Science.gov

Sample records for gas korrektsiya izotopnogo

  1. Gas gangrene

    MedlinePlus

    Tissue infection - Clostridial; Gangrene - gas; Myonecrosis; Clostridial infection of tissues; Necrotizing soft tissue infection ... Gas gangrene is most often caused by bacteria called Clostridium perfringens. It also can be caused by ...

  2. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  3. Gas separating

    DOEpatents

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  4. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  5. Gas magnetometer

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  6. Gas chromatography

    NASA Astrophysics Data System (ADS)

    Guiochon, Georges; Guillemin, Claude L.

    1990-11-01

    Gas chromatography is a powerful separation technique for gas and vapor mixtures. Combining separation and on-line detection permits accurate quantitative analysis of complex mixtures, including traces of compounds down to parts per trillions in some particular cases. The importance of gas chromatography in quality control and process control in the chemical and drug industry, in environmental pollution investigations and in clinical analysis is critical. The principles of the technique are discussed, the main components of a gas chromatograph are described and some idea of the importance of the applications is given.

  7. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  8. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  9. Gas Chromatography.

    ERIC Educational Resources Information Center

    Karasek, Francis W.; And Others

    1984-01-01

    This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…

  10. Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Hansen, Patrick; Whisnant, C. Steven

    2010-02-01

    To prepare frozen-spin HD targets for photonuclear physics at JLab, high purity HD is required. Commercially available gas is only ˜98% HD. To reach the purity required to make nuclear targets, the gas is distilled at low temperature to remove the H2 and D2 impurities. To monitor the distillation process and correlate the gas purity with the spin relaxation times, a low temperature gas chromatograph system has been developed that produces good separation of H2, HD and D2. The system uses a PLOT 5A column in a mixture of LN2 and i-pentane at temperatures between 110K and 135K. With this system, the relative concentrations can be determined with uncertainties of ˜10%. The chromatography process and the resulting chromatograms will be discussed. )

  11. Volcanic Gas

    MedlinePlus

    ... Hazards Tephra/Ash Lava Flows Lahars Volcanic Gas Climate Change Pyroclastic Flows Volcanic Landslides Preparedness Volcano Hazard Zones ... Please see our discussion of volcanic gases and climate change for additional information. Hydrogen sulfide (H 2 S) is ...

  12. Gas Chromatography.

    ERIC Educational Resources Information Center

    Cram, Stuart P.; And Others

    1980-01-01

    Selects fundamental developments in theory, methodology, and instrumentation in gas chromatography (GC). A special section reviews GC in the People's Republic of China. Over 1,000 references are cited. (CS)

  13. Gas Analyzer

    NASA Astrophysics Data System (ADS)

    1989-01-01

    The M200 originated in the 1970's under an Ames Research Center/Stanford University contract to develop a small, lightweight gas analyzer for Viking Landers. Although the unit was not used on the spacecraft, it was further developed by The National Institute for Occupational Safety and Health (NIOSH). Three researchers from the project later formed Microsensor Technology, Inc. (MTI) to commercialize the analyzer. The original version (Micromonitor 500) was introduced in 1982, and the M200 in 1988. The M200, a more advanced version, features dual gas chromatograph which separate a gaseous mixture into components and measure concentrations of each gas. It is useful for monitoring gas leaks, chemical spills, etc. Many analyses are completed in less than 30 seconds, and a wide range of mixtures can be analyzed.

  14. Gas sensor

    DOEpatents

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  15. GAS SEAL

    DOEpatents

    Monson, H.; Hutter, E.

    1961-07-11

    A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

  16. Volcanic gas

    USGS Publications Warehouse

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  17. Gas reburning technologies

    SciTech Connect

    Booth, M.

    1996-11-01

    Natural gas reburning technologies are outlined. The following topics are discussed: the reburning process, EER gas reburning experience, gas reburning NOx control overview, Hennepin (tangential) long term test, second generation gas reburning, integrating gas reburning and SNCR, advanced gas reburning process, second generation advanced reburning improvements, and second generation advanced reburning configurations.

  18. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  19. Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Qian, Michael C.

    Gas chromatography (GC) has many applications in the analysis of food products. GC has been used for the determination of fatty acids, triglycerides, cholesterol, gases, water, alcohols, pesticides, flavor compounds, and many more. While GC has been used for other food components such as sugars, oligosaccharides, amino acids, peptides, and vitamins, these substances are more suited to analysis by high performance liquid chromatography. GC is ideally suited to the analysis of volatile substances that are thermally stable. Substances such as pesticides and flavor compounds that meet these criteria can be isolated from a food and directly injected into the GC. For compounds that are thermally unstable, too low in volatility, or yield poor chromatographic separation due to polarity, a derivatization step must be done before GC analysis. The two parts of the experiment described here include the analysis of alcohols that requires no derivatization step, and the analysis of fatty acids which requires derivatization. The experiments specify the use of capillary columns, but the first experiment includes conditions for a packed column.

  20. Noble gas fractionation during subsurface gas migration

    NASA Astrophysics Data System (ADS)

    Sathaye, Kiran J.; Larson, Toti E.; Hesse, Marc A.

    2016-09-01

    Environmental monitoring of shale gas production and geological carbon dioxide (CO2) storage requires identification of subsurface gas sources. Noble gases provide a powerful tool to distinguish different sources if the modifications of the gas composition during transport can be accounted for. Despite the recognition of compositional changes due to gas migration in the subsurface, the interpretation of geochemical data relies largely on zero-dimensional mixing and fractionation models. Here we present two-phase flow column experiments that demonstrate these changes. Water containing a dissolved noble gas is displaced by gas comprised of CO2 and argon. We observe a characteristic pattern of initial co-enrichment of noble gases from both phases in banks at the gas front, followed by a depletion of the dissolved noble gas. The enrichment of the co-injected noble gas is due to the dissolution of the more soluble major gas component, while the enrichment of the dissolved noble gas is due to stripping from the groundwater. These processes amount to chromatographic separations that occur during two-phase flow and can be predicted by the theory of gas injection. This theory provides a mechanistic basis for noble gas fractionation during gas migration and improves our ability to identify subsurface gas sources after post-genetic modification. Finally, we show that compositional changes due to two-phase flow can qualitatively explain the spatial compositional trends observed within the Bravo Dome natural CO2 reservoir and some regional compositional trends observed in drinking water wells overlying the Marcellus and Barnett shale regions. In both cases, only the migration of a gas with constant source composition is required, rather than multi-stage mixing and fractionation models previously proposed.

  1. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  2. CONTINUOUS GAS ANALYZER

    DOEpatents

    Katz, S.; Weber, C.W.

    1960-02-16

    A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

  3. Anaesthesia gas supply: gas cylinders.

    PubMed

    Srivastava, Uma

    2013-09-01

    Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment.

  4. Anaesthesia Gas Supply: Gas Cylinders

    PubMed Central

    Srivastava, Uma

    2013-01-01

    Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment. PMID:24249883

  5. Natural gas production from Arctic gas hydrates

    SciTech Connect

    Collett, T.S. )

    1993-01-01

    The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

  6. Deuterium Gas Analysis by Residual Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Das, B. K.; Shukla, R.; Das, R.; Shyam, A.; Rao, A. D. P.

    2012-11-01

    Hydrogen gas is generated by electrolysis method in a compact hydrogen generator. A simple procedure reduces handling and storage of hydrogen cylinders for laboratory applications. In such a system, we are producing deuterium gas from heavy water by electrolysis method. After production of the deuterium gas, we have checked the purity level of the outgoing deuterium from the electrolyser. The test was carried out in a high vacuum system in which one residual gas analyser (RGA) was mounted. The deuterium gas was inserted by one manual gas leak valve in to the vacuum system. In this study, the effect of the emission current of the RGA on the detection of the deuterium was performed. In this paper, we will discuss the detail analysis of the deuterium gas and the effect of the emission current on the partial pressure measurement.

  7. Compressed gas manifold

    SciTech Connect

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  8. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  9. Anyonic quon gas

    NASA Astrophysics Data System (ADS)

    Dalton, Stephen L.; Inomata, Akira

    1995-02-01

    A simple model of a quon gas which exhibits anyonic behavior is proposed. Quons are characterized by the q-mutator, aa † - qa †a = 1 with -1 ≤ q ≤ 1. The gas has the boson and fermion gas limits and can simulate an anyon gas to the second and third virial coefficients.

  10. Natural gas monthly

    SciTech Connect

    1998-01-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  11. Apparatus Circulates Sterilizing Gas

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Schwarz, Ray P.

    1991-01-01

    Apparatus circulates sterilizing gas containing ethylene oxide and chlorofluorocarbon through laboratory or medical equipment. Confines sterilizing gas, circulating it only through parts to be treated. Consists of two units. One delivers ethylene oxide/chlorofluorocarbon gas mixture and removes gas after treatment. Other warms, humidifies, and circulates gas through equipment to be treated. Process provides reliable sterilization with negligible residual toxicity from ethylene oxide. Particularly suitable for sterilization of interiors of bioreactors, heart/lung machines, dialyzers, or other equipment including complicated tubing.

  12. Variable leak gas source

    DOEpatents

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.

  13. World Natural Gas Model

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  14. Enhanced membrane gas separations

    SciTech Connect

    Prasad, R.

    1993-07-13

    An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

  15. Natural gas annual 1996

    SciTech Connect

    1997-09-01

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  16. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  17. Microminiature gas chromatograph

    DOEpatents

    Yu, Conrad M.

    1996-01-01

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  18. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  19. Natural Gas Monthly

    EIA Publications

    2016-01-01

    Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

  20. Gas gangrene (image)

    MedlinePlus

    Gas gangrene is a severe form of gangrene (tissue death) caused by the bacterium Clostridium perfringens. Patients ... vascular diseases are more prone to spontaneously develop gas gangrene, which is rapidly progressive and often fatal.

  1. Microminiature gas chromatograph

    DOEpatents

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  2. Gas gangrene (image)

    MedlinePlus

    Gas gangrene is a severe form of gangrene (tissue death) caused by the bacterium Clostridium perfringens. It ... causing painful swelling and destruction of involved tissue. Gas gangrene is rapidly progressive and often fatal.

  3. Fiber optic gas sensor

    NASA Technical Reports Server (NTRS)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  4. Fuel gas from biodigestion

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. C.; Wolverton, B. C.

    1979-01-01

    Biodigestion apparatus produces fuel gas (primarily methane) for domestic consumption, by anaerobic bacterial digestion of organic matter such as aquatic vegetation. System includes 3,786-1 cylindrical container, mechanical agitator, and simple safe gas collector for short term storage.

  5. Residual gas analysis device

    DOEpatents

    Thornberg, Steven M.

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  6. Liquid propellant gas generators

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design of gas generators intended to provide hot gases for turbine drive is discussed. Emphasis is placed on the design and operation of bipropellant gas generators because of their wider use. Problems and limitations involved in turbine operation due to temperature effects are analyzed. Methods of temperature control of gas turbines and combustion products are examined. Drawings of critical sections of gas turbines to show their operation and areas of stress are included.

  7. Natural gas annual 1994

    SciTech Connect

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  8. Natural gas annual 1995

    SciTech Connect

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  9. Microscale Gas Chemistry

    ERIC Educational Resources Information Center

    Mattson, Bruce; Anderson, Michael P.

    2011-01-01

    The development of syringes having free movement while remaining gas-tight enabled methods in chemistry to be changed. Successfully containing and measuring volumes of gas without the need to trap them using liquids made it possible to work with smaller quantities. The invention of the LuerLok syringe cap also allowed the gas to be stored for a…

  10. Geopolitics of natural gas

    SciTech Connect

    Russell, J.

    1983-01-01

    This examines the role of gas in the world energy supply/demand. Special attention is paid to Western Europe, the Soviet Union, and the natural gas exporting countries. Forecasts of global energy demand until 2000 and data on Western Europe's proven natural gas reserves as per January 1982 are provided.

  11. Demonstrating the Gas Laws.

    ERIC Educational Resources Information Center

    Holko, David A.

    1982-01-01

    Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…

  12. Static gas expansion cooler

    DOEpatents

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  13. Valve for gas centrifuges

    DOEpatents

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  14. Gas dynamics in residual gas analyzer calibration

    SciTech Connect

    Santeler, D.J.

    1987-01-01

    Residual gas analyzers are used for measuring partial flow rates as well as for measuring partial pressures. The required calibration may also be obtained with either known flow rates or known pressures. The calibration and application procedures are straightforward when both are of the same type; however, substantial errors may occur if the two types are mixed. This report develops the basic equations required to convert between partial pressure calibrations and partial flow rate calibrations. It also discusses the question of fractionating and nonfractionating gas flow in various gas inlet and pumping systems.

  15. Experimental Characterization of Gas/Gas Injector Flowfields

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Cramer, John M.; Pal, Sibtosh; Santoro, Robert J.; Turner, Jim (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on activities pertaining to the experimental characterization of gas/gas injector flowfields. An experimental testbed for uni-element gas/gas injector studies at realistic conditions has been fabricated and verified. Experiments for characterizing mixing/combustion of gas/gas injectors with raman spectroscopy have been initiated.

  16. Flue gas desulfurization

    DOEpatents

    Im, Kwan H.; Ahluwalia, Rajesh K.

    1985-01-01

    A process and apparatus for removing sulfur oxide from combustion gas to form Na.sub.2 SO.sub.4 and for reducing the harmful effects of Na.sub.2 SO.sub.4 on auxiliary heat exchangers in which a sodium compound is injected into the hot combustion gas forming liquid Na.sub.2 SO.sub.4 in a gas-gas reaction and the resultant gas containing Na.sub.2 SO.sub.4 is cooled to below about 1150.degree. K. to form particles of Na.sub.2 SO.sub.4 prior to contact with at least one heat exchanger with the cooling being provided by the recycling of combustion gas from a cooled zone downstream from the introduction of the cooling gas.

  17. Natural gas leak mapper

    DOEpatents

    Reichardt, Thomas A.; Luong, Amy Khai; Kulp, Thomas J.; Devdas, Sanjay

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  18. Gas Hydrate Storage of Natural Gas

    SciTech Connect

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  19. Flue gas desulfurization

    DOEpatents

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  20. 78 FR 11638 - Michigan Consolidated Gas Company, DTE Gas Company, DTE Gas Company; Notice of Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Energy Regulatory Commission Michigan Consolidated Gas Company, DTE Gas Company, DTE Gas Company; Notice... Docket Nos. PR13-29-000, and PR13-30-000 (not consolidated), Michigan Consolidated Gas Company (MichCon) and DTE Gas Company (DTE Gas) filed to institute a name change to both itself from MichCon to DTE...

  1. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1985-12-31

    An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.

  2. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The l ifetime of gas in a disk has far-reaching consequences. including lim iting the time available for giant planet formation and controlling t he migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from i nfrared studies with the Spitzer Space Telescope. Exciting upcoming o pportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be p erformed using the Herschel Space Observatory, as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Project.

  3. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The lifetime of gas in a disk has far-reaching consequences, including limiting the time available for giant planet formation and controlling the migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from infrared studies with the Spitzer Space Telescope. Exciting upcoming opportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be performed using the Herschel Space Observatory, as part of the 'Gas in Protoplanetary Systems' (GASPS) Open Time Key Project.

  4. Gas stream purifier

    NASA Technical Reports Server (NTRS)

    Adam, Steven J.

    1994-01-01

    A gas stream purifier has been developed that is capable of removing corrosive acid, base, solvent, organic, inorganic, and water vapors as well as particulates from an inert mixed gas stream using only solid scrubbing agents. This small, lightweight purifier has demonstrated the ability to remove contaminants from an inert gas stream with a greater than 99 percent removal efficiency. The Gas Stream Purifier has outstanding market and sales potential in manufacturing, laboratory and science industries, medical, automotive, or any commercial industry where pollution, contamination, or gas stream purification is a concern. The purifier was developed under NASA contract NAS9-18200 Schedule A for use in the international Space Station. A patent application for the Gas Stream Purifier is currently on file with the United States Patent and Trademark Office.

  5. Gas shielding apparatus

    DOEpatents

    Brandt, Daniel

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  6. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  7. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  8. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  9. Valve for gas centrifuges

    DOEpatents

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  10. Multiple complementary gas distribution assemblies

    DOEpatents

    Ng, Tuoh-Bin; Melnik, Yuriy; Pang, Lily L; Tuncel, Eda; Nguyen, Son T; Chen, Lu

    2016-04-05

    In one embodiment, an apparatus includes a first gas distribution assembly that includes a first gas passage for introducing a first process gas into a second gas passage that introduces the first process gas into a processing chamber and a second gas distribution assembly that includes a third gas passage for introducing a second process gas into a fourth gas passage that introduces the second process gas into the processing chamber. The first and second gas distribution assemblies are each adapted to be coupled to at least one chamber wall of the processing chamber. The first gas passage is shaped as a first ring positioned within the processing chamber above the second gas passage that is shaped as a second ring positioned within the processing chamber. The gas distribution assemblies may be designed to have complementary characteristic radial film growth rate profiles.

  11. Natural gas annual 1997

    SciTech Connect

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  12. Gas-Recovery System

    DOEpatents

    Heckman, R. A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  13. Polyport atmospheric gas sampler

    DOEpatents

    Guggenheim, S. Frederic

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  14. Gas venting system

    DOEpatents

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  15. Gas hydrate and humans

    USGS Publications Warehouse

    Kvenvolden, K.A.

    2000-01-01

    The potential effects of naturally occurring gas hydrate on humans are not understood with certainty, but enough information has been acquired over the past 30 years to make preliminary assessments possible. Three major issues are gas hydrate as (1) a potential energy resource, (2) a factor in global climate change, and (3) a submarine geohazard. The methane content is estimated to be between 1015 to 1017 m3 at STP and the worldwide distribution in outer continental margins of oceans and in polar regions are significant features of gas hydrate. However, its immediate development as an energy resource is not likely because there are various geological constraints and difficult technological problems that must be solved before economic recovery of methane from hydrate can be achieved. The role of gas hydrate in global climate change is uncertain. For hydrate methane to be an effective greenhouse gas, it must reach the atmosphere. Yet there are many obstacles to the transfer of methane from hydrate to the atmosphere. Rates of gas hydrate dissociation and the integrated rates of release and destruction of the methane in the geo/hydro/atmosphere are not adequately understood. Gas hydrate as a submarine geohazard, however, is of immediate and increasing importance to humans as our industrial society moves to exploit seabed resources at ever-greater depths in the waters of our coastal oceans. Human activities and installations in regions of gas-hydrate occurrence must take into account the presence of gas hydrate and deal with the consequences of its presence.

  16. Portable Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Michromonitor M500 universal gas analyzer contains a series of miniature modules, each of which is a complete gas chromatograph, an instrument which separates a gaseous mixture into its components and measures the concentrations of each gas in the mixture. The system is manufactured by Microsensor Technology, and is used for environmental analysis, monitoring for gas leaks and chemical spills, compliance with pollution laws, etc. The technology is based on a Viking attempt to detect life on Mars. Ames/Stanford miniaturized the system and NIOSH funded further development. Three Stanford researchers commercialized the technology, which can be operated by unskilled personnel.

  17. Waste gas storage

    NASA Technical Reports Server (NTRS)

    Vickers, Brian D. (Inventor)

    1994-01-01

    Method for storing a waste gas mixture comprised of nitrogen, oxygen, carbon dioxide, and inert gases, the gas mixture containing corrosive contaminants including inorganic acids and bases and organic solvents, and derived from space station operations. The gas mixture is stored under pressure in a vessel formed of a filament wound composite overwrap on a metal liner, the metal liner being pre-stressed in compression by the overwrap, thereby avoiding any tensile stress in the liner, and preventing stress corrosion cracking of the liner during gas mixture storage.

  18. Water gas furnace

    SciTech Connect

    Gallaro, C.

    1985-12-03

    A water gas furnace comprising an outer container to provide a housing in which coke is placed into its lower part. A water container is placed within the housing. The coke is ignited and heats the water in the container converting it into steam. The steam is ejected into the coke, which together with air, produces water gas. Preferably, pumice stones are placed above the coke. The water gas is accepted into the pores of the pumice stones, where the heated pumice stones ignite the water gas, producing heat. The heat is extracted by a heat exchanger provided about the housing.

  19. Gas-recovery system

    DOEpatents

    Heckman, R.A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  20. Gas utilization technologies

    SciTech Connect

    Biljetina, R.

    1994-09-01

    One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ``Survey of Natural Research, Development, and Demonstration RD&D Priorities`` indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ``Strategic Vision for Natural Gas Through the Year 2000,`` clearly identify the market sectors driving today`s technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors.

  1. Gas sensing in nematodes.

    PubMed

    Carrillo, M A; Hallem, E A

    2015-01-01

    Nearly all animals are capable of sensing changes in environmental oxygen (O2) and carbon dioxide (CO2) levels, which can signal the presence of food, pathogens, conspecifics, predators, or hosts. The free-living nematode Caenorhabditis elegans is a powerful model system for the study of gas sensing. C. elegans detects changes in O2 and CO2 levels and integrates information about ambient gas levels with other internal and external cues to generate context-appropriate behavioral responses. Due to its small nervous system and amenability to genetic and genomic analyses, the functional properties of its gas-sensing microcircuits can be dissected with single-cell resolution, and signaling molecules and natural genetic variations that modulate gas responses can be identified. Here, we discuss the neural basis of gas sensing in C. elegans, and highlight changes in gas-evoked behaviors in the context of other sensory cues and natural genetic variations. We also discuss gas sensing in other free-living nematodes and parasitic nematodes, focusing on how gas-sensing behavior has evolved to mediate species-specific behavioral requirements. PMID:24906953

  2. Gas injected vacuum switch

    DOEpatents

    Hardin, K. Dan

    1977-01-01

    The disclosure relates to a gas injected vacuum switch comprising a housing having an interior chamber, a conduit for evacuating the interior chamber, within the chamber an anode and a cathode spaced from the anode, and a detonator for injecting electrically conductive gas into the chamber between the anode and the cathode to provide a current path therebetween.

  3. Standard gas hardware

    NASA Technical Reports Server (NTRS)

    Spencer, Stan

    1995-01-01

    The Sierra College Space Technology Program is currently building their third GAS payload in addition to a small satellite. The project is supported by an ARPA/TRP grant. One aspect of the grant is the design of standard hardware for Get Away Specials (GAS) payloads. A standard structure has been designed and work is progressing on a standard battery box and computer.

  4. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  5. Gas Detectors, Volume 1.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The report contains annotated references on gas detectors compiled from the Defense Documentation Center's data bank. The range of the topics deals with detection of toxic propellants, odors, gas leaks, oxygen, etc. Included with the bibliographic reference are the corporate author-monitoring agency, subject, and title indexes. (Author/JR)

  6. Small Gas Engine Repair.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    Instructional materials are provided for a small gas engine course. A list of objectives appears first, followed by a list of internal parts and skills/competencies related to those parts for engine work, ignition and electrical systems, fuel system, crankcase lubrication system, arc welding skills, and gas welding skills. Outlines are provided…

  7. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  8. Fastrac Gas Generator Testing

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Dennis, Jay

    2001-01-01

    A rocket engine gas generator component development test was recently conducted at the Marshall Space Flight Center. This gas generator is intended to power a rocket engine turbopump by the combustion of Lox and RP-1. The testing demonstrated design requirements for start sequence, wall compatibility, performance, and stable combustion. During testing the gas generator injector was modified to improve distribution of outer wall coolant and the igniter boss was modified to investigate the use of a pyrotechnic igniter. Expected chamber pressure oscillations at longitudinal acoustic mode were measured for three different chamber lengths tested. High amplitude discrete oscillations resulted in the chamber-alone configurations when chamber acoustic modes coupled with feed-system acoustics modes. For the full gas generator configuration, which included a turbine inlet manifold, high amplitude oscillations occurred only at off-design very low power levels. This testing led to a successful gas generator design for the Fastrac 60,000 lb thrust engine.

