in vacuum furnaces due to the presence of residual gaseous contaminants in the furnace atmosphere. This reduction is achieved by injecting a stream of inert gas directly over the metal confined in a substantially closed crucible with the flow of the gas being sufficient to establish a pressure differential between the interior of the crucible and the furnace atmosphere.
Water-cooled furnace heads for use with standard muffle tube furnaces
NASA Technical Reports Server (NTRS)
Williams, R. J.; Mullins, O.
1975-01-01
The design of water-cooled furnace seals for use in high-temperature controlled-atmosphere gas and vacuum studies is presented in detailed engineering drawings. Limiting design factors and advantages are discussed.
Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana
2016-02-01
Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.
2012-02-01
Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.
Multi-Function Gas Fired Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Heiba, Ahmad; Vineyard, Edward Allan
2015-11-01
The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibrationmore » reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.« less
Development of a Test Protocol for Spacecraft Post-Fire Atmospheric Cleanup and Monitoring
NASA Technical Reports Server (NTRS)
Zuniga, David; Hornung, Steven D.; Haas, Jon P.; Graf, John C.
2009-01-01
Detecting and extinguishing fires, along with post-fire atmospheric cleaning and monitoring, are vital components of a spacecraft fire response system. Preliminary efforts focused on the technology evaluation of these systems under realistic conditions are described in this paper. While the primary objective of testing is to determine a smoke mitigation filter s performance, supplemental evaluations measuring the smoke-filled chamber handheld commercial off-the-shelf (COTS) atmospheric monitoring devices (combustion product monitors) are also conducted. The test chamber consists of a 1.4 cubic meter (50 cu. ft.) volume containing a smoke generator. The fuel used to generate the smoke is a mixture of polymers in quantities representative of materials involved in a circuit board fire as a typical spacecraft fire. Two fire conditions were examined: no flame and flame. No flame events are produced by pyrolyzing the fuel mixture in a quartz tube furnace with forced ventilation to produce a white, lingering-type smoke. Flame events ignite the smoke at the outlet of the tube furnace producing combustion characterized by a less opaque smoke with black soot. Electrochemical sensor measurements showed carbon monoxide is a major indicator of each fire. Acid gas measurements were recorded, but cross interferents are currently uncharacterized. Electrochemical sensor measurements and sample acquisition techniques from photoacoustic sensors are being improved. Overall, this research shows fire characterization using traditional analytical chemistry techniques is required to verify measurements recorded using COTS atmospheric monitoring devices.
Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek
2007-03-31
Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economicsmore » of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology
Gas-fired duplex free-piston Stirling refrigerator
NASA Astrophysics Data System (ADS)
Urieli, L.
1984-03-01
The duplex free-piston Stirling refrigerator is a potentially high efficiency, high reliability device which is ideally suited to the home appliance field, in particular as a gas-fired refrigerator. It has significant advantages over other equivalent devices including freedom from halogenated hydrocarbons, extremely low temperatures available at a high efficiency, integrated water heating, and simple burner system control. The design and development of a portable working demonstration gas-fired duplex Stirling refrigeration unit is described. A unique combination of computer aided development and experimental development was used, enabling a continued interaction between the theoretical analysis and practical testing and evaluation. A universal test rig was developed in order to separately test and evaluate major subunits, enabling a smooth system integration phase.
Low NOx nozzle tip for a pulverized solid fuel furnace
Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P
2014-04-22
A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.
Emissions from gas fired agricultural burners
USDA-ARS?s Scientific Manuscript database
Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...
Exposure of a liquefied gas container to an external fire.
Raj, Phani K
2005-06-30
In liquefied gas, bulk-storage facilities and plants, the separation distances between storage tanks and between a tank and a line of adjoining property that can be built are governed by local regulations and/or codes (e.g. National Fire Protection Association (NFPA) 58, 2004). Separation distance requirements have been in the NFPA 58 Code for over 60 years; however, no scientific foundations (either theoretical or experimental) are available for the specified distances. Even though the liquefied petroleum gas (LPG) industry has operated safely over the years, there is a question as to whether the code-specified distances provide sufficient safety to LPG-storage tanks, when they are exposed to large external fires. A radiation heat-transfer-based model is presented in this paper. The temporal variation of the vapor-wetted tank-wall temperature is calculated when exposed to thermal radiation from an external, non-impinging, large, 30.5 m (100 ft) diameter, highly radiative, hydrocarbon fuel (pool) fire located at a specified distance. Structural steel wall of a pressurized, liquefied gas container (such as the ASME LP-Gas tank) begins to lose its strength, when the wall temperature approaches a critical temperature, 810 K (1000 degrees F). LP-Gas tank walls reaching close to this temperature will be a cause for major concern because of increased potential for tank failure, which could result in catastrophic consequences. Results from the model for exposure of different size ASME (LP-Gas) containers to a hydrocarbon pool fire of 30.5 m (100 ft) in diameter, located with its base edge at the separation distances specified by NFPA 58 [NFPA 58, Liquefied Petroleum Gas Code, Table 6.3.1, 2004 ed., National Fire Protection Association, Quincy, MA, 2004] indicate that the vapor-wetted wall temperature of the containers never reach the critical temperature under common wind conditions (0, 5 and 10 m/s), with the flame tilting towards the tank. This indicates that the
Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants
NASA Astrophysics Data System (ADS)
Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.
2017-12-01
Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the
Modeling and Simulation of the Off-gas in an Electric Arc Furnace
NASA Astrophysics Data System (ADS)
Meier, Thomas; Gandt, Karima; Echterhof, Thomas; Pfeifer, Herbert
2017-12-01
The following paper describes an approach to process modeling and simulation of the gas phase in an electric arc furnace (EAF). The work presented represents the continuation of research by Logar, Dovžan, and Škrjanc on modeling the heat and mass transfer and the thermochemistry in an EAF. Due to the lack of off-gas measurements, Logar et al. modeled a simplified gas phase under consideration of five gas components and simplified chemical reactions. The off-gas is one of the main continuously measurable EAF process values and the off-gas flow represents a heat loss up to 30 pct of the entire EAF energy input. Therefore, gas phase modeling offers further development opportunities for future EAF optimization. This paper presents the enhancement of the previous EAF gas phase modeling by the consideration of additional gas components and a more detailed heat and mass transfer modeling. In order to avoid the increase of simulation time due to more complex modeling, the EAF model has been newly implemented to use an efficient numerical solver for ordinary differential equations. Compared to the original model, the chemical components H2, H2O, and CH4 are included in the gas phase and equilibrium reactions are implemented. The results show high levels of similarity between the measured operational data from an industrial scale EAF and the theoretical data from the simulation within a reasonable simulation time. In the future, the dynamic EAF model will be applicable for on- and offline optimizations, e.g., to analyze alternative input materials and mode of operations.
Analysis of toxic effluents released from PVC carpet under different fire conditions.
Stec, A A; Readman, J; Blomqvist, P; Gylestam, D; Karlsson, D; Wojtalewicz, D; Dlugogorski, B Z
2013-01-01
A large number of investigations have been reported on minimising the PAH and PCDD/F yields during controlled combustion, such as incineration. This study is an attempt to quantify acute and chronic toxicants including PAH and PCDD/F in conditions relating to unwanted fires. This paper investigates distribution patterns of fire effluents between gas and aerosol phase, and the different particle size-ranges produced under different fire conditions. PVC carpet was selected as the fuel as a precursor for both PAH and PCDD/F. In order to generate fire effluents under controlled fire conditions, the steady-state tube furnace, was chosen as the physical fire model. Fire scenarios included oxidative pyrolysis, well-ventilated and under-ventilated fires. Fire effluent measurements included: carbon monoxide, carbon dioxide, hydrogen chloride, polycyclic aromatic hydrocarbons, chlorinated dibenzo-dioxins and furans and soot. The distribution patterns between gas and particle phase, and the size-ranges of the particles produced in these fires together with their chemical composition is also reported. Significant quantities of respirable submicron particles were detected, together with a range of PAHs. Lower levels of halogenated dioxins were detected in the fire residue compared with those found in other studies. Nevertheless, the findings do have implications for the health and safety of fire and rescue personnel, fire investigators, and other individuals exposed to the residue from unwanted fires. Copyright © 2012 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-20
... and oil-fired furnaces and boilers consume both fossil fuel and electricity. Electric furnaces and boilers only consume electricity. In this test procedure, fossil-fuel energy consumption is accounted for comprehensively over a full-year cycle, thereby satisfying EISA 2007 requirements for fossil-fuel standby mode and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianping Jing; Zhengqi Li; Guangkui Liu
Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase,more » and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.« less
Efficient 'Optical Furnace': A Cheaper Way to Make Solar Cells is Reaching the Marketplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Kuegelgen, T.
In Bhushan Sopori's laboratory, you'll find a series of optical furnaces he has developed for fabricating solar cells. When not in use, they sit there discreetly among the lab equipment. But when a solar silicon wafer is placed inside one for processing, Sopori walks over to a computer and types in a temperature profile. Almost immediately this fires up the furnace, which glows inside and selectively heats up the silicon wafer to 800 degrees centigrade by the intense light it produces. Sopori, a principal engineer at the National Renewable Energy Laboratory, has been researching and developing optical furnace technology formore » around 20 years. He says it's a challenging technology to develop because there are many issues to consider when you process a solar cell, especially in optics. Despite the challenges, Sopori and his research team have advanced the technology to the point where it will benefit all solar cell manufacturers. They are now developing a commercial version of the furnace in partnership with a manufacturer. 'This advanced optical furnace is highly energy efficient, and it can be used to manufacture any type of solar cell,' he says. Each type of solar cell or manufacturing process typically requires a different furnace configuration and temperature profile. With NREL's new optical furnace system, a solar cell manufacturer can ask the computer for any temperature profile needed for processing a solar cell, and the same type of furnace is suitable for several solar cell fabrication process steps. 'In the future, solar cell manufacturers will only need this one optical furnace because it can be used for any process, including diffusion, metallization and oxidation,' Sopori says. 'This helps reduce manufacturing costs.' One startup company, Applied Optical Systems, has recognized the furnace's potential for manufacturing thin-film silicon cells. 'We'd like to develop thin-film silicon cells with higher efficiencies, up to 15 to 18 percent, and we
Halon Gas and Library Fire Protection.
ERIC Educational Resources Information Center
Pacey, Antony
1991-01-01
Describes the operation of halon gas fire extinguishing systems, which have been installed in a number of libraries and archives across Canada where protection of special collections from water and mold damage resulting from operation of a standard water sprinkler system is paramount. The advantages and disadvantages of this type of system are…
Low NOx combustion and SCR flow field optimization in a low volatile coal fired boiler.
Liu, Xing; Tan, Houzhang; Wang, Yibin; Yang, Fuxin; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven
2018-08-15
Low NO x burner redesign and deep air staging have been carried out to optimize the poor ignition and reduce the NO x emissions in a low volatile coal fired 330 MW e boiler. Residual swirling flow in the tangentially-fired furnace caused flue gas velocity deviations at furnace exit, leading to flow field unevenness in the SCR (selective catalytic reduction) system and poor denitrification efficiency. Numerical simulations on the velocity field in the SCR system were carried out to determine the optimal flow deflector arrangement to improve flow field uniformity of SCR system. Full-scale experiment was performed to investigate the effect of low NO x combustion and SCR flow field optimization. Compared with the results before the optimization, the NO x emissions at furnace exit decreased from 550 to 650 mg/Nm³ to 330-430 mg/Nm³. The sample standard deviation of the NO x emissions at the outlet section of SCR decreased from 34.8 mg/Nm³ to 7.8 mg/Nm³. The consumption of liquid ammonia reduced from 150 to 200 kg/h to 100-150 kg/h after optimization. Copyright © 2018. Published by Elsevier Ltd.
Modeling of Blast Furnace with Layered Cohesive Zone
NASA Astrophysics Data System (ADS)
Dong, X. F.; Yu, A. B.; Chew, S. J.; Zulli, P.
2010-04-01
An ironmaking blast furnace (BF) is a moving bed reactor involving counter-, co-, and cross-current flows of gas, powder, liquids, and solids, coupled with heat exchange and chemical reactions. The behavior of multiple phases directly affects the stability and productivity of the furnace. In the present study, a mathematical model is proposed to describe the behavior of fluid flow, heat and mass transfer, as well as chemical reactions in a BF, in which gas, solid, and liquid phases affect each other through interaction forces, and their flows are competing for the space available. Process variables that characterize the internal furnace state, such as reduction degree, reducing gas and burden concentrations, as well as gas and condensed phase temperatures, have been described quantitatively. In particular, different treatments of the cohesive zone (CZ), i.e., layered, isotropic, and anisotropic nonlayered, are discussed, and their influence on simulation results is compared. The results show that predicted fluid flow and thermochemical phenomena within and around the CZ and in the lower part of the BF are different for different treatments. The layered CZ treatment corresponds to the layered charging of burden and naturally can predict the CZ as a gas distributor and liquid generator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Wiser, Ryan; Golove, William
2003-08-13
Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projectedmore » costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging
NASA Astrophysics Data System (ADS)
Huda, Nazmul; Naser, Jamal; Brooks, G. A.; Reuter, M. A.; Matusewicz, R. W.
2012-10-01
A thin-slice computational fluid dynamics (CFD) model of a conventional tuyere blown slag-fuming furnace has been developed in Eulerian multiphase flow approach by employing a three-dimensional (3-D) hybrid unstructured orthographic grid system. The model considers a thin slice of the conventional tuyere blown slag-fuming furnace to investigate details of fluid flow, submerged coal combustion dynamics, coal use behavior, jet penetration behavior, bath interaction conditions, and generation of turbulence in the bath. The model was developed by coupling the CFD with the kinetics equations developed by Richards et al. for a zinc-fuming furnace. The model integrates submerged coal combustion at the tuyere tip and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with several user-defined subroutines in FORTRAN programming language were used to develop the model. The model predicted the velocity, temperature field of the molten slag bath, generated turbulence and vortex, and coal use behavior from the slag bath. The tuyere jet penetration length ( l P) was compared with the equation provided by Hoefele and Brimacombe from isothermal experimental work ( {{l_{{P}} }/{d_{o }} = 10.7( {N^' }_{Fr} } )^{0.46} ( {ρ_{{g}} /ρl } )^{0.35} } ) and found 2.26 times higher, which can be attributed to coal combustion and gas expansion at a high temperature. The jet expansion angle measured for the slag system studied is 85 deg for the specific inlet conditions during the simulation time studied. The highest coal penetration distance was found to be l/L = 0.2, where l is the distance from the tuyere tip along the center line and L is the total length (2.44 m) of the modeled furnace. The model also predicted that 10 pct of the injected coal bypasses the tuyere gas stream uncombusted and carried to the free surface by the tuyere gas stream, which
INTERIOR VIEW SHOWING QBOP FURNACE IN BLOW. OXYGEN AND NATURAL ...
INTERIOR VIEW SHOWING Q-BOP FURNACE IN BLOW. OXYGEN AND NATURAL GAS ARE BLOWN INTO THE FURNACE THROUGH THE TUYERES TO CHARGE 460,000 LBS. OF HOT METAL, 100,000 LBS. OF SCRAP WITH 30,000 LBS. OF LIME. BLOW TIME IS 16 MINUTES. THE TIME TO BLOW AND TAP THE FURNACES OF THE RESULTING 205,000 TONS OF STEEL AND SLAG IS 35 MINUTES. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL
Performance of a flameless combustion furnace using biogas and natural gas.
Colorado, A F; Herrera, B A; Amell, A A
2010-04-01
Flameless combustion technology has proved to be flexible regarding the utilization of conventional fuels. This flexibility is associated with the main characteristic of the combustion regime, which is the mixing of the reactants above the autoignition temperature of the fuel. Flameless combustion advantages when using conventional fuels are a proven fact. However, it is necessary to assess thermal equipments performance when utilizing bio-fuels, which usually are obtained from biomass gasification and the excreta of animals in bio-digesters. The effect of using biogas on the performance of an experimental furnace equipped with a self-regenerative Flameless burner is reported in this paper. All the results were compared to the performance of the system fueled with natural gas. Results showed that temperature field and uniformity are similar for both fuels; although biogas temperatures were slightly lower due to the larger amount of inert gases (CO(2)) in its composition that cool down the reactions. Species patterns and pollutant emissions showed similar trends and values for both fuels, and the energy balance for biogas showed a minor reduction of the efficiency of the furnace; this confirms that Flameless combustion is highly flexible to burn conventional and diluted fuels. Important modifications on the burner were not necessary to run the system using biogas. Additionally, in order to highlight the advantages of the Flameless combustion regime, some comparisons of the burner performance working in Flameless mode and working in conventional mode are presented. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, A.; Wang, J.
2014-12-01
Gas flaring is a global environmental hazard severely impacting climate, economy and public health. The associated emissions are frequently unreported and have large uncertainties. Prior studies have established a direct relationship between radiative energy released from fires and the biomass burned, making fire radiative power (FRP), i.e., the rate of radiative energy release, an important proxy to characterize emissions. In this study fire properties from four different satellite products were obtained over a 10⁰ x 10⁰ gas flaring region in Russia for all days of May 2013. The target area is part of Russia's biggest gas flaring region, Khanty-Mansiysk autonomous okrug. The objective of the study is to investigate the consistency of fire detections, FRP retrievals and effects of gridding FRP data from the region on a uniform grid. The four products used were: MODIS Terra level2 thermal anomalies (MOD14), MODIS Aqua level2 thermal anomalies (MYD14), VIIRS Active fire product and a recent NOAA Nightfire product. 1 km nominal resolution FRP from MOD14 AND MYD14, subpixel radiant heat (RH) from NOAA Nightfire product and fire detections from all four products were recorded on a 0.25⁰ x 0.25⁰ grid on a daily basis. Results revealed the Nightfire product had maximum detections, almost six times the number of detections by other products, mainly because of the use of M10 (1.6 µm) band as their primary detection band. The M10 band is highly efficient in identifying radiant emissions from hot sources during night-time. The correlation (after omitting outliers) between gridded NOAA Nightfire RH and corresponding MOD14 FRP and MYD14 FRP gave a moderate regression value, with MODIS FRP being mostly higher than RH. As an extension to this work, a comprehensive study for a larger temporal domain also incorporating viewing geometries and cloud cover would advance our understanding of flare detections and associated FRP retrievals not just for the target region but also
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marc Cremer; Kirsi St. Marie; Dave Wang
2003-04-30
This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flowmore » controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD simulations of
England, Glenn C; Watson, John G; Chow, Judith C; Zielinska, Barbara; Chang, M C Oliver; Loos, Karl R; Hidy, George M
2007-01-01
With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the
A technique for measuring the heat transfer coefficient inside a Bridgman furnace
NASA Technical Reports Server (NTRS)
Rosch, W.; Jesser, W.; Debnam, W.; Fripp, A.; Woodell, G.; Pendergrass, T. K.
1993-01-01
Knowledge of the amount of heat that is conducted, advected and radiated between an ampoule and the furnace is important for understanding vertical Bridgman crystal growth. This heat transfer depends on the temperature, emissivities and geometries of both the furnace and ampoule, as well as the choice of ambient gas inside the furnace. This paper presents a method which directly measures this heat transfer without the need to know any physical properties of the furnace, the ampoule, or the gaseous environment. Data are given for one specific furnace in which this method was used.
Application of AI techniques to blast furnace operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro
1995-10-01
It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination ofmore » fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.« less
Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R
2015-01-01
This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in whichmore » hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.« less
Elements of the electric arc furnace's environmental management
NASA Astrophysics Data System (ADS)
Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş
2017-12-01
The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.
Coal-fired high performance power generating system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can bemore » achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.« less
MUZO flight experience with the programmable multizone furnace
NASA Technical Reports Server (NTRS)
Lockowandt, Christian; Loth, Kenneth
1993-01-01
The Multi-Zone (MUZO) furnace has been developed for growing germanium (Ge) crystals under microgravity in a Get Away Special (GAS) payload. The MUZO furnace was launched with STS-47 Endeavour in September 1992. The payload worked as planned during the flight and a Ge sample was successfully processed. The experiment has given valuable scientific information. The design and functionality of the payload together with flight experience is reported.
High-pressure gas quenching in cold chambers for increased cooling capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segerberg, S.; Troell, E.
1996-12-31
Gas quenching for the hardening of steel parts is a lower-pollution alternative to quenching in quenchants such as oil or salt. As the surfaces of the cooled parts remain clean after gas quenching, there is no need to wash them after heat treatment, which reduces the consumption of oils and detergents. The fire risk and ventilation requirements of oil quenching are eliminated. In addition, some trials have shown that gas quenching has a positive effect on distortion, representing a saving in finishing work and thus a reduction in costs. Today, gas quenching is used almost solely in vacuum furnaces. Quenchingmore » is normally performed in the same chamber as heating, which means that besides quenching the batch, the quenching system must also remove heat from the heating elements and insulation of the furnace. Previous trials performed by IVF have shown that gas quenching with helium of ball bearing and carburizing steels (and other steels) in sizes up to 25 mm at pressures up to 20 bar in a vacuum furnace can achieve quenching rates and hardnesses similar to those achieved by hot quenching oils. This quenching performance is not, however, capable of dealing with larger sizes or lower-alloy steels. At IVF`s request, ALD Vacuum Technologies GmbH has developed a cold high-pressure gas quenching chamber that is independent of the furnace. As a result, there is no need to cool insulation or heating elements. Quenching can be carried out in the chamber at pressures of up to 40 bar for helium or up to 10 bar for nitrogen. The quenching chamber has been supplied to IVF, and has been used for experimental quenching of steel test pieces and components. Temperatures have been recorded by using some Inconel 600 test probes, {phi} 12,5 x 60 mm, with thermocouples in their centers.« less
Mathematical model of the stack region of a commercial lead blast furnace
NASA Astrophysics Data System (ADS)
Hussain, Mansoor M.; Morris, David R.
1989-02-01
A mathematical model of the stack region of a commercial lead blast furnace is presented. The mass and heat balance equations were solved in conjunction with the kinetic expression for the rate of re-duction of the solids based upon the grain model, utilizing the measured structural parameters of the sinter feed and the measured kinetic parameters. Satisfactory agreement has been achieved between the computed and experimental axial profiles of gas and solids temperature, pressure, gas composi-tion, and condensed phases composition. The model is used to predict the effects of changes of bed voidage, physical properties, and chemical constitution of the sinter and the effects of gas and solids flow maldistribution on the operation of the furnace. In particular, it is noted that for a sinter with the typical physical properties of a commercial sinter, improved conversion in the upper reaches of the furnace is predicted when lead is in the form of lead oxide rather than as the relatively unreac-tive lead calcium silicates. The improved conversion is accompanied by better utilization of carbon monoxide. Further, the model suggests that the formation of scaffolds in the furnace may be due to flow maldistribution causing high temperatures in the vicinity of the furnace wall.
Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.
Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout
2012-03-15
Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.
Xue, Yifeng; Nie, Lei; Zhou, Zhen; Tian, Hezhong; Yan, Jing; Wu, Xiaoqing; Cheng, Linglong
2017-07-01
The consumption of natural gas in Beijing has increased in the past decade due to energy structure adjustments and air pollution abatement. In this study, an integrated emission inventory of hazardous air pollutants (HAPs) emitted from gas-fired combustion in Beijing was developed for the period from 2000 to 2014 using a technology-based approach. Future emission trends were projected through 2030 based on current energy-related and emission control policies. We found that emissions of primary HAPs exhibited an increasing trend with the rapid increase in natural gas consumption. Our estimates indicated that the total emissions of NO X , particulate matter (PM) 10 , PM 2.5 , CO, VOCs, SO 2 , black carbon, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, polychlorinated dibenzo-p-dioxins and dibenzofurans, and benzo[a]pyrene from gas-fired combustion in Beijing were approximately 22,422 t, 1042 t, 781 t, 19,097 t, 653 t, 82 t, 19 t, 0.6 kg, 0.1 kg, 43 kg, 52 kg, 0.3 kg, 0.03 kg, 4.3 kg, 0.6 kg, 216 μg, and 242 g, respectively, in 2014. To mitigate the associated air pollution and health risks caused by gas-fired combustion, stricter emission standards must be established. Additionally, combustion optimization and flue gas purification system could be used for lowering NO X emissions from gas-fired combustion, and gas-fired facilities should be continuously monitored based on emission limits. Graphical abstract Spatial distribution and typical live photos of gas-fired boiler in Beijing.
NASA Astrophysics Data System (ADS)
Ruecker, Gernot; Schroeder, Wilfrid; Lorenz, Eckehard; Kaiser, Johannes; Caseiro, Alexandre
2016-04-01
According to recent research, black carbon has the second strongest effect on the earth climate system after carbon dioxide. In high Northern latitudes, industrial gas flares are an important source of black carbon, especially in winter. This fact is particularly relevant for the relatively fast observed climate change in the Arctic since deposition of black carbon changes the albedo of snow and ice, thus leading to a positive feedback cycle. Here we explore gas flare detection and Fire Radiative Power (FRP) retrievals of the German FireBird TET-1 and BIRD Hotspot Recognition Systems (HSRS), the VIIRS sensor on board of the S-NPP satellite, and the MODIS sensor using temporally close to near coincident data acquisitions. Comparison is based on level 2 products developed for fire detection for the different sensors; in the case of S-NPP VIIRS we use two products: the new VIIRS 750m algorithm based on MODIS collection 6, and the 350 m algorithm based on the VIIRS mid-infrared I (Imaging) band, which offers high resolution, but no FRP retrievals. Results indicate that the highest resolution FireBird sensors offer the best detection capacities, though the level two product shows false alarms, followed by the VIIRS 350 m and 750 m algorithms. MODIS has the lowest detection rate. Preliminary results of FRP retrievals show that FireBird and VIIRS algorithms have a good agreement. Given the fact that most gas flaring is at the detection limit for medium to coarse resolution space borne sensors - and hence measurement errors may be high - our results indicates that a quantitative evaluation of gas flaring using these sensors is feasible. Results shall be used to develop a gas flare detection algorithm for Sentinel-3, and a similar methodology will be employed to validate the capacity of Sentinel 3 to detect and characterize small high temperature sources such as gas flares.
Reifman, Jaques; Feldman, Earl E.; Wei, Thomas Y. C.; Glickert, Roger W.
2003-01-01
The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.
12. VIEW OF THE MANIPULATOR AND PARTS HEATING FURNACE. THE ...
12. VIEW OF THE MANIPULATOR AND PARTS HEATING FURNACE. THE METALS WERE HEATED PRIOR TO BEING PRESSED. THE ARM IS DRAPED WITH FIRE RESISTANT MATERIAL. (2/9/79) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO
Fire Detection Using tin Oxide Gas Sensors Installed in an Indoor Space
NASA Astrophysics Data System (ADS)
Shibata, Shin-Ichi; Higashino, Tsubasa; Sawada, Ayako; Oyabu, Takashi; Takei, Yoshinori; Nanto, Hidehito; Toko, Kiyoshi
Many lives and facilities were lost by fire. Especially, there are many damages to elderly, toddlers and babies. In Japan, number of deaths over 65 years old reached to 53% in 2004. Number of over 81 years olds went to 20%. It takes for the elderly person more time to sense fire and also to evacuate to safe places. Although it is important to prevent the fire, it also needs to inform the fire breaking as early as possible. Human sense decreases with age and it is difficult to perceive the fire at an early stage. It is desired to develop a higher sensitive element for fire and its system which can detect fire at an early stage. In this experiment, tin oxide gas sensors were adopted to detect a smoldering fire at the early stage. Most common case of fire is the smoldering fire. The reliability of the sensor is higher and it is adopted in a gas alarm detector. The sensor can also detect slight amount of odor molecule. In our previous experiment, it became obvious that it was better to install the sensor to the ceiling to detect odor components generating from smoldering fire. Therefore, five sensors were installed in the ceiling away from each other and the method to detect the fire was examined. As a result, a characteristic was newly derived by adding the sensor outputs for one minute. The sensor output was input every 0.1s. The characteristic is called as the integrated characteristic. After that, the differential characteristic was derived using the integrated characteristic. The fire was determined using the differential characteristics. The materials causing a smoldering fire were woodchip, wallpaper and carpet as subjects. The system could detect the fire in several minutes for whole materials. The sensor is effective to detect the smoldering fire at an early stage. It is necessary to detect a cigarette smoke to distinguish as non fire. In this study, the discrimination was also examined using a quadratic function (ax2+b). The coefficients a and b were
NASA Astrophysics Data System (ADS)
Sharif, Nurulakmal Mohd; Lim, Chi Yang; Teo, Pao Ter; Seman, Anasyida Abu
2017-07-01
Significant quantities of sludge and slag are generated as waste materials or by-products from steel industries. One of the by-products is Electric Arc Furnace (EAF) steel slag which consists of oxides such as CaO, Al2O3 and FeO. This makes it possible for slag to partially replace the raw materials in ceramic tile production. In our preliminary assessment of incorporating the EAF slag into ceramic tile, it was revealed that at fixed firing temperature of 1150°C, the tile of composition 40 wt.% EAF slag - 60 wt.% ball clay has comparable properties with commercial ceramic tile. Thus, this current study would focus on effects of body formulation (different weight percentages of K-feldspar and silica) and different firing temperatures to properties of EAF slag added ceramic tile. EAF slag from Southern Steel Berhad (SSB) was crushed into micron size (EAF slag content was 40 wt.%) and milled with ball clay, K-feldspar and silica before compacted and fired at 1125°C and 1150°C. The EAF slag added tile was characterized in terms of water absorption, apparent porosity, bulk density, modulus of rupture (MOR) and phase analysis via X-ray diffraction (XRD). The composition of 40 wt.% EAF slag - 30 wt.% ball clay - 10 wt.% K-feldspar - 20 wt.% silica (10F_20S), fired at 1150°C showed the lowest water absorption, apparent porosity and highest bulk density due to enhancement of densification process during firing. However, the same composition of ceramic tile (10F_20S) had the highest MOR at lower firing temperature of 1125°C, contributed by presence of the highest total amount of anorthite and wollastonite reinforcement crystalline phases (78.40 wt.%) in the tile. Overall, both the water absorption and MOR of all ceramic tiles surpassed the requirement regulated by MS ISO 13006:2014 Standard (Annex G: Dry-pressed ceramic tile with low water absorption, Eb ≤ 0.50 % and minimum MOR of 35 MPa).
Analysis of Flue Gas Desulfurization (FGD) Processes for Potential Use on Army Coal-Fired Boilers
1980-09-01
TECHNICAL REPORT N-93 September 1980 ANALYSIS OF FLUE GAS DESULFURIZATION (FGD) PROCESSES FOR POTENTIAL USE ON ARMY COAL-FIRED BOILERS TECHNICAL LIBRARY...REFERENCE: Technical Report N-93, Analysis of Flue Gas Desulfurization (FGD) Ppooesses for Potential Use on Army Coal-Fired Boilers Please take a few...REPORT DOCUMENTATION PAGE 1. REPORT NUMBER CERL-TR-N-93 2. GOVT ACCESSION NO «. TITLE (end Subtitle) ANALYSIS OF FLUE GAS DESULFURIZATION (FGD
Information modeling system for blast furnace control
NASA Astrophysics Data System (ADS)
Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.
2016-09-01
Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.
Trace gas emissions from a mid-latitude prescribed chaparral fire
Wesley R. Cofer; Joel S. Levine; Philip J. Riggan; Daniel I. Sebacher; Edward L. Winstead; Shaw Edwin F.; James A. Brass; Vincent. G. Ambrosia
1988-01-01
Gas samples were collected in smoke plumes over the San Dimas Experimental Forest during a 400-acre prescribed chaparral fire on December 12, 1986. A helicopter was used to collect gas samples over areas of vigorous flaming combustion and over areas of mixed stages (vigorous/transitional/smoldering) of combustion. Sampling was conducted at altitudes as low as 35 m and...
Ren, Feng; Li, Zhengqi; Chen, Zhichao; Fan, Subo; Liu, Guangkui
2010-08-15
Down-fired boilers used to burn low-volatile coals have high NO(x) emissions. To find a way of solving this problem, an overfire air (OFA) system was introduced on a 300 MW(e) down-fired boiler. Full-scale experiments were performed on this retrofitted boiler to explore the influence of the OFA ratio (the mass flux ratio of OFA to the total combustion air) on the combustion and NO(x) emission characteristics in the furnace. Measurements were taken of gas temperature distributions along the primary air and coal mixture flows, average gas temperatures along the furnace height, concentrations of gases such as O(2), CO, and NO(x) in the near-wall region and carbon content in the fly ash. Data were compared for five different OFA ratios. The results show that as the OFA ratio increases from 12% to 35%, the NO(x) emission decreases from 1308 to 966 mg/Nm(3) (at 6% O(2) dry) and the carbon content in the fly ash increases from 6.53% to 15.86%. Considering both the environmental and economic effect, 25% was chosen as the optimized OFA ratio.
Fire Effects on Greenhouse Gas Emissions from Wetlands in the Yukon-Kuskokwim Delta, Alaska
NASA Astrophysics Data System (ADS)
Peter, D. L.; Bristol, E. M.; Mann, P. J.; Schade, J. D.; Natali, S.; Holmes, R. M.
2017-12-01
Climate change in increasing both fire frequency and fire intensity, especially in Arctic regions. Fire often leads to increased soil temperature, which increases the likelihood of permafrost thaw. Permafrost soils in northern latitudes store large amounts of carbon, and thawing of this permafrost will alter carbon cycling processes, which may substantially impact ecosystem processes in aquatic ecosystems. One potential consequence of altered aquatic ecosystem processes is changes in carbon emissions resulting from altered carbon inputs from thawing permafrost. Aquatic ecosystems are known to be hotspots of greenhouse gas emissions, so changes in greenhouse gas fluxes from them may have important impacts on global climate. In this work, we focused on CO2 and CH4 fluxes from peat plateau ponds, fens and bogs in the Yukon-Kuskokwim (YK) Delta in southwest Alaska. The YK Delta experienced unprecedented fires in summer 2015, presenting an opportunity to assess the impacts of fire on greenhouse gas fluxes from aquatic ecosystems. We sampled upland ponds, channel fens, bogs, and lowland ponds in sites that had burned in 2015 as well as from similar sites where there have been no recorded fires in the past 75 years. We found little difference in gas flux between aquatic sites in burned and unburned sites, with the exception of channel fens, which showed substantially higher fluxes of both CH4 and CO2 in burned sites. This is in contrast to similar measurements taken in summer 2016, when burned ponds showed consistently higher GHG fluxes, suggesting these increases were not sustained in sites other than channel fens. These results, if general, indicate the possibility that the response of aquatic ecosystems to fire may lead to positive feedbacks on climate change.
Fast and safe gas detection from underground coal fire by drone fly over.
Dunnington, Lucila; Nakagawa, Masami
2017-10-01
Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currentlymore » fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.« less
Greenhouse gas emissions from vegetation fires in Southern Africa.
Scholes, R J
1995-01-01
Methane (CH4), carbon monoxide (CO), nitrogen oxides (NOx), volatile organic carbon, and aerosols emitted as a result of the deliberate or accidental burning of natural vegetation constitute a large component of the greenhouse gas emissions of many African countries, but the data needed for calculating these emissions by the IPCC methodology is sparse and subject to estimation errors. An improved procedure for estimating emissions from fires in southern Africa has been developed. The proposed procedure involves reclassifying existing vegetation maps into one of eleven broad, functional vegetation classes. Fuel loads are calculated within each 0.5 × 0.5° cell based on empirical relationships to climate data for each class. The fractional area of each class that burns is estimated by using daily low-resolution satellite fire detection, which is calibrated against a subsample of pre- and post-fire high-resolution satellite images. The emission factors that relate the quantity of gas released to the mass of fuel burned are based on recent field campaigns in Africa and are related to combustion efficiency, which is in turn related to the fuel mix. The emissions are summed over the 1989 fire season for Africa south of the equator. The estimated emissions from vegetation burning in the subcontinent are 0.5 Tg CH4, 14.9 Tg CO, 1.05 Tg NOx, and 1.08 Tg of particles smaller than 2.5µm. The 324 Tg CO2 emitted is expected to be reabsorbed in subsequent years. These estimates are smaller than previous estimates.
Paired Straight Hearth Furnace - Transformational Ironmaking Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei-Kao; Debski, Paul
2014-11-19
The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitablemore » as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Wiser, Ryan
2003-12-18
For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation frommore » 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Optional SO2 Emissions Data Protocol for Gas-Fired and Oil-Fired Units D Appendix D to Part 75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. D Appendix D to Part 75—Optional SO2 Emissions Data...
Hower, James C.; Henke, Kevin R.; O'Keefe, Jennifer M.K.; Engle, Mark A.; Blake, Donald R.; Stracher, Glenn B.
2009-01-01
Variation in gas temperatures, nearly 300 °C during the January visit to the fire versus < 50 °C in May, demonstrates the large temporal variability in fire intensity at the Tiptop mine. These preliminary results suggest that emissions from coal fires may be important, but additional data are required that address the reasons for significant variations in the composition, flow, and temperature of vent gases.
NASA Astrophysics Data System (ADS)
Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian
2017-05-01
Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.
Improved fire-resistant coatings
NASA Technical Reports Server (NTRS)
Hutt, J. B.; Stuart, J. W.
1971-01-01
Water-base coatings containing potassium silicate show improvement in areas of quick air-drying, crack, craze, and abrasion resistance, adherence, and leach resistance. Coatings are useful as thermal-barrier layers in furnaces, and as general purpose fire resistant surfaces where vapor impermeability is not a requirement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units E Appendix E to Part 75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units E Appendix E to Part 75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION...
INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS ...
INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS EVERY TWENTY MINUTES TO DETERMINE SIZE AND TEXTURE OF BATCH AND OTHER VARIABLES. FAN IN FRONT COOLS WORKERS AS THEY CONDUCT REPAIRS. FURNACE TEMPERATURE AT 1572 DEGREES FAHRENHEIT. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA
10 CFR 430.32 - Energy and water conservation standards and their effective dates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (excluding classes noted below) 78 (B) Mobile Home furnaces 75 (C) Small furnaces (other than those designed solely for installation in mobile homes) having an input rate of less than 45,000 Btu/hr (1) Weatherized... including mobile home furnaces) 80 (B) Mobile Home gas furnaces 80 (C) Non-weatherized oil-fired furnaces...
10 CFR 430.32 - Energy and water conservation standards and their compliance dates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (excluding classes noted below) 78 (B) Mobile Home furnaces 75 (C) Small furnaces (other than those designed solely for installation in mobile homes) having an input rate of less than 45,000 Btu/hr (1) Weatherized... including mobile home furnaces) 80 (B) Mobile Home gas furnaces 80 (C) Non-weatherized oil-fired furnaces...
10 CFR 430.32 - Energy and water conservation standards and their effective dates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (excluding classes noted below) 78 (B) Mobile Home furnaces 75 (C) Small furnaces (other than those designed solely for installation in mobile homes) having an input rate of less than 45,000 Btu/hr (1) Weatherized... including mobile home furnaces) 80 (B) Mobile Home gas furnaces 80 (C) Non-weatherized oil-fired furnaces...
Oxy-fired boiler unit and method of operating the same
Lou, Xinsheng; Zhang, Jundong; Joshi, Abhinaya; McCombe, James A.; Levasseur, Armand A.
2016-12-06
An oxy-combustion boiler unit is disclosed which includes a furnace for combusting fuel and for emitting flue gas resulting from combustion. The furnace has first, second and third combustion zones, and an air separation unit for separating oxygen gas from air and providing a first portion of the separated oxygen to a first oxidant flow, a second portion to a second oxidant flow, and a third portion of the separated oxygen gas to the first, second, and third zones of the furnace. A controller can cause the separated oxygen gas to be distributed so that the first and second oxygen flows have a desired oxygen content, and so that the first, second, and third zones of the furnace receive a desired amount of oxygen based on a combustion zone stoichiometry control.
Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)
NASA Astrophysics Data System (ADS)
Woskov, P. P.
1995-01-01
Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.
Economic aspects of advanced coal-fired gas turbine locomotives
NASA Technical Reports Server (NTRS)
Liddle, S. G.; Bonzo, B. B.; Houser, B. C.
1983-01-01
Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.
Space Station Furnace Facility. Volume 2: Summary of technical reports
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.
NASA Technical Reports Server (NTRS)
Amos, D. J.; Fentress, W. K.; Stahl, W. F.
1976-01-01
Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.
Blaugher, Richard D.
1998-05-05
A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.
Blaugher, R.D.
1998-05-05
A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.
Global Change Could Amplify Fire Effects on Soil Greenhouse Gas Emissions
Niboyet, Audrey; Brown, Jamie R.; Dijkstra, Paul; Blankinship, Joseph C.; Leadley, Paul W.; Le Roux, Xavier; Barthes, Laure; Barnard, Romain L.; Field, Christopher B.; Hungate, Bruce A.
2011-01-01
Background Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases. Methodology/Principal Findings We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO2 concentration, precipitation and nitrogen supply on soil nitrous oxide (N2O) emissions in a grassland ecosystem. We examined the responses of soil N2O emissions, as well as the responses of the two main microbial processes contributing to soil N2O production – nitrification and denitrification – and of their main drivers. We show that the fire disturbance greatly increased soil N2O emissions over a three-year period, and that elevated CO2 and enhanced nitrogen supply amplified fire effects on soil N2O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO2 and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. Conclusions/Significance Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence. PMID:21687708
Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace
NASA Astrophysics Data System (ADS)
Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing
2015-02-01
An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.
Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurek, Harry; Kozlov, Aleksandr
Gas Technology Institute (GTI) evaluated the technical and economic feasibility of utilizing a non-catalytic ThermoChemical Recuperation System (TCRS) to recover a significant amount of energy from the waste gases of natural gas fired steel reheat furnaces. The project was related to DOE-AMO’s (formerly known as ITP) one of the technical areas of interest: Technologies to improve energy efficiency and reduce the carbon footprint of equipment currently used in energy-intensive industries such as iron and steel, and reduce by at least 30% energy consumption and carbon dioxide emission compared to the conventional technologies. ThermoChemical Recuperation (TCR) is a technique that recoversmore » sensible heat in the exhaust gas from an industrial process, furnace, engine etc., when a hydrocarbon fuel is used for combustion. TCR enables waste heat recovery by both combustion air preheat and hydrocarbon fuel (natural gas, for example) reforming into a higher calorific fuel. The reforming process uses hot flue gas components (H2O and CO2) or steam to convert the fuel into a combustible mixture of hydrogen (H2), carbon monoxide (CO), and some unreformed hydrocarbons (CnHm). Reforming of natural gas with recycled exhaust gas or steam can significantly reduce fuel consumption, CO2 emissions and cost as well as increase process thermal efficiency. The calorific content of the fuel can be increased by up to ~28% with the TCR process if the original source fuel is natural gas. In addition, the fuel is preheated during the TCR process adding sensible heat to the fuel. The Research and Development work by GTI was proposed to be carried out in three Phases (Project Objectives). • Phase I: Develop a feasibility study consisting of a benefits-derived economic evaluation of a ThermoChemical Recuperation (TCR) concept with respect to high temperature reheat furnace applications within the steel industry (and cross-cutting industries). This will establish the design parameters
Disentangling the drivers of coarse woody debris behavior and carbon gas emissions during fire
NASA Astrophysics Data System (ADS)
Zhao, Weiwei; van der Werf, Guido R.; van Logtestijn, Richard S. P.; van Hal, Jurgen R.; Cornelissen, Johannes H. C.
2016-04-01
The turnover of coarse woody debris, a key terrestrial carbon pool, plays fundamental roles in global carbon cycling. Biological decomposition and fire are two main fates for dead wood turnover. Compared to slow decomposition, fire rapidly transfers organic carbon from the earth surface to the atmosphere. Both a-biotic environmental factors and biotic wood properties determine coarse wood combustion and thereby its carbon gas emissions during fire. Moisture is a key inhibitory environmental factor for fire. The properties of dead wood strongly affect how it burns either directly or indirectly through interacting with moisture. Coarse wood properties vary between plant species and between various decay stages. Moreover, if we put a piece of dead wood in the context of a forest fuel bed, the soil and wood contact might also greatly affect their fire behavior. Using controlled laboratory burns, we disentangled the effects of all these driving factors: tree species (one gymnosperms needle-leaf species, three angiosperms broad-leaf species), wood decay stages (freshly dead, middle decayed, very strongly decayed), moisture content (air-dried, 30% moisture content in mass), and soil-wood contact (on versus 3cm above the ground surface) on dead wood flammability and carbon gas efflux (CO2 and CO released in grams) during fire. Wood density was measured for all coarse wood samples used in our experiment. We found that compared to other drivers, wood decay stages have predominant positive effects on coarse wood combustion (for wood mass burned, R2=0.72 when air-dried and R2=0.52 at 30% moisture content) and associated carbon gas emissions (for CO2andCO (g) released, R2=0.55 when air-dried and R2=0.42 at 30% moisture content) during fire. Thus, wood decay accelerates wood combustion and its CO2 and CO emissions during fire, which can be mainly attributed to the decreasing wood density (for wood mass burned, R2=0.91 when air-dried and R2=0.63 at 30% moisture content) as wood
Characteristics and settling behaviour of particles from blast furnace flue gas washing.
Kiventerä, Jenni; Leiviskä, Tiina; Keski-Ruismäki, Kirsi; Tanskanen, Juha
2016-05-01
A lot of particles from iron-making are removed with blast furnace off-gas and routed to the gas cleaning system. As water is used for cleaning the gas, the produced wash water contains a large amount of particles such as valuable Fe and C. However, the presence of zinc prevents recycling. In addition, the high amount of calcium results in uncontrolled scaling. Therefore, the properties of the wash water from scrubber and sludge, from the Finnish metal industry (SSAB Raahe), were evaluated in this study. Size fractionation of wash water revealed that Fe, Zn, Al, Mn, V, Cr and Cd appeared mainly in the larger fractions (>1.2 μm) and Na, Mg, Si, Ni, K, Cu and As appeared mainly in the smaller fractions (<1.2 μm) or in dissolved form. Calcium was found both in the larger fractions and dissolved (∼60 mg/L). Most of the particles in wash water were included in the 1.2-10 μm particle size and were settled effectively. However, a clear benefit was observed when using a chemical to enhance particle settling. In comparison to 2.5 h of settling without chemical, the turbidity was further decreased by about 94%, iron 85% and zinc 50%. Coagulation-flocculation experiments indicated that both low and high molecular weight cationic polymers could provide excellent purification results in terms of turbidity. Calcium should be removed by other methods. The particles in sludge were mostly in the 2-4 μm or 10-20 μm fractions. Further sludge settling resulted in high solids removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
The coal-fired gas turbine locomotive - A new look
NASA Technical Reports Server (NTRS)
Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.
1983-01-01
Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.
Slag processing system for direct coal-fired gas turbines
Pillsbury, Paul W.
1990-01-01
Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.
Adsorbents for capturing mercury in coal-fired boiler flue gas.
Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Bland, Alan E; Judkins, Roddie R
2007-07-19
This paper reviews recent advances in the research and development of sorbents used to capture mercury from coal-fired utility boiler flue gas. Mercury emissions are the source of serious health concerns. Worldwide mercury emissions from human activities are estimated to be 1000 to 6000 t/annum. Mercury emissions from coal-fired power plants are believed to be the largest source of anthropogenic mercury emissions. Mercury emissions from coal-fired utility boilers vary in total amount and speciation, depending on coal types, boiler operating conditions, and configurations of air pollution control devices (APCDs). The APCDs, such as fabric filter (FF) bag house, electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD), can remove some particulate-bound and oxidized forms of mercury. Elemental mercury often escapes from these devices. Activated carbon injection upstream of a particulate control device has been shown to have the best potential to remove both elemental and oxidized mercury from the flue gas. For this paper, NORIT FGD activated carbon was extensively studied for its mercury adsorption behavior. Results from bench-, pilot- and field-scale studies, mercury adsorption by coal chars, and a case of lignite-burned mercury control were reviewed. Studies of brominated carbon, sulfur-impregnated carbon and chloride-impregnated carbon were also reviewed. Carbon substitutes, such as calcium sorbents, petroleum coke, zeolites and fly ash were analyzed for their mercury-adsorption performance. At this time, brominated activated carbon appears to be the best-performing mercury sorbent. A non-injection regenerable sorbent technology is briefly introduced herein, and the issue of mercury leachability is briefly covered. Future research directions are suggested.
Lance for fuel and oxygen injection into smelting or refining furnace
Schlichting, M.R.
1994-12-20
A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figures.
Numerical Simulation and Chaotic Analysis of an Aluminum Holding Furnace
NASA Astrophysics Data System (ADS)
Wang, Ji-min; Zhou, Yuan-yuan; Lan, Shen; Chen, Tao; Li, Jie; Yan, Hong-jie; Zhou, Jie-min; Tian, Rui-jiao; Tu, Yan-wu; Li, Wen-ke
2014-12-01
To achieve high heat efficiency, low pollutant emission and homogeneous melt temperature during thermal process of secondary aluminum, taking into account the features of aluminum alloying process, a CFD process model was developed and integrated with heat load and aluminum temperature control model. This paper presented numerical simulation of aluminum holding furnaces using the customized code based on FLUENT packages. Thermal behaviors of aluminum holding furnaces were investigated by probing into main physical fields such as flue gas temperature, velocity, and concentration, and combustion instability of aluminum holding process was represented by chaos theory. The results show that aluminum temperature uniform coefficient firstly decreases during heating phase, then increases and reduces alternately during holding phase, lastly rises during standing phase. Correlation dimension drops with fuel velocity. Maximal Lyapunov exponent reaches to a maximum when air-fuel ratio is close to 1. It would be a clear comprehension about each phase of aluminum holding furnaces to find new technology, retrofit furnace design, and optimize parameters combination.
Operating experience with 100% pellet burden on Amanda blast furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keaton, D.E.; Minakawa, T.
1993-01-01
A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated thatmore » the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.« less
Coal Combustion Behavior in New Ironmaking Process of Top Gas Recycling Oxygen Blast Furnace
NASA Astrophysics Data System (ADS)
Zhou, Zhenfeng; Xue, Qingguo; Tang, Huiqing; Wang, Guang; Wang, Jingsong
2017-10-01
The top gas recycling oxygen blast furnace (TGR-OBF) is a new ironmaking process which can significantly reduce the coke ratio and emissions of carbon dioxide. To better understand the coal combustion characteristics in the TGR-OBF, a three dimensional model was developed to simulate the lance-blowpipe-tuyere-raceway of a TGR-OBF. The combustion characteristics of pulverized coal in TGR-OBF were investigated. Furthermore, the effects of oxygen concentration and temperature were also analyzed. The simulation results show that the coal burnout increased by 16.23% compared to that of the TBF. The oxygen content has an obvious effect on the burnout. At 70% oxygen content, the coal burnout is only 21.64%, with a decrease of 50.14% compared to that of TBF. Moreover, the effect of oxygen temperature is also very obvious.
Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods
Engle, M.A.; Radke, L.F.; Heffern, E.L.; O'Keefe, J.M.K.; Smeltzer, C.D.; Hower, J.C.; Hower, J.M.; Prakash, A.; Kolker, A.; Eatwell, R.J.; ter, Schure A.; Queen, G.; Aggen, K.L.; Stracher, G.B.; Henke, K.R.; Olea, R.A.; Roman-Colon, Y.
2011-01-01
Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7-4.4td-1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3-9.5td-1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation. ?? 2011.
NASA Astrophysics Data System (ADS)
Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei
2016-09-01
In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.
Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.
Zhuang, Ye; Pavlish, John H
2012-04-17
Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion.
ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
1999-02-01
A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalentmore » size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. A general arrangement drawing of the char transfer system was forwarded to SCS for their review. Structural steel drawings were used to generate a three-dimensional model of the
The Spatial Footprint of Natural Gas-Fired Electricity
NASA Astrophysics Data System (ADS)
Jordaan, S. M.; Heath, G.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.; Marceau, D.
2015-12-01
Consistent comparisons of the amount of land required for different electricity generation technologies are challenging because land use associated with fossil fuel acquisition and delivery has not been well characterized or empirically grounded. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity (m2/MWh generated) through the novel combination of inventories of natural gas-related infrastructure, satellite imagery analysis and gas production estimates. We focus on seven counties that represent 98% of the total gas production in the Barnett Shale (Texas), evaluating over 500 sites across five life cycle stages (gas production, gathering, processing, transmission, and power generation as well as produced water disposal). We find that a large fraction of total life cycle land use is related to gathering (midstream) infrastructure, particularly pipelines; access roads related to all stages also contribute a large life cycle share. Results were sensitive to several inputs, including well lifetime, pipeline right of way, number of wells per site, variability of heat rate for electricity generation, and facility lifetime. Through this work, we have demonstrated a novel, highly-resolved and empirical method for estimating life cycle land use from natural gas infrastructure in an important production region. When replicated for other gas production regions and other fuels, the results can enable more empirically-grounded and robust comparisons of the land footprint of alternative energy choices.
Computational Modeling of Arc-Slag Interaction in DC Furnaces
NASA Astrophysics Data System (ADS)
Reynolds, Quinn G.
2017-02-01
The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.
High Temperature Transparent Furnace Development
NASA Technical Reports Server (NTRS)
Bates, Stephen C.
1997-01-01
This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.
Royère, C
1999-03-01
The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.
A Heat and Mass Transfer Model of a Silicon Pilot Furnace
NASA Astrophysics Data System (ADS)
Sloman, Benjamin M.; Please, Colin P.; Van Gorder, Robert A.; Valderhaug, Aasgeir M.; Birkeland, Rolf G.; Wegge, Harald
2017-10-01
The most common technological route for metallurgical silicon production is to feed quartz and a carbon source ( e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is taken, and we derive from first principles the equations governing the time evolution of chemical concentrations, gas partial pressures, velocity, and temperature within a one-dimensional vertical section of a furnace. Numerical simulations are obtained for this model and are shown to compare favorably with experimental results obtained using silicon pilot furnaces. A rising interface is shown to exist at the base of the charge, with motion caused by the heating of the pilot furnace. We find that more reactive carbon reduces the silicon monoxide losses, while reducing the carbon content in the raw material mixture causes greater solid and liquid material to build-up in the charge region, indicative of crust formation (which can be detrimental to the silicon production process). We also comment on how the various findings could be relevant for industrial operations.
Lance for fuel and oxygen injection into smelting or refining furnace
Schlichting, Mark R.
1994-01-01
A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.
Laboratory Development of A High Capacity Gas-Fired paper Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chudnovsky, Yaroslav; Kozlov, Aleksandr; Sherrow, Lester
2005-09-30
Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. naturalmore » gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.« less
NASA Astrophysics Data System (ADS)
Galford, G. L.; Spera, S. A.; Coe, M. T.; Costa, C., Jr.