  9. Fastrac Gas Generator Testing

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Dennis, Jay

    1999-01-01

    A rocket engine gas generator component development test was recently conducted at the Marshall Space Flight Center. This gas generator was intended to power a rocket engine turbopump by the combustion of Lox and RP-1. The testing demonstrated design requirements for start sequence, wall compatibility, performance, and stable combustion. During testing the gas generator injector was modified to improve distribution of outer wall coolant and the igniter boss was modified to investigate the use of a pyrotechnic igniter, Expected chamber pressure oscillations at longitudinal acoustic modes were measured for three different chamber lengths tested. High amplitude discrete oscillations occurred in the chamber-alone configurations when chamber acoustic modes coupled with feed-system acoustics modes. For the full gas generator configuration, which included the turbine inlet manifold simulator, high amplitude oscillations occurred only at off-design very low power levels. This testing led to a successful gas generator design for the Fastrac 60,000 lb thrust engine.

  10. Supersonic gas compressor

    SciTech Connect

    Lawlor, Shawn P.; Novaresi, Mark A.; Cornelius, Charles C.

    2007-11-13

    A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

  11. HIGH PRESSURE GAS REGULATOR

    DOEpatents

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  12. Cryogenic treatment of gas

    SciTech Connect

    Bravo, Jose Luis; Harvey, III, Albert Destrehan; Vinegar, Harold J.

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  13. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.; Gardner, D.; Hayden, M.; Radebaugh, R.; Wollan, J.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a natural-gas-powered natural-gas liquefier that has absolutely no moving parts and requires no electrical power. It should have high efficiency, remarkable reliability, and low cost. The thermoacoustic natural-gas liquefier (TANGL) is based on our recent invention of the first no-moving-parts cryogenic refrigerator. In short, our invention uses acoustic phenomena to produce refrigeration from heat, with no moving parts. The required apparatus comprises nothing more than heat exchangers and pipes, made of common materials, without exacting tolerances. Its initial experimental success in a small size lead us to propose a more ambitious application: large-energy liquefaction of natural gas, using combustion of natural gas as the energy source. TANGL was designed to be maintenance-free, inexpensive, portable, and environmentally benign.

  14. Eastern Gas Shales Project

    SciTech Connect

    Koen, A.D.

    1981-05-01

    The Eastern Gas Shales Project (EGSP), the DOE study to obtain reliable estimates of economically recoverable gas from shale formations in the Appalachian basin, has determined that between 20 and 50 TCF of gas can be recovered from the region. The EGSP final report states that the expected (mean) total economically recoverable gas is 20.2 TCF, with a standard deviation of 1.6 TCF, conditional on the use of shooting technology on 160-acre well spacing. If shooting technology is used and 160-acre well spacing maintained a 95% probability exists that the total recoverable gas from Appalachian basin Devonian shale is between 17.06 and 23.34 TCF.

  15. Exhaust gas recirculation system

    SciTech Connect

    Minoura, M.; Yorioka, K.

    1980-11-18

    An exhaust gas recirculation system for cleaning exhaust gas from an internal combustion engine is provided in which a variable constriction is provided between an intake pipe and a pressure control valve in operative connection to a throttle valve in the carburetor and the pressure differential across said variable constriction is maintained constant to keep off any influence of the exhaust gas pressure while the ratio of the exhaust gas flow rate to the air intake into the engine is varied in correspondence to the intake pipe negative pressure. This exhaust gas recirculation system can be adapted to a fuel injection type intake system as well as other intake systems provided with an air valve for regulating air intake or having no venturi constriction such as employed in an su type carburetor.

  16. Residual gas analyzer calibration

    NASA Technical Reports Server (NTRS)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  17. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  18. Evolution of gas saturation and relative permeability during gas production from hydrate-bearing sediments: Gas invasion vs. gas nucleation

    NASA Astrophysics Data System (ADS)

    Jang, Jaewon; Santamarina, J. Carlos

    2014-01-01

    Capillarity and both gas and water permeabilities change as a function of gas saturation. Typical trends established in the discipline of unsaturated soil behavior are used when simulating gas production from hydrate-bearing sediments. However, the evolution of gas saturation and water drainage in gas invasion (i.e., classical soil behavior) and gas nucleation (i.e., gas production) is inherently different: micromodel experimental results show that gas invasion forms a continuous flow path while gas nucleation forms isolated gas clusters. Complementary simulations conducted using tube networks explore the implications of the two different desaturation processes. In spite of their distinct morphological differences in fluid displacement, numerical results show that the computed capillarity-saturation curves are very similar in gas invasion and nucleation (the gas-water interface confronts similar pore throat size distribution in both cases); the relative water permeability trends are similar (the mean free path for water flow is not affected by the topology of the gas phase); and the relative gas permeability is slightly lower in nucleation (delayed percolation of initially isolated gas-filled pores that do not contribute to gas conductivity). Models developed for unsaturated sediments can be used for reservoir simulation in the context of gas production from hydrate-bearing sediments, with minor adjustments to accommodate a lower gas invasion pressure Po and a higher gas percolation threshold.

  19. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Energy Regulatory Commission Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental Gas Pipe Line Company, LLC, Enterprise Field Services, LLC; Notice of Application March 16, 2010. Take notice that on March 5, 2010, Northern Natural Gas...

  20. Natural gas purchases

    SciTech Connect

    Grenier, E.J. Jr.

    1995-09-01

    In the 1970`s gas and boilers were like oil and water as far as policy makers were concerned, culminating in the Powerplant and Industrial Fuel Use Act (perhaps a more appropriate title would have been the Fuel Non-Use Act or the Gas Non-Use Act). But now, the last two Administrations have made gas the centerpiece of their energy and environmental strategies, including promotion of gas use for boilers and electric generation. The FERC`s Order 636 almost completes the Commission`s restructuring of the gas industry that began with Order 380 (eliminating commodity minimum bills) and progressed sharply with Orders 436 and 500. It is Order 636 that has transformed the interstate pipeline business into a transportation business, with the pipelines virtually out of the merchant business altogether because the Commission is not resting on its laurels after completing implementation of Order 636. Rather, it is exploring new ways to expand the growing competitive market for gas, including the possibility of using market-based rates for interstate pipeline transportation services. Methods for the procurement of natural gas supplies are discussed.

  1. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  2. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-07-06

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer

  3. Western Gas Sands Subprogram

    SciTech Connect

    Not Available

    1983-12-01

    The Western Gas Sands Subprogram (WGSS) is a multidisciplinary research effort within the US Department of Energy program on Unconventional Gas Recovery. The subprogram, managed by DOE's Morgantown Energy Technology Center, is directed towards the development of tight (very low permeability) lenticular gas sands in the western United States. The purpose of the subprogram is to demonstrate the feasibility of economically producing natural gas from low-permeability reservoirs. The subprogram has two broad goals: (1) to reduce the uncertainty of the reservoir production potential and (2) to improve the extraction technology. With input from the gas industry, universities, and geologic and engineering consulting firms, the WGSS was broadened to include more fundamental research and development. Consequently, for the last five years it has focused on improving diagnostic instrumentation, geophysical and engineering interpretation, and stimulation techniques. Integrated geologic studies of the three priority basins containing tight sands and selected by DOE as research targets have also been pursued as part of this new effort. To date, the following tentative conclusions have evolved: Permeability of the tight gas sands can be as much as three to four orders of magnitude lower than conventional gas deposits. Nineteen western geologic basins and trends containing significant amounts of tight gas have been identified. Gas resources in the priority geologic basins are Piceance Basin, 49 tcf., Uinta Basin, 20 tcf., and Greater Green River Basin, 136 tcf. The presence of natural micro-fractures within the production zone of a reservoir and the effective propped length of hydraulically-induced fractures are the critical parameters for successful development of tight sand resources. 8 figures.

  4. Western gas sands

    SciTech Connect

    Not Available

    1985-03-01

    The purpose of this research is to demonstrate the feasibility of economically producing natural gas from low-permeability reservoirs. Two broad research goals have been defined: (1) reducing the uncertainty of the reservoir production potential, and (2) improving the extraction technology. These goals are being pursued by conducting research and encouraging industrial efforts in developing the necessary technology, including: (1) providing fundamental research into the nature of tight, lenticular gas sands and the technologies for diagnosing and developing them: (2) developing and verifying the technology for effective gas production; and (3) promoting the transfer of research products and technology advances to the gas industry in usable forms. The focus of the research for the last several years has been improving diagnostic instrumentation for reservoir and stimulation performance evaluation, geophysical and engineering interpretation, and stimulation techniques. Integrated geologic studies of three basins containing tight lenticular sands, which were selected by DOE as priority research targets, have also been pursued as part of this new effort. To date, the following tentative conclusions have been formed: Permeability of the tight gas sands can be as much as three to four orders of magnitude lower than that of conventional gas deposits. Nineteen western geologic basins and trends containing significant volumes of tight gas have been identified. Gas resources in the priority geologic basins have been estimated - Piceance Basin 49 Tcf.; Greater Green River Basin, 136 Tcf.; Uinta Basin, 20 Tcf. Presence of natural micro-fractures within a reservoir and the effective propped length of hydraulically induced fratures are the critical parameters for successful development of tight sand resources. Stimulation technology at the present time is insufficient to efficiently recover gas from lenticular tight reservoirs. 8 figs., 3 tabs.

  5. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  6. The Gorgon gas field

    SciTech Connect

    Clegg, L.J.; Sayers, M.J.; Tait, A.M. )

    1990-09-01

    The Gorgon gas field was discovered by West Australian Petroleum Pty Limited (WAPET) in 1980 with the 1 Gorgon well, and appraised by 1 North Gorgon in 1982 and 1 Central Gorgon in 1983. The gas field is situated on the North West Shelf of Western Australia, 65 km northwest of WAPET's Barrow Island oil field, itself 65 km offshore. The Gorgon gas field is at the southwestern end of the Rankin Platform, which contains several giant gas fields. Water depth at the Gorgon gas field is around 250 m. The top of the Triassic Mungaroo Formation reservoir sequence is at approximately 3,500 m subsea. Individual meander-belt sandstones are up to 50 m thick and occur either interbedded with interchannel claystones or stacked to form sand bodies up to 220 m thick. The Triassic sediments form a tilted horst sealed by Cretaceous Barrow Group shales. Gross gas columns and net gas pays in the 1 Gorgon, 1 Central Gorgon, and 1 North Gorgon wells are 409 and 106 m, 441 and 45 m, and 761 and 136 m, respectively. The field is 5 km wide and at least 30 km long. Gas reserves are estimated at 232 {times} 10{sup 9} m{sup 3}, of which around 17% is carbon dioxide and nitrogen. The reservoir sandstones have porosities of 15 to 20% and permeabilities from tens to thousands of millidarcys. Individual zones have flowed gas at rates of up to 1.06 million m{sup 3}/day through a 31.75 mm choke.

  7. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.

  8. Gas ampoule-syringe

    DOEpatents

    Gay, Don D.

    1986-01-01

    A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one end and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

  9. Gas ampoule-syringe

    DOEpatents

    Gay, D.D.

    1985-02-02

    A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

  10. Gas only nozzle

    DOEpatents

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  11. Thermionic gas switch

    DOEpatents

    Hatch, George L.; Brummond, William A.; Barrus, Donald M.

    1986-01-01

    A temperature responsive thermionic gas switch having folded electron emitting surfaces. An ionizable gas is located between the emitter and an interior surface of a collector, coaxial with the emitter. In response to the temperature exceeding a predetermined level, sufficient electrons are derived from the emitter to cause the gas in the gap between the emitter and collector to become ionized, whereby a very large increase in current in the gap occurs. Due to the folded emitter surface area of the switch, increasing the "on/off" current ratio and adjusting the "on" current capacity is accomplished.

  12. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  13. Easy landfill gas profits

    SciTech Connect

    Schleifer, R.

    1988-03-01

    Landfill and digester gases can be valuable fuels. Engine-driven energy recovery systems are a common sight today at landfills and wastewater treatment plants. Yet the complaint is still heard: ''Waste'' gases are tough on engines. That can be true when impurities and variability in landfill or digester gas are not controlled. But with today's fuel-system technology, control is not difficult. Typically, custom-engineered fuel systems for alternate-fuel engine applications can include filters, scrubbers, separators, calorimeters, or other devices needed to deliver an acceptable gas to the engine. It's important that this system is designed only after a thorough gas analysis.

  14. INTENSE ENERGETIC GAS DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-03-01

    A method and apparatus for initiating and sustaining an energetic gas arc discharge are described. A hollow cathode and a hollow anode are provided. By regulating the rate of gas flow into the interior of the cathode, the arc discharge is caused to run from the inner surface of the cathode with the result that adequate space-charge neutralization is provided inside the cathode but not in the main arc volume. Thus, the gas fed to the cathode is substantially completely ionized before it leaves the cathode, with the result that an energetic arc discharge can be maintained at lower operating pressures.

  15. Gas and Shadow Swing

    NASA Astrophysics Data System (ADS)

    Tsai, Chi-Hung; Lai, Mei-Yi; Liu, Che-Wei; Huang, Shiang-Yin; Lin, Che-Yu; Yeh, Jeng-Sheng

    In our digital art, we design a folding fan as an interactive magic device. You can use it to play with gas around the world of illusions. Although gas could not be seen in our real world, we still want to interact with it in our illusions by the element of bubble shadows. Opening and swinging the folding fan can blow the bubble shadows away; closing and swinging it can break bubbles. If the magic fan touches the shadow of gas, the bubble shadows will explode and release colorful particles to surround you. Those actions are controlled and located by our circuits with Arduino board.

  16. Blood Gas Analyzers.

    PubMed

    Gonzalez, Anthony L; Waddell, Lori S

    2016-03-01

    Acid-base and respiratory disturbances are common in sick and hospitalized veterinary patients; therefore, blood gas analyzers have become integral diagnostic and monitoring tools. This article will discuss uses of blood gas analyzers, types of samples that can be used, sample collection methods, potential sources of error, and potential alternatives to blood gas analyzers and their limitations. It will also discuss the types of analyzers that are available, logistical considerations that should be taken into account when purchasing an analyzer, and the basic principles of how these analyzers work. PMID:27451046

  17. Gas pipe explorer robot

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2004-01-01

    A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.

  18. Exhaust gas purifying device

    SciTech Connect

    Sakurai, S.; Hamada, S.

    1985-04-23

    An exhaust gas purifying device for use with a diesel engine comprising a filter block disposed in an engine exhaust passage for collecting exhaust gas particulates, and a heater for incinerating the collected exhaust gas particulates. The filter block has parallel channels defined therein and separated from one another by porous partition walls, some of the channels being closed at their inlet ends with blind plugs while the other channels are closed at their outlet ends with blind plugs. The heater is supported by the blind plugs.

  19. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  20. New Mexico Gas upgrades gas measurement

    SciTech Connect

    Not Available

    1991-12-01

    For over 40 years, the base volume of natural gas within pipe line and distribution systems was obtained by utilizing such factors as measured gas pressure, temperature and calculated compressibility ratio. This paper reports that originally, the method for obtaining base volume information required a series of steps that began with manually transcribing information recorded on meter-mounted mechanical instruments. After recorded information was received, a series of calculations had to be performed. At the time, it was the only practical way to acquire and calculate corrected-volume information. Now, a new generation of electronic instruments is capable of interfacing with computer software programs, enabling the data collection and calculation process to be replaced by electronic technology.

  1. Gas-separation process

    DOEpatents

    Toy, Lora G.; Pinnau, Ingo; Baker, Richard W.

    1994-01-01

    A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

  2. Gas particle radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    The performance of a new space radiator concept, the gas particle radiator (GPR), is studied. The GPR uses a gas containing submicron particles as the radiating medium contained between the radiator's emitting surface and a transparent window. For a modest volume fraction of submicron particles and gas thickness, it is found that the emissivity is determined by the window transmittance. The window must have a high transmittance in the infrared and be structurally strong enough to contain the gas-particle mixture. When the GPR is compared to a proposed titanium wall, potassium heat pipe radiator, with both radiators operating at a power level of 1.01 MW at 775 K, it is found that the GPR mass is 31 percent lower than that of the heat pipe radiator.

  3. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  4. Natural gas repowering experience

    SciTech Connect

    Bautista, P.J.; Fay, J.M.; Gerber, F.B.

    1995-12-31

    Gas Research Institute has led a variety of projects in the past two years with respect to repowering with natural gas. These activities, including workshops, technology evaluations, and market assessments, have indicated that a significant opportunity for repowering exists. It is obvious that the electric power industry`s restructuring and the actual implementation of environmental regulations from the Clean Air Act Amendments will have significant impact on repowering with respect to timing and ultimate size of the market. This paper summarizes the results and implications of these activities in repowering with natural gas. It first addresses the size of the potential market and discusses some of the significant issues with respect to this market potential. It then provides a perspective on technical options for repowering which are likely to be competitive in the current environment. Finally, it addresses possible actions by the gas industry and GRI to facilitate development of the repowering market.

  5. Natural gas monthly

    SciTech Connect

    1996-05-01

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  6. Safer Liquid Natural Gas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    After the disaster of Staten Island in 1973 where 40 people were killed repairing a liquid natural gas storage tank, the New York Fire Commissioner requested NASA's help in drawing up a comprehensive plan to cover the design, construction, and operation of liquid natural gas facilities. Two programs are underway. The first transfers comprehensive risk management techniques and procedures which take the form of an instruction document that includes determining liquid-gas risks through engineering analysis and tests, controlling these risks by setting up redundant fail safe techniques, and establishing criteria calling for decisions that eliminate or accept certain risks. The second program prepares a liquid gas safety manual (the first of its kind).

  7. Gas turbine engine

    DOEpatents

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  8. High Velocity Gas Gun

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  9. Great natural gas swindle

    SciTech Connect

    Karkkainen, B.

    1981-07-01

    The Citizen/Labor Energy Coalition (C/LEC) is challenging natural gas deregulation bids by oil companies, which control 70% of domestic gas production, that will double or triple costs to consumers by 1985. Price increases will affect the cost of consumer goods, food, and several basic industries as well as residential heating bills. C/LEC disagrees with the Reagan administration that decontrol is needed to encourage production because this did not happen with the incentives provided by the Natural Gas Policy Act. Conservation will not be affected either because the capital needed for conservation investment will be used for higher gas bills. With higher employment another direct result, the only beneficiaries of decontrol appear to be the producers. (DCK)

  10. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  11. Natural Gas Emergencies

    MedlinePlus

    ... by the Cass (ND) and Clay (MN) Emergency Planning Partnerships. Adapted with funding provided by Fargo Cass Public Health through the Cities Readiness Initiative (CRI) English – Natural Gas Emergencies - Last ...

  12. WebGasEOS

    2005-10-01

    WebGasEOS provides quick, user-friendly access to real gas physical properties. Using the real gas properties modules of the TOUGH-Fx project, WebGasEOS allows any user, though a web- based application, to define a multicornponent system, specify temperature and pressure, select an equation of state, and compute volumetric, thermodynamic, and fluid properties. Additional functions allow the inclusion of gaseous or liquid water, with or without added salts. The user may choose the format of the results, performmore » repeat calculations or calculations over a range of temperature and pressure, or vary compositions by simply changing form parameters, The application is publicly available on the internet and can be used at any time by anyone with a standards-compliant web browser.« less

  13. Gas chromatography in space.

    PubMed

    Akapo, S O; Dimandja, J M; Kojiro, D R; Valentin, J R; Carle, G C

    1999-05-28

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  14. Gas chromatography in space

    NASA Technical Reports Server (NTRS)

    Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.

    1999-01-01

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  15. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  16. Gas Giants Form Quickly

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas.

    Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years.

    The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond.

  17. Future natural gas supplies

    NASA Astrophysics Data System (ADS)

    Despite recent optimism about the outlook for the future supply of domestic conventional natural gas, the Congressional Office of Technology Assessment (OTA) finds insufficient evidence to clearly justify either an optimistic or a pessimistic view. In a technical memorandum entitled “U.S. Natural Gas Availability: Conventional Gas Supply Through the Year 2000,” released recently by Rep. Philip R. Sharp (D-Ind,), chairman of the Subcommittee on Fossil and Synthetic Fuels of the Committee on Energy and Commerce, OTA concluded that substantial technical uncertainties prevented a reliable estimation of the likely natural gas production rates for later in this century. Even ignoring the potential for significant changes in gas prices and technology, OTA estimated that conventional gas production by the lower 48 states in the year 2000 could range from 9 to 19 trillion cubic feet (TCF) (0.25 to 0.53 trillion cubic meters), compared to 1982 production of 17.5 TCF. Similarly, production in the year 1990 could range from 13 to 20 TCF.

  18. Exhaust gas recirculator

    SciTech Connect

    Suda, K.

    1983-01-04

    An exhaust gas recirculator for an internal combustion engine having an exhaust pipe, an intake manifold and a carburetor throttle valve. The exhaust gas recirculator comprises an egr passage which makes the exhaust pipe communicate with the intake manifold, an egr controlling valve and an egr valve respectively arranged in the upper and lower portions of the egr passage. The egr valve operates in association with the carburetor throttle valve for metering the flow of egr gas. The egr controlling valve is separated by a diaphragm into an egr gas chamber communicating with the egr passage between the egr controlling valve and the egr valve and a negative pressure chamber communicating with the intake manifold. The negative pressure chamber contains a compression spring, and the diaphragm is connected with a valve member through a rod upon which is disposed a stopper to serve as a different seal in place of the valve member to close off the exhaust gas passage, which valve member and stopper are constructed to be opened and closed by pressure difference between the egr gas chamber and the negative pressure chamber and by elastic force of the compression spring. The egr controlling valve functions to control the pressure difference around the egr valve to be constant.

  19. Retained gas inventory comparison

    SciTech Connect

    BARTON, W.B.

    1999-05-18

    Gas volume data derived from four different analytical methods were collected and analyzed for comparison to volumes originally used in the technical basis for the Basis for Interim Operations (BIO). The original volumes came from Hodgson (1996) listed in the reference section of this document. Hodgson (1996) screened all 177 single and double-shell tanks for the presence of trapped gas in waste via two analytical methods: Surface Level Rise (SLR), and Barometric Pressure Effect (BPE). More recent gas volume projections have been calculated using different analytical techniques along with updates to the parameters used as input to the SLR and BPE models. Gas volumes derived from new analytical instruments include those as measured by the Void Fraction Instrument (VFI) and Retained Gas Sampler (RGS). The results of this comparison demonstrate that the original retained gas volumes of Hodgson (1996) used as a technical basis in developing the BIO were conservative, and were conservative from a safety analysis standpoint. These results represent only comparisons to the original reported volumes using the limited set of newly acquired data that is available.

  20. Methanol simplifies gas processing

    SciTech Connect

    Minkkinen, A.; Jonchere, J.P.

    1997-12-31

    Recent development of a simple single solvent technology goes far to meet the complete gas processing needs. The use of methanol, as practiced in the IPFEXOL process, where it is used not only as a hydrate inhibitor and antifreeze agent but as an acid gas extraction solvent makes the complete gas processing scheme simple and probably the most cost effective as well. This paper presents several gas processing applications where water, hydrocarbon liquids and acid gases are removed from natural wellhead production gases. Water and hydrocarbon liquids removal is achieved to the extent necessary to make a pipeline transportable gas or meet downstream cryogenic processing demands. These are illustrated with recent applications of the IFPEX-1 process successfully operating today in North America and the Far East. A recent North Sea offshore project is highlighted showing the particular advantages in offshore applications. For the removal of water and hydrocarbon liquids together with a substantial quantity of not only CO{sub 2} but H{sub 2}S, the most complete methanol use scheme is presented. This is illustrated with the development of an advanced version of the IFPEX-2 process containing some innovative but simple equipment concepts which yields high pressure dry acid gases for reinjection or a high quality acid gas destined to Claus type sulfur recovery.

  1. Soap film gas flowmeter

    SciTech Connect

    Lalin, H.S.; Bermudez, J.E.; Fleming, W.T.

    1987-09-08

    A soap film gas flowmeter is described comprising: a flow tube having a hollow body with opposite open ends through which a soap film is propelled and a first closed chamber housing a soap solution. It also includes means for supporting the flow tube in a substantially vertical position with the open bottom end of the flow tube disposed in the first chamber above the soap solution; a second closed chamber into which the open top end of the flow tube extends and gas inlet means for introducing gas into the first chamber at a flow rate to be measured using the flowmeters. A gas exit means is included for discharging the gas introduced into the first chamber through the second chamber. Plus there are means for generating a single soap bubble from the soap solution substantially at the bottom end of the flow tube and a relatively large opening in the flowtube for providing an open passageway for inlet gas to pass through the flowtube when the bottom open end of the flowtube is covered by the soap solution.