2014-12-01
Understanding the multiple types of land-use changes that can occur within an ecosystem provides a comprehensive picture of the human's impact on natural systems. We use the Cerrado (savanna) of Brazil to examine the primary and secondary impacts of land-use change on greenhouse gas emissions. The primary land-use changes include fires for land-clearing, conversions to pasture and row-crop agriculture, and shifting management practices of agricultural lands. Secondary land-use changes include savanna degradation due to fires that escape from intended burn areas. These escape fires typically have a lower combustion completion coefficient than clearing fires, so it is important to distinguish them to correctly estimate the regional greenhouse gas budget. We have created a first-order spatio-temporal model of greenhouse gas emissions that can be easily modified for other savanna regions using globally available data products as inputs. Our data inputs are derived from publically available remote sensing imagery. Initial biomass is estimated by Baccini et al. 2012, which is derived from LiDAR and MODIS imagery. All other input data sets give annual estimates. Clearing of the savanna is documented by LAPIG of Universidade Federal de Goias using MODIS (MOD13Q1), LANDSAT and CBERS images. MODIS burned area products delineate annual fires; in combination with the savanna clearing database we determine primary and escape fires. Pastures and row-crop agriculture are documented by LAPIG and Spera et al. 2014, respectively. The row-crop agriculture dataset enables us to estimate greenhouse gas emissions associated with specific crops (e.g., soy or maize) and management (e.g., fertilizer use). Recent contributions to the literature have provided many in situ measurements from the land-use changes of interest needed to estimate a regional greenhouse gas budget, including combustion coefficients of savanna sub-types, carbon emission soil stocks, nitrogen emissions from fertilizer
Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods
Engle, Mark A.; Radke, Lawrence F.; Heffern, Edward L.; O'Keefe, Jennifer M.K.; Smeltzer, Charles; Hower, James C.; Hower, Judith M.; Prakash, Anupma; Kolker, Allan; Eatwell, Robert J.; ter Schure, Arnout; Queen, Gerald; Aggen, Kerry L.; Stracher, Glenn B.; Henke, Kevin R.; Olea, Ricardo A.; Román-Colón, Yomayara
2011-01-01
Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7–4.4 t d−1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3–9.5 t d−1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation.
Hu, L H; Peng, W; Huo, R
2008-01-15
In case of a tunnel fire, toxic gas and smoke particles released are the most fatal contaminations. It is important to supply fresh air from the upwind side to provide a clean and safe environment upstream from the fire source for people evacuation. Thus, the critical longitudinal wind velocity for arresting fire induced upwind gas and smoke dispersion is a key criteria for tunnel safety design. Former studies and thus, the models built for estimating the critical wind velocity are all arbitrarily assuming that the fire takes place at the centre of the tunnel. However, in many real cases in road tunnels, the fire originates near the sidewall. The critical velocity of a near-wall fire should be different with that of a free-standing central fire due to their different plume entrainment process. Theoretical analysis and CFD simulation were performed in this paper to estimate the critical velocity for the fire near the sidewall. Results showed that when fire originates near the sidewall, it needs larger critical velocity to arrest the upwind gas and smoke dispersion than when fire at the centre. The ratio of critical velocity of a near-wall fire to that of a central fire was ideally estimated to be 1.26 by theoretical analysis. Results by CFD modelling showed that the ratio decreased with the increase of the fire size till near to unity. The ratio by CFD modelling was about 1.18 for a 500kW small fire, being near to and a bit lower than the theoretically estimated value of 1.26. However, the former models, including those of Thomas (1958, 1968), Dangizer and Kenndey (1982), Oka and Atkinson (1995), Wu and Barker (2000) and Kunsch (1999, 2002), underestimated the critical velocity needed for a fire near the tunnel sidewall.
Ensuring Reliable Natural Gas-Fired Generation with Fuel Contracts and Storage - DOE/NETL-2017/1816
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myles, Paul T.; Labarbara, Kirk A.; Logan, Cecilia Elise
This report finds that natural gas-fired power plants purchase fuel both on the spot market and through firm supply contracts; there do not appear to be clear drivers propelling power plants toward one or the other type. Most natural gas-fired power generators are located near major natural gas transmission pipelines, and most natural gas contracts are currently procured on the spot market. Although there is some regional variation in the type of contract used, a strong regional pattern does not emerge. Whether gas prices are higher with spot or firm contracts varies by both region and year. Natural gas pricesmore » that push the generators higher in the supply curve would make them less likely to dispatch. Most of the natural gas generators discussed in this report would be unlikely to enter firm contracts if the agreed price would decrease their dispatch frequency. The price points at which these generators would be unlikely to enter a firm contract depends upon the region that the generator is in, and how dependent that region is on natural gas. The Electric Reliability Council of Texas (ERCOT) is more dependent on natural gas than either Eastern Interconnection or Western Interconnection. This report shows that above-ground storage is prohibitively expensive with respect to providing storage for an extended operational fuel reserve comparable to the amount of on-site fuel storage used for coal-fired plants. Further, both pressurized and atmospheric tanks require a significant amount of land for storage, even to support one day’s operation at full output. Underground storage offers the only viable option for 30-day operational storage of natural gas, and that is limited by the location of suitable geologic formations and depleted fields.« less
Vertical two chamber reaction furnace
Blaugher, Richard D.
1999-03-16
A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.
Vertical two chamber reaction furnace
Blaugher, R.D.
1999-03-16
A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.
Fire-tube boiler optimization criteria and efficiency indicators rational values defining
NASA Astrophysics Data System (ADS)
Batrakov, P. A.; Mikhailov, A. G.; Ignatov, V. Yu
2018-01-01
Technical and economic calculations problems solving with the aim of identifying the opportunity to recommend the project for industrial implementation are represented in the paper. One of the main determining factors impacting boiler energy efficiency is the exhaust gases temperature, as well as the furnace volume thermal stress. Fire-tube boilers with different types of furnaces are considered in the study. The fullest analysis of the boiler performance thermal and technical indicators for the following engineering problem: Q=idem, M=idem and evaluation according to η, B is presented. The furnace with the finned ellipse profile application results in the fuel consumption decrease due to a more efficient heat exchange surface of the furnace compared to other examined ones.
38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, ...
38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, LANCES, AND FUME HOODS IN THE GAS WASHER PUMP HOUSE LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
NASA Astrophysics Data System (ADS)
Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Jiang, Xu; Chen, Mao; Xiang, Yong; Zhao, Baojun
2018-05-01
The bottom-blown copper smelting furnace is a novel copper smelter developed in recent years. Many advantages of this furnace have been found, related to bath mixing behavior under its specific gas injection scheme. This study aims to use an oil-water double-phased laboratory-scale model to investigate the impact of industry-adjustable variables on bath mixing time, including lower layer thickness, gas flow rate, upper layer thickness and upper layer viscosity. Based on experimental results, an overall empirical relationship of mixing time in terms of these variables has been correlated, which provides the methodology for industry to optimize mass transfer in the furnace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at thismore » site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.« less
Plumbrook Hypersonic Tunnel Facility Graphite Furnace Degradation Mechanisms
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.
1999-01-01
A recent rebuild revealed extensive degradation to the large graphite induction furnace in the Hypersonic Tunnel Facility (HTF). This damage to the graphite blocks and insulating felt is examined and modeled with thermochemical equilibrium codes. The primary reactions appear to be with water vapor and the nitrogen purge gas. Based on these conclusions, several changes are recommended. An inert purge gas (e.g. argon or helium) and controlling and monitoring water vapor to about 10 ppm should decrease the damage substantially.
NASA Astrophysics Data System (ADS)
Yue, Tao; Gao, Xiang; Gao, Jiajia; Tong, Yali; Wang, Kun; Zuo, Penglai; Zhang, Xiaoxi; Tong, Li; Wang, Chenlong; Xue, Yifeng
2018-07-01
In the past decade, due to the management policies and coal combustion controls in Beijing, the consumption of natural gas has increased gradually. Nevertheless, the research on the emission characteristics of gaseous pollutants emitted from gas-fired industrial boilers, especially considering the influence of low nitrogen (low-NOx) retrofit policy of gas boilers, is scarcely. In this study, based on literature and field investigations, onsite measurements of NOx, CO, NH3 and VOCs (Volatile Organic Compounds) emissions from gas-fired industrial boilers as well as the key factors that affected the emission of gaseous pollutants were discussed. Category-specific emission factors (EFs) of NOx, CO, NH3 and VOCs were obtained from the field measurements of 1107 "low-NOx" retrofitted and unabated gas-fired industrial boilers. Our results showed that operating load and control measures were the two key factors affecting the formation of gaseous pollutants. The EFs of NOx (EFNOx) and CO (EFCO) of atmospheric combustion boilers (ACBs) were much higher than the EFs of chamber combustion boilers (CCBs). The total emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing in the year of 2015 were estimated at 10489.6 t, 3272.8 t, 196.4 t and 235.4 t, respectively. Alkanes, BTEX, oxygenated VOCs and non-reactive organic matter were the four main chemical components of VOCs. As for the spatial distributions, the emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing were predominantly concentrated in central six urban districts. In the future, more detailed investigation and field tests for all kinds of gas-fired industrial boilers are still greatly needed to achieve more reliable estimations of atmospheric pollutants from gas-fired industrial boilers.
Water Extraction from Coal-Fired Power Plant Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings
2006-06-30
The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the powermore » plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention
Development and Validation of a 3-Dimensional CFB Furnace Model
NASA Astrophysics Data System (ADS)
Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti
At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents
EVALUATION OF SMOKE AND GAS SENSOR RESPONSES FOR FIRES OF COMMON MINE COMBUSTIBLES
Perera, Inoka Eranda; Litton, Charles D.
2015-01-01
Experiments were conducted to evaluate the response characteristics of commercially available gas, smoke, and flame sensors to fires of common combustible mine materials. The experiments were conducted in the large-scale Fire gallery located at the National Institute for Occupational Safety and Health (NIOSH) Lake Lynn Laboratory (LLL) in Fairchance, PA, using Ponderosa Pine, Red Oak, Douglas-fir, high and low volatile coals, PVC and SBR conveyor belt, No. 2 diesel fuel, and diesel exhaust. All the experiments (except those using No. 2 diesel fuel and the diesel exhaust tests) were conducted in a similar manner, with combustible materials heated rapidly by electrical strip heaters producing smoldering fires that quickly transitioned into flaming fires. The sensors included a diffusion-type carbon monoxide (CO) sensor, photoelectric- and ionization-type smoke sensors, a video smoke/flame detector, and an optical flame detector. Simultaneous measurements were obtained for average gas concentrations, smoke mass concentrations, and smoke optical densities in order to quantify the levels of combustion products at the alert and alarm times of the sensors. Because the required sensor alarm levels are 10 ppm and 0.044 m−1 optical density for CO and smoke sensors, respectively, the different sensor alarms are compared to the time at which the CO and smoke reached these alarm levels (1). In addition, the potential impact of using smoke sensors that have met the performance standards from accredited testing laboratories is also evaluated using the response of an Underwriters’ Laboratory (UL)-approved combination photoelectric/ionization smoke detector. The results are discussed relative to fire sensor needs that can have a positive impact on mine fire safety. PMID:26229418
EVALUATION OF SMOKE AND GAS SENSOR RESPONSES FOR FIRES OF COMMON MINE COMBUSTIBLES.
Perera, Inoka Eranda; Litton, Charles D
Experiments were conducted to evaluate the response characteristics of commercially available gas, smoke, and flame sensors to fires of common combustible mine materials. The experiments were conducted in the large-scale Fire gallery located at the National Institute for Occupational Safety and Health (NIOSH) Lake Lynn Laboratory (LLL) in Fairchance, PA, using Ponderosa Pine, Red Oak, Douglas-fir, high and low volatile coals, PVC and SBR conveyor belt, No. 2 diesel fuel, and diesel exhaust. All the experiments (except those using No. 2 diesel fuel and the diesel exhaust tests) were conducted in a similar manner, with combustible materials heated rapidly by electrical strip heaters producing smoldering fires that quickly transitioned into flaming fires. The sensors included a diffusion-type carbon monoxide (CO) sensor, photoelectric- and ionization-type smoke sensors, a video smoke/flame detector, and an optical flame detector. Simultaneous measurements were obtained for average gas concentrations, smoke mass concentrations, and smoke optical densities in order to quantify the levels of combustion products at the alert and alarm times of the sensors. Because the required sensor alarm levels are 10 ppm and 0.044 m -1 optical density for CO and smoke sensors, respectively, the different sensor alarms are compared to the time at which the CO and smoke reached these alarm levels (1). In addition, the potential impact of using smoke sensors that have met the performance standards from accredited testing laboratories is also evaluated using the response of an Underwriters' Laboratory (UL)-approved combination photoelectric/ionization smoke detector. The results are discussed relative to fire sensor needs that can have a positive impact on mine fire safety.
Pollock, George G.
1997-01-01
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.
Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Garrabrant; Roger Stout; Paul Glanville
2013-01-21
For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs ofmore » 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.« less
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Williams, R. J.; Le, L.; Wagstaff, J.; Lofgren, G.; Lanier, A.; Carter, W.; Roshko, A.
1993-01-01
Details are given for the design and application of a (one atmosphere) redox-control system. This system differs from that given in NASA Technical Memorandum 58234 in that it uses a single solid-electrolytic cell in a remote location to measure the oxygen fugacities of multiple CO/CO2 controlled-atmosphere furnaces. This remote measurement extends the range of sample-furnace conditions that can be measured using a solid-electrolytic cell, and cuts costs by extending the life of the sensors and by minimizing the number of sensors in use. The system consists of a reference furnace and an exhaust-gas manifold. The reference furnace is designed according to the redox control system of NASA Technical Memorandum 58234, and any number of CO/CO2 controlled-atmosphere furnaces can be attached to the exhaust-gas manifold. Using the manifold, the exhaust gas from individual CO/CO2 controlled atmosphere furnaces can be diverted through the reference furnace, where a solid-electrolyte cell is used to read the ambient oxygen fugacity. The oxygen fugacity measured in the reference furnace can then be used to calculate the oxygen fugacity in the individual CO/CO2 controlled-atmosphere furnace. A BASIC computer program was developed to expedite this calculation.
Collender, Mark A; Doherty, Kevin A J; Stanton, Kenneth T
2017-01-01
Following a shooting incident where a vehicle is used to convey the culprits to and from the scene, both the getaway car and the firearm are often deliberately burned in an attempt to destroy any forensic evidence which may be subsequently recovered. Here we investigate the factors that influence the ability to make toolmark identifications on ammunition discharged from pistols recovered from such car fires. This work was carried out by conducting a number of controlled furnace tests in conjunction with real car fire tests in which three 9mm semi-automatic pistols were burned. Comparisons between pre-burn and post burn test fired ammunition discharged from these pistols were then performed to establish if identifications were still possible. The surfaces of the furnace heated samples and car fire samples were examined following heating/burning to establish what factors had influenced their surface morphology. The primary influence on the surfaces of the furnace heated and car fire samples was the formation of oxide layers. The car fire samples were altered to a greater extent than the furnace heated samples. Identifications were still possible between pre- and post-burn discharged cartridge cases, but this was not the case for the discharged bullets. It is suggested that the reason for this is a difference between the types of firearms discharge-generated toolmarks impressed onto the base of cartridge cases compared to those striated along the surfaces of bullets. It was also found that the temperatures recorded in the front foot wells were considerably less than those recorded on top of the rear seats during the car fires. These factors should be assessed by forensic firearms examiners when performing casework involving pistols recovered from car fires. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Microfine coal firing results from a retrofit gas/oil-designed industrial boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R.; Borio, R.W.; Liljedahl, G.
1995-12-31
The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronizedmore » coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.« less
High-bandwidth continuous-flow arc furnace
Hardt, David E.; Lee, Steven G.
1996-01-01
A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.
High-bandwidth continuous-flow arc furnace
Hardt, D.E.; Lee, S.G.
1996-08-06
A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.
Pollock, G.G.
1997-01-28
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.
Method for processing aluminum spent potliner in a graphite electrode ARC furnace
O'Connor, William K.; Turner, Paul C.; Addison, Gerald W.
2002-12-24
A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.
Radiative gas dynamics of the Fire-II superorbital space vehicle
NASA Astrophysics Data System (ADS)
Surzhikov, S. T.
2016-03-01
The rates of convective and radiative heating of the Fire-II reentry vehicle are calculated, and the results are compared with experimental flight data. The computational model is based on solving a complete set of equations for (i) the radiative gas dynamics of a physically and chemically nonequilibrium viscous heatconducting gas and (ii) radiative transfer in 2D axisymmetric statement. The spectral optical parameters of high-temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The transfer of selective thermal radiation in terms of atomic lines is calculated using the line-by-line method on a specially generated computational grid that is nonuniform in radiation wavelength.
Using Probability of Exceedance to Compare the Resource Risk of Renewable and Gas-Fired Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark
Of the myriad risks surrounding long-term investments in power plants, resource risk is one of the most difficult to mitigate, and is also perhaps the risk that most-clearly distinguishes renewable generation from natural gas-fired generation. For renewable generators like wind and solar projects, resource risk manifests as a quantity risk—i.e., the risk that the quantity of wind and insolation will be less than expected.i For gas-fired generators (i.e., a combined-cycle gas turbine or “CCGT”), resource risk manifests primarily as a price risk—i.e., the risk that natural gas will cost more than expected. Most often, resource risk—and natural gas price riskmore » in particular—falls disproportionately on utility ratepayers, who are typically not well-equipped to manage this risk. As such, it is incumbent upon utilities, regulators, and policymakers to ensure that resource risk is taken into consideration when making or approving resource decisions, or enacting policies that influence the development of the electricity sector more broadly.« less
Shemwell, B; Levendis, Y A; Simons, G A
2001-01-01
This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl <=> CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and
Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.
1985-01-01
An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.
A 3D mathematical model for the horizontal anode baking furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocaefe, Y.S.; Dernedde, E.; Kocaefe, D.
In the aluminum industry, carbon anodes are baked in large horizontal or vertical ring-type furnaces. The anode quality depends strongly on the baking conditions (heating rate, soaking time and final anode temperature). A three-dimensional mathematical model has been developed for a horizontal anode baking furnace to assess the effects of different parameters on the baking process and to improve the furnace operation and design at Noranda Aluminum Smelter in New Madrid, Missouri. The commercial CFD code CFDS-FLOW3D is used to solve the governing differential equations. The model gives the temperature, velocity and concentration distributions in the flue, and the variationmore » of the temperature distribution with time in the pit. In this paper, a description of the 3D model for the horizontal anode baking furnace will be given. Some of the results from a case study will also be presented. The results show clearly the importance of flue geometry on the gas flow distribution in the flue and the heat transfer to the anodes.« less
Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.
1984-01-06
The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.
ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS
NASA Astrophysics Data System (ADS)
Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.
2009-12-01
Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.
Slag processing system for direct coal-fired gas turbines
Pillsbury, Paul W.
1990-01-01
Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.
NASA Astrophysics Data System (ADS)
Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen
2018-03-01
Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.
Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen
2018-03-01
Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.
Hower, J.C.; Henke, K.; O'Keefe, J.M.K.; Engle, M.A.; Blake, D.R.; Stracher, G.B.
2009-01-01
The Tiptop underground coal-mine fire in the Skyline coalbed of the Middle Pennsylvanian Breathitt Formation was investigated in rural northern Breathitt County, Kentucky, in May 2008 and January 2009, for the purpose of determining the concentrations of carbon dioxide (CO2), carbon monoxide (CO), and mercury (Hg) in the vent and for measuring gas-vent temperatures. At the time of our visits, concentrations of CO2 peaked at 2.0% and > 6.0% (v/v) and CO at 600 ppm and > 700 ppm during field analysis in May 2008 and January 2009, respectively. For comparison, these concentrations exceed the U.S. Occupational Safety & Health Administration (OSHA) eight-hour safe exposure limits (0.5% CO2 and 50 ppm CO), although the site is not currently mined. Mercury, as Hg0, in excess of 500 and 2100 ??g/m3, in May and January, respectively, in the field, also exceeded the OSHA eight-hour exposure limit (50 ??g/m3). Carbonyl sulfide, dimethyl sulfide, carbon disulfide, and a suite of organic compounds were determined at two vents for the first sampling event. All gases are diluted by air as they exit and migrate away from a gas vent, but temperature inversions and other meteorological conditions could lead to unhealthy concentrations in the nearby towns. Variation in gas temperatures, nearly 300 ??C during the January visit to the fire versus < 50 ??C in May, demonstrates the large temporal variability in fire intensity at the Tiptop mine. These preliminary results suggest that emissions from coal fires may be important, but additional data are required that address the reasons for significant variations in the composition, flow, and temperature of vent gases. ?? 2009 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Itahashi, S.; Yan, X.; Song, G.; Yan, J.; Xue, Y.
2017-12-01
Gas-fired boilers will become the main stationary sources of NOx in Beijing. However, the knowledge of gas-fired boilers in Beijing is limited. In the present study, the emission characteristics of NOx, SO2, and CO from gas-fired boilers in Beijing were established using category-specific emission factors (EFs) from field measurements. In order to obtain category-specific EFs, boilers were classified through influence analysis. Factors such as combustion mode, boiler type, and installed capacity were considered critical for establishing EFs because they play significant roles in pollutant formation. The EFs for NOx, CO, and SO2 ranged from 1.42-6.86 g m-3, 0.05-0.67 g m-3 and 0.03-0.48 g m-3. The emissions of NOx, SO2, and CO for gas-fired boilers in Beijing were 11121 t, 468 t, and 222 t in 2014, respectively. The emissions were spatially allocated into grid cells with a resolution of 1 km × 1 km, and the results indicated that top emitters were in central Beijing. The uncertainties were quantified using a Monte Carlo simulation. The results indicated high uncertainties in CO (-157% to 154%) and SO2 (-127% to 182%) emissions, and relatively low uncertainties (-34% to 34%) in NOx emission. Furthermore, approximately 61.2% and 96.8% of the monitored chamber combustion boilers (CCBs) met the standard limits for NOx and SO2, respectively. Concerning NOx, low-NOx burners and NOx emission control measures are urgently needed for implementing of stricter standards. Adopting terminal control measures is unnecessary for SO2, although its concentration occasionally exceeds standard limits, because reduction of its concentration can be achieved thorough control of the sulfur content of natural gas at a stable low level. Furthermore, the atmospheric combustion boilers (ACBs) should be substituted with CCBs, because ACBs have a higher emission despite lower gross installed capacity. The results of this study will enable in understanding and controlling emissions from gas-fired
NASA Astrophysics Data System (ADS)
Moreno, José M.; Parra, Antonio; Dannenmann, Michael; Ramírez, David A.; Diaz-Pines, Eugenio; Tejedor, Javier; Kitzler, Barbara; Karhu, Kristina; Resco, Victor; Povoas, Luciano
2010-05-01
Predicted changes in the seasonality and amount of rainfall under a changing climate have the potential to dramatically alter ecosystem function and species composition. Moreover, in fire-prone ecosystems, the joint effects of fire and increasing aridity may create irreversible changes to the services these ecosystems provide. To understand the effects of increasing drought and fire in a Mediterranean shrubland, we implemented an automated rainfall manipulation system, with rain-out shelters which automatically fold and unfold when conditions are rainy and dry, respectively. In January 2009, we implemented five different treatments, where annual precipitation was reduced by diminishing summer rainfall from the long-term historical average, up to a 40% reduction, following IPCC scenarios. In September 2009, we uninstalled all the shelters to burn the different plots, and reinstalled the shelters immediately afterwards. In this talk, we will present the preliminary results of an integrated experiment which aims at understanding the concomitant effects of fire and different drought intensities on the species composition and greenhouse gas balance (CO2, N2O and CH4) of a Mediterranean shrubland. We observed that plant growth was more severely affected by drought in the more shallow-rooted, malacophyllous shrub (from 116 to -7.2 mg/g/d in Cistus ladanifer), than in a deeper-rooted heather (from 5.5 to 66.9 mg/g/day in Erica arborea). This growth response was mediated by species-specific differences in hydraulics, leaf morphology and photosynthetic gas exchange of each species. Analyses of changes in species composition after fire are currently undergoing. The precipitation reduction treatments exerted drought stress on CH4 oxidizing microorganisms and thus reduced the CH4 sink strength of the ecosystem during the pre-fire period. Furthermore, the net CH4 uptake at the soil-atmosphere interface was reduced by the fire for a period of at least one month. Pedosphere
FURNACE NO. 1, THE ORIGINAL FURNACE OF THE GLASS FACTORY; ...
FURNACE NO. 1, THE ORIGINAL FURNACE OF THE GLASS FACTORY; TO THE LEFT IS A GLORY HOLE, POSSIBLY DATING FROM THE NINETEENTH CENTURY; THE SQUARE-SHAPED GLORY HOLE TO THE RIGHT PROBABLY DATES FROM THE 1950S. - Westmoreland Glass Company, Seventh & Kier Streets, Grapeville, Westmoreland County, PA
Kuang, Min; Li, Zhengqi; Liu, Chunlong; Zhu, Qunyi
2013-05-07
To achieve significant reductions in NOx emissions and to eliminate strongly asymmetric combustion found in down-fired boilers, a deep-air-staging combustion technology was trialed in a down-fired 600 MWe supercritical utility boiler. By performing industrial-sized measurements taken of gas temperatures and species concentrations in the near wing-wall region, carbon in fly ash and NOx emissions at various settings, effects of overfire air (OFA) and staged-air damper openings on combustion characteristics, and NOx emissions within the furnace were experimentally determined. With increasing the OFA damper opening, both fluctuations in NOx emissions and carbon in fly ash were initially slightly over OFA damper openings of 0-40% but then lengthened dramatically in openings of 40-70% (i.e., NOx emissions reduced sharply accompanied by an apparent increase in carbon in fly ash). Decreasing the staged-air declination angle clearly increased the combustible loss but slightly influenced NOx emissions. In comparison with OFA, the staged-air influence on combustion and NOx emissions was clearly weaker. Only at a high OFA damper opening of 50%, the staged-air effect was relatively clear, i.e., enlarging the staged-air damper opening decreased carbon in fly ash and slightly raised NOx emissions. By sharply opening the OFA damper to deepen the air-staging conditions, although NOx emissions could finally reduce to 503 mg/m(3) at 6% O2 (i.e., an ultralow NOx level for down-fired furnaces), carbon in fly ash jumped sharply to 15.10%. For economical and environment-friendly boiler operations, an optimal damper opening combination (i.e., 60%, 50%, and 50% for secondary air, staged-air, and OFA damper openings, respectively) was recommended for the furnace, at which carbon in fly ash and NOx emissions attained levels of about 10% and 850 mg/m(3) at 6% O2, respectively.
Patrick H. Freeborn; Martin J. Wooster; Wei Min Hao; Cecily A. Nordgren Ryan; Stephen P. Baker; Charles Ichoku
2008-01-01
Forty-four small-scale experimental fires were conducted in a combustion chamber to examine the relationship between biomass consumption, smoke production, convective energy release, and middle infrared (MIR) measurements of fire radiative energy (FRE). Fuel bed weights, trace gas and aerosol particle concentrations, stack flow rate and temperature, and concurrent...
46 CFR 176.810 - Fire protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Inspection of each hand portable fire extinguisher, semiportable fire extinguisher, and fixed gas fire..., and valves, and the inspection and testing of alarms and ventilation shutdowns, for each fixed gas...) Checking of each cylinder containing compressed gas to ensure it has been tested and marked in accordance...
Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator,more » the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.« less
Gas production strategy of underground coal gasification based on multiple gas sources.
Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li
2014-01-01
To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.
Cupola Furnace Computer Process Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seymour Katz
2004-12-31
The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloymore » elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).« less
46 CFR 115.810 - Fire protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... extinguisher, semiportable fire extinguisher, and fixed gas fire extinguishing system to check for excessive... testing of alarms and ventilation shutdowns, for each fixed gas fire extinguishing system and detecting... gas to ensure it has been tested and marked in accordance with § 147.60 in subchapter N of this...
46 CFR 115.810 - Fire protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... extinguisher, semiportable fire extinguisher, and fixed gas fire extinguishing system to check for excessive... testing of alarms and ventilation shutdowns, for each fixed gas fire extinguishing system and detecting... gas to ensure it has been tested and marked in accordance with § 147.60 in subchapter N of this...
NASA Astrophysics Data System (ADS)
Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.
2016-05-01
A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.
Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow
2005-09-30
Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. naturalmore » gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.« less
Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.
Meischen, Sandra J; Van Pelt, Vincent J; Zarate, Eugene A; Stephens, Edward A
2004-01-01
Gaseous elemental and total (elemental + oxidized) mercury (Hg) in the flue gas from a coal-fired boiler was measured by a modified ultraviolet (UV) spectrometer. Challenges to Hg measurement were the spectral interferences from other flue gas components and that UV measures only elemental Hg. To eliminate interference from flue gas components, a cartridge filled with gold-coated sand removed elemental Hg from a flue gas sample. The Hg-free flue gas was the reference gas, eliminating the spectral interferences. To measure total Hg by UV, oxidized Hg underwent a gas-phase, thermal-reduction in a quartz cell heated to 750 degrees C. Simultaneously, hydrogen was added to flash react with the oxygen present forming water vapor and preventing Hg re-oxidation as it exits the cell. Hg concentration results are in parts per billion by volume Hg at the flue gas oxygen concentration. The modified Hg analyzer and the Ontario Hydro method concurrently measured Hg at a field test site. Measurements were made at a 700-MW steam turbine plant with scrubber units and selective catalytic reduction. The flue gas sampled downstream of the selective catalytic reduction contained 2100 ppm SO2 and 75 ppm NOx. Total Hg measured by the Hg analyzer was within 20% of the Ontario Hydro results.
Study on Dezincification and De-Lead of Blast Furnace Dust by Fluidized Reduction Experiment
NASA Astrophysics Data System (ADS)
Yang, Shufeng; Liu, Chengsong; Gao, Xiaojie; Li, Jingshe
In the blast furnace process, the dust entrained in the blast furnace gas enters into the down-comer, flows through the gravity dust separator (to eliminate coarse particles) and then is collected in a bag-house. The powder collected by the baghouse is called bag dust, while both fractions are called blast furnace dust whose main components are C and Fe. The dust also contains small amounts of nonferrous metals such as Zn and Pb, which have some value. Also, due to the small particle size and low density the dust is easily suspended in air and so can endanger human health. Therefore it is necessary to develop a process to both treat the dust to recover the metal values and to dispose of the residue — preferably by recycling to the blast furnace itself via the sinter strand. These objectives will result in good economic, environmental and social benefits [1].
Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang
2010-02-01
Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.
Mathematical modeling of the burden distribution in the blast furnace shaft
NASA Astrophysics Data System (ADS)
Park, Jong-In; Jung, Hun-Je; Jo, Min-Kyu; Oh, Han-Sang; Han, Jeong-Whan
2011-06-01
Process efficiency in the blast furnace is influenced by the gas flow pattern, which is dictated by the burden profile. Therefore, it is important to control the burden distribution so as to achieve reasonable gas flow in the blast furnace operation. Additionally, the charging pattern selection is important as it affects the burden trajectory and stock profile. For analysis of the burden distribution, a new analysis model was developed by use of the spreadsheet program, Microsoft® Office Excel, based on visual basic. This model is composed of the falling burden trajectory and a stock model. The burden trajectory is determined by the burden type, batch weight, rotating velocity of the chute, tilting angle, and friction coefficient. After falling, stock lines are formed by the angle of repose, which is affected by the burden trajectory and the falling velocity. The mathematical formulas for developing this model were modified by a scaled model experiment and DEM simulation.
NASA Astrophysics Data System (ADS)
Cohan, D. S.
2015-12-01
Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.
Gas kinematics, morphology and angular momentum in the FIRE simulations
NASA Astrophysics Data System (ADS)
El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew; Hopkins, Philip F.; Weisz, Daniel R.; Chan, T. K.; Fitts, Alex; Boylan-Kolchin, Michael; Kereš, Dušan; Faucher-Giguère, Claude-André; Garrison-Kimmel, Shea
2018-01-01
We study the z = 0 gas kinematics, morphology and angular momentum content of isolated galaxies in a suite of cosmological zoom-in simulations from the FIRE project spanning Mstar = 106-11 M⊙. Gas becomes increasingly rotationally supported with increasing galaxy mass. In the lowest mass galaxies (Mstar < 108 M⊙), gas fails to form a morphological disc and is primarily dispersion and pressure supported. At intermediate masses (Mstar = 108-10 M⊙), galaxies display a wide range of gas kinematics and morphologies, from thin, rotating discs to irregular spheroids with negligible net rotation. All the high-mass (Mstar = 1010-11 M⊙) galaxies form rotationally supported gas discs. Many of the haloes whose galaxies fail to form discs harbour high angular momentum gas in their circumgalactic medium. The ratio of the specific angular momentum of gas in the central galaxy to that of the dark matter halo increases significantly with galaxy mass, from 〈jgas〉/〈jDM〉 ∼ 0.1 at M_star=10^{6-7} M_{⊙} to 〈jgas〉/〈jDM〉 ∼ 2 at Mstar = 1010-11 M⊙. The reduced rotational support in the lowest mass galaxies owes to (a) stellar feedback and the UV background suppressing the accretion of high angular momentum gas at late times, and (b) stellar feedback driving large non-circular gas motions. We broadly reproduce the observed scaling relations between galaxy mass, gas rotation velocity, size and angular momentum, but may somewhat underpredict the incidence of disky, high angular momentum galaxies at the lowest observed masses (Mstar = (106-2 × 107) M⊙). Stars form preferentially from low angular momentum gas near the galactic centre and are less rotationally supported than gas. The common assumption that stars follow the same rotation curve as gas thus substantially overestimates the simulated galaxies' stellar angular momentum, particularly at low masses.
Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger.
La Madrid, Raul; Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel
2017-12-15
Jaggery is a product obtained after heating and evaporation processes have been applied to sugar cane juice via the addition of thermal energy, followed by the crystallisation process through mechanical agitation. At present, jaggery production uses furnaces and pans that are designed empirically based on trial and error procedures, which results in low ranges of thermal efficiency operation. To rectify these deficiencies, this study proposes the use of fire-tube pans to increase heat transfer from the flue gases to the sugar cane juice. With the aim of increasing the thermal efficiency of a jaggery installation, a computational fluid dynamic (CFD)-based model was used as a numerical tool to design a fire-tube pan that would replace the existing finned flat pan. For this purpose, the original configuration of the jaggery furnace was simulated via a pre-validated CFD model in order to calculate its current thermal performance. Then, the newly-designed fire-tube pan was virtually replaced in the jaggery furnace with the aim of numerically estimating the thermal performance at the same operating conditions. A comparison of both simulations highlighted the growth of the heat transfer rate at around 105% in the heating/evaporation processes when the fire-tube pan replaced the original finned flat pan. This enhancement impacted the jaggery production installation, whereby the thermal efficiency of the installation increased from 31.4% to 42.8%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Record production on Gary No. 13 blast furnace with 450 lb./THM co-injection rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuett, K.J.; White, D.G.
1996-12-31
Coal injection was initiated on No. 13 Blast Furnace in 1993 with 400 lb/THM achieved in 9 months. In early 1994, cold weather and coal preparation upsets led to the use of a second injectant, oil atomized by natural gas, to supplement the coal. Various combinations of coal and oil were investigated as total injection was increased to 450 lb/THM. Beginning in the last half of 1994, a continuing effort has been made to increase furnace production while maintaining this high co-injection level. Typical furnace production is now in excess of 10,000 THM/day compared with about 8500 THM/day in latemore » 1993.« less
NASA Astrophysics Data System (ADS)
1992-05-01
The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).
NASA Technical Reports Server (NTRS)
1992-01-01
The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).
Water augmented indirectly-fired gas turbine systems and method
Bechtel, Thomas F.; Parsons, Jr., Edward J.
1992-01-01
An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.
Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources
Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li
2014-01-01
To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953
Trace gas emissions from a mid-latitude prescribed chaparral fire
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Riggan, Philip J.; Winstead, Edward L.; Shaw, Edwin F., Jr.; Brass, James A.; Ambrosia, Vincent G.
1988-01-01
Smoke-plume gas samples were collected at altitudes from 35-670 m above the ground over the San Dimas Experimental Forest during a 400-acre prescribed chaparral fire. Mean emission ratios relative to CO2 for CO, H2, CH4, and total nonmethane hydrocarbons were lower than previous values obtained for large biomass-burning field experiments. Comparison of samples from vigorously flaming and mixed stages of combustion revealed little differences in CO2 normalized emission ratios for these gases (except for N2O).
Operating room fire prevention: creating an electrosurgical unit fire safety device.
Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J
2014-08-01
To reduce the incidence of surgical fires. Operating room fires represent a potentially life-threatening hazard and are triggered by the electrosurgical unit (ESU) pencil. Carbon dioxide is a fire suppressant and is a routinely used medical gas. We hypothesize that a shroud of protective carbon dioxide covering the tip of the ESU pencil displaces oxygen, thereby preventing fire ignition. Using 3-dimensional modeling techniques, a polymer sleeve was created and attached to an ESU pencil. This sleeve was connected to a carbon dioxide source and directed the gas through multiple precisely angled ports, generating a cone of fire-suppressive carbon dioxide surrounding the active pencil tip. This device was evaluated in a flammability test chamber containing 21%, 50%, and 100% oxygen with sustained ESU activation. The sleeve was tested with and without carbon dioxide (control) until a fuel was ignited or 30 seconds elapsed. Time to ignition was measured by high-speed videography. Fires were ignited with each control trial (15/15 trials). The control group median ± SD ignition time in 21% oxygen was 3.0 ± 2.4 seconds, in 50% oxygen was 0.1 ± 1.8 seconds, and in 100% oxygen was 0.03 ± 0.1 seconds. No fire was observed when the fire safety device was used in all concentrations of oxygen (0/15 trials; P < 0.0001). The exact 95% confidence interval for absolute risk reduction of fire ignition was 76% to 100%. A sleeve creating a cone of protective carbon dioxide gas enshrouding the sparks from an ESU pencil effectively prevents fire in a high-flammability model. Clinical application of this device may reduce the incidence of operating room fires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loong, H.; Liang, C.C.; Tseng, K.T.
1988-01-01
The use of microcomputer control system to gas-fired kiln not only enhanced the porcelain kiln's productivity from 75% to 95% but also saved its operation cost around US$ 200,000 per year. The self-designed microcomputer control system can simultaneous set and control the firing conditions of the period kiln which was built up in our laboratory. Our period kiln having volume of 4 M/sup 3/ was insulated by ceramic fiber which is different from use of refractory in traditional kilns. At the bottom of the kiln is an off-gas tunnel connected with a chimney. Besides the auto start-up and continuous operationmore » of kiln, the main functions of this microcomputer control system are summarized.« less
Research Summary Multipollutant Control Research Facility (MPCRF)
The U.S. Environmental Protection Agency’s (EPA) Multipollutant Control Research Facility (MPCRF) is located at their Research Triangle Park, North Carolina, campus. The MPCRF combustor is a pulverized coal-, natural gas-, and biomass-fired furnace with a maximum firing rate of 4...
40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
.../infectious waste incinerator covered by 40 CFR part 60, subpart Ce or subpart Ec. (c) An electric utility... furnace stoves as described in the EPA document, entitled “National Emission Standards for Hazardous Air... boilers as defined in this subpart. (o) Blast furnace gas fuel-fired boilers and process heaters as...
NASA Astrophysics Data System (ADS)
Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.
2017-02-01
In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion
Analytical methods for determining fire resistance of timber members
Robert H. White
2008-01-01
The fire resistance ratings of wood members and assemblies, as of other materials, have traditionally been obtained by testing the assembly in a furnace in accordance with ASTM International (ASTM) Standard E119, International Organization for Standardization (ISO) Standard 834, and similar standards. These ratings are published in listings, such as Underwriters...
Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.
1991-01-01
A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.
Air quality impacts of projections of natural gas-fired distributed generation
NASA Astrophysics Data System (ADS)
Horne, Jeremy R.; Carreras-Sospedra, Marc; Dabdub, Donald; Lemar, Paul; Nopmongcol, Uarporn; Shah, Tejas; Yarwood, Greg; Young, David; Shaw, Stephanie L.; Knipping, Eladio M.
2017-11-01
This study assesses the potential impacts on emissions and air quality from the increased adoption of natural gas-fired distributed generation of electricity (DG), including displacement of power from central power generation, in the contiguous United States. The study includes four major tasks: (1) modeling of distributed generation market penetration; (2) modeling of central power generation systems; (3) modeling of spatially and temporally resolved emissions; and (4) photochemical grid modeling to evaluate the potential air quality impacts of increased DG penetration, which includes both power-only DG and combined heat and power (CHP) units, for 2030. Low and high DG penetration scenarios estimate the largest penetration of future DG units in three regions - New England, New York, and California. Projections of DG penetration in the contiguous United States estimate 6.3 GW and 24 GW of market adoption in 2030 for the low DG penetration and high DG penetration scenarios, respectively. High DG penetration (all of which is natural gas-fired) serves to offset 8 GW of new natural gas combined cycle (NGCC) units, and 19 GW of solar photovoltaic (PV) installations by 2030. In all scenarios, air quality in the central United States and the northwest remains unaffected as there is little to no DG penetration in those states. California and several states in the northeast are the most impacted by emissions from DG units. Peak increases in maximum daily 8-h average ozone concentrations exceed 5 ppb, which may impede attainment of ambient air quality standards. Overall, air quality impacts from DG vary greatly based on meteorological conditions, proximity to emissions sources, the number and type of DG installations, and the emissions factors used for DG units.
Variable frequency microwave furnace system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bible, D.W.; Lauf, R.J.
1994-06-14
A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal inputmore » to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.« less
Variable frequency microwave furnace system
Bible, D.W.; Lauf, R.J.
1994-06-14
A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.
Electrostatic Levitation Furnace for the ISS
NASA Technical Reports Server (NTRS)
Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko
2012-01-01
JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule
High temperature furnace modeling and performance verifications
NASA Technical Reports Server (NTRS)
Smith, James E., Jr.
1992-01-01
Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.
Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Zhu, Dongming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.
2004-03-01
Ceramic thermal barrier coatings (TBCs) will play an increasingly important role in advanced gas turbine engines due to their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency, and improved reliability goals. Advanced multicomponent zirconia (ZrO2)-based TBCs are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high-temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed ZrO2-based defect cluster TBCs was investigated at 1163°C using 45 min hot-time cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with x-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.
46 CFR 164.009-11 - Furnace apparatus.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield, furnace...
46 CFR 164.009-11 - Furnace apparatus.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield, furnace...
46 CFR 122.612 - Fire protection equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...
46 CFR 122.612 - Fire protection equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...
46 CFR 122.612 - Fire protection equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...
46 CFR 122.612 - Fire protection equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...
46 CFR 122.612 - Fire protection equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...
HIGH TEMPERATURE MICROSCOPE AND FURNACE
Olson, D.M.
1961-01-31
A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.
Lin, Cherng-Yuan; Chen, Wei-Cheng
2004-01-01
A marine furnace made of stainless steel. combined with an automatic small-size oil-fired burner, was used to experimentally investigate the influences of calcium oxide content in fuel oil on the combustion and emission characteristics under varying temperatures and humidity of the inlet air. Marine fuel oil generally contains various extents of metallic oxides such as CaO, Fe2O3, V2O5, etc which might affect its burning properties. In this study, an air-conditioner was used to adjust the humidity and temperatures of the inlet air to preset values prior to entering the burner. The adjusted inlet air atomized the marine diesel oil A containing a calcium oxide compound, to form a heterogeneous reactant mixture. The reactant mixture was thereafter ignited by a high-voltage electrode in the burner and burned within the marine furnace. The probes of a gas analyzer, H2S analyzer and a K-type thermocouple were inserted into the radial positions of the furnace through the eight rectangular slots which were cut in the upper side of the furnace. The experimental results showed that an increase of either humidity or temperature of the inlet air caused the promotion of the reaction rate of the fuel. The existence of calcium oxide compound in the diesel fuel also facilitated the oxidation reaction in the combustion chamber. The addition of CaO in the diesel fuel under the conditions of higher temperature or higher relative humidity of the inlet air produced the following: higher concentrations of CO2, SO2, and H2S emissions, an increased burning efficiency, a lowered O2 level, production of excess air and NOx emissions as well as a lower thermal loss and a lower burning gas temperature, as compared with the conditions of a lower temperature or a lower humidity of the inlet air. In addition, the burning of diesel fuel with added CaO compound caused a large variation in the burning efficiency, thermal loss, plus CO2, O2, and excess air emissions between the conditions of higher
Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barthelemy, N.M.; Lynn, S.
1991-07-01
This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently tomore » the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.« less
Variable frequency microwave furnace system
Bible, Don W.; Lauf, Robert J.
1994-01-01
A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
Method and apparatus for off-gas composition sensing
Ottesen, David Keith; Allendorf, Sarah Williams; Hubbard, Gary Lee; Rosenberg, David Ezechiel
1999-01-01
An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.
NASA Astrophysics Data System (ADS)
Li, Wei; Fu, Guiqin; Chu, Mansheng; Zhu, Miaoyong
2018-01-01
The influence of V2O5 content on the gas-based direct reduction of Hongge vanadium titanomagnetite pellets (HVTMP) was investigated with simulated shaft furnace gases, and the content levels were selected as 0 wt.%, 2 wt.%, 4 wt.%, and 6 wt.%, respectively. The results indicated that, with the increase of V2O5 content, the reduction was accelerated at an early stage due to the increase of the original porosity of the HVTMP. However, as the reduction proceeded, a slowing down in the reduction rate was observed, which was attributed to the formation of hardly reducible Fe2VO4. Major phases of reduced HVTMP were Fe2VO4, FeTiO3, and metallic iron. The morphology showed that the size of metallic iron particles of reduced HVTMP decreased with the increase of V2O5 content, V-bearing oxides embedded into the Ti-rich phases, and further reduction was restricted. This study not only established a relationship between the V2O5 content of HVTMP and its reduction behavior but could also contribute greatly to the effective utilization of Hongge vanadium titanomagnetite in shaft furnace.
PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER
The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...
33 CFR 127.601 - Fire equipment: General.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...
33 CFR 127.601 - Fire equipment: General.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...
Experimental research on the infrared gas fire detection system
NASA Astrophysics Data System (ADS)
Jiang, Yalong; Liu, Yangyang
2018-02-01
Open fires and smoldering fires were differentiated using five experiments: wood pyrolysis, polyurethane smoldering, wood fire, polyurethane fire and cotton rope smoldering. At the same time, the distribution of CO2 and CO concentration in combustion products at different heights was studied. Real fire and environmental interference were distinguished using burning cigarettes and sandalwood. The results showed that open fires and smoldering fires produced significantly different ratios of CO2 and CO concentrations. By judging the order of magnitudes of the ratio CO2 and CO concentrations in the combustion products, open fire and smoldering fire could be effectively distinguished. At the same time, the comparison experiment showed that the rate of increase of the concentration of CO in the smoldering fire was higher than that under non-fire conditions. With the criterion of the rate of increase of CO concentration, smoldering fire and non-fire could be distinguished.
NASA Astrophysics Data System (ADS)
Nachaisin, Mali; Teeta, Suminya; Deejing, Konlayut; Pharanat, Wanida
2017-09-01
Instant food is a product produced for convenience for consumer. Qualities are an important attribute of food materials reflecting consumer acceptance. The most problem of instant rice is casehardening during drying process resulted in the longer rehydration time. The objective of this research was to study the qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying. Additionally, the mathematical models for gas-fired infrared assisted thin-layer drying of shredded Thai-style rice for traditional was investigated. The thin-layer drying of shredded Thai-style rice was carried out under gas-fired infrared intensities of 1000W/m2, air temperatures of 70°C and air velocities of 1 m/s. The drying occurred in the falling rate of drying period. The Page model was found to satisfactorily describe the drying behavior of shredded Thai-style rice, providing the highest R2 (0.997) and the lowest MBE and RMSE (0.01 and 0.18) respectively. A 9 point hedonic test showed in softness and color, but odor and overall acceptance were very similar.
Co-firing switchgrass in a 50 MW pulverized coal boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragland, K.W.; Aerts, D.J.; Weiss, C.
1996-12-31
Switchgrass is being co-fired with pulverized coal in a 50 MW wall-fired, radiant boiler at MG&E`s Blount Street generating station. Shredded switchgrass is fed to a hammermill onto a live bottom storage bunker. Twin screw augers move the switchgrass onto a belt conveyor which leads to a rotary air lock valve and through a pressurized pipe to the boiler where it is injected into the furnace at two points between first and second level coal burners. The main objective of the project is to evaluate the boiler performance, slagging behavior, and emissions of the co-fired switchgrass at replacement of ratesmore » of up to 20% by mass (13% by heat input). Initial co-firing tests to examine fuel handling and feeding, combustion behavior, boiler response and emissions are favorable. In November a 100 hour co-fire test is planned.« less
Fallows, Eric A; Cleary, Thomas G; Miller, J Houston
2009-02-01
A portable cavity ringdown spectroscopy (CRDS) apparatus was used to detect effluents from small test fires in the Fire Emulator/Detector Evaluator (FE/DE) and a small room in the Building Fire and Research Laboratory at the National Institute of Standards and Technology (NIST). The output from two lasers is combined to detect four combustion gases, CO, CO(2), HCN, and C(2)H(2), near simultaneously using CRDS. The goal of this work was to demonstrate the feasibility of using a CRDS sensor as a fire detector. Fire effluents were extracted from several test facilities and measurements of CO, CO(2), HCN, and C(2)H(2) were obtained every 25-30 s. In the FE/DE test, peak concentrations of the gases from smoldering paper were 420 parts in 10(6) (ppm) CO, 1600 ppm CO(2), 530 parts in 10(9) (ppb) HCN, and 440 ppb C(2)H(2). Peak gas concentrations from the small room were 270 ppm CO, 2100 ppm CO(2), and 310 ppb C(2)H(2).
46 CFR 185.612 - Fire protection equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... instructions for the operation of a fixed gas fire extinguishing system must be located in a conspicuous place... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... extinguishing system and the fire main, must be plainly, conspicuously, and permanently marked indicating the...
46 CFR 185.612 - Fire protection equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... instructions for the operation of a fixed gas fire extinguishing system must be located in a conspicuous place... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... extinguishing system and the fire main, must be plainly, conspicuously, and permanently marked indicating the...
46 CFR 185.612 - Fire protection equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... instructions for the operation of a fixed gas fire extinguishing system must be located in a conspicuous place... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... extinguishing system and the fire main, must be plainly, conspicuously, and permanently marked indicating the...
46 CFR 185.612 - Fire protection equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... instructions for the operation of a fixed gas fire extinguishing system must be located in a conspicuous place... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... extinguishing system and the fire main, must be plainly, conspicuously, and permanently marked indicating the...
List of EPA Certified Forced-Air Furnaces
The EPA-Certified Forced-Air Furnace list contains EPA-certified forced-air furnaces that meet the 2015 NSPS for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces.
NASA Astrophysics Data System (ADS)
Wu, Yu-liang; Jiang, Ze-yi; Zhang, Xin-xin; Wang, Peng; She, Xue-feng
2013-07-01
A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300°C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.
Karnaukh, N G; Petrov, G A; Gapon, V A; Poslednichenko, I P; Shmidt, S E
1992-01-01
Inspection of the environment in manganese-alloyed steel production showed inadequate hygienic conditions of the technological processes employed. Air was more polluted by manganese oxides during the oxygen-converter process though their highest concentrations, 38 times exceeding the MAS, appeared during the casting of steel. An electric furnace coated by dust-noise-proof material and gas cleaning is preferable from a hygienic point of view. The influence of unfavourable microclimate, intensive infrared irradiation and loud noise on workers necessitates automation and mechanization of the process in order to improve the working conditions.
A multi-zone muffle furnace design
NASA Technical Reports Server (NTRS)
Rowe, Neil D.; Kisel, Martin
1993-01-01
A Multi-Zone Muffle-Tube Furnace was designed, built, and tested for the purpose of providing an in-house experience base with tubular furnaces for materials processing in microgravity. As such, it must not only provide the desired temperatures and controlled thermal gradients at several discrete zones along its length but must also be capable of sustaining the rigors of a Space Shuttle launch. The furnace is insulated to minimize radial and axial heat losses. It is contained in a water-cooled enclosure for purposes of dissipating un-wanted residual heat, keeping the outer surfaces of the furnace at a 'touch-safe' temperature, and providing a rugged housing. This report describes the salient features of the furnace, testing procedures and results, and concluding remarks evaluating the overall design.
Low-Cost Gas Heat Pump for Building Space Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrabrant, Michael; Keinath, Christopher
2016-10-11
Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiencymore » encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2
Borkowski, Casimer J.
1976-08-03
A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.
Improved Casting Furnace Conceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielding, Randall Sidney; Tolman, David Donald
In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.
Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.
2004-01-01
Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.
General purpose rocket furnace
NASA Technical Reports Server (NTRS)
Aldrich, B. R.; Whitt, W. D. (Inventor)
1979-01-01
A multipurpose furnace for space vehicles used for material processing experiments in an outer space environment is described. The furnace contains three separate cavities designed to process samples of the widest possible range of materials and thermal requirements. Each cavity contains three heating elements capable of independent function under the direction of an automatic and programmable control system. A heat removable mechanism is also provided for each cavity which operates in conjunction with the control system for establishing an isothermally heated cavity or a wide range of thermal gradients and cool down rates. A monitoring system compatible with the rocket telemetry provides furnace performance and sample growth rate data throughout the processing cycle.
NASA Technical Reports Server (NTRS)
Williams, R. J.
1972-01-01
The details of the construction and operation of a gas mixing furnace are presented. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a standard vertical-quench, gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples. The system also contains the highinput impedance electronics necessary for measurements and a simplified version of standard gas mixing apparatus. The calibration and maintenance of the system are discussed.
Fire Detection Organizing Questions
NASA Technical Reports Server (NTRS)
2004-01-01
Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.
Challenges in Melt Furnace Tests
NASA Astrophysics Data System (ADS)
Belt, Cynthia
2014-09-01
Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.
Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna.
Cernusak, Lucas A; Hutley, Lindsay B; Beringer, Jason; Tapper, Nigel J
2006-04-01
We measured stem CO2 efflux and leaf gas exchange in a tropical savanna ecosystem in northern Australia, and assessed the impact of fire on these processes. Gas exchange of mature leaves that flushed after a fire showed only slight differences from that of mature leaves on unburned trees. Expanding leaves typically showed net losses of CO2 to the atmosphere in both burned and unburned trees, even under saturating irradiance. Fire caused stem CO2 efflux to decline in overstory trees, when measured 8 weeks post-fire. This decline was thought to have resulted from reduced availability of C substrate for respiration, due to reduced canopy photosynthesis caused by leaf scorching, and to priority allocation of fixed C towards reconstruction of a new canopy. At the ecosystem scale, we estimated the annual above-ground woody-tissue CO2 efflux to be 275 g C m(-2) ground area year(-1) in a non-fire year, or approximately 13% of the annual gross primary production. We contrasted the canopy physiology of two co-dominant overstory tree species, one of which has a smooth bark on its branches capable of photosynthetic re-fixation (Eucalyptus miniata), and the other of which has a thick, rough bark incapable of re-fixation (Eucalyptus tetrodonta). Eucalyptus miniata supported a larger branch sapwood cross-sectional area in the crown per unit subtending leaf area, and had higher leaf stomatal conductance and photosynthesis than E. tetrodonta. Re-fixation by photosynthetic bark reduces the C cost of delivering water to evaporative sites in leaves, because it reduces the net C cost of constructing and maintaining sapwood. We suggest that re-fixation allowed leaves of E. miniata to photosynthesize at higher rates than those of E. tetrodonta, while the two invested similar amounts of C in the maintenance of branch sapwood.
Toxic-Waste Disposal by Drain-in-Furnace Technique
NASA Technical Reports Server (NTRS)
Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.
1986-01-01
Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls
NASA Astrophysics Data System (ADS)
Azieyanti, N. A.; Hakim, Alif; Hasini, Hasril
2017-10-01
A composite mixture of gypsum and natural fibers has been considered in this study to enhance the fire resistance rating of a fire door. Previously the materials used to make a fire door are gypsum and fiber wool where it acts as a protective coating. Normally this fire door must be compact and able to close on its own. Natural fibers have the ability to replace glass fiber cotton because of its features that are available in fiber glass wool. When using fiberglass, it can cause health problem once it is swallowed and inhaled, and may remain in the lungs indefinitely. It also can contribute to lungs cancer. Kapok fiber has been used in this experiment as natural fibers. The objective of the experiment is to analyze the fire resistant rating of the composite mixture of gypsum with kapok fiber. The scopes of the experiment consist of a preparation of composite mixture samples of gypsum with kapok fiber with different composition and thickness, and the fabrication of a fire resistant testing furnace. A testing of samples which were conducted in accordance with the standard MS 1073: PART 2:1996.