  2. [Gas weapons as a variation on gas-propelled firearms].

    PubMed

    Isakov, V D; Babakhanian, R V; Kuznetsov, Iu D; Katkov, I D; Dolinskiĭ, V E

    1995-01-01

    Discusses the motion of gas weapons as defence weapons, including the group of gas barrel guns. Characterizes its design and ammunition. Presents arguments in favor of referring gas barrel guns to firearm devices. Shows the place of gas barrel guns in the general classification of ejecting devices and offers a classification of civil chemical weapons.

  3. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  4. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  5. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  6. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  7. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  8. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology

  9. Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas!

    PubMed

    Tinajero-Trejo, Mariana; Jesse, Helen E; Poole, Robert K

    2013-01-01

    We review recent examples of the burgeoning literature on three gases that have major impacts in biology and microbiology. NO, CO and H2S are now co-classified as endogenous gasotransmitters with profound effects on mammalian physiology and, potentially, major implications in therapeutic applications. All are well known to be toxic yet, at tiny concentrations in human and cell biology, play key signalling and regulatory functions. All may also be endogenously generated in microbes. NO and H2S share the property of being biochemically detoxified, yet are beneficial in resisting the bactericidal properties of antibiotics. The mechanism underlying this protection is currently under debate. CO, in contrast, is not readily removed; mounting evidence shows that CO, and especially organic donor compounds that release the gas in biological environments, are themselves effective, novel antimicrobial agents.

  10. Isothermal-Gas-Transfer Program

    NASA Technical Reports Server (NTRS)

    Levine, Don I.

    1989-01-01

    Isothermal Gas Transfer program (GASXFER) solves variety of problems in which gas or gas mixture transferred between two containers. Special features of program include ease of entering data and ease of obtaining output. Program displays, prints, or graphs complete pressure history of each gas as function of time. Written in Lotus Symphony macrolanguage.

  11. Gas intrusion into SPR caverns

    SciTech Connect

    Hinkebein, T.E.; Bauer, S.J.; Ehgartner, B.L.; Linn, J.K.; Neal, J.T.; Todd, J.L.; Kuhlman, P.S.; Gniady, C.T.; Giles, H.N.

    1995-12-01

    The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.

  12. Diffuse, Warm Ionized Gas

    NASA Astrophysics Data System (ADS)

    Haffner, L. M.

    2002-05-01

    Over the past decade, new high-sensitivity observations have significantly advanced our knowledge of the diffuse, ionized gas in spiral galaxies. This component of the interstellar medium, often referred to as Warm Ionized Medium (WIM) or Diffuse Ionized Gas (DIG), plays an important role in the complex stellar-interstellar matter and energy cycle. In examining the distribution and physical properties of this gas, we learn not only about the conditions of the medium but also about processes providing heating and ionization in the halos of spiral galaxies. For the Milky Way, three new Hα surveys are available providing large sky coverage, arc-minute spatial resolution, and the ability to kinematically resolve this prominent optical emission line. These new, global views show that the Warm Ionized Medium of the Galaxy is ubiquitous as previously suspected, is rich with filamentary structure down to current resolution limits, and can be traced into the halo at large distances from the Galactic plane. Observations of additional optical emission lines are beginning to probe the physical conditions of the WIM. Early results suggest variations in the temperature and ionization state of the gas which are not adequately explained by Lyman continuum stellar photoionization alone. In parallel with this intensive work in the Milky Way have been numerous studies about the diffuse, ionized gas in other spiral galaxies. Here, deep, face-on spiral investigations provide some of the best maps of the global DIG distribution in a galaxy and begin to allow a probe of the local link between star formation and the powering of ionized gas. In addition, ionized gas has been traced out to impressive distances (z > 3 kpc) in edge-on spirals, revealing out large-scale changes in the physical conditions and kinematics of galactic halos.

  13. Gas releases from salt

    SciTech Connect

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  14. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  15. Gas separation membrane module assembly

    DOEpatents

    Wynn, Nicholas P; Fulton, Donald A.

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  16. Ultrafast gas switching experiments

    SciTech Connect

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1993-08-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes < 100 ps which can be used for ultrawideband radar systems, particle accelerators, laser drivers, bioelectromagnetic studies, electromagnetic effects testing, and for basic studies of gas breakdown physics. We have produced and accurately measured pulses with 50 to 100 ps risetimes to peak levels of 75 to 160 kV at pulse repetition frequencies (PRF) to 1 kHz. A unique gas switch was developed to hold off hundreds of kV with parasitic inductance less than 1 nH. An advanced diagnostic system using Fourier compensation was developed to measure single-shot risetimes below 35 ps. The complete apparatus is described and waveforms are presented. The measured data are compared with a theoretical model which predicts key features including dependence on gas species and technology to practical systems antennas and bounded wave developed a thyristor/pulse transformer based system using a highly overvolted cable switch. This pulser driving a Sandia-designed TEM cell, provides an ultra wideband impulse with < 200 ps risetime to the test object at a PRF > Khz at > 100 kV/m E field.

  17. Ultrafast gas switching experiments

    SciTech Connect

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1996-11-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes < 100 ps which can be used for ultrawideband radar systems, particle accelerators, laser drivers, bioelectromagnetic studies, electromagnetic effects testing, and for basic studies of gas breakdown physics. We have produced and accurately measured pulses with 50 to 100 ps risetimes to peak levels of 75 to 160 kV at pulse repetition frequencies (PRF) to I kHz. A unique gas switch was developed to hold off hundreds of kV with parasitic inductance less than I nH. An advanced diagnostic system using Fourier compensation was developed to measure single-shot risetimes below 35 ps. The complete apparatus is described and wave forms are presented. The measured data are compared with a theoretical model which predicts key features including dependence on gas species and pressure. We have applied this technology to practical systems driving ultrawideband radiating antennas and bounded wave simulators. For example, we have developed a thyristor/pulse transformer based system using a highly overvolted cable switch. This pulser driving a Sandia- designed TEM cell, provides an ultra wideband impulse with < 200 ps risetime to the test object at a PRF > 1 kHz at > 100 kV/m E field.

  18. Gas-powered integration

    SciTech Connect

    Hawrylyshyn, G.

    1993-05-01

    Popularly known as the Brazil/Bolivia Gas Deal, the project consists of a 20-year agreement to supply Bolivian natural gas to heavily industrialized southern Brazil. This is an inter-regional undertaking comparable in scope and significance to pipeline projects in Europe and the gas networks between the USA and Canada and Mexico. The Brazil/Boliviz agreement call foe a 10-month period to obtain financing and 30 months to build the 1,376 mile main pipeline, a job that will be undertaken individually by each country within its territory. The pipelines will meet at the border in Corumba. Aside from the main gasline, the 20-year agreement will also require the laying of 1,184 kilometers (736 miles) of additional feeder and distribution pipelines in Brazil, raising the total pipe mileage to 3,389 kilometers. Then there is the need to build the whole infrastructure for gas distribution facilities and to switch to gas to power the equipment in thousands of industrial plants, commercial establishments and residences. The total investment in this undertaking is estimated to surpass US$10 billion.

  19. Oil and gas amass

    NASA Astrophysics Data System (ADS)

    Current estimates of future reserve growth of existing U.S. oil and gas fields are significantly larger than previous estimates, according to a new assessment by the U.S. Geological Survey. In fact, they may be twice as big as those estimated in a 1989 assessment. USGS Director Gordon Eaton largely attributes the nearly two-fold difference to "the use of newly available data from the Department of Energy's Energy Information Administration (EIA)." The new study estimates that 110 billion barrels of crude oil are "technically recoverable in the United States." This includes 20 billion barrels in "proved reserves," future growth of reserves of 60 billion barrels, undiscovered conventional resources between 23 and 40 barrels, and nearly 2 billion barrels from "unconventional" sources. Meanwhile, the study estimates that about 1,074 trillion cubic feet (Tcf) of natural gas are recoverable, compared to about half that estimated in the 1989 assessment. The tally includes about 268 Tcf from undiscovered conventional accumulations, potential reserve growth in existing fields of about 322 Tcf, about 318 Tcf in continuous type accumulations in shales, sandstones, and chalks, and about 50 Tcf in coal beds. "This USGS assessment differs significantly from previous assessments because it includes more categories of oil and gas resources, including tight gas sandstones, coal bed gas and fractured shales," which required the USGS to develop new methods, Eaton explains.

  20. Geopolitics of natural gas

    SciTech Connect

    Not Available

    1983-11-09

    With almost as many vital economic interests as there were attendees, two natural gas international conferences were held in North America during September and October, to share experience and forecasts. On September 26, the Canadian Energy Research Institute (CERI) and the Calgary Chamber of Commerce sponsored the International Gas Markets Conference and drew 400 persons. And on October 5-6, at the University of Colorado at Boulder, USA, the International Research Center for Energy and Economic Development (ICEED) held its Tenth International Energy Conference on Economic and Political Issues of Natural Gas in International Trade, drawing some 200 experts. The latter seminar was preceded by a two-day seminar on Asian Energy Supplies and Requirements, which also featured natural gas in many of its presentations. To provide an overview of some of these pressing questions, Energy Detente reports on these two comprehensive seminars on natural gas. This issue also presents the fuel price/tax series and the principal industrial fuel prices for the Eastern Hemisphere for November 1983.

  1. Elements of gas contracts

    SciTech Connect

    O`Neal, J.

    1995-12-01

    The gas marketing scene has taken on a new look from the days of the {open_quotes}Long Term{close_quotes} or {open_quotes}Life of Lease{close_quotes} Contracts. In the past natural gas was of ten sold direct from the wellhead or a producer-owned facility to a pipeline company at a flat rate price and the only parties involved were producer or seller and buyer. Today, the parties involved in the marketing process might include a gathering entity to gather gas at a central point and provide gathering, compression and/or dehydration services; multiple pipeline companies for transportation; sales representatives or marketing brokers to negotiate a sale of the available gas on a monthly basis; and purchasers or end users. New terms have also been introduced in the process such as: {open_quotes}LDC{close_quotes} (local distribution company), {open_quotes}FERC Order 636{close_quotes}, {open_quotes}Price Delivered-to-Pipeline{close_quotes} and the various {open_quotes}levels of Service{close_quotes} under Gas Sales and Purchase Agreements. Four common levels of service are: {open_quotes}Firm{close_quotes}, {open_quotes}Baseload{close_quotes}, {open_quotes}Swing{close_quotes} and {open_quotes}Baseload/Operational{close_quotes}. It is evident that current marketing plans often require a separate contract for each service or commitment. Contract contents vary greatly, but most contain the following elements.

  2. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  3. GAS DISCHARGE DEVICES

    DOEpatents

    Jefferson, S.

    1958-11-11

    An apparatus utilized in introducing tritium gas into envelope of a gas discharge device for the purpose f maintaining the discharge path in ionized condition is described. ln addition to the cathode and anode, the ischarge device contains a zirconium or tantalum ilament arranged for external excitation and a metallic seed containing tritium, and also arranged to have a current passed through it. Initially, the zirconium or tantalum filament is vaporized to deposit its material adjacent the main discharge region. Then the tritium gas is released and, due to its affinity for the first released material, it deposits in the region of the main discharge where it is most effective in maintaining the discharge path in an ionized condition.

  4. Gas-sensing optrode

    DOEpatents

    Hirschfeld, Tomas B.

    1988-01-01

    An optrode is provided for sensing dissolved gases or volatile components of a solution. A fiber optic is provided through which light from an associated light source is transmitted from a first end to a second end. A bubble forming means, such as a tube, is attached to the second end of the fiber optic, and an indicator material is disposed in cooperation with the bubble forming means adjacent to the second end of the fiber optic such that it is illuminated by light emanating from the second end. The bubble forming means causes a gas bubble to form whenever the optrode is immersed in the fluid. The gas bubble separates the indicator material from the fluid. Gases, or other volatile components, of the fluid are sensed as they diffuse across the gas bubble from the fluid to the indicator material.

  5. GAS COOLED NUCLEAR REACTORS

    DOEpatents

    Long, E.; Rodwell, W.

    1958-06-10

    A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

  6. Gas-sensing optrode

    DOEpatents

    Hirschfeld, T.B.

    1988-04-12

    An optrode is provided for sensing dissolved gases or volatile components of a solution. A fiber optic is provided through which light from an associated light source is transmitted from a first end to a second end. A bubble forming means, such as a tube, is attached to the second end of the fiber optic, and an indicator material is disposed in cooperation with the bubble forming means adjacent to the second end of the fiber optic such that it is illuminated by light emanating from the second end. The bubble forming means causes a gas bubble to form whenever the optrode is immersed in the fluid. The gas bubble separates the indicator material from the fluid. Gases, or other volatile components, of the fluid are sensed as they diffuse across the gas bubble from the fluid to the indicator material. 3 figs.

  7. Gas turbine sealing apparatus

    SciTech Connect

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  8. The CARIBU gas catcher

    NASA Astrophysics Data System (ADS)

    Savard, G.; Levand, A. F.; Zabransky, B. J.

    2016-06-01

    The CARIBU upgrade of the ATLAS facility provides radioactive beams of neutron-rich isotopes for experiments at low and Coulomb barrier energies. It creates these beam using a large RF gas catcher that collects and cools fission fragments from an intense 252 Cf fission source and transforms them into a low-emittance monoenergetic beam. This beam can then be purified, reaccelerated and delivered to experiments. This technique is fast and universal, providing access to all fission fragment species independently of their chemical properties. The CARIBU gas catcher has been built to operate at high ionization density and in the presence of the contamination from the source. A brief overview of the CARIBU concept is given below, together with a more detailed description of the CARIBU gas catcher and the performance it has now achieved.

  9. The interstellar gas experiment

    NASA Technical Reports Server (NTRS)

    Lind, D. L.; Geiss, J.; Buehler, F.; Eugster, O.

    1992-01-01

    The Interstellar Gas Experiment (IGE) exposed thin metallic foils to collect neutral interstellar gas particles. These particles penetrate the solar system due to their motion relative to the sun. Thus, it is possible to entrap them in the collecting foils along with precipitating magnetospheric and perhaps some ambient atmospheric particles. For the entire duration of the Long Duration Exposure Facility (LDEF) mission, seven of these foils collected particles arriving from seven different directions as seen from the spacecraft. In the mass spectroscopic analysis of the noble gas component of these particles, we have detected the isotopes of He-3, He-4, Ne-20, and Ne-22. In the foil analyses carried out so far, we find a distribution of particle arrival directions which shows that a significant part of the trapped particles are indeed interstellar atoms. The analysis needed to subtract the competing fluxes of magnetospheric and atmospheric particles is still in progress.

  10. Role of stranded gas in increasing global gas supplies

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This report synthesizes the findings of three regional studies in order to evaluate, at the global scale, the contribution that stranded gas resources can make to global natural gas supplies. Stranded gas, as defined for this study, is natural gas in discovered conventional gas and oil fields that is currently not commercially producible for either physical or economic reasons. The regional studies evaluated the cost of bringing the large volumes of undeveloped gas in stranded gas fields to selected markets. In particular, stranded gas fields of selected Atlantic Basin countries, north Africa, Russia, and central Asia are screened to determine whether the volumes are sufficient to meet Europe’s increasing demand for gas imports. Stranded gas fields in Russia, central Asia, Southeast Asia, and Australia are also screened to estimate development, production, and transport costs and corresponding gas volumes that could be supplied to Asian markets in China, India, Japan, and South Korea. The data and cost analysis presented here suggest that for the European market and the markets examined in Asia, the development of stranded gas provides a way to meet projected gas import demands for the 2020-to-2040 period. Although this is a reconnaissance-type appraisal, it is based on volumes of gas that are associated with individual identified fields. Individual field data were carefully examined. Some fields were not evaluated because current technology was insufficient or it appeared the gas was likely to be held off the export market. Most of the evaluated stranded gas can be produced and delivered to markets at costs comparable to historical prices. Moreover, the associated volumes of gas are sufficient to provide an interim supply while additional technologies are developed to unlock gas diffused in shale and hydrates or while countries transition to making a greater use of renewable energy sources.

  11. Gas separation membranes

    DOEpatents

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  12. Automated gas chromatography

    DOEpatents

    Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  13. Vehicle gas producers

    NASA Astrophysics Data System (ADS)

    Donath, E. E.

    1980-05-01

    The present petroleum supply situation with the possibility of unscheduled interruptions and the definite expectation of continued price increases calls for an investigation of the use of solid fuels for the propulsion of vehicles. The paper reviews the use of solid fuel gas producers with high thermal efficiency on motor vehicles, especially trucks and buses. Some economic comparisons are presented for pre-World War II conditions. Suggestions are made for possible future development of vehicle gas producers. The types of producers are described, along with their performance, special problems, and the importance of fuel properties.

  14. Gas production apparatus

    DOEpatents

    Winsche, Warren E.; Miles, Francis T.; Powell, James R.

    1976-01-01

    This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.

  15. Gas cooking range

    SciTech Connect

    Narang, R.K.; Narang, K.

    1984-02-14

    An energy-efficient gas cooking range features an oven section with improved heat circulation and air preheat, a compact oven/broiler burner, a smoke-free drip pan, an efficient piloted ignition, flame-containing rangetop burner rings, and a small, portable oven that can be supported on the burner rings. Panels spaced away from the oven walls and circulation fans provide very effective air flow within the oven. A gas shutoff valve automatically controls the discharge of heated gases from the oven so that they are discharged only when combustion is occurring.

  16. Gas turbine combustor transition

    DOEpatents

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  17. Gas turbine combustor transition

    DOEpatents

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  18. Gas dynamics. Second edition

    SciTech Connect

    John, J.E.A.

    1984-01-01

    The book treats the basic fundamentals of compressible flow and gas dynamics using a wide breadth of topical coverage. It emphasizes the clear, logical development of basic theory and applies theory to real engineering systems. New in this edition is a complete changeover from English units to SI units. New charts for computing flows containing conical shock waves and expanded tables for isentropic flow and normal shocks are featured. The text emphasizes one dimensional and internal flow, and contains: improved illustrations; many new homework problems; examples and problems involving current applications; and new Mollier diagrams for computing real gas effects.

  19. Heated Gas Bubbles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Fluid Physics is study of the motion of fluids and the effects of such motion. When a liquid is heated from the bottom to the boiling point in Earth's microgravity, small bubbles of heated gas form near the bottom of the container and are carried to the top of the liquid by gravity-driven convective flows. In the same setup in microgravity, the lack of convection and buoyancy allows the heated gas bubbles to grow larger and remain attached to the container's bottom for a significantly longer period.

  20. Occupational arsine gas exposure.

    PubMed

    Pullen-James, Shayla; Woods, Scott E

    2006-12-01

    Arsine gas exposure is a rare occupational event and can be completely prevented with the use of appropriate protective gear. Exposure often occurs when arsine gas is generated while arsenic-containing crude ores or metals are treated with acid. Cases of toxicity require an index of suspicion and a good history. In particular, it should be in the differential diagnosis in patients who present acutely with red/bronze skin and hemoglobinuria. Treatment is supportive and may include transfusions and dialysis in severe cases. Clinical severity is proportionate to the level of exposure, and severity is directly related to the onset of symptoms.

  1. Underwater gas tornado

    NASA Astrophysics Data System (ADS)

    Byalko, Alexey V.

    2013-07-01

    We present the first experimental observation of a new hydrodynamic phenomenon, the underwater tornado. Simple measurements show that the tornado forms a vortex of the Rankine type, i.e. the rising gas rotates as a solid body and the liquid rotates with a velocity decreasing hyperbolically with the radius. We obtain the dependence of the tornado radius a on the gas stream value j theoretically: a ∼ j2/5. Processing of a set of experiments yielded the value 0.36 for the exponent in this expression. We also report the initial stages of the theoretical study of this phenomenon.

  2. Occupational arsine gas exposure.

    PubMed Central

    Pullen-James, Shayla; Woods, Scott E.

    2006-01-01

    Arsine gas exposure is a rare occupational event and can be completely prevented with the use of appropriate protective gear. Exposure often occurs when arsine gas is generated while arsenic-containing crude ores or metals are treated with acid. Cases of toxicity require an index of suspicion and a good history. In particular, it should be in the differential diagnosis in patients who present acutely with red/bronze skin and hemoglobinuria. Treatment is supportive and may include transfusions and dialysis in severe cases. Clinical severity is proportionate to the level of exposure, and severity is directly related to the onset of symptoms. Images Figure 2 PMID:17225850

  3. Gas Chromatic Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Wey, Chowen

    1995-01-01

    Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.

  4. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  5. Natural gas monthly, August 1993

    SciTech Connect

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  6. Natural gas monthly, April 1999

    SciTech Connect

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  7. Natural gas monthly, October 1996

    SciTech Connect

    1996-10-01

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  8. Natural gas monthly, July 1997

    SciTech Connect

    1997-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

  9. Natural gas monthly, March 1994

    SciTech Connect

    Not Available

    1994-03-22

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  10. Acidic gas capture by diamines

    SciTech Connect

    Rochelle, Gary; Hilliard, Marcus

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  11. Natural gas monthly, September 1993

    SciTech Connect

    Not Available

    1993-09-27

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  12. Trace Gas Analyzer (TGA) program

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, fabrication, and test of a breadboard trace gas analyzer (TGA) is documented. The TGA is a gas chromatograph/mass spectrometer system. The gas chromatograph subsystem employs a recirculating hydrogen carrier gas. The recirculation feature minimizes the requirement for transport and storage of large volumes of carrier gas during a mission. The silver-palladium hydrogen separator which permits the removal of the carrier gas and its reuse also decreases vacuum requirements for the mass spectrometer since the mass spectrometer vacuum system need handle only the very low sample pressure, not sample plus carrier. System performance was evaluated with a representative group of compounds.

  13. Gas-separation process

    DOEpatents

    Toy, L.G.; Pinnau, I.; Baker, R.W.

    1994-01-25

    A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

  14. Gas turbine outlet arrangement

    SciTech Connect

    Horgan, J.J.

    1987-09-29

    An engine outlet section is described for an axial-flow gas turbine engine having a hot core gas flow and a surrounding annular bypass fan air flow, comprising: an annular flow separator, separating the core gas from the fan air upstream of the outlet section and terminating at a circular trailing edge; an annular mixer, secured to the trailing edge of the flow separator. The mixer includes alternately radially inwardly and outwardly extending flow lobes. The outwardly extending lobes have a small radial height relative to the radial height of the fan air flow annulus; an axial nozzle plug, disposed downstream of the annular mixer and having a diameter increasing with axial downstream displacement to a maximum diameter greater than or equal to the diameter of the trailing edge of the flow separator. The plug diameter decreases with further downstream axial displacement; and an outer annular engine fairing, confining the fan air upstream of the convoluted mixer and confining the mixing fan air and core gas flow downstream of the mixer. The outer engine fairing further terminates at a downstream edge at a point axially proximate the maximum diameter of the nozzle plug.

  15. Gas path seal

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Johnson, R. D. (Inventor)

    1979-01-01

    A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.

  16. Chlorine Dioxide (Gas)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine dioxide (ClO2) gas is registered by the U.S. Environmental Protection Agency (EPA) as a sterilant for use in manufacturing, laboratory equipment, medical devices, environmental surfaces, tools and clean rooms. Aqueous ClO2 is registered by the EPA as a surface disinfectant and sanitizer fo...

  17. The Gas Laws

    ERIC Educational Resources Information Center

    Raman, V. V.

    1973-01-01

    Inquires into the individual names and dates which are associated with the various perfect gas laws on the basis of published and historically researched works. Indicates the presence of eight features in giving a scientist credit for a scientific discovery. (CC)

  18. Natural Gas Annual

    EIA Publications

    2015-01-01

    Provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by state for the current year. Summary data are presented for each state for the previous 5 years.

  19. Natural Gas Annual

    EIA Publications

    2016-01-01

    Provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by state for the current year. Summary data are presented for each state for the previous 5 years.

  20. Oil and Gas.

    ERIC Educational Resources Information Center

    Meyerhoff, Arthur A.