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2013 CFR
2013-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2014 CFR
2014-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2012 CFR
2012-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
NASA Astrophysics Data System (ADS)
Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song
2017-10-01
Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.
EXTINGUISHMENT OF ALKALI METAL FIRES
Contents: Effect of inert gas nket and ow O2 partial pressures on alkali metal fires Extinguishment of small scale fires Extinguishment of alkali... metal fires using inorganic salt foam Alkali metal jet stream ignition at various pressure conditions
Zhu, Baohua; Sun, Faqiang; Yang, Miao; Lu, Lin; Yang, Guanpin; Pan, Kehou
2014-12-01
The potential use of microalgal biomass as a biofuel source has raised broad interest. Highly effective and economically feasible biomass generating techniques are essential to realize such potential. Flue gas from coal-fired power plants may serve as an inexpensive carbon source for microalgal culture, and it may also facilitate improvement of the environment once the gas is fixed in biomass. In this study, three strains of the genus Nannochloropsis (4-38, KA2 and 75B1) survived this type of culture and bloomed using flue gas from coal-fired power plants in 8000-L open raceway ponds. Lower temperatures and solar irradiation reduced the biomass yield and lipid productivities of these strains. Strain 4-38 performed better than the other two as it contained higher amounts of triacylglycerols and fatty acids, which are used for biodiesel production. Further optimization of the application of flue gas to microalgal culture should be undertaken. Copyright © 2014 Elsevier Ltd. All rights reserved.
Refractory of Furnaces to Reduce Environmental Impact
NASA Astrophysics Data System (ADS)
Hanzawa, Shigeru
2011-10-01
The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.
Design and Construction of a Small Vacuum Furnace
NASA Astrophysics Data System (ADS)
Peawbang, P.; Thedsakhulwong, A.
2017-09-01
The purpose of this research is designed and constructed of a small vacuum furnace. A cylindrical graphite was chosen as the material of the furnace, the cylinder aluminium and copper sheets were employed to prevent the heat radiation that transfers from the furnace to the chamber wall. A rotary pump used, the pressure of graphite furnace can be pumped up to 30 mTorr and heated up to 700 °C driving by wire and the temperature of the chamber wall is relatively remained too low. In addition, heat loss obtained from the graphite furnace by conduction, convection, and radiation were analyzed. The dominating heat loss was found to be caused by the blackbody radiation, which can thus be used to estimate the relationship between graphite furnace temperature and the drive power needed. The cylindrical graphite furnace has an inner diameter of 44 mm, the outer diameter of 60 mm and 45 mm in height, the 355.5 W of power is needed to drive the furnace to 700 °C.
Molten metal holder furnace and casting system incorporating the molten metal holder furnace
Kinosz, Michael J.; Meyer, Thomas N.
2003-02-11
A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Brett C.; Apte, Michael G.; Black, Douglas R.
2009-12-01
The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine)more » particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.« less
NASA Astrophysics Data System (ADS)
Cook, G. D.; Liedloff, A. C.; Richards, A. E.; Meyer, M.
2016-12-01
Australia is the only OECD country with a significant area of tropical savannas within it borders. Approximately 220 000 km2 of these savannas burn every year releasing 2 to 4 % of Australia's accountable greenhouse gas emissions. Reduction in uncertainty in the quantification of these emissions of methane and nitrous has been fundamental to improving both the national GHG inventory and developing approaches to better manage land to reduce these emissions. Projects to reduce pyrogenic emissions have been adopted across 30% of Australia's high rainfall savannas. Recent work has focussed on quantifying the additional benefit of increased carbon stocks in fine fuel and coarse woody debris (CWD) resulting from improvements in fire management. An integrated set of equations have been developed to enable seemless quantification of emissions and sequestration in these frequently burnt savannas. These show that increases in carbon stored in fine fuel and CWD comprises about 3 times the emissions abatement from improvements in fire management that have been achieved in a project area of 28 000 km2. Future work is focussing on improving the understanding of spatial and temporal variation in fire behaviour across Australia's savanna biome, improvements in quantification of carbon dynamics of CWD and improved quantification of the effects of fire on carbon dynamics in soils of the savannas.
Solar Convective Furnace for Metals Processing
NASA Astrophysics Data System (ADS)
Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv
2015-11-01
Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.
Talking Fire Alarms Calm Kids.
ERIC Educational Resources Information Center
Executive Educator, 1984
1984-01-01
The new microprocessor-based fire alarm systems can help to control smoke movement throughout school buildings by opening vents and doors, identify the burning section, activate voice alarms, provide firefighters with telephone systems during the fire, and release fire-preventing gas. (KS)
NASA Astrophysics Data System (ADS)
Lavrov, V. V.; Spirin, N. A.
2016-09-01
Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.
Crystal growth and furnace analysis
NASA Technical Reports Server (NTRS)
Dakhoul, Youssef M.
1986-01-01
A thermal analysis of Hg/Cd/Te solidification in a Bridgman cell is made using Continuum's VAST code. The energy equation is solved in an axisymmetric, quasi-steady domain for both the molten and solid alloy regions. Alloy composition is calculated by a simplified one-dimensional model to estimate its effect on melt thermal conductivity and, consequently, on the temperature field within the cell. Solidification is assumed to occur at a fixed temperature of 979 K. Simplified boundary conditions are included to model both the radiant and conductive heat exchange between the furnace walls and the alloy. Calculations are performed to show how the steady-state isotherms are affected by: the hot and cold furnace temperatures, boundary condition parameters, and the growth rate which affects the calculated alloy's composition. The Advanced Automatic Directional Solidification Furnace (AADSF), developed by NASA, is also thermally analyzed using the CINDA code. The objective is to determine the performance and the overall power requirements for different furnace designs.
Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process
NASA Astrophysics Data System (ADS)
Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin
2016-05-01
Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.
Characterization of Sintering Dust, Blast Furnace Dust and Carbon Steel Electric Arc Furnace Dust
NASA Astrophysics Data System (ADS)
Chang, Feng; Wu, Shengli; Zhang, Fengjie; Lu, Hua; Du, Kaiping
In order to make a complete understanding of steel plant metallurgical dusts and to realize the goal of zero-waste, a study of their properties was undertaken. For these purposes, samples of two sintering dusts (SD), two blast furnace dusts (BFD), and one electric arc furnace dust (EAFD) taken from the regular production process were subjected to a series of tests. The tests were carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), and Fourier transform infrared spectroscopy (FTIR). The dominant elements having an advantage of reuse are Fe, K, Cl, Zn, C. The dominant mineralogical phases identified in sintering dust are KCl, Fe2O3, CaCO3, CaMg(CO3)2, NaCl, SiO2. Mineralogical phases exist in blast furnace dust are Fe2O3, Fe3O4, with small amount of KCl and kaolinite coexist. While in electric arc furnace dust, Fe3O4, ZnFe2O4, CaCO3, CaO, Ca(OH)2 are detected.
Sealed rotary hearth furnace with central bearing support
Docherty, James P.; Johnson, Beverly E.; Beri, Joseph
1989-01-01
The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.
Diagnostics Adapted for Heat-Treating Furnace Environment
NASA Technical Reports Server (NTRS)
2005-01-01
Diagnostics developed for the in situ monitoring of rocket combustion environments were adapted for use in heat-treating furnaces. Simultaneous, in situ monitoring of the carbon monoxide, carbon dioxide, methane, water, and hydrogen concentrations in the endothermic gas of a heat-treating furnace were demonstrated under a Space Act Agreement between the NASA Lewis Research Center, the Heat Treating Network, and Akron Steel Treating Company. This endothermic gas, or "endogas," is produced in a catalytic process, where natural gas is "cracked" in the presence of air. Variations in the composition of the natural gas supplied lead to variations in the composition of the endothermic gas. These variations could lead to an unacceptable quality of steel products that are hardened through the carborization process that uses this gas. Conventional methods of monitoring the endogas include measuring the dew point of the gas and the oxygen concentration. From these data, the carbon monoxide content of the gas can be calculated. This carbon monoxide concentration creates the carbon potential needed for carburization. Several weak links are present in this approach. The oxygen monitor deteriorates over time, and the measurement might be inaccurate by 50 percent. Also, the chemistry equations, which are based on several assumptions, such as secondary species concentrations, provide only an approximate estimate of the carbon monoxide concentration. To address these weaknesses, we investigated a new method based on ordinary Raman spectroscopy, in which the carbon monoxide concentration is measured directly and in situ. This method measures the laser light scattered from the molecules. Each species interacts with the light and scatters the light at a different frequency. Spectral monitoring of the scattered light intensity at each molecular frequency of interest provides the species concentrations. One advantage over the conventional method is that several species can be monitored
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeidi, Mohammadreza, E-mail: Saeidi.mr@gmail.com, E-mail: m.saeidi@shahed.ac.ir
2016-06-15
In this paper, a novel physical method is presented to reduce the temperature of the furnace and prevent loss of thermal energy in ultra long carbon nanotube (CNT) growth process by catalytic chemical vapor deposition. This method is based on the plasmonic excitation of electron Fermi gas of catalytic nanocluster sitting at tip end of CNT by ultraviolet (UV) irradiation. Physical concepts of the method are explained in detail. The results of applying the presented method consequences to an appropriate tip-growth mechanism of the ultra long CNTs show that, in the presence of plasmonic excitation, the growth rate of themore » CNT is enhanced. Demonstration of temperature reduction and simultaneous increase in CNT length by UV irradiation with the proper frequency are the most important and practical result of the paper. All results are interpreted and discussed.« less
33 CFR 145.10 - Locations and number of fire extinguishers required.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vicinity of exits, either inside or outside of spaces. machinery spaces Gas-fired boilers B-II (CO2 or dry chemical) 2 required. Gas-fired boilers B-V 1 required. 1 Oil-fired boilers B-II 2 required. Oil-fired boilers B-V 2 required. 1 Internal combustion or gas turbine engines B-II 1 for each engine. 2 Electric...
33 CFR 145.10 - Locations and number of fire extinguishers required.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vicinity of exits, either inside or outside of spaces. machinery spaces Gas-fired boilers B-II (CO2 or dry chemical) 2 required. Gas-fired boilers B-V 1 required. 1 Oil-fired boilers B-II 2 required. Oil-fired boilers B-V 2 required. 1 Internal combustion or gas turbine engines B-II 1 for each engine. 2 Electric...
33 CFR 145.10 - Locations and number of fire extinguishers required.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vicinity of exits, either inside or outside of spaces. machinery spaces Gas-fired boilers B-II (CO2 or dry chemical) 2 required. Gas-fired boilers B-V 1 required. 1 Oil-fired boilers B-II 2 required. Oil-fired boilers B-V 2 required. 1 Internal combustion or gas turbine engines B-II 1 for each engine. 2 Electric...
33 CFR 145.10 - Locations and number of fire extinguishers required.
Code of Federal Regulations, 2014 CFR
2014-07-01
... vicinity of exits, either inside or outside of spaces. machinery spaces Gas-fired boilers B-II (CO2 or dry chemical) 2 required. Gas-fired boilers B-V 1 required. 1 Oil-fired boilers B-II 2 required. Oil-fired boilers B-V 2 required. 1 Internal combustion or gas turbine engines B-II 1 for each engine. 2 Electric...
33 CFR 145.10 - Locations and number of fire extinguishers required.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vicinity of exits, either inside or outside of spaces. machinery spaces Gas-fired boilers B-II (CO2 or dry chemical) 2 required. Gas-fired boilers B-V 1 required. 1 Oil-fired boilers B-II 2 required. Oil-fired boilers B-V 2 required. 1 Internal combustion or gas turbine engines B-II 1 for each engine. 2 Electric...
Crystal growth furnace with trap doors
Sachs, Emanual M.; Mackintosh, Brian H.
1982-06-15
An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.
Crystal growth furnace with trap doors
NASA Technical Reports Server (NTRS)
Sachs, Emanual M. (Inventor); Mackintosh, Brian H. (Inventor)
1982-01-01
An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.
Non-slag co-gasification of biomass and coal in entrained-bed furnace
NASA Astrophysics Data System (ADS)
Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke
2018-02-01
Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a
New PSA high concentration solar furnace SF40
NASA Astrophysics Data System (ADS)
Rodriguez, Jose; Cañadas, Inmaculada; Zarza, Eduardo
2016-05-01
A new solar furnace has been designed and built at Plataforma Solar de Almería. In this work, its main components such as heliostat, concentrator, attenuator and test table, and the method used to align them are described. Other equipment like the auxiliary systems necessary for the solar operation, vacuum chamber and gas system are outlined too. Finally, the thermal characteristics of the focus were measured during a test campaign, where different planes along the optical axis were scanned with a radiometer, and the peak flux was obtained and is presented in the last section of this report.
Emissions from an automobile fire.
Lönnermark, Anders; Blomqvist, Per
2006-02-01
The emissions from automobile fires have been investigated. The main gas phase components were analysed in small-scale tests with representative material from an automobile. A more detailed investigation of full-scale simulated automobile fires was also conducted, including the characterisation of gas phase components, particulates and run-off water from extinguishing activities. Three separate full scale fire tests have been characterised: a fire ignited and developed in the engine compartment; a fire ignited inside the coupé, that was extinguished in the early stages; and a similar fire ignited inside the coupé that was allowed to spread until the entire vehicle was involved in the fire. The quantitative analysis of the smoke gases from the full-scale fires showed that emissions with a potentially negative impact on the environment, or chronic toxic effect on humans, were produced in significant quantities. These emissions included HCl, SO2, VOCs (e.g. benzene), PAHs, and PCDDs/PCDFs. Analysis of run-off water indicated that it was severely contaminated, containing elevated levels of both organic compounds and metals. Comparison with data from other vehicle fires found in the literature shows that contamination by lead, copper, zinc, and antimony appears to be significant in water run-off from these types of fires.
Programmable multi-zone furnace for microgravity research
NASA Technical Reports Server (NTRS)
Rosenthal, Bruce N.; Krolikowski, Cathryn R.
1991-01-01
In order to provide new furnace technology to accommodate microgravity research studies and commercial applications in material processes, research has been initiated on the development of the Programmable-Multi-zone Furnace (PMZF). The PMZF is described as a multi-user materials processing furnace facility that is composed of thirty or more heater elements in series on a muffle tube or in a stacked ring-type configuration and independently controlled by a computer. One of the aims of the PMZF project is to allow furnace thermal gradient profiles to be reconfigured without physical modification of the hardware by creating the capability of reconfiguring thermal profiles in response to investigators' requests. The future location of the PMZF facility is discussed; the preliminary science survey results and preliminary conceptual designs for the PMZF are presented; and a review of multi-zone furnace technology is given.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
.... Electronic files should avoid the use of special characters, any form of encryption, and be free of any... Production 327310 Portland cement manufacturing plants. CO2 Enhanced Oil and Gas Recovery 211 Oil and gas... steel mills, steel companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead...
An update on blast furnace granular coal injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, D.G.; Strayer, T.J.; Bouman, R.W.
1997-12-31
A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke andmore » results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.« less
Grid-independent residential power systems
NASA Astrophysics Data System (ADS)
Nelson, Robert E.
1996-02-01
A self-powered, gas-fired, warm air furnace is evaluated as a candidate for the autonomous generation of electrical power. A popular, commercial residential furnace is analyzed for electrical power requirements. Available energy conversion concepts are considered for this application, and the thermophotovoltaic (TPV) option is selected due to reliability and cost. The design and the internal components peculiar to the TPV converter will be covered. Operating results, including NOx emission, will be summarized. This work was sponsored by the Basic Research Group, Gas Research Institute, Chicago, IL.
NASA Technical Reports Server (NTRS)
Ruff, Gary A.
2004-01-01
This report is concerned with the following topics regarding fire suppression:What is the relative effectiveness of candidate suppressants to extinguish a representative fire in reduced gravity, including high-O2 mole fraction, low -pressure environments? What are the relative advantages and disadvantages of physically acting and chemically-acting agents in spacecraft fire suppression? What are the O2 mole fraction and absolute pressure below which a fire cannot exist? What effect does gas-phase radiation play in the overall fire and post-fire environments? Are the candidate suppressants effective to extinguish fires on practical solid fuels? What is required to suppress non-flaming fires (smoldering and deep seated fires) in reduced gravity? How can idealized space experiment results be applied to a practical fire scenario? What is the optimal agent deployment strategy for space fire suppression?
Optical cavity furnace for semiconductor wafer processing
Sopori, Bhushan L.
2014-08-05
An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.
Blast furnace supervision and control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remorino, M.; Lingiardi, O.; Zecchi, M.
1997-12-31
On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas --more » operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.« less
NASA Astrophysics Data System (ADS)
Schade, J. D.; Kuhn, M. A.; Mann, P. J.; Holmes, R. M.; Natali, S.; Ludwig, S.; Wagner, S.
2016-12-01
Northern latitudes are experiencing rapid changes in climate that are profoundly altering permafrost-dominated ecosystems. Increased permafrost thaw and fire frequency and severity are changing the structure and function of these ecosystems in ways likely to alter greenhouse gas (GHG) emission, leading to feedbacks on climate that may accelerate warming. Our objective was to investigate changes in GHG emissions and carbon and nitrogen dynamics in aquatic ecosystems in response to recent fires in the Yukon-Kuskokwim river delta in western Alaska. In summer 2015, more area in the YK Delta burned then in the previous 74 years combined (726 km2 in 2015 vs. 477 km2 during 1940-2014). In June of 2016, we sampled water and dissolved gases from a variety of aquatic ecosystems, including small upland ponds and wetlands and streams lower in the landscape, in recently burned and control sites near the Kuka Creek 2015 burn scar in the Yukon Delta National Wildlife Refuge. We measured a range of physical parameters, including water temperature, conductivity, dissolved oxygen, and pH. We also estimated fluxes of CO2 and CH4 from surface waters using a floating chamber connected to a Los Gatos Ultraportable gas analyzer. Water samples were analyzed for dissolved organic carbon (DOC) and total dissolved nitrogen (TDN). Results show reduced DOC concentrations in small upland ponds in burned sites and evidence for loss of DOC downslope in control sites. In contrast, TDN concentration was higher in streams draining burned sites, suggesting fire mobilized N in soils, which was then transported to downslope ecosystems. Furthermore, fire generally increased pH, particularly in small ponds. Finally, we observed 3-4 fold higher CO2 and CH4 fluxes from aquatic ecosystems in burned sites as compared with control sites. We hypothesize that this is due to increased thaw depth and increased pH, which combine to increase resource availability and release methane-producing microbes from the
Economic considerations in coverting from oil/gas firing to coal
NASA Technical Reports Server (NTRS)
Rau, J. G.
1978-01-01
Economic considerations involved in fuel conversion such as from oil and/or gas firing to coal are discussed including investments costs for new facilities and equipment (including air pollution control equipment), operation and maintenance costs, and purchased fuel costs. An analytical approach to assessing the cost effectiveness of fuel conversion in terms of the annual net cost of conversion, the equivalent annual number of barrels of oil saved, and the integral rate of return of the conversion investment is presented. Illustrative numerical examples are presented for typical utility boilers and industrial boiler facilities. A further consideration addressed deals with the impacts of these costs on the overall financial structure of the firm and the ability of the firm to raise the necessary investment captial.
A high-temperature furnace for applications in microgravity
NASA Technical Reports Server (NTRS)
1991-01-01
Technology in the area of material processing and crystal growth has been greatly furthered by research in microgravity environments. The role of efficient, lightweight furnaces with reliable performance is crucial in these experiments. A need exists for the development of a readily duplicated, high-temperature furnace satisfying stringent weight, volume, and power constraints. A furnace was designed and is referred to as the UAH SHIELD. Stringent physical and operating characteristics for the system were specified, including a maximum weight of 20 kg, a maximum power requirement of 60 W, and a volume of the furnace assembly, excluding the batteries, limited to half a Get-Away-Special canister. The UAH SHIELD furnace uses radiation shield and vacuum technology applied in the form of a series of concentric cylinders enclosed on either end with disks. Thermal testing of a furnace prototype was performed in addition to some thermal and structural analysis. Results indicate the need for spacing of the shields to accommodate the thermal expansion during furnace operation. In addition, a power dissipation of approximately 100 W and system weight of approximately 30 kg was found for the current design.
Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review.
Fonollosa, Jordi; Solórzano, Ana; Marco, Santiago
2018-02-11
Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.
Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review
Fonollosa, Jordi
2018-01-01
Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative. PMID:29439490
NASA Technical Reports Server (NTRS)
Botteri, Benito P.
1987-01-01
During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.
Li, Yanjiao; Zhang, Sen; Yin, Yixin; Xiao, Wendong; Zhang, Jie
2017-08-10
Gas utilization ratio (GUR) is an important indicator used to measure the operating status and energy consumption of blast furnaces (BFs). In this paper, we present a soft-sensor approach, i.e., a novel online sequential extreme learning machine (OS-ELM) named DU-OS-ELM, to establish a data-driven model for GUR prediction. In DU-OS-ELM, firstly, the old collected data are discarded gradually and the newly acquired data are given more attention through a novel dynamic forgetting factor (DFF), depending on the estimation errors to enhance the dynamic tracking ability. Furthermore, we develop an updated selection strategy (USS) to judge whether the model needs to be updated with the newly coming data, so that the proposed approach is more in line with the actual production situation. Then, the convergence analysis of the proposed DU-OS-ELM is presented to ensure the estimation of output weight converge to the true value with the new data arriving. Meanwhile, the proposed DU-OS-ELM is applied to build a soft-sensor model to predict GUR. Experimental results demonstrate that the proposed DU-OS-ELM obtains better generalization performance and higher prediction accuracy compared with a number of existing related approaches using the real production data from a BF and the created GUR prediction model can provide an effective guidance for further optimization operation.
Li, Yanjiao; Yin, Yixin; Xiao, Wendong; Zhang, Jie
2017-01-01
Gas utilization ratio (GUR) is an important indicator used to measure the operating status and energy consumption of blast furnaces (BFs). In this paper, we present a soft-sensor approach, i.e., a novel online sequential extreme learning machine (OS-ELM) named DU-OS-ELM, to establish a data-driven model for GUR prediction. In DU-OS-ELM, firstly, the old collected data are discarded gradually and the newly acquired data are given more attention through a novel dynamic forgetting factor (DFF), depending on the estimation errors to enhance the dynamic tracking ability. Furthermore, we develop an updated selection strategy (USS) to judge whether the model needs to be updated with the newly coming data, so that the proposed approach is more in line with the actual production situation. Then, the convergence analysis of the proposed DU-OS-ELM is presented to ensure the estimation of output weight converge to the true value with the new data arriving. Meanwhile, the proposed DU-OS-ELM is applied to build a soft-sensor model to predict GUR. Experimental results demonstrate that the proposed DU-OS-ELM obtains better generalization performance and higher prediction accuracy compared with a number of existing related approaches using the real production data from a BF and the created GUR prediction model can provide an effective guidance for further optimization operation. PMID:28796187
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, S. B.; Bihari, B.; Biruduganti, M.
Flame chemiluminescence is widely acknowledged to be an indicator of heat release rate in premixed turbulent flames that are representative of gas turbine combustion. Though heat release rate is an important metric for evaluating combustion strategies in reciprocating engine systems, its correlation with flame chemiluminescence is not well studied. To address this gap an experimental study was carried out in a single-cylinder natural gas fired reciprocating engine that could simulate turbocharged conditions with exhaust gas recirculation. Crank angle resolved spectra (266-795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions andmore » by holding the speed at 1800 rpm and Brake Mean effective Pressure (BMEP) at 12 bar. The effect of dilution on CO*{sub 2}chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6-1.0) and by varying the exhaust gas recirculation rate. It was attempted to relate the measured chemiluminescence intensities to thermodynamic metrics of importance to engine research -- in-cylinder bulk gas temperature and heat release rate (HRR) calculated from measured cylinder pressure signals. The peak of the measured CO*{sub 2} chemiluminescence intensities coincided with peak pressures within {+-}2 CAD for all test conditions. For each combustion cycle, the peaks of heat release rate, spectral intensity and temperature occurred in that sequence, well separated temporally. The peak heat release rates preceded the peak chemiluminescent emissions by 3.8-9.5 CAD, whereas the peak temperatures trailed by 5.8-15.6 CAD. Such a temporal separation precludes correlations on a crank-angle resolved basis. However, the peak cycle heat release rates and to a lesser extent the peak cycle temperatures correlated well with the chemiluminescent emission from CO*{sub 2}. Such observations point towards the potential use of flame chemiluminescence to monitor peak bulk
Effect of Feed Forms on the Results of Melting of Fly Ash by a DC Plasma Arc Furnace
NASA Astrophysics Data System (ADS)
Chen, Mingzhou; Meng, Yuedong; Shi, Jiabiao; Ni, Guohua; Jiang, Yiman; Yu, Xinyao; ZHAO, Peng
2009-10-01
Fly ash from a municipal solid waste incinerator (MSWI) without preprocessing (original fly ash, OFA) was melted by a direct current (DC) plasma arc furnace to investigate how the feed forms governed the results. Dioxins in flue gas from stack and bag-filter ash (BFA) were detected. The distribution of heavy metals of Pb, Cd, As, and Cr along the flue gas process system was analyzed. Through a comparison of the results for dioxins and heavy metals in this study and previous work, carrying-over of fly ash particles with the flue gas stream can be deduced. Based on the magnetic induction equation and Navier-Stokes equations, a magnetohydrodynamic (MHD) model for the plasma arc was developed to describe the particle-carrying effect. The results indicate that, a. when melted, the feed forms of MSWI fly ash affect the results significantly; b. it is not preferable to melt MSWI fly ash directly, and efforts should be made to limit the mass transfer of OFA from the plasma furnace.
VIEW OF TRANSFER CAR (BATTERYELECTRIC POWERED) FROM BILLET YARD POSITIONED ...
VIEW OF TRANSFER CAR (BATTERY-ELECTRIC POWERED) FROM BILLET YARD POSITIONED FOR LOADING BILLETS INTO FURNACE; HEATER (BEHIND SCREEN IN CENTER) MOVES THE TRANSFER CAR INTO POSITION. BILLETS FROM THE TRANSFER CAR ARE PLACED ON HAND-OPERATED TURNTABLE. THE FURNACE IS NATURAL-GAS FIRED, WITH BILLETS HEATED AT NOT MORE THAN 2400 DEGREES FAHRENHEIT. - Cambria Iron Company, Gautier Works, 12" Mill, Clinton Street & Little Conemaugh River, Johnstown, Cambria County, PA
Aircraft Engine Sump Fire Mitigation
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1973-01-01
An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.
Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.
Wang, Guoping; Yu, Xiaofei; Bao, Kunshan; Xing, Wei; Gao, Chuanyu; Lin, Qianxin; Lu, Xianguo
2015-01-01
The effect of burning Sphagnum moss and peat on phosphorus forms was studied with controlled combustion in the laboratory. Two fire treatments, a light fire (250 °C) and a severe fire (600 °C), were performed in a muffle furnace with 1-h residence time to simulate the effects of different forest fire conditions. The results showed that fire burning Sphagnum moss and peat soils resulted in losses of organic phosphorus (Po), while inorganic phosphorus (Pi) concentrations increased. Burning significantly changed detailed phosphorus composition and availability, with severe fires destroying over 90% of organic phosphorus and increasing the availability of inorganic P by more than twofold. Our study suggest that, while decomposition processes in ombrotrophic bogs occur very slowly, rapid changes in the form and availability of phosphorus in vegetation and litter may occur as the result of forest fires on peat soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Room fire test for fire growth modeling : a sensitivity study
H. C. Tran; M. L. Janssens
1989-01-01
A room test designed according to the ASTM draft standard was used to investigate the effect of various parameters on the contribution of wall and corner fires to compartment fire growth. Location of the burner (against a wall or in a corner), power program of the gas burner ignition source, and combination of wall linings were varied, An initial series of calibration...