    1983-01-01

    Highlights worldwide oil and gas developments during 1982, focusing on production, drilling, and other activities/projects in specific countries and regional areas. Indicates that the most political actions (other than the U.S. decision not to protest further the Siberian pipeline project) were the continued Afghanistan and Iraq-Iran wars.…

  1. World Natural Gas, 1978

    SciTech Connect

    Not Available

    1980-07-01

    World marketed production of natural gas in 1978 totaled 51.749 trillion CF (up from 50.1 TCF in 1977); this 3.3% increase, however, was slightly lower than 1977's 3.7% rise. US production, which fell 0.3% dropped to 38.6% of the world total, while the USSR share (13.137 TCF) accounted for 25.4% (for a growth rate of 7.5%). Of the world gross production of 62.032 TCF, 69.7% came from gas wells; the remainder was associated with oil. Thirty-one percent of the 10.282 TCF difference between gross and marketed gas production was used for oil reservoir repressuring, while the balance (7.094 TCF) was vented and flared. Internationally traded gas movements rose to 11.6% of production. The Netherlands, the USSR, and Canada accounted for 30.6%, 20.1% and 14.7%, respectively, of total 1978 exports. At 0.956 TCF, LNG shipments accounted for 15.9% of world trade, a 35.2% higher share than in 1977; most of this growth was due to increased Indonesia-to-Japan volumes.

  2. Fuel gas desulfurization

    DOEpatents

    Yang, Ralph T.; Shen, Ming-Shing

    1981-01-01

    A method for removing sulfurous gases such as H.sub.2 S and COS from a fuel gas is disclosed wherein limestone particulates containing iron sulfide provide catalytic absorption of the H.sub.2 S and COS by the limestone. The method is effective at temperatures of 400.degree. C. to 700.degree. C. in particular.

  3. Natural gas hydrates

    SciTech Connect

    Sloan, E.D. Jr. )

    1991-12-01

    This paper reports on gas clathrates (commonly called hydrates), which are crystalline compounds that occur when water form a cage-like structure around smaller guest molecules. Gas hydrates of interest to the natural gas hydrocarbon industry are composed of water and eight molecules: methane, ethane, propane, isobutane, normal butane, nitrogen, carbon dioxide, and hydrogen sulfide. Hydrate formation is possible in any place where water exists with such molecules - in natural or artificial environments and at temperatures above and below 32{degrees} F when the pressure is elevated. Hydrates are considered a nuisance because they block transmission lines, plug blowout preventers, jeopardize the foundations of deepwater platforms and pipelines, cause tubing and casing collapse, and foul process heat exchangers, valves, and expanders. Common examples of preventive measures are the regulation of pipeline water content, unusual drilling-mud compositions, and large quantities of methanol injection into pipelines. We encounter conditions that encourage hydrate formation as we explore more unusual environments for gas and oil, including deepwater frontiers and permafrost regions.

  4. Polymide gas separation membranes

    DOEpatents

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  5. Turning garbage into gas

    SciTech Connect

    Albrecht, J.E.

    1985-06-01

    Florida's urban wastes and sludge are being converted to methane that will be produced on a commercial scale. The best technological advancements are those that solve multiple problems and benefit wide and varied segments of society The Gas Research Institutes (GRI) involvement in developing and improving methods to produce substinate natural gas (SNG), or methane, from wastes is aimed at providing such benefits. The need for supplemental supplies of gas in the US energy mix could grow from its current level of about 1 Tef per year to about 4 Tef by the year 2000, according to GRI estimates. This waste conversion technology will help create those supplies while reducing costs and problems associated with the disposed of municipal wastes. Substantial progress and success in this area are already being realized at an experimental gas conversion plant. The project, funded by GRI and the U.S. Department of Energy is producing methane from urban wastes and sewage sludge at a site near Pompano Beach, Fla.

  6. Theodore Dreiser's "Laughing Gas".

    PubMed

    Wright, A J

    1989-09-01

    Around World War I, American novelist Theodore Dreiser wrote several plays, one of which, "Laughing Gas," explores the odd experience of a physician undergoing surgery with nitrous oxide/oxygen anesthesia. The content of this play and its relationship to Dreiser's career are examined. PMID:2672896

  7. Advanced Gas Turbine (AGT)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development and progress of the Advanced Gas Turbine engine program is examined. An analysis of the role of ceramics in the design and major engine components is included. Projected fuel economy, emissions and performance standards, and versatility in fuel use are also discussed.

  8. Gas calorimeter workshop: proceedings

    SciTech Connect

    Not Available

    1982-01-01

    Gas calorimeters combining functions of energy measurement and fine tracking have become more and more popular in the past few years. They help identify muons, gammas, electrons, and hadrons within dense tracks from transverse and longitudinal shower development. Fine segmentation capability using pads and strips on the cathodes have made gas-sampling calorimeters very attractive for colliding-beam detectors where a large multiplicity of particles are detected in a projected geometry. Linearity, energy resolution, shower position resolution, multishower resolution, and calibration questions were discussed in detail at the workshop. Ease of energy calibration by monitoring radioactive sources, good gain uniformity, and gain stability obtained were among the topics of the speakers. There was a discussion session on the operation mode of wire chambers. Gas calorimeters have been used successfully at CERN, Cornell, Fermilab, and SLAC for experiments. Some of the results from those large-scale devices were reported. Future usage of gas-sampling calorimeters for colliding-beam experiments at Fermilab and CERN were discussed. Wire chambers using extruded conductive plastic tubes have made construction easy of pads and strips which can conveniently read out induced signals from the cathode. The results of extensive studies on such devices were discussed. Separate entries were prepared for the data base for the 17 papers presented. (WHK)

  9. Driver Education Saves Gas.

    ERIC Educational Resources Information Center

    American Automobile Association, Falls Church, VA. Traffic Engineering and Safety Dept.

    The argument that driver education should be dropped because driver education cars use gas is shortsighted. High school driver education is an excellent vehicle for teaching concepts of energy conservation. A small investment in fuel now can result in major savings of gasoline over a student's lifetime. In addition good driver education courses…

  10. Europa's Neutral Gas Torus

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.; Mitchell, D. G.; McEntire, R. W.; Paranicas, C. P.; Roelof, E. C.; Williams, D. J.; Krimigis, S. M.; Lagg, A.

    2004-05-01

    In-situ energetic ion measurements from the Galileo spacecraft and remote energetic neutral atom (ENA) images from the Cassini spacecraft have been previously interpreted as revealing an unexpectedly massive torus of gas co-orbiting with Jupiter's moon Europa (Lagg et al., 2003; Mauk et al., 2003). Here we report on the results of detailed modeling of the ENA emission process from the Europa regions. Updates to the distribution and composition of the trapped energetic ion populations are included in the models, as are considerations of the partitioning of the gas products into multiple atomic and molecular species. Comparisons between the models and the Cassini observations reveal a torus with a total gas content equal to (0.5 +/- 0.2) E34 atoms plus molecules. This value is higher than, but within a factor of 3 of, an estimate inferred from a prediction of gas densities derived from Voyager plasma measurements and modeling of the interaction between the plasmas and the gases assumed to be emanating from Europa (Schreier et al., 1993). Lagg, A., N. Krupp, J. Woch, and D. J. Williams, Geophys. Res. Lett., 30, DOI 10.1029/2003GL017214, 2003. Mauk, B. H., D. G. Mitchell, S. M. Krimigs, E. C. Roelof, and C. P. Paranicas, Nature, 241, 920, 2003. Schreier, S., A. Eviatar, V. M. Vasyliunas, and J. D. Richardson, J. Geophys. Res., 98, 21231, 1993.

  11. Pressurized gas filled tendons

    SciTech Connect

    Silcox, W. H.

    1985-06-04

    Pressurized gas filled tubular tendons provide a means for detecting leaks therein. Filling the tendon with a gaseous fluid provides increased buoyancy and reduces the weight supported by the buoyant structure. The use of a corrosion inhibiting gaseous fluid reduces the corrosion of the interior tendon wall.

  12. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  13. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  14. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  15. 35. VIEW OF DUAL VENTURI GAS WASHER IN THE GAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VIEW OF DUAL VENTURI GAS WASHER IN THE GAS WASHER PUMP HOUSE LOOKING NORTHEAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. Gas centrifuge purge method

    DOEpatents

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  17. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.W.

    1997-05-01

    Cryenco and Los Alamos are collaborating to develop a natural-gas-powered natural-gas liquefier that will have no moving parts and require no electrical power. It will have useful efficiency, remarkable reliability, and low cost. The liquefaction of natural gas, which occurs at only 115 Kelvin at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 invention of the thermoacoustically driven orifice pulse-tube refrigerator (TA-DOPTR) provides cryogenic refrigeration with no moving parts for the first time. In short, this invention uses acoustic phenomena to produce refrigeration from heat. The required apparatus consists of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. In the Cryenco-Los Alamos collaboration, the authors are developing a version of this invention suitable for use in the natural-gas industry. The project is known as acoustic liquefier for short. The present program plans call for a two-phase development. Phase 1, with capacity of 500 gallon per day (i.e., approximately 40,000 scfd, requiring a refrigeration power of about 7 kW), is large enough to illuminate all the issues of large-scale acoustic liquefaction without undue cost, and to demonstrate the liquefaction of 60--70% of input gas, while burning 30--40%. Phase 2 will target versions of approximately 10{sup 6} scfd = 10,000 gallon per day capacity. In parallel with both, they continue fundamental research on the technology, directed toward increased efficiency, to build scientific foundations and a patent portfolio for future acoustic liquefiers.

  18. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  19. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    SciTech Connect

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  20. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    SciTech Connect

    Oldenburg, Curtis M.

    2003-04-08

    Natural gas reservoirs are obvious targets for carbon sequestration by direct carbon dioxide (CO{sub 2}) injection by virtue of their proven record of gas production and integrity against gas escape. Carbon sequestration in depleted natural gas reservoirs can be coupled with enhanced gas production by injecting CO{sub 2} into the reservoir as it is being produced, a process called Carbon Sequestration with Enhanced Gas Recovery (CSEGR). In this process, supercritical CO{sub 2} is injected deep in the reservoir while methane (CH{sub 4}) is produced at wells some distance away. The active injection of CO{sub 2} causes repressurization and CH{sub 4} displacement to allow the control and enhancement of gas recovery relative to water-drive or depletion-drive reservoir operations. Carbon dioxide undergoes a large change in density as CO{sub 2} gas passes through the critical pressure at temperatures near the critical temperature. This feature makes CO{sub 2} a potentially effective cushion gas for gas storage reservoirs. Thus at the end of the CSEGR process when the reservoir is filled with CO{sub 2}, additional benefit of the reservoir may be obtained through its operation as a natural gas storage reservoir. In this paper, we present discussion and simulation results from TOUGH2/EOS7C of gas mixture property prediction, gas injection, repressurization, migration, and mixing processes that occur in gas reservoirs under active CO{sub 2} injection.

  1. Retained Gas Sampling Results for the Flammable Gas Program

    SciTech Connect

    J.M. Bates; L.A. Mahoney; M.E. Dahl; Z.I. Antoniak

    1999-11-18

    The key phenomena of the Flammable Gas Safety Issue are generation of the gas mixture, the modes of gas retention, and the mechanisms causing release of the gas. An understanding of the mechanisms of these processes is required for final resolution of the safety issue. Central to understanding is gathering information from such sources as historical records, tank sampling data, tank process data (temperatures, ventilation rates, etc.), and laboratory evaluations conducted on tank waste samples.

  2. Primer on gas integrated resource planning

    SciTech Connect

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S.

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  3. Reducing gas generators and methods for generating a reducing gas

    SciTech Connect

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  4. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  5. Natural gas monthly, December 1995

    SciTech Connect

    1995-12-01

    This report presents information of interest to organizations associated with the natural gas industry. Data are presented on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  6. Natural Gas Exports from Iran

    EIA Publications

    2012-01-01

    This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  7. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  8. Natural Gas Monthly, March 1996

    SciTech Connect

    1996-03-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  9. Natural gas monthly, October 1998

    SciTech Connect

    1998-10-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  10. Natural gas monthly, June 1998

    SciTech Connect

    1998-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  11. Natural gas monthly, July 1998

    SciTech Connect

    1998-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  12. Natural gas monthly, September 1998

    SciTech Connect

    1998-09-01

    The National Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  13. Natural gas monthly, April 1995

    SciTech Connect

    1995-04-27

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

  14. High pressure synthesis gas conversion

    SciTech Connect

    Not Available

    1992-01-01

    A high pressure gas phase fermentation system has been constructed for the biological production of ethanol from coal synthesis gas. The reactors in the system consist of a 650 mL continuous stirred tank reactor and a 1 L continuous column reactor. The reactors are designed for individual or dual operation in series or parallel, with continuous gas and liquid feed. The system is housed in a constant temperature, explosion-proof room, equipped with gas leak detectors.

  15. Natural gas monthly, April 1994

    SciTech Connect

    Not Available

    1994-04-26

    The National Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  16. Natural gas monthly, June 1997

    SciTech Connect

    1997-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

  17. Natural gas monthly: December 1993

    SciTech Connect

    Not Available

    1993-12-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

  18. Natural gas monthly, May 1999

    SciTech Connect

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  19. Natural gas monthly, August 1994

    SciTech Connect

    Not Available

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  20. Natural gas monthly, July 1994

    SciTech Connect

    Not Available

    1994-07-20

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  1. Natural gas monthly, November 1993

    SciTech Connect

    Not Available

    1993-11-29

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  2. Natural gas monthly, September 1995

    SciTech Connect

    1995-09-27

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  3. Prospects bleak for deep gas

    SciTech Connect

    Schmidt, R.H.

    1982-10-01

    The incentive for producing unregulated deep gas has dropped along with oil prices. Until the oil glut ends and shallow gas is deregulated and allowed to reach market-clearing levels, producers will continue to slow production and delay new drilling ventures. Deep gas will not be competitive in most markets after deregulation is complete in 1985 even if there is another Middle East oil shock. New drilling for controlled shallow gas will also wait for deregulation. (DCK)

  4. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring.

    PubMed

    Rahimpour, Mohammad Reaza; Jokar, Seyyed Mohammad

    2012-03-30

    A suggested method for controlling the level of hazardous materials in the atmosphere is prevention of combustion in flare. In this work, three methods are proposed to recover flare gas instead of conventional gas-burning in flare at the Farashband gas refinery. These methods aim to minimize environmental and economical disadvantages of burning flare gas. The proposed methods are: (1) gas to liquid (GTL) production, (2) electricity generation with a gas turbine and, (3) compression and injection into the refinery pipelines. To find the most suitable method, the refinery units that send gas to the flare as well as the required equipment for the three aforementioned methods are simulated. These simulations determine the amount of flare gas, the number of GTL barrels, the power generated by the gas turbine and the required compression horsepower. The results of simulation show that 563 barrels/day of valuable GTL products is produced by the first method. The second method provides 25 MW electricity and the third method provides a compressed natural gas with 129 bar pressure for injection to the refinery pipelines. In addition, the economics of flare gas recovery methods are studied and compared. The results show that for the 4.176MMSCFD of gas flared from the Farashband gas refinery, the electricity production gives the highest rate of return (ROR), the lowest payback period, the highest annual profit and mild capital investment. Therefore, the electricity production is the superior method economically.

  5. Water-gas shift reaction

    SciTech Connect

    Newsome, D.S.

    1980-01-01

    A review covers the industrial applications of the water-gas shift reaction in hydrogen manufacturing, removing CO from ammonia synthesis feeds, and detoxifying town gas; and the catalyst characteristics, reaction kinetics, and reaction mechanisms of the water-gas shift reactions catalyzed by iron-based, copper-based, or sulfided cobalt-molybdenum catalysts.

  6. Natural gas monthly, January 1999

    SciTech Connect

    1999-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  7. Natural gas monthly, February 1999

    SciTech Connect

    1999-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  8. Natural gas monthly, November 1998

    SciTech Connect

    1998-11-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 27 tabs.

  9. Desiccant drying of gas pipelines

    SciTech Connect

    LaCasse, G.A.; Ingvordsen, T.

    1988-09-01

    Prevention of hydrates buildup and corrosion in gas pipelines after hydrostatic testing is increasingly important to those in the gas industry. This paper outlines a dry air method used in Denmark for drying gas pipelines. The psychrometric principles, drying method, and humidity measurements are described.

  10. Variable gas leak rate valve

    DOEpatents

    Eernisse, Errol P.; Peterson, Gary D.

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  11. Natural gas monthly, December 1998

    SciTech Connect

    1998-12-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  12. Automated gas chromatography

    DOEpatents

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  13. Multiplex gas chromatography

    NASA Technical Reports Server (NTRS)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  14. Hydrogen gas relief valve

    DOEpatents

    Whittlesey, Curtis C.

    1985-01-01

    An improved battery stack design for an electrochemical system having at least one cell from which a gas is generated and an electrolyte in communication with the cell is described. The improved battery stack design features means for defining a substantially closed compartment for containing the battery cells and at least a portion of the electrolyte for the system, and means in association with the compartment means for selectively venting gas from the interior of the compartment means in response to the level of the electrolyte within the compartment means. The venting means includes a relief valve having a float member which is actuated in response to the level of the electrolyte within the compartment means. This float member is adapted to close the relief valve when the level of the electrolyte is above a predetermined level and open the relief valve when the level of electrolyte is below this predetermined level.

  15. GAS PHOTOTUBE CIRCUIT

    DOEpatents

    Richardson, J.H.

    1958-03-01

    This patent pertains to electronic circuits for measuring the intensity of light and is especially concerned with measurement between preset light thresholds. Such a circuit has application in connection with devices for reading-out information stored on punch cards or tapes where the cards and tapes are translucent. By the novel arrangement of this invention thc sensitivity of a gas phototube is maintained at a low value when the light intensity is below a first threshold level. If the light level rises above the first threshold level, the tube is rendered highly sensitive and an output signal will vary in proportion to the light intensity change. When the light level decreases below a second threshold level, the gas phototube is automatically rendered highly insensitive. Each of these threshold points is adjustable.

  16. Gas turbine sealing apparatus

    DOEpatents

    Marra, John Joseph; Wessell, Brian J.; Liang, George

    2013-03-05

    A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

  17. Gas Blowing: Mass Transfer in Gas and Melt

    NASA Astrophysics Data System (ADS)

    Sortland, Øyvind Sunde; Tangstad, Merete

    2014-09-01

    Metallurgical routes for solar grade silicon production are being developed as alternatives to chemical processes for their potential to achieve cost reductions, increased production volume, and reduced environmental and safety concerns. An important challenge in the development of metallurgical routes relates to the higher impurity concentrations in the silicon product, particularly for boron and other elements that are not efficiently segregated in solidification techniques. The reactive gas refining process is studied for its potential to remove boron below the solar grade silicon target concentration in a single step by blowing steam and hydrogen gas jets onto the melt surface. Boron in a silicon melt is extracted to HBO gas in parallel to active oxidation of silicon. The literature is not unified regarding the rate determining step in this process. Relevant theories and equations for gas blowing in induction furnaces are combined and used to explain mass transfer in experiments. Mass transfer in the melt and gas is investigated by comparing resistance and induction heating of the melt, and varying gas flow rate, crucible diameter, diameter of the gas lance, and the position of the gas lance above the melt surface. The rate of boron removal is found to increase with increasing gas flow rate and crucible diameter. A relatively high fraction of the reactive gas is utilized in the process, and supply of steam in the bulk gas is the only identified rate determining step.

  18. Quantifying capture efficiency of gas collection wells with gas tracers.

    PubMed

    Yazdani, Ramin; Imhoff, Paul; Han, Byunghyun; Mei, Changen; Augenstein, Don

    2015-09-01

    A new in situ method for directly measuring the gas collection efficiency in the region around a gas extraction well was developed. Thirteen tests were conducted by injecting a small volume of gas tracer sequentially at different locations in the landfill cell, and the gas tracer mass collected from each test was used to assess the collection efficiency at each injection point. For 11 tests the gas collection was excellent, always exceeding 70% with seven tests showing a collection efficiency exceeding 90%. For one test the gas collection efficiency was 8±6%. Here, the poor efficiency was associated with a water-laden refuse or remnant daily cover soil located between the point of tracer injection and the extraction well. The utility of in situ gas tracer tests for quantifying landfill gas capture at particular locations within a landfill cell was demonstrated. While there are certainly limitations to this technology, this method may be a valuable tool to help answer questions related to landfill gas collection efficiency and gas flow within landfills. Quantitative data from tracer tests may help assess the utility and cost-effectiveness of alternative cover systems, well designs and landfill gas collection management practices. PMID:26148643

  19. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  20. Evolved gas composition monitoring by repetitive injection gas chromatography.

    PubMed

    White, Robert L

    2015-11-20

    Performance characteristics and applications of a small volume gas chromatograph oven are described. Heating and cooling properties of the apparatus are evaluated and examples are given illustrating the advantages of greatly reducing the air bath volume surrounding fused silica columns. Fast heating and cooling of the oven permit it to be employed for repetitive injection analyses. By using fast gas chromatography separations to achieve short assay cycle times, the apparatus can be employed for on-line species-specific gas stream composition monitoring when volatile species concentrations vary on time scales of a few minutes or longer. This capability facilitates repeated sampling and fast gas chromatographic separations of volatile product mixtures produced during thermal analyses. Applications of repetitive injection gas chromatography-mass spectrometry evolved gas analyses to monitoring purge gas effluent streams containing volatile acid catalyzed polymer cracking products are described. The influence of thermal analysis and chromatographic experimental parameters on effluent sampling frequency are delineated.

  1. Gas-driven microturbine

    SciTech Connect

    Sniegowski, J.J.; Rodgers, M.S.; McWhorter, P.J.; Aeschliman, D.P.; Miller, W.M.

    1996-06-27

    This paper describes an invention which relates to microtechnology and the fabrication process for developing microelectrical systems. It describes a means for fabricating a gas-driven microturbine capable of providing autonomous propulsion in which the rapidly moving gases are directed through a micromachined turbine to power devices by direct linkage or turbo-electric generators components in a domain ranging from tenths of micrometers to thousands of micrometers.

  2. Gas turbine premixing systems

    DOEpatents

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  3. Exhaust gas purification device

    SciTech Connect

    Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

    1980-02-19

    The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

  4. Gas filled panel insulation

    DOEpatents

    Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  5. Gas filled panel insulation

    DOEpatents

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  6. THE DARK MOLECULAR GAS

    SciTech Connect

    Wolfire, Mark G.; Hollenbach, David; McKee, Christopher F. E-mail: dhollenbach@seti.or

    2010-06-20

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H{sub 2} mass. However, a significant H{sub 2} mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas-phase carbon resides in C or C{sup +}. Here, H{sub 2} self-shields or is shielded by dust from UV photodissociation, whereas CO is photodissociated. This H{sub 2} gas is 'dark' in molecular transitions because of the absence of CO and other trace molecules, and because H{sub 2} emits so weakly at temperatures 10 K gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper, we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant ({approx}0.3 for average visual extinction through the cloud A-bar{sub V{approx_equal}}8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as A-bar{sub V}, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing A-bar{sub V}, since relatively more molecular H{sub 2} material lies outside the CO region in this case.

  7. Gas stream cleanup

    SciTech Connect

    Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

    1990-08-01

    This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

  8. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters considered for space propulsion systems were investigated. Electron diffusion across a magnetic field was examined utilizing a basic model. The production of doubly charged ions was correlated using only overall performance parameters. The use of this correlation is therefore possible in the design stage of large gas thrusters, where detailed plasma properties are not available. Argon hollow cathode performance was investigated over a range of emission currents, with the positions of the inert, keeper, and anode varied. A general trend observed was that the maximum ratio of emission to flow rate increased at higher propellant flow rates. It was also found that an enclosed keeper enhances maximum cathode emission at high flow rates. The maximum cathode emission at a given flow rate was associated with a noisy high voltage mode. Although this mode has some similarities to the plume mode found at low flows and emissions, it is encountered by being initially in the spot mode and increasing emission. A detailed analysis of large, inert-gas thruster performance was carried out. For maximum thruster efficiency, the optimum beam diameter increases from less than a meter at under 2000 sec specific impulse to several meters at 10,000 sec. The corresponding range in input power ranges from several kilowatts to megawatts.