High-Flux Solar Furnace Facility | Concentrating Solar Power | NREL
High-Flux Solar Furnace Facility High-Flux Solar Furnace Facility NREL's High-Flux Solar Furnace (HFSF) is a 10-kW optical furnace for testing high-temperature processes or applications requiring high range of technologies with a diverse set of experimental requirements. The high heating rates create the
NASA Astrophysics Data System (ADS)
Raub, H. D.; Jimenez, J. R.; Gallery, R. E.; Sutter, L., Jr.; Barron-Gafford, G.; Smith, W. K.
2017-12-01
Drylands account for 40% of the land surface and have been identified as increasingly important in driving interannual variability of the land carbon sink. Yet, understanding of dryland seasonal ecosystem productivity dynamics - termed Gross Primary Productivity (GPP) - is limited due to complex interactions between vegetation health, seasonal drought dynamics, a paucity of long-term measurements across these under-studied regions, and unanticipated disturbances from varying fire regimes. For instance, fire disturbance has been found to either greatly reduce post-fire GPP through vegetation mortality or enhance post-fire GPP though increased resource availability (e.g., water, light, nutrients, etc.). Here, we explore post-fire ecosystem recovery by evaluating seasonal GPP dynamics for two Ameriflux eddy covariance flux tower sites within the Santa Rita Experimental Range of southeastern Arizona: 1) the US-SRG savanna site dominated by a mix of grass and woody mesquite vegetation that was burned in May 2017, and 2) the US-SRM savanna site dominated by similar vegetation but unburned for the full measurement record. For each site, we collected leaf-level spectral and gas exchange measurements, as well as leaf-level chemistry and soil chemistry to characterize differences in nutrient availability and microbial activity throughout the 2017 growing season. From spectral data, we derived and evaluated multiple common vegetation metrics, including normalized difference vegetation index (NDVI), photochemical reflectivity index (PRI), near-infrared reflectance (NIRv), and MERIS terrestrial chlorophyll index (MTCI). Early results suggest rates of photosynthesis were enhanced at the burned site, with productivity increasing immediately following the onset of monsoonal precipitation; whereas initial photosynthesis at the unburned site remained relatively low following first monsoonal rains. MTCI values for burned vegetation appear to track higher levels of leaf-level nitrogen
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fires. 127.615 Section 127.615... Facilities Handling Liquefied Natural Gas Firefighting § 127.615 Fires. In the marine transfer area for LNG, the operator shall ensure that there are no fires when there is LNG present. [CGD 78-038, 53 FR 3376...
Method of making a modified ceramic-ceramic composite
Weaver, Billy L.; McLaughlin, Jerry C.; Stinton, David P.
1995-01-01
The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.
Ferrosilicon smelting in a direct current furnace
Dosaj, V.D.; May, J.B.
1992-12-29
The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.
Ferrosilicon smelting in a direct current furnace
Dosaj, Vishu D.; May, James B.
1992-12-29
The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.
Crystal growth furnace safety system validation
NASA Technical Reports Server (NTRS)
Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.
1994-01-01
The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).
Optimization for blast furnace slag dry cooling granulation device
NASA Astrophysics Data System (ADS)
Dazhan, Sheng; Yali, Wang; Ruiyun, Wang; Suping, Cui; Xiaoyu, Ma
2017-03-01
Since the large accumulation amount of blast furnace slag (BFS) with recycling value, it has become a hot topic for recovery utilization. Compared with the existing various BFS granulation process, the dry granulation process can promote the use of blast furnace granulated slag as cement substitute and concrete admixtures. Our research group developed a novel dry cooling granulation experiment device to treat BFS. However, there are still some problems to be solved. The purpose of this research is to improve the cooling and granulation efficiency of the existing dry type cooling equipment. This topic uses the FLUENT simulation software to study the impact of the number of air inlet on the cooling effect of the device. The simulation result is that the device possessing eight air inlets can increase the number of hot and cold gas exchanged, resulting in a better cooling effect. According to the power consumption, LCA analysis was carried out on the cooling granulation process. The results show that the device equipped eight air inlets not only improved the original equipment cooling granulation effect, but also increased resource utilization ratio, realized energy-saving and emission reduction.
Flue gas desulfurization method and apparatus
Madden, Deborah A.; Farthing, George A.
1998-08-18
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.
Flue gas desulfurization method and apparatus
Madden, D.A.; Farthing, G.A.
1998-08-18
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.
Flue gas desulfurization method and apparatus
Madden, Deborah A.; Farthing, George A.
1998-09-29
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.
Flue gas desulfurization method and apparatus
Madden, D.A.; Farthing, G.A.
1998-09-29
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.
Self-calibrated active pyrometer for furnace temperature measurements
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1998-01-01
Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
... WordPerfect, Microsoft Word, PDF, or ASCII file format, and avoid the use of special characters or any... furnaces and boilers is found at 10 CFR 430.23(n) and 10 CFR part 430, subpart B, appendix N, Uniform Test... such as fuel calorific value, weight of condensate, water flow and temperature, voltage, and flue gas...
Reimann, Robert C.; Root, Richard A.
1986-01-01
A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.
Bortolotto, Tiago; da Silva, Jaqueline; Sant'Ana, Alex Célio; Tomazi, Kamila Osowski; Geremias, Reginaldo; Angioletto, Elídio; Pich, Claus Tröger
2017-09-01
Red ceramic industry in southern Brazil commonly uses wood biomass as furnace fuel generating great amounts of gas emissions and ash. To avoid their impact on atmospheric environment, wet scrubbing is currently being applied in several plants. However, the water leachate formed could be potentially toxic and not managed as a common water-based effluent, since the resulting wastewater could carry many toxic compounds derived from wood pyrolysis. There is a lack of studies regarding this kind of effluent obtained specifically and strictly from wooden-based biomass furnaces. Therefore, we conducted an evaluation of toxic and genotoxic potentials of this particular type of wet gas scrubber effluent. Physical-chemical analysis showed high contents of several contaminants, including phenols, sulphates and ammoniacal nitrogen, as well as the total and suspended solids. The effluent cause significant toxicity towards microcrustacean Artemia sp. (LC 50 = 34.4%) and Daphnia magna (Toxicity Factor = 6 on average) and to higher plants (Lactuca sativa L. and Allium cepa L.) with acute and sub-acute effects in several parameters. Besides, using plasmid DNA, significant damage was observed in concentrations 12.5% and higher. In cellular DNA, concentrations starting from 12.5% and 6.25% showed significant increase in Damage Index (DI) and Damage Frequency (DF), respectively. The results altogether suggest that the effluent components, such phenols, produced by wood combustion can be volatilized, water scrubbed, resulting in a toxic and genotoxic effluent which could contaminate the environment. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterization of tea polyphenols as potential environment-friendly fire retardants
NASA Astrophysics Data System (ADS)
Yao, Fengqi; Zhai, Chunjie; Wang, Haihui; Tao, Junjun
2018-02-01
In this work we investigated the oxidation properties of tea polyphenols and their potential as the fire retardants. Two types of tea polyphenols were adopted, which were extracted from red tea and green tea leaves, respectively. Their macroscopic performance during pyrolysis and oxidation at elevated temperatures were examined by using a heating furnace. Mass change, heat evolution and gas products of tea polyphenols during heating in air were also monitored by using a thermo-gravimetric analyzer (TGA) integrated with a differential scanning calorimeter (DSC) in conjunction with online Fourier Transform Infrared Spectroscopy (FTIR) and mass spectroscopy (MS). A tea polyphenol sample first becomes a brown semi-fluid after heating, and gradually turns into highly-porous black chars with significantly expanded volume. By raising the temperature to ∼550 °C at a rate of 10 °C/min, the mass of a sample reduces by nearly 70% to form a large quantity of inert gases that are mainly composed of H2O and CO2. It was found that the aerial oxidation products of tea polyphenols in the solid phase possess good heat insulation property; meanwhile, the substantial release of a lot of water and its evaporation during oxidation of tea polyphenols removes a large amount of heat from a sample located in a heating environment. The heat insulation of tea polyphenols may withstand up to 550 °C. The present work confirms tea polyphenols as potential superior and environment-friendly fire retardants.
Method of operating a centrifugal plasma arc furnace
Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.
1998-01-01
A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.
Method of operating a centrifugal plasma arc furnace
Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.
1998-03-24
A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.
Multiple hearth furnace for reducing iron oxide
Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC
2012-03-13
A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).
Structural ceramics containing electric arc furnace dust.
Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J
2013-11-15
In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern. Copyright © 2013 Elsevier B
Improved graphite furnace atomizer
Siemer, D.D.
1983-05-18
A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.
Device for use in a furnace exhaust stream for thermoelectric generation
Polcyn, Adam D.
2013-06-11
A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.
Application of Carbon Composite Bricks for Blast Furnace Hearth
NASA Astrophysics Data System (ADS)
Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin
Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.
NASA Astrophysics Data System (ADS)
Mylläri, Fanni; Asmi, Eija; Anttila, Tatu; Saukko, Erkka; Vakkari, Ville; Pirjola, Liisa; Hillamo, Risto; Laurila, Tuomas; Häyrinen, Anna; Rautiainen, Jani; Lihavainen, Heikki; O'Connor, Ewan; Niemelä, Ville; Keskinen, Jorma; Dal Maso, Miikka; Rönkkö, Topi
2016-06-01
Atmospheric emissions, including particle number and size distribution, from a 726 MWth coal-fired power plant were studied experimentally from a power plant stack and flue-gas plume dispersing in the atmosphere. Experiments were conducted under two different flue-gas cleaning conditions. The results were utilized in a plume dispersion and dilution model taking into account particle formation precursor (H2SO4 resulted from the oxidation of emitted SO2) and assessment related to nucleation rates. The experiments showed that the primary emissions of particles and SO2 were effectively reduced by flue-gas desulfurization and fabric filters, especially the emissions of particles smaller than 200 nm in diameter. Primary pollutant concentrations reached background levels in 200-300 s. However, the atmospheric measurements indicated that new particles larger than 2.5 nm are formed in the flue-gas plume, even in the very early phases of atmospheric ageing. The effective number emission of nucleated particles were several orders of magnitude higher than the primary particle emission. Modelling studies indicate that regardless of continuing dilution of the flue gas, nucleation precursor (H2SO4 from SO2 oxidation) concentrations remain relatively constant. In addition, results indicate that flue-gas nucleation is more efficient than predicted by atmospheric aerosol modelling. In particular, the observation of the new particle formation with rather low flue-gas SO2 concentrations changes the current understanding of the air quality effects of coal combustion. The results can be used to evaluate optimal ways to achieve better air quality, particularly in polluted areas like India and China.
T.G. Soares Neto; J.A. Carvalho J.A.; C.A.G. Veras; E.C. Alvarado; R. Gielow; E.N. Lincoln; T.J. Christian; R.J. Yokelson; J.C. Santos
2009-01-01
Biomass consumption and C02, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48 percent and the estimated average moisture content...
Fire tests for airplane interior materials
NASA Technical Reports Server (NTRS)
Tustin, E. A.
1980-01-01
Large scale, simulated fire tests of aircraft interior materials were carried out in salvaged airliner fuselage. Two "design" fire sources were selected: Jet A fuel ignited in fuselage midsection and trash bag fire. Comparison with six established laboratory fire tests show that some laboratory tests can rank materials according to heat and smoke production, but existing tests do not characterize toxic gas emissions accurately. Report includes test parameters and test details.
Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, Tim; Wei, Xiaotong; Firat, Bilgen
2012-03-31
This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE).more » Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests
Numerical Investigation of Novel Oxygen Blast Furnace Ironmaking Processes
NASA Astrophysics Data System (ADS)
Li, Zhaoyang; Kuang, Shibo; Yu, Aibing; Gao, Jianjun; Qi, Yuanhong; Yan, Dingliu; Li, Yuntao; Mao, Xiaoming
2018-04-01
Oxygen blast furnace (OBF) ironmaking process has the potential to realize "zero carbon footprint" production, but suffers from the "thermal shortage" problem. This paper presents three novel OBF processes, featured by belly injection of reformed coke oven gas, burden hot-charge operation, and their combination, respectively. These processes were studied by a multifluid process model. The applicability of the model was confirmed by comparing the numerical results against the measured key performance indicators of an experimental OBF operated with or without injection of reformed coke oven gas. Then, these different OBF processes together with a pure OBF were numerically examined in aspects of in-furnace states and global performance, assuming that the burden quality can be maintained during the hot-charge operation. The numerical results show that under the present conditions, belly injection and hot charge, as auxiliary measures, are useful for reducing the fuel rate and increasing the productivity for OBFs but in different manners. Hot charge should be more suitable for OBFs of different sizes because it improves the thermochemical states throughout the dry zone rather than within a narrow region in the case of belly injection. The simultaneous application of belly injection and hot charge leads to the best process performance, at the same time, lowering down hot-charge temperature to achieve the same carbon consumption and hot metal temperature as that achieved when applying the hot charge alone. This feature will be practically beneficial in the application of hot-charge operation. In addition, a systematic study of hot-charge temperature reveals that optimal hot-charge temperatures can be identified according to the utilization efficiency of the sensible heat of hot burden.
6. Photocopied August 1978. LINEUP OF HORRY ROTARY FURNACES ON ...
6. Photocopied August 1978. LINE-UP OF HORRY ROTARY FURNACES ON THE SECOND FLOOR OF THE MICHIGAN LAKE SUPERIOR POWER COMPANY POWER HOUSE. THE HOPPERS WHICH FED THE RAW MATERIALS INTO THE FURNACES ARE SHOWN ABOVE THE FURNACES. AS THE 'SPOOL' OF THE FURNACE ROTATED PAST THE ELECTRODES PLATES WERE ADDED TO HOLD THE FINISHED PRODUCT AND THE DESCENDING RAW MATERIALS IN PLACE. THE DIRECTION OF ROTATION OF THE FURNACES SHOWN IN THIS PHOTO IS CLOCKWISE, (M). - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
High-Purity Composite Briquette for Direct UMG-Si Production in Arc Furnaces
NASA Astrophysics Data System (ADS)
Perruchoud, Raymond; Fischer, Jean-Claude
2013-12-01
In metallurgical grade Si (MG-Si), the coal (B) and charcoal (P) contents are on average above 30 ppm as the carbon reduction materials used in the arc furnace are either rich in B or in P. A decrease of both impurities by a factor of 3 using purer raw materials would allow for the direct production of the upgraded metallurgical grade (UMG).This would significantly improve the efficiency of the resulting photovoltaic (PV) cells made with the refined solar grade silicon (SoG-Si) or massively decrease the costs of Si purification by shortening the number of steps needed for reaching B and P contents below 1 ppm requested for the SoG-Si used for the PV cells. A composite C/SiO2 briquette fulfilling the purity targets for the direct production of UMG-Si in the arc furnace was developed. The composite contains several carbon materials with different levels of reactivities and quartz sand. The raw materials aspects, the paste and briquette preparation, as well as the final carbonization step are discussed. The finished briquettes are free of volatiles and are mechanically and thermally very stable, thus, ensuring stable arc furnace charges with minimum losses of dust and SiO gas. Semi-industrial trials including the downstream purification steps for the production of SoG-Si by a metallurgical low-cost route are contemplated.
20. Detail, Furnace A, shows the drill used to tap ...
20. Detail, Furnace A, shows the drill used to tap the furnace (at center left) and the 'mud gun' used to close it up with a clay plug (at lower right). Metal chute at center (next to drill) was used to clean out furnace prior to its abandonment. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH
Control of carbon balance in a silicon smelting furnace
Dosaj, Vishu D.; Haines, Cathryn M.; May, James B.; Oleson, John D.
1992-12-29
The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.
NASA Technical Reports Server (NTRS)
Brown, Dale H.
1976-01-01
A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.
Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler
NASA Astrophysics Data System (ADS)
Cao, Weixue; Liu, Fengguo; You, Xue-yi
2018-07-01
Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.
Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler
NASA Astrophysics Data System (ADS)
Cao, Weixue; Liu, Fengguo; You, Xue-yi
2018-01-01
Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.
T. G. Soares Neto; J. A. Carvalho; C. A. G. Veras; E. C. Alvarado; R. Gielow; E. N. Lincoln; T. J. Christian; R. J. Yokelson; J. C. Santos
2009-01-01
Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on...
46 CFR 164.009-11 - Furnace apparatus.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and three thermocouples (a furnace thermocouple to measure furnace temperature, a surface thermocouple to measure temperature at the surface of a specimen, and a specimen thermocouple to measure... apparatus may be obtained from the Commandant (CG-521). (b) Temperatures measured by the thermocouples are...
46 CFR 164.009-11 - Furnace apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and three thermocouples (a furnace thermocouple to measure furnace temperature, a surface thermocouple to measure temperature at the surface of a specimen, and a specimen thermocouple to measure... apparatus may be obtained from the Commandant (CG-521). (b) Temperatures measured by the thermocouples are...
46 CFR 164.009-11 - Furnace apparatus.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and three thermocouples (a furnace thermocouple to measure furnace temperature, a surface thermocouple to measure temperature at the surface of a specimen, and a specimen thermocouple to measure... apparatus may be obtained from the Commandant (CG-521). (b) Temperatures measured by the thermocouples are...
Fire toxicology program. JSC methodology
NASA Technical Reports Server (NTRS)
Schneider, H.; Bafus, D.
1978-01-01
Toxicological testing of spacecraft materials was initiated in 1965. Toxicological evaluations of the pyrolysis/combustion products of candidate spacecraft materials were performed using a modified 142 liter Bethlehem Chamber equipped with a Linberg Model 55031 furnace external to the chamber. In all of the assessments, lethality was chosen as the endpoint. A new pyrolysis/combustion chamber was developed for toxicological testing and ranking of both spacecraft and aircraft materials. The pyrolysis/combustion chamber permits the use of both behavior and physiological measurements as indicators of incapacitation. Methods were developed which employ high resolution gas chromatography/mass spectrometry to generate chamber atmospheric profiles which indicate the reproductibility of pyrolysate concentrations. The atmospheric volatile profiles in combination with CO, CO2, and O2 analysis indicates that small chamber equipped with an internal furnace will give reproducible results.
Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.
1985-01-01
A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.
Panayotou, N.F.; Green, D.R.; Price, L.S.
A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies ofmore » assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Flammability of gas mixtures. Part 1: fire potential.
Schröder, Volkmar; Molnarne, Maria
2005-05-20
International and European dangerous substances and dangerous goods regulations refer to the standard ISO 10156 (1996). This standard includes a test method and a calculation procedure for the determination of the flammability of gases and gas mixtures in air. The substance indices for the calculation, the so called "Tci values", which characterise the fire potential, are provided as well. These ISO Tci values are derived from explosion diagrams of older literature sources which do not take into account the test method and the test apparatus. However, since the explosion limits are influenced by apparatus parameters, the Tci values and lower explosion limits, given by the ISO tables, are inconsistent with those measured according to the test method of the same standard. In consequence, applying the ISO Tci values can result in wrong classifications. In this paper internationally accepted explosion limit test methods were evaluated and Tci values were derived from explosion diagrams. Therefore, an "open vessel" method with flame propagation criterion was favoured. These values were compared with the Tci values listed in ISO 10156. In most cases, significant deviations were found. A detailed study about the influence of inert gases on flammability is the objective of Part 2.
Air Emissions Inventory Guidance Document for Stationary Sources at Air Force Installations.
1999-05-01
small stoker-fired boilers). sox Change to lower sulfur coal, Coal Cleaning, Flue Gas Desulfurization (e.g., wet scrubbing, spray drying, furnace...Multiclone Collector. SOx Flue Gas Desulfurization (e.g., wet , semi-dry, or dry scrubbers) NOx Low Excess Air, Burners out of Service, Biased Burner...both flue gas desulfurization spray dryer adsorber (FGD-SDA) and a fabric filter (FF). d Factors apply to boilers equipped with an electrostatic
2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ...
2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ELECTRIC FURNACE OFFICE & CHEMICAL LABORATORY BUILDING. INGOT MOLDS IN RIGHT FOREGROUND. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
NASA Astrophysics Data System (ADS)
Niu, Deliang; Liu, Qingcai; Wang, Zhu; Ren, Shan; Lan, Yuanpei; Xu, Minren
Removal of gas is the major function of RH degasser. To optimize the RH refining craft in Chongqing Iron and Steel Co. Ltd, the degassing effect of RH degasser at different degrees of vacuum was investigated using a vacuum induction furnace. In addition, the effect of processing time on the gas content dissolved in molten steel was also studied. The results showed that degree of vacuum was one of the important factors that determined the degassing efficiency in RH refining process. High vacuum degree is helpful in the removal of gas, especially in the removal of [H] dissolved in molten steel. The processing time could be reduced from 25-30 min to 15 minutes and gas content could also meet the demand of RH refining.
Characterization of flame radiosity in shrubland fires
Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro
2011-01-01
The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...
36 CFR 9.46 - Accidents and fires.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Accidents and fires. 9.46... MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.46 Accidents and fires. The operator shall take technologically feasible precautions to prevent accidents and fires, shall notify the Superintendent within 24...
Effect of Swirl on an Unstable Single-Element Gas-Gas Rocket Engine
2014-06-01
at 300 K, and the combustor is filled with a mixture of water and carbon dioxide at 1500 K. The warmer temperature in the combustor enables the auto...a variety of configurations including gas turbines and rocket engines.4–13 The single-element engine chosen for this study is the continuously...combustion systems including gas turbines , rocket engines, and industrial furnaces. Swirl can have dramatic effects on the flowfield; these include jet growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson
2011-12-22
The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnacemore » (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for
The assessment of health impacts and external costs of natural gas-fired power plant of Qom.
Fouladi Fard, Reza; Naddafi, Kazem; Yunesian, Masud; Nabizadeh Nodehi, Ramin; Dehghani, Mohammad Hadi; Hassanvand, Mohammad Sadegh
2016-10-01
The external health damage costs of the combined cycle natural gas-fired power plant of Qom were investigated via the simplified impact pathway approach. Emitted particulate matter (PM 10 ) and gaseous pollutants (NO x , CO, and SO 2 ) from the power plant stack were measured The health effects and related costs were estimated by QUERI model from AirPacts according to the emissions, source and stack parameters, pollutant depletion velocities, exposure-response functions, local and regional population density, and detailed meteorological data. The results showed that the main health effect was assigned to the nitrate as restricted activity days (RAD) with 25,240 days/year. For all pollutants, the maximum health damage costs were related to the long-term mortality (49 %), restricted activity days (27 %), and chronic bronchitis (21 %). The annual health damage costs were approximately 4.76 million US$, with the cost being 0.096 US per kWh of generating electricity. Although the health damage costs of gas-fired power plant were lower than those of other heavy fuels, it seems essential to consider the health and environmental damages and focus on the emission control strategies, particularly in site selection for the new power plants and expanding the current ones.
NASA Astrophysics Data System (ADS)
Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.
2017-01-01
In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.
NASA Astrophysics Data System (ADS)
Moroz, V. I.; Egorova, V. M.; Gusev, S. V.
2001-05-01
A standard chamber batch furnace of the Severstal' plant has been modified for precision heat treatment of CCM rolls. The certification tests of a charge of rolls from steel 24KhM1F have shown the technical and economical advantages of the new design.
Land-Energy Nexus: Life Cycle Land Use of Natural Gas-Fired Electricity
NASA Astrophysics Data System (ADS)
Heath, G.; Jordaan, S.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.
2014-12-01
Comparisons of the land required for different types of energy are challenging due to the fact that upstream land use of fossil fuel technologies is not well characterized. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity through the novel combination of inventories of the location of natural gas-related infrastructure, satellite imagery analysis and gas production data. Land area per unit generation is calculated as the sum of natural gas life cycle stages divided by the throughput of natural gas, combined with the land use of the power plant divided by the generation of the power plant. Five natural gas life cycle stages are evaluated for their area: production, gathering, processing, transmission and disposal. The power plant stage is characterized by a thermal efficiency ηth, which converts MegaJoules (MJ) to kilowatt hours (kWh). We focus on seven counties in the Barnett shale region in Texas that represent over 90% of total Barnett Shale gas production. In addition to assessing the gathering and transmission pipeline network, approximately 500 sites are evaluated from the five life cycle stages plus power plants. For instance, assuming a 50 foot right-of-way for transmission pipelines, this part of the Barnett pipeline network occupies nearly 26,000 acres. Site, road and water components to total area are categorized. Methods are developed to scale up sampled results for each component type to the full population of sites within the Barnett. Uncertainty and variability are charaterized. Well-level production data are examined by integrating commercial datasets with advanced methods for quantifying estimated ultimate recovery (EUR) for wells, then summed to estimate natural gas produced in an entire play. Wells that are spatially coincident are merged using ArcGIS. All other sites are normalized by an estimate of gas throughput. Prior land use estimates are used to validate the satellite imagery analysis
Nouri-Borujerdi, Ali; Kazi, Salim Newaz
2014-01-01
In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site. PMID:25143981
Gharehkhani, Samira; Nouri-Borujerdi, Ali; Kazi, Salim Newaz; Yarmand, Hooman
2014-01-01
In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.
Wang, J; Levendis, Y A; Richter, H; Howard, J B; Carlson, J
2001-09-01
A study is presented on laboratory-scale combustion of polystyrene (PS) to identify staged-combustion conditions that minimize emissions. Batch combustion of shredded PS was conducted in fixed beds placed in a bench-scale electrically heated horizontal muffle furnace. In most cases, combustion of the samples occurred by forming gaseous diffusion flames in atmospheric pressure air. The combustion effluent was mixed with additional air, and it was channeled to a second muffle furnace (afterburner) placed in series. Further reactions took place in the secondary furnace at a residence time of 0.7 s. The gas temperature of the primary furnace was varied in the range of 500-1,000 degrees C, while that of the secondary furnace was kept fixed at 1,000 degrees C. Sampling for CO, CO2, O2, soot, and unburned hydrocarbon emissions (volatile and semivolatile, by GC-MS) was performed at the exits of the two furnaces. Results showed that the temperature of the primary furnace, where PS gasifies, is of paramount importance to the formation and subsequent emissions of organic species and soot. Atthe lowesttemperatures explored, mostly styrene oligomers were identified at the outlet of the primary furnace, but they did not survive the treatment in the secondary furnace. The formation and emission of polycyclic aromatic hydrocarbons (PAH) and soot were suppressed. As the temperature in the first furnace was raised, increasing amounts of a wide range of both unsubstituted and substituted PAH containing up to at least seven condensed aromatic rings were detected. A similar trend was observed for total particulate yields. The secondary furnace treatment reduced the yields of total PAH, but it had an ambiguous effect on individual species. While most low molecular mass PAH were reduced in the secondary furnace, concentrations of some larger PAH increased under certain conditions. Thus, care in the selection of operating conditions of both the primary furnace (gasifier/ burner) and the
Vertical feed stick wood fuel burning furnace system
Hill, Richard C.
1982-01-01
A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.
Vertical feed stick wood fuel burning furnace system
Hill, Richard C.
1984-01-01
A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.
Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R
2014-01-01
This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electricmore » arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.« less
Correction-free pyrometry in radiant wall furnaces
NASA Technical Reports Server (NTRS)
Thomas, Andrew S. W. (Inventor)
1994-01-01
A specular, spherical, or near-spherical target is located within a furnace having inner walls and a viewing window. A pyrometer located outside the furnace 'views' the target through pyrometer optics and the window, and it is positioned so that its detector sees only the image of the viewing window on the target. Since this image is free of any image of the furnace walls, it is free from wall radiance, and correction-free target radiance is obtained. The pyrometer location is determined through a nonparaxial optical analysis employing differential optical ray tracing methods to derive a series of exact relations for the image location.
PM2.5 and ultrafine particulate matter emissions from natural gas-fired turbine for power generation
NASA Astrophysics Data System (ADS)
Brewer, Eli; Li, Yang; Finken, Bob; Quartucy, Greg; Muzio, Lawrence; Baez, Al; Garibay, Mike; Jung, Heejung S.
2016-04-01
The generation of electricity from natural gas-fired turbines has increased more than 200% since 2003. In 2007 the South Coast Air Quality Management District (SCAQMD) funded a project to identify control strategies and technologies for PM2.5 and ultrafine emissions from natural gas-fired turbine power plants and test at pilot scale advanced PM2.5 technologies to reduce emissions from these gas turbine-based power plants. This prompted a study of the exhaust from new facilities to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine located at the Walnut Creek Energy Park in August 2013. These tests included particulate matter less than 2.5 μm in diameter (PM2.5) and wet chemical tests for SO2/SO3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. After turbine exhaust was diluted sevenfold with filtered air, particle concentrations in the 10-300 nm size range were approximately two orders of magnitude higher than those in the ambient air and those in the 2-3 nm size range were up to four orders of magnitude higher. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. While some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings of 3.63E-04 lb/MMBtu based on Methods 5.1/201A and 1.07E-04 lb/MMBtu based on SMPS method, which are similar to those previously measured from turbines in the SCAQMD area (FERCo et al., 2014), however, the turbine
33 CFR 127.1507 - Water systems for fire protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water systems for fire protection... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1507 Water systems for fire protection. (a) Each waterfront facility handling LHG must have a supply of water and a...
Aircraft Survivability: An Overview of Aircraft Fire Protection, Spring 2008
2008-01-01
function, liquid spray ignition, fire initiation, and fire growth and sustainment. For impacts with the tank ullage, the FPM describes the... spray fires are simulated using a two-phase flow model that describes both the droplet lifetime history and the gas phase. In addition to...vulnerability in a fuel tank is through the injection of nitrogen by Onboard Inerting Gas Generation Systems (OBIGGS). Recent research by the FAA has shown
Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian
2016-01-01
Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.
57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...
57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA
56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...
56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA
Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.
Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan
2002-10-14
The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.
Potential New Sensor for Use With Conventional Gas Carburizing
NASA Technical Reports Server (NTRS)
deGroot, W. A.
1997-01-01
Diagnostics developed for in-situ monitoring of rocket combustion environments have been adapted for use in heat treating furnaces. Simultaneous, in-situ monitoring of the carbon monoxide, carbon dioxide, methane, water, nitrogen and hydrogen concentrations in the endothermic gas of a heat treating furnace has been demonstrated under a Space Act Agreement between NASA Lewis, the Heat Treating Network, and Akron Steel Treating Company. Equipment installed at the Akron Steel Treating Company showed the feasibility of the method. Clear and well-defined spectra of carbon monoxide, nitrogen and hydrogen were obtained by means of an optical probe mounted on the endothermic gas line of a gas generator inside the plant, with the data reduction hardware located in the basement laboratory. Signals to and from the probe were transmitted via optical fibers.
NASA Technical Reports Server (NTRS)
Carrasquillo, Edgar J.; Griffin, Mark R.; Hammond, Monica S.; Johnson, Martin L.; Grugel, R. N.
2000-01-01
NASA Marshall Space Flight Center has developed a novel directional solidification furnace prototype for processing metals and alloys experiments in a microgravity environment. The BUNDLE (Bridgman Unidirectional Dendrite in Liquid Experiment) furnace is intended to accommodate the science requirements of Flight Definition Principle Investigators studying cellular/dendritic growth in aluminum and lead alloys at processing temperatures up to 1200 C. The furnace implements a number of innovative features to achieve high thermal gradients and quench rates in a low-power, light-weight design. These include a pyrolytic boron nitride/graphite composite heating element surrounded by layers of self-supporting refractory metal shielding, and a graphite fiber enhanced cold zone allowing high levels of heat extraction from the sample crucible. Novel to the BUNDLE design is an in-situ helium gas quench capability that ensures rapid freezing of the solidifying region (mushy zone) of the metal sample within the furnace without sample disturbance prior to quenching; this is a stringent requirement for subsequent analysis and understanding of microstructural development. The experiment hardware concept features multiple furnaces that may be "bundled" together so many samples, currently up to eight, can be processed at one time. The design of BUNDLE is flexible enough to be implemented on the Shuttle and Space Station in a number of locations (SpaceHab, Express Rack, MPESS, ISPR, etc). BUNDLE prototype furnaces have directionally solidified and quenched 1cm diameter lead - 5.8 weight percent antimony and aluminum - 4 weight percent copper alloys. Quenching of the mushy zone, as recorded by in-situ thermocouples, occurred on the order of 0.5 seconds or less, a rate within the PI's requirements. Subsequent metallographic examination revealed the solidified microstructure to be, as expected, unidirectional. Both the dendrite tips and the eutectic reaction were planar in nature
NASA Technical Reports Server (NTRS)
Carrasquillo, Edgar J.; Griffin, Mark R.; Hammond, Monica S.; Johnson, Martin L.; Grugel, R. N.
2001-01-01
NASA Marshall Space Flight Center has developed a novel directional solidification furnace prototype for processing metals and alloys experiments in a microgravity environment. The BUNDLE (Bridgman Unidirectional Dendrite in Liquid Experiment) furnace is intended to accommodate the science requirements of Flight Definition Principle Investigators studying cellular/dendritic growth in aluminum and lead alloys at processing temperatures up to 1200 C. The furnace implements a number of innovative features to achieve high thermal gradients and quench rates in a low-power, light-weight design. These include a pyrolytic boron nitride/graphite composite heating element surrounded by layers of self-supporting refractory metal shielding, and a graphite fiber enhanced cold zone allowing high levels of heat extraction from the sample crucible. Novel to the BUNDLE design is an in-situ helium gas quench capability that ensures rapid freezing of the solidifying region (mushy zone) of the metal sample within the furnace without sample disturbance prior to quenching; this is a stringent requirement for subsequent analysis and understanding of microstructural development. The experiment hardware concept features multiple furnaces that may be "bundled" together so many samples, currently up to eight, can be processed at one time. The design of BUNDLE is flexible enough to be implemented on the Shuttle and Space Station in a number of locations (SpaceHab, Express Rack, MPESS, ISPR, etc). BUNDLE prototype furnaces have directionally solidified and quenched 1cm diameter lead - 5.8 weight percent antimony and aluminum - 4 weight percent copper alloys. Quenching of the mushy zone, as recorded by in-situ thermocouples, occurred on the order of 0.5 seconds or less, a rate within the PI's requirements. Subsequent metallographic examination revealed the solidified microstructure to be, as expected, unidirectional. Both the dendrite tips and the eutectic reaction were planar in nature
Automatic thermocouple positioner for use in vacuum furnaces
Mee, D.K.; Stephens, A.E.
1980-06-06
The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.
Automatic thermocouple positioner for use in vacuum furnaces
Mee, David K.; Stephens, Albert E.
1981-01-01
The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.
Hydrogen-atmosphere induction furnace has increased temperature range
NASA Technical Reports Server (NTRS)
Caves, R. M.; Gresslin, C. H.
1966-01-01
Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.
6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...
6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES ARE THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA
28. RW Sugar Mill: 18761889. Boilingrange Furnace and Clarifier position. ...
28. RW Sugar Mill: 1876-1889. Boiling-range Furnace and Clarifier position. View: In the boiling range all of the clarification, evaporation, and concentration of cane juice took place in open pans over the Continuous flue leading from this furnace. The furnace door through the exterior wall is at the end of the furnace. In the original installation, two copper clarifiers, manufactured by John Nott & Co. occupied this space directly above the furnace. In the clarifiers, lime was added to the cane juice so that impurities would coagulate into a scum on top of the near-boiling juice. The clarifiers have been removed since the closing of the mill. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
29. RW Meyer Sugar Mill: 18761889. Boilingrange furnace and clarifier ...
29. RW Meyer Sugar Mill: 1876-1889. Boiling-range furnace and clarifier position. View: In the boiling range all of the concentration, evaporation, and concentration of cane juice took place in open pans over the continous flue leaving this furnace. The furnace door through the exterior wall is at the end of the furnace. In the original installation two copper clarifiers, manufactured by John Nott & Co. occupied this space directly above the furnace. In the clarifier lime was added to the cane juice so that impurities would coagulate into a scum on top of the near-boiling juice. The clarifiers have been removed since the closing of the mill. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-31
... standby mode and off mode energy consumption of those products. The petitioners demonstrated that meeting... energy consumption. 75 FR 64621. More specifically, this test procedure final rule included a standby... ae ) for gas or oil-fired furnaces or boilers and annual electric energy consumption (E e ) for...
NASA Technical Reports Server (NTRS)
Horio, M.; Wen, C. Y.
1976-01-01
A chemical engineering analysis is made of fluidized-bed combustor (FBC) performance, with FBC models developed to aid estimation of combustion efficiency and axial temperature profiles. The FBC is intended for combustion of pulverized coal and a pressurized FBC version is intended for firing gas turbines by burning coal. Transport phenomena are analyzed at length: circulation, mixing models, drifting, bubble wake lift, heat transfer, division of the FB reactor into idealized mixing cells. Some disadvantages of a coal FBC are pointed out: erosion of immersed heat-transfer tubing, complex feed systems, carryover of unburned coal particles, high particulate emission in off-streams. The low-temperature bed (800-950 C) contains limestone, and flue-gas-entrained SO2 and NOx can be kept within acceptable limits.
Retrofitted coal-fired firetube boiler and method employed therewith
Wagoner, Charles L.; Foote, John P.
1995-01-01
A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.
R. J. Yokelson; T. J. Christian; T. G. Karl; A. Guenther
2008-01-01
As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE), tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR), proton-transfer reaction mass spectrometry (PTR-MS), gas chromatography (GC), GC/PTRMS, and filter sampling of the particles...
46 CFR 59.15-5 - Stayed furnaces and combustion chambers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...
46 CFR 59.15-5 - Stayed furnaces and combustion chambers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...
46 CFR 59.15-5 - Stayed furnaces and combustion chambers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...
46 CFR 59.15-5 - Stayed furnaces and combustion chambers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...
46 CFR 59.15-5 - Stayed furnaces and combustion chambers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...
Gas kinematics in FIRE simulated galaxies compared to spatially unresolved H I observations
NASA Astrophysics Data System (ADS)
El-Badry, Kareem; Bradford, Jeremy; Quataert, Eliot; Geha, Marla; Boylan-Kolchin, Michael; Weisz, Daniel R.; Wetzel, Andrew; Hopkins, Philip F.; Chan, T. K.; Fitts, Alex; Kereš, Dušan; Faucher-Giguère, Claude-André
2018-06-01
The shape of a galaxy's spatially unresolved, globally integrated 21-cm emission line depends on its internal gas kinematics: galaxies with rotationally supported gas discs produce double-horned profiles with steep wings, while galaxies with dispersion-supported gas produce Gaussian-like profiles with sloped wings. Using mock observations of simulated galaxies from the FIRE project, we show that one can therefore constrain a galaxy's gas kinematics from its unresolved 21-cm line profile. In particular, we find that the kurtosis of the 21-cm line increases with decreasing V/σ and that this trend is robust across a wide range of masses, signal-to-noise ratios, and inclinations. We then quantify the shapes of 21-cm line profiles from a morphologically unbiased sample of ˜2000 low-redshift, H I-detected galaxies with Mstar = 107-11 M⊙ and compare to the simulated galaxies. At Mstar ≳ 1010 M⊙, both the observed and simulated galaxies produce double-horned profiles with low kurtosis and steep wings, consistent with rotationally supported discs. Both the observed and simulated line profiles become more Gaussian like (higher kurtosis and less-steep wings) at lower masses, indicating increased dispersion support. However, the simulated galaxies transition from rotational to dispersion support more strongly: at Mstar = 108-10 M⊙, most of the simulations produce more Gaussian-like profiles than typical observed galaxies with similar mass, indicating that gas in the low-mass simulated galaxies is, on average, overly dispersion supported. Most of the lower-mass-simulated galaxies also have somewhat lower gas fractions than the median of the observed population. The simulations nevertheless reproduce the observed line-width baryonic Tully-Fisher relation, which is insensitive to rotational versus dispersion support.
Hirsch, C S; Bost, R O; Gerber, S R; Cowan, M E; Adelson, L; Sunshine, I
1977-09-01
Eight people died in a traffic accident involving a tractor-trailer and ten autos. The accident caused a series of flash fires from ruptured gas tanks. Complete autopsies established that six of the victims died exclusively from thermal trauma; none showed an elevated blood carboxyhemoglobin concentration. Flash fire victims are exceptions to the axiom that elevation of blood carboxyhemoglobin is a sine qua non for concluding that a decedent recovered from the scene of a conflagration was alive in the fire.
Geology of coal fires: case studies from around the world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn B. Stracher
2008-01-15
Coal fires are preserved globally in the rock record as burnt and volume-reduced coal seams and by pyrometamorphic rocks, explosion breccias, clinker, gas-vent-mineral assemblages, fire-induced faulting, ground fissures, slump blocks, and sinkholes. Coal fires are responsible for coronary and respiratory diseases and fatalities in humans, as well as arsenic and fluorine poisoning. Their heat energy, toxic fumes, and solid by-products of combustion destroy floral and faunal habitats while polluting the air, water, and soil. This volume includes chapters devoted to spontaneous combustion and greenhouse gases, gas-vent mineralogy and petrology, paralavas and combustion metamorphic rocks, geochronology and landforms, magnetic signatures andmore » geophysical modeling, remote-sensing detection and fire-depth estimation of concealed fires, and coal fires and public policy.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.
2002-01-01
Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.
Heating rates in furnace atomic absorption using the L'vov platform
Koirtyohann, S.R.; Giddings, R.C.; Taylor, Howard E.
1984-01-01
Heating rate profiles for the furnace tube wall, the furnace atmosphere, and a L'vov platform were established for a range of conditions in a cyclically heated graphite atomizer. The tube wall profile was made by direct observation with a recording optical pyrometer. The sodium line reversal method was used to establish the heating rate of the furnace atmosphere, and appearance temperatures for a series metals of differing volatility was used to establish platform profiles. The tube wall heating rate was nearly linear at 2240??C s- until the desired temperature was reached after which the temperature remained constant. The furnace atmosphere reached a given temperature 0.2-0.4 s later than the tube wall through most of the atomize cycle. The platform lagged the tube wall 0.5-0.8 s. Under typical operating conditions the furnace atmosphere was 100-200??C cooler than the tube wall and at nearly constant temperature when the analyte vaporized from the platform. The L'vov platform causes the cyclically heated commercial furnace to approximate the behavior of a constant temperature furnace during atomization. ?? 1984.
29. Blast furnace plant, looking southeast. The Machine Shop and ...
29. Blast furnace plant, looking southeast. The Machine Shop and Turbo Blower Building are at left, the pig-casting machine and Furnace A at center right. In foregound are the 50-ton ladle cars used to transport hot metal to Valley Mould & Iron Co. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH
Feasibility study of a high temperature radiation furnace for space applications
NASA Technical Reports Server (NTRS)
Eiss, A.; Dussan, B.; Shadis, W.; Frank, L.
1973-01-01
The feasibility was investigated of a high temperature general purpose furnace for use in space. It was determined that no commercial furnaces exist which could, even with extensive modifications, meet the goals of temperature, power, weight, volume, and versatility originally specified in the contract Statement of Work. A feasible furnace design which does substantially meet these goals while employing many of the advanced features of the commercial furnaces is developed and presented.
Nonisothermal Carbothermal Reduction Kinetics of Titanium-Bearing Blast Furnace Slag
NASA Astrophysics Data System (ADS)
Hu, Mengjun; Wei, Ruirui; Hu, Meilong; Wen, Liangying; Ying, Fangqing
2018-05-01
The kinetics of carbothermal reduction of titanium-bearing blast furnace (BF) slag has been studied by thermogravimetric analysis and quadrupole mass spectrometry. The kinetic parameters (activation energy, preexponential factor, and reaction model function) were determined using the Flynn-Wall-Ozawa and Šatava-Šesták methods. The results indicated that reduction of titanium-bearing BF slag can be divided into two stages, namely reduction of phases containing iron and gasification of carbon (< 1095°C), followed by reduction of phases containing titanium (> 1095°C). CO2 was the main off-gas in the temperature range of 530-700°C, whereas CO became the main off-gas when the temperature was greater than 900°C. The activation energy calculated using the Flynn-Wall-Ozawa method was 221.2 kJ/mol. D4 is the mechanism function for carbothermal reduction of titanium-bearing BF slag. Meanwhile, a nonisothermal reduction model is proposed based on the obtained kinetic parameters.
Retrofitted coal-fired firetube boiler and method employed therewith
Wagoner, C.L.; Foote, J.P.
1995-07-04
A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, D.; Lewis, R.; Tobiasz, R.
1998-12-31
The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content`s deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research for many years on what might be done to minimize the adverse effects of ash on boiler performance. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effectmore » these firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS Concentric Firing System on the propensity for boiler wall ash deposition. For this study, CFS yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less
Ma, Pan; Ma, Zengyi; Yan, Jianhua; Chi, Yong; Ni, Mingjiang; Cen, Kefa
2011-10-01
As one of the fastest developing countries, China is facing severe problems concerning hazardous waste treatment and disposal. This paper presents a new incineration technology and demonstration project in eastern China. The incineration system includes a rotary kiln, a grate furnace for burning out the kiln residue and a flue gas post-combustion chamber. Flue gas treatment and emission control is based on: a quench tower, followed by dry hydrated lime and activated carbon injection, a dual bag filter system, and a wet scrubber. It demonstrated that this incineration technology can effectively dispose of industrial hazardous waste with variable and complex characteristics. Gas emissions meet the demands of the Chinese Environmental Protection Association standard.
Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian
2016-01-01
Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664
Alternative fuels for multiple-hearth furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracken, B.D.; Lawson, T.U.
1980-04-01
A study of alternative procedures for reducing the consumption of No. 2 fuel oil at the Lower Molonglo Water Quality Control Centre near Canberra, Aust., indicated that in comparison with the present system of incineration with heat supplied by burning fuel oil, the installation of a sludge drying operation, consisting of a rotary dryer heated by furnace exhaust gases with the dried sludge used to fuel the furnace, would become economically desirable by 1985 if afterburning is not required, and would be justified immediately if afterburning is required to meet air pollution control regulations. The substitution of any of fourmore » waste fuels (refuse-derived fuel, waste paper, wood waste, or waste oil) or of coal for the No. 2 fuel oil would not be cost-effective through 1989. The furnace system, including afterburning and fuel oil requirements, the envisioned alternative fuel use systems, sludge processing alternatives, heat balance results, and economics are discussed.« less
Sikalidis, Constantine; Mitrakas, Manassis
2006-01-01
The up to 20 wt% addition of the Electric Arc Furnace Dust (EAFD) hazardous waste on the properties of extruded clay-based ceramic building products fired at various temperatures (850 to 1050 degrees C), as well as of dolomite-concrete products was investigated. Chemical, mineralogical and particle size distribution analyses were performed in order to characterize the used EAFD. The results showed that the ceramic specimens prepared had water absorption, firing shrinkage, apparent density, mechanical strength, colour and leaching behaviour within accepted limits. Addition of 7.5 to 15 wt% EAFD presented improved properties, while 20 wt% seems to be the upper limit. Dolomite-concrete specimens were prepared by vibration and press-forming of mixtures containing cement, sand, dolomite, EAFD and water. Modulus of rupture values were significantly increased by the addition of EAFD. The leaching tests showed stabilization of all toxic metals within the sintered ceramic structure, while the leaching behaviour of lead in dolomite-concrete products needs further detailed study.
Miniaturized King furnace permits absorption spectroscopy of small samples
NASA Technical Reports Server (NTRS)
Ercoli, B.; Tompkins, F. S.
1968-01-01
Miniature King-type furnace, consisting of an inductively heated, small diameter tantalum tube supported in a radiation shield eliminates the disadvantages of the conventional furnace in obtaining absorption spectra of metal vapors.
Interior of shop, showing the reheat furnaces; the vehicle in ...
Interior of shop, showing the reheat furnaces; the vehicle in the center is a charging machine the operator of which manipulates steel ingots in the furnace, as well as in the adjacent forging hammers - Bethlehem Steel Corporation, South Bethlehem Works, Tool Steel-Electric Furnace Shop, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA
Pelletizing/reslurrying as a means of distributing and firing clean coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conkle, H.N.; Raghavan, J.K.; Smit, F.J.
1991-11-21
The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less
BLAST FURNACE CAST HOUSE EMISSION CONTROL TECHNOLOGY ASSESSMENT
The study describes the state-of-the-art of controlling fumes escaping from blast furnace cast houses. Background information is based on: a study of existing literature; visits to blast furnaces in the U.S., Japan, and Europe; meetings with an ad hoc group of experienced blast f...
Fire in Australian savannas: from leaf to landscape
Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri
2015-01-01
Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. PMID:25044767
Electric furnace dust: Can you bury the hazard?
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManus, G.J.
1996-04-01
Electric furnace waste treatment is moving into high gear, but the exact direction is unclear. On one hand, there is a trend toward complete recycling of the dust captured in furnace baghouses. Iron units as well as zinc and other elements are being reclaimed. On the other side, recent actions by regulators indicate recycling may not be required at all. With the correct chemical stabilization, it appears, dust may simply be placed in ordinary landfill. This paper describes three processes for waste treatment of furnace dust: Super Detox, a process for zinc removal from galvanized scrap before melting, and themore » INMETCO process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Wang, Yifeng
A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.
Fire resistance properties of ceramic wool fiber reinforced intumescent coatings
NASA Astrophysics Data System (ADS)
Amir, N.; Othman, W. M. S. W.; Ahmad, F.
2015-07-01
This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.
5. Photocopied August 1978. FRONT OF A HORRY ROTARY FURNACE, ...
5. Photocopied August 1978. FRONT OF A HORRY ROTARY FURNACE, SHOWING INTERIOR ELECTRODES. THE RAW MATERIALS FOR CALCIUM CARBIDE PRODUCTION--LIMESTONE AND COKE--WERE FED BY HOPPERS PLACED BETWEEN THESE ELECTRODES INTO THE ELECTRIC ARC. THE REMOVABLE PLATES ON THE EXTERNAL CIRCUMSTANCE OF THE HORRY FURNACE ARE SHOWN ON THE FIRST THREE FURNACES. (M) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Boreal Forest Fire Cools Climate
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Liu, H.; Flanner, M.; Chambers, S. D.; Harden, J. W.; Hess, P. G.; Jin, Y.; Mack, M. C.; Pfister, G.; Schuur, E. A.; Treseder, K. K.; Welp, L. R.; Zender, C. S.
2005-12-01
We report measurements, modeling, and analysis of carbon and energy fluxes from a boreal forest fire that occurred in interior Alaska during 1999. In the first year after the fire, ozone production, atmospheric aerosol loading, greenhouse gas emissions, soot deposition, and decreases in summer albedo contributed to a positive annual radiative forcing (RF). These effects were partly offset by an increase in fall, winter, and spring albedo from reduced canopy cover and increased exposure of snow-covered surfaces. The atmospheric lifetime of aerosols and ozone and are relatively short (days to months). The radiative effects of soot on snow are also attenuated rapidly from the deposition of fresh snow. As a result, a year after the fire, only two classes of RF mechanisms remained: greenhouse gas emissions and post-fire changes in surface albedo. Summer albedo increased rapidly in subsequent years and was substantially higher than unburned control areas (by more than 0.03) after 4 years as a result of grass and shrub establishment. Satellite measurements from MODIS of other interior Alaska burn scars provided evidence that elevated levels of spring and summer albedo (relative to unburned control areas) persisted for at least 4 decades after fire. In parallel, our chamber, eddy covariance, and biomass measurements indicated that the post-fire ecosystems switch from a source to a sink within the first decade. Taken together, the extended period of increased spring and summer albedo and carbon uptake of intermediate-aged stands appears to more than offset the initial warming pulse caused by fire emissions, when compared using the RF concept. This result suggests that management of forests in northern countries to suppress fire and preserve carbon sinks may have the opposite effect on climate as that intended.
Segmented ceramic liner for induction furnaces
Gorin, Andrew H.; Holcombe, Cressie E.
1994-01-01
A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.
Segmented ceramic liner for induction furnaces
Gorin, A.H.; Holcombe, C.E.
1994-07-26
A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.
Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi
2011-04-15
Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash.
40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...
40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...
40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...
40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...
40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...
Status and Evaluation of Microwave Furnace Capabilities at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lizcano, Maricela; Mackey, Jonathan A.
2014-01-01
The microwave (MW) furnace is a HY-Tech Microwave Systems, 2 kW 2.45 GHz Single Mode Microwave Applicator operating in continuous wave (CW) with variable power. It is located in Cleveland, Ohio at NASA Glenn Research Center. Until recently, the furnace capabilities had not been fully realized due to unknown failure that subsequently damaged critical furnace components. Although the causes of the problems were unknown, an assessment of the furnace itself indicated operational failure may have been partially caused by power quality. This report summarizes the status of the MW furnace and evaluates its capabilities in materials processing.
Model reduction for experimental thermal characterization of a holding furnace
NASA Astrophysics Data System (ADS)
Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane
2017-09-01
Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts. The definition of the structure of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. Internal sensors outputs, together with this model, can be used for assessing the thermal state of the furnace through an inverse approach, for a better control. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. The internal induction heat source as well as the transient radiative transfer inside the furnace are calculated through this detailed model. A reduced lumped body model has been constructed to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm, using two synthetic temperature signals with a further validation test.
A model for foam formation, stability, and breakdown in glass-melting furnaces.
van der Schaaf, John; Beerkens, Ruud G C
2006-03-01
A dynamic model for describing the build-up and breakdown of a glass-melt foam is presented. The foam height is determined by the gas flux to the glass-melt surface and the drainage rate of the liquid lamellae between the gas bubbles. The drainage rate is determined by the average gas bubble radius and the physical properties of the glass melt: density, viscosity, surface tension, and interfacial mobility. Neither the assumption of a fully mobile nor the assumption of a fully immobile glass-melt interface describe the observed foam formation on glass melts adequately. The glass-melt interface appears partially mobile due to the presence of surface active species, e.g., sodium sulfate and silanol groups. The partial mobility can be represented by a single, glass-melt composition specific parameter psi. The value of psi can be estimated from gas bubble lifetime experiments under furnace conditions. With this parameter, laboratory experiments of foam build-up and breakdown in a glass melt are adequately described, qualitatively and quantitatively by a set of ordinary differential equations. An approximate explicit relationship for the prediction of the steady-state foam height is derived from the fundamental model.
36. REDUCTION PLANT CLOSE VIEW OF FURNACE AND BOILER ...
36. REDUCTION PLANT - CLOSE VIEW OF FURNACE AND BOILER Reduction Plant furnace and boiler used to provide heat for drying the fish and fish offal, in their conversion to meal. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA
TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I
A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...
CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace
NASA Astrophysics Data System (ADS)
Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong
2014-01-01
A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.
Better VPS Fabrication of Crucibles and Furnace Cartridges
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Zimmerman, Frank R.; O'Dell, J. Scott; McKechnie, Timothy N.
2003-01-01
An experimental investigation has shown that by (1) vacuum plasma spraying (VPS) of suitable refractory metal alloys on graphite mandrels, and then (2) heat-treating the VPS alloy deposits under suitable conditions, it is possible to fabricate improved crucibles and furnace cartridges that could be used at maximum temperatures between 1,400 and 1,600 C and that could withstand chemical attack by the materials to be heated in the crucibles and cartridges. Taken by itself, the basic concept of fabricating furnace cartridges by VPS of refractory materials onto graphite mandrels is not new; taken by itself, the basic concept of heat treatment of VPS deposits for use as other than furnace cartridges is also not new; however, prior to this investigation, experimental crucibles and furnace cartridges fabricated by VPS had not been heat treated and had been found to be relatively weak and brittle. Accordingly, the investigation was directed toward determining whether certain combinations of (1) refractory alloy compositions, (2) VPS parameters, and (3) heat-treatment parameters could result in VPS-fabricated components with increased ductility.
NOx Emission Reduction by Oscillating combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Institute of Gas Technology
2004-01-30
High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the
NOx Emission Reduction by Oscillating Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
John C. Wagner
2004-03-31
High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the
Development Of A Magnetic Directional-Solidification Furnace
NASA Technical Reports Server (NTRS)
Aldrich, Bill R.; Lehoczky, Sandor L.