  9. Fuel gas developments

    SciTech Connect

    Wise, D.L.

    1984-01-01

    This volume is devoted to current research and specific developmental programs in the area of fuel gas production from biomass. Anaerobic biological conversion of lignocellulosic residuals to increase methane production by using pretreatment methods such as thermochemical, autohydrolysis, and staged or continuous flow processes are described. Essential considerations for establishing digestion process design criterias are covered. Included in this discussion are the sources and characteristics of municipal solid waste (MSW), MSW preprocessing and pretreatment, and digester control parameters such as nutrient requirements, organic loading rate, retention time, feed slurry concentration, temperature, mixing, and gas quality and quantity. Highlighted are the practical aspects of reactors to promote biomass retention, improving treatment efficiency, product rate, and process stability. Brief summaries are presented on process configuration. Detailed coverage is given to the development and commercialization of anaerobic systems that are now used, such as the Celrobic system and the Biothane process. Problems associated with using biomass digester effluents as soil conditioners and feeds are discussed. The use of commercial manure-to-fuel gas systems at large environmental beef cattle feedlots is also discussed. The volume concludes with a comparative study on the conversion of agricultural crop residues to either gaseous or liquid fuels.

  10. Automated Gas Distribution System

    NASA Astrophysics Data System (ADS)

    Starke, Allen; Clark, Henry

    2012-10-01

    The cyclotron of Texas A&M University is one of the few and prized cyclotrons in the country. Behind the scenes of the cyclotron is a confusing, and dangerous setup of the ion sources that supplies the cyclotron with particles for acceleration. To use this machine there is a time consuming, and even wasteful step by step process of switching gases, purging, and other important features that must be done manually to keep the system functioning properly, while also trying to maintain the safety of the working environment. Developing a new gas distribution system to the ion source prevents many of the problems generated by the older manually setup process. This developed system can be controlled manually in an easier fashion than before, but like most of the technology and machines in the cyclotron now, is mainly operated based on software programming developed through graphical coding environment Labview. The automated gas distribution system provides multi-ports for a selection of different gases to decrease the amount of gas wasted through switching gases, and a port for the vacuum to decrease the amount of time spent purging the manifold. The Labview software makes the operation of the cyclotron and ion sources easier, and safer for anyone to use.

  11. Ceramic stationary gas turbine

    SciTech Connect

    Roode, M. van

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  12. Ceramic stationary gas turbine

    SciTech Connect

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  13. Determining gas-meter accuracy

    SciTech Connect

    Valenti, M.

    1997-03-01

    This article describes how engineers at the Metering Research Facility are helping natural-gas companies improve pipeline efficiency by evaluating and refining the instruments used for measuring and setting prices. Accurate metering of natural gas is more important than ever as deregulation subjects pipeline companies to competition. To help improve that accuracy, the Gas Research Institute (GRI) in Chicago has sponsored the Metering Research Facility (MRF) at the Southwest Research Institute (SWRI) in San Antonio, Tex. The MRF evaluates and improves the performance of orifice, turbine, diaphragm, and ultrasonic meters as well as the gas-sampling methods that pipeline companies use to measure the flow of gas and determine its price.

  14. Natural gas monthly, November 1996

    SciTech Connect

    1996-11-01

    The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``US natural gas imports and exports-1995``. 6 figs., 24 tabs.

  15. Natural gas monthly, October 1997

    SciTech Connect

    1997-10-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

  16. Natural gas monthly, June 1996

    SciTech Connect

    1996-06-24

    The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

  17. Natural gas monthly, April 1997

    SciTech Connect

    1997-04-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  18. Natural gas monthly, August 1995

    SciTech Connect

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  19. Natural gas monthly, December 1997

    SciTech Connect

    1997-12-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

  20. Natural gas monthly, May 1997

    SciTech Connect

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  1. Natural gas monthly, June 1994

    SciTech Connect

    Not Available

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  2. Rarefied gas dynamics - Vol. 1

    SciTech Connect

    Belotserkouskii, O.M.; Kogan, M.N.; Kutateladze, S.S.; Rebrov, A.K.

    1985-01-01

    The volume (1) presents information on the following topics: the problems of kinetic theory of gases; asymptotic methods of the Boltzmann equation solution; kinetic theory and turbulence; Onsager's principle for the stationary Boltzmann equation; the stochastic theory of thermal fluctuations in nonequilibrium systems; kinetic equations of high nonequilibrium dense gas; kinetic theory of irreversible processes in two-temperature and two-velocity gas mixtures; physical models of gas dynamics with relaxational effects; modern problems of relaxation gas dynamics; methods of obtaining hydrodynamic equations of motion of complicated media and their boundary conditions on the basis of kinetic equations; and high energy molecules in gas dynamics.

  3. Natural Gas Monthly, October 1993

    SciTech Connect

    Not Available

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  4. Natural gas monthly, May 1994

    SciTech Connect

    Not Available

    1994-05-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured articles for this month are: Opportunities with fuel cells, and revisions to monthly natural gas data.

  5. Gas and humidity sensing element

    SciTech Connect

    Komine, Y.; Sawada, T.

    1984-06-26

    A gas and humidity sensing element in a single integral structure made of a base plate of apatite ceramics, on which a particular metal oxide such as tin oxide, zinc oxide, or composite oxide of titanium and niobium is provided. The sensing element has a function of sensing gas and humidity with outstanding sensitivity to bad smell gas and alcoholic gas, in which the humidity is sensed and measured by variations in electrical resistance of the apatite ceramic base plate and the bad smell gas such as hydrogen sulfide, methyl mercaptan, etc. is sensed and measured by variations in electrical resistance of the metal oxide.

  6. Low-temperature gas from marine shales: wet gas to dry gas over experimental time

    PubMed Central

    2009-01-01

    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins. PMID:19900271

  7. Low-temperature gas from marine shales: wet gas to dry gas over experimental time.

    PubMed

    Mango, Frank D; Jarvie, Daniel M

    2009-01-01

    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 degrees below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100 degrees C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  8. Natural Gas Hydrates Update 1998-2000

    EIA Publications

    2001-01-01

    Significant events have transpired on the natural gas hydrate research and development front since "Future Supply Potential of Natural Gas Hydrates" appeared in Natural Gas 1998 Issues and Trends and in the Potential Gas Committee's 1998 biennial report.

  9. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... testing. You may use critical-flow gas dividers, capillary-tube gas dividers, or thermal-mass-meter gas... PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You...

  10. Natural gas monthly, April 1998

    SciTech Connect

    1998-04-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration (EIA). Estimates extend through April 1998 for many data series. The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, feature articles are presented designed to assist readers in using and interpreting natural gas information. This issue contains the special report, ``Natural Gas 1997: A Preliminary Summary.`` This report provides information on natural gas supply and disposition for the year 1997, based on monthly data through December from EIA surveys. 6 figs., 28 tabs.

  11. Alaska Natural Gas Transportation System

    SciTech Connect

    Jones, V.T.

    1984-04-27

    The proven reserves of natural gas in Prudhoe Bay remain the single largest block of reserves under US control. The sponsors of the Alaska Natural Gas Transportation System, including The Williams Companies, remain convinced that Alaskan gas will be increasingly important to meet future needs here in the lower 48 states. Both Canada and the US will increasingly have to turn to more costly supplies of gas as the closer, traditional areas of gas supply are exhausted. A principal motivation for Canada's participation in the ANGTS was the prospect of a jointly sponsored pipeline through Canada which would facilitate bringing frontier gas to market - through the so-called Dempster lateral. The high cost of transportation systems in the Artic necessitates pipelines with large capacities in order to minimize the cost of transportation per unit of gas delivered. It is clear that Canada still strongly supports the ANGTS project as a means of opening up the frontier resources of both Alaska and Canada.

  12. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, T.B.

    1987-06-23

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner. 2 figs.

  13. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, Tomas B.

    1987-01-01

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.

  14. Gas evolution from spheres

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.

    1991-04-01

    Gas evolution from spherical solids or liquids where no convective processes are active is analyzed. Three problem classes are considered: (1) constant concentration boundary, (2) Henry's law (first order) boundary, and (3) Sieverts' law (second order) boundary. General expressions are derived for dimensionless times and transport parameters appropriate to each of the classes considered. However, in the second order case, the non-linearities of the problem require the presence of explicit dimensional variables in the solution. Sample problems are solved to illustrate the method.

  15. Radiant gas burner assembly

    SciTech Connect

    Simpson, T.W.

    1988-02-16

    A radiant gas burner assembly is described comprising: a planar metal member defining a heat utilization surface; generator means defining a radiant heat burner surface spaces substantially centrally of and below the planar member for directing radiant energy to the planar member as a primary heating source therefor; a housing defining a closed combustion chamber around and above the burner surface and peripherally around and below the heat utilization surface; and means for directing a current of combustion effluent to a peripheral location of the chamber to act as a secondary heating source for at least one peripheral portion of the planar member.

  16. Ceramic gas turbine shroud

    DOEpatents

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  17. Microfabricated Formaldehyde Gas Sensors

    PubMed Central

    Flueckiger, Jonas; Ko, Frank K.; Cheung, Karen C.

    2009-01-01

    Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation. PMID:22291561

  18. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, T.B.

    1985-09-30

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron tunneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.

  19. Radiant for gas heaters

    SciTech Connect

    Wysong, C.F.

    1983-03-01

    Atlanta Stove Works' improved radiant for vented or unvented gas heaters embodies a pair of upward converging front and rear walls that are formed of a fibrous aluminum silicate refractory board; at least two connector members extend between the front and rear walls to hold the lower end portions a fixed distance apart. Multiple perforations in the front wall emit radiant heat toward the area to be heated; the rear wall has at least one upper vent. This refractory board radiant offers simpler construction, greater resilience, lighter weight, and more economical manufacture than conventional clay radiants.

  20. Rare earth gas laser

    DOEpatents

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  1. Multi-channel gas-delivery system

    DOEpatents

    Rozenzon, Yan; Trujillo, Robert T.; Beese, Steven C.

    2016-09-13

    One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gases to a corresponding gas channel.

  2. Integrated vacuum absorption steam cycle gas separation

    DOEpatents

    Chen, Shiaguo; Lu, Yonggi; Rostam-Abadi, Massoud

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  3. Gas evolution from geopressured brines

    SciTech Connect

    Matthews, C.S.

    1980-06-01

    The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

  4. High potential recovery -- Gas repressurization

    SciTech Connect

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  5. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  6. Gas supplies of interstate natural gas pipeline companies 1985

    SciTech Connect

    Not Available

    1986-11-14

    This publication provides information on the total reserves, production, and deliverability capabilities of the 91 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 7 figs., 18 tabs.

  7. Gas supplies of interstate natural gas pipeline companies, 1984

    SciTech Connect

    Price, R.

    1985-12-04

    This publication provides information on the total reserves, production, and deliverability capabilities of 89 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 8 figs., 18 tabs.

  8. Gas sampling system for matrix of semiconductor gas sensors

    NASA Astrophysics Data System (ADS)

    Jasinski, Grzegorz; Strzelczyk, Anna; Koscinski, Piotr

    2016-01-01

    Semiconductor gas sensors are popular commercial sensors applied in numerous gas detection systems. They are reliable, small, rugged and inexpensive. However, there are a few problem limiting the wider use of such sensors. Semiconductor gas sensor usually exhibits a low selectivity, low repeatability, drift of response, strong temperature and moisture influence on sensor properties. Sample flow rate is one of the parameters that influence sensors response what should be considered in the measurement system. This paper describes low cost module for controlling measured gas flow rate. The proposed equipment will be used as a component of electronic nose system employed for classifying and distinguishing different levels of contamination in air.

  9. Natural gas pipeline technology overview.

    SciTech Connect

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  10. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.W.

    1995-06-01

    In collaboration with Cryenco Inc. and NIST-Boulder, we intend to develop a natural gas-powered natural-gas liquefier which has absolutely no moving parts and requires no electrical power. It will have high efficiency, remarkable reliability, and low cost. Progress on the liquefier to be constructed at Cryenco continues satisfactorily. The thermoacoustic driver is still ahead of the pulse tube refrigerator, because of NIST`s schedule. We completed the thermoacoustics design in the fall of 1994, with Los Alamos providing physics input and checks of all aspects, and Cryenco providing engineering to ASME code, drafting, etc. Completion of this design represents a significant amount of work, especially in view of the many unexpected problems encountered. Meanwhile, Cryenco and NIST have almost completed the design of the pulse tube refrigerator. At Los Alamos, we have assembled a half-size scale model of the thermoacoustic portion of the 500 gal/day TANGL. This scale model will enable easy experimentation in harmonic suppression techniques, new stack geometries, new heat-exchanger geometries, resonator coiling, and other areas. As of March 1995, the scale model is complete and we are performing routine debugging tests and modifications.

  11. Multi-Gas Sensor

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)

    1999-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  12. Rapid gas hydrate formation process

    DOEpatents

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  13. Global occurrences of gas hydrate

    USGS Publications Warehouse

    Kvenvolden, K.A.; Lorenson, T.D.

    2001-01-01

    Natural gas hydrate is found worldwide in sediments of outer continental margins of all oceans and in polar areas with continuous permafrost. There are currently 77 localities identified globally where geophysical, geochemical and/or geological evidence indicates the presence of gas hydrate. Details concerning individual gas-hydrate occurrences are compiled at a new world-wide-web (www) site (http://walrus.wr.usgs.gov/globalhydrate). This site has been created to facilitate global gas-hydrate research by providing information on each of the localities where there is evidence for gas hydrate. Also considered are the implications of gas hydrate as a potential (1) energy resource, (2) factor in global climate change, and (3) geohazard.

  14. Natural gas monthly, August 1996

    SciTech Connect

    1996-08-01

    This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

  15. Natural gas monthly, October 1991

    SciTech Connect

    Not Available

    1991-11-05

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

  16. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  17. Method of Liquifying a gas

    DOEpatents

    Zollinger, William T.; Bingham, Dennis N.; McKellar, Michael G.; Wilding, Bruce M.; Klingler, Kerry M.

    2006-02-14

    A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.

  18. Natural gas monthly, May 1995

    SciTech Connect

    1995-05-24

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  19. Natural gas monthly, October 1995

    SciTech Connect

    1995-10-23

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

  20. Natural gas monthly, February 1996

    SciTech Connect

    1996-03-01

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  1. Coal Cleaning by Gas Agglomeration

    SciTech Connect

    Meiyu Shen; Royce Abbott; T. D. Wheelock

    1998-03-01

    The gas agglomeration method of coal cleaning was demonstrated with laboratory scale mixing equipment which made it possible to generate microscopic gas bubbles in aqueous suspensions of coal particles. A small amount of i-octane was introduced to enhance the hydrophobicity of the coal. Between 1.0 and 2.5 v/w% i-octane was sufficient based on coal weight. Coal agglomerates or aggregates were produced which were bound together by small gas bubbles.

  2. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  3. Natural gas monthly, March 1998

    SciTech Connect

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  4. Fluid/Gas Process Controller

    NASA Technical Reports Server (NTRS)

    Ramos, Sergio

    1989-01-01

    Fluid/gas controller, or "Super Burper", developed to obtain precise fill quantities of working fluid and noncondensable gas in heat pipe by incorporating detachable external reservoir into system during processing stage. Heat pipe filled with precise quantities of working fluid and noncondensable gas, and procedure controlled accurately. Application of device best suited for high-quality, high performance heat pipes. Device successfully implemented with various types of heat pipes, including vapor chambers, thermal diodes, large space radiators, and sideflows.

  5. System of treating flue gas

    DOEpatents

    Ziegler, D.L.

    1975-12-01

    A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas.

  6. Welding torch gas cup extension

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    The invention relates to a gas shielded electric arc welding torch having a detachable gas cup extension which may be of any desired configuration or length. The gas cup extension assembly is mounted on a standard electric welding torch gas cup to enable welding in areas with limited access. The gas cup assembly has an upper tubular insert that fits within the gas cup such that its lower portion protrudes thereform and has a lower tubular extension that is screwed into the lower portion. The extension has a rim to define the outer perimeter of the seat edge about its entrance opening so a gasket may be placed to effect an airtight seal between the gas cup and extension. The tubular extension may be made of metal or cermaic material that can be machined. The novelty lies in the use of an extension assembly for a standard gas cup of an electric arc welding torch which extension assembly is detachable permitting the use of a number of extensions which may be of different configurations and materials and yet fit the standard gas cup.

  7. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  8. Flammable gas project topical report

    SciTech Connect

    Johnson, G.D.

    1997-01-29

    The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

  9. Natural gas monthly, February 1998

    SciTech Connect

    1998-02-01

    This issue of the Natural Gas Monthly (NGM) presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through February 1998 for many data series, and through November 1997 for most natural gas prices. Highlights of the natural gas data contained in this issue are: Preliminary estimates for January and February 1998 show that dry natural gas production, net imports, and consumption are all within 1 percent of their levels in 1997. Warmer-than-normal weather in recent months has resulted in lower consumption of natural gas by the residential sector and lower net withdrawals of gas from under round storage facilities compared with a year ago. This has resulted in an estimate of the amount of working gas in storage at the end of February 1998 that is 18 percent higher than in February 1997. The national average natural gas wellhead price is estimated to be $3.05 per thousand cubic feet in November 1997, 7 percent higher than in October. The cumulative average wellhead price for January through November 1997 is estimated to be $2.42 per thousand cubic feet, 17 percent above that of the same period in 1996. This price increase is far less than 36-percent rise that occurred between 1995 and 1996. 6 figs., 26 tabs.

  10. Natural gas monthly, January 1994

    SciTech Connect

    Not Available

    1994-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured article for this month is on US coalbed methane production.

  11. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1991-01-01

    Construction of the high pressure gas phase fermentation system is nearing completion. All non-explosion proof components will be housed separately in a gas-monitored plexiglas cabinet. A gas-monitoring system has been designed to ensure the safety of the operations in case of small or large accidental gas releases. Preliminary experiments investigating the effects of high pressure on Clostridium 1jungdahlii have shown that growth and CO uptake are not negatively affected and CO uptake by an increased total pressure of 100 psig at a syngas partial pressure of 10 psig.

  12. Empowerment at Pacific Gas & Electric.

    ERIC Educational Resources Information Center

    Kaufman, Steven B.

    1991-01-01

    Pacific Gas and Electric's employee involvement program aggressively focuses on customer service, performance measurement tied to management bonuses, and commitment to change in the organizational culture. (SK)

  13. Neutral gas dynamics in fireballs

    SciTech Connect

    Stenzel, R. L.; Ionita, C.; Schrittwieser, R.

    2011-06-01

    Fireballs are local discharge phenomena on positively biased electrodes in partially ionized plasmas. Electrons, energized at a double layer, heat neutral gas which expands. The gas pressure exceeds the plasma pressure, hence becomes important to the stability and transport in fireballs. The flow of gas moves the electrode and sensors similar to a mica pendulum. Flow speed and directions are measured. A fireball gun has been developed to partially collimate the flow of hot gas and heat objects in its path. New applications of fireballs are suggested.

  14. High gas flow alpha detector

    DOEpatents

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  15. High gas flow alpha detector

    DOEpatents

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  16. Ternary gas plasma welding torch

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor); Waldron, Douglas J. (Inventor)

    1995-01-01

    A plasma arc welding torch is discussed. A first plasma gas is directed through the body of the welding torch and out of the body across the tip of a welding electrode disposed at the forward end of the body. A second plasma gas is disposed for flow through a longitudinal bore in the electrode. The second plasma gas enters one end of the electrode and exits the electrode at the tip thereof for co-acting with the electric welding arc to produce the desired weld. A shield gas is directed through the torch body and circulates around the head of the torch adjacent to the electrode tip.

  17. Genesis Noble Gas Measurements

    NASA Technical Reports Server (NTRS)

    Hohenberg, Charles M.

    2005-01-01

    The original thrust of our Genesis funding was to extend and refine the noble gas analytical capabilities of this laboratory to improve the precision and accuracy of noble gas measurements in order to optimize the scientific return from the Genesis Mission. This process involved both instrumental improvement (supplemented by a SRLIDAP instrument grant) and refinement of technique. The Genesis landing mishap shifted our emphasis to the irregular aluminum heat shield material from the flat collector wafers. This has required redesign of our laser extraction cells to accommodate the longer focal lengths required for laser extraction from non-flat surfaces. Extraction of noble gases from solid aluminum surfaces, rather than thin coatings on transparent substrates has required refinement of controlled-depth laser ablation techniques. Both of these bring new problems, both with potentially higher blanks form larger laser cells and the larger quantities of evaporated aluminum which can coat the sapphire entrance ports. This is mainly a problem for the heavy noble gases where larger extraction areas are required, necessitating the new aluminum vapor containment techniques described below. With the Genesis Mission came three new multiple multiplier noble gas mass spectrometers to this laboratory, one built solely by us (Supergnome-M), one built in collaboration with Nu-Instruments (Noblesse), and one built in collaboration with GVI (Helix). All of these have multiple multiplier detection sections with the Nu-Instruments using a pair of electrostatic quad lenses for isotope spacing and the other two using mechanically adjustable positions for the electron multipliers. The Supergnome-M and Noblesse are installed and running. The GVI instrument was delivered a year late (in March 2005) and is yet to be installed by GVI. As with all new instruments there were some initial development issues, some of which are still outstanding. The most serious of these are performance issues

  18. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  19. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  20. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  1. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  2. Potential gas panel finds plenty of gas in United States

    SciTech Connect

    O'Driscoll, M.

    1993-06-15

    The Potential Gas Committee estimates the US natural gas resource base at 1,019 trillion cubic feet (tcf). The biennial PGC report, based on information gathered as of January 1, 1993, largely reaffirms other such recent natural gas resource estimates from the National Petroleum Council, Enron Corp., the Gas Research Institute and the federal government's National Energy Strategy. But the PGC differs from the other reports in several ways. PGC bases its estimates on research done in geologic basins instead of computer modeling, takes a conservative approach by eliminating such non-conventional gas sources as tight sands formations, does not factor in specific price thresholds and does not account for political and policy considerations that make some gas reserves off limits to production. The committee couples the Energy Department's proved reserves estimate of 165 tcf with its own estimate of 717 tcf of conventional resources and 135 tcf of coal-bed methane for an arithmetic summation of the most likely volumes of natural gas to be found. The conventional gas resources are comprised of 185 tcf of probable resources in current fields, 267 tcf of possible resources in new fields and 265 tcf of speculative resources. Coalbed methane resources include probable resources of 11.6 tcf, possible resources of 40.2 tcf and speculative resources of 83.2 tcf.

  3. Gas loading system for LANL two-stage gas guns

    NASA Astrophysics Data System (ADS)

    Gibson, Lee; Bartram, Brian; Dattelbaum, Dana; Lang, John; Morris, John

    2015-06-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez and Teflon. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system, and example data from the plate impact experiments will be shown. LA-UR-15-20521

  4. SST-1 Gas feed and Gas Exhaust system

    NASA Astrophysics Data System (ADS)

    Raval, Dilip C.; Khan, Ziauddin; Thankey, Prashant L.; Dhanani, Kalpesh R.; Pathan, Firozkhan S.; Semwal, Pratibha; George, Siju; Yuvakiran, Paravastu; Manthena, Himabindu; Pradhan, Subrata

    2012-11-01

    SST-1 tokamak is a long pulse tokamak designed for the plasma operation up to 1000 sec duration. Gas feed system and gas exhaust management will play a very crucial role during plasma discharge. During the different type of operations of tokamak like wall conditioning, diverter operation and neutral beam injection, a large amount of gas will be fed into the vacuum chamber at different locations. Also during plasma operations, the gas will be fed both in continues and pulse mode. Gas feed will be carried out mainly using piezo-electric valves controlled by PXI based data acquisition and control system. Such operations will lead to a huge amount gas exhaust by the main system which requires good exhaust facility to searches, great care should be taken in constructing both. Also initial pumping of cryostat and vacuum vessel of SST-1 will release a large amount of gas. Exhausted gases from SST -1 will be Hydrogen, Nitrogen, Mixture gases or some toxic gases. Dedicated exhaust system controlling the different gases are installed. Special treatment of hazardous/explosive gases is done before releasing to the atmosphere. This paper describes design and implementations of the complete gas feed and exhaust system of SST-1.

  5. Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing

    SciTech Connect

    Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

    2014-06-03

    An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

  6. Flammable Gas Detection for the D-Zero Gas System

    SciTech Connect

    Spires, L.D.; Foglesong, J.; /Fermilab

    1991-02-11

    The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the

  7. Gas turbine cooling system

    SciTech Connect

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  8. Gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Burd, Steven W. (Inventor); Cheung, Albert K. (Inventor); Dempsey, Dae K. (Inventor); Hoke, James B. (Inventor); Kramer, Stephen K. (Inventor); Ols, John T. (Inventor); Smith, Reid Dyer Curtis (Inventor); Sowa, William A. (Inventor)

    2011-01-01

    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0.

  9. Detection of gas leakage

    DOEpatents

    Thornberg, Steven; Brown, Jason

    2012-06-19

    A method of detecting leaks and measuring volumes as well as an apparatus, the Power-free Pump Module (PPM), that is a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement, where the invention is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr), perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  10. Liquefied Natural Gas Transfer

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  11. Detection of gas leakage

    SciTech Connect

    Thornberg, Steven M; Brown, Jason

    2015-02-17

    A method of detecting leaks and measuring volumes as well as a device, the Power-free Pump Module (PPM), provides a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement. The PPM is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr) using a venturi pump, perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  12. Gas in void galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn Joyce

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, and provide an observational test for theories of cosmological structure formation. We investigate the neutral hydrogen properties (i.e. content, morphology, kinematics) of void galaxies, both individually and systematically, using a combination of observations and simulations, to form a more complete understanding of the nature of these systems. We investigate in detail the H I morphology and kinematics of two void galaxies. One is an isolated polar disk galaxy in a diffuse cosmological wall situated between two voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies. We also examine KK 246, the only confirmed galaxy located within the nearby Tully Void. It is a dwarf galaxy with an extremely extended H I disk and signs of an H I cloud with anomalous velocity. It also exhibits clear misalignment between the kinematical major and minor axes, and a general misalignment between the H I and optical major axes. The relative isolation and extreme underdense environment make these both very interesting cases for examining the role of gas accretion in galaxy evolution. To study void galaxies as a population, we have carefully selected a sample of 60 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS. We have imaged this new Void Galaxy Survey in H I at the Westerbork Synthesis Radio Telescope with a typical resolution of 8 kpc, probing a volume of 1.2 Mpc and 12,000 km s^-1 surrounding each galaxy. We reach H I mass limits of 2 x 10^8 M_sun and column density sensitivities of 5 x 10^19 cm^-2

  13. OTEC gas desorption studies

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Golshani, A.

    1982-02-01

    Experiments on deaeration in packed columns and barometric intake systems, and with hydraulic air compression for open-cycle OTEC systems are reported. A gas desorption test loop consisting of water storage tanks, a vacuum system, a liquid recirculating system, an air supply, a column test section, and two barometric leg test sections was used to perform the tests. The aerated water was directed through columns filled with either ceramic Raschig rings or plastic pall rings, and the system vacuum pressure, which drives the deaeration process, was found to be dependent on water velocity and intake pipe height. The addition of a barometric intake pipe increased the deaeration effect 10%, and further tests were run with lengths of PVC pipe as potential means for noncondensibles disposal through hydraulic air compression. Using the kinetic energy from the effluent flow to condense steam in the noncondensible stream improved the system efficiency.

  14. Uniform quantized electron gas.

    PubMed

    Høye, Johan S; Lomba, Enrique

    2016-10-19

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies. PMID:27546166

  15. Gas turbine topping combustor

    DOEpatents

    Beer, Janos; Dowdy, Thomas E.; Bachovchin, Dennis M.

    1997-01-01

    A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

  16. Uniform quantized electron gas

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Lomba, Enrique

    2016-10-01

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.

  17. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  18. Gas turbine containing an additional combustion gas compressor

    SciTech Connect

    Zaba, T.

    1983-04-26

    A gas turbine containing an additional combustion gas compressor and a gearing drive which, on the one hand, is rotatably connected by means of a rigid coupling and an axial bearing with the gas turbine and, on the other hand, is rotatably connected by means of a further rigid coupling with the combustion gas compressor. Furthermore, the gearing drive serves to drive a generator by means of a power take-off shaft. The gears of the gearing drive possess helical teeth. For thrust compensation purposes the drive gear of the gearing drive is provided with pressure plates, and the helical teeth of the gears are designed such that a force acting upon the pressure plates and resulting from the thrust of the combustion gas compressor is reduced by the axial component of the helical teeth.

  19. Computational reacting gas dynamics

    NASA Technical Reports Server (NTRS)

    Lam, S. H.

    1993-01-01

    In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP).

  20. Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems

    SciTech Connect

    Komar, C.A.

    1980-01-01

    This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

  1. Unconventional Oil and Gas Resources

    SciTech Connect

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  2. Fixed target flammable gas upgrades

    SciTech Connect

    Schmitt, R.; Squires, B.; Gasteyer, T.; Richardson, R.

    1996-12-01

    In the past, fixed target flammable gas systems were not supported in an organized fashion. The Research Division, Mechanical Support Department began to support these gas systems for the 1995 run. This technical memo describes the new approach being used to supply chamber gasses to fixed target experiments at Fermilab. It describes the engineering design features, system safety, system documentation and performance results. Gas mixtures provide the medium for electron detection in proportional and drift chambers. Usually a mixture of a noble gas and a polyatomic quenching gas is used. Sometimes a small amount of electronegative gas is added as well. The mixture required is a function of the specific chamber design, including working voltage, gain requirements, high rate capability, aging and others. For the 1995 fixed target run all the experiments requested once through gas systems. We obtained a summary of problems from the 1990 fixed target run and made a summary of the operations logbook entries from the 1991 run. These summaries primarily include problems involving flammable gas alarms, but also include incidents where Operations was involved or informed. Usually contamination issues were dealt with by the experimenters. The summaries are attached. We discussed past operational issues with the experimenters involved. There were numerous incidents of drift chamber failure where contaminated gas was suspect. However analyses of the gas at the time usually did not show any particular problems. This could have been because the analysis did not look for the troublesome component, the contaminant was concentrated in the gas over the liquid and vented before the sample was taken, or that contaminants were drawn into the chambers directly through leaks or sub-atmospheric pressures. After some study we were unable to determine specific causes of past contamination problems, although in argon-ethane systems the problems were due to the ethane only.

  3. Gas expander based power plant system

    SciTech Connect

    Kucerija, Z.

    1991-04-02

    This patent describes a method for generating electricity where gas pressure from a high pressure gas transmission line is reduced with a gas expander system capable of operating with fluctuating high pressure gas conditions and maintaining required outlet gas conditions for delivery to a lower pressure gas distribution line. It comprises supplying a portion of the lower pressure gas to the combustion apparatus of a steam generator, heating feedwater in the steam generator and producing a low pressure steam, condensing the steam in a heat exchange using the heat of condensation of the steam to heat a portion of high pressure gas in a heat exchange, mixing the heated high pressure gas with unheated high pressure gas in proportion to controlled variable requirements, reducing the pressure of the combined high pressure gas by passing the gas through a gas expander which produces useful shaft power for driving an electrical generator or for mechanical drive applications.

  4. Update on Texas gas proration

    SciTech Connect

    Nugent, J.E. )

    1992-06-01

    On April 27th the Railroad Commission unanimously adopted what has been called Interim Rule Revisions for our gas proration. We had already started the oil and gas staff and data processing division working on the mechanics of the proposals months earlier.

  5. Natural gas monthly, July 1990

    SciTech Connect

    Not Available

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  6. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  7. Gas in the Digestive Tract

    MedlinePlus

    ... digestive tract when you swallow air and when bacteria in your large intestine break down certain undigested foods. ​​​​ Diagnosis of Gas Doctors may diagnose the causes of gas with a medical history and physical exam. If your doctor suspects you ...

  8. Basic Gas Chlorination Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce treatment plant operators to the safe operation and maintenance of gas chlorination systems employing the variable vacuum gas chlorinator. Each of the lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing…

  9. Natural gas monthly, August 1990

    SciTech Connect

    Not Available

    1990-11-05

    This report highlights activities, events, and analyses of interest to public and private sector oganizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 33 tabs.

  10. Natural gas monthly, December 1996

    SciTech Connect

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  11. Natural Gas Industry and Markets

    EIA Publications

    2006-01-01

    This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

  12. Natural Gas Energy Educational Kit.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  13. Laboratory Connections. Gas Monitoring Transducers.

    ERIC Educational Resources Information Center

    Powers, Michael H.

    1988-01-01

    Discusses three types of sensors; pressure, gas detection, and relative humidity. Explains their use for laboratory measurements of gas pressure and detection of specific gaseous species. Shows diagrams of devices and circuits along with examples and applications including microcomputer interfacing. (RT)

  14. Automotive gas turbine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. (Inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  15. Gas Hydrate and Pore Pressure

    NASA Astrophysics Data System (ADS)

    Tinivella, Umberta; Giustiniani, Michela

    2014-05-01

    Many efforts have been devoted to quantify excess pore pressures related to gas hydrate dissociation in marine sediments below the BSR using several approaches. Dissociation of gas hydrates in proximity of the BSR, in response to a change in the physical environment (i.e., temperature and/or pressure regime), can liberate excess gas incrising the local pore fluid pressure in the sediment, so decreasing the effective normal stress. So, gas hydrate dissociation may lead to excess pore pressure resulting in sediment deformation or failure, such as submarine landslides, sediment slumping, pockmarks and mud volcanoes, soft-sediment deformation and giant hummocks. Moreover, excess pore pressure may be the result of gas hydrate dissociation due to continuous sedimentation, tectonic uplift, sea level fall, heating or inhibitor injection. In order to detect the presence of the overpressure below the BSR, we propose two approachs. The fist approach models the BSR depth versus pore pressure; in fact, if the free gas below the BSR is in overpressure condition, the base of the gas hydrate stability is deeper with respect to the hydrostatic case. This effect causes a discrepancy between seismic and theoretical BSR depths. The second approach models the velocities versus gas hydrate and free gas concentrations and pore pressure, considering the approximation of the Biot theory in case of low frequency, i.e. seismic frequency. Knowing the P and S seismic velocity from seismic data analysis, it is possibile to jointly estimate the gas hydrate and free gas concentrations and the pore pressure regime. Alternatively, if the S-wave velocity is not availbale (due to lack of OBS/OBC data), an AVO analysis can be performed in order to extract information about Poisson ratio. Our modeling suggests that the areas characterized by shallow waters (i.e., areas in which human infrastructures, such as pipelines, are present) are significantly affected by the presence of overpressure condition

  16. Pulse circuit apparatus for gas discharge laser

    DOEpatents

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  17. Natural gas: The next shortage

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The eighth Annual Meeting of the Gas Research Institute that was held in Chicago in April 1984 focused on the potential of a crisis in the supply of natural gas. According to a report of discussions held at that meeting, “Natural gas, the country's largest petrochemical feedstock, may be in short supply in a couple of years if some present forecasts prove true. The next supply/demand crisis for natural gas is likely to come in early 1986” [Chemical and Engineering News, April 30, 1984]. There are a number of variables, geologic and socio-economic, that may affect this prediction. An important factor is that drilling exploration of natural gas has decreased sharply, due to the onset of sharp rates of surplus since 1981. Drilling is highly sensitive to depth and flow rate.

  18. Gas-fired vacuum technology

    SciTech Connect

    Schultz, T.J.; Bender, J.W.

    2000-04-01

    The modern phase of gas-fired vacuum furnace development began in 1986 under two programs sponsored by the Gas Research Institute . Since then, a tremendous amount of gas industry and private money and time have been spent on the development of this important technology. A key barrier has been the temperature capability of gas-fired designs. Recognizing this, Surface Combustion first began commercial development for low temperature applications and designs. This work resulted in several US patents and ultimately the VacuDraw vacuum tempering furnace. Other commercial configurations and larger sizes subsequently evolved from this successful effort. The most recent development in gas-fired vacuum furnace technology, and perhaps the most significant to date, is the installation and operation of the first multichamber, 1,065 C (1,950 F) system designed for tool steel heat treatment. This article provides an overview of this equipment and describes its key design and performance features.

  19. Metal-gas fuel cell

    SciTech Connect

    Struthers, R.C.

    1984-10-16

    A metal-gas fuel cell comprising an anode chamber filled with a base anolyte solution, a metallic anode plate immersed in the anolyte; an ion exchange chamber filled with a base ionolyte solution adjacent the anode chamber; a cationic membrane between the anode and ion exchange chambers separating the anolyte and ionolyte; a cathode plate adjacent the ion exchange chamber remote from the cationic membrane with one surface in contact with the ionolyte and another surface in contact with a cathode fuel gas. The cathode plate is a laminated structure including a layer of hydrophyllic material in contact with the ionolyte, a layer of gas permeable hydrophobic material in contact with the gas and a gas and liquid permeable current collector of inert material with catalytic surfaces within the layer of hydrophyllic material. The anode and cathode plates are connected with an external electric circuit which effects the flow of electrons from the anode plate to the cathode plate.

  20. Spinning gas clouds - without vorticity

    NASA Astrophysics Data System (ADS)

    Gaffet, B.

    2000-06-01

    Ovsiannikov and Dyson have considered an ordinary differential reduction of the gas-dynamical equations for an ideal gas which is adiabatically expanding and rotating. Gaffet has shown, based on its Painlevé property, the complete integrability of that ellipsoidal gas cloud model, when there is neither rotation nor vorticity and the gas is monatomic (γ = 5/3), and has conjectured that the integrability might persist in more general cases including rotation. In this paper we show that the presence of vorticity in general destroys the integrability property, but the conjecture is otherwise verified, under the simplifying assumption of rotation around a fixed axis. In a future work we hope to extend the present result to Dyson's most general spinning gas cloud without vorticity.

  1. Methodology for flammable gas evaluations

    SciTech Connect

    Hopkins, J.D., Westinghouse Hanford

    1996-06-12

    There are 177 radioactive waste storage tanks at the Hanford Site. The waste generates flammable gases. The waste releases gas continuously, but in some tanks the waste has shown a tendency to trap these flammable gases. When enough gas is trapped in a tank`s waste matrix, it may be released in a way that renders part or all of the tank atmosphere flammable for a period of time. Tanks must be evaluated against previously defined criteria to determine whether they can present a flammable gas hazard. This document presents the methodology for evaluating tanks in two areas of concern in the tank headspace:steady-state flammable-gas concentration resulting from continuous release, and concentration resulting from an episodic gas release.

  2. Gas shale/oil shale

    USGS Publications Warehouse

    Fishman, N.S.; Bereskin, S.R.; Bowker, K.A.; Cardott, B.J.; Chidsey, T.C.; Dubiel, R.F.; Enomoto, C.B.; Harrison, W.B.; Jarvie, D.M.; Jenkins, C.L.; LeFever, J.A.; Li, Peng; McCracken, J.N.; Morgan, C.D.; Nordeng, S.H.; Nyahay, R.E.; Schamel, Steven; Sumner, R.L.; Wray, L.L.

    2011-01-01

    This report provides information about specific shales across North America and Europe from which gas (biogenic or thermogenic), oil, or natural gas liquids are produced or is actively being explored. The intent is to re?ect the recently expanded mission of the Energy Minerals Division (EMD) Gas Shales Committee to serve as a single point of access to technical information on shales regardless of the type of hydrocarbon produced from them. The contents of this report were drawn largely from contributions by numerous members of the EMD Gas Shales Advisory Committee, with much of the data being available from public websites such as state or provincial geological surveys or other public institutions. Shales from which gas or oil is being produced in the United States are listed in alphabetical order by shale name. Information for Canada is presented by province, whereas for Europe, it is presented by country.

  3. Catalyst regeneration with flue gas

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-09-19

    This patent describes an integrated once through reactor system for regenerating acidic medium pore zeolite olefin or oxygenate feedstock conversion catalyst with flue gas. It comprises in combination: fluid catalytic cracking catalyst regenerator means for providing the flue gas containing oxygen; at least two fixed bed reactor means for containing the zeolite catalyst, the reactor means receivably connected to the regenerator means for alternately receiving the flue gas therefrom; feedstock conduit means connected to the reactor means for alternately transferring the feedstock thereto; conversion product conduit means receivably connected to the reactor means for alternately transferring the product therefrom; flue gas conduit means receivably connected to the reactor means for alternately transferring flue gas therefrom.

  4. Landfill gas management in Canada

    SciTech Connect

    David, A.

    1997-12-31

    Landfill gas produced from solid waste landfills is one of the most significant sources of anthropogenic methane in Canada. Methane, a potent greenhouse gas, is 24.5 times more powerful than carbon dioxide by weight in terms of global climate change. Landfill gas recovery plays an important role in Canada`s commitment to stabilize greenhouse gas emissions at 1990 levels by the year 2000 under the United Nations Framework Convention on Climate Change. Landfill gas is a potentially harmful emission that can be converted into a reliable environmentally-sustainable energy source used to generate electricity, fuel industries and heat buildings. The recovery and utilization of landfill gas is a win-win situation which makes good sense from local, regional and global perspectives. It provides the benefits of (1) reducing the release of greenhouse gases that contribute to global warming; (2) limiting odors; (3) controlling damage to vegetation; (4) reducing risks from explosions, fires and asphyxiation; (5) converting a harmful emission into a reliable energy source; and (6) creating a potential source of revenue and profit. Canadian landfills generate about 1 million tons of methane every year; the equivalent energy of 9 million barrels of oil (eight oil super tankers), or enough energy to meet the annual heating needs of more than half a million Canadian homes. Currently, twenty-seven facilities recover and combust roughly 25% of the methane generated by Canadian landfills producing about 3.2 PJ (10{sup 15} Joules) of energy including 80 MW of electricity and direct fuel for nearby facilities (e.g., cement plants, gypsum board manufacturers, recycling facilities, greenhouses). This paper reviews landfill gas characteristics; environmental, health and safety impacts; landfill gas management in Canada; the costs of landfill gas recovery and utilization systems; and on-going projects on landfill gas utilization and flaring.

  5. Noble Gas Analysis for the OMEGA Gas Sampling System

    NASA Astrophysics Data System (ADS)

    Young, G. T.; Hupcher, S. M.; Freeman, C. G.; Stoyer, M. A.; Sangster, T. C.

    2007-11-01

    The OMEGA Gas Sampling System (OGSS) at the Laboratory for Laser Energetics can be used to study a wide variety of implosion parameters in inertial confinement fusion. By doping a target capsule with carefully chosen detector nuclei, nuclear reactions between fusion products and detector nuclei can produce noble gas isotopes. Following a capsule implosion, these gases are pumped out of the target chamber and are collected into sample bottles. We have developed a bench-top analysis station at Geneseo capable of determining the number of noble gas atoms present in the sample bottles. A needle valve is used to admit gas from the sample bottles into a vacuum chamber at a controlled rate. The conductance of the needle valve is a function of pressure and gas type. A residual gas analyzer (RGA) is used to measure the partial pressures of each type of noble gas in the vacuum chamber. The RGA is calibrated with a calibrated leak, which allows known amounts of different gases into the chamber at a constant rate. Analysis of the gasses collected following a D^3He implosion is currently underway.

  6. 75 FR 73076 - National Gas Supply Association, American Forest and Paper Association, Inc., American Public Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Energy Regulatory Commission National Gas Supply Association, American Forest and Paper Association, Inc., American Public Gas Association, Independent Petroleum Association of America, Process Gas Consumers Group... Association, American Forest and Paper Association, Inc., American Public Gas Association,...

  7. [High Pressure Gas Tanks

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  8. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  9. Gas hydrate resources of northern Alaska

    USGS Publications Warehouse

    Collett, T.S.

    1997-01-01

    Large amounts of natural gas, composed mainly of methane, can occur in arctic sedimentary basins in the form of gas hydrates under appropriate temperature and pressure conditions. Gas hydrates are solids, composed of rigid cages of water molecules that trap molecules of gas. These substances are regarded as a potential unconventional source of natural gas because of their enormous gas-storage capacity. Most published gas hydrate resource estimates are highly simplified and based on limited geological data. The gas hydrate resource assessment for northern Alaska presented in this paper is based on a "play analysis" scheme, in which geological factors controlling the accumulation and preservation of gas hydrates are individually evaluated and risked for each hydrate play. This resource assessment identified two gas hydrate plays; the in-place gas resources within the gas hydrates of northern Alaska are estimated to range from 6.7 to 66.8 trillion cubic metres of gas (236 to 2,357 trillion cubic feet of gas), at the 0.50 and 0.05 probability levels respectively. The mean in-place hydrate resource estimate for northern Alaska is calculated to be 16.7 trillion cubic metres of gas (590 trillion cubic feet of gas). If this assessment is valid, the amount of natural gas stored as gas hydrates in northern Alaska could be almost seven times larger then the estimated total remaining recoverable conventional natural gas resources in the entire United States.

  10. Calorimetric gas sensor

    DOEpatents

    Ricco, Antonio J.; Hughes, Robert C.; Smith, James H.; Moreno, Daniel J.; Manginell, Ronald P.; Senturia, Stephen D.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.

  11. Calorimetric gas sensor

    DOEpatents

    Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

    1998-11-10

    A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

  12. Flue gas conditioning today

    SciTech Connect

    Southam, B.J.; Coe, E.L. Jr.

    1995-12-01

    Many relatively small electrostatic precipitators (ESP`s) exist which collect fly ash at remarkably high efficiencies and have been tested consistently at correspondingly high migration velocities. But the majority of the world`s coal supplies produce ashes which are collected at much lower migration velocities for a given efficiency and therefore require correspondingly large specific collection areas to achieve acceptable results. Early trials of flue gas conditioning (FGC) showed benefits in maximizing ESP performance and minimizing expense which justified continued experimentation. Trials of several dozen ways of doing it wrong eventually developed a set of reliable rules for doing it right. One result is that the use of sulfur trioxide (SO{sub 3}) for adjustment of the resistivity of fly ash from low sulfur coal has been widely applied and has become an automatically accepted part of the option of burning low sulfur coal for compliance with the Clean Air Act of l990 in the U.S.A. Currently, over 100,000 MW of generating capacity is using FGC, and it is estimated that approximately 45,800 MW will utilize coal-switching with FGC for Clean Air Act emission compliance. Guarantees that this equipment will be available to operate at least 98 percent of the time it is called upon are routinely fulfilled.

  13. Thermionic gas switch

    DOEpatents

    Hatch, G.L.; Brummond, W.A.; Barrus, D.M.

    1984-04-05

    The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.

  14. Gas controlled hydrogen fermentation.

    PubMed

    Bastidas-Oyanedel, Juan-Rodrigo; Mohd-Zaki, Zuhaida; Zeng, Raymond J; Bernet, Nicolas; Pratt, Steven; Steyer, Jean-Philippe; Batstone, Damien John

    2012-04-01

    Acidogenic fermentation is an anaerobic process of double purpose, while treating organic residues it produces chemical compounds, such as hydrogen, ethanol and organic acids. Therefore, acidogenic fermentation arises as an attractive biotechnology process towards the biorefinery concept. Moreover, this process does not need sterile operating conditions and works under a wide range of pH. Changes of operating conditions produce metabolic shifts, inducing variability on acidogenic product yield. To induce those changes, experiments, based on reactor headspace N(2)-flushing (gas phase), were designed. A major result was the hydrogen yield increase from 1 to 3.25±0.4 ( [Formula: see text] ) at pH 4.5 and N(2)-flushing of 58.4 (L·d(-1)). This yield is close to the theoretical acidogenic value (4 [Formula: see text] ). The mechanisms that explain this increase on hydrogen yield shifts are related to the thermodynamics of three metabolic reactions: lactate hydrogenase, NADH hydrogenase and homoacetogenesis, which are affected by the low hydrogen partial pressures. PMID:22342590

  15. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1978-01-01

    Inert gas thrusters have continued to be of interest for space propulsion applications. Xenon is of interest in that its physical characteristics are well suited to propulsion. High atomic weight and low tankage fraction were major factors in this choice. If a large amount of propellant was required, so that cryogenic storage was practical, argon is a more economical alternative. Argon was also the preferred propellant for ground applications of thruster technology, such as sputter etching and deposition. Additional magnetic field measurements are reported. These measurements should be of use in magnetic field design. The diffusion of electrons through the magnetic field above multipole anodes was studied in detail. The data were consistent with Bohm diffusion across a magnetic field. The theory based on Bohm diffusion was simple and easily used for diffusion calculations. Limited startup data were obtained for multipole discharge chambers. These data were obtained with refractory cathodes, but should be useful in predicting the upper limits for starting with hollow cathodes.

  16. Greenhouse gas growth rates

    PubMed Central

    Hansen, James; Sato, Makiko

    2004-01-01

    We posit that feasible reversal of the growth of atmospheric CH4 and other trace gases would provide a vital contribution toward averting dangerous anthropogenic interference with global climate. Such trace gas reductions may allow stabilization of atmospheric CO2 at an achievable level of anthropogenic CO2 emissions, even if the added global warming constituting dangerous anthropogenic interference is as small as 1°C. A 1°C limit on global warming, with canonical climate sensitivity, requires peak CO2 ≈ 440 ppm if further non-CO2 forcing is +0.5 W/m2, but peak CO2 ≈ 520 ppm if further non-CO2 forcing is -0.5 W/m2. The practical result is that a decline of non-CO2 forcings allows climate forcing to be stabilized with a significantly higher transient level of CO2 emissions. Increased “natural” emissions of CO2, N2O, and CH4 are expected in response to global warming. These emissions, an indirect effect of all climate forcings, are small compared with human-made climate forcing and occur on a time scale of a few centuries, but they tend to aggravate the task of stabilizing atmospheric composition. PMID:15536130

  17. Gas turbine topping combustor

    DOEpatents

    Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

    1997-06-10

    A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

  18. Greenhouse gas growth rates

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko

    2004-11-01

    We posit that feasible reversal of the growth of atmospheric CH4 and other trace gases would provide a vital contribution toward averting dangerous anthropogenic interference with global climate. Such trace gas reductions may allow stabilization of atmospheric CO2 at an achievable level of anthropogenic CO2 emissions, even if the added global warming constituting dangerous anthropogenic interference is as small as 1°C. A 1°C limit on global warming, with canonical climate sensitivity, requires peak CO2 440 ppm if further non-CO2 forcing is +0.5 W/m2, but peak CO2 520 ppm if further non-CO2 forcing is -0.5 W/m2. The practical result is that a decline of non-CO2 forcings allows climate forcing to be stabilized with a significantly higher transient level of CO2 emissions. Increased "natural" emissions of CO2, N2O, and CH4 are expected in response to global warming. These emissions, an indirect effect of all climate forcings, are small compared with human-made climate forcing and occur on a time scale of a few centuries, but they tend to aggravate the task of stabilizing atmospheric composition.

  19. Natural gas conversion process

    SciTech Connect

    Not Available

    1991-01-01

    The main objective is to design and operate a laboratory apparatus for the catalytic reforming of natural gas in order to provide data for a large-scale process. To accelerate the assembly and calibration of this equipment, a request has been made to the Lawrence Berkeley Laboratory for assistance, under the DOE's Industrial Visitor Exchange Program. Pr. Heinz Heinemann (Catalysis), Dr. John Apps (Geochemistry) and Dr. Robert Fulton (Mechanical Engineering) have expressed interest in supporting our request. Pr. Heinemann's recent results on the conversion of Petroleum Coke residues into CO2 and H2 mixtures using highly basic metal oxides catalysts, similar to ours, are very encouraging regarding the possibility of converting the Coke residue on our catalyst into Syngas in the Regenerator/riser, as proposed. To minimize Coke formation in the vapor phase, by the Plasmapyrolytic Methane Conversion reactions, the experimental data of H. Drost et al. (Ref. 12) have been reviewed. Work is underway to design equipment for the safe and non-polluting disposal of the two gaseous product streams of the flow loop. 2 refs.

  20. Greenhouse gas growth rates.

    PubMed

    Hansen, James; Sato, Makiko

    2004-11-16

    We posit that feasible reversal of the growth of atmospheric CH(4) and other trace gases would provide a vital contribution toward averting dangerous anthropogenic interference with global climate. Such trace gas reductions may allow stabilization of atmospheric CO(2) at an achievable level of anthropogenic CO(2) emissions, even if the added global warming constituting dangerous anthropogenic interference is as small as 1 degrees C. A 1 degrees C limit on global warming, with canonical climate sensitivity, requires peak CO(2) approximately 440 ppm if further non-CO(2) forcing is +0.5 W/m(2), but peak CO(2) approximately 520 ppm if further non-CO(2) forcing is -0.5 W/m(2). The practical result is that a decline of non-CO(2) forcings allows climate forcing to be stabilized with a significantly higher transient level of CO(2) emissions. Increased "natural" emissions of CO(2), N(2)O, and CH(4) are expected in response to global warming. These emissions, an indirect effect of all climate forcings, are small compared with human-made climate forcing and occur on a time scale of a few centuries, but they tend to aggravate the task of stabilizing atmospheric composition.

  1. Microscale Gas-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Trott, W. M.; Rader, D. J.; Gallis, M. A.; Torczynski, J. R.

    2004-11-01

    In gas-filled microsystems, noncontinuum phenomena such as velocity slip and temperature jump become increasingly important as devices become smaller or packaging pressures are reduced. These phenomena are governed by the interaction of gas molecules with the adjacent solid surfaces. Experiments are performed to quantify the interaction of common gases (e.g., nitrogen, argon, helium) with solids of interest for microsystems (e.g., stainless steel, aluminum, gold, silicon dioxide, silicon). The gas is confined between two parallel plates at unequal temperatures, and the gas-phase heat flux is inferred from temperature measurements (radiation is accounted for). For comparison purposes, heat-flux values are also inferred from electron-beam-fluorescence measurements of the gas-phase density gradient. Heat-flux values at several pressures allow the accommodation coefficient to be determined. As well as being useful in its own right, this type of information enables molecular gas dynamics simulations of microscale gas flow using Bird's Direct Simulation Monte Carlo (DSMC) method. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Natural-gas price puzzle

    SciTech Connect

    Russell, M.

    1983-02-01

    Rectifying natural-gas underpricing and distortions in production has benefited the overall economy, but transition costs are large, and problems and strains continue. The natural-gas price story began with the 1954 price controls that developed into a wasteful, inefficient, and unfair system of too-low gas prices that resulted in the 1978 Natural Gas Policy Act (NGPA). While meeting a number of goals, NGPA has also led to current large increases in gas prices, ironically at a time when producers complain of more gas than they can sell. This glut, however, may be a surplus of short-run deliverability rather than an increase in supply. Prices have not fallen even temporarily because long-term contracts common between pipelines and producers typically prevent downward adjustment of prices to meet demand fluctuations, and the economy (hence the consumer) cannot escape the costof sustaining capacity through up-and-down demand. Transportation and delivery costs that, while getting smaller in relation to wellhead prices, are rising, and inflation, higher interest rates, and costs of uncollectables add to the price. In addition, while a straightforward supply, demand, and cost explanation of the price picture is accurate enough on a national basis, the average cost of gas as it enters a particular pipeline is affected by such complexities as historical accident, location, timing, bargaining power, and management decisions.

  3. Gas Separations using Ceramic Membranes

    SciTech Connect

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  4. Gas sensitive materials for gas detection and method of making

    DOEpatents

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2012-12-25

    A gas sensitive material comprising SnO2 nanocrystals doped with In2O3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  5. Gas sensitive materials for gas detection and methods of making

    DOEpatents

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2014-07-15

    A gas sensitive material comprising SnO.sub.2 nanocrystals doped with In.sub.2O.sub.3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO.sub.2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  6. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-07-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. Potting

  7. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-10-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. A Haz

  8. Batch Gas-Sampling System

    NASA Technical Reports Server (NTRS)

    Diaz, Vernon, Jr.; Miller, E. L.; Rollins, F. P.

    1986-01-01

    Sampler collects air or other gases in consistent way and stabilizes them for later chemical analysis. Device used for concentrations ranging from few parts per million to 100 percent. Also separates and collects particles in gas for analysis. Gas flows into vacuum sphere when solenoid valve opened. As it passes through conversion tube, constituent of gas forms stable compound that remains in conversion tube for analysis at later time. Sampler parts made of glass, polytetrafluoroethylene, and stainless steel so they do not react with sample.

  9. Combustion-gas recirculation system

    DOEpatents

    Baldwin, Darryl Dean

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  10. Gas only nozzle fuel tip

    DOEpatents

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  11. Optical fibre gas detections systems

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian

    2016-05-01

    This tutorial review covers the principles of and prospects for fibre optic sensor technology in gas detection. Many of the potential benefits common to fibre sensor technology also apply in the context of gas sensing - notably long distance - many km - access to multiple remote measurement points; invariably intrinsic safety; access to numerous important gas species and often uniquely high levels of selectivity and/or sensitivity. Furthermore, the range of fibre sensor network architectures - single point, multiple point and distributed - enable unprecedented flexibility in system implementation. Additionally, competitive technologies and regulatory issues contribute to final application potential.

  12. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  13. Gas storage and recovery system

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  14. Gas transmission through microporous membranes

    NASA Astrophysics Data System (ADS)

    Turel, Tacibaht

    2008-10-01

    An ideal protective clothing material should be a good barrier against harmful gases or vapor while allowing moisture vapor and air passage through the material. In the study and design of barrier materials, one of the critical issues is to balance these requirements, which may sometimes be mutually exclusive. Therefore it is critical to understand the macroscopic and microscopic structure of the attack mechanisms as well as the barrier materials and the transport phenomena in such systems. In this study, air and gas transmission through barrier systems consisting of porous membranes was investigated experimentally and a molecular-level probabilistic model was constructed to evaluate the effect of various parameters on the gas flow. The effect of membrane parameters such as porosity, pore size distribution, thickness as well as gas parameters such as molecule diameters were examined at single layer as well as multiple layers. To understand the gas behavior for harmful chemicals and to ensure safety during experimental studies, mimics of such gases were obtained which were comparable to the actual gases in shape, molecular weight and other chemical properties. Air, ammonia and several mimic gases of harmful chemical agents were studied. Beta-pinene was used as a mimic of sarin and prenol was used as a mimic of nitrogen mustard. Gas transmission experiments were conducted on polyester, nylon and polypropylene membranes each of which had different porosity and pore size distributions. Experiments were done at different pressure values and a comparison was made between permeability testing machines based on volumetric and manometric principles as to their ability to accommodate high permeability membranes. Physical and chemical adsorption of such gases on porous membranes was also investigated after the addition of active elements on the membrane surfaces which can interact with the gas molecules. An experimental setup was developed to measure concentration changes

  15. Greenhouse gas trading starts up

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    While nations decide on whether to sign on to the Kyoto Protocol on climate change, some countries and private companies are moving forward with greenhouse gas emissions trading.A 19 March report, "The Emerging International Greenhouse Gas Market," by the Pew Center on Global Climate Change, reports that about 65 greenhouse gas emissions trades for quantities above 1,000 metric tons of carbon dioxideequivalent already have occurred worldwide since 1996. Many of these trades have taken place under a voluntary, ad hoc framework, though the United Kingdom and Denmark have established their own domestic emissions trading programs.

  16. Towards a Noble Gas Oscillator

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Walker, Thad

    2014-05-01

    Noble gas NMR detected by alkali co-magnetometers has the potential for measurement of precession frequencies at the pHz level. This is done by eliminating the dominant known sources of systematic errors: alkali frequency shifts and quadrupole shifts. We present results of successful synchronous pumping of noble gas nuclei and measurements of alkali co-magnetometer sensitivity levels that project a 131-Xe noise level of 100 nHz /√{ Hz} . Future dual noble-gas co-magnetometry promises to improve the noise level by a factor of 10 or more. This research is supported by the NSF and Northrop-Grumman Corp.

  17. Gas supplies of interstate natural gas pipeline companies, 1983

    SciTech Connect

    Pridgen, V.

    1984-11-01

    This report provides information on the total reserves, production, and deliverability capabilities of the 86 interstate pipeline companies required to file the Federal Energy Regulatory Commission (FERC) Form 15, Interstate Pipeline's Annual Report of Gas Supply. Total dedicated domestic gas reserves, owned by or under contract to the interstate pipeline companies, decreased in 1983 by 4.2 trillion cubic feet (Tcf), or 4.3%, from 98.7 Tcf at the beginning of the year to 94.5 Tcf at the end of the year. A 5-year tabulation shows that dedicated domestic gas reserves increased slightly from 94.0 Tcf at the beginning of 1979 to 94.5 Tcf at the end of 1983, an increase of 0.5 Tcf, or 0.5%. Total gas purchased and produced from the dedicated domestic gas reserves in 1983 was 9.5 Tcf, down 13.1% from the 10.9 Tcf reported in the preceding year. The 1983 ratio of total dedicated domestic reserves to production was 10.0, significantly above the 9.0 ratio reported for 1982. Net revisions to dedicated domestic gas reserves during 1983 are calculated at -0.5 Tcf, as compared to 1.4 Tcf in 1982. Total interstate reserve additions during 1983 are reported to be 5.8 Tcf, compared to additions of 9.9 Tcf in 1982. Total natural gas imported by interstate pipeline companies from two foreign sources, Canada and Mexico, was 0.8 Tcf, 7.4% of the total gas produced and purchased in 1983. Imports of LNG from Algeria totaled only 0.09 Tcf. Total deliveries are projected to decline from 12.9 Tcf in 1984 to 7.1 Tcf by 1988. This decline is driven by the projected decline in domestic reserve deliverability. Deliveries from foreign and other sources are expected to remain relatively constant over the 5-year period. 8 figures, 18 tables.

  18. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices

    PubMed Central

    Lo, Justin H.; Bassett, Erik K.; Penson, Elliot J. N.; Hoganson, David M.

    2015-01-01

    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m2 of oxygen and ∼685 mL/min/m2 of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions. PMID:26020102

  19. Gas tagging and cover gas combination for nuclear reactor

    DOEpatents

    Gross, Kenny C.; Laug, Matthew T.

    1985-01-01

    The invention discloses the use of stable isotopes of neon and argon, that are grouped in preselected different ratios one to the other and are then sealed as tags in different cladded nuclear fuel elements to be used in a liquid metal fast breeder reactor. Failure of the cladding of any fuel element allows fission gases generated in the reaction and these tag isotopes to escape and to combine with the cover gas held in the reactor over the fuel elements. The isotopes specifically are Ne.sup.20, Ne.sup.21 and Ne.sup.22 of neon and Ar.sup.36, Ar.sup.38 and Ar.sup.40 of argon, and the cover gas is helium. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between approximately 0.degree. and -25.degree. C. operable to remove the fission gases from the cover gas and tags and the second or tag recovery system bed is held between approximately -170.degree. and -185.degree. C. operable to isolate the tags from the cover gas. Spectrometric analysis further is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be specifically determined.

  20. Improved gas tagging and cover gas combination for nuclear reactor

    DOEpatents

    Gross, K.C.; Laug, M.T.

    1983-09-26

    The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.

  1. Permanent gas analysis using gas chromatography with vacuum ultraviolet detection.

    PubMed

    Bai, Ling; Smuts, Jonathan; Walsh, Phillip; Fan, Hui; Hildenbrand, Zacariah; Wong, Derek; Wetz, David; Schug, Kevin A

    2015-04-01

    The analysis of complex mixtures of permanent gases consisting of low molecular weight hydrocarbons, inert gases, and toxic species plays an increasingly important role in today's economy. A new gas chromatography detector based on vacuum ultraviolet (VUV) spectroscopy (GC-VUV), which simultaneously collects full scan (115-240 nm) VUV and UV absorption of eluting analytes, was applied to analyze mixtures of permanent gases. Sample mixtures ranged from off-gassing of decomposing Li-ion and Li-metal batteries to natural gas samples and water samples taken from private wells in close proximity to unconventional natural gas extraction. Gas chromatography separations were performed with a porous layer open tubular column. Components such as C1-C5 linear and branched hydrocarbons, water, oxygen, and nitrogen were separated and detected in natural gas and the headspace of natural gas-contaminated water samples. Of interest for the transport of lithium batteries were the detection of flammable and toxic gases, such as methane, ethylene, chloromethane, dimethyl ether, 1,3-butadiene, CS2, and methylproprionate, among others. Featured is the capability for deconvolution of co-eluting signals from different analytes.

  2. Conversion of a Waste Gas to Liquid Natural Gas

    NASA Astrophysics Data System (ADS)

    Gongaware, D. F.; Barclay, M. A.; Barclay, J. A.; Skrzypkowski, M. P.

    2004-06-01

    The choice of liquefied natural gas (LNG) as a heavy-duty vehicular fuel is growing rapidly due to improved LNG economics, diesel price uncertainties caused by the dependence on imported crude oil, liabilities associated with environmental and health concerns, and governmental programs related to concerns over greenhouse gas emissions. However, vehicle owners who wish to use LNG are impeded by a lack of refueling infrastructure and reliable supply of inexpensive fuel. These barriers are being overcome by the development of innovative purifier/liquefier systems that economically convert a wide array of distributed, low cost methane gas sources into high quality LNG. This paper describes the engineering design, manufacture, installation, and initial operations of two such systems. One unit was a pilot-scale system using an innovative cryogenic freezing process to remove bulk concentrations of carbon dioxide from the landfill gas (LFG). The second unit converts stranded well gas containing ˜ 18% nitrogen gas into LNG. The paper closes with a summary of lessons learned from these two installations and directions for future improvements.

  3. Process gas solidification system

    DOEpatents

    Fort, William G. S.; Lee, Jr., William W.

    1978-01-01

    It has been the practice to (a) withdraw hot, liquid UF.sub.6 from various systems, (b) direct the UF.sub.6 into storage cylinders, and (c) transport the filled cylinders to another area where the UF.sub.6 is permitted to solidify by natural cooling. However, some hazard attends the movement of cylinders containing liquid UF.sub.6, which is dense, toxic, and corrosive. As illustrated in terms of one of its applications, the invention is directed to withdrawing hot liquid UF.sub.6 from a system including (a) a compressor for increasing the pressure and temperature of a stream of gaseous UF.sub.6 to above its triple point and (b) a condenser for liquefying the compressed gas. A network containing block valves and at least first and second portable storage cylinders is connected between the outlet of the condenser and the suction inlet of the compressor. After an increment of liquid UF.sub.6 from the condenser has been admitted to the first cylinder, the cylinder is connected to the suction of the compressor to flash off UF.sub.6 from the cylinder, thus gradually solidifying UF.sub.6 therein. While the first cylinder is being cooled in this manner, an increment of liquid UF.sub.6 from the condenser is transferred into the second cylinder. UF.sub.6 then is flashed from the second cylinder while another increment of liquid UF.sub.6 is being fed to the first. The operations are repeated until both cylinders are filled with solid UF.sub.6, after which they can be moved safely. As compared with the previous technique, this procedure is safer, faster, and more economical. The method also provides the additional advantage of removing volatile impurities from the UF.sub.6 while it is being cooled.

  4. Cosmogenic noble gas paleothermometry

    NASA Astrophysics Data System (ADS)

    Tremblay, Marissa M.; Shuster, David L.; Balco, Greg

    2014-08-01

    We present a theoretical basis for reconstructing paleotemperatures from the open-system behavior of cosmogenic noble gases produced in minerals at Earth's surface. Experimentally-determined diffusion kinetics predicts diffusive loss of cosmogenic 3He and 21Ne from common minerals like quartz and feldspars at ambient temperatures; incomplete retention has also been observed empirically in field studies. We show that the theory of simultaneous production and diffusion that applies to radiogenic noble gases in minerals-the basis of thermochronology-can also be applied to cosmogenic noble gases to reconstruct past surface temperatures on Earth. We use published diffusion kinetics and production rates for 3He in quartz and 21Ne in orthoclase to demonstrate the resolving power of cosmogenic noble gas paleothermometry with respect to exposure duration, temperature, and diffusion domain size. Calculations indicate that, when paired with a quantitatively retained cosmogenic nuclide such as 21Ne or 10Be, observations of cosmogenic 3He in quartz can constrain temperatures during surface exposure in polar and high altitude environments. Likewise, 21Ne retention in feldspars is sensitive to temperatures at lower latitudes and elevations, expanding the potential geographic applicability of this technique to most latitudes. As an example, we present paired measurements of 3He and 10Be in quartz from a suite of Antarctic sandstone erratics to test whether the abundances of cosmogenic 3He agree with what is predicted from first principles and laboratory-determined diffusion kinetics. We find that the amounts of cosmogenic 3He present in these samples are consistent with the known mean annual temperature (MAT) for this region of Antarctica between -25 and -30 °C. These results demonstrate the method's ability to record paleotemperatures through geologic time.

  5. Oxygenates vs. synthesis gas

    SciTech Connect

    Kamil Klier; Richard G. Herman; Alessandra Beretta; Maria A. Burcham; Qun Sun; Yeping Cai; Biswanath Roy

    1999-04-01

    Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether. Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double

  6. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas.

  7. Assembly for directing combustion gas

    DOEpatents

    Charron, Richard C.; Little, David A.; Snyder, Gary D.

    2016-04-12

    An arrangement is provided for delivering gases from a plurality of combustors of a can-annular gas turbine combustion engine to a first row of turbine blades including a first row of turbine blades. The arrangement includes a gas path cylinder, a cone and an integrated exit piece (IEP) for each combustor. Each IEP comprises an inlet chamber for receiving a gas flow from a respective combustor, and includes a connection segment. The IEPs are connected together to define an annular chamber extending circumferentially and concentric to an engine longitudinal axis, for delivering the gas flow to the first row of blades. A radiused joint extends radially inward from a radially outer side of the inlet chamber to an outer boundary of the annular chamber, and a flared fillet extends radially inward from a radially inner side of the inlet chamber to an inner boundary of the annular chamber.

  8. Gas-phase chemical dynamics

    SciTech Connect

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M.

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  9. Natural Gas Monthly August 1998

    SciTech Connect

    1998-08-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.

  10. Greenhouse Gas Reductions: SF6

    ScienceCinema

    Anderson, Diana

    2016-07-12

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  11. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1992-01-01

    The construction of the high pressure gas phase fermentation system has been completed. Photographs of the various components of the system are presented, along with an operating procedure for the equipment.

  12. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. PMID:27276698

  13. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  14. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  15. EPA Protocol Gas Verification Program

    EPA Science Inventory

    Accurate compressed gas calibration standards are needed to calibrate continuous emission monitors (CEMs) and ambient air quality monitors that are being used for regulatory purposes. US Environmental Protection Agency (EPA) established its traceability protocol to ensure that co...

  16. G2 Gas Cloud Simulation

    NASA Video Gallery

    This simulation shows the future behavior of the G2 gas cloud now approaching Sgr A*, the supermassive black hole at the center of the Milky Way. X-ray emission from the cloud's tidal interaction w...

  17. Greenhouse Gas Reductions: SF6

    SciTech Connect

    Anderson, Diana

    2012-01-01

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  18. Gas Hydrate Petroleum System Analysis

    NASA Astrophysics Data System (ADS)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is

  19. Coal beneficiation by gas agglomeration

    DOEpatents

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  20. Landfill gas project. Final report

    SciTech Connect

    1983-01-01

    The methane gas recovered from the landfill is used for space heating and water heating for the Florence-Lauderdale Humane Shelter 600 feet from the well head. The project to date and future development are described briefly. (MHR)

  1. Unconventional shallow biogenic gas systems

    USGS Publications Warehouse

    Shurr, G.W.; Ridgley, J.L.

    2002-01-01

    Unconventional shallow biogenic gas falls into two distinct systems that have different attributes. Early-generation systems have blanketlike geometries, and gas generation begins soon after deposition of reservoir and source rocks. Late-generation systems have ringlike geometries, and long time intervals separate deposition of reservoir and source rocks from gas generation. For both types of systems, the gas is dominantly methane and is associated with source rocks that are not thermally mature. Early-generation biogenic gas systems are typified by production from low-permeability Cretaceous rocks in the northern Great Plains of Alberta, Saskatchewan, and Montana. The main area of production is on the southeastern margin of the Alberta basin and the northwestern margin of the Williston basin. The huge volume of Cretaceous rocks has a generalized regional pattern of thick, non-marine, coarse clastics to the west and thinner, finer grained marine lithologies to the east. Reservoir rocks in the lower part tend to be finer grained and have lower porosity and permeability than those in the upper part. Similarly, source beds in the units have higher values of total organic carbon. Patterns of erosion, deposition, deformation, and production in both the upper and lower units are related to the geometry of lineament-bounded basement blocks. Geochemical studies show that gas and coproduced water are in equilibrium and that the fluids are relatively old, namely, as much as 66 Ma. Other examples of early-generation systems include Cretaceous clastic reservoirs on the southwestern margin of Williston basin and chalks on the eastern margin of the Denver basin. Late-generation biogenic gas systems have as an archetype the Devonian Antrim Shale on the northern margin of the Michigan basin. Reservoir rocks are fractured, organic-rich black shales that also serve as source rocks. Although fractures are important for production, the relationships to specific geologic structures are

  2. Molecular wake shield gas analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1980-01-01

    Techniques for measuring and characterizing the ultrahigh vacuum in the wake of an orbiting spacecraft are studied. A high sensitivity mass spectrometer that contains a double mass analyzer consisting of an open source miniature magnetic sector field neutral gas analyzer and an identical ion analyzer is proposed. These are configured to detect and identify gas and ion species of hydrogen, helium, nitrogen, oxygen, nitric oxide, and carbon dioxide and any other gas or ion species in the 1 to 46 amu mass range. This range covers the normal atmospheric constituents. The sensitivity of the instrument is sufficient to measure ambient gases and ion with a particle density of the order of one per cc. A chemical pump, or getter, is mounted near the entrance aperture of the neutral gas analyzer which integrates the absorption of ambient gases for a selectable period of time for subsequent release and analysis. The sensitivity is realizable for all but rare gases using this technique.

  3. Etiology of gas bubble disease

    SciTech Connect

    Bouck, G.R.

    1980-11-01

    Gas bubble disease is a noninfectious, physically induced process caused by uncompensated hyperbaric pressure of total dissolved gases. When pressure compensation is inadequate, dissolved gases may form emboli (in blood) and emphysema (in tissues). The resulting abnormal physical presence of gases can block blood vessels (hemostasis) or tear tissues, and may result in death. Population mortality is generally skewed, in that the median time to death occurs well before the average time to death. Judged from mortality curves, three stages occur in gas bubble disease: (1) a period of gas pressure equilibrium, nonlethal cavitation, and increasing morbidity; (2) a period of rapid and heavy mortality; and (3) a period of protracted survival, despite lesions, and dysfunction that eventually terminates in total mortality. Safe limits for gas supersaturation depend on species tolerance and on factors that differ among hatcheries and rivers, between continuous and intermittent exposures, and across ranges of temperature and salinity.

  4. Rapid response gas injection technique.

    PubMed

    Komar, J J

    1978-10-01

    A unique gas injection technique has been developed which has rapid response and is capable of supplying gas flowrates up to 5 kg/s at pressures of 3.45 x 10(6) N/m(2). Rise times to equilibrium pressure varied from 7 to 15 ms over the operating range. The reliability, excellent repeatibility, and uniform pressure have shown the system to be superior to previously utilized expansion tube gas injection techniques associated with very short duration impulse test facilities. The achievement of precise timing control of the valve opening permitted a complex electronic sequencing of facility events. An additional feature of automatic gas supply shut-off resulted in significant cost savings when rare gases were used as injectants. PMID:18698978

  5. Solid-gas critical flow

    SciTech Connect

    Gidaspow, D.; Syamlal, M.

    1985-01-01

    Maximum solid-gas transport rates have been computed using several hydrodynamic models. In the limit of zero gas density, the critical velocity equals the square root of a compressibility modulus of the powder divided by its density. Compressibility waves move with this velocity through the powder. Part II of this paper deals with homogeneous critical powder flow for which a useful expression for maximum flow has been derived and compared to an experiment from the literature.

  6. Flammable gas program topical report

    SciTech Connect

    Johnson, G.D.

    1996-10-30

    The major emphasis of this report is to describe what has been learned about the generation, retention, and release of flammable gas mixtures in high-level waste tanks. A brief overview of efforts to characterize the gas composition will be provided. The report also discusses what needs to be learned about the phenomena, how the Unreviewed Safety Question will be closed, and the approach for removing tanks from the Watch List.

  7. Flammable Gas Technical Basis Document

    SciTech Connect

    CARRO, C.A.

    2003-07-30

    This document qualitatively evaluates the frequency and consequences of DST and SST representative flammable gas accidents and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant SSCs and/or TSRs were required to prevent or mitigate flammable gas accidents. Controls were selected and the accidents re-evaluated taking credit for the controls. Revision 1 incorporates comments received from ORP.

  8. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  9. Steady State Dense Gas Dispersion

    1995-03-01

    SLAB-LLNL is a steady-state one-dimensional program which calculates the atmospheric dispersion of a heavier than air gas that is continuously released at ground level. The model is based on the steady-state crosswind-averaged conservation equations of species, mass, energy, and momentum. It uses the air entrainment concept to account for the turbulent mixing of the gas cloud with the surrounding atmosphere and similarity profiles to determine the crosswind dependence.

  10. Gas cooled traction drive inverter

    SciTech Connect

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  11. Costs to transport natural gas

    SciTech Connect

    Leibson, I.; Davenport, S.T.; Muenzier, M.H.

    1987-04-01

    Relative Economics are discussed for transporting natural gas by four ways: converting to LNG and using LNG tankers, as a gas using on-land and subsea pipelines, converting to methanol and using conventional tankers, and compressing and using tankers with pressurized containers. Distances and routes are important factors when determining cost. Specific examples are given for transportation between : Arabian Gulf and Europe, Africa and Europe, and Islands separated by short distances.

  12. Barometric pressure and gas composition

    NASA Technical Reports Server (NTRS)

    Malkin, V. B.

    1975-01-01

    Many factors affecting artificial gas atmosphere, which is used to maintain life during space flight, are considered. The wide variability of barometric pressure in spacecraft, due in large measure to spacecraft design is discussed. Explosive decompression is described; this develops from instantaneous depressurization of the cabin. Decompression sickness is reviewed, including bubble growth and evolution of gas bubbles in organisms. Dysbarism, hypoxia, and hypercapnia are also discussed.

  13. Simulating VIIRS Observed Gas Flare

    NASA Astrophysics Data System (ADS)

    Hsu, F. C.

    2015-12-01

    VIIRS Nightfire (VNF) had been proved being able to effectively detect gas flares at night, and characterize their temperature and source size. [1] However, limited access to generally confidential gas flare operation measurements made it difficult to verify the output. Although flared gas volume is occasionally available, it is not common to log the temperature and flames size which directly links to VNF output. To understand the mechanism of gas flare and how VIIRS perceives the event, a platform is proposed to simulate the gas flare being observed by VIIRS. The methodology can be described in three steps. (1) Use CFD simulation software ISIS-3D to simulate a simple gas flare. [2] Scalar fields of temperature and species concentration related to combustion are extracted from the simulation. The instantaneous scalar can be determined from time-averaging or guess by stochastic time and space series (TASS) from single-point statistics [3]. (2) Model spectral radiance intensity of simulated gas flare using RADCAL. [4] RADCAL developed by NIST can accurately model the spectral radiance emitted on the direction of lineof-sight given the spatial profile of temperature and concentration of species. (3) Use radiative transfer modeling to calculate the energy propagated to VIIRS. The modeled radiation will then be weighted by the MODTRAN [5] modeled transmissivity over predefined atmosphere to the satellite, with geometrical effects considered. Such platform can help understanding how exactly VNF is measuring gas flares, and thus lead to more precise characterization of combustion events. [1] C. D. Elvidge et al, Remote Sensing, 2013[2] IRSN ISIS-3D[3] M. E. Kounalakis et al, ASME J. Heat Transfer, 1991 [4] W. L. Grosshandler, NIST Technical Note 1402, 1993 [5] A. Berk et al, MODTRAN 5.2.0.0 User's Manual

  14. Gasification Evaluation of Gas Turbine Combustion

    SciTech Connect

    Battelle

    2003-12-30

    This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

  15. New Gas Polarographic Hydrogen Sensor

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Barile, Ron

    2004-01-01

    Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.

  16. Natural gas monthly, November 1997

    SciTech Connect

    1997-11-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through November for many data series, and through August for most natural gas prices. Highlights of the most recent data estimates are: (1) Preliminary estimates of dry natural gas production and total consumption available through November 1997 indicate that both series are on track to end the year at levels close to those of 1996. Cumulative dry production is one-half percent higher than in 1996 and consumption is one-half percent lower. (2) Natural gas production is estimated to be 52.6 billion cubic feet per day in November 1997, the highest rate since March 1997. (3) After falling 8 percent in July 1997, the national average wellhead price rose 10 percent in August 1997, reaching an estimated $2.21 per thousand cubic feet. (4) Milder weather in November 1997 compared to November 1996 has resulted in significantly lower levels of residential consumption of natural gas and net storage withdrawls than a year ago. The November 1997 estimates of residential consumption and net withdrawls are 9 and 20 percent lower, respectively, than in November 1996.

  17. Natural gas monthly, July 1995

    SciTech Connect

    1995-07-21

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. Explanatory Notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided in the Data Sources section. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication. All natural gas volumes are reported at a pressure base of 14.73 pounds per square inch absolute (psia) and at 60 degrees Fahrenheit. Cubic feet are converted to cubic meters by applying a factor of 0.02831685.

  18. Natural gas monthly, March 1999

    SciTech Connect

    1999-03-01

    This issue of the Natural Gas Monthly contains estimates for March 1999 for many natural gas data series at the national level. Estimates of national natural gas prices are available through December 1998 for most series. Highlights of the data contained in this issue are listed below. Preliminary data indicate that the national average wellhead price for 1998 declined to 16% from the previous year ($1.96 compared to $2.32 per thousand cubic feet). At the end of March, the end of the 1998--1999 heating season, the level of working gas in underground natural gas storage facilities is estimated to be 1,354 billion cubic feet, 169 billion cubic feet higher than at the end of March 1998. Gas consumption during the first 3 months of 1999 is estimated to have been 179 billion cubic feet higher than in the same period in 1998. Most of this increase (133 billion cubic feet) occurred in the residential sector due to the cooler temperatures in January and February compared to the same months last year. According to the National Weather Service, heating degree days in January 1999 were 15% greater than the previous year while February recorded a 5% increase.

  19. Dissolved gas - the hidden saboteur

    SciTech Connect

    Magorien, V.G.

    1993-12-31

    Almost all hydraulic power components, to properly perform their tasks, rely on one basic, physical property, i.e., the incompressibility of the working fluid. Unfortunately, a frequently overlooked fluid property which frustrates this requirement is its ability to absorb, i.e., dissolve, store and give off gas. The gas is, most often but not always, air. This property is a complex one because it is a function not only of the fluid`s chemical make-up but temperature, pressure, exposed area, depth and time. In its relationshiop to aircraft landing-gear, where energy is absorbed hydraulically, this multi-faceted fluid property can be detrimental in two ways: dynamically, i.e., loss of energy absorption ability and statically, i.e., improper aircraft attitude on the ground. The pupose of this paper is to bring an awareness to this property by presenting: (1) examples of these manifestations with some empirical and practical solutions to them, (2) illustrations of this normally `hidden saboteur` at work, (3) Henry`s Dissolved Gas Law, (4) room-temperature, saturated values of dissolved gas for a number of different working fluids, (5) a description of the instrument used to obtain them, (6) some `missing elements` of the Dissolved Gas Law pertaining to absoption, (7) how static and dynamic conditions effect gas absorption and (8) some recommended solutions to prevent becoming a victim of this `hidden saboteur`

  20. Gas hydrates: Technology status report

    SciTech Connect

    Not Available

    1987-01-01

    In 1983, the US Department of Energy (DOE) assumed the responsibility for expanding the knowledge base and for developing methods to recover gas from hydrates. These are ice-like mixtures of gas and water where gas molecules are trapped within a framework of water molecules. This research is part of the Unconventional Gas Recovery (UGR) program, a multidisciplinary effort that focuses on developing the technology to produce natural gas from resources that have been classified as unconventional because of their unique geologies and production mechanisms. Current work on gas hydrates emphasizes geological studies; characterization of the resource; and generic research, including modeling of reservoir conditions, production concepts, and predictive strategies for stimulated wells. Complementing this work is research on in situ detection of hydrates and field tests to verify extraction methods. Thus, current research will provide a comprehensive technology base from which estimates of reserve potential can be made, and from which industry can develop recovery strategies. 7 refs., 3 figs., 6 tabs.

  1. Advanced hot gas filter development

    SciTech Connect

    McMahon, T.J.

    1998-12-31

    Advanced coal-based power generation systems require hot gas cleanup under high-temperature, high-pressure process conditions in order to realize high efficiency and superior environmental performance. A key component of Integrated Gasification Combined Cycle and Pressurized Fluidized Bed Combustion systems is the hot gas filtration system, which removes particulate matter from the gas stream before it enters the gas turbine. The US DOE is currently sponsoring a program to develop and test hot gas filtration systems, demonstrating their reliability and commercial readiness. Reliability of individual filter elements is a major factor in determining the overall system reliability, and testing has shown that conventional ceramic filter elements are subject to brittle failure and thermal stress damage. In order to increase filter element reliability, a program was initiated to develop ceramic and metal filter elements resistant to brittle failure and thermal stress damage. Filter elements have been developed using advanced materials including continuous fiber ceramic composites, other novel ceramics, and corrosion resistant metals. The general approach taken under this program has been to first develop porous filter media from advanced materials that meet permeability and strength requirements, followed by fabrication of porous media into full scale filter elements. Filter elements and filter media were subjected to laboratory scale corrosion and filtration testing. Filter elements successfully passing laboratory testing have been tested under pilot scale conditions. This paper will summarize the development and testing of these advanced hot gas filters.

  2. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... Energy Regulatory Commission Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of...

  3. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  4. Regolith Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases

  5. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    NASA Astrophysics Data System (ADS)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  6. RADIOLYTIC GAS PRODUCTION RATES OF POLYMERS EXPOSED TO TRITIUM GAS

    SciTech Connect

    Clark, E.

    2013-08-31

    Data from previous reports on studies of polymers exposed to tritium gas is further analyzed to estimate rates of radiolytic gas production. Also, graphs of gas release during tritium exposure from ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon®), and Vespel® polyimide are re-plotted as moles of gas as a function of time, which is consistent with a later study of tritium effects on various formulations of the elastomer ethylene-propylene-diene monomer (EPDM). These gas production rate estimates may be useful while considering using these polymers in tritium processing systems. These rates are valid at least for the longest exposure times for each material, two years for UHMW-PE, PTFE, and Vespel®, and fourteen months for filled and unfilled EPDM. Note that the production “rate” for Vespel® is a quantity of H{sub 2} produced during a single exposure to tritium, independent of length of time. The larger production rate per unit mass for unfilled EPDM results from the lack of filler- the carbon black in filled EPDM does not produce H{sub 2} or HT. This is one aspect of how inert fillers reduce the effects of ionizing radiation on polymers.

  7. Gas hydrates in the ocean environment

    USGS Publications Warehouse

    Dillon, William P.

    2002-01-01

    A GAS HYDRATE, also known as a gas clathrate, is a gas-bearing, icelike material. It occurs in abundance in marine sediments and stores immense amounts of methane, with major implications for future energy resources and global climate change. Furthermore, gas hydrate controls some of the physical properties of sedimentary deposits and thereby influences seafloor stability.

  8. Direct fired absorption machine flue gas recuperator

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1985-01-01

    A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

  9. Ternary gas mixture for diffuse discharge switch

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1988-01-01

    A new diffuse discharge gas switch wherein a mixture of gases is used to take advantage of desirable properties of the respective gases. There is a conducting gas, an insulating gas, and a third gas that has low ionization energy resulting in a net increase in the number of electrons available to produce a current.

  10. 46 CFR 184.240 - Gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Gas systems. 184.240 Section 184.240 Shipping COAST... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.240 Gas systems. Cooking systems using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the...

  11. 46 CFR 121.240 - Gas systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Gas systems. 121.240 Section 121.240 Shipping COAST... SYSTEMS AND EQUIPMENT Cooking and Heating § 121.240 Gas systems. Cooking systems using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the following requirements: (a) The...

  12. 46 CFR 184.240 - Gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Gas systems. 184.240 Section 184.240 Shipping COAST... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.240 Gas systems. Cooking systems using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the...

  13. 21 CFR 868.6400 - Calibration gas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calibration gas. 868.6400 Section 868.6400 Food... DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6400 Calibration gas. (a) Identification. A calibration gas is a device consisting of a container of gas of known concentration intended to calibrate...

  14. 46 CFR 184.240 - Gas systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Gas systems. 184.240 Section 184.240 Shipping COAST... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.240 Gas systems. Cooking systems using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the...

  15. 21 CFR 868.6400 - Calibration gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibration gas. 868.6400 Section 868.6400 Food... DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6400 Calibration gas. (a) Identification. A calibration gas is a device consisting of a container of gas of known concentration intended to calibrate...

  16. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gas divider. 1065.248 Section 1065.248... PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You may use a gas divider to blend calibration gases. (b) Component requirements. Use a gas divider...

  17. 21 CFR 868.6400 - Calibration gas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calibration gas. 868.6400 Section 868.6400 Food... DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6400 Calibration gas. (a) Identification. A calibration gas is a device consisting of a container of gas of known concentration intended to calibrate...

  18. 46 CFR 121.240 - Gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Gas systems. 121.240 Section 121.240 Shipping COAST... SYSTEMS AND EQUIPMENT Cooking and Heating § 121.240 Gas systems. Cooking systems using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the following requirements: (a) The...

  19. 46 CFR 121.240 - Gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Gas systems. 121.240 Section 121.240 Shipping COAST... SYSTEMS AND EQUIPMENT Cooking and Heating § 121.240 Gas systems. Cooking systems using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the following requirements: (a) The...

  20. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gas divider. 1065.248 Section 1065.248... PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You may use a gas divider to blend calibration gases. (b) Component requirements. Use a gas divider...

  1. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gas divider. 1065.248 Section 1065.248... PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You may use a gas divider to blend calibration gases. (b) Component requirements. Use a gas divider...

  2. 46 CFR 184.240 - Gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Gas systems. 184.240 Section 184.240 Shipping COAST... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.240 Gas systems. Cooking systems using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the...

  3. 46 CFR 121.240 - Gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Gas systems. 121.240 Section 121.240 Shipping COAST... SYSTEMS AND EQUIPMENT Cooking and Heating § 121.240 Gas systems. Cooking systems using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the following requirements: (a) The...

  4. 21 CFR 868.6400 - Calibration gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calibration gas. 868.6400 Section 868.6400 Food... DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6400 Calibration gas. (a) Identification. A calibration gas is a device consisting of a container of gas of known concentration intended to calibrate...

  5. 21 CFR 868.6400 - Calibration gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calibration gas. 868.6400 Section 868.6400 Food... DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6400 Calibration gas. (a) Identification. A calibration gas is a device consisting of a container of gas of known concentration intended to calibrate...

  6. 46 CFR 184.240 - Gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Gas systems. 184.240 Section 184.240 Shipping COAST... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.240 Gas systems. Cooking systems using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the...

  7. 46 CFR 121.240 - Gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Gas systems. 121.240 Section 121.240 Shipping COAST... SYSTEMS AND EQUIPMENT Cooking and Heating § 121.240 Gas systems. Cooking systems using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the following requirements: (a) The...

  8. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Gas divider. 1065.248 Section 1065.248... PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You may use a gas divider to blend calibration gases. (b) Component requirements. Use a gas divider...

  9. Recession curbs gas pipeline construction costs

    SciTech Connect

    Morgan, J.M.

    1983-01-24

    This paper shows how after 5 yrs. of inflation, gas pipeline construction costs have finally felt the effects of a severe building recession. First quarter (1982) construction activity, compressor equipment and drive units, and high-pressure gas-station piping are discussed. Graphs of OGJ-Morgan composite gas pipeline cost, and gas pipeline cost component indexes are presented.

  10. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  11. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Hunter, Scott R.

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  12. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  13. Welding Using Chilled-Inert-Gas Purging

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Report describes study of fusion welding using chilled inert gas. Marked improvement shown in welding of aluminum using chilled helium gas. Chilling inert gas produces two additional benefits: 1) creation of ultradense inert atmosphere around welds; 2) chilled gas cools metal more quickly down to temperature at which metals not reactive.

  14. Nitrogen removal from natural gas

    SciTech Connect

    1997-04-01

    According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

  15. Gas well deliquification. 2nd. ed.

    SciTech Connect

    James Lea; Henry Nickens; Mike Wells

    2008-03-15

    Chapter 1: Introduction; Chapter 2: Recognizing Symptoms of Liquid Loading in Gas Wells; Chapter 3: Critical Velocity; Chapter 4: Systems Nodal Analysis; Chapter 5: Sizing Tubing; Chapter 6: Compression; Chapter 7: Plunger Lift; Chapter 8: Use of Foam to Deliquefy Gas Wells; Chapter 9: Hydraulic Pumping; Chapter 10: Use of Beam Pumps to Deliquefy Gas Wells; Chapter 11: Gas Lift; Chapter 12: Electric Submersible Pumps; Chapter 13: Progressing Cavity Pumps; Chapter 14: Coal Bed Methane; Chapter 15: Production Automation. Chapter 14, by David Simpson, based in the San Juan Basin, addresses issues in coal bed methane, low pressure operations, gas compression, gas measurement, oil field construction, gas well deliquification and project management.

  16. Africa's natural gas: potentialities and letdowns

    SciTech Connect

    Baladian, K.

    1983-11-01

    Although Africa has experienced 10 times less hydrocarbon exploration than Western Europe, its proved gas reserves already amount to 220-223 trillion CF or 7% of world reserves, while Europe holds 6% or 167 TCF. Yet Africa marketed only 1.3 TCF in 1982 against Europe's 6.5 TCF. Because of the lack of domestic demand for gas, Africa flares up to 21% of its gas output. Algeria is the continent's primary gas consumer, with Egypt, Libya, and Nigeria trying to expand local gas markets. The vast majority of marketed African gas goes to Europe, either as gas sent through the Trans-Med pipeline or as LNG via tanker.

  17. Gas sampling system for a mass spectrometer

    DOEpatents

    Taylor, Charles E; Ladner, Edward P

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  18. Gas mixing apparatus for automated gas sensor characterization

    NASA Astrophysics Data System (ADS)

    Helwig, Nikolai; Schüler, Marco; Bur, Christian; Schütze, Andreas; Sauerwald, Tilman

    2014-05-01

    We developed a computer-controlled gas mixing system that provides automated test procedures for the characterization of gas sensors. The focus is the generation of trace gases (e.g. VOCs like benzene or naphthalene) using permeation furnaces and pre-dilution of test gases. With these methods, the sensor reaction can be analyzed at very low gas concentrations in the ppb range (parts per billion) and even lower. The pre-dilution setup enables to cover a high concentration range (1:62 500) within one test procedure. Up to six test gases, humidity, oxygen content, total flow and their variation over time can be controlled via a LabVIEW-based user-interface.

  19. Compressor station for Arctic gas pipeline

    SciTech Connect

    Mast, B.T.

    1983-02-08

    By not using conventional refrigeration equipment, this process for cooling natural gas as it leaves the compressor requires less costly machinery, consumes less energy, reduces the frequency of mechanical failure, and takes full advantage of the ambient air in cooling the gas. The apparatus includes a gas-to-gas heat exchanger where the cold incoming gas is first preheated by the warm outgoing gas; this raises the initial temperature of the discharge gas to above the ambient temperature. The discharge gas is then cooled by the incoming gas and by the ambient air in a second heat exchanger. Finally, if further cooling is required, the system includes an expander for additional cooling. The design is particularly suited for use on Arctic pipelines to protect the permafrost from being melted by the warm gas.

  20. Natural Gas Multi-Year Program Plan

    SciTech Connect

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.