1996-01-01
Report describes development of directional-solidification furnace in which axial magnetic field is imposed by surrounding ring permanent magnets and/or electromagnets and pole pieces. Furnace provides controlled axial temperature gradients in multiple zones, through which ampoule containing sample of material to be solidified is translated at controlled speed by low-vibration, lead-screw, stepping-motor-driven mechanism. Intended for use in low-gravity (spaceflight) experiments on melt growth of high-purity semiconductor crystals.
Modeling Specular Exchange Between Concentric Cylinders in a Radiative Shielded Furnace
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Wessling, Francis C.
2000-01-01
The objective of this research is to develop and validate mathematical models to characterize the thermal performance of a radiative shielded furnace, the University of Alabama in Huntsville (UAH) Isothermal Diffusion Oven. The mathematical models are validated against experimental data obtained from testing the breadboard oven in a terrestrial laboratory environment. It is anticipated that the validation will produce math models capable of predicting the thermal performance of the furnace over a wide range of operating conditions, including those for which no experimental data is available. Of particular interest is the furnace core temperature versus heater power parametric and the transient thermal response of the furnace. Application to a microgravity environment is not considered, although it is conjectured that the removal of any gravity dependent terms from the math models developed for the terrestrial application should yield adequate results in a microgravity environment. The UAH Isothermal Diffusion Oven is designed to provide a thermal environment that is conducive to measuring the diffusion of high temperature liquid metals. In addition to achieving the temperatures required to melt a sample placed within the furnace, reducing or eliminating convective motions within the melt is an important design consideration [1]. Both of these influences are reflected in the design of the furnace. Reducing unwanted heat losses from the furnace is achieved through the use of low conductivity materials and reflective shielding. As evidenced by the highly conductive copper core used to house the sample within the furnace, convective motions can be greatly suppressed by providing an essentially uniform thermal environment. An oven of this design could ultimately be utilized in a microgravity environment, presumably as a experiment payload. Such an application precipitates other design requirements that limit the resources available to the furnace such as power, mass
Zhang, Xin; Peng, Lei; Ni, Zhao-peng; Ni, Tian-xiao; Huang, Yi-liang; Zhou, Yang
2018-01-01
Experimental research was conducted to study the fire resistance of steel tubular columns used in prefabricated and modular construction. In order to achieve high-efficient prefabrication and fast on-site installation, membrane protections using board products and thermal insulation blankets are adopted as the favorable protection method. Three protected tubular columns were tested in a full-scale column furnace with axial load applied. The study variables were different membranes, including fiber reinforced calcium silicate (FRCS) boards, rock wool and aluminum silica (Fiberfrax) insulations. The results suggest that one layer of 12 mm FRCS board with rock wool insulation has insufficient fire protection. However, steel columns protected with two layers of 12 mm FRCS boards with insulation appeared to have good fire resistances and could achieve a fire resistance rating as high as 2.5~3.0 h. PMID:29547574
NASA Astrophysics Data System (ADS)
Liu, Ying; Wen, Zhi; Lou, Guofeng; Li, Zhi; Yong, Haiquan; Feng, Xiaohong
2014-12-01
In a rotary hearth furnace (RHF) the direct reduction of composite pellets and processes of heat and mass transfer as well as combustion in the chamber of RHF influence each other. These mutual interactions should be considered when an accurate model of RHF is established. This paper provides a combined model that incorporates two sub-models to investigate the effects of C/O mole ratio in the feed pellets on the reduction kinetics and heat and mass transfer as well as combustion processes in the chamber of a pilot-scale RHF. One of the sub-models is established to describe the direct reduction process of composite pellets on the hearth of RHF. Heat and mass transfer within the pellet, chemical reactions, and radiative heat transfer from furnace walls and combustion gas to the surface of the pellet are considered in the model. The other sub-model is used to simulate gas flow and combustion process in the chamber of RHF by using commercial CFD software, FLUENT. The two sub-models were linked through boundary conditions and heat, mass sources. Cases for pellets with different C/O mole ratio were calculated by the combined model. The calculation results showed that the degree of metallization, the total amounts of carbon monoxide escaping from the pellet, and heat absorbed by chemical reactions within the pellet as well as CO and CO2 concentrations in the furnace increase with the increase of C/O mole ratio ranging from 0.6 to 1.0, when calculation conditions are the same except for C/O molar ratio. Carbon content in the pellet has little influence on temperature distribution in the furnace under the same calculation conditions except for C/O mole ratio in the feed pellets.
1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT ...
1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT LOOKING NORTHEAST. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.
Aune, Jan Arthur; Brinch, Jon Christian; Johansen, Kai
2005-12-27
The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.
Comparison of predictive control methods for high consumption industrial furnace.
Stojanovski, Goran; Stankovski, Mile
2013-01-01
We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn.
Optimization of the thermogauge furnace for realizing high temperature fixed points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.; Dong, W.; Liu, F.
2013-09-11
The thermogauge furnace was commonly used in many NMIs as a blackbody source for calibration of the radiation thermometer. It can also be used for realizing the high temperature fixed point(HTFP). According to our experience, when realizing HTFP we need the furnace provide relative good temperature uniformity to avoid the possible damage to the HTFP. To improve temperature uniformity in the furnace, the furnace tube was machined near the tube ends with a help of a simulation analysis by 'ansys workbench'. Temperature distributions before and after optimization were measured and compared at 1300 °C, 1700°C, 2500 °C, which roughly correspondmore » to Co-C(1324 °C), Pt-C(1738 °C) and Re-C(2474 °C), respectively. The results clearly indicate that through machining the tube the temperature uniformity of the Thermogage furnace can be remarkably improved. A Pt-C high temperature fixed point was realized in the modified Thermogauge furnace subsequently, the plateaus were compared with what obtained using old heater, and the results were presented in this paper.« less
Understanding Fire Through Improved Technology
NASA Technical Reports Server (NTRS)
2004-01-01
Aztec(TradeMark) is the commercial name for Southwest Sciences laser. The laser has coarse tuning ranges of 10 nanometers (nm) to 30 nm at wavelengths ranging from 630 nm to 2,300 nm, making it the only commercially available external cavity diode laser with wavelengths beyond 1,650 nm. The laser's high-speed tuning in both coarse and fine wavelength regimes allows for increased trace gas detection. With the automated coarse tuning option, the Aztec sweeps through its wavelength range in less than 1 millisecond. While some diode lasers can only detect one type, or species, of a trace gas, the Aztec's broad wavelength tuning provides access to multiple trace gas species. The Aztec has a wide range of applications for both NASA and commercial users, from protecting astronauts in space to improving combustion processes on Earth. It may serve as a new tool for planetary exploration, as it can detect a wide range of multiple gas species in planetary atmospheres. The laser could optically detect gaseous indicators of incipient fires on the International Space Station and Space Shuttle, as well as detect low concentrations of potentially toxic gases in spacecraft crew habitats. The laser could also provide more accurate fire detection in aircraft cargo compartments. Since the Aztec can detect several gases that only evolve during an actual fire, its implementation could reduce the large number of commercial aircraft landings that currently occur due to false alarms. Other applications include environmental and industrial process monitoring.
Mitigating operating room fires: development of a carbon dioxide fire prevention device.
Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J
2014-04-01
Operating room fires are sentinel events that present a real danger to surgical patients and occur at least as frequently as wrong-sided surgery. For fire to occur, the 3 points of the fire triad must be present: an oxidizer, an ignition source, and fuel source. The electrosurgical unit (ESU) pencil triggers most operating room fires. Carbon dioxide (CO2) is a gas that prevents ignition and suppresses fire by displacing oxygen. We hypothesize that a device can be created to reduce operating room fires by generating a cone of CO2 around the ESU pencil tip. One such device was created by fabricating a divergent nozzle and connecting it to a CO2 source. This device was then placed over the ESU pencil, allowing the tip to be encased in a cone of CO2 gas. The device was then tested in 21%, 50%, and 100% oxygen environments. The ESU was activated at 50 W cut mode while placing the ESU pencil tip on a laparotomy sponge resting on an aluminum test plate for up to 30 seconds or until the sponge ignited. High-speed videography was used to identify time of ignition. Each test was performed in each oxygen environment 5 times with the device activated (CO2 flow 8 L/min) and with the device deactivated (no CO2 flow-control). In addition, 3-dimensional spatial mapping of CO2 concentrations was performed with a CO2 sampling device. The median ± SD [range] ignition time of the control group in 21% oxygen was 2.9 s ± 0.44 [2.3-3.0], in 50% oxygen 0.58 s ± 0.12 [0.47-0.73], and in 100% oxygen 0.48 s ± 0.50 [0.03-1.27]. Fires were ignited with each control trial (15/15); no fires ignited when the device was used (0/15, P < 0.0001). The CO2 concentration at the end of the ESU pencil tip was 95%, while the average CO2 concentration 1 to 1.4 cm away from the pencil tip on the bottom plane was 64%. In conclusion, an operating room fire prevention device can be created by using a divergent nozzle design through which CO2 passes, creating a cone of fire suppressant. This device as
ROMPS critical design review. Volume 3: Furnace module design documentation
NASA Technical Reports Server (NTRS)
Dobbs, M. E.
1992-01-01
As part of the furnace module design documentation, the furnace module Easylab programs definitions and command variables are described. Also included are Easylab commands flow charts and fault conditions.
Fire in Australian savannas: from leaf to landscape.
Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri
2015-01-01
Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
DUCT RETROFIT STRATEGY TO COMPLEMENT A MODULATING FURNACE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDREWS,J.W.
2002-10-02
Some recent work (Walker 2001, Andrews 2002) has indicated that installing a modulating furnace in a conventional duct system may, in many cases, result in a significant degradation in thermal distribution efficiency. The fundamental mechanism was pointed out nearly two decades ago (Andrews and Krajewski 1985). The problem occurs in duct systems that are less-than-perfectly insulated (e.g., R-4 duct wrap) and are located outside the conditioned space. It stems from the fact that when the airflow rate is reduced, as it will be when the modulating furnace reduces its heat output rate, the supply air will have a longer residencemore » time in the ducts and will therefore lose a greater percentage of its heat by conduction than it did at the higher airflow rate. The impact of duct leakage, on the other hand, is not expected to change very much under furnace modulation. The pressures in the duct system will be reduced when the airflow rate is reduced, thus reducing the leakage per unit time. This is balanced by the fact that the operating time will increase in order to meet the same heating load as with the conventional furnace operating at higher output and airflow rates. The balance would be exact if the exponent in the pressure vs. airflow equation were the same as that in the pressure vs. duct leakage equation. Since the pressure-airflow exponent is usually {approx}0.5 and the pressure-leakage exponent is usually {approx}0.6, the leakage loss as a fraction of the load should be slightly lower for the modulating furnace. The difference, however, is expected to be small, determined as it is by a function with an exponent equal to the difference between the above two exponents, or {approx}0.1. The negative impact of increased thermal conduction losses from the duct system may be partially offset by improved efficiency of the modulating furnace itself. Also, the modulating furnace will cycle on and off less often than a single-capacity model, and this may add a small
Early Pottery Making in Northern Coastal Peru. Part II: Field Firing Experiments
NASA Astrophysics Data System (ADS)
Shimada, I.; Goldstein, D.; Sosa, J.; Wagner, U.
2003-09-01
We present data from three seasons of experimental field work designed to recreate ancient Andean coastal ceramic firing techniques. Based on the recent discovery of two different archaeological ceramic production sites in the La Leche river valley of northern coastal Peru, the opportunity arose to apply Mössbauer spectroscopy and other analytical methods to reconstruct ancient firing procedures. Two sets of firings took place in 1993 and 1997 in Batán Grande using a partially restored Formative kiln from about 800 BC, local hardwood and cow dung as fuel. A third experiment followed in 2000 after the discovery of a Middle Sicán ceramics workshop in use between ca. AD 950 and 1050 at Huaca Sialupe, where an exact replica of an ancient kiln was built from local clay, and fired with local wood and cow dung. Additionally, inverted urns found at Huaca Sialupe were tested for their potential use as furnaces for metal working. Mössbauer spectroscopy was used to compare the physical and chemical state of specimens produced in the field experiments with ancient ceramics and with specimens produced in controlled laboratory experiments.
Fire behavior and risk analysis in spacecraft
NASA Technical Reports Server (NTRS)
Friedman, Robert; Sacksteder, Kurt R.
1988-01-01
Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.
Hopewell Furnace: A Pennsylvania Iron-Making Plantation. Teaching with Historic Places.
ERIC Educational Resources Information Center
Koman, Rita G.
The rhythmic noises of the turning water wheel and the roar of the furnace blast never stopped at Hopewell Furnace (Pennsylvania) during its years of operation (1771-1883). As long as the furnace was in blast, the ironworkers' jobs were safe. In case of trouble, they could escape to the woods, fields, and creeks of rural Pennsylvania. Now a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, D.; Lewis, R.; Tobiasz, R.
1998-07-01
The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content's deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research what might be done to minimize the adverse effects of ash on boiler performance for many years. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effect thesemore » firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS{trademark} yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS{trademark} yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less
NASA Astrophysics Data System (ADS)
Ahmad, Samir Mahmmod; Leong, Cheow Siu; Sopian, K.; Zaidi, Saleem H.
2018-03-01
Formation of an Ohmic contact requires a suitable firing temperature, appropriate doping profile, and contact dimensions within resolution limits of the screen-printing process. In this study, the role of the peak firing temperature in standard rapid thermal annealing (RTA) six-zone conveyor belt furnace (CBF) and two inexpensive alternate RTA systems [a custom-designed, three-zone, 5″-diameter quartz tube furnace (QTF) and a tabletop, 3″-diameter rapid thermal processing (RTP)] has been investigated. In addition, the role of sheet resistance and contact area in achieving low-resistance ohmic contacts has been examined. Electrical measurements of ohmic contacts between silver paste/ n +-emitter layer with varying sheet resistances and aluminum paste/ p-doped wafer were carried out in transmission line method configuration. Experimental measurements of the contact resistivity ( ρ c) exhibited the lowest values for CBF at 0.14 mΩ cm2 for Ag and 100 mΩ cm2 for Al at a peak firing temperature of 870°C. For the QTF configuration, lowest measured contact resistivities were 3.1 mΩ cm2 for Ag and 74.1 mΩ cm2 for Al at a peak firing temperature of 925°C. Finally, for the RTP configuration, lowest measured contact resistivities were 1.2 mΩ cm2 for Ag and 68.5 mΩ cm2 for Al at a peak firing temperature of 780°C. The measured contact resistivity exhibits strong linear dependence on sheet resistance. The contact resistivity for Ag decreases with contact area, while for Al the opposite behavior is observed.
Recent developments in blast furnace process control within British Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, P.W.
1995-12-01
British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider andmore » evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cianchetta, I.; Trentelman, K.; Maish, J.
XANES spectroscopy was used to complement the results previously obtained with Raman spectroscopy by the same group to determine the firing conditions used in the production of a single vessel painted by the Berlin Painter in the 5th century B.C. The vessel, part of the collection of the J. Paul Getty Museum, presents a complicated layered architecture of black and red gloss, with different stratigraphies present on the interior and exterior surfaces. The study of two samples, one each from the interior and exterior surface of the vessel, was performed with the complementary analytical techniques of X-ray nano- and micro-spectroscopymore » (X-ray fluorescence spectroscopy (XRF) and full-field transmission X-ray micro-spectroscopy (FF-XANES) across the Fe K edge), and supported by a replication study. The replicates, made in a laboratory furnace providing complete control over the firing temperature and oxygen partial pressure, provided a paradigm for the comparison of the mineralogical phases observed in the ancient samples, which led to a deeper understanding of the firing conditions necessary for the production of the Berlin Painter's vessel. Our results confirm the necessity of multiple firings and painting applications to obtain the Berlin Painter's architecture and provide a further example of the multiplicity of techniques and practices employed by the potters of the Kerameikos in ancient Athens.« less
Cianchetta, I.; Trentelman, K.; Maish, J.; ...
2014-12-10
XANES spectroscopy was used to complement the results previously obtained with Raman spectroscopy by the same group to determine the firing conditions used in the production of a single vessel painted by the Berlin Painter in the 5th century B.C. The vessel, part of the collection of the J. Paul Getty Museum, presents a complicated layered architecture of black and red gloss, with different stratigraphies present on the interior and exterior surfaces. The study of two samples, one each from the interior and exterior surface of the vessel, was performed with the complementary analytical techniques of X-ray nano- and micro-spectroscopymore » (X-ray fluorescence spectroscopy (XRF) and full-field transmission X-ray micro-spectroscopy (FF-XANES) across the Fe K edge), and supported by a replication study. The replicates, made in a laboratory furnace providing complete control over the firing temperature and oxygen partial pressure, provided a paradigm for the comparison of the mineralogical phases observed in the ancient samples, which led to a deeper understanding of the firing conditions necessary for the production of the Berlin Painter's vessel. Our results confirm the necessity of multiple firings and painting applications to obtain the Berlin Painter's architecture and provide a further example of the multiplicity of techniques and practices employed by the potters of the Kerameikos in ancient Athens.« less
An Overview of the Thermal Challenges of Designing Microgravity Furnaces
NASA Technical Reports Server (NTRS)
Westra, Douglas G.
2001-01-01
Marshall Space Flight Center is involved in a wide variety of microgravity projects that require furnaces, with hot zone temperatures ranging from 300 C to 2300 C, requirements for gradient processing and rapid quench, and both semi-conductor and metal materials. On these types of projects, the thermal engineer is a key player in the design process. Microgravity furnaces present unique challenges to the thermal designer. One challenge is designing a sample containment assembly that achieves dual containment, yet allows a high radial heat flux. Another challenge is providing a high axial gradient but a very low radial gradient. These furnaces also present unique challenges to the thermal analyst. First, there are several orders of magnitude difference in the size of the thermal 'conductors' between various parts of the model. A second challenge is providing high fidelity in the sample model, and connecting the sample with the rest of the furnace model, yet maintaining some sanity in the number of total nodes in the model. The purpose of this paper is to present an overview of the challenges involved in designing and analyzing microgravity furnaces and how some of these challenges have been overcome. The thermal analysis tools presently used to analyze microgravity furnaces and will be listed. Challenges for the future and a description of future analysis tools will be given.
NASA Astrophysics Data System (ADS)
Howard, R. G.
The active solar energy system for a recreation hall for senior citizens in Wisconsin, is equipped with 1290 square feet of evacuated tube collectors, 3000 gallons of water in a tank, and a natural gas fired furnace for auxiliary space heating and a natural gas fired domestic water heater. The solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance are given as well as performance data for the collector, storage, domestic hot water, and space heating subsystems, operating energy, energy savings, and weather conditions. Predicted performance data are also given for comparison with the measured data.
42. Casting floor, "B" furnace, pour in progress; mudgun is ...
42. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; operator takes temperature of iron in trough during pout. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI
20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME ...
20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME BOXES FOR COUNTERWEIGHTS, AND FURNACE HEATING PIPES AT RIGHT. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA
INTERIOR VIEW WITH LADLE POURING MOLTEN IRON INTO QBOP FURNACE. ...
INTERIOR VIEW WITH LADLE POURING MOLTEN IRON INTO Q-BOP FURNACE. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL
36 CFR 9.46 - Accidents and fires.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Accidents and fires. 9.46 Section 9.46 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.46 Accidents and fires. The operator shall take...
52. Winch located at base of No. 1 Furnace for ...
52. Winch located at base of No. 1 Furnace for pulling ladle cars from furnace to pig machine. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL
NASA Astrophysics Data System (ADS)
Nizhegorodov, A. I.
2017-01-01
The paper deals with a new concept of electric furnaces for roasting and thermal energization of vermiculite and other minerals with vibrational transportation of a single-layer mass under constant thermal field. The paper presents performance calculation and comparative assessment of energy data for furnaces of different modifications: flame and electric furnaces with three units, furnaces with six units and ones with series-parallel connection of units, and furnaces of new concept.
Fay, J A
2006-08-21
A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables.
Sludge incineration tests on circulating fluidised bed furnace.
Lotito, V; Mininni, G; Di Pinto, A C; Spinosa, L
2001-01-01
Results of sludge incineration tests on a demonstrative fluidised bed furnace are reported and discussed. They show that particulate, heavy metals and acidic compounds in the emissions can be easily controlled both when sludge is spiked with chlorinated hydrocarbons up to a chlorine concentration in the feed of 5%, and when the afterburner is switched off. As for organic micropollutants, polynuclear aromatic hydrocarbons (PAH) were much lower than the Italian limits of 10 microg/m3 (no limits are at present considered in the European Directives). Dioxins (PCDDs) and furans (PCDFs) in some tests exceeded the limit of 0.1 ng/m3 (TE) but the concentrations in the fly ashes were much lower, thus evidencing a possible presence of contaminants in gas phase. PAHs and PCDD/PCDFs were not depending on the afterburning operation, the presence of organic chlorine in the feed sludge and the copper addition to sewage sludge.
Probabilistic approach to damage of tunnel lining due to fire
NASA Astrophysics Data System (ADS)
Šejnoha, Jiří; Sýkora, Jan; Novotná, Eva; Šejnoha, Michal
2017-09-01
In this paper, risk is perceived as the probable damage caused by a fire in the tunnel lining. In its first part the traffic flow is described as a Markov chain of joint states consisting of a combination of trucks/buses (TB) and personal cars (PC) from adjoining lanes. The heat release rate is then taken for a measure of the fire power. The intensity λf reflecting the frequency of fires was assessed based on extensive studies carried out in Austria [1] and Italy [2, 3]. The traffic density AADT, the length of the tunnel L, the percentage of TBs, and the number of lanes are the remaining parameters characterizing the traffic flow. In the second part, a special combination of models originally proposed by Bažant and Thonguthai [4], and Künzel & Kiessl [5] for the description of transport processes in concrete at very high temperatures creates a basis for the prediction of the thickness of the spalling zone and the volume of concrete degraded by temperatures that exceed a certain temperature level. The model was validated against a macroscopic test on concrete samples placed into the furnace.
Acoustic Levitator With Furnace And Laser Heating
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.; Stoneburner, James D.
1991-01-01
Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.
4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...
4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF CHARGING AISLE. VIEW OF 50 TON CAPACITY CHARGING BUCKET. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON ...
12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Reactions in the Tuyere Zone of Ironmaking Blast Furnace
NASA Astrophysics Data System (ADS)
Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Lee, Hae-Geon; Zhao, Baojun
2018-02-01
A series of slags can be formed in the lower part of the ironmaking blast furnace that play important roles in smooth furnace operation, and in determining iron quality and productivity. The final slag tapped from the BF has been investigated extensively as it can be collected directly. Unfortunately, difficulties in accessing the interiors of the blast furnace limit the full understanding of other slags such as primary and bosh slags. In this study, different types of samples directly obtained from the tuyere zone of the blast furnace have been systematically analyzed and characterized using scanning electron microscopy (SEM), electron probe X-ray microanalysis (EPMA), and X-ray fluorescence (XRF), with focus on the characteristics of slags formed in the tuyere level. The samples were identified into three groups according to their morphological, mineralogical, and chemical properties: (1) tuyere slags originating from the reactions between ash and dripping slags; (2) bosh slags in the CaO-SiO2-Al2O3-MgO-FeO system, with a CaO/SiO2 weight ratio of around 1.50, and Al2O3 and MgO concentrations close to those of final slags; and (3) coke ash that did not react with bosh slags. These findings will provide useful information on the evaluation of slags inside the blast furnace and the reactions in the tuyere zone.
Microfabricated Gas Sensors Demonstrated in Fire and Emission Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2003-01-01
A range of microfabricated chemical sensors are being developed to meet the needs of fire detection and emission monitoring in aerospace applications. These sensors have the advantages over traditional technology of minimal size, weight, and power consumption as well as the ability to be placed closer to where the measurements need to be made. Sensor arrays are being developed to address detection needs in environments where multiple species need to be measured. For example, the monitoring of chemical species such as carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons, and other species is important in the detection of fires on airplanes and spacecraft. In contrast, different sensors are necessary for characterizing some aircraft engine designs where the monitoring of nitrogen oxides (NO(x)) and CO is of high interest. Demonstration of both fire and emission microsensor technology was achieved this year in a collaborative effort undertaken by the NASA Glenn Research Center, Case Western Reserve University, and Makel Engineering, Inc.
Trace gas emissions from tropical biomass fires: Yucatan Peninsula, Mexico
NASA Astrophysics Data System (ADS)
Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.; Cahoon, Donald R.; Pinto, Joseph P.
Mixing ratios for carbon dioxide (CO 2), carbon monoxide (CO), hydrogen (H 2), methane (CH 4) and total non-methane hydrocarbons (TNMHC) were determined from the smoke plumes of two small (˜0.25 ha) prescribed biomass fires conducted on the Yucatan Peninsula in Mexico. In the region of these fires the combination of climate and shallow soils produces a scrubby and stunted forest with species composition similar to the Brazilian rain forest, but at a noticeably reduced size. Aircraft collections of smoke from these fires were analysed and used to determine CO 2-normalized emission ratios ( ΔX/ ΔCO 2; v/v; where Δ = in-plume specie concentration less background concentration) for CO, H 2, CH 4 and TNMHC produced and released into the atmosphere from these fires. Suprisingly, high mean emission ratios for TNMHCs (˜1.7% of CO 2 release) and H 2 (˜2.5% of CO 2) were determined. Emission ratios for CO (˜7%) and CH 4 (˜0.7%), however, were found to fall within expected bounds.
3. INSIDE BATCH FURNACE BUILDING, VIEW LOOKING NORTH AT REGENERATIVE ...
3. INSIDE BATCH FURNACE BUILDING, VIEW LOOKING NORTH AT REGENERATIVE BATCH FURNACES ON LEFT AND 5 TON CAPACITY CHARGING MACHINE ON RIGHT. - U.S. Steel Duquesne Works, 22-Inch Bar Mill, Along Monongahela River, Duquesne, Allegheny County, PA
4. CLOSEUP VIEW INTO A REHEATING FURNACE IN THE No. ...
4. CLOSE-UP VIEW INTO A REHEATING FURNACE IN THE No. 2 FORGE SHOP. THE FURNACE IS MISSING ITS REFRACTORY BRICK LINING. - U.S. Steel Homestead Works, Press Shop No. 2, Along Monongahela River, Homestead, Allegheny County, PA
3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. ...
3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. VIEW OF 7 1/2 TON CAPACITY ALLIANCE SIDE DOOR CHARGING MACHINE. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ...
14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
15. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...
15. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE GROUND FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...
13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
High-speed furnace uses infrared radiation for controlled brazing
NASA Technical Reports Server (NTRS)
Eckles, P. N.
1966-01-01
Furnace produces controlled heat for brazing and heat treating metals over a wide range of temperatures by using a near-infrared heat source positioned at one focus of an ellipsoidal reflector mounted below a cylindrical quartz chamber. This furnace maintains a pure atmosphere, has rapid heatup and cooldown, and permits visual observation.
Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic
2009-01-01
The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m2. PMID:22454563
Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic
2009-01-01
The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m(2).
Settling of Inclusions in Holding Furnaces: Modeling and Experimental Results
NASA Astrophysics Data System (ADS)
Sztur, C.; Balestreri, F.; Meyer, JL.; Hannart, B.
Description of settling phenomena usually refers to falling particles in a liquid, following Stokes law. But the thermal convection always takes place in holding furnaces due to temperature heterogeneity, and the behaviour of the inclusions can be dramatically influenced by the liquid metal motion. A numerical model based on turbulent fluid flow calculations in an holding furnace and on trajectories calculations of a family of inclusions has been developed. Results are compared with experiments on a lab. scale and on an industrial scale furnace. An analysis of the governing parameters will be presented.
5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...
5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF POURING AISLE. VIEW OF THE NATION'S FIRST VACUUM DEGASSING UNIT (1956). - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL ...
22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL CONSTRUCTION. CONCRETE PAD AT LEFT IS SITE OF FORMER FURNACE USED TO HEAT URANIUM BILLETS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA