Science.gov

Sample records for gas molecular ionization

  1. Ionized gas at the edge of the central molecular zone

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.; Velusamy, T.; Requena-Torres, M. A.; Wiesemeyer, H.

    2015-04-01

    Context. The edge of the central molecular zone (CMZ) is the location where massive dense molecular clouds with large internal velocity dispersions transition to the surrounding more quiescent and lower CO emissivity region of the Galaxy. Little is known about the ionized gas surrounding the molecular clouds and in the transition region. Aims: We determine the properties of the ionized gas at the edge of the CMZ near Sgr E using observations of N+ and C+. Methods: We observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C ii] 158 μm and [N ii] 205 μm fine structure lines at six positions with the GREAT instrument on SOFIA and in [C ii] using Herschel HIFI on-the-fly strip maps. We use the [N ii] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C ii] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. Results: We detect two [C ii] and [N ii] velocity components, one along the line of sight to a CO molecular cloud at - 207 km s-1 associated with Sgr E and the other at -174 km s-1 outside the edge of another CO cloud. From the [N ii] emission we find that the average electron density is in the range of ~5 to 21 cm-3 for these features. This electron density is much higher than that of the disk's warm ionized medium, but is consistent with densities determined for bright diffuse H ii nebula. The column density of the CO-dark H2 layer in the -207 km s-1 cloud is ~1-2 × 1021 cm-2 in agreement with theoretical models. The CMZ extends further out in Galactic radius by ~7 to 14 pc in ionized gas than it does in molecular gas traced by CO. Conclusions: The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 106 to 107 photons cm-2 s-1, and/or efficient proton charge exchange with

  2. Dissociation and ionization of molecular gas in the spiral arms of M51

    NASA Technical Reports Server (NTRS)

    Lees, J. F.; Lo, K. Y.

    1990-01-01

    Researchers derive the star formation rate and efficiency in the arm and interarm regions of M51 from observations of the molecular (Lo et al. 1987) and ionized (van der Hulst et al. 1988) phases of the interstellar medium, and show that the HI observations of Tilanus and Allen (1989) are consistent with dissociation of molecular gas by these young, massive stars if n sub H greater than or equal to 200 cm (-2). However, these stars are not able to dissociate or ionize all the gas, and at least 60 percent must remain molecular in the interarm regions. The efficiency of star formation in M51 seems to be similar to that in the Galaxy, and does not appear to be enhanced in the spiral arms. Therefore, the effect of the strong density wave may be only to concentrate the gas, and hence the young stars, to the arm regions.

  3. POLYCYCLIC AROMATIC HYDROCARBONS, IONIZED GAS, AND MOLECULAR HYDROGEN IN BRIGHTEST CLUSTER GALAXIES OF COOL-CORE CLUSTERS OF GALAXIES

    SciTech Connect

    Donahue, Megan; Mark Voit, G.; Hoffer, Aaron; De Messieres, Genevieve E.; O'Connell, Robert W.; McNamara, Brian R.; Nulsen, Paul E. J. E-mail: voit@pa.msu.edu

    2011-05-01

    We present measurements of 5-25 {mu}m emission features of brightest cluster galaxies (BCGs) with strong optical emission lines in a sample of nine cool-core clusters of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telescope. These systems provide a view of dusty molecular gas and star formation, surrounded by dense, X-ray-emitting intracluster gas. Past work has shown that BCGs in cool-core clusters may host powerful radio sources, luminous optical emission-line systems, and excess UV, while BCGs in other clusters never show this activity. In this sample, we detect polycyclic aromatic hydrocarbons (PAHs), extremely luminous, rotationally excited molecular hydrogen line emission, forbidden line emission from ionized gas ([Ne II] and [Ne III]), and infrared continuum emission from warm dust and cool stars. We show here that these BCGs exhibit more luminous forbidden neon and H{sub 2} rotational line emission than star-forming galaxies with similar total infrared luminosities, as well as somewhat higher ratios of 70 {mu}m/24 {mu}m luminosities. Our analysis suggests that while star formation processes dominate the heating of the dust and PAHs, a heating process consistent with suprathermal electron heating from the hot gas, distinct from star formation, is heating the molecular gas and contributing to the heating of the ionized gas in the galaxies. The survival of PAHs and dust suggests that dusty gas is somehow shielded from significant interaction with the X-ray gas.

  4. Diffuse, Warm Ionized Gas

    NASA Astrophysics Data System (ADS)

    Haffner, L. M.

    2002-05-01

    Over the past decade, new high-sensitivity observations have significantly advanced our knowledge of the diffuse, ionized gas in spiral galaxies. This component of the interstellar medium, often referred to as Warm Ionized Medium (WIM) or Diffuse Ionized Gas (DIG), plays an important role in the complex stellar-interstellar matter and energy cycle. In examining the distribution and physical properties of this gas, we learn not only about the conditions of the medium but also about processes providing heating and ionization in the halos of spiral galaxies. For the Milky Way, three new Hα surveys are available providing large sky coverage, arc-minute spatial resolution, and the ability to kinematically resolve this prominent optical emission line. These new, global views show that the Warm Ionized Medium of the Galaxy is ubiquitous as previously suspected, is rich with filamentary structure down to current resolution limits, and can be traced into the halo at large distances from the Galactic plane. Observations of additional optical emission lines are beginning to probe the physical conditions of the WIM. Early results suggest variations in the temperature and ionization state of the gas which are not adequately explained by Lyman continuum stellar photoionization alone. In parallel with this intensive work in the Milky Way have been numerous studies about the diffuse, ionized gas in other spiral galaxies. Here, deep, face-on spiral investigations provide some of the best maps of the global DIG distribution in a galaxy and begin to allow a probe of the local link between star formation and the powering of ionized gas. In addition, ionized gas has been traced out to impressive distances (z > 3 kpc) in edge-on spirals, revealing out large-scale changes in the physical conditions and kinematics of galactic halos.

  5. A Desorbed Gas Molecular Ionization Mechanism for Arcing Onset in Solar Arrays Immersed in a Low-Density Plasma

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.; Degroot, W.

    2002-01-01

    Previous experimental studies have hypothesized that the onset of Solar Array Arc (SAA) initiation in low-density space plasmas is caused by a desorbed gas molecular ionization mechanism. Indeed past investigations performed at the NASA Glenn Plasma Interaction Facility tend to not only support the desorbed gas molecular ionization mechanism, but have gone as far as identifying the crucial molecular species that must be present for molecular ion dominated process to occur. When electrical breakdown occurs at a triple junction site on a solar array panel, a quasi-neutral plasma cloud is ejected. Assuming the main component of the expelled plasma cloud by weight is due to water vapor, the fastest process available is due to HO molecules and OH(+) ions, or more succinctly, dissociative molecular-ion dominated recombination processes: H2O(+) + e(-) yields H* + OH*. Recently published spectroscopic observations of solar array arc spectra in ground tests have revealed the well-known molecular OH band (302 to 309nm), as well as the molecular SiH band (387nm peak), and the molecular CH band (432nm peak). Note that the OH band is observed in emission arcs where water vapor is present. Strong atomic lines were also observed for H(sub beta) at 486nm and H(sub alpha) at 656.3nm in prior ground testing. Independent supporting evidence of desorbed gas molecular ionization mechanisms also come from measurements of arc current pulse widths at different capacitances. We will revisit an earlier first order approximation demonstrating the dependence of arc current pulse widths on the square root of the capacitance. The simple arc current pulse width model will be then be used to estimate the temperature of the arc plasma (currently believed to be somewhere in the range of 3 to 5 eV). The current paper then seeks to extend the outlined work by including numerous vacuum chamber measurements obtained with a quadrupole mass spectrometer. A small solar array was mounted inside the vacuum

  6. H ii REGION G46.5-0.2: THE INTERPLAY BETWEEN IONIZING RADIATION, MOLECULAR GAS, AND STAR FORMATION

    SciTech Connect

    Paron, S.; Ortega, M. E.; Dubner, G.; Petriella, A.; Giacani, E.; Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju; Wu, Yuefang

    2015-06-15

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey ({sup 13}CO J = 1–0) and from the James Clerk Maxwell Telescope data archive ({sup 12}CO, {sup 13}CO, C{sup 18}O J = 3–2, HCO{sup +}, and HCN J = 4–3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10′ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.

  7. H II Region G46.5-0.2: The Interplay between Ionizing Radiation, Molecular Gas, and Star Formation

    NASA Astrophysics Data System (ADS)

    Paron, S.; Ortega, M. E.; Dubner, G.; Yuan, Jing-Hua; Petriella, A.; Giacani, E.; Li, Jin Zeng; Wu, Yuefang; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju

    2015-06-01

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey (13CO J = 1-0) and from the James Clerk Maxwell Telescope data archive (12CO, 13CO, C18O J = 3-2, HCO+, and HCN J = 4-3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10‧ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.

  8. [Gas chromatography with a Pulsed discharge helium ionization detector for measurement of molecular hydrogen(H2) in the atmosphere].

    PubMed

    Luan, Tian; Fang, Shuang-xi; Zhou, Ling-xi; Wang, Hong-yang; Zhang, Gen

    2015-01-01

    A high precision GC system with a pulsed discharge helium ionization detector was set up based on the commercial Agilent 7890A gas chromatography. The gas is identified by retention time and the concentration is calculated through the peak height. Detection limit of the system is about 1 x 10(-9) (mole fraction, the same as below). The standard deviation of 140 continuous injections with a standard cylinder( concentration is roughly 600 x 10(-9)) is better than 0.3 x 10(-9). Between 409.30 x 10(-9) and 867.74 x 10(-9) molecular hydrogen mole fractions and peak height have good linear response. By using two standards to quantify the air sample, the precision meets the background molecular hydrogen compatibility goal within the World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) program. Atmospheric molecular hydrogen concentration at Guangzhou urban area was preliminarily measured by this method from January to November 2013. The results show that the atmospheric molecular hydrogen mole fraction varies from 450 x 10(-9) to 700 x 10(-9) during the observation period, with the lowest value at 14:00 (Beijing time, the same as below) and the peak value at 20:00. The seasonal variation of atmospheric hydrogen at Guangzhou area was similar with that of the same latitude stations in northern hemisphere.

  9. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  10. THE ORIGIN OF THE 6.4 keV LINE EMISSION AND H{sub 2} IONIZATION IN THE DIFFUSE MOLECULAR GAS OF THE GALACTIC CENTER REGION

    SciTech Connect

    Dogiel, V. A.; Chernyshov, D. O.; Tatischeff, V.; Terrier, R.

    2013-07-10

    We investigate the origin of the diffuse 6.4 keV line emission recently detected by Suzaku and the source of H{sub 2} ionization in the diffuse molecular gas of the Galactic center (GC) region. We show that Fe atoms and H{sub 2} molecules in the diffuse interstellar medium of the GC are not ionized by the same particles. The Fe atoms are most likely ionized by X-ray photons emitted by Sgr A* during a previous period of flaring activity of the supermassive black hole. The measured longitudinal intensity distribution of the diffuse 6.4 keV line emission is best explained if the past activity of Sgr A* lasted at least several hundred years and released a mean 2-100 keV luminosity {approx}> 10{sup 38} erg s{sup -1}. The H{sub 2} molecules of the diffuse gas cannot be ionized by photons from Sgr A*, because soft photons are strongly absorbed in the interstellar gas around the central black hole. The molecular hydrogen in the GC region is most likely ionized by low-energy cosmic rays, probably protons rather than electrons, whose contribution into the diffuse 6.4 keV line emission is negligible.

  11. Gas-Phase Stability of G-quadruplex DNA Determined by Electrospray Ionization Tandem Mass Spectrometry and Molecular Dynamics Simulations

    PubMed Central

    Mazzitelli, Carolyn L.; Wang, Junmei; Smith, Suncerae I.; Brodbelt, Jennifer S.

    2007-01-01

    The relative gas-phase stabilities of seven quadruplex DNA structures, [d(TG4T)]4, [d(T2G3T)]4, [d(G4T4G4)]2, [d(T2AG3)2]2, d(T2AG3)4, d(T2G4)4, and d(G2T4)4, were investigated using molecular dynamics simulations and electrospray ionization mass spectrometry (ESI-MS). MD simulations revealed that the G-quadruplexes maintained their structures in the gas phase although the G-quartets were distorted to some degree and ammonium ions, retained by [d(TG4T)]4 and [d(T2G3T)]4, played a key role in stabilizing the tetrad structure. Energy-variable collisional activated dissociation was used to assess the relative stabilities of each quadruplex based on E1/2 values, and the resulting order of relative stabilities was found to be [d(TG4T)]4 ≫ d(T2AG3)4 ∼ d(T2G4)4 > [d(T2G3T)]4 > [d(T2AG3)2]2 ∼ d(G2T4)4 ∼ [d(G4T4G4)]2. The stabilities from the E1/2 values generally paralleled the RMSD and relative free energies of the quadruplexes based on the MD energy analysis. One exception to the general agreement is [d(G4T4G4)]2 which had the lowest E1/2 value, but was determined to be the most stable quadruplex according to the free energy analysis and ranked fourth based on the RMSD comparison. This discrepancy is attributed to differences in the fragmentation pathway of the quadruplex. PMID:17719795

  12. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report. PMID:25757823

  13. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report.

  14. Superequilibrium ionization during adiabatic expansion of a relaxing gas

    NASA Astrophysics Data System (ADS)

    Achasov, O. V.; Zhdanok, S. A.; Soloukhin, R. I.; Fomin, N. A.

    1980-08-01

    A superequilibrium method for the generation of a weakly ionized plasma in a molecular gas is proposed; the method involves the production of a superequilibrium electron density in a thermally excited and vibrationally frozen molecular gas during expansion in supersonic flow. Experimental results are presented for the case of nitrogen. This method has applications in molecular and laser physics, including preionization in a fast-flow gas-discharge laser, and the study of energy losses in gasdynamic lasers.

  15. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  16. Propagation of intense and short circularly polarized pulses in a molecular gas: From multiphoton ionization to nonlinear macroscopic effects

    NASA Astrophysics Data System (ADS)

    Lytova, M.; Lorin, E.; Bandrauk, A. D.

    2016-07-01

    We present a detailed analysis of the propagation dynamics of short and intense circularly polarized pulses in an aligned diatomic gas. Compared to linearly polarized intense pulses, high harmonic generation (HHG) and the coherent generation of attosecond pulses in the intense-circular-polarization case are a new research area. More specifically, we numerically study the propagation of intense and short circularly polarized pulses in the one-electron H2+ molecular gas, using a micro-macro Maxwell-Schrödinger model. In this model, the macroscopic polarization is computed from the solution of a large number of time-dependent Schrödinger equations, the source of dipole moments, and using a trace operator. We focus on the intensity and the phase of harmonics generated in the H2+ gas as a function of the pulse-propagation distance. We show that short coherent circularly polarized pulses of same helicity can be generated in the molecular gas as a result of cooperative phase-matching effects.

  17. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  18. Ionization of vitamin C in gas phase: Theoretical study.

    PubMed

    Abyar, Fatemeh; Farrokhpour, Hossein

    2016-07-01

    In this work, the gas phase ionization energies and photoelectron spectra of four important conformers of vitamin C were calculated. Symmetry adapted cluster/configuration interaction methodology employing the single and double excitation operators (SAC-CI SD-R) along with D95++(d,p) basis set were used for the calculations. Thermochemistry calculations were also performed on all possible conformers of vitamin C to find the relative stability of conformers in the gas phase. The calculated ionization bands of each conformer were assigned by calculating the contribution of natural bonding orbital (NBO) in the calculated canonical molecular orbitals involved in the ionization. SAC-CI calculations showed that the first ionization band of vitamin C is related to the π electrons of CC bond of the ring of molecule although, there is the lone electron pairs of oxygen atoms and π electrons of CO bond in the molecule. PMID:27092998

  19. Photo-double ionization of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Walter, Michael; Briggs, John

    1999-06-01

    The angular distribution of the correlated electron pair emitted in single-photon double ionization of the hydrogen molecule is analysed and calculated using a variety of approximations. Attention is directed particularly towards the differences between the molecular angular distribution and that of the corresponding `united atom', i.e. that arising from the double ionization of helium. Qualitative agreement is obtained with recent experiments on photo-double ionization of the hydrogen molecule. The major effects arising from the two-centre nuclear field of the molecule and the orientation of the axis at the moment of photon absorption are exposed in the simpler problem of photoionization of the H2+ ion.

  20. Ultrafast ionization and fragmentation of molecular silane

    SciTech Connect

    Sayres, Scott G.; Ross, Matt W.; Castleman, A. W. Jr.

    2010-09-15

    The ionization and fragmentation of molecular silane is examined here with laser intensities ranging between 7x10{sup 12} and 1x10{sup 15} W/cm{sup 2} at 624 nm. The ionization potential of silane determined using both multiphoton ionization (MPI) and tunneling ionization (TI) models agrees with the vertical ionization potential of the molecule. In addition, the application of the tunneling ionization model is extended here to the fragments of silane to determine their appearance potentials. MPI values for SiH{sub 3}{sup +}, SiH{sub 2}{sup +}, SiH{sup +}, Si{sup +}, as well as H{sub 2}{sup +} and H{sup +} are consistent with vertical potentials, whereas the TI measurements are found to be in accord with adiabatic potentials. The tunneling appearance potentials observed for the fragments H{sub 2}{sup +} and H{sup +} are lower than reported for other techniques. In fact, the appearance potential measurements for these species resulting from silane are lower than their ionization potentials. The fragmentation rate of silane is determined to be nearly 20 times larger than the ionization rate. The main precursor for producing amorphous silicon (a-Si:H) thin films, SiH{sub 3}{sup +} is the dominant fragmentation product making up roughly a third of the total ion yield, a substantial increase from other techniques.

  1. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase.

    PubMed

    Andrade, Francisco J; Shelley, Jacob T; Wetzel, William C; Webb, Michael R; Gamez, Gerardo; Ray, Steven J; Hieftje, Gary M

    2008-04-15

    A novel chemical ionization source for organic mass spectrometry is introduced. This new source uses a glow discharge in the flowing afterglow mode for the generation of excited species and ions. The direct-current gas discharge is operated in helium at atmospheric pressure; typical operating voltages and currents are around 500 V and 25 mA, respectively. The species generated by this atmospheric pressure glow discharge are mixed with ambient air to generate reagent ions (mostly ionized water clusters and NO+), which are then used for the ionization of gaseous organic compounds. A wide variety of substances, both polar and nonpolar, can be ionized. The resulting mass spectra generally show the parent molecular ion (M+ or MH+) with little or no fragmentation. Proton transfer from ionized water clusters has been identified as the main ionization pathway. However, the presence of radical molecular ions (M+) for some compounds indicates that other ionization mechanisms are also involved. The analytical capabilities of this source were evaluated with a time-of-flight mass spectrometer, and preliminary characterization shows very good stability, linearity, and sensitivity. Limits of detection in the single to tens of femtomole range are reported for selected compounds. PMID:18345693

  2. IONIZED GAS IN THE GALACTIC CENTER: NEW OBSERVATIONS AND INTERPRETATION

    SciTech Connect

    Irons, Wesley T.; Lacy, John H.; Richter, Matthew J.

    2012-08-20

    We present new observations of the [Ne II] emission from the ionized gas in Sgr A West with improved resolution and sensitivity. About half of the emission comes from gas with kinematics indicating it is orbiting in a plane tipped about 25 Degree-Sign from the Galactic plane. This plane is consistent with that derived previously for the circumnuclear molecular disk and the northern arm and western arc ionized features. However, unlike most previous studies, we conclude that the ionized gas is not moving along the ionized features, but on more nearly circular paths. The observed speeds are close to, but probably somewhat less than expected for orbital motions in the potential of the central black hole and stars and have a small inward component. The spatial distribution of the emission is well fitted by a spiral pattern. We discuss possible physical explanations for the spatial distribution and kinematics of the ionized gas, and conclude that both may be best explained by a one-armed spiral density wave, which also accounts for both the observed low velocities and the inward velocity component. We suggest that a density wave may result from the precession of elliptical orbits in the potential of the black hole and stellar mass distribution.

  3. Laboratory simulation of cometary neutral gas ionization

    NASA Astrophysics Data System (ADS)

    Chang, T.-F.; Rahman, H. U.; White, R. S.

    1989-05-01

    The laboratory simulation of the interaction of the solar wind with a comet is used to study the cometary neural gas ionization. The experiment is carried out in the UCR T-1 facility with an ice ball as the comet model. Photographs and data are taken with a variety of values of the solar wind velocity, interplanetary magnetic field (IMF), and comet configurations. The results show that the cometary neutral gas ionization depends on both the velocity of the solar wind and the interplanetary magnetic field. The plasma cloud surrounding the comet is visible only when the solar wind velocity and IMF are both above certain minimum values. This velocity dependent phenomena is explained by Alfven's critical ionization velocity effect. The critical magnetic field may be explained by assuming two stream lower hybrid instability as a triggering mechanism for the ionization of the neutral gas by plasma flow. Critical upper and lower limits for the magnetic field, required by anomalous ionization, are also derived that satisfy the experimental observations.

  4. Miniaturized gas ionization sensors using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Modi, Ashish; Koratkar, Nikhil; Lass, Eric; Wei, Bingqing; Ajayan, Pulickel M.

    2003-07-01

    Gas sensors operate by a variety of fundamentally different mechanisms. Ionization sensors work by fingerprinting the ionization characteristics of distinct gases, but they are limited by their huge, bulky architecture, high power consumption and risky high-voltage operation. Here we report the fabrication and successful testing of ionization microsensors featuring the electrical breakdown of a range of gases and gas mixtures at carbon nanotube tips. The sharp tips of nanotubes generate very high electric fields at relatively low voltages, lowering breakdown voltages several-fold in comparison to traditional electrodes, and thereby enabling compact, battery-powered and safe operation of such sensors. The sensors show good sensitivity and selectivity, and are unaffected by extraneous factors such as temperature, humidity, and gas flow. As such, the devices offer several practical advantages over previously reported nanotube sensor systems. The simple, low-cost, sensors described here could be deployed for a variety of applications, such as environmental monitoring, sensing in chemical processing plants, and gas detection for counter-terrorism.

  5. THE DARK MOLECULAR GAS

    SciTech Connect

    Wolfire, Mark G.; Hollenbach, David; McKee, Christopher F. E-mail: dhollenbach@seti.or

    2010-06-20

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H{sub 2} mass. However, a significant H{sub 2} mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas-phase carbon resides in C or C{sup +}. Here, H{sub 2} self-shields or is shielded by dust from UV photodissociation, whereas CO is photodissociated. This H{sub 2} gas is 'dark' in molecular transitions because of the absence of CO and other trace molecules, and because H{sub 2} emits so weakly at temperatures 10 K molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic-ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper, we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant ({approx}0.3 for average visual extinction through the cloud A-bar{sub V{approx_equal}}8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as A-bar{sub V}, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing A-bar{sub V}, since relatively more molecular H{sub 2} material lies outside the CO region in this case.

  6. Turbulence in the Ionized Gas of the Orion Nebula

    NASA Astrophysics Data System (ADS)

    Arthur, S. J.; Medina, S.-N. X.; Henney, W. J.

    2016-08-01

    In order to study the nature, origin, and impact of turbulent velocity fluctuations in the ionized gas of the Orion Nebula, we apply a variety of statistical techniques to observed velocity cubes. The cubes are derived from high resolving power (R ≈ 40 000) longslit spectroscopy of optical emission lines that span a range of ionizations. From Velocity Channel Analysis (VCA), we find that the slope of the velocity power spectrum is consistent with predictions of Kolmogorov theory between scales of 8 and 22 arcsec (0.02 to 0.05 pc). The outer scale, which is the dominant scale of density fluctuations in the nebula, approximately coincides with the autocorrelation length of the velocity fluctuations that we determine from the second order velocity structure function. We propose that this is the principal driving scale of the turbulence, which originates in the autocorrelation length of dense cores in the Orion molecular filament. By combining analysis of the non-thermal line widths with the systematic trends of velocity centroid versus ionization, we find that the global champagne flow and smaller scale turbulence each contribute in equal measure to the total velocity dispersion, with respective root-mean-square widths of 4-5 km s-1. The turbulence is subsonic and can account for only one half of the derived variance in ionized density, with the remaining variance provided by density gradients in photoevaporation flows from globules and filaments. Intercomparison with results from simulations implies that the ionized gas is confined to a thick shell and does not fill the interior of the nebula.

  7. Characterization of low-molecular weight iodine-terminated polyethylenes by gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with the use of derivatization.

    PubMed

    Zaikin, Vladimir G; Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Vinogradov, Aleksei A; Ivanyuk, Aleksei V

    2013-01-01

    Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.

  8. Ionized carbon in side-illuminated molecular clouds.

    PubMed

    Boreiko, R T; Betz, A L; Zmuidzinas, J

    1990-04-10

    We have observed the 2P3/2-2P1/2 fine-structure line of C II at 1900 GHz in five sources with ionization fronts nearly perpendicular to the plane of the sky. The LSR velocity of the C II emission is generally in good agreement with that observed for molecular species such as CO. However, the observed line widths of 3-14 km s-1 are typically wider than those of molecular lines and often show rapid spatial variations in the regions observed. In some sources this may indicate that part of the C II emanates from an ionized gas component, while for others it suggests an association between C II emission and an outflow. The C II brightness temperatures are typically equal to or slighty higher than the dust temperature at all locations observed. In the optically thin approximation, C II excitation temperatures are > or = 100 K and column densities are < or = 10(18) cm-2 for all sources except M17, which has a more intense and complicated line profile with a larger spatial extent than any other source observed. The quoted column density estimates derived in the optically thin limit appear to be somewhat lower than those predicted by models of photodissociation regions for sources with a side-illuminated geometry, but uncertainties in the UV flux and geometry of the ionization front preclude a definitive comparison. The estimated column densities would be higher if the C II emission were somewhat optically thick, in which case the ionized carbon would be more in equilibrium with the dust at temperatures lower than predicted by current models.

  9. MOLECULAR AND IONIZED HYDROGEN IN 30 DORADUS. I. IMAGING OBSERVATIONS

    SciTech Connect

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.; Pellegrini, Eric W.

    2015-07-10

    We present the first fully calibrated H{sub 2} 1–0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H{sub 2}-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H{sub 2}, Brγ, CO, and 8 μm emission, the H{sub 2} to Brγ line ratio, and Cloudy models, we find that the H{sub 2} emission is formed inside the PDRs of 30 Doradus, 2–3 pc to the ionization front of the H ii region, in a relatively low-density environment <10{sup 4} cm{sup −3}. Comparisons with Brγ, 8 μm, and CO emission indicate that H{sub 2} emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  10. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  11. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  12. Ionized Gas Observation Toward a Nearby Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Nakanishi, K.; Sorai, K.; Nakai, N.; Kuno, N.; Matsubayashi, K.; Sugai, H.; Takano, S.; Kohno, K.; Nakajima, T.

    2015-12-01

    ALMA observation of a hydrogen recombination emission line toward NGC 253 was performed. NGC 253 is a prototypical starburst galaxy in the nearby universe. The recombination line was clearly detected in the central region of NGC 253 with a spatial resolution of few dozens of parsecs at the galaxy. The line and thermal free-free continuum emission show quite similar spatial distribution, and this fact shows the recombination line certainly traces ionized gas formed by young massive stars. Estimated electron temperature (6500-9000K) from the data are similar to those of Galactic HII regions. The recombination line has large velocity width at the center of the galaxy, and the velocity structure is quite different from that of molecular emission line.

  13. WHAM observations of ionized gas in the inner Milky Way

    NASA Astrophysics Data System (ADS)

    Hill, Alex S.; Haffner, L. Matthew; Benjamin, Robert A.; Gostisha, Martin; Barger, Kathleen

    2016-01-01

    We present Wisconsin H-Alpha Mapper (WHAM) observations of ionized gas in the southern Milky Way. We include spectroscopic maps of H-Alpha, [S II], and [N II]. The data includes the Scutum-Centaurus Arm, for which we measure an exponential scale height about 20% less than that in the Perseus Arm in the outer Galaxy. The H-alpha scale height suggests a lower electron scale height in both arms than is measured locally from pulsar dispersion. The [N II] and [S II] data provide information about the temperature and ionization state of the gas: gas in the warm ionized medium is generally warmer (≈8000 K) and in lower ionization states than gas in classical H II regions. WHAM research and operations are supported through NSF Award AST-1108911.

  14. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  15. The distribution of warm ionized gas in NGC 891

    NASA Technical Reports Server (NTRS)

    Rand, Richard J.; Kulkarni, Shrinivas R.; Hester, J. Jeff

    1990-01-01

    Narrow-band imaging is presented of the edge-on spiral NGC 891 in the H-alpha and S II 6716, 6731 A forbidden lines. Emission from H II regions confined to the plane of the galaxy and from diffuse gas up to about 4 kpc off the plane is readily detected. The full radial extent of the diffuse emission in the plane is about 30 kpc. NGC 891 is found to have a surface density of diffuse ionized gas twice the Galactic value, a thicker ionized gas layer, and a larger surface density of ionized gas relative to neutral gas. These are interpreted as consequences of a relatively high level of star formation in this galaxy. Other star formation tracers indicate the same conclusion. Many vertical H-alpha filaments, or 'worms,' extending to over 2 kpc off the plane of the galaxy are seen. These worms are interpreted in terms of chimney models for the interstellar media of spirals.

  16. Determination of Hexachlorocyclohexane by Gas Chromatography Combined with Femtosecond Laser Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Xixiang; Imasaka, Tomoko; Li, Adan; Imasaka, Totaro

    2016-09-01

    Structural isomers and enantiomers of hexachlorocyclohexane (HCH) were separated using a chiral column by gas chromatography and quantitatively determined by multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (200 and 267 nm) as the ionization source. The order of elution of the enantiomers (i.e., (+)-α-HCH and (-)-α-HCH) was predicted from stabilization energies calculated for the complexes using permethylated γ-cyclodextrin as the stationary phase of the column, and the results were compared with the experimental data. The molecular ions observed for HCH were weak, even though they can be ionized through a process of resonance enhanced two-photon ionization at 200 nm. This unfavorable result can be attributed to the dissociation of the molecular ion, as predicted from quantum chemical calculations.

  17. The Kinematics of the Ionized Gas in IC 10

    NASA Astrophysics Data System (ADS)

    Thurow, Joshua C.; Wilcots, Eric M.

    2005-02-01

    We present the results of a WIYN integral field unit study of the kinematics of the ionized gas in IC 10, a dwarf irregular starburst galaxy in the Local Group. Though the velocity field of the ionized gas closely matches that of the H I, there are several kinematically interesting features in the galaxy. The diffuse ionized gas in the galaxy exhibits larger Hα line widths than the bright complexes. In one case this is due to an infusion of energy into the gas associated with the radio superbubble discovered by Yang & Skillman. We find that the amount of energy in this region is consistent with their hypothesis that the region contains 10 supernova remnants. We also detect a high-velocity (70 km s-1) expanding shell in the ionized gas, which is likely driven by three confirmed Wolf-Rayet stars that are located within the shell. Extrapolating from Hunter's initial mass function, we find that the central starburst region contains approximately equal energy contributions from stellar winds and supernovae (SNe), suggesting that SNe are just beginning to play a significant role in shaping the kinematics of the ionized gas. However, all of this energy cannot be easily accounted for in the kinematics of the gas. We detect an energetic flow of gas (3×1052 ergs), which we believe originates from the starburst region. We also detect a high-velocity (70 km s-1) feature not coincident with any structure in our Hα image. This feature, along with the flow and shell, can account for the energy produced by stellar wind and SNe. The flow resembles one discovered by Wilcots & Thurow in NGC 4214; together they suggest that the porosity of the interstellar medium contributes significantly to the high velocity of some portion of the ionized gas in irregular galaxies.

  18. Surface Ionization Gas Detection at SnO2 Surfaces

    NASA Astrophysics Data System (ADS)

    Krenkow, A.; Oberhüttinger, C.; Habauzit, A.; Kessler, M.; Göbel, J.; Müller, G.

    2009-05-01

    In surface ionization (SI) gas detection adsorbed analyte molecules are converted into ionic species at a heated solid surface and extracted into free space by an oppositely biased counter electrode. In the present work we consider the formation of positive and negative analyte gas ions at SnO2 surfaces. We find that SI leads to positive ion formation only, with the SI efficiency scaling with the ionization energy of the analyte gas molecules. Aromatic and aliphatic hydrocarbons with amine functional groups exhibit particularly high SI efficiencies.

  19. Molecular gas toward the Trifid Nebula M20 and its ionizing star; a scrutiny of formation of the very young star cluster

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Yamamoto, Hiroaki; Kawamura, Akiko; Torii, Kazufumi; Furukawa, Naoko; Akio, Ohama; Okuda, Takeshi; Enokiya, Rei; Nakamura, Kouki; Furuhashi, Eri

    2011-04-01

    High-mass stars are formed in clusters, and it is important to study cluster formation in order to reveal high-mass star formation. Furukawa et al. (2009) detected giant molecular clouds with relatively larger velocity widths of ~15 km/s around Westerlund 2 (Wd2), one of the Super Star Clusters which contains several 1000 stars including ~10 high mass stars, and they suggest that the cluster was formed under triggering by a collision between the clouds. We recently analyzed a CO(2-1) data set obtained with the NANTEN2 4m telescope in M20 “Trifid Nebula” and found that two molecular clouds with different velocities (~0km/s and ~10km/s) are associated with the cluster in the nebula. These clouds show excited conditions and seem to be a miniature of Wd2. In this proposal, we plan to observe 12CO(1-0) emission and its isotopes in the whole area of M20 with high resolution. The goal of the observations is to reveal detailed structures and velocity distributions of the two parent molecular clouds in order to clarify the scenario proposed by Furukawa et al. The total observing time we request in the proposal is 19.5 hours (three days).

  20. Molecular gas toward the Trifid Nebula M20 and its ionizing star; a scrutiny of formation of the very young star cluster

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Yamamoto, Hiroaki; Kawamura, Akiko; Torii, Kazufumi; Furukawa, Naoko; Akio, Ohama; Okuda, Takeshi; Enokiya, Rei; Nakamura, Kouki; Furuhashi, Eri; Hanaoka, Naoki

    2011-10-01

    High-mass stars are formed in clusters, and it is important to study cluster formation in order to reveal high-mass star formation. Furukawa et al. (2009) detected giant molecular clouds with relatively larger velocity widths of ~15 km/s around Westerlund 2 (Wd2), one of the Super Star Clusters which contains several 1000 stars including ~10 high mass stars, and they suggest that the cluster was formed under triggering by a collision between the clouds. We recently analyzed a CO(2-1) data set obtained with the NANTEN2 4m telescope in M20 “Trifid Nebula” and found that two molecular clouds with different velocities (~0km/s and ~10km/s) are associated with the cluster in the nebula. These clouds show excited conditions and seem to be a miniature of Wd2. In this proposal, we plan to observe 12CO(1-0) emission and its isotopes in the whole area of M20 with high resolution. The goal of the observations is to reveal detailed structures and velocity distributions of the two parent molecular clouds in order to clarify the scenario proposed by Furukawa et al. The total observing time we request in the proposal is 11 hours.

  1. Quantum control of molecular tunneling ionization in the spatiotemporal domain

    SciTech Connect

    Ohmura, Hideki; Saito, Naoaki; Morishita, Toru

    2011-06-15

    We report on a method that can control molecular photoionization in both space and time domains. The directionally asymmetric molecular tunneling ionization induced by intense (5.0 x 10{sup 13} W/cm{sup 2}) phase-controlled two-color laser pulses consisting of fundamental and second-harmonic light achieves the selective ionization of asymmetric molecules in the space domain, and manipulates the birth time and direction of photoelectron emission on an attosecond time scale. This method provides a powerful tool for tracking the quantum dynamics of photoelectrons by using phase-dependent oriented molecules as a phase reference in simultaneous ion-electron detection.

  2. Plasma induced by resonance enhanced multiphoton ionization in inert gas

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2007-12-15

    We present a detailed model for the evolution of resonance enhanced multiphoton ionization (REMPI) produced plasma during and after the ionizing laser pulse in inert gas (argon, as an example) at arbitrary pressures. Our theory includes the complete process of the REMPI plasma generation and losses, together with the changing gas thermodynamic parameters. The model shows that the plasma expansion follows a classical ambipolar diffusion and that gas heating results in a weak shock or acoustic wave. The gas becomes involved in the motion not only from the pressure gradient due to the heating, but also from the momentum transfer from the charged particles to gas atoms. The time dependence of the total number of electrons computed in theory matches closely with the results of coherent microwave scattering experiments.

  3. Enhancement of molecular ions in mass spectrometry using an ultrashort optical pulse in multiphoton ionization.

    PubMed

    Shimizu, Takashi; Watanabe-Ezoe, Yuka; Yamaguchi, Satoshi; Tsukatani, Hiroko; Imasaka, Tomoko; Zaitsu, Shin-Ichi; Uchimura, Tomohiro; Imasaka, Totaro

    2010-05-01

    The spectral domain of an ultraviolet femtosecond laser was expanded by stimulated Raman scattering/four-wave Raman mixing, and the resulting laser pulse was compressed using a pair of gratings. The pulse width was then measured using an autocorrelator comprised of a Michelson interferometer equipped with a multiphoton ionization/mass spectrometer which was used as a two-photon detector. A gas chromatograph/mass spectrometer was employed to analyze triacetone triperoxide (TATP), and the molecular ion induced by multiphoton ionization was substantially enhanced by decreasing the laser pulse width. PMID:20364824

  4. Similarity of ionized gas nebulae around unobscured and obscured quasars

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Greene, Jenny E.

    2014-08-01

    Quasar feedback is suspected to play a key role in the evolution of massive galaxies, by removing or reheating gas in quasar host galaxies and thus limiting the amount of star formation. In this paper, we continue our investigation of quasar-driven winds on galaxy-wide scales. We conduct Gemini Integral Field Unit spectroscopy of a sample of luminous unobscured (type 1) quasars, to determine the morphology and kinematics of ionized gas around these objects, predominantly via observations of the [O III] λ5007 Å emission line. We find that ionized gas nebulae extend out to ˜13 kpc from the quasar, that they are smooth and round, and that their kinematics are inconsistent with gas in dynamical equilibrium with the host galaxy. The observed morphological and kinematic properties are strikingly similar to those of ionized gas around obscured (type 2) quasars with matched [O III] luminosity, with marginal evidence that nebulae around unobscured quasars are slightly more compact. Therefore, in samples of obscured and unobscured quasars carefully matched in [O III] luminosity, we find support for the standard geometry-based unification model of active galactic nuclei, in that the intrinsic properties of the quasars, of their hosts and of their ionized gas appear to be very similar. Given the apparent ubiquity of extended ionized regions, we are forced to conclude that either the quasar is at least partially illuminating pre-existing gas or that both samples of quasars are seen during advanced stages of quasar feedback. In the latter case, we may be biased by our [O III]-based selection against quasars in the early `blow-out' phase, for example due to dust obscuration.

  5. Fabrication of a miniaturized ionization gas sensor with polyimide spacer

    NASA Astrophysics Data System (ADS)

    Walewyns, T.; Scheen, G.; Tooten, E.; El Fissi, L.; Dupuis, P.; Francis, L. A.

    2011-06-01

    Gas sensing can be achieved by fingerprinting the ionization characteristics of distinct species. In this study, the fabrication of a miniaturized gas ionization sensor using polyimide as sacrificial layer is reported. The sensor consists of two planar metallic electrodes with a gap spacing obtained by the polyimide under-etching. This known sacrificial layer has the advantage besides a high planarization factor, to be CMOS compatible. Furthermore, its chemical resistance up to high temperatures, high resistance to radiation from both electrons and neutrons, and low outgassing are of primary importance to avoid interferences with the ionization gas sensing. A suspended micro-bridge with dimensions 20 μm width and 220 μm length has been developed and released by using etching holes in the membrane. The ionization characteristics of air at controlled temperature, humidity and pressure (21°C, 40% humidity and 1 atm) have been obtained during non-destructive electrical characterizations, with a breakdown voltage of 350 V for a 6 μm gap. The growth of metallic nanowires templated in ion track-etched polyimide on the electrode is envisioned in order to enhance the ionization field and to reduce the required measurement power of the sensor.

  6. X-ray FEL induced multiphton ionization and molecular dissociation

    NASA Astrophysics Data System (ADS)

    Fang, Li

    2014-05-01

    X-ray Free electron lasers (FELs) enable multiphoton absorption at the core levels which is not possible with conventional light sources. Multiphoton ionization and the subsequent core-hole states relaxation lead to dramatic dynamics of the molecules. We present our experimental as well as theoretical results on multiphoton ionization and molecular fragmentation dynamics with the Linac Coherent Light Source (LCLS) at SLAC National Laboratory. We investigated simple diatomic system, N2 molecules, where we used multiphoton ionization as an internal clock for imaging the dynamics in time and the internuclear separation domain. We observed the modification of the ionization dynamic by varying the x-ray beam parameters and the effect of the spatial distribution on the ionization. We also investigated a complex system, C60, where we developed a full model to simulate the multiphoton ionization that results in various molecular ions and atomic carbon ions up to charge 6+. The calculation agrees well with our experimental results in ion kinetic energy distribution and charge state distribution. Moreover, our model provides further insights into the photoionization and dissociation dynamics as a function of time and molecular size. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Thank T. Osipov, B. Murphy, Z. Jurek, S.-K. Son, R. Santra, and N. Berrah, M. Hoener, O. Gessner, F. Tarantelli, S.T. Pratt, O. Kornilov, C. Buth, M. Güehr, E. Kanter, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, M. Chen, R. Coffee, J. Cryan, L. DiMauro, M. Glownia, E. Kukk, S.R. Leone, L. Avaldi, P. Bolognesi, J. Eland, J. Farrell, R. Feifel, L. Frasinski, D.T. Ha, K. Hoffmann, B. McFarland, C. Miron, M. Mucke, R. Squibb, K. Ueda for their contributions to this work.

  7. Multiple Ionization Bursts in Laser-Driven Hydrogen Molecular Ion

    SciTech Connect

    Takemoto, Norio; Becker, Andreas

    2010-11-12

    Theoretical study on H{sub 2}{sup +} in an intense infrared laser field on the attosecond time scale reveals that the molecular ion shows multiple bursts of ionization within a half-cycle of the laser field oscillation, in contrast to the widely accepted tunnel ionization picture for an atom. These bursts are found to be induced by transient localization of the electron at one of the nuclei, and a relation between the time instants of the localization and the vector potential of the laser light is derived. A scheme is proposed to probe the localization dynamics by an extreme ultraviolet laser pulse.

  8. The distribution of warm ionized gas in NGC 891

    SciTech Connect

    Rand, R.J.; Kulkarni, S.R.; Hester, J.J. Infrared Processing and Analysis Center, Pasadena, CA )

    1990-03-01

    Narrow-band imaging is presented of the edge-on spiral NGC 891 in the H-alpha and S II 6716, 6731 A forbidden lines. Emission from H II regions confined to the plane of the galaxy and from diffuse gas up to about 4 kpc off the plane is readily detected. The full radial extent of the diffuse emission in the plane is about 30 kpc. NGC 891 is found to have a surface density of diffuse ionized gas twice the Galactic value, a thicker ionized gas layer, and a larger surface density of ionized gas relative to neutral gas. These are interpreted as consequences of a relatively high level of star formation in this galaxy. Other star formation tracers indicate the same conclusion. Many vertical H-alpha filaments, or 'worms,' extending to over 2 kpc off the plane of the galaxy are seen. These worms are interpreted in terms of chimney models for the interstellar media of spirals. 19 refs.

  9. Viscosity Coefficient Curve Fits for Ionized Gas Species Grant Palmer

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Arnold, James O. (Technical Monitor)

    2001-01-01

    Viscosity coefficient curve fits for neutral gas species are available from many sources. Many do a good job of reproducing experimental and computational chemistry data. The curve fits are usually expressed as a function of temperature only. This is consistent with the governing equations used to derive an expression for the neutral species viscosity coefficient. Ionized species pose a more complicated problem. They are subject to electrostatic as well as intermolecular forces. The electrostatic forces are affected by a shielding phenomenon where electrons shield the electrostatic forces of positively charged ions beyond a certain distance. The viscosity coefficient for an ionized gas species is a function of both temperature and local electron number density. Currently available curve fits for ionized gas species, such as those presented by Gupta/Yos, are a function of temperature only. What they did was to assume an electron number density. The problem is that the electron number density they assumed was unrealistically high. The purpose of this paper is two-fold. First, the proper expression for determining the viscosity coefficient of an ionized species as a function of both temperature and electron number density will be presented. Then curve fit coefficients will be developed using the more realistic assumption of an equilibrium electron number density. The results will be compared against previous curve fits and against highly accurate computational chemistry data.

  10. Description of ionization in the molecular approach to atomic collisions

    SciTech Connect

    Harel, C.; Jouin, H.; Pons, B.; Errea, L.F.; Mendez, L.; Riera, A.

    1997-01-01

    Molecular treatments of atomic collisions have traditionally been restricted to low nuclear velocities because of their failure to reproduce the fall of the capture cross sections at higher velocities. The limitation has recently been seen to be due to their description of ionizing processes. This feature is shown here to be a general one for multicharged ion-atom collisions. Its origin and characteristics are described and illustrated for the prototypical Li{sup 3+}+H(1s) reaction. Ionization appears as a result of the inertia of the electron cloud to adiabatically follow the nuclear motion. This gives rise to nonadiabatic transitions, which represent an ionizing flux whenever the nuclear velocity is high enough that the energy of the traveling molecular orbitals involved is positive in both moving atomic reference frames. Two strongly connected mechanisms appear, corresponding to the relative translational and rotational nuclear motions. Because of the finiteness of the basis, these mechanisms terminate with unphysical trapping effects. While interesting {ital per se}, knowledge of these features is also useful with respect to improving molecular treatments of atomic collisions with the addition of pseudostates. {copyright} {ital 1996} {ital The American Physical Society}

  11. Kinematics of the Ionized Gas in Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Valdez-Gutiérrez, Margarita; Rosado, Margarita

    2007-05-01

    Introduction: Some preliminary results focused on the kinematics and dynamics of the ionized gas in the local group dwarf irregular galaxy IC10 are presented. Method: Scanning Fabry-Perot interferometry was performed in the Hα, [SII], [NII] and [OIII] lines. The dedicated ADHOC package was used in the reduction process. Results: On galactic scales the radial velocity field in this galaxy is relatively well behaved, however, the rotation curve has been difficult to obtain. On local scales the kinematics reflects the superposition of shells, filaments, SNRs and diffuse gas. At many of these locations the velocity widths are supersonic and many times larger than those found in the adjacent HII regions. Discussion: This is the first time that the kinematics of the ionized gas in the dwarf irregular IC10 is studied in great detail, literally pixel to pixel with moderate spectral and spatial resolutions. From these preliminary results a very complex behavior of the ionized gas is unveiled, as has been the case for the dwarf irregulars IC1613 and NGC4449, previously studied by our group of collaborators. Further analysis is being carried out.

  12. Role of gas dynamics in negative ion formation in an atmospheric sampling glow discharge ionization source

    SciTech Connect

    Chambers, D.M.; McLuckey, S.A.; Glish, G.L. )

    1993-03-15

    A version of the atmospheric sampling glow discharge ionization (ASGDI) source was developed to study the role of gas dynamics on anion formation. This source, which is used in conjunction with mass spectrometry for direct air monitoring, was designed so several key instrumental dimensions as well as operating parameters could be readily changed. Such flexibility permitted the study of ionization processes in ASGDI and the parameters that can be controlled to favor a particular ion product. One aspect of ASGDI that was found to influence ionization yield was the hydrodynamic properties of the sample inlet free-jet expansion. From these investigations, it was found that mean molecular flow of species expanding toward the skimmer could be manipulated to favor kinetically fast reactions over more thermodynamically preferred reactions. In the case of 2,4-dinitrotoluene, observation of the M[sup [minus

  13. Gas ionization sensors with carbon nanotube/nickel field emitters.

    PubMed

    Huang, Bohr-Ran; Lin, Tzu-Ching; Yang, Ying-Kan; Tzeng, Shien-Der

    2011-12-01

    Gas ionization sensors based on the field emission properties of the carbon nanotube/nickel (CNT/Ni) field emitters were first developed in this work. It is found that the breakdown electric field (E(b)) slightly decreases from 2.2 V/microm to 1.9 V/microm as the pressure of H2 gas increases from 0.5 Torr to 100 Torr. On the contrary, E(b) obviously increases from 2.9 V/microm to 6.5 V/microm as O2 gas pressure increases from 0.5 Torr to 100 Torr. This may be explained by the depression of the electron emission that caused by the adsorption of the O2 gas on the CNT emitters. The Raman spectra of the CNT/Ni emitters also show that more defects were generated on the CNTs after O2 gas sensing. The Joule heating effect under high current density as performing H2 sensing was also observed. These effects may contribute the pressure dependence on the breakdown electric field of the CNT/Ni gas ionization sensors. PMID:22409010

  14. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  15. Resonance ionization spectroscopy: counting noble-gas atoms

    SciTech Connect

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-06-01

    New work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions) is reported. When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. It is shown that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective.

  16. New estimates of ionization potentials of four DIB molecular carriers.

    PubMed

    Sonnentrucker, P; Foing, B H; Ehrenfreund, P

    1999-01-01

    We present a study of the behaviour and ionization properties of four Diffuse Interstellar Bands (DIBs) at lambda lambda 5780, 5797, 6379 and 6613 angstroms. In the lambda lambda 5797, 6379 and 6613 angstrom DIBs, substructures have recently been detected, indicating large gaseous molecular carriers. Studying DIBs in regions with different physical properties in terms of UV flux and density enables us to monitor the behaviour of the carriers and hence to constrain their nature. As a follow-up of Sonnentrucker et al. (1997), we add new lines of sight and generalize the results for lines of sight with 2 or 3 clouds. This refines the Ionization Potential estimates which are between 10 and 13 eV, hence reminiscent of PAH or fullerene cations for those DIBs.

  17. Ionization impact on molecular clouds and star formation. Numerical simulations and observations

    NASA Astrophysics Data System (ADS)

    Tremblin, P.

    2012-11-01

    At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H ii regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of

  18. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes

    SciTech Connect

    Kudryavtsev, Yu. Ferrer, R.; Huyse, M.; Van den Bergh, P.; Van Duppen, P.; Vermeeren, L.

    2014-02-15

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  19. Aerodynamic Effects in Weakly Ionized Gas: Phenomenology and Applications

    SciTech Connect

    Popovic, S.; Vuskovic, L.

    2006-12-01

    Aerodynamic effects in ionized gases, often neglected phenomena, have been subject of a renewed interest in recent years. After a brief historical account, we discuss a selected number of effects and unresolved problems that appear to be relevant in both aeronautic and propulsion applications in subsonic, supersonic, and hypersonic flow. Interaction between acoustic shock waves and weakly ionized gas is manifested either as plasma-induced shock wave dispersion and acceleration or as shock-wave induced double electric layer in the plasma, followed by the localized increase of the average electron energy and density, as well as enhancement of optical emission. We describe the phenomenology of these effects and discuss several experiments that still do not have an adequate interpretation. Critical for application of aerodynamic effects is the energy deposition into the flow. We classify and discuss some proposed wall-free generation schemes with respect to the efficiency of energy deposition and overall generation of the aerodynamic body force.

  20. Triggered star formation in giant HI supershells: ionized gas

    NASA Astrophysics Data System (ADS)

    Egorov, O. V.; Lozinskaya, T. A.; Moiseev, A. V.

    We considered the regions of triggered star formation inside kpc-sized HI supershells in three dwarf galaxies: IC 1613, IC 2574 and Holmberg II. The ionized and neutral gas morphology and kinematics were studied based on our observations with scanning Fabry-Perot interferometer at the SAO RAS 6-m telescope and 21 cm archival data of THINGS and LITTLE THINGS surveys. Qualitative analysis of the observational data was performed in order to highlight two questions: why the star formation occurred very locally in the supershells, and how the ongoing star formation in HI supershells rims influence its evolution? During the investigation we discovered the phenomenon never before observed in galaxies IC 2574 and Holmberg II: we found faint giant (kpc- sized) ionized shells in H-alpha and [SII]6717,6731 lines inside the supergiant HI shells.

  1. Residual-gas-ionization beam profile monitors in RHIC

    SciTech Connect

    Connolly, R.; Fite, J.; Jao, S.; Trabocchi, C.

    2010-05-02

    Four ionization profile monitors (IPMs) are in RHIC to measure vertical and horizontal beam profiles in the two rings. These work by measuring the distribution of electrons produced by beam ionization of residual gas. During the last two years both the collection accuracy and signal/noise ratio have been improved. An electron source is mounted across the beam pipe from the collector to monitor microchannel plate (MCP) aging and the signal electrons are gated to reduce MCP aging and to allow charge replenishment between single-turn measurements. Software changes permit simultaneous measurements of any number of individual bunches in the ring. This has been used to measure emittance growth rates on six bunches of varying intensities in a single store. Also the software supports FFT analysis of turn-by-turn profiles of a single bunch at injection to detect dipole and quadrupole oscillations.

  2. Equation of state for a partially ionized gas. II.

    PubMed

    Baker, George A

    2003-11-01

    The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from a fundamental point of view. A spherical cellular model is deduced for the hot curve limit (or ideal Fermi gas). Next the Coulomb interactions are added to the spherical cellular model for general ionic charge Z. Then an independent electron model within a Z electron cell plus several many-body effects are employed. Numerical examples of the theory for several elements (H, Li, N, Na, K, Ni, Rb, Pd, Cs, and Er) are reported. These results reduce in various limits of temperature and density to the expected behavior. They display electron, localization-delocalization phase transitions of liquid-gas character. In the higher Z elements, a second possible critical point has been found. The critical pressure, electron density and temperature for the lower-density critical points seem to obey power laws as a function of Z.

  3. Molecular dissociation in dilute gas

    SciTech Connect

    Renfrow, S.N.; Duggan, J.L.; McDaniel, F.D. |

    1999-06-01

    The charge state distributions (CSD) produced during molecular dissociation are important to both Trace Element Accelerator Mass Spectrometry (TEAMS) and the ion implantation industry. The CSD of 1.3{endash}1.7 MeV SiN{sup +}, SiMg{sup +}, SiMn{sup +}, and SiZn{sup +} molecules have been measured for elements that do not form atomic negative ions (N, Mg, Mn, and Zn) using a NEC Tandem Pelletron accelerator. The molecules were produced in a Cs sputter negative ion source, accelerated, magnetically analyzed, and then passed through an N{sub 2} gas cell. The neutral and charged breakups where analyzed using an electrostatic deflector and measured with particle detectors. Equilibrium CSD were determined and comparisons made between molecular and atomic ion data. {copyright} {ital 1999 American Institute of Physics.}

  4. Improved electron ionization ion source for the detection of supersonic molecular beams

    NASA Astrophysics Data System (ADS)

    Amirav, Aviv; Fialkov, Alexander; Gordin, Alexander

    2002-08-01

    An improved electron ionization (EI) ion source is described, based on the modification of a Brink-type EI ion source through the addition of a second cage with a fine mesh outside the ion chamber. The added outer cage shields the inner ion cage (ionization zone) against the penetration of the filament and electron repeller potentials, and thus results in the provision of ions with narrower ion energy distribution, hence improved ion-beam quality. The closer to zero electrical field inside the ion cage enables improved filtration (rejection) of ions that are produced from vacuum background compounds, based on difference in ion energies of beam and background species. The improved background ion filtration and ion-beam quality resulted in 2.6 times higher mass spectrometric ion signal, combined with 6.4 times better signal to noise ratio, in comparison with the same ion source having a single cage. The dual cage ion source further provides a smaller or no reduction of the electron emission current upon lowering the electron energy for achieving softer EI and/or electron attachment ionization. It also improves the long-term mass spectral and signal reproducibility and enables fast, automated change of the electron energy. Consequently, the dual cage EI ion source is especially effective for use with gas chromatography mass spectrometry with supersonic molecular beams (SMB), liquid chromatography mass spectrometry with SMB, ion guns with SMB, and any other experimental systems with SMB or nonthermal molecular beams.

  5. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    PubMed

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-01

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources.

  6. A HOT MOLECULAR OUTFLOW DRIVEN BY THE IONIZED JET ASSOCIATED WITH IRAS 16562-3959

    SciTech Connect

    Guzman, Andres E.; Garay, Guido; Rathborne, Jill; Brooks, Kate J.; Guesten, Rolf

    2011-08-01

    We report molecular line observations in the CO J = 3 {yields} 2, 6 {yields} 5, and 7 {yields} 6 transitions, made using the Atacama Pathfinder Experiment Telescope, toward the massive and dense core IRAS 16562-3959. This core harbors a string of radio sources thought to be powered by a central collimated jet of ionized gas. The molecular observations show the presence of high-velocity gas exhibiting a quadrupolar morphology, most likely produced by the presence of two collimated outflows. The southeast-northwest (SE-NW) molecular outflow is aligned with the string of radio continuum sources, suggesting it is driven by the jet. We find that the excitation temperature of the gas in the SE-NW outflow is high, with values of 145 and 120 K for the blueshifted and redshifted lobes, respectively. This outflow has a total mass of 1.92 M{sub sun}, a total momentum of {approx}89 M{sub sun} km s{sup -1}, and an averaged momentum rate of {approx}3.0 x 10{sup -2} M{sub sun} km s{sup -1} yr{sup -1}, values characteristic of flows driven by young massive stellar objects with high luminosities (L{sub bol} {approx} 2 x 10{sup 4} L{sub sun}). Complementary data taken with the Atacama Submillimeter Telescope Experiment in high density and shock tracers support the picture that IRAS 16562-3959 is an accreting young massive star associated with an ionized jet, which is the energy source of a molecular outflow.

  7. Baryonic distributions in galaxy dark matter haloes - I. New observations of neutral and ionized gas kinematics

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2016-07-01

    We present a combination of new and archival neutral hydrogen (H I) observations and new ionized gas spectroscopic observations for 16 galaxies in the statistically representative Extended Disk Galaxy Explore Science kinematic sample. H I rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The H I rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in 12 galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.

  8. Exploring the aqueous vertical ionization of organic molecules by molecular simulation and liquid microjet photoelectron spectroscopy.

    PubMed

    Tentscher, Peter R; Seidel, Robert; Winter, Bernd; Guerard, Jennifer J; Arey, J Samuel

    2015-01-01

    To study the influence of aqueous solvent on the electronic energy levels of dissolved organic molecules, we conducted liquid microjet photoelectron spectroscopy (PES) measurements of the aqueous vertical ionization energies (VIEaq) of aniline (7.49 eV), veratrole alcohol (7.68 eV), and imidazole (8.51 eV). We also reanalyzed previously reported experimental PES data for phenol, phenolate, thymidine, and protonated imidazolium cation. We then simulated PE spectra by means of QM/MM molecular dynamics and EOM-IP-CCSD calculations with effective fragment potentials, used to describe the aqueous vertical ionization energies for six molecules, including aniline, phenol, veratrole alcohol, imidazole, methoxybenzene, and dimethylsulfide. Experimental and computational data enable us to decompose the VIEaq into elementary processes. For neutral compounds, the shift in VIE upon solvation, ΔVIEaq, was found to range from ≈-0.5 to -0.91 eV. The ΔVIEaq was further explained in terms of the influence of deforming the gas phase solute into its solution phase conformation, the influence of solute hydrogen-bond donor and acceptor interactions with proximate solvent molecules, and the polarization of about 3000 outerlying solvent molecules. Among the neutral compounds, variability in ΔVIEaq appeared largely controlled by differences in solute-solvent hydrogen-bonding interactions. Detailed computational analysis of the flexible molecule veratrole alcohol reveals that the VIE is strongly dependent on molecular conformation in both gas and aqueous phases. Finally, aqueous reorganization energies of the oxidation half-cell ionization reaction were determined from experimental data or estimated from simulation for the six compounds aniline, phenol, phenolate, veratrole alcohol, dimethylsulfide, and methoxybenzene, revealing a surprising constancy of 2.06 to 2.35 eV. PMID:25516011

  9. The kinematics of the molecular gas in Centaurus A

    NASA Technical Reports Server (NTRS)

    Quillen, A. C.; De Zeeuw, P. T.; Phinney, E. S.; Phillips, T. G.

    1992-01-01

    The CO (2-1) emission along the inner dust lane of Centaurus A, observed with the Caltech Submillimeter Observatory on Mauna Kea, shows the molecular gas to be in a thin disk, with a velocity dispersion of only about 10 km/s. The observed line profiles are broadened considerably due to beam smearing of the gas velocity field. The profile shapes are inconsistent with planar circular and noncircular motion. However, a warped disk in a prolate potential provides a good fit to the profile shapes. The morphology and kinematics of the molecular gas is similar to that of the ionized material, seen in H-alpha. The best-fitting warped disk model not only matches the optical appearance of the dust lane but also agrees with the large-scale map of the CO emission and is consistent with H I measurements at larger radii.

  10. Parallel plate ionization chamber in low pressure helium gas

    NASA Astrophysics Data System (ADS)

    Frank, D.; Heinz, A.; Winkler, R.; Qian, J.; Casperson, R. J.; Terry, J. R.

    2007-10-01

    A parallel plate ionization chamber was constructed for beam intensity monitoring. The chamber is placed in a gas-filled volume 1.5m upstream from the gas-filled separator SASSYER. Its output current will be used to determine absolute reaction cross sections. In a dedicated test experiment with a 100 MeV ^32S beam and an applied potential of 300V, the signal current had an average standard deviation of 0.4%, and demonstrated a linear relationship (R^2 = 0.9894) with the beam intensity. Also, at an intensity of 6 particle nanoamperes, the current exhibited a linear dependence (R^2 = 0.9813) on voltage, indicating that the chamber was operating in the proportional counter region. Our results agreed well with predictions made using extrapolated Townsend coefficients, though we observed a constant systematic and constant deviation between these estimates and our output current. This work was supported under US DOE grant number DE-FG0291ER-40609 and the Yale College Dean's Fellowship for Research in the Sciences.

  11. The Molecular Gas Outflow of NGC 1068 Imaged by ALMA

    NASA Astrophysics Data System (ADS)

    García-Burillo, S.

    2015-12-01

    We have used the ALMA array to map the emission of a set of dense molecular gas tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3), and CS(7-6)) in the central r˜2 kpc of the Seyfert 2 galaxy NGC 1068 with spatial resolutions ˜0.3″-0.5″ (˜20-35 pc). The sensitivity and spatial resolution of ALMA give a detailed view of the distribution and kinematics of the dense molecular gas. The gas kinematics from r˜50 pc out to r˜400 pc reveal a massive outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet, and the occurrence of outward motions in the disk suggests that the outflow is AGN driven. The outflow rate estimated in the CND, M/dt˜63+21-37 M⊙ yr-1, is an order of magnitude higher than the star formation rate at these radii. The molecular outflow could quench star formation in the inner r˜400 pc of the galaxy on short timescales of ≤1 Myr and regulate gas accretion in the CND.

  12. The Impact of Diffuse Ionized Gas on Emission-line Ratios and Gas Metallicity Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yan, Renbin; MaNGA Team

    2016-01-01

    Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impact the measurements of emission line ratios, hence the gas-phase metallicity measurements and the interpretation of diagnostic diagrams. We demonstrate that emission line surface brightness (SB) is a reasonably good proxy to separate HII regions from regions dominated by diffuse ionized gas. For spatially-adjacent regions or regions at the same radius, many line ratios change systematically with emission line surface brightness, reflecting a gradual increase of dominance by DIG towards low SB. DIG could significantly bias the measurement of gas metallicity and metallicity gradient. Because DIG tend to have a higher temperature than HII regions, at fixed metallicity DIG displays lower [NII]/[OII] ratios. DIG also show lower [OIII]/[OII] ratios than HII regions, due to extended partially-ionized regions that enhance all low-ionization lines ([NII], [SII], [OII], [OI]). The contamination by DIG is responsible for a substantial portion of the scatter in metallicity measurements. At different surface brightness, line ratios and line ratio gradients can differ systematically. As DIG fraction could change with radius, it can affect the metallicity gradient measurements in systematic ways. The three commonly used strong-line metallicity indicators, R23, [NII]/[OII], O3N2, are all affected in different ways. To make robust metallicity gradient measurements, one has to properly isolate HII regions and correct for DIG contamination. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LINER-like regions.

  13. Plasma channel created by ionization of gas by a surface wave

    SciTech Connect

    Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M. Rukhadze, A. A.; Tikhonevich, O. V.

    2015-09-15

    Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.

  14. A new mini gas ionization chamber for IBA applications

    NASA Astrophysics Data System (ADS)

    Müller, A. M.; Cassimi, A.; Döbeli, M.; Mallepell, M.; Monnet, I.; Simon, M. J.; Suter, M.; Synal, H.-A.

    2011-12-01

    Novel prototypes of high resolution gas ionization chambers ( GIC) were designed with increased compactness and simplicity of the setup. They have no Frisch-grid and a simple anode wire. Under certain operating conditions these mini detectors have an energy resolution comparable with that of state-of-the-art GICs of much higher complexity. They can be operated both under vacuum and atmospheric pressure. First measurements were made with protons in the energy range of 0.3-1.0 MeV. For protons at 0.3 MeV an energy resolution of about 12 keV was achieved. With a 72 MeV 129Xe beam a relative resolution of 1.4% was obtained. Due to their versatility and reduced size the detectors can easily be applied in the field of ion beam analysis ( IBA) and accelerator mass spectrometry ( AMS) . Since they are almost completely insensitive to radiation damage they are especially suited for use in high fluence applications such as scanning transmission ion microscopy ( STIM). A comparison of the radiation hardness of the mini GIC with a Si PIN diode was therefore performed. The GIC showed no peak shift or change in energy resolution at all after collecting 10 15 protons per cm 2 while the performance of the Si detector clearly started to degrade at 10 12 particles per cm 2.

  15. Alfvén ionization in an MHD-gas interactions code

    NASA Astrophysics Data System (ADS)

    Wilson, A. D.; Diver, D. A.

    2016-07-01

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics of waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.

  16. Electron impact ionization of the gas-phase sorbitol

    NASA Astrophysics Data System (ADS)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  17. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    SciTech Connect

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  18. Nearby early-type galaxies with ionized gas. IV. Origin and powering mechanism of the ionized gas

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Bressan, A.; Rampazzo, R.; Zeilinger, W. W.; Vega, O.; Panuzzo, P.

    2010-09-01

    Aims: A significant fraction of early-type galaxies (ETGs) exhibit emission lines in their optical spectra. We attempt to identify the producing the emission mechanism and the ionized gas in ETGs, and its connection with the host galaxy evolution. Methods: We analyzed intermediate-resolution optical spectra of 65 ETGs, mostly located in low density environments and exhibiting spectros-copic diagnostic lines of ISM from which we had previously derived stellar population properties. To extract the emission lines from the galaxy spectra, we developed a new fitting procedure that accurately subtracts the underlying stellar continuum, and accounts for the uncertainties caused by the age-metallicity degeneracy. Results: Optical emission lines are detected in 89% of the sample. The incidence and strength of emission correlate with neither the E/S0 classification, nor the fast/slow rotator classification. By means of the classical [OIII]/Hβ versus [NII]/Hα diagnostic diagram, the nuclear galaxy activity is classified such that 72% of the galaxies with emission are LINERs, 9% are Seyferts, 12% are composite/transition objects, and 7% are non-classified. Seyferts have young luminostiy-weighted ages (≲5 Gyr), and appear, on average, significantly younger than LINERs and composites. Excluding the Seyferts from our sample, we find that the spread in the ([OIII], Hα, or [NII]) emission strength increases with the galaxy central velocity dispersion σ_c. Furthermore, the [NII]/Hα ratio tends to increase with σ_c. The [NII]/Hα ratio decreases with increasing galactocentric distance, indicative of either a decrease in the nebular metallicity, or a progressive “softening” of the ionizing spectrum. The average nebular oxygen abundance is slightly less than solar, and a comparison with the results obtained in Paper III from Lick indices shows that it is ≈0.2 dex lower than that of stars. Conclusions: The nuclear (r < re/16) emission can be attributed to photoionization

  19. Kinematics in Partially Ionized Molecular Clouds: Implications for the Transition to Coherence

    NASA Astrophysics Data System (ADS)

    Bailey, Nicole D.; Basu, Shantanu; Caselli, Paola

    2015-01-01

    A previous paper by Bailey & Basu shows analysis of density and mass-to-flux ratio maps for simulations with either an ionization profile which takes into account photoionization (step-like profile) or a cosmic ray only ionization profile. We extend this study to analyze the effect of these ionization profiles on velocity structures, kinematics, and synthetic spectra. Clump regions are found to occur at the convergence of two flows with a low velocity region and velocity direction transition occurring at the junction. Models with evident substructure show that core formation occurs on the periphery of these velocity valleys. Analysis of synthetic spectra reveals the presence of large non-thermal components within low-density gas, especially for models with the step-like ionization profile. All cores show small, sub-thermal relative motions compared to background gas. Large deviations within this analysis are due to the line of sight intersecting low- and high-density regions across the velocity switch transition. Positive deviations correspond to a foreground core moving away from the observer while negative deviations correspond to a background core moving toward the observer. Comparison of velocities resulting from different ionization profiles suggest that high ionization fractions yield supersonic velocities, up to two times the sound speed, while regions with low ionization fractions tend to be subsonic or mildly supersonic. This suggests that the transition to coherence within cores could be a transition between high and low ionization fractions within the gas.

  20. KINEMATICS IN PARTIALLY IONIZED MOLECULAR CLOUDS: IMPLICATIONS FOR THE TRANSITION TO COHERENCE

    SciTech Connect

    Bailey, Nicole D.; Caselli, Paola; Basu, Shantanu E-mail: caselli@mpe.mpg.de

    2015-01-10

    A previous paper by Bailey and Basu shows analysis of density and mass-to-flux ratio maps for simulations with either an ionization profile which takes into account photoionization (step-like profile) or a cosmic ray only ionization profile. We extend this study to analyze the effect of these ionization profiles on velocity structures, kinematics, and synthetic spectra. Clump regions are found to occur at the convergence of two flows with a low velocity region and velocity direction transition occurring at the junction. Models with evident substructure show that core formation occurs on the periphery of these velocity valleys. Analysis of synthetic spectra reveals the presence of large non-thermal components within low-density gas, especially for models with the step-like ionization profile. All cores show small, sub-thermal relative motions compared to background gas. Large deviations within this analysis are due to the line of sight intersecting low- and high-density regions across the velocity switch transition. Positive deviations correspond to a foreground core moving away from the observer while negative deviations correspond to a background core moving toward the observer. Comparison of velocities resulting from different ionization profiles suggest that high ionization fractions yield supersonic velocities, up to two times the sound speed, while regions with low ionization fractions tend to be subsonic or mildly supersonic. This suggests that the transition to coherence within cores could be a transition between high and low ionization fractions within the gas.

  1. A Three Dimensional Beam Profile Monitor Based on Residual Gas Ionization

    SciTech Connect

    Lewis, T.A.; Shapira, D.

    1998-11-04

    A three-dimensional beam profile monitor based on tracking the ionization of the residual gas molecules in the evacuated beam pipe is described. Tracking in position and time of the ions and electrons produced in the ionization enables simultaneous position sampling in three dimensions. Special features which make it possible to sample very low beam currents were employed.

  2. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    SciTech Connect

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Sorimachi, Atsuyuki; Yatabe, Yoshinori; Miyahara, Nobuyuki

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  3. Infrared spectroscopy of ionized corannulene in the gas phase

    NASA Astrophysics Data System (ADS)

    Galué, Héctor Alvaro; Rice, Corey A.; Steill, Jeffrey D.; Oomens, Jos

    2011-02-01

    The gas-phase infrared spectra of radical cationic and protonated corannulene were recorded by infrared multiple-photon dissociation (IRMPD) spectroscopy using the IR free electron laser for infrared experiments. Electrospray ionization was used to generate protonated corannulene and an IRMPD spectrum was recorded in a Fourier-transform ion cyclotron resonance mass spectrometer monitoring H-loss as a function of IR frequency. The radical cation was produced by 193-nm UV photoionization of the vapor of corannulene in a 3D quadrupole trap and IR irradiation produces H, H2, and C2Hx losses. Summing the spectral response of the three fragmentation channels yields the IRMPD spectrum of the radical cation. The spectra were analyzed with the aid of quantum-chemical calculations carried out at various levels of theory. The good agreement of theoretical and experimental spectra for protonated corannulene indicates that protonation occurs on one of the peripheral C-atoms, forming an sp3 hybridized carbon. The spectrum of the radical cation was examined taking into account distortions of the C5v geometry induced by the Jahn-Teller effect as a consequence of the degenerate 2E1 ground electronic state. As indicated by the calculations, the five equivalent Cs minima are separated by marginal barriers, giving rise to a dynamically distorted system. Although in general the character of the various computed vibrational bands appears to be in order, only a qualitative match to the experimental spectrum is found. Along with a general redshift of the calculated frequencies, the IR intensities of modes in the 1000-1250 cm-1 region show the largest discrepancy with the harmonic predictions. In addition to CH "in-plane" bending vibrations, these modes also exhibit substantial deformation of the pentagonal inner ring, which may relate directly to the vibronic interaction in the radical cation.

  4. Analysis of polyaromatic hydrocarbon mixtures with laser ionization gas chromatography/mass spectrometry

    SciTech Connect

    Rhodes, G.; Opsal, R.B.; Meek, J.T.; Reilly, J.P.

    1983-02-01

    Excimer laser induced multiphoton ionization has been utilized for ion generation in capillary gas chromatography/mass spectrometry and the technique applied to the separation and detection of polyaromatic hydrocarbons. Detection limits as low as 200 fg and linearity over a range of 5 x 10/sup +4/ were obtained for the polyaromatic hydrocarbons examined. Multiphoton ionization mass spectra were dominated by parent ions. Selective ionization based upon small differences in ionization potentials has been demonstrated for coeluting chrysene and triphenylene. Instrumental parameters have been investigated to assess improvements in sensitivity.

  5. Influence of ionization on ultrafast gas-based nonlinear fiber optics.

    PubMed

    Chang, W; Nazarkin, A; Travers, J C; Nold, J; Hölzer, P; Joly, N Y; Russell, P St J

    2011-10-10

    We numerically investigate the effect of ionization on ultrashort high-energy pulses propagating in gas-filled kagomé-lattice hollow-core photonic crystal fibers by solving an established uni-directional field equation. We consider the dynamics of two distinct regimes: ionization induced blue-shift and resonant dispersive wave emission in the deep-UV. We illustrate how the system evolves between these regimes and the changing influence of ionization. Finally, we consider the effect of higher ionization stages.

  6. Molecular wake shield gas analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1980-01-01

    Techniques for measuring and characterizing the ultrahigh vacuum in the wake of an orbiting spacecraft are studied. A high sensitivity mass spectrometer that contains a double mass analyzer consisting of an open source miniature magnetic sector field neutral gas analyzer and an identical ion analyzer is proposed. These are configured to detect and identify gas and ion species of hydrogen, helium, nitrogen, oxygen, nitric oxide, and carbon dioxide and any other gas or ion species in the 1 to 46 amu mass range. This range covers the normal atmospheric constituents. The sensitivity of the instrument is sufficient to measure ambient gases and ion with a particle density of the order of one per cc. A chemical pump, or getter, is mounted near the entrance aperture of the neutral gas analyzer which integrates the absorption of ambient gases for a selectable period of time for subsequent release and analysis. The sensitivity is realizable for all but rare gases using this technique.

  7. Ionization heating in rare-gas clusters under intense XUV laser pulses

    SciTech Connect

    Arbeiter, Mathias; Fennel, Thomas

    2010-07-15

    The interaction of intense extreme ultraviolet (XUV) laser pulses ({lambda}=32 nm, I=10{sup 11}-10{sup 14} W/cm{sup 2}) with small rare-gas clusters (Ar{sub 147}) is studied by quasiclassical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in Bostedt et al. [Phys. Rev. Lett. 100, 133401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via ionization heating, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.

  8. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    PubMed

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-01

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources. PMID:27281271

  9. Cosmic ray studies with a gas Cherenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Yodh, G. B.; Simon, M.; Spiegelhauer, H.

    1980-01-01

    The results from a balloon-borne gas Cherenkov counter (threshold 16.5 GeV/nucleon) and an ionization spectrometer are presented. The gas Cherenkov counter provides an absolute energy distribution for the response of the calorimeter for 5 or = Z 26 nuclei of cosmic rays. The contribution of scintillation to the gas Cherenkov pulse height was obtained by independently selecting particles below the gas Cherenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi squared between Monte Carlo simulted data and flight data. Best fit power laws, dN/dE = AE-gamma, were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E (-2.7) are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer. The data from the ionization calorimeter and the gas Cherenkov are thus completely self-consistent.

  10. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    SciTech Connect

    Glassgold, A. E.; Najita, J. R.

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimes as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.

  11. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    NASA Technical Reports Server (NTRS)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  12. Mass spectrometric behavior of anabolic androgenic steroids using gas chromatography coupled to atmospheric pressure chemical ionization source. Part I: ionization.

    PubMed

    Raro, M; Portolés, T; Sancho, J V; Pitarch, E; Hernández, F; Marcos, J; Ventura, R; Gómez, C; Segura, J; Pozo, O J

    2014-06-01

    The detection of anabolic androgenic steroids (AAS) is one of the most important topics in doping control analysis. Gas chromatography coupled to (tandem) mass spectrometry (GC-MS(/MS)) with electron ionization and liquid chromatography coupled to tandem mass spectrometry have been traditionally applied for this purpose. However, both approaches still have important limitations, and, therefore, detection of all AAS is currently afforded by the combination of these strategies. Alternative ionization techniques can minimize these drawbacks and help in the implementation of a single method for the detection of AAS. In the present work, a new atmospheric pressure chemical ionization (APCI) source commercialized for gas chromatography coupled to a quadrupole time-of-flight analyzer has been tested to evaluate the ionization of 60 model AAS. Underivatized and trimethylsylil (TMS)-derivatized compounds have been investigated. The use of GC-APCI-MS allowed for the ionization of all AAS assayed irrespective of their structure. The presence of water in the source as modifier promoted the formation of protonated molecules ([M+H](+)), becoming the base peak of the spectrum for the majority of studied compounds. Under these conditions, [M+H](+), [M+H-H2O](+) and [M+H-2·H2O](+) for underivatized AAS and [M+H](+), [M+H-TMSOH](+) and [M+H-2·TMSOH](+) for TMS-derivatized AAS were observed as main ions in the spectra. The formed ions preserve the intact steroid skeleton, and, therefore, they might be used as specific precursors in MS/MS-based methods. Additionally, a relationship between the relative abundance of these ions and the AAS structure has been established. This relationship might be useful in the structural elucidation of unknown metabolites.

  13. The ionization conditions in the Milky Way halo - Infalling gas toward the North Galactic Pole

    NASA Technical Reports Server (NTRS)

    Danly, Laura

    1992-01-01

    Observations of gas in the Milky Way halo are studied with an eye toward the theoretical predictions of the Galactic Fountain model for the production of halo gas. Data are shown that indicate significant variations in the ionization conditions in infalling halo gas in the northern galactic hemisphere. Understanding the nature of Milky Way halo gas plays a critical role in interpreting QSO absorption lines in the investigation of galaxies at high redshift.

  14. Microplume model of spatial-yield spectra. [applying to electron gas degradation in molecular nitrogen gas

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Singhal, R. P.

    1979-01-01

    An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.

  15. Hot interstellar gas and ionization of embedded clouds

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, F.

    1990-01-01

    Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions.

  16. Nonlinear optical response of multiply ionized noble-gas atoms

    NASA Astrophysics Data System (ADS)

    Tarazkar(1, 3), Maryam; Romanov(2, 3), Dmitri; Levis(1, 3), Robert

    2016-05-01

    Calculation of dynamic polarizabilities and hyperpolarizabilities of ionized species using ab initio methods presents computational and conceptual difficulties, as these ionized species often have open-shell electronic system. We use multi-configurational self-consistent field (MCSCF) method with extended basis sets for calculating dynamic polarizability and second-order hyperpolarizabilities of atomic noble gases and their multiply charged cations in non-resonant regime. The calculations were performed at wavelengths ranging from about 100 nm to the red of the first multi-photon resonance all the way toward the static regime. The results were benchmarked to those of CCSD calculations for ions of even-number charge. The second-order hyperpolarizability coefficients were found to decrease when the electrons are progressively removed from the system. At higher ionization states, these coefficients become less dispersive as a function of wavelength. The values and even the signs of the γ (2) coefficients were found to depend on the spin of the ionic quantum state. Thus, for Ne+3 and Ne+4, in low-spin states (2 Pu, and 1 Sg, respectively) the sign of γ (2) is positive, whereas in high-spin states (4 Su, and 3 Pg) the sign is negative. The calculated hyperpolarizabilities of multiply ionized atoms relate to experiments on very bright high-order harmonic generation in multiply ionized plasmas.

  17. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  18. The kinematics of Milky Way halo gas. I - Observations of low-ionization species

    NASA Technical Reports Server (NTRS)

    Danly, Laura

    1989-01-01

    Ultraviolet interstellar line day observed with the IUE toward 70 halo stars and four extragalactic sight lines are analyzed in a study of the large-scale kinematic properties of the Milky Way halo gas. The motions of the low-ionization gas is focused on. Large systematic velocities are found, and a pronounced asymmetry in the absorption characteristics of halo gas toward the Galactic poles is indicated. In the north, substantial amounts of material are falling toward the disk at velocities up to about 120 km/s in the most extreme case. Toward the south, low-ionization material shows no extreme or systematic motions.

  19. Surface Ionization Gas Detection at SnO{sub 2} Surfaces

    SciTech Connect

    Krenkow, A.; Oberhuettinger, C.; Habauzit, A.; Kessler, M.; Goebel, J.; Mueller, G.

    2009-05-23

    In surface ionization (SI) gas detection adsorbed analyte molecules are converted into ionic species at a heated solid surface and extracted into free space by an oppositely biased counter electrode. In the present work we consider the formation of positive and negative analyte gas ions at SnO{sub 2} surfaces. We find that SI leads to positive ion formation only, with the SI efficiency scaling with the ionization energy of the analyte gas molecules. Aromatic and aliphatic hydrocarbons with amine functional groups exhibit particularly high SI efficiencies.

  20. Prediction of Shock Wave Structure in Weakly Ionized Gas Flow by Solving MGD Equation

    NASA Technical Reports Server (NTRS)

    Deng, Z. T.; Oviedo-Rojas, Ruben; Chow, Alan; Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    This paper reports the recent research results of shockwave structure predictions using a new developed code. The modified Rankine-Hugoniot relations across a standing normal shock wave are discussed and adopted to obtain jump conditions. Coupling a electrostatic body force to the Burnett equations, the weakly ionized flow field across the shock wave was solved. Results indicated that the Modified Rankine-Hugoniot equations for shock wave are valid for a wide range of ionization fraction. However, this model breaks down with small free stream Mach number and with large ionization fraction. The jump conditions also depend on the value of free stream pressure, temperature and density. The computed shock wave structure with ionization provides results, which indicated that shock wave strength may be reduced by existence of weakly ionized gas.

  1. Investigating the Diffuse Ionized Gas in the Magellanic Stream with Mapped WHAM Observations

    NASA Astrophysics Data System (ADS)

    Smart, Brianna; Haffner, L. Matthew; Barger, Kathleen; Hernandez, Mike

    2016-01-01

    We present early stages of an Hα survey of the Magellanic Stream using the Wisconsin H-Alpha Mapper (WHAM). While the neutral component of the Stream may extend 200° across the sky (Nidever et al. 2010), its ionized gas has not yet been studied in detail. Fox et al. 2014 find that the tidal debris in the Magellanic System contains twice as much ionized gas as neutral and may extend 30° away from the H I emission. However, such absorption-line studies are not sensitive to the overall morphology of the ionized gas. Using targeted Hα emission observations of the Magellanic Stream, Barger et al. 2015 find that although the warm ionized gas tracks the neutral gas, it often spans a few degrees away from the H I emission at slightly offset velocities. Using WHAM's unprecedented sensitivity to diffuse emission (~ 10s of mR) and its velocity resolution (12 km/s) to isolate Stream emission, we are now conducting the first full Hα survey of its ionized component. Here we present early results, including spatial and kinematic comparisons to the well-established neutral profile of the Stream. WHAM research and operations are supported through NSF Award AST-1108911.

  2. Preparation of a pure molecular quantum gas.

    PubMed

    Herbig, Jens; Kraemer, Tobias; Mark, Michael; Weber, Tino; Chin, Cheng; Nägerl, Hanns-Christoph; Grimm, Rudolf

    2003-09-12

    An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales. We measured ultralow expansion energies in the range of a few nanokelvin for a sample of 3000 molecules. Our observations are consistent with the presence of a macroscopic molecular matter wave. PMID:12934014

  3. The Massive Stellar Population in the Diffuse Ionized Gas of M33

    NASA Technical Reports Server (NTRS)

    Hoopes, Charles G.; Walterbos, Rene A. M.

    1995-01-01

    We compare Far-UV, H alpha, and optical broadband images of the nearby spiral galaxy M33, to investigate the massive stars associated with the diffuse ionized gas. The H-alpha/FUV ratio is higher in HII regions than in the DIG, possibly indicating that an older population ionizes the DIG. The broad-band colors support this conclusion. The HII region population is consistent with a young burst, while the DIG colors resemble an older population with constant star formation. Our results indicate that there may be enough massive field stars to ionize the DIG, without the need for photon leakage from HII regions.

  4. Gas-phase chemiluminescence and chemi-ionization

    SciTech Connect

    Fontijn, A.

    1985-01-01

    The phenomena of chemiluminescence (or more broadly chemi-excitation) and chemi-ionization have major similarities from a fundamental kinetic and dynamic point of view. However, since the former has primarily been investigated using optical spectroscopic techniques and the latter largely by mass spectroscopic (and other gaseous electronic) methods, the two phenomena have apparently never, explicitly been discussed together in one volume. In addition to a number of review articles on each individual subject, several meetings and books have had chemiluminescence and bioluminescence as their theme and those have been dominated by condensed phase work. On the other hand, chemi-ionization is often discussed in the contest of gaseous electronics, plasma chemistry and combustion. It is the goal of this book to present a more unified understanding of the two phenomena.

  5. Ionized gas characteristics in the cavities of the gas and dust disc of the spiral galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.; Afanasiev, V. L.; Egorov, O. V.

    2011-07-01

    The parameters of the ionized gas in NGC 6946 (in the [NII] λλ6548, 6583, H α and [SII] λλ6717, 6731 lines) are investigated with the SAO RAS BTA telescope along three positions of the long slit of the SCORPIO focal reducer, passing through a number of large and small cavities of the gaseous disc of the galaxy. These cavities correspond exactly to the cavities in warm dust, visible at 5 - 8µm. We found that everywhere in the direction of NGC 6946 the lines of ionized gas are decomposed into two Gaussians, one of which shows almost constant [SII]/H α and [NII]/H α ratios, as well as an almost constant radial velocity within the measurement errors (about -35… - 50 km/s). This component is in fact the foreground radiation from the diffuse ionized gas of our Galaxy, which is not surprising, given the low (12°) latitude of NGC 6946; a similar component is also present in the emission of neutral hydrogen. The analysis of the component of ionized gas, occurring inNGC 6946, has revealed that it shows signs of shock excitation in the cavities of the gaseous disc of the galaxy. This shock excitation is as well typical for the extraplanar diffuse ionized gas (EDIG), observed in a number of spiral galaxies at their high Z-coordinates. This can most likely be explained by low density of the gas in the NGC 6946 disc (with the usual photoionization) inside the cavities, due to what we see the spectral features of the EDIG gas of NGC 6946, projected onto them, and located outside the plane of the galaxy. In the absence of separation of ionized gas into two components by radial velocities, there is an increasing contribution to the integral line parameters by the EDIG of our Galaxy when the gas density in NGC 6946 decreases, which explains some strange results, obtained in the previous studies. Themorphology of warmdust, visible in the infrared range and HI is almost the same (except for the peripheral parts of the galaxy, where there are no sources of dust heating

  6. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    PubMed

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS.

  7. Molecular dynamics studies on nanoscale gas transport

    NASA Astrophysics Data System (ADS)

    Barisik, Murat

    Three-dimensional molecular dynamics (MD) simulations of nanoscale gas flows are studied to reveal surface effects. A smart wall model that drastically reduces the memory requirements of MD simulations for gas flows is introduced. The smart wall molecular dynamics (SWMD) represents three-dimensional FCC walls using only 74 wall Molecules. This structure is kept in the memory and utilized for each gas molecule surface collision. Using SWMD, fluid behavior within nano-scale confinements is studied for argon in dilute gas, dense gas, and liquid states. Equilibrium MD method is employed to resolve the density and stress variations within the static fluid. Normal stress calculations are based on the Irving-Kirkwood method, which divides the stress tensor into its kinetic and virial parts. The kinetic component recovers pressure based on the ideal gas law. The particle-particle virial increases with increased density, while the surface-particle virial develops due to the surface force field effects. Normal stresses within nano-scale confinements show anisotropy induced primarily by the surface force-field and local variations in the fluid density near the surfaces. For dilute and dense gas cases, surface-force field that extends typically 1nm from each wall induces anisotropic normal stress. For liquid case, this effect is further amplified by the density fluctuations that extend beyond the three field penetration region. Outside the wall force-field penetration and density fluctuation regions the normal stress becomes isotropic and recovers the thermodynamic pressure, provided that sufficiently large force cut-off distances are utilized in the computations. Next, non-equilibrium SWMD is utilized to investigate the surface-gas interaction effects on nanoscale shear-driven gas flows in the transition and free molecular flow regimes. For the specified surface properties and gas-surface pair interactions, density and stress profiles exhibit a universal behavior inside the

  8. Black hole mass measurements using ionized gas discs: systematic dust effects

    SciTech Connect

    Baes, Maarten

    2008-10-08

    Using detailed Monte Carlo radiative transfer simulations in realistic models for galactic nuclei, we investigate the influence of interstellar dust in ionized gas discs on the rotation curves and the resulting black hole mass measurements. We find that absorption and scattering by interstellar dust leaves the shape of the rotation curves basically unaltered, but slightly decreases the central slope of the rotation curves. As a result, the ''observed'' black hole masses are systematically underestimated by some 10 to 20% for realistic optical depths. We therefore argue that the systematic effect of dust attenuation should be taken into account when estimating SMBH masses using ionized gas kinematics.

  9. Observational model of the ionized gas in Seyfert and radio-galaxy nuclei*

    PubMed Central

    Osterbrock, Donald E.

    1978-01-01

    Equivalent widths of the total emission-line Hβ in Seyfert 1, Seyfert 2, and intermediate-type Seyfert galaxies, expressed in terms of the featureless continuum, all have approximately the same frequency distribution. This suggests that the energy-input mechanism to both the narrow-line, low-density gas and the broad-line, high-density gas is photoionization by the featureless continuum. The reason for the weakness of the narrow emission lines in extreme Seyfert 1 galaxies is then the absorption of most of the ionizing photons in the dense gas near the central source. The statistics of line widths can be fitted by a model in which the dense gas has typical rotational velocity 5000 km/sec and typical turbulent velocity 2000 km/sec. A model is proposed in which the dense gas forms a rotating, turbulent disk with dimension ≈0.1 pc and height/diameter ≈2/5. Seyfert 2 galaxies are objects with little dense gas, and intermediate-type Seyfert galaxies are objects in which the dense gas is optically thin to ionizing radiation at least along the poles. Most radio galaxies have strong narrow emission lines, suggesting that escape of radio plasma can only occur where some ionizing photons can also escape from the dense gas. Other predictions, implications, and tests of this model are discussed. Images PMID:16592488

  10. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase.

    PubMed

    Poully, Jean-Christophe; Vizcaino, Violaine; Schwob, Lucas; Delaunay, Rudy; Kocisek, Jaroslav; Eden, Samuel; Chesnel, Jean-Yves; Méry, Alain; Rangama, Jimmy; Adoui, Lamri; Huber, Bernd

    2015-08-01

    Collisions between O(3+) ions and neutral clusters of amino acids (alanine, valine and glycine) as well as lactic acid are performed in the gas phase, in order to investigate the effect of ionizing radiation on these biologically relevant molecular systems. All monomers and dimers are found to be predominantly protonated, and ab initio quantum-chemical calculations on model systems indicate that for amino acids, this is due to proton transfer within the clusters after ionization. For lactic acid, which has a lower proton affinity than amino acids, a significant non-negligible amount of the radical cation monomer is observed. New fragment-ion channels observed from clusters, as opposed to isolated molecules, are assigned to the statistical dissociation of protonated molecules formed upon ionization of the clusters. These new dissociation channels exhibit strong delayed fragmentation on the microsecond time scale, especially after multiple ionization.

  11. ARE MOLECULAR OUTFLOWS AROUND HIGH-MASS STARS DRIVEN BY IONIZATION FEEDBACK?

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Klaassen, Pamela D.; Mac Low, Mordecai-Mark; Banerjee, Robi

    2012-11-20

    The formation of massive stars exceeding 10 M {sub Sun} usually results in large-scale molecular outflows. Numerical simulations, including ionization, of the formation of such stars show evidence for ionization-driven molecular outflows. Here we examine whether the outflows seen in these models reproduce the observations. We compute synthetic ALMA and CARMA maps of CO emission lines of the outflows, and compare their signatures to existing single-dish and interferometric data. We find that the ionization-driven models can only reproduce weak outflows around high-mass star-forming regions. We argue that expanding H II regions probably do not represent the dominant mechanism for driving observed outflows. We suggest instead that observed outflows are driven by the collective action of the outflows from the many lower-mass stars that inevitably form around young massive stars in a cluster.

  12. MOLECULAR GAS IN INFRARED ULTRALUMINOUS QSO HOSTS

    SciTech Connect

    Xia, X. Y.; Hao, C.-N.; Gao, Y.; Tan, Q. H.; Mao, S.; Omont, A.; Flaquer, B. O.; Leon, S.; Cox, P.

    2012-05-10

    We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30 m telescope. The cold molecular gas reservoir in these objects is in a range of (0.2-2.1) Multiplication-Sign 10{sup 10} M{sub Sun} (adopting a CO-to-H{sub 2} conversion factor {alpha}{sub CO} = 0.8 M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1}). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency (L{sub FIR}/L'{sub CO}), and CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO-detected QSOs reveals a tight correlation between L{sub FIR} and L'{sub CO(1-0)} for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by Spitzer. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on {approx}kpc scale and the central black hole accretion process on much smaller scales.

  13. The Molecular Gas in the Whirlpool Galaxy

    NASA Astrophysics Data System (ADS)

    Schinnerer, Eva; Leroy, A.; Pety, J.; Dumas, G.; Meidt, S.; Colombo, D.; Garcia-Burillo, S.; Hughes, A.; Kramer, C.; Rix, H.; Schuster, K.; Thompson, T.; Weiss, A.; Aalto, S.; Scoville, N.

    2011-01-01

    The nearby spiral galaxy M51 is a prime target for studying the properties of molecular gas in the environment of spiral arms. Our recent analysis of multi-transition data from the OVRO millimeter interferometer of two selected regions of its prominent gas spiral arms shows that Giant Molecular Clouds (GMCs) residing in the spiral arms are very similar to their cousins found in the Milky Way. In addition, the conversion factor from CO line velocity to molecular gas mass is very similar to values derived for Galactic GMCs. The recently finished PdBI Arcsecond Whirlpool Survey (PAWS) imaged the GMCs population of Giant Molecular Clouds (GMCs) in the central 8 kpc disk of M51 at an unprecedented resolution of 45pc using the PdBI and 30m instruments. First results from this IRAM Large Program regarding the properties of GMCs, their evolution and relation to star forming sites within M51's impressive spiral arms will be presented.

  14. Study of the surface ionization detector for gas chromatography.

    PubMed

    Li, Weiwei; Wu, Dapeng; Chen, Shiheng; Peng, Hong; Guan, Yafeng

    2011-09-23

    The structure of the surface ionization detector (SID) and the operation parameters of GC-SID were investigated to reduce peak tailing and to enhance sensitivity. The performances of the GC-SID, including its repeatability, linearity, sensitivity, selectivity, and tolerance towards water vapor, were evaluated systematically. Compared with nitrogen-phosphorus detector (NPD), the SID was able to detect fg level triethylamine, and selectively respond to alkylamines, some anilines, and some nitrogen heterocyclic compounds. Among alkylamines, the SID sensitivity to diisobutylamine was rather small. Even so, it was also still 10 times higher than that on NPD. The SID selectivity, defined as the sensitivity ratio between triethylamine and various tested non-nitrogen compounds, was higher than 10(6). It was found that the SID is highly tolerant towards water vapor, allowing direct injection of water sample. Finally, the GC-SID was applied to directly measure trace amines in headspace gases of rotted meat and trace simazine in tap water. The SID sensitivity to simazine was proven to be 5 times higher than that on flame ionization detector (FID). This study suggests that the SID is a promising GC detector. PMID:21839459

  15. Relating polarizability to volume, ionization energy, electronegativity, hardness, moments of momentum, and other molecular properties

    SciTech Connect

    Blair, Shamus A.; Thakkar, Ajit J.

    2014-08-21

    Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.

  16. LC-MS with electron ionization of cold molecules in supersonic molecular beams

    NASA Astrophysics Data System (ADS)

    Granot, Ori; Amirav, Aviv

    2005-06-01

    A new approach is described for the combination of electron ionization and LC-MS based on sample ionization as vibrationally cold molecules in a supersonic molecular beam (Cold EI). Cold EI of sample compounds in liquid solutions (methanol, acetonitrile, water, etc.) is achieved through spray formation, followed by soft thermal vaporization of the sample particles prior to their supersonic expansion and direct electron ionization of the sample compounds while they are contained in a supersonic molecular beam (SMB). Cold EI mass spectra were demonstrated to combine an enhanced molecular ion and improved mass spectral information (in comparison with standard EI), plus all the library searchable fragments. Cold EI enables the ionization of a broad range of compounds, including the full range of non-polar samples. Four orders of magnitude linear dynamic range is demonstrated and a detection limit of 2 pg was achieved for a 774 amu compound in single ion monitoring mode at m/z = 774. The method and apparatus are under continuous development and we feel that it can excel particularly in the analysis of unknown samples, while enabling fast LC-MS analysis through automated mass spectral deconvolution of coeluting LC peaks. In addition, the same MS system can also serve as an advanced GC-MS with supersonic molecular beams.

  17. Final Report: Ionization chemistry of high temperature molecular fluids

    SciTech Connect

    Fried, L E

    2007-02-26

    With the advent of coupled chemical/hydrodynamic reactive flow models for high explosives, understanding detonation chemistry is of increasing importance to DNT. The accuracy of first principles detonation codes, such as CHEETAH, are dependent on an accurate representation of the species present under detonation conditions. Ionic species and non-molecular phases are not currently included coupled chemistry/hydrodynamic simulations. This LDRD will determine the prevalence of such species during high explosive detonations, by carrying out experimental and computational investigation of common detonation products under extreme conditions. We are studying the phase diagram of detonation products such as H{sub 2}O, or NH{sub 3} and mixtures under conditions of extreme pressure (P > 1 GPa) and temperature (T > 1000K). Under these conditions, the neutral molecular form of matter transforms to a phase dominated by ions. The phase boundaries of such a region are unknown.

  18. Cosmic ray studies with a gas Cerenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Simon, M.; Spiegelhauer, H.; Yodh, G. B.

    1980-01-01

    The results from a balloon-borne gas Cerenkov counter (threshold 16.5 GeV/nuc) and an ionization spectrometer are presented. The gas Cerenkov counter provides an absolute energy calibration for the response of the calorimeter for the Z range of 5-26 nuclei of cosmic rays. The contribution of scintillation to the gas Cerenkov pulse height has been obtained by independently selecting particles below the gas Cerenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi-squared between a Monte Carlo simulated data and flight data. Best fit power laws were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E exp-2.7, are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer.

  19. Ammonia quantitative analysis model based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model

    PubMed Central

    Ma, Rongfei

    2015-01-01

    In this paper, ammonia quantitative analysis based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model was proposed. Al plate anodic gas-ionization sensor was used to obtain the current-voltage (I-V) data. Measurement data was processed by non-linear bistable dynamics model. Results showed that the proposed method quantitatively determined ammonia concentrations. PMID:25975362

  20. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  1. Dense Molecular Gas in Centaurus A

    NASA Astrophysics Data System (ADS)

    Wild, Wolfgang; Eckart, Andreas

    1999-10-01

    Centaurus A (NGC 5128) is the closest radio galaxy, and its molecular interstellar medium has been studied extensively in recent years. However, these studies used mostly molecular lines tracing low to medium density gas (see e.g. Eckart et al. 1990. Wild et al. 1997). The amount and distribution of the dense component remained largely unknown. We present spectra of the HCN(1-0) emission - which traces dense (n(H2) > 104 cm-3) molecular gas - at the center and along the prominent dust lane at offset positions +/- 60" and +/- 100", as well as single CS(2-1) and CS(3-2) spectra, observed with the SEST on La Silla, Chile. At the central position, the integrated intensity ratio I(HCN)/I(CO) peaks at 0.064, and decreases to somewhat equal to 0.02 to 0.04 in the dust lane. Based on the line luminosity ratio L(HCN)/L(CO) we estimate that there is a significant amount of dense gas in Centaurus A. The fraction of dense molecular gas as well as the star formation efficiency LFIR/LCO towards the center of Cen A is comparable to ultra-luminous infrared galaxies, and falls in between the values for ULIRGs and normal galaxies for positions in the dust lane. Details will be published in Wild & Eckart (A&A, in prep.). Eckart et al. 1990, ApJ 363, 451 Rydbeck et al. 1993, Astr.Ap. (Letters) 270, L13. Wild, W., Eckart, A. & Wiklind, T. 1997, Astr.Ap. 322, 419.

  2. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  3. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  4. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  5. Field ionization kinetic and electron impact studies of gas phase transition states - The cyclic bromonium ion

    NASA Technical Reports Server (NTRS)

    Green, M. M.; Giguere, R. J.; Falick, A. M.; Aberth, W.; Burlingame, A. L.

    1978-01-01

    Cis- and trans-isomers of 4-t-butylcyclohexyl bromide were studied to determine the mechanism of cyclic bromonium ion formation. The field ionization kinetic and electron impact data indicate that the formation of the cyclic structure occurs simultaneously with loss of the neutral fragment. The data also show that little or no gas-phase cis-trans isomerization occurs.

  6. Noble Gas Detection Using Resonance Ionization Spectroscopy and a Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Hurst, G. S.

    1983-10-01

    The technique of Resonance Ionization Spectroscopy (RIS) is being extended to develop a means for counting individual atoms of a selected isotope of a noble gas. In this method, lasers are used for RIS to obtain atomic species (Z) selectivity and a small quadrupole mass spectrometer provides isotopic (A) selectivity. A progress report on the objective of counting each atom of a particular isotope of a noble gas is given. Resonance ionization spectroscopy and its use for the detection of single atoms has been reviewed.' More recently, our efforts at ORNL have turned to the problem of direct counting of noble gas atoms2,3,4 as an alternative to decay counting of particular isotopes of noble gas species. For broader applications, the ORNL group is trying to develop a facility for counting a few rare gas atoms of a given isotopic variety in a sample. The detection of a small number of 81Kr atoms (<1000) is very important for groundwater dating, polar ice-cap dating, and nuclear waste disposal applications, and solar neutrino research. The ultimate goal is to count a small number (e.g., 100 to 1,000) of selected atoms having mass number A, even when mixed with 1012 or more atoms having mass number ± 1. The experimental schematic is shown in Figure 1. The concept for counting noble gas atoms with isotopic selectivity is to utilize a laser for ionizing atoms of a selected atomic

  7. Molecular ionization of cyclohexanone in femtosecond laser fields: An application of ADK theory

    NASA Astrophysics Data System (ADS)

    Wang, Q. Q.; Mineo, H.; Wu, D.; Jin, M. X.; Chin, C. H.; Teranishi, Y.; Chao, S. D.; Ding, D.; Lin, S. H.

    2009-08-01

    The mechanisms of ionization and dissociation of cyclohexanone (C6H10O) in a 90 fs, 788 nm linearly polarized laser field ranging from 1013 to 1014 W/cm2 by a time-of-flight mass spectrometer (TOF-MS) have been investigated. The ion yields as a function of laser intensity have been measured experimentally. By comparison with the Ammosov-Delone-Krainov (ADK) theory based on a hydrogen-like model, the ionization mechanism of cyclohexanone in this intense femtosecond laser field has been understood. Considering the importance of molecular nuclear motions, we propose that the Franck-Condon (F-C) factor can provide the excess vibrational energy in the molecular ion. This energy is required for the decomposition of the molecular ion which finally results in the observed mass spectrum.

  8. Multiple Ionization of Free Ubiquitin Molecular Ions in Extreme Ultraviolet Free-Electron Laser Pulses.

    PubMed

    Schlathölter, Thomas; Reitsma, Geert; Egorov, Dmitrii; Gonzalez-Magaña, Olmo; Bari, Sadia; Boschman, Leon; Bodewits, Erwin; Schnorr, Kirsten; Schmid, Georg; Schröter, Claus Dieter; Moshammer, Robert; Hoekstra, Ronnie

    2016-08-26

    The fragmentation of free tenfold protonated ubiquitin in intense 70 femtosecond pulses of 90 eV photons from the FLASH facility was investigated. Mass spectrometric investigation of the fragment cations produced after removal of many electrons revealed fragmentation predominantly into immonium ions and related ions, with yields increasing linearly with intensity. Ionization clearly triggers a localized molecular response that occurs before the excitation energy equilibrates. Consistent with this interpretation, the effect is almost unaffected by the charge state, as fragmentation of sixfold deprotonated ubiquitin leads to a very similar fragmentation pattern. Ubiquitin responds to EUV multiphoton ionization as an ensemble of small peptides. PMID:27453360

  9. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  10. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  11. Dust and ionized gas in active radio elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Forbes, D. A.; Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors present broad and narrow bandwidth imaging of three southern elliptical galaxies which have flat-spectrum active radio cores (NGC 1052, IC 1459 and NGC 6958). All three contain dust and extended low excitation optical line emission, particularly extensive in the case of NGC 1052 which has a large H alpha + (NII) luminosity. Both NGC 1052 and IC 1459 have a spiral morphology in emission-line images. All three display independent strong evidence that a merger or infall event has recently occurred, i.e., extensive and infalling HI gas in NGC 1052, a counter-rotating core in IC 1459 and Malin-Carter shells in NGC 6958. This infall event is the most likely origin for the emission-line gas and dust, and the authors are currently investigating possible excitation mechanisms (Sparks et al. 1990).

  12. Circumnuclear molecular gas in megamaser disk galaxies NGC 4388 and NGC 1194

    SciTech Connect

    Greene, Jenny E.; Seth, Anil; Lyubenova, Mariya; Van de Ven, Glenn; Läsker, Ronald; Walsh, Jonelle

    2014-06-20

    We explore the warm molecular and ionized gas in the centers of two megamaser disk galaxies using K-band spectroscopy. Our ultimate goal is to determine how gas is funneled onto the accretion disk, here traced by megamaser spots on sub-parsec scales. We present NIR IFU data with a resolution of ∼50 pc for two galaxies: NGC 4388 with VLT/SINFONI and NGC 1194 with Keck/OSIRIS+AO. The high spatial resolution and rich spectral diagnostics allow us to study both the stellar and gas kinematics as well as gas excitation on scales only an order of magnitude larger than the maser disk. We find a drop in the stellar velocity dispersion in the inner ∼100 pc of NGC 4388, a common signature of a dynamically cold central component seen in many active nuclei. We also see evidence for noncircular gas motions in the molecular hydrogen on similar scales, with the gas kinematics on 100 parsec scales aligned with the megamaser disk. In contrast, the high ionization lines and Brγ trace outflow along the 100 parsec-scale jet. In NGC 1194, the continuum from the accreting black hole is very strong, making it difficult to measure robust two-dimensional kinematics, but the spatial distribution and line ratios of the molecular hydrogen and Brγ have consistent properties between the two galaxies.

  13. IONIZED GAS IN THE FIRST 10 kpc OF THE INTERSTELLAR GALACTIC HALO: METAL ION FRACTIONS

    SciTech Connect

    Howk, J. Christopher; Consiglio, S. Michelle E-mail: smconsiglio@ucla.edu

    2012-11-10

    We present direct measures of the ionization fractions of several sulfur ions in the Galactic warm ionized medium (WIM). We obtained high-resolution ultraviolet absorption-line spectroscopy of post-asymptotic giant branch stars in the globular clusters Messier 3 [(l, b) = (42.{sup 0}2, +78.{sup 0}7), d = 10.2 kpc, and z = 10.0 kpc] and Messier 5 [(l, b) = (3.{sup 0}9, +46.{sup 0}8), d = 7.5 kpc, and z = +5.3 kpc] with the Hubble Space Telescope and Far Ultraviolet Spectroscopic Explorer to measure, or place limits on, the column densities of S I, S II, S III, S IV, S VI, and H I. These clusters also house millisecond pulsars, whose dispersion measures give an electron column density from which we infer the H II column in these directions. We find fractions of S{sup +2} in the WIM for the M 3 and M 5 sight lines x(S{sup +2}) {identical_to} N(S{sup +2})/N(S) = 0.33 {+-} 0.07 and 0.47 {+-} 0.09, respectively, with variations perhaps related to location. With negligible quantities of the higher ionization states, we conclude that S{sup +} and S{sup +2} account for all of the S in the WIM. We extend the methodology to study the ion fractions in the warm and hot ionized gas of the Milky Way, including the high ions Si{sup +3}, C{sup +3}, N{sup +4}, and O{sup +5}. The vast majority of the Galactic ionized gas is warm (T {approx} 10{sup 4} K) and photoionized (the WIM) or very hot (T > 4 Multiplication-Sign 10{sup 5} K) and collisionally ionized. The common tracer of ionized gas beyond the Milky Way, O{sup +5}, traces <1% of the total ionized gas mass of the Milky Way.

  14. Hose Instability and Wake Generation By An Intense Electron Beam in a Self-Ionized Gas

    SciTech Connect

    Deng, S.; Barnes, C.D.; Clayton, C.E.; O'Connell, C.; Decker, F.J.; Fonseca, R.A.; Huang, C.; Hogan, M.J.; Iverson, R.; Johnson, D.K.; Joshi, C.; Katsouleas, T.; Krejcik, P.; Lu, W.; Mori, W.B.; Muggli, P.; Oz, E.; Tsung, F.; Walz, D.; Zhou, M.; /Southern California U. /UCLA /SLAC

    2006-04-12

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested.

  15. Hose instability and wake generation by an intense electron beam in a self-ionized gas.

    PubMed

    Deng, S; Barnes, C D; Clayton, C E; O'Connell, C; Decker, F J; Fonseca, R A; Huang, C; Hogan, M J; Iverson, R; Johnson, D K; Joshi, C; Katsouleas, T; Krejcik, P; Lu, W; Mori, W B; Muggli, P; Oz, E; Tsung, F; Walz, D; Zhou, M

    2006-02-01

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested.

  16. R-matrix Floquet theory of molecular multiphoton processes: II. Multiphoton ionization of H2

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Glass, D. H.; Higgins, K.; Burke, P. G.

    2001-06-01

    Multiphoton ionization rates for H2 immersed in an intense linearly polarized laser field are calculated using the recently developed R-matrix Floquet theory of molecular multiphoton processes. We assume that the H2 molecule is aligned along the laser polarization direction and we adopt the fixed-nuclei approximation, in which the motion of the target electrons is calculated in the laser field and in the field of the nuclei, which are assumed to be fixed in space. An accurate multi-state wavefunction is employed to calculate one-, two- and four-photon ionization rates for H2 at several internuclear separations over a range of frequencies and intensities. Analysis of the ionization rates reveals the important role played both by resonances corresponding to Rydberg bound states converging to the H2+ ion ground state and by doubly excited states converging to the H2+ ion first excited state. These resonances give rise to resonant enhanced multiphoton ionization peaks in many of the ionization rates studied in this paper, and their possible role in controlling the vibrational population of the final H2+ ion is discussed.

  17. Photodissociation-ionization dynamics of molecular chlorine Rydberg states using velocity map imaging

    NASA Astrophysics Data System (ADS)

    Parker, D. H.; Bakker, B. L. G.; Samartzis, P. C.; Kitsopoulos, T. N.

    2001-07-01

    Velocity map images are reported for photoelectrons and atomic chlorine ions produced during one-color REMPI (resonance enhanced multiphoton ionization) of molecular chlorine via the v=0-15 vibrational levels of the 2 1Πg(4s) Rydberg state. Previous magnetic bottle photoelectron studies by Koenders et al. of the same process have shown that REMPI proceeds by two-photon resonant excitation, followed by core-excitation to a super-excited Rydberg state at the three-photon level. This state undergoes (auto)-ionization, resulting in the formation of ground-state molecular chlorine ions, and/or dissociation to neutral products, resulting in the production of electronically excited neutral chlorine atoms. Photoelectrons arise from ionization of Cl2 and electronically excited Cl atoms, while Cl+ ions arise from the dissociation of Cl2+ and from ionization of the excited Cl atoms. The chlorine ion velocity map images reveal new information on the dissociation-ionization dynamics of superexcited Cl2 and the dissociation dynamics of the subsequently formed Cl2+ ions. In the latter case an unexpected low-energy Σ←Π (perpendicular) dissociation pathway to Cl+(1D)+Cl(3P) product atoms is observed. Results from the photoelectron images are compared with those from the magnetic bottle studies. While the imaging kinetic-energy resolution is less than that of the magnetic bottle spectrometer, the angular distribution information and lack of velocity bias of imaging is advantageous. Most of the trends observed in the electron and Cl+ images can be rationalized in terms of single-electron excitation processes and the known molecular orbital structure of the electronic states involved.

  18. Quantum control of a molecular ionization process by using Fourier-synthesized laser fields

    NASA Astrophysics Data System (ADS)

    Ohmura, Hideki; Saito, Naoaki

    2015-11-01

    In photoexcitation processes, if the motion of excited electrons can be precisely steered by the instantaneous electric field of an arbitrary waveform of a Fourier-synthesized laser field, the resultant matter response can be achieved within one optical cycle, usually within the attosecond (1 as =10-18s) regime. Fourier synthesis of laser fields has been achieved in various ways. However, the general use of Fourier-synthesized laser fields for the control of matter is extremely limited. Here, we report the quantum control of a nonlinear response of a molecular ionization process by using Fourier-synthesized laser fields. The directionally asymmetric molecular tunneling ionization induced by intense (5.0 ×1012W /c m2) Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light achieves the orientation-selective ionization; we utilized the orientation-selective ionization for measurement of the relative phase differences between the fundamental and each harmonic light. Our findings impact not only light-wave engineering but also the control of matter, possibly triggering the creation and establishment of a new methodology that uses Fourier-synthesized laser fields.

  19. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    NASA Astrophysics Data System (ADS)

    Davari, N.; Åstrand, P.-O.; Unge, M.; Lundgaard, L. E.; Linhjell, D.

    2014-03-01

    The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital) has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane) on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  20. The ratio of molecular to atomic gas in spiral galaxies as a function of morphological type

    NASA Technical Reports Server (NTRS)

    Knezek, Patricia M.; Young, Judith S.

    1990-01-01

    In order to gain an understanding of the global processes which influence cloud and star formation in disk galaxies, it is necessary to determine the relative amounts of atomic, molecular, and ionized gas both as a function of position in galaxies and from galaxy to galaxy. With observations of the CO distributions in over 200 galaxies now completed as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey (Young et al. 1989), researchers are finally in a position to determine the type dependence of the molecular content of spiral galaxies, along with the ratio of molecular to atomic gas as a function of type. Do late type spirals really have more gas than early types when the molecular gas content is included. Researchers conclude that there is more than an order of magnitude decrease in the ratio of molecular to atomic gas mass as a function of morphological type from Sa-Sd; an average Sa galaxy has more molecular than atomic gas, and an average Sc has less. Therefore, the total interstellar gas mass to blue luminosity ratio, M sub gas/L sub B, increases by less than a factor of two as a function of type from Sa-Sd. The dominant effect found is that the phase of the gas in the cool interstellar medium (ISM) varies along the Hubble sequence. Researchers suggest that the more massive and centrally concentrated galaxies are able to achieve a molecular-dominated ISM through the collection of more gas in the potential. That gas may then form molecular clouds when a critical density is exceeded. The picture which these observations support is one in which the conversion of atomic gas to molecular gas is a global process which depends on large scale dynamics (cf Wyse 1986). Among interacting and merging systems, researchers find considerable scatter in the M(H2)/M(HI) ratio, with the mean ratio similar to that in the early type galaxies. The high global ratio of molecular to atomic gas could result from the removal of HI gas, the enhanced

  1. Isobutane Made Practical as a Reagent Gas for Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Newsome, G. Asher; Steinkamp, F. Lucus; Giordano, Braden C.

    2016-11-01

    As a reagent gas for positive- and negative-mode chemical ionization mass spectrometry (CI-MS), isobutane ( i-C4H10) produces superior analyte signal abundance to methane. Isobutane has never been widely adopted for CI-MS because it fouls the ion source more rapidly and produces positive CI spectra that are more strongly dependent on reagent gas pressure compared with methane. Isobutane was diluted to various concentrations in argon for use as a reagent gas with an unmodified commercial gas chromatograph-mass spectrometer. Analyte spectra were directly compared using methane, isobutane, and isobutane/argon mixtures. A mixture of 10% i-C4H10 in argon produced twice the positive-mode analyte signal of methane, equal to pure isobutane, and reduced spectral dependence on reagent gas pressure. Electron capture negative chemical ionization using 1% i-C4H10 in argon tripled analyte signal compared with methane and was reproducible, unlike pure isobutane. The operative lifetime of the ion source using isobutane/argon mixtures was extended exponentially compared with pure isobutane, producing stable and reproducible CI signal throughout. By diluting the reagent gas in an inert buffer gas, isobutane CI-MS experiments were made as practical to use as methane CI-MS experiments but with superior analytical performance.

  2. Isobutane Made Practical as a Reagent Gas for Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Newsome, G. Asher; Steinkamp, F. Lucus; Giordano, Braden C.

    2016-08-01

    As a reagent gas for positive- and negative-mode chemical ionization mass spectrometry (CI-MS), isobutane (i-C4H10) produces superior analyte signal abundance to methane. Isobutane has never been widely adopted for CI-MS because it fouls the ion source more rapidly and produces positive CI spectra that are more strongly dependent on reagent gas pressure compared with methane. Isobutane was diluted to various concentrations in argon for use as a reagent gas with an unmodified commercial gas chromatograph-mass spectrometer. Analyte spectra were directly compared using methane, isobutane, and isobutane/argon mixtures. A mixture of 10% i-C4H10 in argon produced twice the positive-mode analyte signal of methane, equal to pure isobutane, and reduced spectral dependence on reagent gas pressure. Electron capture negative chemical ionization using 1% i-C4H10 in argon tripled analyte signal compared with methane and was reproducible, unlike pure isobutane. The operative lifetime of the ion source using isobutane/argon mixtures was extended exponentially compared with pure isobutane, producing stable and reproducible CI signal throughout. By diluting the reagent gas in an inert buffer gas, isobutane CI-MS experiments were made as practical to use as methane CI-MS experiments but with superior analytical performance.

  3. COLD MOLECULAR GAS IN MERGER REMNANTS. I. FORMATION OF MOLECULAR GAS DISKS

    SciTech Connect

    Ueda, Junko; Iono, Daisuke; Komugi, Shinya; Espada, Daniel; Hatsukade, Bunyo; Matsuda, Yuichi; Kawabe, Ryohei; Yun, Min S.; Crocker, Alison F.; Narayanan, Desika; Kaneko, Hiroyuki; Tamura, Yoichi; Wilner, David J.; Pan, Hsi-An

    2014-09-01

    We present the ≲1 kpc resolution {sup 12}CO imaging study of 37 optically selected local merger remnants using new and archival interferometric maps obtained with ALMA, CARMA, the Submillimeter Array, and the Plateau de Bure Interferometer. We supplement a sub-sample with single-dish measurements obtained at the Nobeyama Radio Observatory 45 m telescope for estimating the molecular gas mass (10{sup 7} {sup –} {sup 11} M {sub ☉}) and evaluating the missing flux of the interferometric measurements. Among the sources with robust CO detections, we find that 80% (24/30) of the sample show kinematical signatures of rotating molecular gas disks (including nuclear rings) in their velocity fields, and the sizes of these disks vary significantly from 1.1 kpc to 9.3 kpc. The size of the molecular gas disks in 54% of the sources is more compact than the K-band effective radius. These small gas disks may have formed from a past gas inflow that was triggered by a dynamical instability during a potential merging event. On the other hand, the rest (46%) of the sources have gas disks that are extended relative to the stellar component, possibly forming a late-type galaxy with a central stellar bulge. Our new compilation of observational data suggests that nuclear and extended molecular gas disks are common in the final stages of mergers. This finding is consistent with recent major-merger simulations of gas-rich progenitor disks. Finally, we suggest that some of the rotation-supported turbulent disks observed at high redshifts may result from galaxies that have experienced a recent major merger.

  4. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    SciTech Connect

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-10-10

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old ({approx}>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  5. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  6. Gas Chromatography Coupled to Atmospheric Pressure Chemical Ionization FT-ICR Mass Spectrometry for Improvement of Data Reliability.

    PubMed

    Schwemer, Theo; Rüger, Christopher P; Sklorz, Martin; Zimmermann, Ralf

    2015-12-15

    Atmospheric pressure chemical ionization (APCI) offers the advantage of molecular ion information with low fragmentation. Hyphenating APCI to gas chromatography (GC) and ultrahigh resolution mass spectrometry (FT-ICR MS) enables an improved characterization of complex mixtures. Data amounts acquired by this system are very huge, and existing peak picking algorithms are usually extremely time-consuming, if both gas chromatographic and ultrahigh resolution mass spectrometric data are concerned. Therefore, automatic routines are developed that are capable of handling these data sets and further allow the identification and removal of known ionization artifacts (e.g., water- and oxygen-adducts, demethylation, dehydrogenation, and decarboxylation). Furthermore, the data quality is enhanced by the prediction of an estimated retention index, which is calculated simply from exact mass data combined with a double bond equivalent correction. This retention index is used to identify mismatched elemental compositions. The approach was successfully tested for analysis of semivolatile components in heavy fuel oil and diesel fuel as well as primary combustion particles emitted by a ship diesel research engine. As a result, 10-28% of the detected compounds, mainly low abundant species, classically assigned by using only the mass spectrometric information, were identified as not valid and removed. Although GC separation is limited by the slow acquisition rate of the FT-ICR MS (<1 Hz), a database driven retention time comparison, as commonly used for low resolution GC/MS, can be applied for revealing isomeric information.

  7. Gas Chromatography Coupled to Atmospheric Pressure Chemical Ionization FT-ICR Mass Spectrometry for Improvement of Data Reliability.

    PubMed

    Schwemer, Theo; Rüger, Christopher P; Sklorz, Martin; Zimmermann, Ralf

    2015-12-15

    Atmospheric pressure chemical ionization (APCI) offers the advantage of molecular ion information with low fragmentation. Hyphenating APCI to gas chromatography (GC) and ultrahigh resolution mass spectrometry (FT-ICR MS) enables an improved characterization of complex mixtures. Data amounts acquired by this system are very huge, and existing peak picking algorithms are usually extremely time-consuming, if both gas chromatographic and ultrahigh resolution mass spectrometric data are concerned. Therefore, automatic routines are developed that are capable of handling these data sets and further allow the identification and removal of known ionization artifacts (e.g., water- and oxygen-adducts, demethylation, dehydrogenation, and decarboxylation). Furthermore, the data quality is enhanced by the prediction of an estimated retention index, which is calculated simply from exact mass data combined with a double bond equivalent correction. This retention index is used to identify mismatched elemental compositions. The approach was successfully tested for analysis of semivolatile components in heavy fuel oil and diesel fuel as well as primary combustion particles emitted by a ship diesel research engine. As a result, 10-28% of the detected compounds, mainly low abundant species, classically assigned by using only the mass spectrometric information, were identified as not valid and removed. Although GC separation is limited by the slow acquisition rate of the FT-ICR MS (<1 Hz), a database driven retention time comparison, as commonly used for low resolution GC/MS, can be applied for revealing isomeric information. PMID:26560682

  8. In-gas-cell laser ionization studies of plutonium isotopes at IGISOL

    NASA Astrophysics Data System (ADS)

    Pohjalainen, I.; Moore, I. D.; Kron, T.; Raeder, S.; Sonnenschein, V.; Tomita, H.; Trautmann, N.; Voss, A.; Wendt, K.

    2016-06-01

    In-gas-cell resonance laser ionization has been performed on long-lived isotopes of Pu at the IGISOL facility, Jyväskylä. This initiates a new programme of research towards high-resolution optical spectroscopy of heavy actinide elements which can be produced in sufficient quantities at research reactors and transported to facilities elsewhere. In this work a new gas cell has been constructed for fast extraction of laser-ionized elements. Samples of 238-240,242Pu and 244Pu have been evaporated from Ta filaments, laser ionized, mass separated and delivered to the collinear laser spectroscopy station. Here we report on the performance of the gas cell through studies of the mass spectra obtained in helium and argon, before and after the radiofrequency quadrupole cooler-buncher. This provides valuable insight into the gas phase chemistry exhibited by Pu, which has been additionally supported by measurements of ion time profiles. The resulting monoatomic yields are sufficient for collinear laser spectroscopy. A gamma-ray spectroscopic analysis of the Pu samples shows a good agreement with the assay provided by the Mainz Nuclear Chemistry department.

  9. Generation of naphthoquinone radical anions by electrospray ionization: solution, gas-phase, and computational chemistry studies.

    PubMed

    Vessecchi, Ricardo; Naal, Zeki; Lopes, José N C; Galembeck, Sérgio E; Lopes, Norberto P

    2011-06-01

    Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(•-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(•-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses. PMID:21561138

  10. Ultraintense X-Ray Induced Ionization, Dissociation, and Frustrated Absorption in Molecular Nitrogen

    SciTech Connect

    Hoener, M.; Fang, L.; Murphy, B.; Berrah, N.; Kornilov, O.; Gessner, O.; Pratt, S. T.; Kanter, E. P.; Guehr, M.; Bucksbaum, P. H.; Cryan, J.; Glownia, M.; McFarland, B.; Petrovic, V.; Blaga, C.; DiMauro, L.; Bostedt, C.; Bozek, J. D.; Coffee, R.; Messerschmidt, M.

    2010-06-25

    Sequential multiple photoionization of the prototypical molecule N{sub 2} is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications.

  11. Ultraintense x-ray induced ionization, dissociation and frustrated absorption in molecular nitrogen.

    SciTech Connect

    Hoener, M.; Fang, L.; Kornilov, O.; Gessner, O.; Pratt, S. T.; Guhr, M.; Kanter, E. P.; Blaga, C.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Buth, C.; Chen, M.; Coffee, R.; Cryan, J.; DiMauro, L.; Glownia, M.; Hosler, E.; Kukk, E.; Leone, S. R.; McFarland, B.; Messerschmidt, M.; Murphy, B.; Petrovic, V.; Rolles, D.; Berrah, N.; Chemical Sciences and Engineering Division; Western Michigan Univ.; LBNL; Ohio State Univ.; Louisiana State Univ.; LLNL; Univ. of Turku; Univ. of California at Berkeley; Max Planck Advanced Study Group, CFEL; LCLS

    2010-06-23

    Sequential multiple photoionization of the prototypical molecule N2 is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications.

  12. Molecular imaging of biological tissue using gas cluster ions

    PubMed Central

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2015-01-01

    An Arn+ (n = 1–6000) gas cluster ion source has been utilized to map the chemical distribution of lipids in a mouse brain tissue section. We also show that the signal from high mass species can be further enhanced by doping a small amount of CH4 into the Ar cluster to enhance the ionization of several biologically important molecules. Coupled with secondary ion mass spectrometry instrumentation which utilizes a continuous Ar cluster ion projectile, maximum spatial resolution and maximum mass resolution can be achieved at the same time. With this arrangement, it is possible to achieve chemically resolved molecular ion images at the 4-µm resolution level. The focused Arn+/[Arx(CH4)y]+ beams (4–10 µm) have been applied to the study of untreated mouse brain tissue. A high signal level of molecular ions and salt adducts, mainly from various phosphocholine lipids, has been seen and directly used to map the chemical distribution. The signal intensity obtained using the pure Ar cluster source, the CH4-doped cluster source and C60 is also presented. PMID:26207076

  13. Chemical Abundances and Properties of the Ionized Gas in NGC 1705

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Tosi, M.; Pasquali, A.; Aloisi, A.; Mignoli, M.; Romano, D.

    2015-11-01

    We obtained [O iii] narrow-band imaging and multi-slit MXU spectroscopy of the blue compact dwarf (BCD) galaxy NGC 1705 with FORS2@VLT to derive chemical abundances of planetary nebulae and H ii regions and, more in general, to characterize the properties of the ionized gas. The auroral [O iii]λ 4363 line was detected in all but 1 of the 11 analyzed regions, allowing for a direct estimate of their electron temperature. The only object for which the [O iii]λ 4363 line was not detected is a possible low-ionization PN, the only one detected in our data. For all the other regions, we derived the abundances of nitrogen, oxygen, neon, sulfur, and argon out to ˜1 kpc from the galaxy center. We detect for the first time in NGC 1705 a negative radial gradient in the oxygen metallicity of -0.24+/- 0.08 dex kpc-1. The element abundances are all consistent with values reported in the literature for other samples of dwarf irregular and BCD galaxies. However, the average (central) oxygen abundance, 12+{log}({{O}}/{{H}})=7.96+/- 0.04, is ˜0.26 dex lower than previous literature estimates for NGC 1705 based on the [O iii]λ 4363 line. From classical emission line diagnostic diagrams, we exclude a major contribution from shock excitation. On the other hand, the radial behavior of the emission line ratios is consistent with the progressive dilution of radiation with increasing distance from the center of NGC 1705. This suggests that the strongest starburst located within the central ˜150 pc is responsible for the ionization of the gas out to at least ˜1 kpc. The gradual dilution of the radiation with increasing distance from the center reflects the gradual and continuous transition from the highly ionized H ii regions in the proximity of the major starburst into the diffuse ionized gas.

  14. STS-39 Critical Ionization Velocity (CIV) gas release from OV-103 payload bay

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A plume of nitrous oxide gas is released from a compressed gas canister mounted on the increased capacity adaptive payload carrier 1 (ICAPC-1) on the forward port side of Discovery's, Orbiter Vehicle (OV) 103's, payload bay (PLB). The gas release is part of the Critical Ionization Velocity (CIV) experiment conducted during STS-39. The Shuttle Pallet Satellite II (SPAS-II) 'parked' about two kilometers (km) away, is taking infrared, visible, and ultraviolet radiometric spatial, spectral, and temporal measurements of the gas plumes. Surrounding the CIV ICAPC-1 are: the ICAPC-2 payload support subsystem, radiometer, and Langmuir probe also mounted on the port side; the Space Test Payload 1 (STP-1) multipurpose experiment support structure (MPESS) (just beyond gas beam); and the Air Force Program 675 (AFP-675) experiment support structure (ESS).

  15. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    PubMed

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  16. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula

    PubMed Central

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-01-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983

  17. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    PubMed

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983

  18. Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms

    PubMed Central

    Robertson, Kelly L.; Mostaghim, Anahita; Cuomo, Christina A.; Soto, Carissa M.; Lebedev, Nikolai; Bailey, Robert F.; Wang, Zheng

    2012-01-01

    Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes

  19. Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Rostad, C.E.; Gates, Paul M.; Furlong, E.T.; Ferrer, I.

    2001-01-01

    Molecular weight distributions of fulvic acid from the Suwannee River, Georgia, were investigated by electrospray ionization/quadrupole mass spectrometry (ESI/QMS), and fragmentation pathways of specific fulvic acid masses were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry (ESI/MST/MS). ESI/QMS studies of the free acid form of low molecular weight poly(carboxylic acid) standards in 75% methanol/25% water mobile phase found that negative ion detection gave the optimum generation of parent ions that can be used for molecular weight determinations. However, experiments with poly(acrylic acid) mixtures and specific high molecular weight standards found multiply charged negative ions that gave a low bias to molecular mass distributions. The number of negative charges on a molecule is dependent on the distance between charges. ESI/MST/MS of model compounds found characteristic water loss from alcohol dehydration and anhydride formation, as well as CO2 loss from decarboxylation, and CO loss from ester structures. Application of these fragmentation pathways to specific masses of fulvic acid isolated and fragmented by ESI/MST/MS is indicative of specific structures that can serve as a basis for future structural confirmation after these hypothesized structures are synthesized.

  20. Studies of Flow in Ionized Gas: Historical Perspective, Contemporary Experiments, and Applications

    SciTech Connect

    Popovic, S.; Vuskovic, L.

    2007-04-23

    Since the first observations that a very small ionized fraction (order of 1 ppm) could strongly affect the gas flow, numerous experiments with partially or fully wall-free discharges have demonstrated the dispersion of shock waves, the enhancement of lateral forces in the flow, the prospects of levitation, and other aerodynamic effects with vast potential of application. A review of physical effects and observations are given along with current status of their interpretation. Special attention will be given to the physical problems of energy efficiency in generating wall-free discharges and the phenomenology of filamentary discharges. Comments and case examples are given on the current status of availability of necessary data for modelling and simulation of the aerodynamic phenomena in weakly ionized gas.

  1. The energy and momentum input of supernova explosions in structured and ionized molecular clouds

    NASA Astrophysics Data System (ADS)

    Walch, Stefanie; Naab, Thorsten

    2015-08-01

    We investigate the early impact of single and binary supernova (SN) explosions on dense gas clouds with three-dimensional, high-resolution, hydrodynamic simulations. The effect of cloud structure, radiative cooling and ionizing radiation from the progenitor stars on the net input of kinetic energy, fkin = Ekin/ESN, thermal energy, ftherm = Etherm/ESN, and gas momentum, fP = P/PSN, to the interstellar medium (ISM) is tested. For clouds with bar{n} = 100cm^{-3}, the momentum generating Sedov and pressure-driven snowplough phases are terminated early (∝0.01 Myr) and radiative cooling limits the coupling to ftherm ˜ 0.01, fkin ˜ 0.05, and fP ˜ 9, significantly lower than for the case without cooling. For pre-ionized clouds, these numbers are only increased by ˜50 per cent, independent of the cloud structure. This only suffices to accelerate ˜5 per cent of the cloud to radial velocities ≳30 km s-1. A second SN might enhance the coupling efficiencies if delayed past the Sedov phase of the first explosion. Such very low coupling efficiencies cast doubts on many subresolution models for SN feedback, which are, in general, validated a posteriori. Ionizing radiation appears not to significantly enhance the coupling of SNe to the surrounding gas as it drives the ISM into inert dense shells and cold clumps, a process which is unresolved in galaxy-scale simulations. Our results indicate that the momentum input of SNe in ionized, structured clouds is larger (more than a factor of 10) than the corresponding momentum yield of the progenitor's stellar winds.

  2. Electron ionization LC-MS with supersonic molecular beams--the new concept, benefits and applications.

    PubMed

    Seemann, Boaz; Alon, Tal; Tsizin, Svetlana; Fialkov, Alexander B; Amirav, Aviv

    2015-11-01

    A new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly-though EI ion source as vibrationally cold molecules in the SMB, resulting in 'Cold EI' (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI-LC-MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI-LC-MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non-polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS-MS as an alternative to lengthy LC-MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of

  3. Reactions of metal ions and their clusters in the gas phase using laser ionization: Fourier transform mass spectrometry. Progress report, February 1, 1993--January 31, 1994

    SciTech Connect

    Freiser, B.S.

    1993-09-01

    This report focuses on progress in seven areas: (1) Gas-Phase Reactions of Fe(Benzyne){sup +} with Simple Alkyl Halides; (2) Photodissociation and Collision-Induced Dissociation of Molecular Ions From Methylphenol and Chloromethylphenol; (3) Isotopomer Differentiation Using Metal Ion Chemical Ionization Reagents; (4) Multiple Excitation Collisional Activation (MECA) in Fourier Transform Mass Spectrometry; (5) Chemistry of Fe{sup +}-Arene Ions with Halobenzenes; (6) Gas-Phase Photodissociaton Study of Ag(Benzene){sup +} and Ag(Toluene){sup +}; and (7) Reactivity of Ti{sup 2+} and V{sup 2+} with Small Alkanes.

  4. Investigating the Diffuse Ionized Gas throughout the Magellanic Cloud System with WHAM

    NASA Astrophysics Data System (ADS)

    Smart, Brianna; Haffner, L. Matthew; Barger, Kathleen; Madsen, Gregory J.; Hill, Alex S.

    2015-01-01

    We present early stages of an H-α survey of the Magellanic System using the Wisconsin H-α Mapper (WHAM). Our maps of the Small Magellanic Cloud, Large Magellanic Cloud, and Magellanic Bridge are the most sensitive kinematic maps of ionized gas throughout the System. With a velocity resolution of 12 km/s, WHAM observations can cleanly separate diffuse emission at Magellanic velocities from that of the Milky Way and terrestrial sources. These new maps of the SMC and LMC compliment observations of the Magellanic Bridge by Barger et al. (2013), who found H-alpha emission extending throughout and beyond the observed H I emission. Using WHAM's unprecedented sensitivity to the limit of atmospheric line confusion (~ 10s of mR), we find that ionized gas emission extends at least 5 degrees beyond the traditional boundary of the SMC when compared to recent deep-imaging surveys (e.g., MCELS; Smith et al. 2005). The diffuse ionized emission extent is similar to the neutral gas extent as traced by 21 cm. We present spectra comparing H I and H-alpha kinematic signatures throughout the emission region, which are dominated by galactic rotation. Multi-wavelength observations are also underway in [S II] and [N II] for the SMC and LMC. WHAM research and operations are supported through NSF Award AST-1108911.

  5. Implementation of the external complex scaling method in spheroidal coordinates: Impact ionization of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.; Joulakian, Boghos B.

    2009-12-01

    We develop an ab initio procedure based on the driven Schrödinger equation formalism and the external complex scaling method for the determination of the multifold differential cross sections of the single and double ionization of molecular hydrogen by single photon and fast electron impact. We take advantage of the separability of the two-center Schrodinger equation in prolate spheroidal coordinates in the numerical calculation of the two-electron two-center wave function of the initial and final states of the target. After having verified our procedure by reproducing existing confirmed triple differential cross sections of the (e,2e) ionization of H2 , we have extended our calculation to the double ionization of H2 . Our results on double photoionization agree with existing experimental results. We observe in the mean time a small difference with respect to the absolute results obtained by similar ab initio calculations using spherical bases. For the case of the double ionization by fast electron impact for which very few experimental results exist, our results confirm the existing disagreement between the theoretical results and the unique experimental one in the case of (e,3-1e) . This we think makes it clear that for (e,3e) the introduction of the higher terms of the Born series for mean energy electron-impact regime is necessary.

  6. Implementation of the external complex scaling method in spheroidal coordinates: Impact ionization of molecular hydrogen

    SciTech Connect

    Serov, Vladislav V.; Joulakian, Boghos B.

    2009-12-15

    We develop an ab initio procedure based on the driven Schroedinger equation formalism and the external complex scaling method for the determination of the multifold differential cross sections of the single and double ionization of molecular hydrogen by single photon and fast electron impact. We take advantage of the separability of the two-center Schrodinger equation in prolate spheroidal coordinates in the numerical calculation of the two-electron two-center wave function of the initial and final states of the target. After having verified our procedure by reproducing existing confirmed triple differential cross sections of the (e,2e) ionization of H{sub 2}, we have extended our calculation to the double ionization of H{sub 2}. Our results on double photoionization agree with existing experimental results. We observe in the mean time a small difference with respect to the absolute results obtained by similar ab initio calculations using spherical bases. For the case of the double ionization by fast electron impact for which very few experimental results exist, our results confirm the existing disagreement between the theoretical results and the unique experimental one in the case of (e,3-1e). This we think makes it clear that for (e,3e) the introduction of the higher terms of the Born series for mean energy electron-impact regime is necessary.

  7. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  8. Fluctuations in microwave background radiation due to secondary ionization of the intergalactic gas in the universe

    NASA Technical Reports Server (NTRS)

    Sunyayev, R. A.

    1979-01-01

    Secondary heating and ionization of the intergalactic gas at redshifts z approximately 10-30 could lead to the large optical depth of the Universe for Thomson scattering and could smooth the primordial fluctuations formed at z approximately 1500. It is shown that the gas motions connected with the large scale density perturbations at z approximately 10-15 must lead to the generation of secondary fluctuations of microwave background. The contribution of the rich clusters of galaxies and young galaxies to the fluctuations of microwave background is also estimated.

  9. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  10. H-alpha LEGUS: Unveiling the Interplay Between Stars, Star Clusters, and Ionized Gas

    NASA Astrophysics Data System (ADS)

    Chandar, Rupali

    2014-10-01

    We propose to obtain narrow-band, H-alpha observations for a significant subset of the star-forming, nearby galaxies recently targeted by the LEGUS treasury program (GO-13364). LEGUS is observing these galaxies in five broad-band filters: NUV, U, B, V, and I. The new H-alpha observations will reveal thousands of previously undetected HII regions, including those ionized by stellar clusters and single massive stars, allow us to measure their luminosities and sizes, and to separate discrete sources from diffuse ionized gas. We will use our narrow-band imaging survey to: (1) establish the connection between star and cluster formation, and determine the prevelance with which isolated massive stars form in different galaxies; (2) determine whether the initial cluster mass function is universal; (3) investigate the size evolution of ionized gas bubbles, and how this depends on cluster age and mass, as well as on local galactic conditions; and (4) place stringent limits on the leakage of ionizing photons from HII regions, and better understand how the interplay between properties of the ionizing source and the morphology of the HII region impacts leakage. The broad goal of this study is to better understand how feedback from massive stars affects the surrounding medium. Ultimately, the interplay between feedback and the ISM on these scales will enable a better understanding of galaxy-scale outflows in the early universe, a process critical to galaxy evolution. This program naturally lends itself to an improvement of the scientific output by involving the general public via an already established Citizen Science program.

  11. Multicomponent dynamics of coupled quantum subspaces and field-induced molecular ionizations

    SciTech Connect

    Nguyen-Dang, Thanh-Tung; Viau-Trudel, Jérémy

    2013-12-28

    To describe successive ionization steps of a many-electron atom or molecule driven by an ultrashort, intense laser pulse, we introduce a hierarchy of successive two-subspace Feshbach partitions of the N-electron Hilbert space, and solve the partitioned time-dependent Schrödinger equation by a short-time unitary algorithm. The partitioning scheme allows one to use different level of theory to treat the many-electron dynamics in different subspaces. We illustrate the procedure on a simple two-active-electron model molecular system subjected to a few-cycle extreme Ultra-Violet (XUV) pulse to study channel-resolved photoelectron spectra as a function of the pulse's central frequency and duration. We observe how the momentum and kinetic-energy distributions of photoelectrons accompanying the formation of the molecular cation in a given electronic state (channel) change as the XUV few-cycle pulse's width is varied, from a form characteristic of an impulsive ionization regime, corresponding to the limit of a delta-function pulse, to a form characteristic of multiphoton above-threshold ionization, often associated with continuous-wave infinitely long pulse.

  12. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    SciTech Connect

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P. E-mail: ehardy@nrao.cl

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.

  13. Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping

    PubMed Central

    Angel, Peggi M.; Caprioli, Richard M.

    2013-01-01

    Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809

  14. A novel benzene quantitative analysis method using miniaturized metal ionization gas sensor and non-linear bistable dynamic system

    PubMed Central

    Tang, Xuxiang; Liu, Fuqi

    2015-01-01

    In this paper, a novel benzene quantitative analysis method utilizing miniaturized metal ionization gas sensor and non-linear bistable dynamic system was investigated. Al plate anodic gas-ionization sensor was installed for electrical current-voltage data measurement. Measurement data was analyzed by non-linear bistable dynamics system. Results demonstrated that this method realized benzene concentration quantitative determination. This method is promising in laboratory safety management in benzene leak detection. PMID:26218927

  15. A novel benzene quantitative analysis method using miniaturized metal ionization gas sensor and non-linear bistable dynamic system.

    PubMed

    Tang, Xuxiang; Liu, Fuqi

    2015-01-01

    In this paper, a novel benzene quantitative analysis method utilizing miniaturized metal ionization gas sensor and non-linear bistable dynamic system was investigated. Al plate anodic gas-ionization sensor was installed for electrical current-voltage data measurement. Measurement data was analyzed by non-linear bistable dynamics system. Results demonstrated that this method realized benzene concentration quantitative determination. This method is promising in laboratory safety management in benzene leak detection.

  16. Observations of molecular and atomic gas in photodissociation regions. [interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Jaffe, D. T.; Howe, J. E.

    1989-01-01

    Dense gas at the ionized/neutral boundaries of molecular clouds illuminated by far-UV photons plays an important role in the appearance of the neutral interstellar medium. It also is a laboratory for the study of UV-photochemistry and of a number of heating and cooling phenomena not seen elsewhere. Fine structure lines of neutral and low ionization potential species dominate the cooling in the outer part of the photodissociation regions. Observations of these lines show that the regions are dense and highly clumped. Observations of H2 and CO show that heating by UV photons plays a significant role in the excitation of molecular lines near the H II/neutral boundary. Warm CO is more abundant in these regions than predicted by the standard theoretical models. Optical reflection nebulas provide an ideal laboratory for the study of photodissocciation region phenomena.

  17. Spatially resolved integral field spectroscopy of the ionized gas in IZw18

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Hernández-Fernández, J. D.; Duarte Puertas, S.; Brinchmann, J.; Durret, F.; Kunth, D.

    2016-07-01

    We present a detailed 2D study of the ionized ionized interstellar medium (ISM) of IZw18 using new Potsdam Multi-Aperture Spectrophotometer-integral field unit (PMAS-IFU) optical observations. IZw18 is a high-ionization galaxy which is among the most metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark for understanding the properties most closely resembling those prevailing at distant starbursts. Our IFU aperture (˜1.4 × 1.4 kpc2) samples the entire IZw18 main body and an extended region of its ionized gas. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located close to the north-west knot and thereabouts. We detect a Wolf-Rayet feature near the north-west knot. We derive spatially resolved and integrated physical-chemical properties for the ionized gas in IZw18. We find no dependence between the metallicity indicator R23 and the ionization parameter (as traced by [O III]/[O II]) across IZw18. Over ˜0.30 kpc2, using the [O III] λ4363 line, we compute Te[O III] values (˜15 000-25 000 K), and oxygen abundances are derived from the direct determinations of Te[O III]. More than 70 per cent of the higher-Te[O III] (≳22 000 K) spaxels are He IIλ4686-emitting spaxels too. From a statistical analysis, we study the presence of variations in the ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the error-weighted mean of 12 + log(O/H) = 7.11 ± 0.01 is taken as the representative O/H for IZw18. Aperture effects on the derivation of O/H are discussed. Using our IFU data we obtain, for the first time, the IZw18 integrated spectrum.

  18. Study on the Characteristics of Gas Molecular Mean Free Path in Nanopores by Molecular Dynamics Simulations

    PubMed Central

    Liu, Qixin; Cai, Zhiyong

    2014-01-01

    This paper presents studies on the characteristics of gas molecular mean free path in nanopores by molecular dynamics simulation. Our study results indicate that the mean free path of all molecules in nanopores depend on both the radius of the nanopore and the gas-solid interaction strength. Besides mean free path of all molecules in the nanopore, this paper highlights the gas molecular mean free path at different positions of the nanopore and the anisotropy of the gas molecular mean free path at nanopores. The molecular mean free path varies with the molecule’s distance from the center of the nanopore. The least value of the mean free path occurs at the wall surface of the nanopore. The present paper found that the gas molecular mean free path is anisotropic when gas is confined in nanopores. The radial gas molecular mean free path is much smaller than the mean free path including all molecular collisions occuring in three directions. Our study results also indicate that when gas is confined in nanopores the gas molecule number density does not affect the gas molecular mean free path in the same way as it does for the gas in unbounded space. These study results may bring new insights into understanding the gas flow’s characteristic at nanoscale. PMID:25046745

  19. GAS ACCRETION IS DOMINATED BY WARM IONIZED GAS IN MILKY WAY MASS GALAXIES AT z {approx} 0

    SciTech Connect

    Joung, M. Ryan; Putman, Mary E.; Bryan, Greg L.; Fernandez, Ximena; Peek, J. E. G.

    2012-11-10

    We perform high-resolution hydrodynamic simulations of a Milky Way mass galaxy in a fully cosmological setting using the adaptive mesh refinement code, Enzo, and study the kinematics of gas in the simulated galactic halo. We find that the gas inflow occurs mostly along filamentary structures in the halo. The warm-hot (10{sup 5} K 10{sup 6} K) ionized gases are found to dominate the overall mass accretion in the system (with M-dot = 3-5 M {sub Sun} yr{sup -1}) over a large range of distances, extending from the virial radius to the vicinity of the disk. Most of the inflowing gas (by mass) does not cool, and the small fraction that manages to cool does so primarily close to the galaxy (R {approx}< 100 kpc, with more pronounced cooling at smaller R), perhaps comprising the neutral gas that may be detectable as, e.g., high-velocity clouds. The neutral clouds are embedded within larger, accreting filamentary flows, and represent only a small fraction of the total mass inflow rate. The inflowing gas has relatively low metallicity (Z/Z {sub Sun} < 0.2). The outer layers of the filamentary inflows are heated due to compression as they approach the disk. In addition to the inflow, we find high-velocity, metal-enriched outflows of hot gas driven by supernova feedback. Our results are consistent with observations of halo gas at low z.

  20. Ionized gas pressure correlates with star formation intensity in nearby starbursts

    NASA Astrophysics Data System (ADS)

    Jiang, Tianxing; Malhotra, Sangeeta; Yang, Huan

    2016-06-01

    We estimate the electron density of the ionized gas and thus the thermal pressure in HII regions; and compare that to the SFR (star formation rate) surface density for a combined sample of about 40 green peas and Lyman Break Analogs at z < 0.30. The electron density of the ionized gas is measured from sulfur line ratio ([SII] 6716 / 6731). We find that the SFR surface density is correlated with the electron density and the thermal pressure in HII regions for the star-forming galaxies with SFR surface density above a certain threshold. This work shows quantitatively the correlation between SFR surface density and electron density and that between SFR surface density and the thermal pressure in HII regions for the nearby starburst galaxies. This is consistent with theoretical models of disks (e.g. Kim et al. (2011) if we assume that the thermal pressure in HII regions is comparable to the total diffuse gas pressure at the midplane of the diffuse neutral gas. It is also in agreement with the results from star-forming galaxies at z ~ 2.5. We might infer that the starburst galaxies at low-redshift (z < 0.3) share similar physical properties to the galaxies at high redshift (z ~ 2.5).

  1. Ionization effects in the generation of wake-fields by ultra-high contrast femtosecond laser pulses in argon gas

    NASA Astrophysics Data System (ADS)

    Makito, K.; Zhidkov, A.; Hosokai, T.; Shin, J.-H.; Masuda, S.; Kodama, R.

    2012-10-01

    Difference in mechanisms of wake-field generation and electron self-injection by high contrast femtosecond laser pulses in an initially neutral Argon gas and in pre-ionized plasma without ionization is studied via 2D particle-in-cell simulations including optical ionization of the media. For shorter laser pulses, 40 fs, ionization results only in an increase of the charge of accelerated electrons by factor of ˜3 with qualitatively the same energy distribution. For longer pulses, 80 fs, a more stable wake field structure is observed in the neutral gas with the maximal energy of the accelerated electrons exceeding that in the fixed density plasma. In higher density Argon, an ionizing laser pulse converts itself to a complex system of solitons at a self-induced, critical density ramp.

  2. Ionization effects in the generation of wake-fields by ultra-high contrast femtosecond laser pulses in argon gas

    SciTech Connect

    Makito, K.; Shin, J.-H.; Zhidkov, A.; Hosokai, T.; Masuda, S.; Kodama, R.

    2012-10-15

    Difference in mechanisms of wake-field generation and electron self-injection by high contrast femtosecond laser pulses in an initially neutral Argon gas and in pre-ionized plasma without ionization is studied via 2D particle-in-cell simulations including optical ionization of the media. For shorter laser pulses, 40 fs, ionization results only in an increase of the charge of accelerated electrons by factor of {approx}3 with qualitatively the same energy distribution. For longer pulses, 80 fs, a more stable wake field structure is observed in the neutral gas with the maximal energy of the accelerated electrons exceeding that in the fixed density plasma. In higher density Argon, an ionizing laser pulse converts itself to a complex system of solitons at a self-induced, critical density ramp.

  3. Molecular gas near the galactic center

    SciTech Connect

    Heiligman, G.M.

    1982-01-01

    The interstellar matter within 400 pc of the center of our Galaxy was studied using millimeter-wave spectroscopy. The region -2/sup 0/.0less than or equal to + 2/sup 0/.0, -0/sup 0/.467 less than or equal to b less than or equal to + 0/sup 0/.467 was surveyed in the lambda = 2.72 mm transition of /sup 13/CO at spacings of 0/sup 0/.067 and 0/sup 0/.133 in l and b respectively. Fourteen distinct kinematic features were identified in the maps of these data; four of the features had not been described before in molecular surveys. Most of the high-velocity features and the nuclear disk are tilted to the galactic plane by 7/sup 0/ and inclined to the line of sight by 72/sup 0/, but the sheet of high-density gas which surrounds Sgr A and B is not measurably tilted. Spectra of the /sup 12/CO and C/sup 18/O emission lines near lambda = 2.60 and 2.73 mm were taken along eight lines of sight within the survey region to estimate the excitation temperatures and column densities: two 16' x 16' densely sampled maps were made in /sup 13/CO to estimate cloud sizes. Isocyanic acid (HNCO) was fortuitously found at four of these positions in emission with large velocity widths. Two forms of molecular gas were seen in the central region: (1) clouds with radii of 20 pc, excitation temperatures approximately 8 K, and mass of approximately 10/sup 5/ mass of sun and (2) diffuse regions with T/sub x/ of 25K, densities of > 5 x 10/sup 4/ cm/sup -3/, and linewidths > 30 km s/sup -1/. A total mass of roughly 1.2 x 10/sup 8/ Mass of sun was derived for the interstellar matter in the inner 400 pc of the Galaxy. A model of closed orbits in a barlike bulge potential was developed to simulate the kinematic motions of the gas in the inner 400 pc of the Galaxy. The modelaccounts for most but not all of the high-velocity features, the + 135 km s/sup -1/ expanding arm being the most difficult to explain.

  4. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    SciTech Connect

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  5. Ionized gas velocity dispersion in nearby dwarf galaxies: looking at supersonic turbulent motions

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei V.; Lozinskaya, Tatiana A.

    2012-06-01

    We present the results of an ionized gas turbulent motions study in several nearby dwarf galaxies using a scanning Fabry-Perot interferometer with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS). Combining the ‘intensity-velocity dispersion’ diagrams (?) with two-dimensional maps of radial velocity dispersion, we found a number of common patterns pointing to the relation between the value of chaotic ionized gas motions and processes of current star formation. In five out of the seven analysed galaxies, we identified expanding shells of ionized gas with diameters of 80-350 pc and kinematic ages of 1-4 Myr. We also demonstrate that the ? diagrams may be useful for the search of supernova remnants, other small expanding shells or unique stars in nearby galaxies. As an example, a candidate luminous blue variable (LBV) was found in UGC 8508. We propose some additions to the interpretation, previously used by Muñoz-Tuñón et al. to explain the ? diagrams for giant star formation regions. In the case of dwarf galaxies, a major part of the regions with high velocity dispersion belongs to the diffuse low surface brightness emission, surrounding the star-forming regions. We attribute this to the presence of perturbed low-density gas with high values of turbulent velocities around the giant H II regions. Based on observations obtained with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The observations were carried out with the financial support of the Ministry of Education and Science of Russian Federation (contracts no. 16.518.11.7073 and 16.552.11.7028).

  6. Observations of feedback from radio-quiet quasars - I. Extents and morphologies of ionized gas nebulae

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Greene, Jenny E.; Nesvadba, Nicole P. H.; Liu, Xin

    2013-04-01

    Black hole feedback - the strong interaction between the energy output of supermassive black holes and their surrounding environments - is routinely invoked to explain the absence of overly luminous galaxies, the black hole versus bulge correlations and the similarity of black hole accretion and star formation histories. Yet direct probes of this process in action are scarce and limited to small samples of active nuclei. In this paper, we present Gemini Integral Field Unit observations of the distribution of ionized gas around luminous, obscured, radio-quiet quasars at z ˜ 0.5. We detect extended ionized gas nebulae via [O III] λ5007 Å emission in every case, with a mean diameter of 28 kpc. These nebulae are nearly perfectly round, with Hβ surface brightness declining ∝R-3.5 ± 1.0. The regular morphologies of nebulae around radio-quiet quasars are in striking contrast with lumpy or elongated [O III] nebulae seen around radio galaxies at low and high redshifts. We present the uniformly measured size-luminosity relationship of [O III] nebulae around Seyfert 2 galaxies and type 2 quasars spanning six orders of magnitude in luminosity and confirm the flat slope of the correlation (R_{[O III]}∝ L_{[O III]}^{0.25± 0.02}). We propose a model of clumpy nebulae in which clouds that produce line emission transition from being ionization-bounded at small distances from the quasar to being matter-bounded in the outer parts of the nebula. The model - which has a declining pressure profile - qualitatively explains line ratio profiles and surface brightness profiles seen in our sample. It is striking that we see such smooth and round large-scale gas nebulosities in this sample, which are inconsistent with illuminated merger debris and which we suggest may be the signature of accretion energy from the nucleus reaching gas at large scales.

  7. STRONG MOLECULAR HYDROGEN EMISSION AND KINEMATICS OF THE MULTIPHASE GAS IN RADIO GALAXIES WITH FAST JET-DRIVEN OUTFLOWS

    SciTech Connect

    Guillard, P.; Ogle, P. M.; Emonts, B. H. C.; Appleton, P. N.; Morganti, R.; Oosterloo, T.; Tadhunter, C.; Evans, D. A.; Evans, A. S.

    2012-03-10

    Observations of ionized and neutral gas outflows in radio galaxies (RGs) suggest that active galactic nucleus (AGN) radio jet feedback has a galaxy-scale impact on the host interstellar medium, but it is still unclear how the molecular gas is affected. Thus, it is crucial to determine the physical conditions of the molecular gas in powerful RGs to understand how radio sources may regulate the star formation in their host galaxies. We present deep Spitzer Infrared Spectrograph (IRS) high-resolution spectroscopy of eight nearby RGs that show fast H I outflows. Strikingly, all of these H I-outflow RGs have bright H{sub 2} mid-IR lines that cannot be accounted for by UV or X-ray heating. This strongly suggests that the radio jet, which drives the H I outflow, is also responsible for the shock excitation of the warm H{sub 2} gas. In addition, the warm H{sub 2} gas does not share the kinematics of the ionized/neutral gas. The mid-IR-ionized gas lines (with FWHM up to 1250 km s{sup -1} for [Ne II] 12.8 {mu}m) are systematically broader than the H{sub 2} lines, which are resolved by the IRS in Almost-Equal-To 60% of the detected lines (with FWHM up to 900 km s{sup -1}). In five sources, 3C 236, 3C 293, 3C 459, 4C 12.50, and PKS 1549-79, the [Ne II] 12.8 {mu}m line, and to a lesser extent the [Ne III] 15.5 {mu}m and [Ne V] 14.3 {mu}m lines, clearly exhibits blueshifted wings (up to -900 km s{sup -1} with respect to the systemic velocity) that match well the kinematics of the outflowing H I or ionized gas. The H{sub 2} lines do not show these broad wings, except tentative detections in 4C 12.50, 3C 459, and PKS 1549-79. This shows that, contrary to the H I gas, the H{sub 2} gas is inefficiently coupled to the AGN jet-driven outflow of ionized gas. While the dissipation of a small fraction (<10%) of the jet kinetic power can explain the turbulent heating of the molecular gas, our data show that the bulk of the warm molecular gas is not expelled from these galaxies.

  8. Electron capture and ionization of 33-TeV Pb ions in gas targets

    SciTech Connect

    Krause, H. F.; Vane, C. R.; Datz, S.; Grafstro''m, P.; Knudsen, H.; Mikkelsen, U.; Scheidenberger, C.; Schuch, R. H.; Vilakazi, Z.

    2001-03-01

    We have measured the total cross sections for electron capture by bare Pb{sup 82+} ions and for the ionization of hydrogenlike Pb{sup 81+}(1s) ions at 158GeV/A, {gamma}=168, in Ar, Kr, and Xe gas targets. At this energy, the total capture cross sections are dominated by electron capture from pair production. The capture measurements are compared with the results of several theoretical calculations and with similar measurements made with solid targets. The Pb{sup 81+}(1s) ionization cross sections obtained, which are substantially lower than those measured in solids, agree well with recent calculations that predict saturation at high energies from target screening effects.

  9. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  10. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  11. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals. PMID:27608987

  12. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    NASA Technical Reports Server (NTRS)

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  13. WARM IONIZED GAS REVEALED IN THE MAGELLANIC BRIDGE TIDAL REMNANT: CONSTRAINING THE BARYON CONTENT AND THE ESCAPING IONIZING PHOTONS AROUND DWARF GALAXIES

    SciTech Connect

    Barger, K. A.; Haffner, L. M.; Bland-Hawthorn, J. E-mail: haffner@astro.wisc.edu

    2013-07-10

    The Magellanic System includes some of the nearest examples of galaxies disturbed by galaxy interactions. These interactions have redistributed much of their gas into the halos of the Milky Way (MW) and the Magellanic Clouds. We present Wisconsin H{alpha} Mapper kinematically resolved observations of the warm ionized gas in the Magellanic Bridge over the velocity range of +100 to +300 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map and the corresponding intensity-weighted mean velocity map of the Magellanic Bridge across (l, b) = (281 Degree-Sign .5, -30 Degree-Sign .0) to (302. Degree-Sign 5, -46. Degree-Sign 7). Using the H{alpha} emission from the Small Magellanic Cloud (SMC)-Tail and the Bridge, we estimate that the mass of the ionized material is between (0.7-1.7) Multiplication-Sign 10{sup 8} M{sub Sun }, compared to 3.3 Multiplication-Sign 10{sup 8} M{sub Sun} for the neutral mass over the same region. The diffuse Bridge is significantly more ionized than the SMC-Tail, with an ionization fraction of 36%-52% compared to 5%-24% for the Tail. The H{alpha} emission has a complex multiple-component structure with a velocity distribution that could trace the sources of ionization or distinct ionized structures. We find that incident radiation from the extragalactic background and the MW alone are insufficient to produced the observed ionization in the Magellanic Bridge and present a model for the escape fraction of the ionizing photons from both the SMC and Large Magellanic Cloud (LMC). With this model, we place an upper limit of 4.0% for the average escape fraction of ionizing photons from the LMC and an upper limit of 5.5% for the SMC. These results, combined with the findings of a half a dozen other studies for dwarf galaxies in different environments, provide compelling evidence that only a small percentage of the ionizing photons escape from dwarf galaxies in the present epoch to

  14. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column.

    PubMed

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples.

  15. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples.

  16. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra. ?? 2004 Elsevier B.V. All rights reserved.

  17. Angle-Resolved High-Order Above-Threshold Ionization of a Molecule: Sensitive Tool for Molecular Characterization

    SciTech Connect

    Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.

    2008-05-23

    The strong-field approximation for ionization of diatomic molecules by an intense laser field is generalized to include rescattering of the ionized electron off the various centers of its molecular parent ion. The resulting spectrum and its interference structure strongly depend on the symmetry of the ground state molecular orbital. For N{sub 2}, if the laser polarization is perpendicular to the molecular axis, we observe a distinct minimum in the emission spectrum, which survives focal averaging and allows determination of, e.g., the internuclear separation. In contrast, for O{sub 2}, rescattering is absent in the same situation.

  18. Ionized gas outflow in the isolated S0 galaxy NGC 4460

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei; Karachentsev, Igor; Kaisin, Serafim

    2010-04-01

    We used integral-field and long-slit spectroscopy to study a bright extended nebulosity recently discovered in the isolated lenticular galaxy NGC 4460 during an Hα survey of nearby galaxies. An analysis of archival Sloan Digital Sky Survey, GALEX and Hubble Space Telescope images indicates that current star formation is entirely concentrated in the central kiloparsec of the galaxy disc. The observed ionized gas parameters (morphology, kinematics and ionization state) can be explained by a gas outflow above the plane of the galaxy, caused by star formation in the circumnuclear region. Galactic wind parameters in NGC 4460 (outflow velocity, total kinetic energy) are several times smaller, compared with the known galactic wind in NGC 253, which is explained by the substantially lower total star formation rate. We discuss the cause of the star formation processes in NGC 4460 and in two other known isolated lenticular (S0) and elliptical (E) galaxies of the Local Volume: NGC 404 and 855. We provide evidence suggesting that the feeding of isolated galaxies by intergalactic gas on a cosmological time-scale is a steady process without significant variations. Based on observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43). E-mail: moisav@gmail.com

  19. Ionized gas in the circumgalactic vicinity of the M81 galaxy group

    NASA Astrophysics Data System (ADS)

    Al Najm, M. N.; Polikarpova, O. L.; Shchekinov, Yu. A.

    2016-04-01

    The dynamics of the dust and gas in the tidal region of the M81 galaxy group have been analyzed, and the drift of the dust relative to the gas has been estimated, including the drift due to the action of radiation pressure from stars in M81. It is concluded that a large fraction of the gas in the tidal region is in the form of ionized hydrogen HII that shields the observedHI gas from the extragalactic Lyman continuum: the observed atomic gas could be only 10% of the total mass of gas. Only then it is possible to satisfactorily explain the excess dust abundance, which exceeds the Galactic value by a factor of six. By analogy, extended HI disks in galaxies with sizes appreciably larger than the stellar disks could be surrounded by HII envelopes with a comparable or greater mass. Such disks could play an important role in supporting prolonged star formation in galaxies with extended HI disks. Associated observational manifestations are discussed. Such HII envelopes outside HI disks could be detectable in absorption in Ly α and lines of ions of heavy elements.

  20. NEBULAR: Spectrum synthesis for mixed hydrogen-helium gas in ionization equilibrium

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa

    2016-08-01

    NEBULAR synthesizes the spectrum of a mixed hydrogen helium gas in collisional ionization equilibrium. It is not a spectral fitting code, but it can be used to resample a model spectrum onto the wavelength grid of a real observation. It supports a wide range of temperatures and densities. NEBULAR includes free-free, free-bound, two-photon and line emission from HI, HeI and HeII. The code will either return the composite model spectrum, or, if desired, the unrescaled atomic emission coefficients. It is written in C++ and depends on the GNU Scientific Library (GSL).

  1. 3D Spectroscopy of the Ionized Gas Kinematics in Galactic Rings

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.

    2008-10-01

    The kinematics of galactic rings were studied with a scanning Fabry-Perot interferometer mounted in the multi-mode focal reducer SCORPIO tep{moiseev:afan} at the SAO RAS 6-m telescope. The analysis of the ionized-gas velocity fields allows us to understand the nature of the ring formation in several galaxies. The different (resonance, collisional, and polar) types of rings in the studied objects were caused by the various sorts of interactions (e.g., merging and head-on collisions)

  2. A Molecular Profile of the Endothelial Cell Response to Ionizing Radiation.

    PubMed

    Himburg, Heather A; Sasine, Joshua; Yan, Xiao; Kan, Jenny; Dressman, Holly; Chute, John P

    2016-08-01

    Ionizing radiation exposure can cause acute radiation sickness (ARS) by damaging the hematopoietic compartment. Radiation damages quiescent hematopoietic stem cells (HSCs) and proliferating hematopoietic cells, resulting in neutropenia, thrombocytopenia and increased risk for long-term hematopoietic dysfunction and myelodysplasia. While some aspects of the hematopoietic response to radiation injury are intrinsic to hematopoietic cells, the recovery of the HSC pool and overall hematopoiesis is also dependent on signals from bone marrow endothelial cells (BM ECs) within the HSC vascular niche. The precise mechanisms through which BM ECs regulate HSC regeneration remain unclear. Characterization of the altered EC gene expression that occurs in response to radiation could provide a roadmap to the discovery of EC-derived mechanisms that regulate hematopoietic regeneration. Here, we show that 5 Gy total-body irradiation substantially alters the expression of numerous genes in BM ECs within 24 h and this molecular response largely resolves by day 14 postirradiation. Several unique and nonannotated genes, which encode secreted proteins were upregulated and downregulated in ECs in response to radiation. These results highlight the complexity of the molecular response of BM ECs to ionizing radiation and identify several candidate mechanisms that should be prioritized for functional analysis in models of hematopoietic injury and regeneration. PMID:27387861

  3. Rotational relaxation of molecular ions in a buffer gas

    NASA Astrophysics Data System (ADS)

    Pérez-Ríos, Jesús; Robicheaux, F.

    2016-09-01

    The scattering properties regarding the rotational degrees of freedom of a molecular ion in the presence of a buffer gas of helium are investigated. This study is undertaken within the framework of the infinite-order sudden approximation for rotational transitions, which is shown to be applicable to a large variety of molecular ions in a buffer gas of helium at fairly low temperatures. The results derived from the present approach have potential applications in cold chemistry and molecular quantum logic spectroscopy.

  4. The PG X-ray QSO Sample: Ionizing Continuum and Properties of the Fueling Gas

    NASA Astrophysics Data System (ADS)

    Wills, B. J.; Laor, A.; Brotherton, M. S.; Wills, D.; Shang, Zhaohui; Wilkes, B. J.; Ferland, G. J.

    1998-12-01

    The UV to soft X-rays of luminous AGNs dominate their bolometric luminosity, driven by an accretion-powered dynamo at the center. These photons illuminate the surrounding gas, providing clues to fueling and exhaust. Two sets of important relationships -- neither of them understood -- link the continuum and gas properties. These are the Baldwin relations between equivalent width and luminosity, and the so-called `Eigenvector 1' relationships linking steeper X-ray spectra with narrower BLR Hβ and stronger Fe II (optical), and weaker NLR [O III]lambda 5007 emission (Boroson & Green 1992, Laor et al. 1994, 1997). These relationships plausibly link the central engine with structure, dynamics and physical conditions in sub-parsec to Kiloparsec scale gas. In order to investigate these relationships further we study the links between optical and ultraviolet emission lines, and the UV and soft-X-ray ionizing continuum. We have obtained HST UV and McDonald ground-based spectra for a unique sample -- a complete sample of PG QSOs chosen for low redshift and low Galactic reddening by Laor et al. (1994) in order to obtain high-quality information on the ionizing continuum. We show that the above eigenvector 1 relationships extend to many properties of the UV spectrum. We present examples of the new set of correlations, and speculate that a starburst origin for a component of QSO gas might explain its geometry, abundances and density. The link with dynamics and UV--X-ray SED suggests that this gas is fueling the accretion-driven central engine.

  5. Jet-driven outflows of ionized gas in the nearby radio galaxy 3C 293

    NASA Astrophysics Data System (ADS)

    Mahony, E. K.; Oonk, J. B. R.; Morganti, R.; Tadhunter, C.; Bessiere, P.; Short, P.; Emonts, B. H. C.; Oosterloo, T. A.

    2016-01-01

    Fast outflows of gas, driven by the interaction between the radio jets and interstellar medium (ISM) of the host galaxy, are being observed in an increasing number of galaxies. One such example is the nearby radio galaxy 3C 293. In this paper we present integral field unit observations taken with OASIS on the William Herschel Telescope, enabling us to map the spatial extent of the ionized gas outflows across the central regions of the galaxy. The jet-driven outflow in 3C 293 is detected along the inner radio lobes with a mass outflow rate ranging from ˜0.05 to 0.17 M⊙ yr-1 (in ionized gas) and corresponding kinetic power of ˜0.5-3.5 × 1040 erg s-1. Investigating the kinematics of the gas surrounding the radio jets (i.e. not directly associated with the outflow), we find linewidths broader than 300 km s-1 up to 5 kpc in the radial direction from the nucleus (corresponding to 3.5 kpc in the direction perpendicular to the radio axis at maximum extent). Along the axis of the radio jet linewidths >400 km s-1 are detected out to 7 kpc from the nucleus and linewidths of >500 km s-1 at a distance of 12 kpc from the nucleus, indicating that the disturbed kinematics clearly extend well beyond the high surface brightness radio structures of the jets. This is suggestive of the cocoon structure seen in simulations of jet-ISM interaction and implies that the radio jets are capable of disturbing the gas throughout the central regions of the host galaxy in all directions.

  6. Ionized gas outflows and global kinematics of low-z luminous star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Arribas, S.; Colina, L.; Bellocchi, E.; Maiolino, R.; Villar-Martín, M.

    2014-08-01

    We study the kinematic properties of the ionised gas outflows and ambient interstellar medium (ISM) in a large and representative sample of local luminous and ultra-luminous infrared galaxies (U/LIRGs) (58 systems, 75 galaxies) at galactic and sub-galactic (i.e., star-forming clumps) scales, thanks to integral field spectroscopy (IFS)-based high signal-to-noise integrated spectra. The velocity dispersion of the ionized ISM in U/LIRGs (⟨ σ ⟩ ~ 70 km s-1) is larger than in lower luminosity local star-forming galaxies (⟨ σ ⟩ ~ 25 km s-1). While for isolated disc LIRGs star formation appears to sustain turbulence, gravitational energy release associated with interactions and mergers plays an important role in driving σ in the U/LIRG range. We find that σ has a dependency on the star formation rate density (ΣSFR), which is weaker than expected if it were driven by the energy released by the starburst. The relatively small role of star formation (SF) driving the σ in U/LIRGs is reinforced by the lack of an increase in σ associated with high luminosity SF clumps. We also find that the impact of an active galactic nucleus (AGN) in ULIRGs is strong, increasing on average σ by a factor 1.5. Low-z U/LIRGs cover a range of velocity dispersion (σ ~ 30 to 100 km s-1) and star formation rate density (ΣSFR ~ 0.1 to 20 M⊙ yr-1 kpc-2) similar to those of high-z SFGs. Moreover, the observed weak dependency of σ on ΣSFR for local U/LIRGs (σ ∝ ΣSFR+0.06) is in very good agreement with that measured in some high-z samples. The presence of ionized gas outflows in U/LIRGs seems universal based on the detection of a broad, usually blueshifted, Hα line. The observed dependency of the maximum velocity of the outflow (Vmax) on the star formation rate (SFR) is of the type Vmax(non - AGN) ∝ SFR(LIR)+ 0.24. We find that AGNs in U/LIRGs are able to generate faster (~×2) and more massive (~× 1.4) ionized gas outflows than pure starbursts. The derived ionized mass

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, EXPLOSIVES DETECTION TECHNOLOGY, SRI INSTRUMENTS, MODEL 8610C, GAS CHROMATOGRAPH/THERMIONIC IONIZATION DETECTION

    EPA Science Inventory

    The SRI Model 86 1 OC gas chromatograph (GC) is a transportable instrument that can provide on-site analysis of soils for explosives. Coupling this transportable gas chromatograph with a thermionic ionization detector (TID) allows for the determination of explosives in soil matri...

  8. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors.

    PubMed

    Karas, M; Glückmann, M; Schäfer, J

    2000-01-01

    A new model for the ionization processes in UV matrix-assisted laser desorption/ionization (MALDI) which accounts for the major phenomena observed is presented and discussed. The model retains elements of earlier approaches, such as photoionization and photochemical reactions, but it redefines these in the light of new working questions, most importantly why only singly charged ions are detected. Based on experimental evidence, the formation of singly and multiply charged clusters by a deficiency/excess of ions and also by photoionization and subsequent photochemical processes is pointed out to be the major ionization processes, which typically occur in parallel. The generation of electrons and their partial loss into the surrounding vacuum and solid, on the one hand, results in a positively charged ion-neutral plume facilitating a high overall ionization yield. On the other hand, these electrons, and also the large excess of protonated matrix ions in the negative ion mode, induce effective ion reneutralization in the plume. These neutralization processes are most effective for the highly charged cluster ions initially formed. Their fragmentation behaviour is evidenced in fast metastable fragmentation characteristics and agrees well with an electron capture dissociation mechanism and the enthalpy transfer upon neutralization forms the rationale for the prominent fragmentation and intense chemical noise accompanying successful MALDI. Within the course of the paper, cross-correlations with other desorption/ionization techniques and with earlier discussions on their mechanisms are drawn.

  9. CO/H2, C/CO, OH/CO, and OH/O2 in dense interstellar gas: from high ionization to low metallicity

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel

    2015-07-01

    We present numerical computations and analytic scaling relations for interstellar ion-molecule gas-phase chemistry down to very low metallicities (10-3 × solar), and/or up to high driving ionization rates. Relevant environments include the cool interstellar medium (ISM) in low-metallicity dwarf galaxies, early enriched clouds at the reionization and Pop-II star formation era, and in dense cold gas exposed to intense X-ray or cosmic ray sources. We focus on the behaviour for H2, CO, CH, OH, H2O and O2, at gas temperatures ˜100 K, characteristic of a cooled ISM at low metallicities. We consider shielded or partially shielded one-zone gas parcels, and solve the gas-phase chemical rate equations for the steady-state `metal-molecule abundances for a wide range of ionization parameters, ζ/n, and metallicties, Z '. We find that the OH abundances are always maximal near the H-to-H2 conversion points, and that large OH abundances persist at very low metallicities even when the hydrogen is predominantly atomic. We study the OH/O2, C/CO and OH/CO abundance ratios, from large to small, as functions of ζ/n and Z '. Much of the cold dense ISM for the Pop-II generation may have been OH-dominated and atomic rather than CO-dominated and molecular.

  10. Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Schilke, P.; Benz, A. O.; Winkel, B.; Menten, K. M.; Chambers, E. T.; Black, John H.; Bruderer, S.; Falgarone, E.; Godard, B.; Goicoechea, J. R.; Gupta, H.; Lis, D. C.; Ossenkopf, V.; Persson, C. M.; Sonnentrucker, P.; van der Tak, F. F. S.; van Dishoeck, E. F.; Wolfire, Mark G.; Wyrowski, F.

    2015-02-01

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζH) and molecular hydrogen fraction (f_H_2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f_H_2 in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer ζH throughout our sample, and find a lognormal distribution with mean log (ζH) = -15.75 (ζH = 1.78 × 10-16 s-1) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H_3^+ observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  11. Determination of nitrogen monoxide in high purity nitrogen gas with an atmospheric pressure ionization mass spectrometer

    NASA Technical Reports Server (NTRS)

    Kato, K.

    1985-01-01

    An atmospheric pressure ionization mass spectrometric (API-MS) method was studied for the determination of residual NO in high purity N2 gas. The API-MS is very sensitive to NO, but the presence of O2 interferes with the NO measurement. Nitrogen gas in cylinders as sample gas was mixed with NO standard gas and/or O2 standard gas, and then introduced into the API-MS. The calibration curves of NO and O2 has linearity in the region of 0 - 2 ppm, but the slopes changed with every cylinder. The effect of O2 on NO+ peak was additive and proportional to O2 concentration in the range of 0 - 0.5 ppm. The increase in NO+ intensity due to O2 was (0.07 - 0.13)%/O2, 1 ppm. Determination of NO and O2 was carried out by the standard addition method to eliminate the influence of variation of slopes. The interference due to O2 was estimated from the product of the O2 concentration and the ratio of slope A to Slope B. Slope A is the change in the NO+ intensity with the O2 concentration. Slope B is the intensity with O2 concentration.

  12. Ionized gas kinematics within the inner kiloparsec of the Seyfert galaxy NGC 1365

    NASA Astrophysics Data System (ADS)

    Lena, Davide; Robinson, Andrew; Storchi-Bergmann, Thaisa; Couto, Guilherme S.; Schnorr-Müller, Allan; Riffel, Rogemar A.

    2016-07-01

    We observed the nuclear region of the galaxy NGC 1365 with the integral field unit of the Gemini Multi Object Spectrograph mounted on the GEMINI-South telescope. The field of view covers 13 × 6 arcsec2(1173 × 541 pc2) centred on the nucleus, at a spatial resolution of 52 pc. The spectral coverage extends from 5600 to 7000 Å, at a spectral resolution R = 1918. NGC 1365 hosts a Seyfert 1.8 nucleus, and exhibits a prominent bar extending out to 100 arcsec (9 kpc) from the nucleus. The field of view lies within the inner Lindblad resonance. Within this region, we found that the kinematics of the ionized gas (as traced by [O I], [N II], Hα, and [S II]) is consistent with rotation in the large-scale plane of the galaxy. While rotation dominates the kinematics, there is also evidence for a fan-shaped outflow, as found in other studies based on the [O III] emission lines. Although evidence for gas inflowing along nuclear spirals has been found in a few barred galaxies, we find no obvious signs of such features in the inner kiloparsec of NGC 1365. However, the emission lines exhibit a puzzling asymmetry that could originate from gas which is slower than the gas responsible for the bulk of the narrow-line emission. We speculate that it could be tracing gas which lost angular momentum, and is slowly migrating from the inner Lindblad resonance towards the nucleus of the galaxy.

  13. Isothermal flow measurements in a gas turbine combustor using a fast flame ionization detector

    NASA Astrophysics Data System (ADS)

    Read, R. W.; Hochgreb, S.

    2010-05-01

    A fast-response flame ionization detector (FFID) has been used to study isothermal gas transport and mixing inside a gas turbine combustion chamber. The large, highly linear dynamic range of the FFID coupled with a frequency response that extends up to approximately 200 Hz can reveal large-scale features of interest in turbulent flows. Experiments were performed in a ground-based test facility simulating high-altitude restart conditions. Pulses of propane were discharged into the core swirler of a fuel injector through a high-speed valve. The mole fraction of this tracer was monitored at various locations inside the combustion chamber. These measurements allowed the identification of recirculation timescales and flow instabilities at different points inside the combustion chamber, providing important insights into the altitude restart process.

  14. Dynamic self-organization phenomena in complex ionized gas systems: new paradigms and technological aspects

    NASA Astrophysics Data System (ADS)

    Vladimirov, S. V.; Ostrikov, K.

    2004-04-01

    An overview of dynamic self-organization phenomena in complex ionized gas systems, associated physical phenomena, and industrial applications is presented. The most recent experimental, theoretical, and modeling efforts to understand the growth mechanisms and dynamics of nano- and micron-sized particles, as well as the unique properties of the plasma-particle systems (colloidal, or complex plasmas) and the associated physical phenomena are reviewed and the major technological applications of micro- and nanoparticles are discussed. Until recently, such particles were considered mostly as a potential hazard for the microelectronic manufacturing and significant efforts were applied to remove them from the processing volume or suppress the gas-phase coagulation. Nowadays, fine clusters and particulates find numerous challenging applications in fundamental science as well as in nanotechnology and other leading high-tech industries.

  15. Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments

    SciTech Connect

    Ana R. Hortal; Paola Hurtado; Bruno Martinez-Haya; Oliver C. Mullins

    2007-09-15

    Molecular-weight distributions (MWDs) of asphaltenes extracted from coal and petroleum have been measured in laser desorption/ionization (LDI) mass spectrometric experiments. The dried-droplet and solvent-free sample preparation methods are compared. The coal asphaltenes have a relatively narrow MWD (full width 150 amu) with an average molecular weight of 340 amu. The petroleum asphaltenes display a broader MWD (full width 300 amu) and are heavier on average (680 amu). The LDI spectra also provide evidence for the formation of noncovalent clusters of the two types of asphaltenes during the desorption process. Petroleum and coal asphaltenes exhibit aggregation as do large model polycyclic aromatic hydrocarbons (PAHs) with five or more fused rings also included in the study. Smaller PAHs (pyrene) exhibit less aggregation, especially when alkane-chain substituents are incorporated to the molecular structure. This indicates that asphaltenes possess large PAHs and, according to the relatively small molecular weights observed, that there is a preponderance of asphaltene molecules with only a single fused ring system. The coal asphaltenes present a significantly smaller propensity toward aggregation than their crude oil counterparts. This finding, coupled with the fact that (1) alkanes inhibit aggregation in LDI and (2) petroleum asphaltenes possess much more alkane carbon, indicates that coal asphaltenes have smaller PAHs on average than petroleum asphaltenes. This is further corroborated by the stronger ultraviolet absorbance of the coal asphaltenes at wavelengths shorter than 400 nm. 32 refs., 8 figs.

  16. Ionization states, cellular toxicity and molecular modeling studies of midazolam complexed with trimethyl-β-cyclodextrin.

    PubMed

    Shityakov, Sergey; Sohajda, Tamás; Puskás, István; Roewer, Norbert; Förster, Carola; Broscheit, Jens-Albert

    2014-01-01

    We investigated the ionization profiles for open-ring (OR) and closed-ring (CR) forms of midazolam and drug-binding modes with heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (trimethyl-β-cyclodextrin; TRIMEB) using molecular modeling techniques and quantum mechanics methods. The results indicated that the total net charges for different molecular forms of midazolam tend to be cationic for OR and neutral for CR at physiological pH levels. The thermodynamic calculations demonstrated that CR is less water-soluble than OR, mainly due to the maximal solvation energy (ΔG(CR)(solv = -9.98 kcal·mol ⁻¹), which has a minimal ΔG(OR)(solv) of -67.01 kcal·mol⁻¹. A cell viability assay did not detect any signs of TRIMEB and OR/CR-TRIMEB complex toxicity on the cEND cells after 24 h of incubation in either Dulbecco's Modified Eagles Medium or in heat-inactivated human serum. The molecular docking studies identified the more flexible OR form of midazolam as being a better binder to TRIMEB with the fluorophenyl ring introduced inside the amphiphilic cavity of the host molecule. The OR binding affinity was confirmed by a minimal Gibbs free energy of binding (ΔG(bind)) value of -5.57 ± 0.02 kcal·mol⁻¹, an equilibrium binding constant (K(b)) of 79.89 ± 2.706 μM, and a ligand efficiency index (LE(lig)) of -0.21 ± 0.001. Our current data suggest that in order to improve the clinical applications of midazolam via its complexation with trimethyl-β-cyclodextrin to increase drug's overall aqueous solubility, it is important to concern the different forms and ionization states of this anesthetic. All mean values are indicated with their standard deviations. PMID:25338177

  17. High-field plasma acceleration in a high-ionization-potential gas

    NASA Astrophysics Data System (ADS)

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-06-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources.

  18. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGESBeta

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; et al

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  19. High-field plasma acceleration in a high-ionization-potential gas

    PubMed Central

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m−1, over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  20. High-field plasma acceleration in a high-ionization-potential gas.

    PubMed

    Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clausse, B; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m(-1), over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  1. Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas

    NASA Astrophysics Data System (ADS)

    García-Burillo, S.; Combes, F.; Usero, A.; Aalto, S.; Krips, M.; Viti, S.; Alonso-Herrero, A.; Hunt, L. K.; Schinnerer, E.; Baker, A. J.; Boone, F.; Casasola, V.; Colina, L.; Costagliola, F.; Eckart, A.; Fuente, A.; Henkel, C.; Labiano, A.; Martín, S.; Márquez, I.; Muller, S.; Planesas, P.; Ramos Almeida, C.; Spaans, M.; Tacconi, L. J.; van der Werf, P. P.

    2014-07-01

    Aims: We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate. Methods: We have used the Atacama Large Millimeter Array (ALMA) to map the emission of a set of dense molecular gas (n(H2) ≃ 105 - 6 cm-3) tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3), and CS(7-6)) and their underlying continuum emission in the central r ~ 2 kpc of NGC 1068 with spatial resolutions ~0.3″ - 0.5″ (~20-35 pc for the assumed distance of D = 14 Mpc). Results: The sensitivity and spatial resolution of ALMA give an unprecedented detailed view of the distribution and kinematics of the dense molecular gas (n(H2) ≥ 105 - 6cm-3) in NGC 1068. Molecular line and dust continuum emissions are detected from a r ~ 200 pc off-centered circumnuclear disk (CND), from the 2.6 kpc-diameter bar region, and from the r ~ 1.3 kpc starburst (SB) ring. Most of the emission in HCO+, HCN, and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the active galactic nucleus (AGN), betraying ongoing feedback. We used the dust continuum fluxes measured by ALMA together with NIR/MIR data to constrain the properties of the putative torus using CLUMPY models and found a torus radius of 20+6-10pc. The Fourier decomposition of the gas velocity field indicates that rotation is perturbed by an inward radial flow in the SB ring and the bar region. However, the gas kinematics from r ~ 50 pc out to r ~ 400 pc reveal a massive (Mmol~ 2.7+0.9-1.2 × 107 M⊙) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet, and the occurrence of outward motions in the disk suggests that the outflow is AGN driven. Conclusions: The molecular outflow is likely

  2. Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Muccilli, Vera; Cunsolo, Vincenzo; Saletti, Rosaria; Foti, Salvatore; Masci, Stefania; Lafiandra, Domenico

    2005-02-01

    Low molecular weight glutenin subunits (LMW-GS) are typically subdivided into three groups, according to their molecular weights and isoelectric points, namely the B-, C-, and D groups. Enriched B- and C-type LMW-GS fractions extracted from the bread wheat cultivar Chinese Spring were characterized using high performance liquid chromatography (HPLC) directly interfaced with electrospray ionization mass spectrometry and HPLC coupled off-line with matrix-assisted laser desorption/ionization mass spectrometry, in order to ascertain the number and relative molecular masses of the components present in each fraction and determine the number of cysteine residues. About 70 components were detected in each of the fractions examined by the combined use of these two techniques, with 18 components common to both fractions. Analysis of the fractions after alkylation with 4-vinylpyridine allowed determination of the number of the cysteines present in about 40 subunits. The proteins detected were tentatively classified based on the relative molecular masses and number of cysteine residues. Cross-contamination was found in both B- and C- fractions, along with the presence of D-type LMW-GS. The two fractions also contained unexpected components, probably lipid transfer proteins and omega-gliadins. The presence of extensive microheterogeneity was suggested by the detection of several co-eluting proteins with minor differences in their molecular masses.

  3. Gas kinematics and ionization along the extended sight line to HD 116852

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Savage, Blair D.

    1994-01-01

    We present Goddard High-Resolution Spectrograph intermediate observations of the interstellar medium toward HD 116852, a low halo star at a distance of 4.8 kpc (z = -1.3 kpc) in the direction l = 304. deg 9, b = 16.deg 1. The small science aperture observations have signal-to-noise ratios ranging from 30 to 90 and resolutions of 11 to 18 km/s (FWHM). We confirm the optical MK classification of this star through an analysis of its ultraviolet photosperic and stellar wind profiles. We detect interstellar lines of Al III, Si IV, C IV, and N V together with lines of C I, C I*, C I**, Si II, Ge II, P II, and Ni II. We convert the Mg II, P II, S II, Al III, Si IV, C IV, and N V profiles into measure of apparent column density as a function of LSR velocity. Gas scale height, velocity dispersion, and differential Galactic rotation effects govern the profile shapes. A simple computer model of the expected sight line column density profiles for the low and high ion species indicates that the gas velocity dispersions and scale heights increase as the ionization level of the gas increases. We find scale heigts H greater than or = 1 kpc for the high ions, which are comparable to the z-distance of the star, whereas we find H approximatley = 0.6 to 0.7 kpc for A1 III and H approximatley 0.1 kpc for P II and Ge II. An enhancement in the Al II profile near -15 km/s accounts for approximately 25% of the A1 III column along the sight line and probably arises within gas located approximately 500 pc below the Sagittarius-Carina spiral arm link. Portions of the broad underlying A1 III distribution are associated with the higher ionization lines, perhaps in conductive interfaces. The presence of N V and the column density ratios of Si IV, C IV, and N V favor the interpretation that much of the high ion absorption is produced by collisional ionization in gas with T = 1-3 x 10(exp 5) K. An enhancement near -35 km/s in both the Si IV and C IV profiles may be due to an outflow from the Norma

  4. CRC handbook of laser science and technology. Volume 3. Gas lasers

    SciTech Connect

    Weber, M.J.

    1982-01-01

    This book describes the fundamentals of gas lasers. It provides information and data on neutral gas lasers, ionized gas lasers, and molecular gas lasers. Concluding this volume is an extensive table of all gas laser wavelengths.

  5. Dust and ionized gas in elliptical galaxies: Signatures of merging collisions

    NASA Technical Reports Server (NTRS)

    Goudfrooij, Paul; Dejong, Teije

    1993-01-01

    Traditionally elliptical galaxies were thought to be essentially devoid of interstellar matter. However, recent advances in instrumental sensitivity have caused a renaissance of interest in dust and gas in - or associated with - elliptical galaxies. In particular, the technique of co-adding IRAS survey scans has led to the detection of more than half of all ellipticals with BT less than 11 mag. in the Revised Shapley-Ames catalog, indicating the presence of 10(exp 7) - 10(exp 8) solar mass of cold interstellar matter (Jura et al. 1987). In addition, CCD multi-color surface photometry shows dust patches in about 30 percent of the cases studied to date (e.g., Veron-Cetty & Veron 1988). Thorough study of the gas and dust in ellipticals is important to (1) determine its origin (mass-loss from late-type stars, merging collisions with other galaxies or accretion inflows from cooling X-ray gas), and (2) investigate the 3-D shape of ellipticals, as can be derived from the orientation of the dust lanes and the 2-D velocity field of the gas. An important result of our comprehensive CCD imaging program is that a relevant fraction (approximately 40 percent) of the sample objects exhibits dust patches within extended H-alpha+(NII) line-emitting filaments. This common occurrence can be easily accounted for if the dust and gas have an external origin, i.e., mergers or interactions with gas-rich galaxies. Evidence supporting this suggestion: (1) the ionized gas is usually dynamically decoupled from the stellar velocity field (see, e.g., Sharples et al. 1983, Bertola & Bettoni 1988); (2) it is shown in a companion paper (Goudfrooij et al. 1992) that internal stellar mass loss alone can not account for the dust content of elliptical galaxies.

  6. Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Krause, O.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T.

    2013-12-01

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of 36ArH+ at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed 36ArH+ emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  7. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    PubMed

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed. PMID:24337290

  8. Penning ionization electron spectra of pyrene, chrysene, and coronene in collision with metastable He(2 3S) atoms in the gas phase

    NASA Astrophysics Data System (ADS)

    Yamakita, Yoshihiro; Yamauchi, Masayo; Ohno, Koichi

    2009-01-01

    Penning ionization electron spectra (PIES) of pyrene (C16H10), chrysene (C18H12), and coronene (C24H12) in the gas phase are recorded using metastable He∗(2 3S) atoms. The assignments of PIES are presented based on the outer valence Green's function calculations with the correlation consistent polarized valence triple-ζ basis sets and the exterior electron density calculations of contributing molecular orbitals. The definite positions of all of the π bands in the PIES are identified making use of the large PIES cross sections. Broad bands are observed in low-electron-energy regions for chrysene and coronene and are ascribed to ionization processes of non-Koopmans types from σ orbitals. The anisotropic interaction potential energy surfaces for the colliding systems are obtained from ab initio model potentials for the related systems with similar outer valences Li(2 2S)+C16H10, C18H12, and C24H12, respectively. The attractive well depths in the out-of-plane directions are found to be similar between these molecules, and the repulsive walls embrace the in-plane perimeters uniformly. Collision energy dependencies for partial Penning ionization cross sections and negative peak shifts in PIES for chrysene support these anisotropic interactions. Effects from thermal populations in low-frequency vibrational modes are estimated to be minor in one-electron ionization processes.

  9. Highly ionized interstellar gas located in the Galactic disk and halo

    SciTech Connect

    Savage, B.D.; Massa, D.

    1987-03-01

    High-resolution IUE absorption line spectra have been obtained for 40 distant stars in order to study the distribution of interstellar H I, Si IV, C IV, and N V in the Galactic disk and lower halo. Respective midplane densities of 2 x 10 to the -9th, 7 x 10 to the -9th, and 3 x 10 to the -9th are found for Si IV, C IV, and Ni V. Both column density and velocity data indicate that the highly ionized gas (HIG) is considerably more extended in directions away from the Galactic plane than is H I or Si II. The absorption-line velocities for the halo HIG are consistent with the notion that halo gas in the inner Galaxy rotates more slowly than gas in the underlying disk. The derived column densities suggest an exponential scale height for the HIG of about 3 kpc; however, a simple exponential distribution is a poor representation of the distribution of the gas. It is concluded that a full explanation of the origin of the halo HIG will probably require a blending of ideas from the Galactic fountain and the photoionized halo models. 75 references.

  10. Circumnuclear molecular gas in M87 detected with ALMA

    NASA Astrophysics Data System (ADS)

    Vlahakis, Catherine E.

    2016-01-01

    We present the detection of circumnuclear molecular gas residing within 100 pc of the supermassive black hole (SMBH) in the galaxy M87 (3C 274), using the Atacama Large Millimeter/submillimeter Array (ALMA) to image the gas on spatial scales from 100 to 10 pc. The proximity of M87, the archetypical giant elliptical radio galaxy at the centre of the Virgo galaxy cluster, presents a unique opportunity to investigate in detail the circumnuclear molecular gas revealed first by single-dish observations and recently imaged for the first time with ALMA (Vlahakis et al., in prep). ALMA's unique long baseline capability now allows us to make the first detailed investigation of the properties of the interstellar medium around the galaxy's SMBH on scales down to 10 pc (0.1 arcsec). Here, we present results of ALMA Band 3 CO J=1-0 observations obtained at different angular resolutions. With this data we are able to trace the bulk of the molecular gas as well as the continuum emission, providing the deepest and highest spatial resolution images yet of the molecular gas content of this giant elliptical galaxy. The highest resolution data allow us to unambiguously resolve the molecular gas structures for the first time and investigate, in unprecedented detail, the nature and origin of molecular gas that resides within the sphere of influence of the SMBH.

  11. High-order-harmonic generation in molecular sequential double ionization by intense circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Lu, Huizhong; Bandrauk, André D.

    2015-08-01

    We present effects of electron energy transfer by electron collisions on high-order-harmonic generation (HHG) in molecular sequential double ionization by intense circularly polarized laser pulses. Results from numerical solutions of time-dependent Schrödinger equations for extended (large internuclear distance) H2 where electrons are entangled and hence delocalized by exchange show that HHG with cutoff energy up to Ip+24 Up can be obtained, where Ip is the molecule ionization potential and Up=I0/4 ω02 (in atomic units) is the ponderomotive energy for pulse intensity I0 and frequency ω0. A time-frequency analysis is employed to identify electron collisions for the generation of harmonics. Extended HHG arises from electron energy exchange, which agrees well with the prediction of a classical two electron collision model. Results for nonsymmetric HHe+ where initially electrons are localized on He are also compared and confirm the role of initial electron delocalization via entanglement for obtaining extended HHG plateaus.

  12. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography.

    PubMed

    Winter, Gregory T; Wilhide, Joshua A; LaCourse, William R

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot. PMID:26471042

  13. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography

    NASA Astrophysics Data System (ADS)

    Winter, Gregory T.; Wilhide, Joshua A.; LaCourse, William R.

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  14. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  15. Observations of feedback from radio-quiet quasars - II. Kinematics of ionized gas nebulae

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Greene, Jenny E.; Nesvadba, Nicole P. H.; Liu, Xin

    2013-12-01

    The prevalence and energetics of quasar feedback is a major unresolved problem in galaxy formation theory. In this paper, we present Gemini Integral Field Unit observations of ionized gas around 11 luminous, obscured, radio-quiet quasars at z ˜ 0.5 out to ˜15 kpc from the quasar; specifically, we measure the kinematics and morphology of [O III] λ5007 Å emission. The round morphologies of the nebulae and the large line-of-sight velocity widths (with velocities containing 80 per cent of the emission as high as 103 km s-1) combined with relatively small velocity difference across them (from 90 to 520 km s-1) point towards wide-angle quasi-spherical outflows. We use the observed velocity widths to estimate a median outflow velocity of 760 km s-1, similar to or above the escape velocities from the host galaxies. The line-of-sight velocity dispersion declines slightly towards outer parts of the nebulae (by 3 per cent kpc-1 on average). The majority of nebulae show blueshifted excesses in their line profiles across most of their extents, signifying gas outflows. For the median outflow velocity, we find dot{E}_kin between 4 × 1044 and 3 × 1045 erg s-1 and dot{M} between 2 × 103 and 2 × 104 M⊙ yr-1. These values are large enough for the observed quasar winds to have a significant impact on their host galaxies. The median rate of converting bolometric luminosity to kinetic energy of ionized gas clouds is ˜2 per cent. We report four new candidates for `superbubbles' - outflows that may have broken out of the denser regions of the host galaxy.

  16. Spectacular tails of ionized gas in the Virgo cluster galaxy NGC 4569

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Cuillandre, J. C.; Fossati, M.; Boissier, S.; Bomans, D.; Consolandi, G.; Anselmi, G.; Cortese, L.; Côté, P.; Durrell, P.; Ferrarese, L.; Fumagalli, M.; Gavazzi, G.; Gwyn, S.; Hensler, G.; Sun, M.; Toloba, E.

    2016-03-01

    Context. Using MegaCam at the CFHT, we obtained a deep narrow band Hα+[NII] wide-field image of NGC 4569 (M90), the brightest late-type galaxy in the Virgo cluster. The image reveals the presence of long tails of diffuse ionized gas, without any associated stellar component extending from the disc of the galaxy up to ≃80 kpc (projected distance) and with a typical surface brightness of a few 10-18 erg s-1 cm-2 arcsec-2. These features provide direct evidence that NGC 4569 is undergoing a ram-presure stripping event. The image also shows a prominent 8 kpc spur of ionized gas that is associated with the nucleus that spectroscopic data identify as an outflow. With some assumptions on the 3D distribution of the gas, we use the Hα surface brightness of these extended low-surface brightness features to derive the density and the mass of the gas that has been stripped during the interaction of the galaxy with the intracluster medium. The comparison with ad hoc chemo-spectrophotometric models of galaxy evolution indicates that the mass of the Hα emitting gas in the tail is a large fraction of that of the cold phase that has been stripped from the disc, suggesting that the gas is ionized within the tail during the stripping process. The lack of star-forming regions suggests that mechanisms other than photoionization are responsible for the excitation of the gas (shocks, heat conduction, magneto hydrodynamic waves). This analysis indicates that ram pressure stripping is efficient in massive (Mstar ≃ 1010.5 M⊙) galaxies located in intermediate-mass (≃1014 M⊙) clusters under formation. It also shows that the mass of gas expelled by the nuclear outflow is only ~1% than that removed during the ram pressure stripping event.Together these results indicate that ram pressure stripping, rather than starvation through nuclear feedback, can be the dominant mechanism that is responsible for the quenching of the star formation activity of galaxies in high density

  17. A combined electron-ion spectrometer for studying complete kinematics of molecular dissociation upon shell selective ionization

    SciTech Connect

    Saha, K.; Banerjee, S. B.; Bapat, B.

    2013-07-15

    A combined electron-ion spectrometer has been built to study dissociation kinematics of molecular ions upon various electronic decay processes ensuing from ionization of neutral molecules. The apparatus can be used with various ionization agents. Ion time-of-flight (ToF) spectra arising from various electronic decay processes are acquired by triggering the ToF measurement in coincidence with energy analyzed electrons. The design and the performance of the spectrometer in a photoionization experiment is presented in detail. Electron spectra and ion time of flight spectra resulting from valence and 2p{sub 1/2} ionization of Argon and those from valence ionization of CO are presented to demonstrate the capability of the instrument. The fragment ion spectra show remarkable differences (both kinematic and cross sectional) dependent on the energy of the ejected electron, corresponding to various electron loss and decay mechanisms in dissociative photoionization of molecules.

  18. Characterization of diacylglycerol isomers in edible oils using gas chromatography-ion trap electron ionization mass spectrometry.

    PubMed

    Zhu, Hanjiang; Clegg, Michael S; Shoemaker, Charles F; Wang, Selina C

    2013-08-23

    Verifying the authenticity of edible oils is of international concern. A new quality control standard for olive oil has been proposed that relates the ratio of 1,2-diacylglycerol (DAG) to 1,3-DAG to sensory aspects of olive oil. DAGs and their isomers are difficult to quantitate and characterize by Flame Ionization Gas Chromatography (GC-FID) due to the lack of suitable standards. Mass detectors offer the advantage of providing structural detail to the eluding DAG(s), thus removing ambiguity to the identification of both resolved and unresolved DAGs in GC chromatograms. In this study, a GC Electron Ionization Mass Spectrometry (GC-EI-MS) method was developed to determine the fatty acid composition and molecular structure of trimethylsilyl (TMS) derivatized DAGs present in edible oils. Twenty-two species of DAG isomers were identified in refined coconut oil and unrefined olive oil utilizing signature fragment ions, [M-15](+), [M-89](+), [M-RCO2](+), [RCO2+58](+) and [M-RCO2CH2](+). The [M-RCO2CH2](+) ion is considered the key diagnostic ion to distinguish between DAG positional isomers. MS/MS spectra of [M-RCO2](+) and [M-15](+) ions obtained from commercial standards containing both 1,2- and 1,3-DAG isomers were used as a model system to confirm the identification of DAG isomers in natural products. Furthermore, a number of reaction mechanisms are proposed to explain the formation of the most abundant mass fragments of DAGs and their isomers.

  19. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte

    PubMed Central

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-01-01

    The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research. PMID:22611397

  20. Temperature sensitivity of molecular oxygen resonant-enhanced multiphoton ionization spectra involving the C 3Π g intermediate state

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2016-05-01

    The technique of measuring O2 rotational temperature by coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization (Radar REMPI) has been studied to determine temperature sensitivity and range. The molecular oxygen Rydberg state of ( {3sσ } )C{{}3}Πg ( {v^' } = 2} ) has been selected as the intermediate state in the 2 + 1 REMPI process, which is known to provide a relatively strong REMPI signal. Rotational-resolved spectra representing the two-photon C{{}3}Πg ( {v^' } = 2} ) leftarrow leftarrow X{{}3}Σ g^{ - } ( {v^' ' } = 0} ) transition have been obtained under several gas conditions including pure oxygen, air-like syngas, ambient air, and flame environments from room temperature ( 300 K) to flame temperature ( 1700 K). An O2 REMPI spectral model has been developed to simulate the experimental spectral line intensity distribution which is dependent on the O2 ground-state temperature. The model has been verified at a low-temperature condition ( 5 K) and then applied to various oxygen environments over an extended temperature range with an overall error of less than ±10 %. The current O2 REMPI spectral model is an improvement over a previously reported version in both accuracy and the quantity of lines fit to provide rotational temperature measurements. This work details an optimized model that fits simulated spectra to full experimental spectral bands over various conditions with a wide temperature range, including both low temperature (<300 K) and high temperature ranges (>1300 K).

  1. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  2. Identifying Extraplanar Diffuse Ionized Gas in a Sample of MaNGA Galaxies

    NASA Astrophysics Data System (ADS)

    Hubbard, Ryan J.; Diamond-Stanic, Aleksandar M.; MaNGA Team

    2016-01-01

    The efficiency with which galaxies convert gas into stars is driven by the continuous cycle of accretion and feedback processes within the circumgalactic medium. Extraplanar diffuse ionized gas (eDIG) can provide insights into the tumultuous processes that govern the evolution of galactic disks because eDIG emission traces both inflowing and outflowing gas. With the help of state-of-the-art, spatially-resolved spectroscopy from MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), we developed a computational method to identify eDIG based on the strength of and spatial extent of optical emission lines for a diverse sample of 550 nearby galaxies. This sample includes roughly half of the MaNGA galaxies that will become publicly available in summer 2016 as part of the Thirteenth Data Release of the Sloan Digital Sky Survey. We identified signatures of eDIG in 8% of the galaxies in this sample, and we found that these signatures are particularly common among galaxies with active star formation and inclination angles >45 degrees. Our analysis of the morphology, incidence, and kinematics of eDIG has important implications for current models of accretion and feedback processes that regulate star formation in galaxies. We acknowledge support from the Astrophysics REU program at the University of Wisconsin-Madison, the National Astronomy Consortium, and The Grainger Foundation.

  3. Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection.

    PubMed

    Duong, Samantha; Strobel, Norbert; Buddhadasa, Saman; Stockham, Katherine; Auldist, Martin; Wales, Bill; Orbell, John; Cran, Marlene

    2016-11-15

    A novel method for the measurement of total phytosterols in fortified food was developed and tested using gas chromatography with flame ionization detection. Unlike existing methods, this technique is capable of simultaneously extracting sterols during saponification thus significantly reducing extraction time and cost. The rapid method is suitable for sterol determination in a range of complex fortified foods including milk, cheese, fat spreads, oils and meat. The main enhancements of this new method include accuracy and precision, robustness, cost effectiveness and labour/time efficiencies. To achieve these advantages, quantification and the critical aspects of saponification were investigated and optimised. The final method demonstrated spiked recoveries in multiple matrices at 85-110% with a relative standard deviation of 1.9% and measurement uncertainty value of 10%.

  4. Identification of volatiles by headspace gas chromatography with simultaneous flame ionization and mass spectrometric detection.

    PubMed

    Tiscione, Nicholas B; Yeatman, Dustin Tate; Shan, Xiaoqin; Kahl, Joseph H

    2013-10-01

    Volatiles are frequently abused as inhalants. The methods used for identification are generally nonspecific if analyzed concurrently with ethanol or require an additional analytical procedure that employs mass spectrometry. A previously published technique utilizing a capillary flow technology splitter to simultaneously quantitate and confirm ethyl alcohol by flame ionization and mass spectrometric detection after headspace sampling and gas chromatographic separation was evaluated for the detection of inhalants. Methanol, isopropanol, acetone, acetaldehyde, toluene, methyl ethyl ketone, isoamyl alcohol, isobutyl alcohol, n-butyl alcohol, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane (Norflurane, HFC-134a), chloroethane, trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), dichlorofluoromethane (Freon®-21), chlorodifluoromethane (Freon®-22) and 1,2-dichlorotetrafluoroethane (Freon®-114) were validated for qualitative identification by this method. The validation for qualitative identification included evaluation of matrix effects, sensitivity, carryover, specificity, repeatability and ruggedness/robustness.

  5. The Effect of the Argon Carrier Gas in the Multiphoton Dissociation-Ionization of Tetracene

    PubMed Central

    Poveda, Juan Carlos; Román, Alejandro San; Guerrero, Alfonso; Álvarez, Ignacio; Cisneros, Carmen

    2008-01-01

    The multiphoton dissociation-ionization of tetracene at 355 nm using 6.5 nanosecond laser pulses, with and without argon as a carrier gas (CG), has been studied and compared. Ion fragments were analyzed in a time-of-flight mass spectrometer and separated according to their mass-to-charge ratio (m/z). The results show that the dynamic of photodissociation at ∼1010 W cm−2 intensities is strongly influenced by the CG. The suppression of fragmentation channels primarily those relating to the formation of the CHm+ (m = 2, 4), C2H4+ and C5H4+2 ions. CH5+ and CH6+ were observed which have not been reported before in photodissociation tetracene experiments. PMID:19325732

  6. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  7. Identification of volatiles by headspace gas chromatography with simultaneous flame ionization and mass spectrometric detection.

    PubMed

    Tiscione, Nicholas B; Yeatman, Dustin Tate; Shan, Xiaoqin; Kahl, Joseph H

    2013-10-01

    Volatiles are frequently abused as inhalants. The methods used for identification are generally nonspecific if analyzed concurrently with ethanol or require an additional analytical procedure that employs mass spectrometry. A previously published technique utilizing a capillary flow technology splitter to simultaneously quantitate and confirm ethyl alcohol by flame ionization and mass spectrometric detection after headspace sampling and gas chromatographic separation was evaluated for the detection of inhalants. Methanol, isopropanol, acetone, acetaldehyde, toluene, methyl ethyl ketone, isoamyl alcohol, isobutyl alcohol, n-butyl alcohol, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane (Norflurane, HFC-134a), chloroethane, trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), dichlorofluoromethane (Freon®-21), chlorodifluoromethane (Freon®-22) and 1,2-dichlorotetrafluoroethane (Freon®-114) were validated for qualitative identification by this method. The validation for qualitative identification included evaluation of matrix effects, sensitivity, carryover, specificity, repeatability and ruggedness/robustness. PMID:24005155

  8. Determination of dexamethasone in urine by gas chromatography with negative chemical ionization mass spectrometry.

    PubMed

    Huetos Hidalgo, Olga; Jiménez López, Manuel; Ajenjo Carazo, Elisa; San Andrés Larrea, Manuel; Reuvers, Thea B A

    2003-05-01

    Dexamethasone, as some other synthetic corticosteroids, is licensed for therapy in veterinary practice, but its misuse as a growth promotor, often in combination with beta-agonists, is forbidden. In this report an analytical method is described for the detection and confirmation of very low concentrations of dexamethasone in urine. The influence of enzymatic hydrolysis time of samples with glucuronidase was studied. The proposed method consisted of the enzymatic hydrolysis of urine samples, which were then extracted and concentrated using solid-phase cartridges with mixed reversed-phase materials (OASIS). No further clean-up step was found to be necessary. Eluates were derivatized following a previously described method [Analyst 119 (1994) 2557]. Detection, identification and quantification of residues of this compound was carried out by gas chromatography with mass spectrometry in the negative chemical ionization mode. The proposed procedure permits the determination of dexamethasone in urine at levels as low as 0.2 ng ml(-1)

  9. Self-detection of x-ray Fresnel transmissivity using photoelectron-induced gas ionization

    NASA Astrophysics Data System (ADS)

    Stoupin, Stanislav

    2016-01-01

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmissivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach could serve as a basis for non-invasive in situ diagnostics of hard x-ray optics, easy access to complementary x-ray transmissivity data in x-ray reflectivity experiments, and might also pave the way to advanced schemes for angle and energy resolving x-ray detectors.

  10. Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection.

    PubMed

    Duong, Samantha; Strobel, Norbert; Buddhadasa, Saman; Stockham, Katherine; Auldist, Martin; Wales, Bill; Orbell, John; Cran, Marlene

    2016-11-15

    A novel method for the measurement of total phytosterols in fortified food was developed and tested using gas chromatography with flame ionization detection. Unlike existing methods, this technique is capable of simultaneously extracting sterols during saponification thus significantly reducing extraction time and cost. The rapid method is suitable for sterol determination in a range of complex fortified foods including milk, cheese, fat spreads, oils and meat. The main enhancements of this new method include accuracy and precision, robustness, cost effectiveness and labour/time efficiencies. To achieve these advantages, quantification and the critical aspects of saponification were investigated and optimised. The final method demonstrated spiked recoveries in multiple matrices at 85-110% with a relative standard deviation of 1.9% and measurement uncertainty value of 10%. PMID:27283669

  11. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-01-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  12. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-07-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  13. Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes

    SciTech Connect

    Zhang, Jingyuan; Zhang, Yong Pan, Zhigang; Yang, Shuang; Shi, Jinghui; Li, Shengtao; Min, Daomin; Wang, Xiaohua; Liu, Dingxin; Yang, Aijun; Li, Xin

    2015-08-31

    Nitric oxide NO is one of the major targets for environmental monitoring, but the existing NO sensors are limited by their low sensitivity and narrow test range. Here, a NO gas sensor employing multiwalled carbon nanotubes (MWCNTs) was fabricated, and its properties in NO–N{sub 2} mixture were investigated from both emission and ionization. The current I{sub e} passing through the nanotubes cathode was found to decrease with increasing NO concentration and increase linearly in different slopes with the extracting voltage U{sub e}. It is shown that the Schottky barrier of the MWCNTs calculated by I{sub e} increased with NO concentration due to the adsorption of NO gas, which restrained the electron emission and consequently weakened the ionization. The positive ion currents I{sub c} passing through the collecting electrode at different voltages of U{sub e} were found to monotonically decrease with increasing NO concentration, which was induced by both of the reduced electron emission and the consumption of the two excited metastable states N{sub 2}(A{sup 3}∑{sub u}{sup +}) and N{sub 2}(a′{sup 1}∑{sub u}{sup −}) by NO. The sensor exhibited high sensitivity at the low temperature of 30 °C. The calculated conductivity was found to be able to take place of I{sub c} for NO detection in a wide voltage range of 80–150 V U{sub e}.

  14. KINEMATICS OF IONIZED GAS AT 0.01 AU OF TW Hya

    SciTech Connect

    Goto, M.; Linz, H.; Henning, Th.; Carmona, A.; Stecklum, B.; Meeus, G.; Usuda, T.

    2012-03-20

    We report two-dimensional spectroastrometry of Br{gamma} emission of TW Hya to study the kinematics of the ionized gas in the star-disk interface region. The spectroastrometry with the integral field spectrograph SINFONI at the Very Large Telescope is sensitive to the positional offset of the line emission down to the physical scale of the stellar diameter ({approx}0.01 AU). The centroid of Br{gamma} emission is displaced to the north with respect to the central star at the blue side of the emission line, and to the south at the red side. The major axis of the centroid motion is P.A. = -20 Degree-Sign , which is nearly equal to the major axis of the protoplanetary disk projected on the sky, previously reported by CO submillimeter spectroscopy (P.A. = -27 Degree-Sign ). The line-of-sight motion of the Br{gamma} emission, in which the northern side of the disk is approaching toward us, is also consistent with the direction of the disk rotation known from the CO observation. The agreement implies that the kinematics of Br{gamma} emission is accounted for by the ionized gas in the inner edge of the disk. A simple modeling of the astrometry, however, indicates that the accretion inflow similarly well reproduces the centroid displacements of Br{gamma}, but only if the position angles of the centroid motion and the projected disk ellipse are a chance coincidence. No clear evidence of disk wind is found.

  15. Nearby early-type galaxies with ionized gas. VI. The Spitzer-IRS view. Basic data set analysis and empirical spectral classification

    NASA Astrophysics Data System (ADS)

    Panuzzo, P.; Rampazzo, R.; Bressan, A.; Vega, O.; Annibali, F.; Buson, L. M.; Clemens, M. S.; Zeilinger, W. W.

    2011-04-01

    Context. A large fraction of early-type galaxies (ETGs) shows emission lines in their optical spectra, mostly with LINER characteristics. Despite the number of studies, the nature of the ionization mechanisms is still debated. Many ETGs also show several signs of rejuvenation episodes. Aims: We aim to investigate the ionization mechanisms and the physical processes of a sample of ETGs using mid-infrared spectra. Methods: We present here low resolution Spitzer-IRS spectra of 40 ETGs, 18 of which from our proposed Cycle 3 observations, selected from a sample of 65 ETGs showing emission lines in their optical spectra. We homogeneously extract the mid-infrared (MIR) spectra, and after the proper subtraction of a "passive" ETG template, we derive the intensity of the ionic and molecular lines and of the polycyclic aromatic hydrocarbon (PAH) emission features. We use MIR diagnostic diagrams to investigate the powering mechanisms of the ionized gas. Results: The mid-infrared spectra of early-type galaxies show a variety of spectral characteristics. We empirically sub-divide the sample into five classes of spectra with common characteristics. Class-0, accounting for 20% of the sample, are purely passive ETGs with neither emission lines nor PAH features. Class-1 show emission lines but no PAH features, and account for 17.5% of the sample. Class-2, in which 50% of the ETGs are found, as well as having emission lines, show PAH features with unusual ratios, e.g. 7.7 μm/11.3 μm ≤ 2.3. Class-3 objects (7.5% of the sample) have emission lines and PAH features with ratios typical of star-forming galaxies. Class-4, containing only 5% of the ETGs, is dominated by a hot dust continuum. The diagnostic diagram [Ne iii]15.55 μm/[Ne ii]12.8 μm vs. [S iii]33.48 μm/[Si ii]34.82 μm, is used to investigate the different mechanisms ionizing the gas. According to the above diagram most of our ETGs contain gas ionized via either AGN-like or shock phenomena, or both. Conclusions: Most of

  16. The Connection Between Reddening, Gas Covering Fraction, and the Escape of Ionizing Radiation at High Redshift

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Pettini, Max; Bogosavljević, Milan; Shapley, Alice E.

    2016-09-01

    Using a large sample of spectroscopically confirmed z∼ 3 galaxies, we establish an empirical relationship between reddening (E(B-V)), neutral gas covering fraction ({f}{{cov}}({{H}} {{I}})), and the escape of ionizing (Lyman continuum, LyC) photons. Our sample includes 933 galaxies at z∼ 3,121 of which have deep spectroscopic observations (≳ 7 hr) at 850≲ {λ }{{rest}}≲ 1300 Å with the Low Resolution Imaging Spectrograph on Keck. The high covering fraction of outflowing optically thick {{H}} {{I}} indicated by the composite spectra of these galaxies implies that photoelectric absorption, rather than dust attenuation, dominates the depletion of LyC photons. By modeling the composite spectra as the combination of an unattenuated stellar spectrum including nebular continuum emission with one that is absorbed by {{H}} {{I}} and reddened by a line-of-sight extinction, we derive an empirical relationship between E(B-V) and {f}{{cov}}({{H}} {{I}}). Galaxies with redder UV continua have larger covering fractions of {{H}} {{I}} characterized by higher line-of-sight extinctions. We develop a model which connects the ionizing escape fraction with E(B-V), and which may be used to estimate the ionizing escape fraction for an ensemble of galaxies. Alternatively, direct measurements of the escape fraction for our sample allow us to constrain the intrinsic LyC-to-UV flux density ratio to be < S(900 \\mathring{{A}} )/S(1500 \\mathring{{A}} ){> }{{int}}≳ 0.20, a value that favors stellar population models that include weaker stellar winds, a flatter initial mass function, and/or binary evolution. Last, we demonstrate how the framework discussed here may be used to assess the pathways by which ionizing radiation escapes from high-redshift galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous

  17. Dressed-bound-state molecular strong-field approximation: Application to above-threshold ionization of heteronuclear diatomic molecules

    SciTech Connect

    Hasovic, E.; Busuladzic, M.; Becker, W.; Milosevic, D. B.

    2011-12-15

    The molecular strong-field approximation (MSFA), which includes dressing of the molecular bound state, is introduced and applied to above-threshold ionization of heteronuclear diatomic molecules. Expressions for the laser-induced molecular dipole and polarizability as functions of the laser parameters (intensity and frequency) and molecular parameters [molecular orientation, dipole, and parallel and perpendicular polarizabilities of the highest occupied molecular orbital (HOMO)] are presented. Our previous MSFA theory, which incorporates the rescattering effects, is generalized from homonuclear to heteronuclear diatomic molecules. Angle- and energy-resolved high-order above-threshold ionization spectra of oriented heteronuclear diatomic molecules, exemplified by the carbon monoxide (CO) molecule, exhibit pronounced minima, which can be related to the shape of their HOMO-electron-density distribution. For the CO molecule we have found an analytical condition for the positions of these minima. We have also shown that the effect of the dressing of the HOMO is twofold: (i) the laser-induced Stark shift decreases the ionization yield and (ii) the laser-induced time-dependent dipole and polarizability change the oscillatory structure of the spectra.

  18. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. V. [Ne ii], MULTIPLE CLUSTERS, HIGH EFFICIENCY STAR FORMATION, AND BLUE FLOWS IN HE 2–10

    SciTech Connect

    Beck, Sara; Turner, Jean; Lacy, John; Greathouse, Thomas

    2015-11-20

    We measured the 12.8 μm [Ne ii] line in the dwarf starburst galaxy He 2–10 with the high-resolution spectrometer TEXES on the NASA IRTF. The data cube has a diffraction-limited spatial resolution of ∼1″ and a total velocity resolution, including thermal broadening, of ∼5 km s{sup −1}. This makes it possible to compare the kinematics of individual star-forming clumps and molecular clouds in the three dimensions of space and velocity, and allows us to determine star formation efficiencies. The kinematics of the ionized gas confirm that the starburst contains multiple dense clusters. From the M/R of the clusters and the ≃30%–40% star formation efficiencies, the clusters are likely to be bound and long lived, like globulars. Non-gravitational features in the line profiles show how the ionized gas flows through the ambient molecular material, as well as a narrow velocity feature, which we identify with the interface of the H ii region and a cold dense clump. These data offer an unprecedented view of the interaction of embedded H ii regions with their environment.

  19. A reservoir of ionized gas in the galactic halo to sustain star formation in the Milky Way.

    PubMed

    Lehner, Nicolas; Howk, J Christopher

    2011-11-18

    Without a source of new gas, our Galaxy would exhaust its supply of gas through the formation of stars. Ionized gas clouds observed at high velocity may be a reservoir of such gas, but their distances are key for placing them in the galactic halo and unraveling their role. We have used the Hubble Space Telescope to blindly search for ionized high-velocity clouds (iHVCs) in the foreground of galactic stars. We show that iHVCs with 90 ≤ |v(LSR)| ≲ 170 kilometers per second (where v(LSR) is the velocity in the local standard of rest frame) are within one galactic radius of the Sun and have enough mass to maintain star formation, whereas iHVCs with |v(LSR)| ≳ 170 kilometers per second are at larger distances. These may be the next wave of infalling material.

  20. A reservoir of ionized gas in the galactic halo to sustain star formation in the Milky Way.

    PubMed

    Lehner, Nicolas; Howk, J Christopher

    2011-11-18

    Without a source of new gas, our Galaxy would exhaust its supply of gas through the formation of stars. Ionized gas clouds observed at high velocity may be a reservoir of such gas, but their distances are key for placing them in the galactic halo and unraveling their role. We have used the Hubble Space Telescope to blindly search for ionized high-velocity clouds (iHVCs) in the foreground of galactic stars. We show that iHVCs with 90 ≤ |v(LSR)| ≲ 170 kilometers per second (where v(LSR) is the velocity in the local standard of rest frame) are within one galactic radius of the Sun and have enough mass to maintain star formation, whereas iHVCs with |v(LSR)| ≳ 170 kilometers per second are at larger distances. These may be the next wave of infalling material. PMID:21868626

  1. Extended ionized gas in elliptical galaxies. II. Velocity and monochromatic maps of 11 elliptical and lenticular galaxies

    NASA Astrophysics Data System (ADS)

    Plana, H.; Boulesteix, J.; Amram, Ph.; Carignan, C.; Mendes de Oliveira, C.

    1998-02-01

    For the last ten years faint ionized gas detection has been carried out for elliptical galaxies with success. The kinematics is essential to understand galaxy gas origin and fate. Here we present a sample of 11 elliptical and lenticular galaxies observed with the ``Cigale" scanning Perot-Fabry instrument. For each galaxy monochromatic and velocity map of ionized gas is presented. Geometrical properties such as viewing angles and axis ratios are also derived from observations. Double gaseous components are found in 3 galaxies of our sample, implying an external origin for at least part of the observed gas. % Based on observations collected with the S.A.O. 6 m telescope located in Nizhnij Arkhyz (Russia), the 3.6 m CFH telescope and the 3.6 m telescope at ESO.

  2. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    NASA Astrophysics Data System (ADS)

    Germann, Matthias; Willitsch, Stefan

    2016-07-01

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.

  3. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  4. Determination of BROMATE AT PARTS-PER-TRILLION LEVELS BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH NEGATIVE CHEMICAL IONIZATION

    EPA Science Inventory

    The ozonation of bromide-containing source waters produces bromate as a class 2B carcinogenic disinfection by-product. The present work describes the determination of bromate by gas chromatography-negative chemical ionization mass spectrometry (GC-NCIMS) following a bromate react...

  5. Direct gas-phase detection of nerve and blister warfare agents utilizing active capillary plasma ionization mass spectrometry.

    PubMed

    Wolf, J-C; Schaer, M; P Siegenthaler, P; Zenobi, R

    2015-01-01

    Ultrasensitive direct gas-phase detection of chemical warfare agents (CWAs) is demonstrated utilizing active capillary plasma ionization and triple quadrupole mass spectrometry (MS) instrumentation. Four G- agents, two V-agents and various blistering agents [including sulfur mustard (HD)] were detected directly in the gas phase with limits of detection in the low parts per trillion (ng m(-3)) range. The direct detection of HD was shown for dry carrier gas conditions, but signals vanished when humidity was present, indicating a possible direct detection of HD after sufficient gas phase pretreatment. The method provided sufficient sensitivity to monitor directly the investigated volatile CWAs way below their corresponding minimal effect dose, and in most cases even below the eight hours worker exposure concentration. In general, the ionization is very soft, with little to no in-source fragmentation. Especially for the G-agents, some dimer formation occurred at higher concentrations. This adds complexity, but also further selectivity, to the corresponding mass spectra. Our results show that the active capillary plasma ionization is a robust, sensitive, "plug and play" ambient ionization source suited (but not exclusively) to the very sensitive detection of CWAs. It has the potential to be used with portable MS instrumentation. PMID:26307710

  6. Molecular dynamics-based ion-surface interaction models for ionized physical vapor deposition feature scale simulations

    SciTech Connect

    Coronell, D.G.; Hansen, D.E.; Voter, A.F.; Liu, C.; Liu, X.; Kress, J.D.

    1998-12-01

    A procedure is presented for incorporating the results of atomistic simulations of ion{endash}surface interactions into integrated circuit topographic simulations of ionized physical vapor deposition (PVD). Energy and angular dependent sticking probabilities for energetic Cu atoms impacting a {l_brace}111{r_brace} Cu surface, obtained from molecular dynamics simulations, were implemented in a simple Monte Carlo flux model. The resulting flux-averaged Cu sticking probability was found to vary significantly with position within submicron features and with the feature geometry. This illustrates the shortcomings of a constant (energy and angle independent) sticking probability model for ionized PVD. {copyright} {ital 1998 American Institute of Physics.}

  7. Dust trap formation in a non-self-sustained discharge with external gas ionization

    SciTech Connect

    Filippov, A. V. Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  8. Development of a Mesoscale Pulsed Discharge Helium Ionization Detector for Portable Gas Chromatography.

    PubMed

    Manginell, Ronald P; Mowry, Curtis D; Pimentel, Adam S; Mangan, Michael A; Moorman, Matthew W; Sparks, Elizabeth S; Allen, Amy; Achyuthan, Komandoor E

    2015-01-01

    Miniaturization of gas chromatography (GC) instrumentation enables field detection of volatile organic compounds (VOCs) for chembio-applications such as clandestine human transport and disease diagnostics. We fabricated a mesoscale pulsed discharge helium ionization detector (micro-PDHID) for integrating with our previously described mini-GC hardware. Stainless steel electrodes fabricated by photochemical etching and electroforming facilitated rapid prototyping and enabled nesting of inter-electrode insulators for self-alignment of the detector core during assembly. The prototype was ∼10 cm(3) relative to >400 cm(3) of a commercial PDHID, but with a comparable time to sweep a VOC peak from the detector cell (170 ms and 127 ms, respectively). Electron trajectory modeling, gas flow rate, voltage bias, and GC outlet location were optimized for improving sensitivity. Despite 40-fold miniaturization, the micro-PDHID detected 18 ng of the human emanation, 3-methyl-2-hexenoic acid with <3-fold decrease in sensitivity relative to the commercial detector. The micro-PDHID was rugged and operated for 9 months without failure. PMID:26561264

  9. Numerical studies of the behavior of ionized residual gas in an energy recovering linac

    NASA Astrophysics Data System (ADS)

    Pöplau, Gisela; van Rienen, Ursula; Meseck, Atoosa

    2015-04-01

    Next generation light sources such as energy recovering linacs (ERLs) are highly sensitive to instabilities due to ionized residual gas, which must be mitigated for successful operation. Vacuum pumps are insufficient for removal of the ions, as the ions are trapped by the beam's electrical potential. Two effective measures are (i) introducing clearing gaps in the bunch train, and (ii) installing clearing electrodes which pull out the trapped ions from the electrical potential of the beam. In this paper, we present numerical studies on the behavior of ion clouds that interact with bunch trains in an ERL taking into account the effects of the clearing gaps and clearing electrodes. We present simulations with different compositions of the residual gas. Simulations are done using the MOEVE PIC Tracking software package developed at Rostock University, which has been upgraded to include the behavior of ion clouds in the environment of additional electromagnetic fields, such as generated by clearing electrodes. The simulations use the parameters of the Berlin Energy Recovery Linac Project (bERLinPro) to allow for the deduction of appropriate measures for bERLinPro 's design and operation.

  10. Initial velocity of secondary ions from XY-TOF technique, simultaneous calibration by residual gas ionization

    NASA Astrophysics Data System (ADS)

    Jalowy, T.; Weber, Th; Dörner, R.; Farenzena, L.; Collado, V. M.; da Silveira, E. F.; Schmidt-Böcking, H.; Groeneveld, K. O.

    2004-01-01

    A crucial parameter to distinguish the prompt secondary ion emission from surfaces after particle impact from the delayed one is T0(m/q), the time-of-flight (TOF) of ions with a given mass m and charge q "emitted" with zero velocity. This quantity is also an important reference for the measurement of prompt ion emission velocity distribution. Presented is a novel and accurate method to determine T0(m/q), based on position sensitive XY-TOF analysis of residual gas ionization along the projectile trajectory, which is a low-pressure version of the traditional cloud chamber technique. Measurements using a mixture of He, Ne and Ar gases at low pressure (10-5 mbar) were performed to illustrate this new T0-gas target calibration method. Secondary ion emission of Hn+, CnHn+ and Li+ ions from C, Al and LiF targets, bombarded by MeV Ar0 and N0 projectiles, is analyzed. It is found that, in contrast to Li+, hydrogen and hydrocarbon ions are always promptly emitted. The initial velocity distribution of H2+ is determined and discussed.

  11. Dust trap formation in a non-self-sustained discharge with external gas ionization

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Babichev, V. N.; Pal', A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-01

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  12. Development of a Mesoscale Pulsed Discharge Helium Ionization Detector for Portable Gas Chromatography.

    PubMed

    Manginell, Ronald P; Mowry, Curtis D; Pimentel, Adam S; Mangan, Michael A; Moorman, Matthew W; Sparks, Elizabeth S; Allen, Amy; Achyuthan, Komandoor E

    2015-01-01

    Miniaturization of gas chromatography (GC) instrumentation enables field detection of volatile organic compounds (VOCs) for chembio-applications such as clandestine human transport and disease diagnostics. We fabricated a mesoscale pulsed discharge helium ionization detector (micro-PDHID) for integrating with our previously described mini-GC hardware. Stainless steel electrodes fabricated by photochemical etching and electroforming facilitated rapid prototyping and enabled nesting of inter-electrode insulators for self-alignment of the detector core during assembly. The prototype was ∼10 cm(3) relative to >400 cm(3) of a commercial PDHID, but with a comparable time to sweep a VOC peak from the detector cell (170 ms and 127 ms, respectively). Electron trajectory modeling, gas flow rate, voltage bias, and GC outlet location were optimized for improving sensitivity. Despite 40-fold miniaturization, the micro-PDHID detected 18 ng of the human emanation, 3-methyl-2-hexenoic acid with <3-fold decrease in sensitivity relative to the commercial detector. The micro-PDHID was rugged and operated for 9 months without failure.

  13. A molecular dynamics simulation of DNA damage induction by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Abolfath, Ramin M.; Carlson, David J.; Chen, Zhe J.; Nath, Ravinder

    2013-10-01

    We present a multi-scale simulation of the early stage of DNA damages by the indirect action of hydroxyl (•OH) free radicals generated by electrons and protons. The computational method comprises of interfacing the Geant4-DNA Monte Carlo with ReaxFF molecular dynamics software. A clustering method was employed to map the coordinates of •OH-radicals extracted from the ionization-track-structures onto nano-meter simulation voxels filled with DNA and water molecules. The molecular dynamics simulation provides the time-evolution and chemical reactions in individual simulation voxels as well as the energy-landscape accounted for the DNA-•OH chemical reaction that is essential for the first-principle enumeration of hydrogen abstractions, chemical bond breaks, and DNA-lesions induced by collection of ions in clusters less than the critical dimension which is approximately 2-3 Å. We show that the formation of broken bonds leads to DNA-base and backbone damages that collectively propagate to DNA single and double-strand breaks. For illustration of the methodology, we focused on particles with an initial energy of 1 MeV. Our studies reveal a qualitative difference in DNA damage induced by low energy electrons and protons. Electrons mainly generate small pockets of •OH-radicals, randomly dispersed in the cell volume. In contrast, protons generate larger clusters along a straight-line parallel to the direction of the particle. The ratio of the total DNA double-strand breaks induced by a single proton and electron track is determined to be ≈4 in the linear scaling limit. In summary, we have developed a multi-scale computational model based on first-principles to study the interaction of ionizing radiation with DNA molecules. The main advantage of our hybrid Monte Carlo approach using Geant4-DNA and ReaxFF is the multi-scale simulation of the cascade of both physical and chemical events which result in the formation of biological damage. The tool developed in this

  14. Molecular Gas and Star Formation in Void Galaxies

    NASA Astrophysics Data System (ADS)

    Das, M.; Saito, T.; Iono, D.; Honey, M.; Ramya, S.

    2016-10-01

    We present the detection of molecular gas using CO(1-0) line emission and followup Hα imaging observations of galaxies located in nearby voids. The CO(1-0) observations were done using the 45m telescope of the Nobeyama Radio Observatory (NRO) and the optical observations were done using the Himalayan Chandra Telescope (HCT). Although void galaxies lie in the most underdense parts of our universe, a significant fraction of them are gas rich, spiral galaxies that show signatures of ongoing star formation. Not much is known about their cold gas content or star formation properties. In this study we searched for molecular gas in five void galaxies using the NRO. The galaxies were selected based on their relatively higher IRAS fluxes or Hα line luminosities. CO(1-0) emission was detected in four galaxies and the derived molecular gas masses lie between (1 - 8)×109 M⊙. The Hα imaging observations of three galaxies detected in CO emission indicates ongoing star formation and the derived star formation rates vary between from 0.2 - 1.0 M7odot; yr -1, which is similar to that observed in local galaxies. Our study shows that although void galaxies reside in underdense regions, their disks may contain molecular gas and have star formation rates similar to galaxies in denser environments.

  15. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    PubMed

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques. PMID:23364690

  16. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    PubMed

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques.

  17. The Properties and the Evolution of the Highly Ionized Gas in MR 2251-178

    NASA Technical Reports Server (NTRS)

    Kaspi, Shai; Netzer, hagai; Chelouche, Doron; George, Ian M.; Nandra, Kirpal; Turner, T. J.

    2004-01-01

    We present the first XMM-Newton observations of the radio-quiet quasar MR 2251-178 obtained in 2000 and 2002. The EPIC-pn spectra show a power-law continuum with a slope of Gamma = 1.6 at high energies absorbed by at least two warm absorbers (WAs) intrinsic to the source. The underlying continuum in the earlier observation shows a soft excess at low X-ray energies which can be modeled as an additional power-law with Gamma = 2.9. The spectra also show a weak narrow iron K alpha emission line. The high-resolution grating spectrum obtained in 2002 shows emission lines from N VI, O VII, O VIII, Ne IX, and Ne X, as well as absorption lines from the low-ionization ions of O III, O IV, and O V, and other confirmed and suspected weaker absorption lines. The O III - O V lines are consistent with the properties of the emission line gas observed as extended optical (O III) emission in this source. The signal-to-noise of the 2000 grating data is too low to detect any lines. We suggest a model for the high-resolution spectrum which consist of two or three warm-absorber (WA) components. The two-components model has a high-ionization WA with a column density of 10(exp 21.5)-10 (exp 21.8) sq cm and a low-ionization absorber with a column density of 10(exp 20.3) sq cm. In the three-components model we add a lower ionization component that produces the observed iron M-shell absorption lines. We investigate the spectral variations in MR 2251-178 over a period of 8.5 years using data from ASCA, BeppoSAX, and XMM-Newton. All X-ray observations can be fitted with the above two power laws and the two absorbers. The observed luminosity variations seems to correlate with variations in the soft X-ray continuum. The 8.5 year history of the source suggests a changing X-ray absorber due to material that enters and disappears from the line-of-sight on timescales of several months. We also present, for the first time, the entire FUSE spectrum of MR 2251-178. We detect emission from N III, C III

  18. Very metal-poor galaxies: ionized gas kinematics in nine objects

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.; Pustilnik, S. A.; Kniazev, A. Y.

    2010-07-01

    The study of ionized gas morphology and kinematics in nine extremely metal-deficient (XMD) galaxies with the scanning Fabry-Perot interferometer on the Special Astrophysical Observatory (SAO) 6-m telescope is presented. Some of these very rare objects (with currently known range of O/H of 7.12 < 12 + log(O/H) < 7.65, or ) are believed to be the best proxies of `young' low-mass galaxies in the high-redshift Universe. One of the main goals of this study is to look for possible evidence of star formation (SF) activity induced by external perturbations. Recent results from HI mapping of a small subsample of XMD star-forming galaxies provided confident evidence for the important role of interaction-induced SF. Our observations provide complementary or new information that the great majority of the studied XMD dwarfs have strongly disturbed gas morphology and kinematics or the presence of detached components. We approximate the observed velocity fields by simple models of a rotating tilted thin disc, which allows us the robust detection of non-circular gas motions. These data, in turn, indicate the important role of current/recent interactions and mergers in the observed enhanced SF. As a by-product of our observations, we obtained data for two Low Surface Brightness (LSB) dwarf galaxies: Anon J012544+075957 that is a companion of the merger system UGC 993, and SAO 0822+3545 which shows off-centre, asymmetric, low star formation rate star-forming regions, likely induced by the interaction with the companion XMD dwarf HS 0822+3542. Based on observations obtained with the Special Astrophysical Observatory RAS 6-m telescope. E-mail: moisav@gmail.com (AVM); sap@sao.ru (SAP); akniazev@saao.ac.za (AYK)

  19. Nonadiabatic dynamics and multiphoton resonances in strong-field molecular ionization with few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Tagliamonti, Vincent; Sándor, Péter; Zhao, Arthur; Rozgonyi, Tamás; Marquetand, Philipp; Weinacht, Thomas

    2016-05-01

    We study strong-field molecular ionization using few- (four to ten) cycle laser pulses. Employing a supercontinuum light source, we are able to tune the optical laser wavelength (photon energy) over a range of ˜200 nm (500 meV). We measure the photoelectron spectrum for a series of different molecules as a function of laser intensity, frequency, and bandwidth and illustrate how the ionization dynamics vary with these parameters. We find that multiphoton resonances and nonadiabatic dynamics (internal conversion) play an important role and result in ionization to different ionic continua. Interestingly, while nuclear dynamics can be "frozen" for sufficiently short laser pulses, we find that resonances strongly influence the photoelectron spectrum and final cationic state of the molecule regardless of pulse duration—even for pulses that are less than four cycles in duration.

  20. Collisional dynamics in a gas of molecular super-rotors.

    PubMed

    Khodorkovsky, Yuri; Steinitz, Uri; Hartmann, Jean-Michel; Averbukh, Ilya Sh

    2015-01-01

    Recently, femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion relatively slow. Here we study collisional equilibration dynamics of this new state of molecular gases. We show that the route to equilibrium starts with a metastable 'gyroscopic stage' in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational-translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the optical birefringence and anisotropic diffusion in the gas. After a certain induction time, the 'gyroscopic stage' is abruptly terminated by an explosive rotational-translational energy exchange, leading the gas towards the final equilibrium. We illustrate our conclusions by direct molecular dynamics simulation of several gases of linear molecules. PMID:26160223

  1. Collisional dynamics in a gas of molecular super-rotors

    PubMed Central

    Khodorkovsky, Yuri; Steinitz, Uri; Hartmann, Jean-Michel; Averbukh, Ilya Sh.

    2015-01-01

    Recently, femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion relatively slow. Here we study collisional equilibration dynamics of this new state of molecular gases. We show that the route to equilibrium starts with a metastable ‘gyroscopic stage' in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational–translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the optical birefringence and anisotropic diffusion in the gas. After a certain induction time, the ‘gyroscopic stage' is abruptly terminated by an explosive rotational–translational energy exchange, leading the gas towards the final equilibrium. We illustrate our conclusions by direct molecular dynamics simulation of several gases of linear molecules. PMID:26160223

  2. Molecular-beam gas-sampling system

    NASA Technical Reports Server (NTRS)

    Young, W. S.; Knuth, E. L.

    1972-01-01

    A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.

  3. Dissecting the molecular mechanism of ionizing radiation-induced tissue damage in the feather follicle.

    PubMed

    Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao

    2014-01-01

    Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage.

  4. IZI: INFERRING THE GAS PHASE METALLICITY (Z) AND IONIZATION PARAMETER (q) OF IONIZED NEBULAE USING BAYESIAN STATISTICS

    SciTech Connect

    Blanc, Guillermo A.; Kewley, Lisa; Vogt, Frédéric P. A.; Dopita, Michael A.

    2015-01-10

    We present a new method for inferring the metallicity (Z) and ionization parameter (q) of H II regions and star-forming galaxies using strong nebular emission lines (SELs). We use Bayesian inference to derive the joint and marginalized posterior probability density functions for Z and q given a set of observed line fluxes and an input photoionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits. The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically calibrated SEL diagnostics, the method is flexible and not tied to a particular photoionization model. We describe our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample of nearby extragalactic H II regions, we assess the performance of commonly used SEL abundance diagnostics. We also use a sample of 22 local H II regions having both direct and recombination line (RL) oxygen abundance measurements in the literature to study discrepancies in the abundance scale between different methods. We find that oxygen abundances derived through Bayesian inference using currently available photoionization models in the literature can be in good (∼30%) agreement with RL abundances, although some models perform significantly better than others. We also confirm that abundances measured using the direct method are typically ∼0.2 dex lower than both RL and photoionization-model-based abundances.

  5. A high-dispersion molecular gas component in nearby galaxies

    SciTech Connect

    Caldú-Primo, Anahi; Walter, Fabian; Sandstrom, Karin; Schruba, Andreas; Leroy, Adam; De Blok, W. J. G.; Ianjamasimanana, R.; Mogotsi, K. M.

    2013-12-01

    We present a comprehensive study of the velocity dispersion of the atomic (H I) and molecular (H{sub 2}) gas components in the disks (R ≲ R {sub 25}) of a sample of 12 nearby spiral galaxies with moderate inclinations. Our analysis is based on sensitive high-resolution data from the THINGS (atomic gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kiloparsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galactocentric distance, star formation rate surface density, H I surface density, H{sub 2} surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for H I of 11.9 ± 3.1 km s{sup –1} and for CO of 12.0 ± 3.9 km s{sup –1}. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of H I, with an average ratio of σ{sub HI}/σ{sub CO}= 1.0 ± 0.2 irrespective of the stacking parameter. The measured CO velocity dispersions are significantly higher (factor of ∼2) than the traditional picture of a cold molecular gas disk associated with star formation. The high dispersion implies an additional thick molecular gas disk (possibly as thick as the H I disk). Our finding is in agreement with recent sensitive measurements in individual edge-on and face-on galaxies and points toward the general existence of a thick disk of molecular gas, in addition to the well-known thin disk in nearby spiral galaxies.

  6. PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE z = 1.5 STAR-FORMING GALAXY EGS13011166

    SciTech Connect

    Genzel, R.; Tacconi, L. J.; Kurk, J.; Wuyts, S.; Foerster Schreiber, N. M.; Gracia-Carpio, J.; Combes, F.; Freundlich, J.; Bolatto, A.; Cooper, M. C.; Neri, R.; Nordon, R.; Bournaud, F.; Comerford, J.; Cox, P.; Davis, M.; Garcia-Burillo, S.; Naab, T.; Lutz, D. E-mail: linda@mpe.mpg.de; and others

    2013-08-10

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H{alpha} line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the ''Plateau de Bure high-z, blue-sequence survey'' (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similar and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a ''mixed'' extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlog{Sigma}{sub starform}/dlog{Sigma}{sub molgas}, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 {+-} 0.1.

  7. [S IV] IN THE NGC 5253 SUPERNEBULA: IONIZED GAS KINEMATICS AT HIGH RESOLUTION

    SciTech Connect

    Beck, Sara C.; Lacy, John H.; Turner, Jean L.; Kruger, Andrew; Richter, Matt; Crosthwaite, Lucian P.

    2012-08-10

    The nearby dwarf starburst galaxy NGC 5253 hosts a deeply embedded radio-infrared supernebula excited by thousands of O stars. We have observed this source in the 10.5 {mu}m line of S{sup +3} at 3.8 km s{sup -1} spectral and 1.''4 spatial resolution, using the high-resolution spectrometer TEXES on the IRTF. The line profile cannot be fit well by a single Gaussian. The best simple fit describes the gas with two Gaussians, one near the galactic velocity with FWHM 33.6 km s{sup -1} and another of similar strength and FWHM 94 km s{sup -1} centered {approx}20 km s{sup -1} to the blue. This suggests a model for the supernebula in which gas flows toward us out of the molecular cloud, as in a 'blister' or 'champagne flow' or in the H II regions modelled by Zhu.

  8. Self-injection and acceleration of electrons during ionization of gas atoms by a short laser pulse

    SciTech Connect

    Singh, K.P.

    2006-04-15

    Using a relativistic three-dimensional single-particle code, acceleration of electrons created during the ionization of nitrogen and oxygen gas atoms by a laser pulse has been studied. Barrier suppression ionization model has been used to calculate ionization time of the bound electrons. The energy gained by the electrons peaks for an optimum value of laser spot size. The electrons created near the tail do not gain sufficient energy for a long duration laser pulse. The electrons created at the tail of pulse escape before fully interacting with the trailing part of the pulse for a short duration laser pulse, which causes electrons to retain sufficient energy. If a suitable frequency chirp is introduced then energy of the electrons created at the tail of the pulse further increases.

  9. Observations of columnal recombination in the ionization tracks of energetic heavy nuclei in an argon-methane gas mixture

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1990-01-01

    Measurements of ionization signals resulting from the passage of energetic heavy nuclei through a gas mixture consisting of 95 mol percent Ar plus 5 mol percent CH4, at an absolute pressure of 3 atm are presented. The measurements take place under a uniform electric field perpendicular to the ionization track. The signals were compared to the calculated energy losses, with an assumption of proportionality between energy loss rate and ionization rate. Significant deviations from proportionality are found for energy loss rate grater than about 3000 MeV sq cm/g, while fractional deviations are found to be proportional to the energy loss rate (dE/dx) exp m, where m is equal to about two. These results are attributed to the columnal recombination.

  10. Molecular orientation effect on the differential cross sections for the electron-impact double ionization of oriented water molecules

    SciTech Connect

    Champion, C.; Dal Cappello, C.; Oubaziz, D.; Aouchiche, H.; Popov, Yu. V.

    2010-03-15

    Double ionization of isolated water molecules fixed in space is here investigated in a theoretical approach based on the first Born approximation. Secondary electron angular distributions are reported for particular (e,3e) kinematical conditions and compared in terms of shape and magnitude. Strong dependence of the fivefold differential cross sections on the molecular target orientation is clearly observed in (e,3-1e) as well as (e,3e) channels. Furthermore, for the major part of the kinematics considered, we identified the different mechanisms involved in the double ionization of water molecule, namely, the direct shake-off process as well as the two-step1 process. They are both discussed and analyzed with respect to the molecular target orientation.

  11. Integral Field Unit Observations of NGC 4302: Kinematics of the Diffuse Ionized Gas Halo

    NASA Astrophysics Data System (ADS)

    Heald, George H.; Rand, Richard J.; Benjamin, Robert A.; Bershady, Matthew A.

    2007-07-01

    We present moderate-resolution spectroscopy of extraplanar diffuse ionized gas (EDIG) emission in the edge-on spiral galaxy NGC 4302. The spectra were obtained with the SparsePak integral field unit (IFU) at the WIYN Observatory. The wavelength coverage of the observations includes the [N II] λ6548, 6583, Hα, and [S II] λ6716, 6731 emission lines. The spatial coverage of the IFU includes the entirety of the EDIG emission noted in previous imaging studies of this galaxy. The spectra are used to construct position-velocity (PV) diagrams at several ranges of heights above the midplane. Azimuthal velocities are directly extracted from the PV diagrams using the envelope-tracing method and indicate an extremely steep drop-off in rotational velocity with increasing height, with magnitude ~30 km s-1 kpc-1. We find evidence for a radial variation in the velocity gradient on the receding side. We have also performed artificial observations of galaxy models in an attempt to match the PV diagrams. The results of a statistical analysis also favor a gradient of ~30 km s-1 kpc-1. We compare these results with an entirely ballistic model of disk-halo flow and find a strong dichotomy between the observed kinematics and those predicted by the model. The disagreement is worse than we have found for other galaxies in previous studies. The conclusions of this paper are compared to results for two other galaxies, NGC 5775 and NGC 891. We find that the vertical gradient in rotation speed, per unit EDIG scale height, for all three galaxies is consistent with a constant magnitude (within the errors) of approximately 15-25 km s-1 per scale height, independent of radius. This relationship is also true within the galaxy NGC 4302. We also discuss how the gradient depends on the distribution and morphology of the EDIG and the star formation rates of the galaxies, and consequences for the origin of the gas.

  12. Diffuse gas in retired galaxies: nebular emission templates and constraints on the sources of ionization

    NASA Astrophysics Data System (ADS)

    Johansson, Jonas; Woods, Tyrone E.; Gilfanov, Marat; Sarzi, Marc; Chen, Yan-Mei; Oh, Kyuseok

    2016-10-01

    We present emission-line templates for passively-evolving (`retired') galaxies, useful for investigation of the evolution of the interstellar medium in these galaxies, and characterization of their high-temperature source populations. The templates are based on high signal-to-noise (>800) co-added spectra (3700-6800 Å) of ˜11 500 gas-rich Sloan Digital Sky Survey galaxies devoid of star formation and active galactic nuclei. Stacked spectra are provided for the entire sample and sub-samples binned by mean stellar age. In our previous paper, Johansson et al., these spectra provided the first measurements of the He II 4686 Å line in passively-evolving galaxies, and the observed He II/Hβ ratio constrained the contribution of accreting white dwarfs (the `single-degenerate' scenario) to the Type Ia supernova rate. In this paper, the full range of unambiguously detected emission lines are presented. Comparison of the observed [O I] 6300 Å/Hα ratio with photoionization models further constrains any high-temperature single-degenerate scenario for Type Ia supernovae (with 1.5 ≲ T/105 K ≲ 10) to ≲3-6 per cent of the observed rate in the youngest age bin (i.e. highest SN Ia rate). Hence, for the same temperatures, in the presence of an ambient population of post-asymptotic giant branch stars, we exclude additional high-temperature sources with a combined ionizing luminosity of ≈1.35 × 1030 L⊙/M⊙,* for stellar populations with mean ages of 1-4 Gyr. Furthermore, we investigate the extinction affecting both the stellar and nebular continuum. The latter shows about five times higher values. This contradicts isotropically distributed dust and gas that renders similar extinction values for both cases.

  13. BTEX determination in water matrices using HF-LPME with gas chromatography-flame ionization detector.

    PubMed

    Sarafraz-Yazdi, A; Amiri, A H; Es'haghi, Z

    2008-03-01

    In the present work, a sample pre-treatment technique for the determination of trace concentrations of benzene, toluene, ethyl benzene and xylene (BTEX) in aqueous samples has been developed and applied to analysis of the selected analytes in environmental water samples. The extraction procedure is based on coupling polypropylene hollow-fiber liquid phase microextraction (HF-LPME) with gas chromatography by flame ionization detection (GC-FID). The effective parameters such as organic solvent, extraction time, agitation speed and salting effect were investigated. Good reproducibilities of the extraction performance were obtained, with the RSD values ranging from 2.02 to 4.61% (n=5). The method provided 41.47-128.01 fold preconcentration of the target analytes. The limits of detections for the BTEX were in the range of 0.005-03microg ml(-1). In addition, sample clean-up was achieved during LPME due to the selectivity of the hollow fiber, which prevented undesirable large molecules from being extracted. Real samples (River and waste waters) containing BTEX were examined using this method with good linearity and precision (RSDs most lower than 6.00%, n=5). All experiments were carried out at room temperature, 22+/-0.5 degrees C.

  14. Hα and [SII] Emission from Warm Ionized Gas in the Scutum-Centaurus Arm

    NASA Astrophysics Data System (ADS)

    Hill, Alex S.; Benjamin, Robert A.; Haffner, L. Matthew; Gostisha, Martin C.; Barger, Kathleen A.

    2014-06-01

    We present Wisconsin H-Alpha Mapper [SII] λ6716 and Hα spectroscopic maps of the warm ionized medium (WIM) in the Scutum-Centaurus Arm at Galactic longitudes 310° < l < 345°. Using extinction-corrected Hα intensities (I_{{H} \\alpha }^c), we measure an exponential scale height of electron density squared in the arm of H_{n_e^2}= 0.30 \\, {kpc} (assuming a distance of 3.5 kpc), intermediate between that observed in the inner Galaxy and in the Perseus Arm. The [S II]/Hα line ratio is enhanced at large |z| and in sightlines with faint I_{{H} \\alpha }^c. We find that the [S II]/Hα line ratio has a power-law relationship with I_{{H} \\alpha }^c from a value of ≈1.0 at I_{{H} \\alpha }^c< 0.2 \\, {R} (Rayleighs) to a value of ≈0.08 at I_{{H} \\alpha }^c\\gtrsim 100 \\, {R}. The line ratio is better correlated with Hα intensity than with height above the plane, indicating that the physical conditions within the WIM vary systematically with electron density. We argue that the variation of the line ratio with height is a consequence of the decrease of electron density with height. Our results reinforce the well-established picture in which the diffuse Hα emission is due primarily to emission from in situ photoionized gas, with scattered light only a minor contributor.

  15. Aerial surveillance for gas and liquid hydrocarbon pipelines using a flame ionization detector (FID)

    SciTech Connect

    Riquetti, P.V.; Fletcher, J.I.; Minty, C.D.

    1996-12-31

    A novel application for the detection of airborne hydrocarbons has been successfully developed by means of a highly sensitive, fast responding Flame Ionization Detector (FID). The traditional way to monitor pipeline leaks has been by ground crews using specific sensors or by airborne crews highly trained to observe anomalies associated with leaks during periodic surveys of the pipeline right-of-way. The goal has been to detect leaks in a fast and cost effective way before the associated spill becomes a costly and hazardous problem. This paper describes a leak detection system combined with a global positioning system (GPS) and a computerized data output designed to pinpoint the presence of hydrocarbons in the air space of the pipeline`s right of way. Fixed wing aircraft as well as helicopters have been successfully used as airborne platforms. Natural gas, crude oil and finished products pipelines in Canada and the US have been surveyed using this technology with excellent correlation between the aircraft detection and in situ ground detection. The information obtained is processed with a proprietary software and reduced to simple coordinates. Results are transferred to ground crews to effect the necessary repairs.

  16. Terahertz ionization of highly charged quantum posts in a perforated electron gas.

    PubMed

    Morris, Christopher M; Stehr, Dominik; Kim, Hyochul; Truong, Tuan-Anh; Pryor, Craig; Petroff, Pierre M; Sherwin, Mark S

    2012-03-14

    "Quantum posts" are roughly cylindrical semiconductor nanostructures that are embedded in an energetically shallower "matrix" quantum well of comparable thickness. We report measurements of voltage-controlled charging and terahertz absorption of 30 nm thick InGaAs quantum wells and posts. Under flat-band (zero-electric field) conditions, the quantum posts each contain approximately six electrons, and an additional ~2.4 × 10(11) cm(-2) electrons populate the quantum well matrix. In this regime, absorption spectra show peaks at 3.5 and 4.8 THz (14 and 19 meV) whose relative amplitude depends strongly on temperature. These peaks are assigned to intersubband transitions of electrons in the quantum well matrix. A third, broader feature has a temperature-independent amplitude and is assigned to an absorption involving quantum posts. Eight-band k·p calculations incorporating the effects of strain and Coulomb repulsion predict that the electrons in the posts strongly repel the electrons in the quantum well matrix, "perforating" the electron gas. The strongest calculated transition, which has a frequency close to the center of the quantum post related absorption at 5 THz (20 meV), is an ionizing transition from a filled state to a quasi-bound state that can easily scatter to empty states in the quantum well matrix.

  17. Mass spectrometric evaluation of the gas phase structure of noncovalent quadruplex DNA obtained by electrospray ionization

    SciTech Connect

    Edmonds, C.G.; Cheng, Xueheng; Bakhtiar, R.; Van Orden, S.; Smith, R.D.; Schlegel, C.; Camp, D.G. II

    1994-12-31

    A number of quanine-rich DNA sequences have been recognized which assemble into quadrupole-helical non-Watson/Crick hybridized structures. These sequences have been localized in a number of key regions in chromosomal DNA including telomers and transcriptional promoters. The preservation of this tetrameric association in the gas phase following electrospray ionization (ESI) has been reported in this laboratory. The authors have extended these studies by the preparation of four candidate quadruplex oligomers. Three of these (I, 5{prime}-dCGC GGG GCG-3{prime}; II, 5{prime}dCGC GGGG GCG-3{prime} and III, 5{prime}-dCGC GGGGG GCG-3{prime}) differ in the number of quanine residues available for G-quartet stacking in the quadruplex array and a fourth (HG, 5{prime}-dCGC AGGG GCG03{prime}) is a sequence prominent in human telomeric DNA. During their preparation, the authors observed remarkable stability of the multimeric species in the condensed phase including intact migration in HPLC under apparently {open_quotes}denaturing{close_quotes} conditions. Under standard conditions (aqueous solution of oligonucleotide samples and nozzle-skimmer interface) on a linear quadrupole mass spectrometer oligonucleotide samples showed the typical distribution of charge states for unassociated oligonucleotides. ESI from phosphate-EDTA buffered solutions with the utilization of a capillary/skimmer interface arrangement which provides mild conditions for transfer of ions through the atmosphere/vacuum interface afforded spectra which show prominent contributions from species with quadrupole stoichiometry together monomeric materials.

  18. Ethanol analysis by headspace gas chromatography with simultaneous flame-ionization and mass spectrometry detection.

    PubMed

    Tiscione, Nicholas B; Alford, Ilene; Yeatman, Dustin Tate; Shan, Xiaoqin

    2011-09-01

    Ethanol is the most frequently identified compound in forensic toxicology. Although confirmation involving mass spectrometry is desirable, relatively few methods have been published to date. A novel technique utilizing a Dean's Switch to simultaneously quantitate and confirm ethyl alcohol by flame-ionization (FID) and mass spectrometric (MS) detection after headspace sampling and gas chromatographic separation is presented. Using 100 μL of sample, the limits of detection and quantitation were 0.005 and 0.010 g/dL, respectively. The zero-order linear range (r(2) > 0.990) was determined to span the concentrations of 0.010 to 1.000 g/dL. The coefficient of variation of replicate analyses was less than 3.1%. Quantitative accuracy was within ±8%, ±6%, ±3%, and ±1.5% at concentrations of 0.010, 0.025, 0.080, and 0.300 g/dL, respectively. In addition, 1,1-difluoroethane was validated for qualitative identification by this method. The validated FID-MS method provides a procedure for the quantitation of ethyl alcohol in blood by FID with simultaneous confirmation by MS and can also be utilized as an identification method for inhalants such as 1,1-difluoroethane. PMID:21871160

  19. BTEX determination in water matrices using HF-LPME with gas chromatography-flame ionization detector.

    PubMed

    Sarafraz-Yazdi, A; Amiri, A H; Es'haghi, Z

    2008-03-01

    In the present work, a sample pre-treatment technique for the determination of trace concentrations of benzene, toluene, ethyl benzene and xylene (BTEX) in aqueous samples has been developed and applied to analysis of the selected analytes in environmental water samples. The extraction procedure is based on coupling polypropylene hollow-fiber liquid phase microextraction (HF-LPME) with gas chromatography by flame ionization detection (GC-FID). The effective parameters such as organic solvent, extraction time, agitation speed and salting effect were investigated. Good reproducibilities of the extraction performance were obtained, with the RSD values ranging from 2.02 to 4.61% (n=5). The method provided 41.47-128.01 fold preconcentration of the target analytes. The limits of detections for the BTEX were in the range of 0.005-03microg ml(-1). In addition, sample clean-up was achieved during LPME due to the selectivity of the hollow fiber, which prevented undesirable large molecules from being extracted. Real samples (River and waste waters) containing BTEX were examined using this method with good linearity and precision (RSDs most lower than 6.00%, n=5). All experiments were carried out at room temperature, 22+/-0.5 degrees C. PMID:18221982

  20. Determination of 17 β-Estradiol in Rabbit Plasma by Gas Chromatography with Flame Ionization Detection

    PubMed Central

    Yilmaz, B; Kadioglu, Y.

    2012-01-01

    This article describes gas chromatography-flame ionization detection method for determination of 17 β-estradiol in rabbit plasma. 17 β-estradiol and internal standard progesterone were extracted from plasma using liquid–liquid extraction method. Linearity was found between 0.25 and 20 μg/ml (r2=0.994) for plasma samples. Intra-day and inter-day precision, expressed as the relative standard deviation were less than 5.5%, and accuracy (relative error) was less than 3.5%. The mean recovery of 17 β-estradiol samples was 94.4%. The limits of detection and quantification of method for plasma samples were 0.10 μg/ml and 0.15 μg/ml, respectively. Also, clinically used other 10 drugs were investigated to check for potential interferences and the method was successfully applied to the determination of 17 β-estradiol in New Zealand white rabbits. PMID:23439655

  1. Electron dynamics of molecular double ionization by circularly polarized laser pulses

    SciTech Connect

    Tong, Aihong; Zhou, Yueming; Huang, Cheng; Lu, Peixiang

    2013-08-21

    Using the classical ensemble method, we have investigated double ionization (DI) of diatomic molecules driven by circularly polarized laser pulses with different internuclear distances (R). The results show that the DI mechanism changes from sequential double ionization (SDI) to nonsequential double ionization (NSDI) as the internuclear distance increases. In SDI range, the structure of the electron momentum distribution changes seriously as R increases, which indicates the sensitive dependence of the release times of the two electrons on R. For NSDI, because of the circular polarization, the ionization of the second electron is not through the well-known recollision process but through a process where the first electron ionizes over the inner potential barrier of the molecule, moves directly towards the other nucleus, and kicks out the second electron.

  2. DENSITY OF WARM IONIZED GAS NEAR THE GALACTIC CENTER: LOW RADIO FREQUENCY OBSERVATIONS

    SciTech Connect

    Roy, Subhashis

    2013-08-10

    We have observed the Galactic center (GC) region at 0.154 and 0.255 GHz with the Giant Metrewave Radio Telescope. A total of 62 compact likely extragalactic (EG) sources are detected. Their scattering sizes decrease linearly with increasing angular distance from the GC up to about 1 Degree-Sign . The apparent scattering sizes of the sources are more than an order of magnitude less than predicted earlier by the NE2001 model of Galactic electron distribution within 359. Degree-Sign 5 < l < 0. Degree-Sign 5 and -0. Degree-Sign 5 < b < 0. Degree-Sign 5 (Hyperstrong Scattering Region) of the Galaxy. High free-free optical depths ({tau}) are observed toward most of the extended non-thermal sources within 0. Degree-Sign 6 from the GC. Significant variation of {tau} indicates that the absorbing medium is patchy at an angular scale of {approx}10' and n{sub e} is {approx}10 cm{sup -3}, which matches the NE2001 model. This model predicts the EG sources to be resolved out from 1.4 GHz interferometric surveys. However, out of 10 EG sources expected in the region, 8 likely EG are present in the 1.4 GHz catalog. Ionized interfaces of dense molecular clouds to the ambient medium are most likely responsible for strong scattering and low radio frequency absorption. However, dense GC clouds traced by CS J = 1-0 emission are found to have a narrow distribution of {approx}0. Degree-Sign 2 across the Galactic plane. Angular distribution of most EG sources seen through the so-called Hyperstrong Scattering Region are random in b, and typically {approx}7 out of 10 sources will not be seen through the dense molecular clouds, which explains why most of them are not scatter broadened at 1.4 GHz.

  3. An Extremely High Velocity Molecular Jet Surrounded by an Ionized Cavity in the Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.; Girart, Josep M.; Kristensen, Lars E.; Dunham, Michael M.; Rodríguez-Kamenetzky, Adriana; Carrasco-González, Carlos; Cortés, Paulo C.; Li, Zhi-Yun; Plambeck, Richard L.

    2016-06-01

    We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of a one-sided, high-velocity (˜80 km s-1) CO(J = 2\\to 1) jet powered by the intermediate-mass protostellar source Serpens SMM1-a. The highly collimated molecular jet is flanked at the base by a wide-angle cavity; the walls of the cavity can be seen in both 4 cm free-free emission detected by the Very Large Array and 1.3 mm thermal dust emission detected by ALMA. This is the first time that ionization of an outflow cavity has been directly detected via free-free emission in a very young, embedded Class 0 protostellar source that is still powering a molecular jet. The cavity walls are ionized either by UV photons escaping from the accreting protostellar source or by the precessing molecular jet impacting the walls. These observations suggest that ionized outflow cavities may be common in Class 0 protostellar sources, shedding further light on the radiation, outflow, and jet environments in the youngest, most embedded forming stars.

  4. Molecular Spectra in an Ultracold Strontium Rydberg Gas

    NASA Astrophysics Data System (ADS)

    Whalen, Joseph D.; Camargo, Francisco; Ding, Roger; Woehl, Germano, Jr.; Dunning, F. Barry; Killian, Thomas C.

    2016-05-01

    The interaction between a ground state atom and a highly excited Rydberg electron creates a potential that can support ultra-long-range bound molecular states comprising a Rydberg atom and several ground-state atoms. We excite these molecular states using two-photon spectroscopy in an ultracold gas of 84 Sr. In a thermal gas, we observe a highly structured spectrum of many-body bound states with one Rydberg atom and as many as three ground-state atoms in various vibrational levels. We also describe the spectrum in a dense, quantum degenerate gas, which is sensitive to the properties of the polaron formed by the binding of many atoms in the quantum gas to the Rydberg impurity. Because of the absence of a p-wave shape resonance in e-Sr scattering, the molecular spectrum in Sr provides a sensitive probe of the excitation dynamics in a quantum gas in a different regime than is accessible using Rb. Research supported by the AFOSR under Grant No. FA9550-14-1-0007, the NSF under Grants No. 1301773 and No. 1205946, the Robert A, Welch Foundation under Grants No. C-0734 and No. C-1844.

  5. Interpopulational variability of molecular responses to ionizing radiation in freshwater bivalves Anodonta anatina (Unionidae).

    PubMed

    Falfushynska, H; Gnatyshyna, L; Yurchak, I; Stoliar, O; Sokolova, I M

    2016-10-15

    Freshwater ecosystems are exposed to multiple anthropogenic stressors including chemical pollution and warming that can affect health of the resident organisms and their responses to novel challenges. We investigated the of in situ exposure history on molecular responses to a novel stressor, ionizing radiation, in unionid mollusks Anodonta anatina. Males from pristine (F-), agricultural (A-) sites and a cooling reservoir of a nuclear power plant (N-site) were exposed to acute low dose (2mGy) X-ray radiation followed by 14days of recovery (R-groups) or to control conditions (C-groups). Biomarkers of oxidative stress, geno-, cyto- and neurotoxicity were used to assess cellular injury and stress. Control group from the cooling reservoir (CN) had higher background levels of caspase-3 activity, metallothionein concentrations and nuclear lesions and lower levels of superoxide dismutase (SOD) and glutathione in the gills compared to other control groups (CF and CA). Irradiation induced cellular damage in mussels from all three sites including increased levels of nuclear lesions in hemocytes, depletion of caspase-3, suppression of superoxide dismutase and catalase activities, an increase of the lipid peroxidation and oxidized glutathione levels, as well as down-regulation of cholinesterase indicating neurotoxicity. The up-regulation of ethoxyresorufin-O-deethylase activity in the digestive gland and vitellogenin-like protein level in gonads were also found in radiation-exposed groups indicating feminization of males and disturbances of xenobiotic metabolism. The RA-group showed the greatest magnitude of radiation-induced stress responses compared to the other two groups. Overall, unionid mollusks, particularly those from a chronically polluted agricultural site, were highly sensitive to low-dose radiation (2mGy) indicating limitations of stress protection mechanisms to deal with multiple stressors.

  6. Interpopulational variability of molecular responses to ionizing radiation in freshwater bivalves Anodonta anatina (Unionidae).

    PubMed

    Falfushynska, H; Gnatyshyna, L; Yurchak, I; Stoliar, O; Sokolova, I M

    2016-10-15

    Freshwater ecosystems are exposed to multiple anthropogenic stressors including chemical pollution and warming that can affect health of the resident organisms and their responses to novel challenges. We investigated the of in situ exposure history on molecular responses to a novel stressor, ionizing radiation, in unionid mollusks Anodonta anatina. Males from pristine (F-), agricultural (A-) sites and a cooling reservoir of a nuclear power plant (N-site) were exposed to acute low dose (2mGy) X-ray radiation followed by 14days of recovery (R-groups) or to control conditions (C-groups). Biomarkers of oxidative stress, geno-, cyto- and neurotoxicity were used to assess cellular injury and stress. Control group from the cooling reservoir (CN) had higher background levels of caspase-3 activity, metallothionein concentrations and nuclear lesions and lower levels of superoxide dismutase (SOD) and glutathione in the gills compared to other control groups (CF and CA). Irradiation induced cellular damage in mussels from all three sites including increased levels of nuclear lesions in hemocytes, depletion of caspase-3, suppression of superoxide dismutase and catalase activities, an increase of the lipid peroxidation and oxidized glutathione levels, as well as down-regulation of cholinesterase indicating neurotoxicity. The up-regulation of ethoxyresorufin-O-deethylase activity in the digestive gland and vitellogenin-like protein level in gonads were also found in radiation-exposed groups indicating feminization of males and disturbances of xenobiotic metabolism. The RA-group showed the greatest magnitude of radiation-induced stress responses compared to the other two groups. Overall, unionid mollusks, particularly those from a chronically polluted agricultural site, were highly sensitive to low-dose radiation (2mGy) indicating limitations of stress protection mechanisms to deal with multiple stressors. PMID:27310535

  7. Radiative properties of molecular nitrogen ions produced by helium Penning ionization and argon effects

    NASA Technical Reports Server (NTRS)

    Miller, George, III; Song, Kyo-Dong

    1994-01-01

    The development of hypersonic aerospace vehicles requires a better understanding on the thermal and chemical nonequilibrium kinetics of participating species in shock layers. The computational fluid dynamic (CFD) codes developed for such flowfields overestimate the radiation in the spectral region of 300 - 600 nm. A speculation for this overestimation is that inclusion of Ar, CO2, and H2O at the upper atmosphere flight region makes a significant impact on radiative kinetics of molecular nitrogen ions. To define the effects of minority species on the radiative kinetics of N2(+), an experimental setup was made by using the helium Penning ionization. The vibrational and rotational temperature were measured by mapping the vibrational and rotational distributions of N2(+) emission with high spectroscopic resolution and absolute intensity measurements. Measured vibrational temperatures were in the range from 18,000 to 36,000 K, and rotational temperatures were in the range from 300 to 370 K. The irradiance of 391.44 nm line and rotational and vibrational temperatures were analyzed to define argon and CO2 effects on the N2(+) emission. When Ar or CO2 is injected with N2, the rotational temperature did not change. The irradiances were reduced by 34 percent and 78 percent for the 50 percent of mixture of Ar and CO2, respectively. The vibrational temperatures were increased by 24.1 percent and 82.9 percent for the 50 percent of mixture of Ar and CO2, respectively. It appears that there are no significant effects from small concentrations of Ar and CO2 at the upper atmosphere flight region.

  8. Dense gas in the Galactic central molecular zone is warm and heated by turbulence

    NASA Astrophysics Data System (ADS)

    Ginsburg, Adam; Henkel, Christian; Ao, Yiping; Riquelme, Denise; Kauffmann, Jens; Pillai, Thushara; Mills, Elisabeth A. C.; Requena-Torres, Miguel A.; Immer, Katharina; Testi, Leonardo; Ott, Juergen; Bally, John; Battersby, Cara; Darling, Jeremy; Aalto, Susanne; Stanke, Thomas; Kendrew, Sarah; Kruijssen, J. M. Diederik; Longmore, Steven; Dale, James; Guesten, Rolf; Menten, Karl M.

    2016-02-01

    Context. The Galactic center is the closest region where we can study star formation under extreme physical conditions like those in high-redshift galaxies. Aims: We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it. Methods: We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p - H2CO) transitions. We used the 32,1-22,0/ 30,3-20,2 line ratio to determine the gas temperature in n ~ 104-105 cm-3 gas. We have produced temperature maps and cubes with 30'' and 1 km s-1 resolution and published all data in FITS form. Results: Dense gas temperatures in the Galactic center range from ~60 K to >100 K in selected regions. The highest gas temperatures TG> 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km s-1 and 50 km s-1 clouds, and in "The Brick" (G0.253+0.016). We infer an upper limit on the cosmic ray ionization rate ζCR< 10-14s-1. Conclusions: The dense molecular gas temperature of the region around our Galactic center is similar to values found in the central regions of other galaxies, in particular starburst systems. The gas temperature is uniformly higher than the dust temperature, confirming that dust is a coolant in the dense gas. Turbulent heating can readily explain the observed temperatures given the observed line widths. Cosmic rays cannot explain the observed variation in gas temperatures, so CMZ dense gas temperatures are not dominated by cosmic ray heating. The gas temperatures previously observed to be high in the inner ~75 pc are confirmed to be high in the entire CMZ. The data can be accessed from doi:10.7910/DVN/27601 and are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A50

  9. Ionized Gas Kinematics at High Resolution. IV. Star Formation and a Rotating Core in the Medusa (NGC 4194)

    NASA Astrophysics Data System (ADS)

    Beck, Sara C.; Lacy, John; Turner, Jean; Greathouse, Thomas; Neff, Susan

    2014-05-01

    NGC 4194 is a post-merger starburst known as The Medusa for its striking tidal features. We present here a detailed study of the structure and kinematics of ionized gas in the central 0.65 kpc of the Medusa. The data include radio continuum maps with resolution up to 0.''18 (35 pc) and a 12.8 μm [Ne II] data cube with spectral resolution ~4 km s-1: the first high-resolution, extinction-free observations of this remarkable object. The ionized gas has the kinematic signature of a core in solid-body rotation. The starburst has formed a complex of bright compact H II regions, probably excited by deeply embedded super star clusters, but none of these sources is a convincing candidate for a Galactic nucleus. The nuclei of the merger partners that created the Medusa have not yet been identified.

  10. Ionized Gas Kinematics at High Resolution. IV. Star Formation and a Rotating Core in the Medusa (NGC 4194)

    NASA Technical Reports Server (NTRS)

    Beck, Sara C.; Lacy, John; Neff, Susan Gale; Turner, Jean; Greathouse, Thomas; Neff, Susan

    2014-01-01

    NGC 4194 is a post-merger starburst known as The Medusa for its striking tidal features.We present here a detailed study of the structure and kinematics of ionized gas in the central 0.65 kpc of the Medusa. The data include radio continuum maps with resolution up to 0".18 (35 pc) and a 12.8 micron [Ne II] data cube with spectral resolution approx. 4 km/s: the first high-resolution, extinction-free observations of this remarkable object. The ionized gas has the kinematic signature of a core in solid-body rotation. The starburst has formed a complex of bright compact H II regions, probably excited by deeply embedded super star clusters, but none of these sources is a convincing candidate for a Galactic nucleus. The nuclei of the merger partners that created the Medusa have not yet been identified.

  11. Identification of Guest-Host Inclusion Complexes in the Gas Phase by Electrospray Ionization-Mass Spectrometry

    ERIC Educational Resources Information Center

    Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.

    2015-01-01

    In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…

  12. The Role of Nuclear Motion in the Photo-Double Ionization ofMolecular Hydrogen

    SciTech Connect

    Horner, Daniel A.; Vanroose, Wim; Rescigno, Thomas N.; Martin,Fernando; McCurdy, C. William

    2006-10-26

    We examine the origin of recently observed variations with internuclear distance (R) of the fully differential cross sections for double ionization of aligned H2 by absorption of a single photon. Using the results of fully converged numerical solutions of the Schroedinger equation, we show that these variations arise primarily from pronounced differences in the R-dependence of the parallel and perpendicular components of the ionization amplitude. We also predict that R-dependences should be readily observable in the asymmetry parameter for photo-double ionization, even in experimental measurements that are not differential in the energy sharings between ejected photo-electrons.

  13. First Detections of Molecular Gas Associated with the Wolf-Rayet Ring Nebula NGC 3199

    NASA Astrophysics Data System (ADS)

    Marston, A. P.

    2001-12-01

    This paper presents the first observations of molecular gas associated with the Wolf-Rayet ring nebula NGC 3199 around the WR star WR 18. This includes first observations of the molecules HCN, HCO+, CN, and HNC seen in any Wolf-Rayet ring nebula. Our observations immediately suggest the presence of high-density molecular gas (>104 cm-3) in the nebula with significant amounts of associated molecular gas, which is in the form of clumpy ejecta and/or interstellar material. Molecular CO gas was mapped across the optically bright portion of the nebula and out into the diffuse ionized component using the 12CO J=1-->0 line. CO gas is not seen within the optically bright rim of NGC 3199 but adjacent to it. The optical emission rim therefore appears to mark regions of photodissociation. Velocity components in the CO data are consistent with those seen in high-resolution optical spectra of the Hα line but extend beyond the visible emission. A prior suggestion of the formation of the nebula via a bow shock appears unlikely since Hipparcos measurements show the proper motion of WR 18 is almost at right angles to the direction required for the bow shock model. Instead, line splitting toward the north of the nebula suggests that a possible blowout of the Wolf-Rayet wind through surrounding ejecta may be responsible for some of the velocity features observed. Preliminary estimates of molecular abundances in the nebula seen toward the central star are significantly higher than for the interstellar medium and are similar to those in planetary nebulae, although CN is distinctly underabundant in comparison to the very high values found in many planetary nebulae. The abundances found are consistent with the idea that at least a portion of the molecular material is associated with ejecta from the central star. Based on observations collected at the Swedish-ESO Submillimetre Telescope (SEST) at the European Southern Observatory, La Silla, Chile. The Swedish-ESO Submillimetre Telescope

  14. The most diffuse molecular gas in the galaxy.

    PubMed

    Liszt, Harvey S

    2013-10-01

    Interstellar molecules preferentially reside in denser, cooler, optically shielded portions of the interstellar medium, but a weak residue of H2 will form via purely gas-phase processes involving H(-) even in rather bare atomic gas, the so-called warm interstellar medium where the temperature (>1000 K) and electron fraction (0.01 to 0.1) are relatively high. Along with H2, a few trace molecules will also form in this gas, partially because strongly endothermic reactions such as C(+) + H2 → CH(+) + H are energetically allowed. The observed abundance patterns of SH(+), CH(+) and OH(+) are reproduced by the warm gas chemistry, but not their overall abundances with respect to hydrogen. Even the very smallest molecular hydrogen fractions observed in the Milky Way along sightlines of low mean density are well above those that can readily be produced in the warm interstellar medium by gas-phase or grain-surface H2 formation processes. This suggests that density inhomogeneities may obscure the molecular contribution of warmer gas.

  15. The most diffuse molecular gas in the galaxy.

    PubMed

    Liszt, Harvey S

    2013-10-01

    Interstellar molecules preferentially reside in denser, cooler, optically shielded portions of the interstellar medium, but a weak residue of H2 will form via purely gas-phase processes involving H(-) even in rather bare atomic gas, the so-called warm interstellar medium where the temperature (>1000 K) and electron fraction (0.01 to 0.1) are relatively high. Along with H2, a few trace molecules will also form in this gas, partially because strongly endothermic reactions such as C(+) + H2 → CH(+) + H are energetically allowed. The observed abundance patterns of SH(+), CH(+) and OH(+) are reproduced by the warm gas chemistry, but not their overall abundances with respect to hydrogen. Even the very smallest molecular hydrogen fractions observed in the Milky Way along sightlines of low mean density are well above those that can readily be produced in the warm interstellar medium by gas-phase or grain-surface H2 formation processes. This suggests that density inhomogeneities may obscure the molecular contribution of warmer gas. PMID:23390998

  16. STARS AND IONIZED GAS IN THE S0 GALAXY NGC 7743: AN INCLINED LARGE-SCALE GASEOUS DISK

    SciTech Connect

    Katkov, Ivan Yu.; Sil'chenko, Olga K.; Moiseev, Alexei V. E-mail: moisav@gmail.com

    2011-10-20

    We used deep, long-slit spectra and integral-field spectral data to study the stars, ionized gas kinematics, and stellar population properties in the lenticular barred galaxy NGC 7743. We show that ionized gas at distances larger than 1.5 kpc from the nucleus settles in the disk, which is significantly inclined toward the stellar disk of the galaxy. Making different assumptions about the geometry of the disks and including different sets of emission lines in the fitting, under the assumption of thin, flat-disk circular rotation, we obtain the full possible range of angles between the disks to be 34{sup 0} {+-} 9{sup 0} or 77{sup 0} {+-} 9{sup 0}. The most probable origin of the inclined disk is the external gas accretion from a satellite orbiting the host galaxy, with a corresponding angular momentum direction. The published data on the H I distribution around NGC 7743 suggest that the galaxy has a gas-rich environment. The emission-line ratio diagrams imply the domination of shock waves in the ionization state of the gaseous disk, whereas the contribution of photoionization from recent star formation seems to be negligible. In some parts of the disk, a difference between the velocities of the gas emitting from the forbidden lines and Balmer lines is detected. This may be caused by the mainly shock-excited inclined disk, whereas some fraction of the Balmer-line emission is produced by a small amount of gas excited by young stars in the main stellar disk of NGC 7743. In the circumnuclear region (R < 200 pc), some evidence of the active galactic nucleus jet's interaction with an ambient interstellar medium was found.

  17. Disk, merger, or outflow? Molecular gas kinematics in two powerful obscured QSOs at z ≥ 3.4

    NASA Astrophysics Data System (ADS)

    Polletta, M.; Nesvadba, N. P. H.; Neri, R.; Omont, A.; Berta, S.; Bergeron, J.

    2011-09-01

    We report on the detection of bright CO(4-3) line emission in two powerful, obscured quasars discovered in the SWIRE survey, SW022513 and SW022550 at z ≥ 3.4. We analyze the line strength and profile to determine the gas mass, dynamical mass, and the gas dynamics for both galaxies. In SW022513 we may have found the first evidence for a molecular, AGN-driven wind in the early Universe. The line profile in SW022513 is broad (FWHM=1000 km s-1) and blueshifted by -200 km s-1 relative to systemic (where the systemic velocity is estimated from the narrow components of ionized gas lines, as is commonly done for AGN at low and high redshifts). SW022550 has a more regular, double-peaked profile, which is marginally spatially resolved in our data, consistent with either a merger or an extended disk. The molecular gas masses, 4 × 1010 M⊙, are large and account for <30% of the stellar mass, making these obscured QSOs as gas rich as other powerful CO emitting galaxies at high redshift, i.e., submillimeter galaxies. Our sources exhibit relatively lower star-formation efficiencies compared to other dusty, powerful starburst galaxies at high redshift. We speculate that this could be a consequence of the AGN perturbing the molecular gas. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  18. A new in-gas-laser ionization and spectroscopy laboratory for off-line studies at KU Leuven

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Yu.; Creemers, P.; Ferrer, R.; Granados, C.; Gaffney, L. P.; Huyse, M.; Mogilevskiy, E.; Raeder, S.; Sels, S.; Van den Bergh, P.; Van Duppen, P.; Zadvornaya, A.

    2016-06-01

    The in-gas laser ionization and spectroscopy (IGLIS) technique is used to produce and to investigate short-lived radioactive isotopes at on-line ion beam facilities. In this technique, the nuclear reaction products recoiling out of a thin target are thermalized and neutralized in a high-pressure noble gas, resonantly ionized by the laser beams in a two-step process, and then extracted from the ion source to be finally accelerated and mass separated. Resonant ionization of radioactive species in the supersonic gas jet ensures very high spectral resolution because of essential reduction of broadening mechanisms. To obtain the maximum efficiency and the best spectral resolution, properties of the supersonic jet and the laser beams must be optimized. To perform these studies a new off-line IGLIS laboratory, including a new high-repetition-rate laser system and a dedicated off-line mass separator, has been commissioned. In this article, the specifications of the different components necessary to achieve optimum conditions in laser-spectroscopy studies of radioactive beams using IGLIS are discussed and the results of simulations are presented.

  19. Double ionization of rare-gas dimers: NeKr+e. -->. NeKr/sup 2 +/

    SciTech Connect

    Stephan, K.; Maerk, T.D.; Helm, H.

    1982-11-01

    The existence of the doubly charged dimer ion NeKr/sup 2 +/ is substantiated by electron-impact ionization of the mixed van der Waals dimer NeKr. The stability of this doubly charged molecule is discussed with the use of semiquantative potential energy curves. The electron-impact-ionization appearance potential confirms the prediction from the potential-energy curves.

  20. Discovery of nine extended ionized gas clouds in a z = 0.4 cluster

    SciTech Connect

    Yagi, Masafumi; Koyama, Yusei; Kodama, Tadayuki; Gu, Liyi; Nakata, Fumiaki; Hattori, Takashi; Yoshida, Michitoshi

    2015-02-01

    From deep Hα imaging data of Suprime-Cam/Subaru, we discovered nine extended ionized gas clouds (EIG) around galaxies in the Abell 851 cluster (A851) at z = 0.4. We surveyed a 30 × 25 arcmin region, and the EIGs were found only near the cluster center (<2.3 arcmin ∼ 750 kpc). The parent galaxies of the EIGs are star-forming or post-starburst galaxies, all of which are spectroscopically confirmed members of the cluster. Four out of the nine parent galaxies show distortion of stellar distribution in the disk, which can be a sign of recent interaction, and the interaction may have made the EIGs. On the other hand, six parent galaxies (one overlaps those exhibiting distortion) show Hα emission without stars, which implies ram pressure stripping. The spectrum of the brightest parent galaxy shows a post-starburst signature and resembles the Hα stripped galaxies found in the Coma cluster. Meanwhile, two brightest parent galaxies in A851 are more massive than the EIG parent galaxies in the Coma cluster. This is consistent with a “downsizing” of star-forming galaxies, though it is still within the statistical variance. We also analyzed Suprime-Cam data of another z=0.39 cluster, CL0024+17, but found no EIGs. The key difference between A851 and CL0024+17 would be the existence of a subcluster colliding with the main body of A851, in which six or seven out of the nine parent galaxies in A851 exist, and the fraction of EIGs in the subcluster is significantly higher than the main subcluster of A851 and CL0024+17.

  1. The Survey for Ionization in Neutral Gas Galaxies. I. Description and Initial Results

    NASA Astrophysics Data System (ADS)

    Meurer, Gerhardt R.; Hanish, D. J.; Ferguson, H. C.; Knezek, P. M.; Kilborn, V. A.; Putman, M. E.; Smith, R. C.; Koribalski, B.; Meyer, M.; Oey, M. S.; Ryan-Weber, E. V.; Zwaan, M. A.; Heckman, T. M.; Kennicutt, R. C., Jr.; Lee, J. C.; Webster, R. L.; Bland-Hawthorn, J.; Dopita, M. A.; Freeman, K. C.; Doyle, M. T.; Drinkwater, M. J.; Staveley-Smith, L.; Werk, J.

    2006-07-01

    We introduce the Survey for Ionization in Neutral Gas Galaxies (SINGG), a census of star formation in H I-selected galaxies. The survey consists of Hα and R-band imaging of a sample of 468 galaxies selected from the H I Parkes All Sky Survey (HIPASS). The sample spans three decades in H I mass and is free of many of the biases that affect other star-forming galaxy samples. We present the criteria for sample selection, list the entire sample, discuss our observational techniques, and describe the data reduction and calibration methods. This paper focuses on 93 SINGG targets whose observations have been fully reduced and analyzed to date. The majority of these show a single emission line galaxy (ELG). We see multiple ELGs in 13 fields, with up to four ELGs in a single field. All of the targets in this sample are detected in Hα, indicating that dormant (non-star-forming) galaxies with MHI>~3×107 Msolar are very rare. A database of the measured global properties of the ELGs is presented. The ELG sample spans 4 orders of magnitude in luminosity (Hα and R band), and Hα surface brightness, nearly 3 orders of magnitude in R surface brightness and nearly 2 orders of magnitude in Hα equivalent width (EW). The surface brightness distribution of our sample is broader than that of the Sloan Digital Sky Survey (SDSS) spectroscopic sample, the EW distribution is broader than prism-selected samples, and the morphologies found include all common types of star-forming galaxies (e.g., irregular, spiral, blue compact dwarf, starbursts, merging and colliding systems, and even residual star formation in S0 and Sa spirals). Thus, SINGG presents a superior census of star formation in the local universe suitable for further studies ranging from the analysis of H II regions to determination of the local cosmic star formation rate density.

  2. SIGGMA: A SURVEY OF IONIZED GAS IN THE GALAXY, MADE WITH THE ARECIBO TELESCOPE

    SciTech Connect

    Liu, B.; McIntyre, T.; Terzian, Y.; Minchin, R.; Anderson, L.; Churchwell, E.; Lebron, M.; Roshi, D. Anish

    2013-10-01

    A Survey of Ionized Gas in the Galaxy, made with the Arecibo telescope (SIGGMA), uses the Arecibo L-band Feed Array (ALFA) to fully sample the Galactic plane (30 Degree-Sign {<=} l {<=} 75 Degree-Sign and -2 Degree-Sign {<=} b {<=} 2 Degree-Sign ; 175 Degree-Sign {<=} l {<=} 207 Degree-Sign and -2 Degree-Sign {<=} b {<=} 1 Degree-Sign ) observable with the telescope in radio recombination lines (RRLs). Processed data sets are being produced in the form of data cubes of 2 Degree-Sign (along l) Multiplication-Sign 4 Degree-Sign (along b) Multiplication-Sign 151 (number of channels), archived and made public. The 151 channels cover a velocity range of 600 km s{sup -1} and the velocity resolution of the survey changes from 4.2 km s{sup -1} to 5.1 km s{sup -1} from the lowest frequency channel to the highest frequency channel. RRL maps with 3.'4 resolution and a line flux density sensitivity of {approx}0.5 mJy will enable us to identify new H II regions, measure their electron temperatures, study the physics of photodissociation regions with carbon RRLs, and investigate the origin of the extended low-density medium. Twelve Hn{alpha} lines fall within the 300 MHz bandpass of ALFA; they are resampled to a common velocity resolution to improve the signal-to-noise ratio (S/N) by a factor of three or more and preserve the line width. SIGGMA will produce the most sensitive fully sampled RRL survey to date. Here, we discuss the observing and data reduction techniques in detail. A test observation toward the H II region complex S255/S257 has detected Hn{alpha} and Cn{alpha} lines with S/N > 10.

  3. Discovery of Nine Extended Ionized Gas Clouds in a z = 0.4 Cluster

    NASA Astrophysics Data System (ADS)

    Yagi, Masafumi; Gu, Liyi; Koyama, Yusei; Nakata, Fumiaki; Kodama, Tadayuki; Hattori, Takashi; Yoshida, Michitoshi

    2015-02-01

    From deep Hα imaging data of Suprime-Cam/Subaru, we discovered nine extended ionized gas clouds (EIG) around galaxies in the Abell 851 cluster (A851) at z = 0.4. We surveyed a 30 × 25 arcmin region, and the EIGs were found only near the cluster center (\\lt 2.3 arcmin ˜ 750 kpc). The parent galaxies of the EIGs are star-forming or post-starburst galaxies, all of which are spectroscopically confirmed members of the cluster. Four out of the nine parent galaxies show distortion of stellar distribution in the disk, which can be a sign of recent interaction, and the interaction may have made the EIGs. On the other hand, six parent galaxies (one overlaps those exhibiting distortion) show Hα emission without stars, which implies ram pressure stripping. The spectrum of the brightest parent galaxy shows a post-starburst signature and resembles the Hα stripped galaxies found in the Coma cluster. Meanwhile, two brightest parent galaxies in A851 are more massive than the EIG parent galaxies in the Coma cluster. This is consistent with a “downsizing” of star-forming galaxies, though it is still within the statistical variance. We also analyzed Suprime-Cam data of another z=0.39 cluster, CL0024+17, but found no EIGs. The key difference between A851 and CL0024+17 would be the existence of a subcluster colliding with the main body of A851, in which six or seven out of the nine parent galaxies in A851 exist, and the fraction of EIGs in the subcluster is significantly higher than the main subcluster of A851 and CL0024+17.

  4. Hα and [SII] emission from warm Ionized GAS in the Scutum-Centaurus Arm

    SciTech Connect

    Hill, Alex S.; Benjamin, Robert A.; Gostisha, Martin C.; Haffner, L. Matthew; Barger, Kathleen A.

    2014-06-01

    We present Wisconsin H-Alpha Mapper [SII] λ6716 and Hα spectroscopic maps of the warm ionized medium (WIM) in the Scutum-Centaurus Arm at Galactic longitudes 310° < l < 345°. Using extinction-corrected Hα intensities (I{sub Hα}{sup c}), we measure an exponential scale height of electron density squared in the arm of H{sub n{sub e{sup 2}}}=0.30 kpc (assuming a distance of 3.5 kpc), intermediate between that observed in the inner Galaxy and in the Perseus Arm. The [S II]/Hα line ratio is enhanced at large |z| and in sightlines with faint I{sub Hα}{sup c}. We find that the [S II]/Hα line ratio has a power-law relationship with I{sub Hα}{sup c} from a value of ≈1.0 at I{sub Hα}{sup c}<0.2 R (Rayleighs) to a value of ≈0.08 at I{sub Hα}{sup c}≳100 R. The line ratio is better correlated with Hα intensity than with height above the plane, indicating that the physical conditions within the WIM vary systematically with electron density. We argue that the variation of the line ratio with height is a consequence of the decrease of electron density with height. Our results reinforce the well-established picture in which the diffuse Hα emission is due primarily to emission from in situ photoionized gas, with scattered light only a minor contributor.

  5. Electroscopy Ionization Photoelectron Spectroscopy: Probing the Electronic Structure of Inorganic Metal Complexes in the Gas Phase

    SciTech Connect

    Waters, Tom; Wang, Xue B.; Wang, Lai S.

    2007-02-01

    The coupling of electrospray to photoelectron spectroscopy has allowed a number of negatively charged solution phase transition metal complexes to be transferred to the gas phase and studied by photoelectron spectroscopy for the first time. Experiments have been performed on a range of species, including classic square-planar and octahedral transition-metal halide complexes, metal-metal bonded species, transition metal bis(dithiolene) centers and a variety of mononuclear and polynuclear iron-sulfur clusters that are related to important bioinorganic centers. The studies have provided detailed information about the electronic structure and molecular orbital energy levels of these species, allowing for direct comparison with theoretical calculations, and providing insight into their intrinsic redox properties in the absence of solvation.

  6. Tracing kinematic (mis)alignments in CALIFA merging galaxies. Stellar and ionized gas kinematic orientations at every merger stage

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; García-Lorenzo, B.; Falcón-Barroso, J.; van de Ven, G.; Lyubenova, M.; Wild, V.; Méndez-Abreu, J.; Sánchez, S. F.; Marquez, I.; Masegosa, J.; Monreal-Ibero, A.; Ziegler, B.; del Olmo, A.; Verdes-Montenegro, L.; García-Benito, R.; Husemann, B.; Mast, D.; Kehrig, C.; Iglesias-Paramo, J.; Marino, R. A.; Aguerri, J. A. L.; Walcher, C. J.; Vílchez, J. M.; Bomans, D. J.; Cortijo-Ferrero, C.; González Delgado, R. M.; Bland-Hawthorn, J.; McIntosh, D. H.; Bekeraitė, S.

    2015-10-01

    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPAkin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments in galaxies with morphological signatures of interaction. On the other hand, thelevel of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δPAkin are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δPAkin is larger than the typical values derived from isolated galaxies (48%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16°, compared to 10% from the control sample. Our results show the impact of interactions in the motion of stellar and ionized gas as well as the wide the variety of their spatially resolved kinematic distributions. This study also provides a local

  7. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  8. Constraints on molecular gas in cooling flows and powerful radio galaxies

    NASA Technical Reports Server (NTRS)

    O'Dea, Christopher P.; Baum, Stefi A.; Maloney, Philip R.; Tacconi, Linda J.; Sparks, William B.

    1994-01-01

    We searched for molecular gas in a heterogeneous sample of five radio-loud galaxies (three of which are inferred to be in cooling flow clusters) using the Swedish-European Southern Observatory (Swedish-ESO) Submillimeter Telescope. We do not detect CO in emission in any of the cluster sources at a 3 sigma level of typically 15 mK. White et al. (1991) have suggested column densities of N(sub H) approximately 10(exp 21)/sq cm in these clusters with a spatial covering factor of order unity and a total mass of M approximately 10(exp 12) solar mass. Our limits are inconsistent with these column densities and spatial covering factor unless the molecular gas is very cold (kinetic temperature close to 2.7 K) or there only a few clouds along each line of sight. We estimate minimum temperatures in the range approximately 20-30 K. We find that clouds of atomic and molecular hydrogen require strict fine-tuning of parameter space in order to satisfy the requirements for the large column densities N(sub H) approximately 10(exp 21)/sq cm, unit covering factor, and a small number of clouds along the line of sight. Currently the only way molecular gas can be responsible for the X-ray absorption and still be consistent with our observations is if (1) there is of order one cloud along the line of sight and (2) the optical depth in C-12 1 to 0 is less than 10. In addition, we present a Very Large Array (VLA) image of NGC 4696 which suggests this object is a member of the class of 'amorphous cooling flow radio sources.' The C-12 1 to 0 line is detected in emission in PKS 0634-206, a classical double radio galaxy which is rich in extended optical emission line gas. The estimated molecular gas mass is M(sub mol) approximately 3 x 10(exp 9) solar mass and is much larger than that of the ionized component detected in hydrogen alpha suggesting that the emission-line nebula is radiation bounded.

  9. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Araghi, Houshang; Zabihi, Zabiholah; Nayebi, Payman; Ehsani, Mohammad Mahdi

    2016-10-01

    II-VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  10. Highly ionized gas absorption in the disk and halo toward HD 167756 at 3.5 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Sembach, Kenneth R.; Cardelli, Jason A.

    1994-01-01

    High-resolution spectra of interstellar Si IV, C IV, and N V absorption lines along the 4 kpc path to the inner Galaxy star HD 167756 at z = -0.85 kpc are presented. The spectra were obtained with the echelle mode of Goddard High Resolution Spectrograph (GHRS) aboard the Hubble Space Telescope (HST) and have signal-to-noise ratios ranging from 23 to 38. The high resolution of the measurements full width at half maximum (FWHM = 3.5 km/s) results in fully resolved line profiles for the highly ionized gas absorption. The measurements provide information on the column density per unit velocity, N(v), as a function of velocity for Si IV, C IV, and N V. The C IV and N V profiles extend from -70 to +70 km/s, while the Si IV profiles extend from -40 to +70 km/s. The integrated logarithmic column densities are long N(Si IV) = 13.09 +/- 0.02, log N(C IV) = 13.83 +/- 0.02, and log N(N V) = 13.56 +/- 0.03. The N V profile is broad, asymmetric, and featureless, while the Si IV profile contains narrow absorption components near V(sub LSR) = -19, 0, +20, and +52 km/s with Doppler spread parameters, b about = 10-12 km/s. The C IV profile contains both broad and narrow structure. The high ion feature near +52 km/s is also detected in the low-ionization lines of Ca II, O I, Si II, and Fe II. The other narrow Si IV and C IV components occur within several km/s of components seen in low-ionization species. The sight line contains at least two types of highly ionized gas. One type gives rise to a broad N V profile, and the other results in the more structured Si IV profile. The C IV profile contains contributions from both types of highly ionized gas. The broad but asymmetric N V profile is well represented by a large Galactic scale height gas which is participating in Galactic rotation and has a combination of thermal and turbulent broadening with b(sub tot) about = 42 km/s. The C IV to N V abundance ratio of 1.0 +/- 0.3 for the gas implies T about 1.6 x 10(exp 5) K or about 8 x 10

  11. Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard; Panda, Jayanta

    1999-01-01

    A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.

  12. Self-Diffusion Coefficient of a Weakly Ionized Cesium Monatomic Gas. Symmetry Effects

    NASA Astrophysics Data System (ADS)

    Bouledroua, Moncef; Tahar Bouazza, M.

    2006-11-01

    The quantum-mechanical computation of the diffusion coefficient D begins with the determination of the singlet and triplet potential-energy curves which, in this work, separate asymptotically to Cs(6s)+Cs(6s). The knowledge of these potentials should lead to the determination of the phase shifts. Ignoring the identity of the interacting atoms, the cross section effective in diffusion is calculated for one molecular symmetry and the coefficient of diffusion is determined according to the Chapman-Enskog method. In reality, the colliding atoms are identical. Thus, the wave function of the diatomic system should be symmetrized. In such a case, quantum mechanics leads to symmetric and antisymmetric diffusion cross sections, as described by Karstic and Schultz, and the average diffusion cross section is recalculated by considering the Cs nuclear spin and the statistical weight of each molecular state. The evaluation of the self-diffusion coefficient of a dilute Cs gas is in a first step carried out without considering the symmetry effects. The results are compared with those of Nieto de Castro et al. The variation law with temperature of D are further analyzed when the symmetry effects are ignored/included.

  13. Laboratory and Ambient Measurements of Oxidized Organic Compounds in the Gas Phase Using Nitrate Ion Chemical Ionization Coupled with High Resolution Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Stark, H.; Canagaratna, M. R.; Krechmer, J.; Lambe, A. T.; Isaacman-VanWertz, G. A.; Nowak, J. B.; Kimmel, J.; Kroll, J. H.; Jayne, J. T.; Worsnop, D. R.

    2015-12-01

    Chemical Ionization Mass Spectrometry (CIMS) is a widely used technique for molecular level characterization of inorganic and organic gas phase species. Here we present laboratory and ambient measurements of gaseous organic compounds by means of a High Resolution Time-of-Flight Chemical Ionization Mass Spectrometry (HR-ToF-CIMS) using nitrate ion (NO3-) chemistry, which recently has proven capable of selectively detecting oxidized organic molecules in the gas-phase via clustering with NO3- and its high order clusters. Such low and extremely low volatility organic compounds (LVOC, ELVOC) have an important role in particulate phase chemistry and formation of secondary organic aerosol (SOA). The HR-ToF-CIMS was deployed during the Southern Oxidant and Aerosol Study (SOAS) at the forest site in Centreville, AL (June 1 - July 15, 2013), where emissions were dominated by biogenic volatile organic compounds (BVOC), occasionally mixing with anthropogenic emissions. During SOAS, the HR-ToF-CIMS detected oxidation products of both isoprene (typically C5 LVOC) and terpenes (typically C10 ELVOC). The isoprene-related LVOC showed a diurnal cycle with a day time peak, while two groups of terpene ELVOC were identified, one peaking at night and one peaking during the day. Positive Matrix Factorization (PMF) analyses are applied to the dataset to further interpret these observations. The effect of anthropogenic pollution on the biogenic-dominated environment was also investigated during periods of elevated nitrous and sulfur dioxide levels. To further aid in interpretation of the SOAS dataset, oxidized organic molecules were produced via OH and O3 initiated oxidation of biogenic gas-phase precursors in targeted laboratory studies and detected using the HR-ToF-CIMS. Spectra were obtained in these studies over a range of simulated atmospheric conditions.

  14. Effect of alcohol on the properties of micellar systems. Part 1. Critical micellization concentration, micelle molecular weight and ionization degree

    SciTech Connect

    Zana, R.; Yiv, S.; Strazielle, C.; Lianos, P.

    1981-03-01

    Additions of alcohols of medium chain length (butanol to hexanol) to micellar solutions result in a decrease of critical micelle concentration and micelle molecular weight, and an increase of the micelle ionization degree. Moreover, the micelle molecular weight (or surfactant aggregation number) at a given alcohol concentration increases with the surfactant concentration and may reach values larger than in the absence of alcohol. Striking differences have been found in the changes of molecular weight of TTAB micelles in H/sub 2/O-pentanol mixtures in the presence of 0.1 M KBr and in the absence of salt. These various results have been explained by considering the effect of the micelle solubilized alcohol on the micelle surface charge density and on the dielectric constant of the palisade layer. 48 references.

  15. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization[S

    PubMed Central

    Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  16. Detection and Mapping of Decoupled Stellar and Ionized Gas Structures in the Ultraluminous Infrared Galaxy IRAS 12112+0305.

    PubMed

    Colina; Arribas; Borne; Monreal

    2000-04-10

    Integral field optical spectroscopy with the INTEGRAL fiber-fed system and Hubble Space Telescope optical imaging are used to map the complex stellar and warm ionized gas structure in the ultraluminous infrared galaxy IRAS 12112+0305. Images reconstructed from wavelength-delimited extractions of the integral field spectra reveal that the observed ionized gas distribution is decoupled from the stellar main body of the galaxy, with the dominant continuum and emission-line regions separated by projected distances of up to 7.5 kpc. The two optical nuclei are detected as apparently faint emission-line regions, and their optical properties are consistent with being dust-enshrouded weak [O i] LINERs. The brightest emission-line region is associated with a faint (mI=20.4), giant H ii region of 600 pc diameter, in which a young ( approximately 5 Myr) massive cluster of about 2x107 M middle dot in circle dominates the ionization. Internal reddening toward the line-emitting regions and the optical nuclei ranges from 1 to 8 mag in the visual. Taking the reddening into account, the overall star formation in IRAS 12112+0305 is dominated by starbursts associated with the two nuclei and corresponds to a star formation rate of 80 M middle dot in circle yr-1. PMID:10727379

  17. Nonadiabatic dynamics in strong field molecular ionization with few cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Tagliamonti, Vincent; Sándor, Péter; Zhao, Arthur; Rozgonyi, Tamás; Marquetand, Philipp; Weinacht, Thomas

    2016-05-01

    We study strong field ionization in several small molecules using few (4-10) cycle laser pulses. Using a supercontinuum light source, we are able to tune the laser wavelength (photon energy) over ~ 200 nm (500 meV). We measure the photoelectron spectrum as a function of laser intensity, frequency, and bandwidth and demonstrate some control over the final state of the molecule in the ionization process. We find that intermediate multiphoton resonances and coupled electron nuclear dynamics result in ionization to different ionic continua. Interestingly, not only do these resonances strongly influence the final states produced in the cation, they can also dominate the PES whether the bandwidth is broad or narrow. This work has been supported by the National Science Foundation under Grant Number 1505679.

  18. ATOMIC AND MOLECULAR PHYSICS: Ionization of atoms by chirped attosecond pulses

    NASA Astrophysics Data System (ADS)

    Tan, Fang; Peng, Liang-You; Gong, Qi-Huang

    2009-11-01

    We investigate the ionization dynamics of atoms by chirped attosecond pulses using the strong field approximation method. The pulse parameters are carefully chosen in the regime where the strong field approximation method is valid. We analyse the effects of the chirp of attosecond pulses on the energy distributions and the corresponding left-right asymmetry of the ionized electrons. For a single chirped attosecond pulse, the ionized electrons can be redistributed and the left-right asymmetry shows oscillations because of the introduction of the chirp. For time-delayed double attosecond pulses at different intensities with the weaker one chirped, exchanging the order of the two pulses shows a relative shift of the energy spectra, which can be explained by the different effective time delays of different frequency components because of the chirp.

  19. Molecular Gas, Giant Molecular Clouds, and Star Formation in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Bureau, Martin

    2015-08-01

    I will first briefly review the molecular gas content of early-type galaxies, revealing that they unexpectedly harbour much cold gas, with a variety of morphologies. Second, I will show that the star formation efficiency (Kennicutt-Schmidt relation) of early-type galaxies is lower than that of spirals, and will discuss possible dynamical causes. Third, I will discuss the molecular line ratios of early-type galaxies (multiple transitions, isotopologues, and molecular tracers) and their implications (via modeling) for the physical conditions in the gas, revealing unexpected correlations with galaxy properties and both small-scale (e.g. star formation density) and large-scale (e.g. galaxy environment) dependencies. Last, I will present the first study of individually-resolved molecular clouds in an early-type galaxy (e.g. Larson's relations), again revealing differences with respect to standard star-forming late-type galaxies, in particular more luminous, denser, and higher velocity dispersion clouds associated with a gas higher surface density.

  20. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-01

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  1. Computational prediction of antibody binding sites on tetracycline antibiotics: electrostatic potentials and average local ionization energies on molecular surfaces.

    PubMed

    Kulshrestha, Pankaj; Sukumar, N; Murray, Jane S; Giese, Rossman F; Wood, Troy D

    2009-01-29

    Enzyme linked immunosorbent assay (ELISA) was used for the analysis of tetracycline, chlortetracycline, oxytetracycline, and their transformed compounds in environmental water samples. The antibodies employed in ELISA showed high relative affinity for tetracycline, epitetracycline, chlortetracycline, and epichlortetracycline as compared to anhydrotetracycline, epianhydrotetracycline, and anhydrochlortetracycline. The specificity and crossreactivity of these antibodies are discussed in relation to the electrostatic potentials and average local ionization energies computed on the molecular surfaces of tetracycline antibiotics and their transformed compounds with an objective of identifying common features as well as differences that may be related to the experimentally observed variation in cross-reactivity values. The computations were performed at both the HF/STO-3G and HF/6-31+G* levels using the Gaussian 98 program. The results in this study are based upon molecular electrostatic potentials and local ionization energies computed on isodensity molecular surfaces. The surface electrostatic potentials are characterized in terms of a group of statistically defined quantities, which include the average deviation, the positive, negative, and total variances, positive and negative surface extrema, and a parameter indicating the degree of electrostatic balance.

  2. Dressed-state strong-field approximation for laser-induced molecular ionization

    SciTech Connect

    Becker, W.; Chen, J.; Chen, S. G.; Milosevic, D. B.

    2007-09-15

    In the customary formulation of the strong-field approximation (SFA) for laser-induced ionization, the initial bound state is taken as field-free. In the formulation of a length-gauge SFA for ionization of a molecule described by a two-center binding potential with sufficiently large internuclear separation, we argue that the initial state has to be dressed in order to account for the different scalar potentials at the various centers. We propose a 'dressed-state' SFA to this end.

  3. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    SciTech Connect

    Leplat, N.; Rossi, M. J.

    2013-11-15

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300–630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10{sup 11} and 5.0 × 10{sup 11} molecule s{sup −1} cm{sup −3} of C{sub 2}H{sub 5}{sup •} (ethyl) and t-C{sub 4}H{sub 9}{sup •} (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  4. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source.

    PubMed

    Leplat, N; Rossi, M J

    2013-11-01

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300-630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C4H10 at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10(11) and 5.0 × 10(11) molecule s(-1) cm(-3) of C2H5(●) (ethyl) and t-C4H9(●) (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  5. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams.

    PubMed

    Fialkov, Alexander B; Moragn, Mati; Amirav, Aviv

    2011-12-30

    A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of

  6. Molecular gas content of H I monsters and implications to cold gas content evolution in galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Cheoljong; Chung, Aeree; Yun, Min S.; Cybulski, Ryan; Narayanan, G.; Erickson, N.

    2014-06-01

    We present 12CO (J = 1 → 0) observations of a sample of local galaxies (0.04 < z < 0.08) with a large neutral hydrogen reservoir, or `H I monsters'. The data were obtained using the redshift search receiver on the five college radio astronomy observatory (FCRAO) 14 m telescope. The sample consists of 20 H I-massive galaxies with MH I > 3 × 1010 M⊙ from the Arecibo Legacy Fast ALFA (ALFALFA) survey and 8 low surface brightness galaxies (LSBs) with a comparable MH I(>1.5 × 1010 M⊙). Our sample selection is purely based on the amount of neutral hydrogen, thereby providing a chance to study how atomic and molecular gas relate to each other in these H I-massive systems. We have detected CO in 15 out of 20 ALFALFA selected galaxies and 4 out of 8 LSBs with molecular gas mass MH2 of (1-11)× 109 M⊙. Their total cold gas masses of (2-7) × 1010 M⊙ make them some of the most gas-massive galaxies identified to date in the Local Universe. Observed trends associated with H I, H2, and stellar properties of the H I massive galaxies and the field comparison sample are analysed in the context of theoretical models of galaxy cold gas content and evolution, and the importance of total gas content and improved recipes for handling spatially differentiated behaviours of disc and halo gas are identified as potential areas of improvement for the modelling.

  7. PRESENT-DAY GALACTIC EVOLUTION: LOW-METALLICITY, WARM, IONIZED GAS INFLOW ASSOCIATED WITH HIGH-VELOCITY CLOUD COMPLEX A

    SciTech Connect

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.; Hill, Alex S.; Madsen, G. J.; Duncan, A. K. E-mail: haffner@astro.wisc.edu E-mail: wakker@astro.wisc.edu

    2012-12-20

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin H{alpha} Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map of Complex A across (l, b) = (124 Degree-Sign , 18 Degree-Sign ) to (171 Degree-Sign , 53 Degree-Sign ) and deep targeted observations in H{alpha}, [S II] {lambda}6716, [N II] {lambda}6584, and [O I] {lambda}6300 toward regions with high H I column densities, background quasars, and stars. The H{alpha} data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 10{sup 6} M{sub Sun }. We find that the Bland-Hawthorn and Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 10{sup 4} K or for gas with a high fraction of singly ionized nitrogen and sulfur.

  8. Present-day Galactic Evolution: Low-metallicity, Warm, Ionized Gas Inflow Associated with High-velocity Cloud Complex A

    NASA Astrophysics Data System (ADS)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.; Hill, Alex. S.; Madsen, G. J.; Duncan, A. K.

    2012-12-01

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin Hα Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s-1 in the local standard of rest reference frame. These observations include the first full Hα intensity map of Complex A across (\\mathit {l, b}) = (124{^\\circ }, 18{^\\circ }) to (171°, 53°) and deep targeted observations in Hα, [S II] λ6716, [N II] λ6584, and [O I] λ6300 toward regions with high H I column densities, background quasars, and stars. The Hα data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 106 M ⊙. We find that the Bland-Hawthorn & Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 104 K or for gas with a high fraction of singly ionized nitrogen and sulfur.

  9. Creation of multihole molecular wave packets via strong-field ionization

    SciTech Connect

    Geissler, Dominik; Weinacht, Thomas; Rozgonyi, Tamas; Gonzalez-Vazquez, Jesus; Gonzalez, Leticia; Nichols, Sarah

    2010-07-15

    We demonstrate the creation of vibrational wave packets on multiple electronic states of a molecule via strong-field ionization. Furthermore, we show that the relative contribution of the different electronic states depends on the shape of the laser pulse which launches the wave packets.

  10. P-MaNGA Galaxies: emission-lines properties - gas ionization and chemical abundances from prototype observations

    NASA Astrophysics Data System (ADS)

    Belfiore, F.; Maiolino, R.; Bundy, K.; Thomas, D.; Maraston, C.; Wilkinson, D.; Sánchez, S. F.; Bershady, M.; Blanc, G. A.; Bothwell, M.; Cales, S. L.; Coccato, L.; Drory, N.; Emsellem, E.; Fu, H.; Gelfand, J.; Law, D.; Masters, K.; Parejko, J.; Tremonti, C.; Wake, D.; Weijmans, A.; Yan, R.; Xiao, T.; Zhang, K.; Zheng, T.; Bizyaev, D.; Kinemuchi, K.; Oravetz, D.; Simmons, A.

    2015-05-01

    MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a 6-yr Sloan Digital Sky Survey (SDSS-IV) survey that will obtain spatially resolved spectroscopy from 3600 to 10 300 Å for a representative sample of over 10 000 nearby galaxies. In this paper, we present the analysis of nebular emission-line properties using observations of 14 galaxies obtained with P-MaNGA, a prototype of the MaNGA instrument. By using spatially resolved diagnostic diagrams, we find extended star formation in galaxies that are centrally dominated by Seyfert/LINER-like emission, which illustrates that galaxy characterizations based on single fibre spectra are necessarily incomplete. We observe extended low ionization nuclear emission-line regions (LINER)-like emission (up to 1Re) in the central regions of three galaxies. We make use of the Hα equivalent width [EW(Hα)] to argue that the observed emission is consistent with ionization from hot evolved stars. We derive stellar population indices and demonstrate a clear correlation between Dn(4000) and EW(HδA) and the position in the ionization diagnostic diagram: resolved galactic regions which are ionized by a Seyfert/LINER-like radiation field are also devoid of recent star formation and host older and/or more metal-rich stellar populations. We also detect extraplanar LINER-like emission in two highly inclined galaxies, and identify it with diffuse ionized gas. We investigate spatially resolved metallicities and find a positive correlation between metallicity and star formation rate surface density. We further study the relation between N/O versus O/H on resolved scales. We find that, at given N/O, regions within individual galaxies are spread towards lower metallicities, deviating from the sequence defined by galactic central regions as traced by Sloan 3-arcsec fibre spectra. We suggest that the observed dispersion can be a tracer for gas flows in galaxies: infalls of pristine gas and/or the effect of a galactic fountain.

  11. Quantitative and fingerprinting analysis of Atractylodes rhizome based on gas chromatography with flame ionization detection combined with chemometrics.

    PubMed

    Liu, Qiutao; Kong, Dandan; Luo, Jiaoyang; Kong, Weijun; Guo, Weiying; Yang, Meihua

    2016-07-01

    This study assessed the feasibility of gas chromatography with flame ionization detection fingerprinting combined with chemometrics for quality analysis of Atractylodes rhizome. We extracted essential oils from 20 Atractylodes lancea and Atractylodes koreana samples by hydrodistillation. The variation in extraction yields (1.33-4.06%) suggested that contents of the essential oils differed between species. The volatile components (atractylon, atractydin, and atractylenolide I, II, and III) were quantified by gas chromatography with flame ionization detection and confirmed by gas chromatography with mass spectrometry, and the results demonstrated that the number and content of volatile components differed between A. lancea and A. koreana. We then calculated the relative peak areas of common components and similarities of samples by comparing the chromatograms of A. lancea and A. koreana extracts. Also, we employed several chemometric techniques, including similarity analysis, hierarchical clustering analysis, principal component analysis, and partial least-squares discriminate analysis, to analyze the samples. Results were consistent across analytical methods and showed that samples could be separated according to species. Five volatile components in the essential oils were quantified to further validate the results of the multivariate statistical analysis. The method is simple, stable, accurate, and reproducible. Our results provide a foundation for quality control analysis of A. lancea and A. koreana.

  12. Quantitative and fingerprinting analysis of Atractylodes rhizome based on gas chromatography with flame ionization detection combined with chemometrics.

    PubMed

    Liu, Qiutao; Kong, Dandan; Luo, Jiaoyang; Kong, Weijun; Guo, Weiying; Yang, Meihua

    2016-07-01

    This study assessed the feasibility of gas chromatography with flame ionization detection fingerprinting combined with chemometrics for quality analysis of Atractylodes rhizome. We extracted essential oils from 20 Atractylodes lancea and Atractylodes koreana samples by hydrodistillation. The variation in extraction yields (1.33-4.06%) suggested that contents of the essential oils differed between species. The volatile components (atractylon, atractydin, and atractylenolide I, II, and III) were quantified by gas chromatography with flame ionization detection and confirmed by gas chromatography with mass spectrometry, and the results demonstrated that the number and content of volatile components differed between A. lancea and A. koreana. We then calculated the relative peak areas of common components and similarities of samples by comparing the chromatograms of A. lancea and A. koreana extracts. Also, we employed several chemometric techniques, including similarity analysis, hierarchical clustering analysis, principal component analysis, and partial least-squares discriminate analysis, to analyze the samples. Results were consistent across analytical methods and showed that samples could be separated according to species. Five volatile components in the essential oils were quantified to further validate the results of the multivariate statistical analysis. The method is simple, stable, accurate, and reproducible. Our results provide a foundation for quality control analysis of A. lancea and A. koreana. PMID:27133960

  13. Evaluation of gas chromatography-atmospheric pressure chemical ionization-mass spectrometry as an alternative to gas chromatography-electron ionization-mass spectrometry: avocado fruit as example.

    PubMed

    Hurtado-Fernández, Elena; Pacchiarotta, Tiziana; Longueira-Suárez, Enrique; Mayboroda, Oleg A; Fernández-Gutiérrez, Alberto; Carrasco-Pancorbo, Alegría

    2013-10-25

    Although GC-APCI-MS was developed more than 40 years ago this coupling is still far from being a routine technique. One of the reasons explaining the limited use of GC-APCI so far is the lack of spectral database which facilitates the identification of the compounds under study. The first application of a very recently developed GC-APCI database to identify as many compounds as possible in a complex matrix such as avocado fruit is presented here. The results achieved by using this database has been checked against those obtained using traditional GC-EI-MS and a comparison of the MS signals observed in both ionization sources has been carried out. 100 compounds belonging to different chemical families were identified in the matrix under study. Considering the results of this study, the wide range of application (in terms of polarity and size of analytes) and the robustness of APCI as interface, the high quality of TOF spectra, and our library as a publicly available resource, GC-APCI-TOF MS is definitively a valuable addition to the "metabolomics toolbox".

  14. The Ionized Gas and Nuclear Environment in NGC 3783. V. Variability and Modeling of the Intrinsic Ultraviolet Absorption

    NASA Astrophysics Data System (ADS)

    Gabel, Jack R.; Kraemer, Steven B.; Crenshaw, D. Michael; George, Ian M.; Brandt, W. N.; Hamann, Frederick W.; Kaiser, Mary Elizabeth; Kaspi, Shai; Kriss, Gerard A.; Mathur, Smita; Nandra, Kirpal; Netzer, Hagai; Peterson, Bradley M.; Shields, Joseph C.; Turner, T. J.; Zheng, Wei

    2005-10-01

    absorbers (components 1b, 2, and 3 with logU~-0.5) are consistent with the modeling results for the lowest ionization X-ray component, but with smaller total column density. The high-ionization UV components are found to have pressures similar to those of the three X-ray ionization components. These results are consistent with an inhomogeneous wind model for the outflow in NGC 3783, with denser, colder, lower ionization regions embedded in more highly ionized gas. (6) Based on the predicted emission-line luminosities, global covering factor constraints, and distances derived for the UV absorbers, they may be identified with emission-line gas observed in the inner NLR of AGNs. We explore constraints for dynamical models of AGN outflows implied by these results. Based on observations made with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555, and with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer, which is operated for NASA by Johns Hopkins University under NASA contract NAS5-32985.

  15. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  16. Combustion chemistry of the propanol isomers : investigated by electron ionization and VUV-photoionization molecular-beam mass spectrometry.

    SciTech Connect

    Wang, J.; Kohse-Hoinghaus, Katharina; Cool, Terrill A.; Taatjes, Craig A.; Struckmeier, Ulf; OBwald, Patrick; Morel, Aude; Westmoreland, Phillip R.; Kasper, Tina Silvia

    2008-10-01

    The combustion of 1-propanol and 2-propanol was studied in low-pressure, premixed flat flames using two independent molecular-beam mass spectrometry (MBMS) techniques. For each alcohol, a set of three flames with different stoichiometries was measured, providing an extensive data base with in total twelve conditions. Profiles of stable and intermediate species, including several radicals, were measured as a function of height above the burner. The major-species mole fraction profiles in the 1-propanol flames and the 2-propanol flames of corresponding stoichiometry are nearly identical, and only small quantitative variations in the intermediate species pool could be detected. Differences between flames of the isomeric fuels are most pronounced for oxygenated intermediates that can be formed directly from the fuel during the oxidation process. The analysis of the species pool in the set of flames was greatly facilitated by using two complementary MBMS techniques. One apparatus employs electron ionization (EI) and the other uses VUV light for single-photon ionization (VUV-PI). The photoionization technique offers a much higher energy resolution than electron ionization and as a consequence, near-threshold photoionization-efficiency measurements provide selective detection of individual isomers. The EI data are recorded with a higher mass resolution than the PI spectra, thus enabling separation of mass overlaps of species with similar ionization energies that may be difficult to distinguish in the photoionization data. The quantitative agreement between the EI- and PI-datasets is good. In addition, the information in the EI- and PI-datasets is complementary, aiding in the assessment of the quality of individual burner profiles. The species profiles are supplemented by flame temperature profiles. The considerable experimental efforts to unambiguously assign intermediate species and to provide reliable quantitative concentrations are thought to be valuable for improving

  17. Combustion chemistry of the propanol isomers - investigated by electron ionization and VUV-photoionization molecular-beam mass spectrometry

    SciTech Connect

    Kasper, T.; Osswald, P.; Struckmeier, U.; Kohse-Hoeinghaus, K.; Taatjes, C.A.; Wang, J.; Cool, T.A.; Law, M.E.; Morel, A.; Westmoreland, P.R.

    2009-06-15

    The combustion of 1-propanol and 2-propanol was studied in low-pressure, premixed flat flames using two independent molecular-beam mass spectrometry (MBMS) techniques. For each alcohol, a set of three flames with different stoichiometries was measured, providing an extensive data base with in total twelve conditions. Profiles of stable and intermediate species, including several radicals, were measured as a function of height above the burner. The major-species mole fraction profiles in the 1-propanol flames and the 2-propanol flames of corresponding stoichiometry are nearly identical, and only small quantitative variations in the intermediate species pool could be detected. Differences between flames of the isomeric fuels are most pronounced for oxygenated intermediates that can be formed directly from the fuel during the oxidation process. The analysis of the species pool in the set of flames was greatly facilitated by using two complementary MBMS techniques. One apparatus employs electron ionization (EI) and the other uses VUV light for single-photon ionization (VUV-PI). The photoionization technique offers a much higher energy resolution than electron ionization and as a consequence, near-threshold photoionization-efficiency measurements provide selective detection of individual isomers. The EI data are recorded with a higher mass resolution than the PI spectra, thus enabling separation of mass overlaps of species with similar ionization energies that may be difficult to distinguish in the photoionization data. The quantitative agreement between the EI- and PI-datasets is good. In addition, the information in the EI- and PI-datasets is complementary, aiding in the assessment of the quality of individual burner profiles. The species profiles are supplemented by flame temperature profiles. The considerable experimental efforts to unambiguously assign intermediate species and to provide reliable quantitative concentrations are thought to be valuable for improving

  18. The ionized gas in the central region of NGC 5253. 2D mapping of the physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Walsh, J. R.; Vílchez, J. M.

    2012-08-01

    Context. Blue compact dwarf (BCD) galaxies constitute the ideal laboratories to test the interplay between massive star formation and the surrounding gas. As one of the nearest BCD galaxies, NGC 5253 was previously studied with the aim to elucidate in detail the starburst interaction processes. Some open issues regarding the properties of its ionized gas still remain to be addressed. Aims: The 2D structure of the main physical and chemical properties of the ionized gas in the core of NGC 5253 has been studied. Methods: Optical integral field spectroscopy (IFS) data has been obtained with FLAMES Argus and lower resolution gratings of the Giraffe spectrograph. Results: We derived 2D maps for different tracers of electron density (ne), electron temperature (Te) and ionization degree. The maps for ne as traced by [O ii], [S ii], [Fe iii], and [Ar iv] line ratios are compatible with a 3D stratified view of the nebula with the highest ne in the innermost layers and a decrease of ne outwards. 2D maps of Te were measured from [O iii] and [S ii] line ratios; to our knowledge, this is the first time that a Te map based on [S ii] lines for an extragalactic object has been presented. The joint interpretation of the Te([S ii]) and Te([O iii]) maps is consistent with a Te structure in 3D with higher temperatures close to the main ionizing source surrounded by a colder and more diffuse component. The highest ionization degree is found at the peak of emission for the gas with relatively high ionization in the main Giant H ii Region and lower ionization degree delineating the more extended diffuse component. We derived abundances of oxygen, neon, argon, and nitrogen. Abundances for O, Ne and Ar are constant over the mapped area within ≲0.1 dex. The mean 12 + log (O/H) is 8.26 ± 0.04 while the relative abundances of log (N/O), log (Ne/O) and log (Ar/O) were ~-1.32 ± 0.05, -0.65 ± 0.03 and -2.33 ± 0.06, respectively. There are two locations with enhanced N/O. The first (log (N

  19. EDITORIAL: The 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases The 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran Lj; Marić, Dragana; Malović, Gordana

    2011-03-01

    This special issue consists of papers that are associated with invited lectures, workshop papers and hot topic papers presented at the 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIG XX). This conference was organized in Novi Sad (Serbia) from 13 to 17 July 2010 by the Institute of Physics of the University of Belgrade. It is important to note that this is not a conference 'proceedings'. Following the initial selection process by the International Scientific Committee, all papers were submitted to the journal by the authors and have been fully peer reviewed to the standard required for publication in Plasma Sources Science and Technology (PSST). The papers are based on presentations given at the conference but are intended to be specialized technical papers covering all or part of the topic presented by the author during the meeting. The ESCAMPIG conference is a regular biennial Europhysics Conference of the European Physical Society focusing on collisional and radiative aspects of atomic and molecular physics in partially ionized gases as well as on plasma-surface interaction. The conference focuses on low-temperature plasma sciences in general and includes the following topics: Atomic and molecular processes in plasmas Transport phenomena, particle velocity distribution function Physical basis of plasma chemistry Plasma surface interaction (boundary layers, sheath, surface processes) Plasma diagnostics Plasma and discharges theory and simulation Self-organization in plasmas, dusty plasmas Upper atmospheric plasmas and space plasmas Low-pressure plasma sources High-pressure plasma sources Plasmas and gas flows Laser-produced plasmas During ESCAMPIG XX special sessions were dedicated to workshops on: Atomic and molecular collision data for plasma modeling, organized by Professors Z Lj Petrovic and N Mason Plasmas in medicine, organized by Dr N Puac and Professor G Fridman. The conference topics were represented in the

  20. The Residual Gas Ionization Profile Monitor in the J-PARC 3-GeV Rapid Cycling Synchrotron

    NASA Astrophysics Data System (ADS)

    Harada, Hiroyuki; Kato, Shinichi

    The residual gas Ionization Profile Monitor (IPM) is developed in the J-PARC 3-GeV RCS. The IPM is a non-destructive beam profile monitor to observe a circulating transverse beam profile in the ring. It is very important to observe the beam profile turn-by-turn in the ring for identification of the beam loss and emittance growth source because beam loss is always issue in increasing the beam power in terms of keeping hands on maintenance. The IPM has been continuously upgraded since 2008. The recent progress of the IPM is reported together with the outline of IPM system.

  1. Restoration of RI-beams from a projectile fragment separator by Laser Ionization gas Catcher-PALIS-

    SciTech Connect

    Sonoda, T.; Takamine, A.; Schury, P.; Yamazaki, Y.; Wada, M.; Okada, K.; Yoshida, A.; Kubo, T.; Matsuo, Y.; Furukawa, T.; Wakui, T.; Shinozuka, T.; Iimura, H.; Katayama, I.; Ohtani, S.; Wollnik, H.; Schuessler, H. A.; Kudryavtsev, Yu.; Van Duppen, P.; Huyse, M.

    2009-03-17

    A fragment separator at heavy ion accelerator facilities is a versatile instrument to provide wide variety of radioactive isotope (RI) beams. However, more than 99.99% of precious RI-ions are simply dumped in the slits or elsewhere in the fragment separator. A novel concept to restore such RI-ions for parasitic slow RI-beams is proposed. Installation of a laser ionization gas catcher in the vicinity of the first or second focal point of the fragment separator enables to collect dead isotopes in the slits. The design concept and expected performance are discussed.

  2. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    SciTech Connect

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.

  3. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  4. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  5. The infrared continuum spectrum of x ray illuminated molecular gas

    NASA Technical Reports Server (NTRS)

    Voit, G. Mark

    1990-01-01

    In starburst galaxies, active galaxies, and the mysterious ultraluminous infrared galaxies, x rays are likely to interact with molecular gas and dust, thereby inducing infrared emission. X ray heated thermal dust will emit the IR continuum, and x ray photoelectrons will excite an IR emission-line spectrum. Here, researchers model the IR continuum emission characteristic of some selected x ray spectral fluxes, in particular the x ray bremsstrahlung characteristic of supernova and stellar wind bubble shocks in dense media and the power law spectra characteristic of active galactic nuclei. These models are part of a larger project to determine the complete IR spectra, lines plus continuum, of x ray sources embedded in molecular gas. They modeled the thermal emission from grains by calculating a grain temperature/size/composition distribution function, f(T,a,Comp.), which accounts for temperature fluctuations by averaging over all grain thermal histories. In determining the grain thermal distribution, researchers account for both direct grain heating (by x ray absorption and subsequent electron energy deposition) and indirect grain heating (by absorption of the UV emission stimulated by non-thermal photo- and Auger electrons in the gas phase). We let the grain size distribution be proportional to a(exp -3.5), and they consider two types of grain composition: graphites, which we assume to be pure carbon, and silicates, which contain all other depleted heavy elements. They derive the grain composition distribution function from solar abundances and interstellar depletion data.

  6. Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers

    PubMed Central

    Zhang, Yu; Cai, Xiyun; Xiong, Weina; Jiang, Hao; Zhao, Haitong; Yang, Xianhai; Li, Chao; Fu, Zhiqiang; Chen, Jingwen

    2014-01-01

    Effects of pH on adsorption and removal efficiency of ionizable organic compounds (IOCs) by environmental adsorbents are an area of debate, because of its dual mediation towards adsorbents and adsorbate. Here, we probe the pH-dependent adsorption of ionizable antibiotic oxytetracycline (comprising OTCH2+, OTCH±, OTC−, and OTC2−) onto cyclodextrin polymers (CDPs) with the nature of molecular recognition and pH inertness. OTCH± commonly has high adsorption affinity, OTC− exhibits moderate affinity, and the other two species have negligible affinity. These species are evidenced to selectively interact with structural units (e.g., CD cavity, pore channel, and network) of the polymers and thus immobilized onto the adsorbents to different extents. The differences in adsorption affinity and mechanisms of the species account for the pH-dependent adsorption of OTC. The mathematical equations are derived from the multiple linear regression (MLR) analysis of quantitatively relating adsorption affinity of OTC at varying pH to adsorbent properties. A combination of the MLR analysis for OTC and molecular recognition of adsorption of the species illustrates the nature of the pH-dependent adsorption of OTC. Based on this finding, γ-HP-CDP is chosen to adsorb and remove OTC at pH 5.0 and 7.0, showing high removal efficiency and strong resistance to the interference of coexisting components. PMID:24465975

  7. Effect of Electrospray Ionization Source Conditions on the Tautomer Distribution of Deprotonated p-Hydroxybenzoic Acid in the Gas Phase.

    PubMed

    Xia, Hanxue; Attygalle, Athula B

    2016-06-01

    The deprotonation site of p-hydroxybenzoic acid upon electrospray ionization has been a subject of fervent debate in several articles in the Journal of the American Chemical Society and elsewhere. General consensus is that electrospray ionization mass spectrometry (ESI-MS) experimental results reflect the situation in solution to a considerable extent. Our research, using ion-mobility mass spectrometry, challenges the notion that ESI-MS results directly reflect solution-phase structures and demonstrates that the relative populations of the thermodynamically less favored gaseous carboxylate tautomer or the thermodynamically more favored gaseous phenoxide tautomer, generated from the same aqueous solution of p-hydroxybenzoic acid by ESI, can be varied back and forth by changing the probe position, capillary voltage, desolvation-gas temperature, sample infusion flow rate, and cone voltage. In other words, solvent effects are not the primary criteria that determine the relative population distributions of tautomeric carboxylate (C(-)) and phenoxide (P(-)) ions (m/z 137) generated by electrospray ionization of p-hydroxybenzoic acid. In addition, we propose that the observed ratio of the P(-) and C(-) forms indirectly reflects the relative contribution of the charge-residue or ion-evaporation process that occurs during the electrospray ion generation process.

  8. Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry.

    PubMed

    Pozzi, Romina; Bocchini, Paola; Pinelli, Francesca; Galletti, Guido C

    2011-04-01

    A gas chromatography/mass spectrometry (GC/MS) method for determination of nine N-nitrosamines (NAs) in water is described. Two ionization modes, electron impact (EI) and chemical ionization (CI) with methanol, as well as different ion analysis techniques, i.e. full scan, selected ion storage (SIS) and tandem mass spectrometry (MS/MS) were tested. Chemical ionization followed by SIS resulted the mass spectrometric method of choice, with detection limits in the range of 1-2ng/L. Solid Phase Extraction (SPE) with coconut charcoal cartridges was applied to extract NAs from real samples, according EPA Method 521. Drinking water samples were collected from seven surface- and two groundwater treatment plants. Three surface water treatment plants were sampled before and after addition of O(3)/ClO(2) to observe the effect of disinfection on NAs' formation. N-nitrosodiethylamine (NDEA), n-nitrosodipropylamine (NDPA), n-nitrosomorpholine (NMOR) and n-nitrosodibutylamine (NDBA) were found up to concentrations exceeding three times the risk level of 10ng/L set by the California Department of Public Health. Because dermal adsorption has been recently indicated as a new contamination route of exposure to NAs for people who practice swimming activity, water samples from five swimming pools in the Bologna (Italy) area were collected. N-nitrosopyrrolidine (NPYR) was detected in all samples at concentrations larger than 50ng/L, likely as a disinfection by-product from the amino acid precursor proline, a main constituent of skin collagen.

  9. Effect of Electrospray Ionization Source Conditions on the Tautomer Distribution of Deprotonated p-Hydroxybenzoic Acid in the Gas Phase.

    PubMed

    Xia, Hanxue; Attygalle, Athula B

    2016-06-01

    The deprotonation site of p-hydroxybenzoic acid upon electrospray ionization has been a subject of fervent debate in several articles in the Journal of the American Chemical Society and elsewhere. General consensus is that electrospray ionization mass spectrometry (ESI-MS) experimental results reflect the situation in solution to a considerable extent. Our research, using ion-mobility mass spectrometry, challenges the notion that ESI-MS results directly reflect solution-phase structures and demonstrates that the relative populations of the thermodynamically less favored gaseous carboxylate tautomer or the thermodynamically more favored gaseous phenoxide tautomer, generated from the same aqueous solution of p-hydroxybenzoic acid by ESI, can be varied back and forth by changing the probe position, capillary voltage, desolvation-gas temperature, sample infusion flow rate, and cone voltage. In other words, solvent effects are not the primary criteria that determine the relative population distributions of tautomeric carboxylate (C(-)) and phenoxide (P(-)) ions (m/z 137) generated by electrospray ionization of p-hydroxybenzoic acid. In addition, we propose that the observed ratio of the P(-) and C(-) forms indirectly reflects the relative contribution of the charge-residue or ion-evaporation process that occurs during the electrospray ion generation process. PMID:27164186

  10. Comparison of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry with electron ionization and negative-ion chemical ionization for analyses of pesticides at trace levels in atmospheric samples.

    PubMed

    Raina, Renata; Hall, Patricia

    2008-09-09

    A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) with gas chromatography-tandem mass spectrometry (GC-MS/MS) in selected reaction monitoring (SRM) mode with both electron ionization (EI) and negative-ion chemical ionization (NCI) are presented for over 50 pesticides ranging from organochlorines (OCs), organophosphorus pesticides (OPs) and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin). The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations <100 pg microL(-1) (<100 pg m(-3) in air). No one method could be used to analyze the range of pre-emergent herbicides, OPs, and OCs investigated. In general GC-NCI/SIM provided the lowest method detection limits (MDLs commonly 2.5-10 pg microL(-1)) along with best confirmation (<25% RSD of ion ratio), while GC-NCI/SRM is recommended for use where added selectivity or confirmation is required (such as parathion-ethyl, tokuthion, carbofenothion). GC-EI/SRM at concentration <100 pg microL(-1) was not suitable for most pesticides. GC-EI/SIM was more prone to interference issues than NCI methods, but gave good sensitivity (MDLs 1-10 pg microL(-1)) for pesticides with poor NCI response (OPs: sulfotep, phorate, aspon, ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT).

  11. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection.

    PubMed

    Belli, Mauro; Sapora, Orazio; Tabocchini, Maria Antonella

    2002-12-01

    DNA repair systems and cell cycle checkpoints closely co-operate in the attempt of maintaining the genomic integrity of cells damaged by ionizing radiation. DNA double-strand breaks (DSB) are considered as the most biologically important radiation-induced damage. Their spatial distribution and association with other types of damage depend on radiation quality. It is believed these features affect damage reparability, thus explaining the higher efficiency for cellular effects of densely ionizing radiation with respect to gamma-rays. DSB repair systems identified in mammalian cells are homologous recombination (HR), single-strand annealing (SSA) and non-homologous end-joining (NHEJ). Some enzymes may participate in more than one of these repair systems. DNA damage also triggers biochemical signals activating checkpoints responsible for delay in cell cycle progression that allows more time for repair. Those at G1/S and S phases prevent replication of damaged DNA and those at G2/M phase prevent segregation of changed chromosomes. Individuals with lack or alterations of genes involved in DNA DSB repair and cell cycle checkpoints exhibit syndromes characterized by genome instability and predisposition to cancer. Information reviewed in this paper on the basic mechanisms of cellular response to ionizing radiation indicates their importance for a number of issues relevant to protection of astronauts from space radiation. PMID:12793724

  12. An Experimental and Computational Evaluation of the Importance of Molecular Diffusion in Gas Gravity Currents

    NASA Astrophysics Data System (ADS)

    Herman, Jeremy J.

    The accidental release of hazardous, denser-than-air gases during their transport or manufacture is a vital area of study for process safety researchers. This project examines the importance of molecular diffusion on the developing concentration field of a gas gravity current released into a calm environment. Questions which arose from the unexpectedly severe explosion in 2005 at Buncefield, England were of particular interest. The accidental overfilling of a large tank with gasoline on a completely calm morning led to a massive open air explosion. Forensic evidence showed that at the time of ignition, a vapor cloud, most of which now appears to have been within the flammability limits, covered approximately 120,000 m2. Neither the severity of the explosion, nor the size of the vapor cloud would have been anticipated. Experiments were conducted in which carbon dioxide was released from a sunken source into a one meter wide channel devoid of any wind. These experiments were designed in such a way as to mitigate the formation of a raised head at the front of the gravity current which would have resulted in turbulent entrainment of air. This was done to create a flow in which molecular diffusion was the controlling form of mixing between the carbon dioxide and air. Concentration measurements were taken using flame ionization detection at varying depths and down channel locations. A model of the experiments was developed using COMSOL Multiphysics. The only form of mixing allowed between carbon dioxide and air in the model was molecular diffusion. In this manner the accuracy of the assertion that molecular diffusion was controlling in our experiments was checked and verified. Experimental measurements showed a large variation of gas concentration with depth of the gravity current at the very beginning of the channel where the gas emerged up from the sunken source and began flowing down channel. Due to this variation, molecular diffusion caused the vertical concentration

  13. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  14. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    PubMed

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment.

  15. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    PubMed

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment. PMID:26554601

  16. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  17. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry.

    PubMed

    Ellis, Wade C; Lewis, Charlotte R; Openshaw, Anna P; Farnsworth, Paul B

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration. Graphical Abstract ᅟ. PMID:27380389

  18. Quantitative determination of terbutaline and orciprenaline in human plasma by gas chromatography/negative ion chemical ionization/mass spectrometry.

    PubMed

    Leis, H J; Gleispach, H; Nitsche, V; Malle, E

    1990-06-01

    A method for the determination of unconjugated terbutaline and orciprenaline in human plasma is described. The assay is based on stable isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. An inexpensive and rapid method for preparation of stable isotope labelled analogues as well as their use in quantitative gas chromatography/mass spectrometry is shown. A highly efficient sample work-up procedure with product recoveries of more than 95% is presented. The method developed permits quantitative measurement of terbutaline and orciprenaline in human plasma down to 100 pg ml-1, using 1 ml of sample. Plasma levels of terbutaline after oral administration of 5 mg of terbutaline sulphate were estimated. PMID:2357489

  19. Metal-ligand redox reactions in gas-phase quaternary peptide-metal complexes by electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vaisar, T.; Gatlin, C. L.; Turecek, F.

    1997-03-01

    The dipeptides Phe-Leu, Leu-Phe, Leu-Ala, and Ala-Leu form quaternary complexes of the type [Cu(II)(peptide - 2H+M)bpy]+ in the gas phase when electrosprayed in the presence of Cu(II) salts, 2.2'-bipyridyl (bpy), and an alkali hydroxide (MOH). The gas-phase complexes decarboxylate on collisional activation at low ion kinetic energies. The resulting ions undergo unusual eliminations of neutral Na, K, and Rb, which depend on the peptide structure. The ionization energy of the decarboxylated Phe-Leu-Cu-bpy complex was bracketed at 4.2 eV. Other collision-induced dissociations also depend on the alkali metal ion and the peptide structure. Ab initio calculations on a model system are reported and used to discuss the electronic properties of the peptide complexes.

  20. Molecular gas temperature and density in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Wall, W. F.; Jaffe, D. T.; Bash, F. N.; Israel, F. P.; Maloney, P. R.; Baas, F.

    1993-01-01

    We combine beam-matched CO-13, CO-12 J = 3 yields 2 and J = 2 yields 1 line data to infer the molecular gas excitation conditions in the central 500 to 1600 pc diameters of a small sample of infrared-bright external galaxies: NGC253, IC342, M 83, Maffei 2, and NGC6946. Additional observations of the J = 1 yields 0 lines of C-18O and CO-13 set limits on the opacity of the CO-13 J = 1 yields 0 line averaged over the central kiloparsec of these spiral galaxies.

  1. The Ionized Gas and Nuclear Environment in NGC 3783. IV; Variability and Modeling of the 900 ks CHANDRA Spectrum

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai; Kaspi, Shai; Behar, Ehud; Brandt, W. N.; Chelouche, Doron; George, Ian M.; Crenshaw, D. Michael; Gabel, Jack R.; Hamann, Frederick W.; George, Steven B.

    2003-01-01

    We present a detailed analysis of the 900 ks spectrum of NGC3783 obtained by Chandra in 2000-2001 (Kaspi et al. 2002). We split the data in various ways to look for time dependent and luminosity dependent spectral variations. This analysis, the measured equivalent widths of a large number of X-ray lines, and our photoionization calculations, lead us to the following conclusions: 1) NGC 3783 fluctuated in luminosity, by a factor N 1.5, during individual 170 ks observations. The fluctuations were not associated with significant spectral variations. 2) On a longer time scale, of 20-120 days, we discovered two very different spectral shapes that are noted the high state and the low state spectra. The observed changes between the two can be described as the appearance and disappearance of a soft continuum component. The spectral variations are not related, in a simple way, to the brightening or the fading of the short wavelength continuum, as observed in other objects. NGC3783 seems to be the first AGN to show this unusual behavior. 3) The appearance of the soft continuum component is consistent with beeing the only spectral variation and there is no need to invoke changes in the absorber s opacity. In particular, all absorption lines with reliable measurements show the same equivalent width, within the observational uncertainties, during high and low states. 4) Photoionization model calculations show that a combination of three ionization components, each split into two kinematic components, explain very well the intensity of almost all absorption lines and the bound-free absorption. The components span a large range of ionization and a total column of about 3 x 10(exp 22) per square centimeter Moreover, all components are thermally stable and are situated on the vertical branch of the stability curve.. This means that they are in pressure equilibrium and perhaps occupy the same volume of space. This is the first detection of such a multi-component equilibrium gas in

  2. [Coupling of gas chromatography with single photon ionization time-of-flight mass spectrometry and its application to characterization of compounds in diesel].

    PubMed

    Xie, Yuanyuan; Hua, Lei; Chen, Ping; Hou, Keyong; Jiang, Jichun; Wang, Yan; Li, Haiyang

    2015-02-01

    A novel analytical method coupling gas chromatography (GC) with single photon ionization time-of-flight mass spectrometry (SPI-TOF MS) has been developed. First of all, a double-wall-tube transfer line was built to combine GC with SPI-TOF MS, which realized seamless connection between GC and SPI ion source. Based on this, standard n-pentadecane and benzene/toluene/xylene standard gas mixtures were used to study important voltage parameters of the ion source. After the optimization of the ion source voltages, pure molecular ion peaks of the analytes were obtained in the mass spectra and qualitative analysis of different kinds of organic compounds were eventually realized rapidly and accurately. At last, GC/SPI-TOF MS was applied to the characterization of volatile and semvolatile organic compounds in diesel and two-dimensional spectra of GC×SPI-TOF MS were obtained. Without complicated spectra interpretation and data processing, volatile and semi-volatile organic compounds in diesel have been classified qualitatively by ion mass-to-charge ratio (m/z) in SPI mass spectra, including aliphatic compounds, aromatic compounds and nitrogen-containing compounds with low concentration such as benzopyrroles. Isomeric compounds in diesel were separated and identified by retention times of chromatographic peaks. The results indicate that the proposed analytical method of GC/SPI-TOF MS is suitable for the characterization of complicated samples such as diesel and environmental pollutants with easy operation and high efficiency.

  3. Pinpointing the molecular gas within an Lyα blob at z ∼ 2.7

    SciTech Connect

    Yang, Yujin; Bertoldi, Frank; Bădescu, Toma; Walter, Fabian; Decarli, Roberto; Weiss, Axel; Dey, Arjun; Prescott, Moire K. M.

    2014-04-01

    We present IRAM Plateau de Bure Interferometer observations of the CO(3-2) and CO(5-4) line transitions from an Lyα blob at z ∼ 2.7 in order to investigate the gas kinematics, determine the location of the dominant energy source, and study the physical conditions of the molecular gas. CO line and dust continuum emissions are detected at the location of a strong MIPS source that is offset by ∼1.''5 from the Lyα peak. Neither of these emission components is resolved with the 1.''7 beam, showing that the gas and dust are confined to within ∼7 kpc from this galaxy. No millimeter source is found at the location of the Lyα peak, ruling out a central compact source of star formation as the power source for the Lyα emission. Combined with a spatially resolved spectrum of Lyα and He II, we constrain the kinematics of the extended gas using the CO emission as a tracer of the systemic redshift. Near the MIPS source, the Lyα profile is symmetric, and its line center agrees with that of the CO line, implying that there are no significant bulk flows and that the photo-ionization from the MIPS source might be the dominant source of the Lyα emission. In the region near the Lyα peak, the gas is slowly receding (∼100 km s{sup –1}) with respect to the MIPS source, thus making the hyper-/superwind hypothesis unlikely. We find a sub-thermal line ratio between two CO transitions, I {sub CO(5-4)}/I {sub CO(3-2)} = 0.97 ± 0.21. This line ratio is lower than the average values found in high-z submillimeter galaxies and QSOs but is consistent with the value found in the Galactic center, suggesting that there is a large reservoir of low-density molecular gas that is spread over the MIPS source and its vicinity.

  4. Molecular weight determination of hyaluronic acid by gel filtration chromatography coupled to matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Yeung, B; Marecak, D

    1999-08-13

    An analytical approach has been described for the molecular weight characterization of enzymatically degraded hyaluronic acid (HA). The approach involved the combined use of aqueous gel filtration chromatography (GFC) with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Microfractions were collected across an eluting peak from the chromatography system, followed by mass spectrometric analysis of these narrow fractions. The molecular mass determined by MALDI-MS and the signal obtained from the chromatography established a calibration curve for other hyaluronic acid samples analyzed by this GFC system. Results of one HA sample were obtained from both the calibration curve and direct fraction-by-fraction MALDI-MS analysis, and comparison of these results showed reasonable agreement. In contrast, molecular weights resulted from external calibration using dextran and pullullan standards showed drastically different numbers. Therefore, the GFC-MALDI-MS approach is a reliable method for the molecular weight characterization of polydisperse polysaccharides for which suitable calibration standards are unavailable for conventional GFC analysis. PMID:10481993

  5. Highly ionized gas in the Gum nebula and elsewhere - A comparison of IUE and Copernicus satellite results

    NASA Technical Reports Server (NTRS)

    Edgar, Richard J.; Savage, Blair D.

    1992-01-01

    The data from six high-dispersion IUE echelle spectra are averaged in order to obtain an interstellar absorption line spectrum with an S/N of about 30 and a resolution of about 25 km/s. The interstellar lines of C IV and Si IV are very strong and broad and N V is detected. The profiles for these species and Al III are compared to the Copernicus satellite profiles for O VI. The high ionization lines toward HD 64760 are much stronger and broader than those recorded toward Zeta Pup and Gamma super 2 Vel, the two exciting stars of the Gum nebula. The profiles for Al III and Si IV are similar and considerably narrower than the O VI profile. An origin in photoionized Gum nebula gas is suggested as the most likely explanation for Al III and Si IV. The C IV profile has a high positive velocity wing extending to approximately +80 km/s, which is similar in appearance to the positive velocity portion of the O VI profile. It is inferred that a substantial part of the observed C IV has an origin in the collisionally ionized gas most likely rsponsible for the O VI.

  6. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  7. Narrowband HST images of M87: Evidence for a disk of ionized gas around a massive black hole

    NASA Technical Reports Server (NTRS)

    Ford, Holland C.; Harms, Richard J.; Tsvetanov, Zlatan I.; Hartig, George F.; Dressel, Linda L.; Kriss, Gerard A.; Bohlin, Ralph C.; Davidsen, Arthur F.; Margon, Bruce; Kochhar, Ajay K.

    1994-01-01

    We present Hubble Space Telescope Wide Field/Planetary Camera-2 (HST WFPC2) narrowband H-alpha + (N II) images of M87 which show a small disk of ionized gas with apparent spiral structure surrounding the nucleus of M87. The jet projects approximately 19.5 deg from the minor axis of the disk, which suggests that the jet is approximately normal to the disk. In a companion Letter, Harms et al. measure the radial velocities at r = +/- 0.25 sec along a line perpendicular to the jet, showing that one side of the disk is approaching at 500 +/- 50 km/s and the other side of the disk is receding at 500 +/- 50 km/s. Absorption associated with the disk and the sense of rotation imply that the apparent spiral arms trail the rotation. The observed radial velocites corrected for a 42 deg inclination of the disk imply rotation at +/- 750 km/s. Analysis of velocity measurements at four positions near the nucleus gives a total mass of approximately 2.4 +/- 0.7 x 10(exp 9) solar mass within 18 pc of the nucleus, and a mass-to-light ratio (M/L)(sub I) = 170. We conclude that there is a disk of ionized gas feeding a massive black hole in the center of M87.

  8. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    SciTech Connect

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva; Schruba, Andreas; Bigiel, Frank; Bolatto, Alberto; Brinks, Elias; De Blok, W. J. G.; Rosolowsky, Erik; Schuster, Karl-Friedrich; Usero, Antonio

    2013-08-01

    We compare molecular gas traced by {sup 12}CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between {Sigma}{sub mol} and {Sigma}{sub SFR} but also find important second-order systematic variations in the apparent molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}. At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed {alpha}{sub CO} equivalent to the Milky Way value, our data yield a molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}{approx}2.2 Gyr with 0.3 dex 1{sigma} scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, {Sigma}{sub SFR}{proportional_to}{Sigma}{sub mol}{sup N}. We find N = 1 {+-} 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between {tau}{sub dep}{sup mol} and other local and global quantities. The strongest of these are a decreased {tau}{sub dep}{sup mol} in low-mass, low-metallicity galaxies and a correlation of the kpc-scale {tau}{sub dep}{sup mol} with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H{sub 2} conversion factor ({alpha}{sub CO}) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed {tau}{sub dep}{sup mol} trends. After applying a D/G-dependent {alpha}{sub CO}, some weak correlations between {tau}{sub dep

  9. Nature of the ionizing source of the nuclear gas in NGC 1052

    SciTech Connect

    Keel, W.C.; Miller, J.S.

    1983-03-15

    We examine the ionization and physical state of the emission-line region in the nucleus of elliptical galaxy NGC 1052. The (O III) lambda4363/lambda5007 ratio, frequently used as a diagnostic for ionization mechanisms, is very poorly determined because of difficulties in matching the underlying stellar continuum spectrum, which is unusual in having very strong lines for the galaxy luminosity. Within these limitations, we find the (O III) temperature to be only marginally compatible with shock models, and the overall emission spectrum to be better fitted by photoionization models with a very dilute flat-spectrum central source. In any event, the case for NGC 1052 as a shock-heated nucleus is not strong.

  10. THE KINEMATICS AND IONIZATION OF NUCLEAR GAS CLOUDS IN CENTAURUS A

    SciTech Connect

    Bicknell, Geoffrey V.; Sutherland, Ralph S.; Neumayer, Nadine E-mail: Ralph.Sutherland@anu.edu.au

    2013-03-20

    Neumayer et al. established the existence of a blueshifted cloud in the core of Centaurus A, within a few parsecs of the nucleus and close to the radio jet. We propose that the cloud has been impacted by the jet, and that it is in the foreground of the jet, accounting for its blueshifted emission on the southern side of the nucleus. We consider both shock excitation and photoionization models for the excitation of the cloud. Shock models do not account for the [Si VI] and [Ca VIII] emission line fluxes. However, X-ray observations indicate a source of ionizing photons in the core of Centaurus A; photoionization by the inferred flux incident on the cloud can account for the fluxes in these lines relative to Brackett-{gamma}. The power-law slope of the ionizing continuum matches that inferred from synchrotron models of the X-rays. The logarithm of the ionization parameter is -1.9, typical of that in Seyfert galaxies and consistent with the value proposed for dusty ionized plasmas. The model cloud density depends upon the Lorentz factor of the blazar and the inclination of our line of sight to the jet axis. For acute inclinations, the inferred density is consistent with expected cloud densities. However, for moderate inclinations of the jet to the line of sight, high Lorentz factors imply cloud densities in excess of 10{sup 5} cm{sup -3} and very low filling factors, suggesting that models of the gamma-ray emission should incorporate jet Lorentz factors {approx}< 5.

  11. Gas-phase molecular structure and energetics of anionic silicates

    NASA Astrophysics Data System (ADS)

    Gomes, José R. B.; Cordeiro, M. Natália D. S.; Jorge, Miguel

    2008-09-01

    The gas-phase stabilities of linear, branched and cyclic silicates made of up to five silicon atoms were studied with density functional theory (DFT). The starting geometries for the DFT calculations at the B3LYP/6-311+G(2d,2p) level of theory were obtained from classical molecular dynamics simulations. We have observed that geometric parameters and charges are mainly affected by the degree of deprotonation. Charges on Si atoms are also influenced by their degree of substitution. The enthalpy of deprotonation of the neutral species was found to decrease with the size of the molecule, while the average deprotonation enthalpy of highly charged compounds increased with molecular size. Furthermore, the formation of rings in highly charged silicates is enthalpically preferred to chain growth. These observations result from two competing effects: the easier distribution of negative charge in silicates with low charge density and the strong intramolecular repulsions present in silicates with high charge density. As a consequence, highly charged silicates in the gas phase tend to be as small and as highly condensed as possible, which is in line with experimental observations from solution NMR.

  12. Molecular gas in elliptical galaxies with dust lanes

    NASA Technical Reports Server (NTRS)

    Wang, Zhong; Kenney, Jeffrey D. P.; Ishizuki, Sumio

    1992-01-01

    We have searched for CO(1-0) line emission in eight dust lane elliptical and lenticular galaxies using the Nobeyama 45 m telescope. Five of the eight galaxies, including the well-studied elliptical NGC 1052, have CO emission at above the 5-sigma level, with inferred molecular gas masses ranging from 10 exp 8 to a few times 10 exp 9 solar masses. Our selection criterion differs from previous surveys in that it does not depend on the FIR fluxes, and thus is less sensitive to the sizes and distances of the host galaxies or to the degree to which dust is heated. The relatively high detection rate of CO in these ellipticals suggests a close correlation between molecular mass and cold dust. Compared with previously studied samples of FIR selected early-type galaxies, our sample has on average four times more CO emission per unit FIR (40-120 microns) luminosity. If the intrinsic gas-to-dust ratio of these galaxies as similar to that of the Milky Way, then only about 5 percent of the dust mass in dust lane ellipticals radiates substantially at 60 and 100 microns, and the remaining dust must be colder than about 30 K.

  13. Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions

    SciTech Connect

    Carniato, S. Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-07

    The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K{sup −2} and core ionization-core excitation K{sup −2}V processes have been observed by coincidence electron spectroscopy after ionization by synchrotron radiation at different photon energies. Theoretical and experimental cross sections reported on an absolute scale are in satisfactory agreement. The evolution with photon energy of the relative contribution of shake-up and conjugate shake-up processes is discussed. The first main resonance in the K{sup −2}V spectrum is assigned to a K{sup −2}π{sup ∗} state mainly populated by the 1s→ lowest unoccupied molecular orbital dipolar excitation, as it is in the K{sup −1}V NEXAFS (Near-Edge X-ray Absorption Fine Structure) signals. Closer to the K{sup −2} threshold Rydberg resonances have been also identified, and among them a K{sup −2}σ{sup ∗} resonance characterized by a large amount of 2s/2p hybridization, and double K{sup −2}(2σ{sup ∗}/1π/3σ){sup −1}1π{sup ∗2} shake-up states. These resonances correspond in NEXAFS spectra to, respectively, the well-known σ{sup ∗} shape resonance and double excitation K{sup −1}(2σ{sup ∗}/1π/3σ){sup −1}1π{sup ∗2} resonances, all being positioned above the threshold.

  14. Molecular Characterization of TP53 Gene in Human Populations Exposed to Low-Dose Ionizing Radiation

    PubMed Central

    Brasil-Costa, Igor; Alencar, Dayse O.; Raiol-Moraes, Milene; Pessoa, Igor A.; Brito, Alexandre W. M.; Jati, Schneyder R.; Santos, Sidney E. B.; Burbano, Rommel M. R.; Ribeiro-dos-Santos, Ândrea K. C.

    2013-01-01

    Ionizing radiation, such as that emitted by uranium, may cause mutations and consequently lead to neoplasia in human cells. The TP53 gene acts to maintain genomic integrity and constitutes an important biomarker of susceptibility. The present study investigated the main alterations observed in exons 4, 5, 6, 7, and 8 of the TP53 gene and adjacent introns in Amazonian populations exposed to radioactivity. Samples were collected from 163 individuals. Occurrence of the following alterations was observed: (i) a missense exchange in exon 4 (Arg72Pro); (ii) 2 synonymous exchanges, 1 in exon 5 (His179His), and another in exon 6 (Arg213Arg); (iii) 4 intronic exchanges, 3 in intron 7 (C → T at position 13.436; C → T at position 13.491; T → G at position 13.511) and 1 in intron 8 (T → G at position 13.958). Alteration of codon 72 was found to be an important risk factor for cancer development (P = 0.024; OR = 6.48; CI: 1.29–32.64) when adjusted for age and smoking. Thus, TP53 gene may be an important biomarker for carcinogenesis susceptibility in human populations exposed to ionizing radiation. PMID:23586029

  15. Measurement of neutral gas pressure in the D-module of GAMMA 10/PDX by using ASDEX type fast ionization gauge

    NASA Astrophysics Data System (ADS)

    Ichimura, K.; Fukumoto, M.; Islam, M. M.; Islam, M. S.; Shimizu, K.; Fukui, K.; Ohuchi, M.; Nojiri, K.; Terakado, A.; Yoshikawa, M.; Ezumi, N.; Sakamoto, M.; Nakashima, Y.

    2016-11-01

    In the divertor simulation experiments in the GAMMA 10/PDX tandem mirror, pressure of the neutral gas was investigated by using a fast ionization gauge. The gauge was absolutely calibrated for hydrogen gas by using a capacitance manometer. Change of the gauge sensitivity due to the magnetic field of GAMMA 10/PDX was also evaluated. The typical gas pressure measured in detached plasma experiments was 0.1-10 Pa. The degree of plasma detachment determined from the reduction of heat flux was enhanced as the gas pressure increases. Rapid increase of the gas pressure under the plasma flow was also observed.

  16. Characterising molecular gas in nearby star forming galaxies

    NASA Astrophysics Data System (ADS)

    Kelly, George; Viti, Serena; Garcia-Burillo, Santiago

    2015-08-01

    Regions of very dense, star-forming gas in the interstellar medium are necessary to maintain star formation activity in hostile conditions. Star-forming regions in these environments are able to resist winds and radiative forces from newly formed stars longer than gas in the surrounding ISM. Subject to a proper interpretation, observations of molecules can be used for many purposes: tracing the reservoir or leftover of the star formation process; tracing the process of star formation itself; and determining the galaxy energetics through influence of newly-formed stars or an AGN on their environments. We map the distribution of several tracer molecules over three nearby galaxies. We begin by mapping two starburst galaxies with single dish observations of the dense gas tracer CS. The formation of CS is modelled under different conditions with results fed into a molecular line radiative transfer model. From this we can obtain the physical conditions of the regions of the ISM where there is a high rate of star-formation, as well as compare how the conditions vary away from the galactic centre. Moving on from here, we use ALMA to map NGC 1068. Observations of several molecules across the AGN and starburst regions are used to determine conditions and processes with a spatial resolution of less than 35 parsecs.

  17. Pyrolysis-gas chromatography-mass spectrometry with electron-ionization or resonance-enhanced-multi-photon-ionization for characterization of polycyclic aromatic hydrocarbons in the Baltic Sea.

    PubMed

    Otto, Stefan; Streibel, Thorsten; Erdmann, Sabrina; Klingbeil, Sophie; Schulz-Bull, Detlef; Zimmermann, Ralf

    2015-10-15

    Polycyclic aromatic hydrocarbons (PAH), as a part of dissolved organic matter (DOM), are environmental pollutants of the marine compartment. This study investigates the origin of PAH, which is supposed to derive mainly from anthropogenic activities, and their alteration along the salinity gradient of the Baltic Sea. Pyrolysis in combination with gas chromatography and two mass selective detectors in one measurement cycle are utilized as a tool for an efficient trace analysis of such complex samples, by which it is possible to detect degradation products of high molecular structures. Along the north-south transect of the Baltic Sea a slightly rising trend for PAH is visible. Their concentration profiles correspond to the ship traffic as a known anthropogenic source, underlined by the value of special isomer ratios such as phenanthrene and anthracene (0.31-0.45) or pyrene and fluoranthene (0.44-0.53). The detection of naphthalene and the distribution of its alkylated representatives support this statement.

  18. Pyrolysis-gas chromatography-mass spectrometry with electron-ionization or resonance-enhanced-multi-photon-ionization for characterization of polycyclic aromatic hydrocarbons in the Baltic Sea.

    PubMed

    Otto, Stefan; Streibel, Thorsten; Erdmann, Sabrina; Klingbeil, Sophie; Schulz-Bull, Detlef; Zimmermann, Ralf

    2015-10-15

    Polycyclic aromatic hydrocarbons (PAH), as a part of dissolved organic matter (DOM), are environmental pollutants of the marine compartment. This study investigates the origin of PAH, which is supposed to derive mainly from anthropogenic activities, and their alteration along the salinity gradient of the Baltic Sea. Pyrolysis in combination with gas chromatography and two mass selective detectors in one measurement cycle are utilized as a tool for an efficient trace analysis of such complex samples, by which it is possible to detect degradation products of high molecular structures. Along the north-south transect of the Baltic Sea a slightly rising trend for PAH is visible. Their concentration profiles correspond to the ship traffic as a known anthropogenic source, underlined by the value of special isomer ratios such as phenanthrene and anthracene (0.31-0.45) or pyrene and fluoranthene (0.44-0.53). The detection of naphthalene and the distribution of its alkylated representatives support this statement. PMID:26277803

  19. PREFACE: The 19th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases Preface: The 19th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases

    NASA Astrophysics Data System (ADS)

    Gordillo-Vazquez, F. J.

    2009-07-01

    The 19th Europhysics Sectional Conference on the Atomic and Molecular Physics of Ionized Gases (ESCAMPIG-2008) took place in Granada (Spain) from 15 to 19 July 2008. The conference was mainly organized by the Spanish National Research Council (CSIC), with the collaboration and support of the University of Córdoba (UCO) and the Research Center for Energy, Environment and Technology (CIEMAT). It is already 35 years since the first ESCAMPIG in 1973. The first editions of ESCAMPIG were in consecutive years (1973 and 1974) but later on it became a biennial conference of the European Physical Society (EPS) initially focusing on the collisional and radiative atomic and molecular processes in low temperature plasmas. The successive ESCAMPIGs took place in Bratislava in 1976 (3rd), Essen in 1978 (4th), Dubrovnik in 1980 (5th) and so on until the last one organized in Granada in 2008 (19th), the first ESCAMPIG in Spain. A number of changes have taken place in the Granada edition of ESCAMPIG. First, the previous six topics that have remained unchanged for almost two decades (since 1990) have now been updated to become twelve new topics which, in the opinion of the International Scientific Committee (ISC), will enhance the opportunity for discussions and communication of new findings and developments in the field of low temperature plasmas. The new list of topics for ESCAMPIG is: • Atomic and molecular processes in plasmas • Transport phenomena, particle velocity distribution function • Physical basis of plasma chemistry • Plasma surface interaction (boundary layers, sheath, surface processes) • Plasma diagnostics • Plasma and dicharges theory and simulation • Self-organization in plasmas, dusty plasmas • Upper atmospheric plasmas and space plasmas • Low pressure plasma sources • High pressure plasma sources • Plasmas and gas flows • Laser produced plasmas Secondly, a new prize has been created, the `William Crookes' prize in Plasma Physics to be

  20. Matrix-assisted and polymer-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of low molecular weight polystyrenes and polyethylene glycols.

    PubMed

    Woldegiorgis, Andreas; Löwenhielm, Peter; Björk, Anders; Roeraade, Johan

    2004-01-01

    Recently, matrices based on oligomers of dioxin and thiophene (polymer-assisted laser desorption/ionization (PALDI)) have been described for mass spectrometric (MS) analysis of low molecular weight compounds (Woldegiorgis A, von Kieseritzky F, Dahlstedt E, Hellberg J, Brinck T, Roeraade J. Rapid Commun. Mass Spectrom. 2004; 18: 841-852). In this paper, we report the use of PALDI matrices for low molecular weight polymers. An evaluation with polystyrene and polyethylene glycol showed that no charge transfer ionization occurs. Ionization is mediated through metal ion adduction. Comparison of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) data for two very low molecular weight polymers with data obtained from size-exclusion chromatography (SEC) revealed a systematic difference regarding mean molecular weight and dispersity. Further, the mass spectra obtained with PALDI matrices had a higher signal-to-noise ratio than the spectra obtained with conventional matrices. For polymers with higher molecular weights (>1500 Da), the conventional matrices gave better performance. For evaluation of the MALDI spectra, three non-linear mathematical models were evaluated to model the cumulative distributions of the different oligomers and their maximal values of Mw, Mn and PDI. Models based on sigmoidal or Boltzmann equations proved to be most suitable. Objective modeling tools are necessary to compare different sample and instrumental conditions during method optimization of MALDI analysis of polymers, since the bias between MALDI and SEC data can be misleading.

  1. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  2. Simulation of the above-threshold-ionization experiment using the molecular strong-field approximation: The choice of gauge

    SciTech Connect

    Busuladzic, M.; Milosevic, D. B.

    2010-07-15

    We investigate how various versions of the molecular strong-field approximation (MSFA) agree with the experiment by Grasbon et al. [Phys. Rev. A 63, 041402(R) (2001)], in which the suppression of the ionization yield in the low-energy spectrum of the O{sub 2} molecule, compared to the spectrum of its companion atom Xe, was observed. In this experiment, it was also found that the spectrum of the N{sub 2} molecule is comparable to the corresponding spectrum of its companion atom Ar. We show that the length-gauge version of the MSFA with the initial state dressed by the laser field gives the best agreement with the experimental data for both O{sub 2} and N{sub 2} molecules.

  3. Global molecular identification from graphs. Neutral and ionized main-group diatomic molecules.

    PubMed

    James, Bryan; Caviness, Ken; Geach, Jonathan; Walters, Chris; Hefferlin, Ray

    2002-01-01

    Diophantine equations and inequalities are presented for main-group closed-shell diatomic molecules. Specifying various bond types (covalent, dative, ionic, van der Waals) and multiplicities, it becomes possible to identify all possible molecules. While many of the identified species are probably unstable under normal conditions, they are interesting and present a challenge for computational or experimental analysis. Ionized molecules with net charges of -1, 1, and 2 are also identified. The analysis applies to molecules with atoms from periods 2 and 3 but can be generalized by substituting isovalent atoms. When closed-shell neutral diatomics are positioned in the chemical space (with axes enumerating the numbers of valence electrons of the free atoms), it is seen that they lie on a few parallel isoelectronic series.

  4. Molecular beam resonant two-photon ionization study of caffeine and its hydrated clusters

    NASA Astrophysics Data System (ADS)

    Kim, Doory; Kim, Hyung Min; Yang, Key Young; Kim, Seong Keun; Kim, Nam Joon

    2008-04-01

    We investigated electronically excited states of caffeine and its 1:1 complex with water by using resonant two-photon ionization (R2PI) and UV-UV hole-burning techniques. Strong vibronic coupling between a pair of close-lying π-π * and n-π * transitions is proposed to be responsible for the broad spectral feature observed. By comparing the experimental results with those of theoretical calculations, both the O-bonded and N-bonded forms were suggested to be initially produced for the 1:1 complex. The electronic transitions of the O-bonded complex were blueshifted in the R2PI spectrum. For the N-bonded complex, the excited state undergoes an ultrafast decay process, followed by dissociation on a repulsive potential energy surface, which gives rise to a characteristically anomalous cluster distribution in nanosecond experiments.

  5. Molecular Characterization of Organic Aerosols Using Nanospray Desorption/Electrospray Ionization-Mass Spectrometry

    SciTech Connect

    Roach, Patrick J.; Laskin, Julia; Laskin, Alexander

    2010-10-01

    Nanospray desorption electrospray ionization (Nano-DESI) combined with high-resolution mass spectrometry (HR/MS) is a promising approach for detailed chemical characterization of atmospheric organic aerosol (OA) collected in laboratory and field experiments. In Nano-DESI analyte is desorbed into a solvent bridge formed between two capillaries and the analysis surface, which enables fast and efficient characterization of OA collected on substrates without special sample preparation. Stable signals achieved using Nano-DESI make it possible to obtain high-quality HR/MS data using only a small amount of material (<10 ng). Furthermore, Nano-DESI enables efficient detection of chemically labile compounds in OA, which is important for understanding chemical aging phenomena.

  6. Molecular gas in the Galactic center region. III. Probing shocks in molecular cores

    NASA Astrophysics Data System (ADS)

    Huettemeister, S.; Dahmen, G.; Mauersberger, R.; Henkel, C.; Wilson, T. L.; Martin-Pintado, J.

    1998-06-01

    Multiline observations of C(18) O and SiO isotopomers toward 33 molecular peaks in the Galactic center region, taken at the SEST, JCMT and HHT telescopes, are presented. The C(18) O presumably traces the total H_2 column density, while the SiO traces gas affected by shocks and high temperature chemistry. The J =2-> 1 line of SiO is seen only in few regions of the Galactic disk. This line is easily detected in all Galactic center sources observed. A comparison of the strength of the rare isotopomers (29) SiO and (30) SiO to the strength of the main isotopomer (28) SiO implies that the J = 2 -> 1 transition of (28) SiO is optically thick. The (29) Si/(30) Si isotope ratio of 1.6 in the Galactic center clouds is consistent with the terrestrial value. Large Velocity Gradient models show that the dense component (n_H_2 >= 10(4) \\percc) in typical molecular cores in the Galactic center is cool (\\TKIN ~ 25 K), contrary to what is usually found in Giant Molecular Clouds in the disk, where the densest cores are the hottest. High kinetic temperatures, > 100 K, known to exist from NH_3 studies, are only present at lower gas densities of a few 10(3) cm(-3) , where SiO is highly subthermally excited. Assuming that \\CEIO\\ traces all of the molecular gas, it is found that in all cases but one, SiO emission is compatible with arising in gas at higher density that is (presently) relatively cool. The relative abundance of SiO is typically 10(-9) , but differs significantly between individual sources. It shows a dependence on the position of the source within the Galactic center region. High abundances are found in those regions for which bar potential models predict a high likelihood for cloud-cloud collisions. These results can be used to relate the amount of gas that has encountered shocks within the last ~ 10(6) years to the large scale kinematics in the inner ~ 500 pc of the Galaxy. Based on observations obtained at the Swedish-ESO Submillimeter Telescope (SEST, Project C

  7. Calculation of the multifold differential cross section of the electron-impact ionization of molecular hydrogen by prolate spheroidal external complex scaling method with second Born corrections

    SciTech Connect

    Serov, Vladislav V.; Joulakian, Boghos B.

    2010-08-15

    We introduce the second Born dipole corrections in our recently developed ab initio procedure based on the driven Schroedinger equation formalism and the external scaling method for the determination of the multifold differential cross sections of the single and double ionization of molecular hydrogen by electron impact. To test our procedure, we first apply it to the excitation-ionization process of a He atom and compare the results to those of equivalent theoretical results, which are available. We then show that the introduction of the second Born correction including only dipole terms improves the agreement with the experimental results only in the case of the simple ionization. We think that the introduction of nondipole contributions in the second Born term which are not taken into account in the present work is necessary in the case of the double ionization process.

  8. Highly sensitive and selective analysis of urinary steroids by comprehensive two-dimensional gas chromatography combined with positive chemical ionization quadrupole mass spectrometry

    PubMed Central

    Zhang, Ying; Tobias, Herbert J.; Brenna, J. Thomas

    2014-01-01

    Comprehensive two dimensional gas chromatography (GC×GC) provides greater separation space than conventional GC. Because of fast peak elution, a time of flight mass spectrometer (TOFMS) is the usual structure-specific detector of choice. The quantitative capabilities of a novel GC×GC fast quadrupole MS were investigated with electron ionization (EI), and CH4 or NH3 positive chemical ionization (PCI) for analysis of endogenous urinary steroids targeted in anti-doping tests. Average precisions for steroid quantitative analysis from replicate urine extractions were 6% (RSD) for EI and 8% for PCI-NH3. The average limits of detection (LOD) calculated by quantification ions for 12 target steroids spiked into steroid-free urine matrix (SFUM) were 2.6 ng mL−1 for EI, 1.3 ng mL−1 for PCI-CH4, and 0.3 ng mL−1 for PCI-NH3, all in mass scanning mode. The measured limits of quantification (LOQ) with full mass scan GC×GC-qMS were comparable with the LOQ values measured by one-dimensional GC-MS in single ion monitoring (SIM) mode. PCI-NH3 yields fewer fragments and greater (pseudo)molecular ion abundances than EI or PCI-CH4. These data show a benchtop GC×GC-qMS system has the sensitivity, specificity, and resolution to analyze urinary steroids at normal urine concentrations, and that PCI-NH3, not currently available on most GC×GC-TOFMS instruments, is of particular value for generation of structure-specific ions. PMID:22606686

  9. Searching for Molecular Gas in Southern Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Prandoni, I.; Laing, R. A.; de Ruiter, H. R.; Parma, P.

    2012-07-01

    It has recently been proposed that the jets of low-luminosity radio galaxies are powered by direct accretion of the hot phase of the IGM onto the central black hole. Cold gas remains a plausible alternative fuel supply, however. The most compelling evidence that cold gas plays a role in fueling radio galaxies is that dust is detected more commonly and/or in larger quantities in (elliptical) radio galaxies compared with radio-quiet elliptical galaxies. On the other hand, only small numbers of radio galaxies have yet been detected in CO (and even fewer imaged), and whether or not all radio galaxies have enough cold gas to fuel their jets remains an open question. If so, then the dynamics of the cold gas in the nuclei of radio galaxies may provide important clues to the fuelling mechanism. The only instrument capable of imaging the molecular component on scales relevant to the accretion process is ALMA, but very little is yet known about CO in southern radio galaxies. Our aim is to measure the CO content in a complete volume-limited sample of southern radio galaxies, in order to create a well-defined list of nearby targets to be imaged in the near future with ALMA. APEX has been equipped with a receiver (APEX-1) able to observe the 230 GHz waveband. This allows us to search for CO(2-1) line emission in our target galaxies. Here we present the results of CO(2-1) APEX-1 spectroscopy taken in 2008 and 2010 for our southern sample. The experiment was successful with nearly all targets detected, and several indications for double-horned CO line profiles, consistent with ordered rotation.

  10. Molecular characterization of ongoing enzymatic reactions in raw garlic cloves using extractive electrospray ionization mass spectrometry.

    PubMed

    Zhang, Hua; Chingin, Konstantin; Zhu, Liang; Chen, Huanwen

    2015-03-01

    Characterization of enzymatic reactions occurring in untreated biological samples is of increasing interest. Herein, the chemical conversion of alliin to allicin, catalyzed by allinase, in raw garlic cloves has been followed in vivo by internal extractive electrospray ionization mass spectrometry (iEESI-MS). Both precursors and products of the enzymatic reaction were instantaneously extracted by infused solution running throughout the tissue and directly electrospray ionized on the edge of the bulk sample for online MS analysis. Compared to the room-temperature (+25 °C) scenario, the alliin conversion in garlic cloves decreased by (7.2 ± 1.4) times upon heating to +80 °C and by (5.9 ± 0.8) times upon cooling to -16 °C. Exposure of garlic to gentle ultrasound irradiation for 3 h accelerated the reaction by (1.2 ± 0.1) times. A 10 s microwave irradiation promoted alliin conversion by (1.6 ± 0.4) times, but longer exposure to microwave irradiation (90 s) slowed the reaction by (28.5 ± 7.5) times compared to the reference analysis. This method has been further employed to monitor the germination process of garlic. These data revealed that over a 2 day garlic sprouting, the allicin/alliin ratio increased by (2.2 ± 0.5) times, and the averaged degree of polymerization for the detected oligosaccharides/polysaccharides decreased from 11.6 to 9.4. Overall, these findings suggest the potential use of iEESI-MS for in vivo studies of enzymatic reactions in native biological matrices. PMID:25679258

  11. Molecular characterization of ongoing enzymatic reactions in raw garlic cloves using extractive electrospray ionization mass spectrometry.

    PubMed

    Zhang, Hua; Chingin, Konstantin; Zhu, Liang; Chen, Huanwen

    2015-03-01

    Characterization of enzymatic reactions occurring in untreated biological samples is of increasing interest. Herein, the chemical conversion of alliin to allicin, catalyzed by allinase, in raw garlic cloves has been followed in vivo by internal extractive electrospray ionization mass spectrometry (iEESI-MS). Both precursors and products of the enzymatic reaction were instantaneously extracted by infused solution running throughout the tissue and directly electrospray ionized on the edge of the bulk sample for online MS analysis. Compared to the room-temperature (+25 °C) scenario, the alliin conversion in garlic cloves decreased by (7.2 ± 1.4) times upon heating to +80 °C and by (5.9 ± 0.8) times upon cooling to -16 °C. Exposure of garlic to gentle ultrasound irradiation for 3 h accelerated the reaction by (1.2 ± 0.1) times. A 10 s microwave irradiation promoted alliin conversion by (1.6 ± 0.4) times, but longer exposure to microwave irradiation (90 s) slowed the reaction by (28.5 ± 7.5) times compared to the reference analysis. This method has been further employed to monitor the germination process of garlic. These data revealed that over a 2 day garlic sprouting, the allicin/alliin ratio increased by (2.2 ± 0.5) times, and the averaged degree of polymerization for the detected oligosaccharides/polysaccharides decreased from 11.6 to 9.4. Overall, these findings suggest the potential use of iEESI-MS for in vivo studies of enzymatic reactions in native biological matrices.

  12. Observation of increased space-charge limited thermionic electron emission current by neutral gas ionization in a weakly-ionized deuterium plasma

    SciTech Connect

    Hollmann, E. M.; Yu, J. H.; Doerner, R. P.; Nishijima, D.; Seraydarian, R. P.

    2015-09-14

    The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.

  13. Broad spectrum drug screening using electron-ionization gas chromatography-mass spectrometry (EI-GCMS).

    PubMed

    Stone, Judy

    2010-01-01

    A liquid-liquid extraction (LLE) of drugs and internal standard (promazine) is performed by mixing urine at basic pH with 1-chlorobutane. There are no hydrolysis or derivatization steps. After centrifugation the organic (upper) layer is transferred to another tube and evaporated. The dried extract is reconstituted with ethyl acetate and 1 microL is injected onto the GCMS. Drugs are volatilized in the GC inlet and separated on a capillary column. In the EI source drugs become positively charged and fragment. Mass analysis of ionized fragments occurs with a single quadrupole. The resulting full scan mass spectra are automatically searched against three libraries. PMID:20077071

  14. Acceleration of electrons generated during ionization of a gas by a nearly flat profile laser pulse

    SciTech Connect

    Singh, Kunwar Pal

    2009-09-15

    A scheme of acceleration of electrons generated during ionization of krypton by nearly flat radial and nearly flat temporal laser pulse profiles has been suggested. The energy spectrum of the electrons suggests that energy of the electrons is higher for a nearly flat temporal profile than that for a nearly flat radial profile. The suppression of scattering of the electrons is better for a nearly flat radial profile than that for a nearly flat temporal profile. The energy of the electrons increases, scattering decreases, and beam quality improves with an increase in flatness of radial and temporal profiles.

  15. Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry.

    PubMed

    Pozzi, Romina; Bocchini, Paola; Pinelli, Francesca; Galletti, Guido C

    2011-04-01

    A gas chromatography/mass spectrometry (GC/MS) method for determination of nine N-nitrosamines (NAs) in water is described. Two ionization modes, electron impact (EI) and chemical ionization (CI) with methanol, as well as different ion analysis techniques, i.e. full scan, selected ion storage (SIS) and tandem mass spectrometry (MS/MS) were tested. Chemical ionization followed by SIS resulted the mass spectrometric method of choice, with detection limits in the range of 1-2ng/L. Solid Phase Extraction (SPE) with coconut charcoal cartridges was applied to extract NAs from real samples, according EPA Method 521. Drinking water samples were collected from seven surface- and two groundwater treatment plants. Three surface water treatment plants were sampled before and after addition of O(3)/ClO(2) to observe the effect of disinfection on NAs' formation. N-nitrosodiethylamine (NDEA), n-nitrosodipropylamine (NDPA), n-nitrosomorpholine (NMOR) and n-nitrosodibutylamine (NDBA) were found up to concentrations exceeding three times the risk level of 10ng/L set by the California Department of Public Health. Because dermal adsorption has been recently indicated as a new contamination route of exposure to NAs for people who practice swimming activity, water samples from five swimming pools in the Bologna (Italy) area were collected. N-nitrosopyrrolidine (NPYR) was detected in all samples at concentrations larger than 50ng/L, likely as a disinfection by-product from the amino acid precursor proline, a main constituent of skin collagen. PMID:21377686

  16. Molecular gas observations and enhanced massive star formation efficiencies in M 100.

    NASA Astrophysics Data System (ADS)

    Knapen, J. H.; Beckman, J. E.; Cepa, J.; Nakai, N.

    1996-04-01

    We present new J=1->0 ^12^CO observations along the northern spiral arm of the grand-design spiral galaxy M 100 (NGC 4321), and study the distribution of molecular hydrogen as derived from these observations, comparing the new data with a set of data points on the southern arm published previously. We compare these measurements on both spiral arms and on the interarm regions with observations of the atomic and ionized hydrogen components. We determine massive star formation efficiency parameters, defined as the ratio of Hα luminosity to total gas mass, along the arms and compare the values to those in the interarm regions adjacent to the arms. We find that these parameters in the spiral arms are on average a factor of 3 higher than outside the arms, a clear indication of triggering of the star formation in the spiral arms. We discuss possible mechanisms for this triggering, and conclude that a density wave system is probably responsible for it. We discuss several possible systematical effects in some detail, and infer that the conclusions on triggering are sound. We specifically discuss the possible effects of extinction in Hα, or a non-standard CO to H_2_ conversion factor (X), and find that our conclusions on the enhancement of the efficiencies in the arms are reinforced rather than weakened by these considerations. A simple star forming scheme involving threshold densities for gravitational collapse is discussed for NGC 4321, and comparison is made with M 51. We find that the gas between the arms is generally stable against gravitational collapse whereas the gas in the arms is not, possibly leading to the observed arm-interarm differences in efficiency, but also note that these results, unlike the others obtained in this paper, do depend critically on the assumed value for the conversion factor.

  17. Interference asymmetry of molecular frame photoelectron angular istributions in bichromatic UV ionization processes

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2016-03-01

    We investigate molecular photoionization by ultrafast bichromatic linearly polarized UV laser pulses at frequencies 2{ω }1={ω }2 perpendicular to the internuclear axis R involving π orbital excitation. Results from numerical solutions of time dependent Schrödinger equations for aligned {{{H}}}2+ show that molecular frame photoelectron angular distributions (MFPADs) exhibit signatures of asymmetry perpendicular to the molecular symmetry axis, arising from interference of coherent electron wave packets created by respectively one {ω }2 and two-photon 2{ω }1 absorption. A resonant excitation process between the ground 1s{σ }{{g}} state and the excited 2p{π }{{u}} state is triggered by the {ω }1 pulse. The asymmetry of MFPADs varies periodically with pulse intensity I 0 and duration T, which we attribute to coherent resonant Rabi oscillations in electronic state population. A perturbative model is adopted to qualitatively describe and analyze these effects in both resonant and nonresonant photoionization processes.

  18. A practical gas chromatography flame ionization detection method for the determination of octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane in silicone emulsions.

    PubMed

    Brothers, Herbert M; Bovens, Eric; Bruni, Antonio; Habitz, Tanya M; Hamachi, Tadashi; Han, Yuanhua; Ji, Zhouhua; Kerbleski, Joel J; Letouche, Claude; Lu, Yi Dong; Nguyen, Regis; Rivard, Michelle L; Qi, Xiaoman; Shoji, Miki; Tanaka, Ken; Tecklenburg, Ronald E

    2016-04-01

    A gas chromatography with flame ionization detection (GC-FID) method for analysis of D4, D5, and D6 cyclic siloxanes in silicone emulsions is described. Sample preparation involves breaking the emulsion with methanol and hexanes, and then analyzing the hexanes phase after derivatization with hexamethyldisilazane (HMDS). Silylation is performed to reduce the potential for formation of cyclic siloxanes during the course of the GC analysis. The accuracy of the method was verified by performing analyses on samples spiked with known levels of D4, D5 and D6 and by comparison to a referee method using atmospheric pressure chemical ionization liquid chromatography with mass spectrometry detection (APCI-LC-MS). Absolute differences of the results obtained between the two techniques were 0.03 weight percent or less, and relative differences were 15% or less. The reproducibility and ruggedness of the method was demonstrated by performing a global round robin test at four different geographic sites on four different types of silicone emulsions. The %RSDs obtained were less than 10% for all analytes and all emulsions examined. PMID:26968230

  19. Molecular photoelectron angular distribution rotations in multi-photon resonant ionization of H{sub 2}{sup +} by circularly polarized ultraviolet laser pulses

    SciTech Connect

    Yuan, Kai-Jun Chelkowski, Szczepan; Bandrauk, André D.

    2015-04-14

    We study effects of pulse durations on molecular photoelectron angular distributions (MPADs) in ultrafast circular polarization ultraviolet resonant ionization processes. Simulations performed on aligned H{sub 2}{sup +} by numerically solving time dependent Schrödinger equations show rotations of MPADs with respect to the molecular symmetry axes. It is found that in multi-photon resonant ionization processes, rotation angles are sensitive to pulse durations, which we attribute to the coherent resonant excitation between the ground state and the intermediate excited electronic state induced by Rabi oscillations. Multi-photon nonresonant and single photon ionization processes are simulated and compared which exhibit a constant rotation angle. An asymmetry parameter is introduced to describe the pulse duration sensitivity by perturbation theory models. Influence of pulse frequency detunings on MPADs is also investigated where oscillations of rotations are absent at long pulse durations due to nonresonance excitation.

  20. Shocks, Superbubbles, and Filaments: Investigations into Large Scale Gas Motions in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Pon, Andrew Richard

    2013-12-01

    -tohigh rotational transitions of CO (e.g., J= 8 → 7), should be dominated by shocked gas emission and should trace the turbulent energy being dissipated in molecular clouds. Orion-Eridanus superbubble. The nearby Orion star forming region has created a large bubble of hot plasma in the local interstellar medium referred to as the Orion-Eridanus superbubble. This bubble is unusual in that it is highly elongated, is believed to be oriented roughly parallel to the galactic plane, and contains bright filamentary features on the Eridanus side. I fit models for a wind driven bubble in an exponential atmosphere to the Orion-Eridanus superbubble and show that the elongation of the bubble cannot be explained by such a model in which the scale height of the galactic disk is the typical value of 150 pc. Either a much smaller scale height must be adopted or some additional physics must be added to the model. I also show that the Eridanus filaments cannot be equilibrium objects ionized by the Orion star forming region.

  1. Enhanced sensitivity of graphene ammonia gas sensors using molecular doping

    NASA Astrophysics Data System (ADS)

    Mortazavi Zanjani, Seyedeh Maryam; Sadeghi, Mir Mohammad; Holt, Milo; Chowdhury, Sk. Fahad; Tao, Li; Akinwande, Deji

    2016-01-01

    We report on employing molecular doping to enhance the sensitivity of graphene sensors synthesized via chemical vapor deposition to NH3 molecules at room temperature. We experimentally show that doping an as-fabricated graphene sensor with NO2 gas improves sensitivity of its electrical resistance to adsorption of NH3 molecules by about an order of magnitude. The detection limit of our NO2-doped graphene sensor is found to be ˜200 parts per billion (ppb), compared to ˜1400 ppb before doping. Electrical characterization and Raman spectroscopy measurements on graphene field-effect transistors show that adsorption of NO2 molecules significantly increases hole concentration in graphene, which results in the observed sensitivity enhancement.

  2. Measurement of lysergic acid diethylamide (LSD) in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry.

    PubMed

    Papac, D I; Foltz, R L

    1990-01-01

    A previously reported procedure for quantification of LSD in urine was modified to permit measurement of the drug in plasma. After addition of deuterium-labelled LSD, the plasma is extracted and the extract is treated with trifluoroacetylimidazole to convert the LSD to its N-trifluoroacetyl derivative. The derivatized LSD is analyzed by capillary column gas chromatography/negative ion chemical ionization. Plasma fortified with known concentrations of LSD gave linear responses from 0.1 to 3.0 ng/mL with this assay. The method was used to determine pharmacokinetic parameters for LSD after oral administration (1 microgram/kg) to a male volunteer. The apparent plasma half-life was determined to be 5.1 h. The peak plasma concentration of 1.9 ng/mL occurred 3 h after administration.

  3. The Ionized Gas in Nearby Galaxies as Traced by the [N II] 122 and 205 μm Transitions

    NASA Astrophysics Data System (ADS)

    Herrera-Camus, R.; Bolatto, A.; Smith, J. D.; Draine, B.; Pellegrini, E.; Wolfire, M.; Croxall, K.; de Looze, I.; Calzetti, D.; Kennicutt, R.; Crocker, A.; Armus, L.; van der Werf, P.; Sandstrom, K.; Galametz, M.; Brandl, B.; Groves, B.; Rigopoulou, D.; Walter, F.; Leroy, A.; Boquien, M.; Tabatabaei, F. S.; Beirao, P.

    2016-08-01

    The [N ii] 122 and 205 μm transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ˜1 kpc, with observations of both [N ii] far-infrared lines. We measure [N ii] 122/205 line ratios in the ˜0.6-6 range, which corresponds to electron gas densities of n e ˜ 1-300 cm-3, with a median value of n e = 30 cm-3. Variations in the electron density within individual galaxies can be as high as a factor of ˜50, frequently with strong radial gradients. We find that n e increases as a function of infrared color, dust-weighted mean starlight intensity, and star-formation rate (SFR) surface density (ΣSFR). As the intensity of the [N ii] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the SFR. We derive relations between the [N ii] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [N ii] surface brightness and ΣSFR can be understood as a property of the n e distribution. For regions with n e close to or higher than the [N ii] line critical densities, the low-density limit [N ii]-based SFR calibration systematically underestimates the SFR because the [N ii] emission is collisionally quenched. Finally, we investigate the relation between [N ii] emission, SFR, and n e by comparing our observations to predictions from the MAPPINGS-III code.

  4. Development and validation of a gas chromatography-flame ionization detection method for quantifying sucrose in equine serum.

    PubMed

    Hewetson, Michael; Aaltonen, Kaisa; Tulamo, Riitta-Mari; Sankari, Satu

    2014-03-01

    A simple and accurate method for quantifying sucrose in equine serum that can be applied to sucrose permeability testing in the horse was developed and validated using gas chromatography with flame ionization detection. The assay provided an acceptable degree of linearity, accuracy, and precision at concentrations of sucrose as low as 2.34 μmol/l and as high as 20.45 μmol/l. Percentage recovery of sucrose from serum ranged from 89% to 102%; repeatability and intermediate precision (relative standard deviation) ranged from 3.6% to 6.7% and 4.1% to 9.3%, respectively. The limit of detection was 0.73 μmol/l. No interfering peaks were observed except lactose, which gave 2 peaks, one of which overlapped partially with sucrose. To evaluate the suitability of the method for quantifying sucrose in serum samples from horses with naturally occurring gastric ulceration, 10 horses with and without naturally occurring gastric ulceration were subjected to sucrose permeability testing. All horses demonstrated an increase in serum sucrose concentration over time following oral administration of sucrose; however, the increase from baseline was significant for horses with gastric ulceration at 45 min (P = 0.0082) and 90 min (P = 0.0082) when compared with healthy horses. It was concluded that gas chromatography with flame ionization detection is a valid method for quantifying sucrose in equine serum and can be applied directly to the analysis of sucrose in equine serum as part of a larger validation study aimed at developing a blood test for the diagnosis of gastric ulcers in horses.

  5. Highly Ionized Gas in the Galactic Halo and the High Velocity Clouds Toward PG 1116+215

    NASA Astrophysics Data System (ADS)

    Ganguly, R.; Sembach, K. R.; Tripp, T. M.; Savage, B. D.

    2003-12-01

    Recent observations of extragalactic objects with FUSE have revealed the presence of high ionization OVI absorption associated with high velocity clouds (HVCs), defined as gas which lies at absolute velocities beyond 100 km/s in the Local Standard of Rest. We have acquired high spectral resolution observations with STIS ( ˜ 10 km/s) and FUSE ( ˜ 20 km/s) of the quasar PG 1116+215. The spectra show absorption at Vlsr=184km/s from a wide range of ionization species:CIV, OI, OVI, MgII, SiII, SiIII, SiIV, and FeII. The strong and broad O VI absorption in this HVC extends from ˜ 120 to 230 km/s with a weak wing of absorption to 300km/s. Although the HVC is not seen in HI 21 cm emission down to N(HI) ˜ 2x1018 cm-2, it is seen in the HI Lyman series up to at least the 918.13Å line. In addition, we have non-detection constraints on the column denisties of CI, NI, NV, and SII. We can rule out photoionization in an ultra-low density (n ˜ 10-6 cm-3) Local Group medium adopted by some investigators to explain the O VI and O VII absorption detected in several directions. We are currently in the process of determining if these data either support or rule out other models of HVCs, such as the Warm-Hot Intergalactic Medium, Dark Matter dominated mini-halos, or interactions with a low density (10-4-10-5 cm-3) Galactic corona or Local Group medium. In addition, we will also use abundance infomation to study the enrichment history and constrain possible sources for the high velocity gas, such as tidal debris from cannibalized galaxies.

  6. The Ionized Gas in Nearby Galaxies as Traced by the [N II] 122 and 205 μm Transitions

    NASA Astrophysics Data System (ADS)

    Herrera-Camus, R.; Bolatto, A.; Smith, J. D.; Draine, B.; Pellegrini, E.; Wolfire, M.; Croxall, K.; de Looze, I.; Calzetti, D.; Kennicutt, R.; Crocker, A.; Armus, L.; van der Werf, P.; Sandstrom, K.; Galametz, M.; Brandl, B.; Groves, B.; Rigopoulou, D.; Walter, F.; Leroy, A.; Boquien, M.; Tabatabaei, F. S.; Beirao, P.

    2016-08-01

    The [N ii] 122 and 205 μm transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ˜1 kpc, with observations of both [N ii] far-infrared lines. We measure [N ii] 122/205 line ratios in the ˜0.6–6 range, which corresponds to electron gas densities of n e ˜ 1–300 cm‑3, with a median value of n e = 30 cm‑3. Variations in the electron density within individual galaxies can be as high as a factor of ˜50, frequently with strong radial gradients. We find that n e increases as a function of infrared color, dust-weighted mean starlight intensity, and star-formation rate (SFR) surface density (ΣSFR). As the intensity of the [N ii] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the SFR. We derive relations between the [N ii] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [N ii] surface brightness and ΣSFR can be understood as a property of the n e distribution. For regions with n e close to or higher than the [N ii] line critical densities, the low-density limit [N ii]-based SFR calibration systematically underestimates the SFR because the [N ii] emission is collisionally quenched. Finally, we investigate the relation between [N ii] emission, SFR, and n e by comparing our observations to predictions from the MAPPINGS-III code.

  7. From Gas to Stars in Energetic Environments: Chemistry of Clumps in Giant Molecular Clouds Within the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Anderson, Crystal N.; Meier, David S.; Ott, Juergen; Hughes, Annie; Wong, Tony H.

    2015-01-01

    We present parsec scale interferometric maps of HCN and HCO^{+} emission from dense gas in the star-forming region 30 Doradus, obtained using the Australia Telescope Compact Array (ATCA). This extreme star-forming region, located in the Large Magellanic Cloud (LMC), is characterized by a very intense ultraviolet ionizing radiation field and sub-solar metallicity, both of which are expected to impact molecular cloud structure. We detect 13 bright, dense clumps within the 30 Doradus-10 giant molecular cloud. Some of the clumps are aligned along a filamentary structure with a characteristic spacing that is consistent with formation via the varicose fluid instability. Our analysis shows that the filament is gravitationally unstable and collapsing to form stars. There is a good correlation between HCO^{+} emission in the filament and signatures of recent star formation activity including H_{2}O masers and young stellar objects (YSOs). We present detailed comparisons of clump properties (masses, linewidths, sizes) in 30Dor-10 to those in other star forming regions of the LMC (N159, N113, N105, N44). Our analysis shows that the 30 Doradus-10 clumps have similar mass but wider linewidths and similar HCN/HCO^{+} (1-0) line ratios as clumps detected in other LMC star-forming regions. Our results suggest that the dense molecular gas clumps in the interior of 30Dor-10 are well-shielded against the intense ionizing field that is present in the 30 Doradus region. We also present preliminary results from follow up observations with the ATCA of a several molecular lines detected from the brightest clumps in 30 Doradus-10, N113 and N159W. The maps cover the following dense gas, photo-dominated regions (PDRs), and shock tracers: HCN, HCO^{+}, C_{2}H, SiO, HNCO, SiS, N_{2}H^{+}, CS, CH_{3}H, CH_{3}CN, {13}^CS, OCS, H_{2}, {34}^CS. These giant molecular clouds have varying radiation fields and energetics. We compare the chemistry within these giant molecular clouds to one another to

  8. Theoretical and experimental studies of optically pumped molecular gas lasers

    NASA Astrophysics Data System (ADS)

    Ratanavis, Amarin

    Optically pumped molecular gas lasers based on vibrational-rotational transitions in the infrared spectral region were studied experimentally and theoretically. A model was developed to predict the performance of such lasers and explore their potentials for energy and power scaling. This rate equation model was applied to explore the performance of a second-overtone (pulsed) and a first-overtone (CW) pumped HBr laser. Experimental improvements concerning temperature spectral tuning and frequency stabilization of a Nd:YAG laser that pumped HBr were accomplished. Lasing at 4 microns was demonstrated from such a system. We identified acetylene and hydrogen cyanide as potential laser gases that can be pumped with lasers emitting in the attractive telecommunication C band region at about 1.5 microns. Estimations and fluorescence measurements suggest the possibility of lasing in the 3 micron region. Lasing was demonstrated for the first time with a 5 ns pump pulse from an optical parametric oscillator using traditional cavities. The first gas filled hollow fiber laser based on population inversion was demonstrated with C2H2 and emission in the 3 micron region was observed. An analytical model indicates the possibility of CW lasing with small Stokes shift in both C2H 2 and HCN.

  9. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    NASA Astrophysics Data System (ADS)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  10. The Molecular Origin of Turbulence in a Flowing Gas

    NASA Astrophysics Data System (ADS)

    de Graffenried, Albert

    2003-11-01

    Following the analytical approach of James Clerk Maxwell in his Kinetic Theory of Gases derivation of mu, the coefficient of viscosity of a gas, the author treats with the growth of an aerodynamic boundary-layer (1) over an infinite flat plate with time, assuming a step-function of air velocity, and (2) over a semi-infinite flat plate (sharp leading edge) with time and downstream-distance, x, assuming a step function of air velocity. Using LaPlace-transform techniques, a path is found to the solution of both cases, after recognizing the similarity of the format of the equations in the s-plane to those appearing in the s-plane for Servomechanism Theory. Solutions for Case 1 and for Case 2 take the form of multi- loop Growth-Mechanism diagrams, similar to Servo-mechanism Loop diagrams, and give a pictorial view of how these two Boundary-Layer growth cases behave molecularly. Work in progress aims at solving for the Turbulence Transition point in terms of molecular parameters, and the strength and spacing of the vortex kernels downstream of the transition point. END

  11. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    SciTech Connect

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  12. Molecular analysis of model gut microbiotas by imaging mass spectrometry and nano-desorption electrospray ionization reveals dietary metabolite transformations

    PubMed Central

    Rath, Christopher M.; Alexandrov, Theodore; Higginbottom, Steven K.; Song, Jiao; Milla, Marcos; Fischbach, Michael; Sonnenburg, Justin L.; Dorrestein, Pieter C.

    2013-01-01

    The communities constituting our microbiotas are emerging as mediators of the health-disease continuum. However, deciphering the functional impact of microbial communities on host pathophysiology represents a formidable challenge, due to the heterogeneous distribution of chemical and microbial species within the gastrointestinal (GI) tract. Herein, we apply imaging mass spectrometry (IMS) to localize metabolites from the interaction between the host and colonizing microbiota. This approach complements other molecular imaging methodologies in that analytes need not be known a priori, offering the possibility of untargeted analysis. Localized molecules within the GI tract were then identified in situ by surface sampling with nano-desorption electrospray ionization (nanoDESI) FT-MS. Products from diverse structural classes were identified including cholesterol-derived lipids, glycans, and polar metabolites. Specific chemical transformations performed by the microbiota were validated with bacteria in culture. This study illustrates how untargeted spatial characterization of metabolites can be applied to the molecular dissection of complex biology in situ. PMID:23009651

  13. Penning Ionization Electron Spectroscopy in Glow Discharge: A New Dimension for Gas Chromatography Detectors

    NASA Technical Reports Server (NTRS)

    Sheverev, V. A.; Khromov, N. A.; Kojiro, D. R.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Admixtures to helium of 100 ppm and 5 ppm of nitrogen, and 100 ppm and 10 ppm of carbon monoxide were identified and measured in the helium discharge afterglow using an electrical probe placed into the plasma. For nitrogen and carbon monoxide gases, the measured electron energy spectra display distinct characteristic peaks (fingerprints). Location of the peaks on the energy scale is determined by the ionization energies of the analyte molecules. Nitrogen and carbon monoxide fingerprints were also observed in a binary mixture of these gases in helium, and the relative concentration analytes has been predicted. The technically simple and durable method is considered a good candidate for a number of analytical applications, and in particular, in GC and for analytical flight instrumentation.

  14. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Hunter, Scott R.

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  15. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  16. Dispersive micro-solid phase extraction combined with gas chromatography-chemical ionization mass spectrometry for the determination of N-nitrosamines in swimming pool water samples.

    PubMed

    Fu, Ssu-Chieh; Tzing, Shin-Hwa; Chen, Hsin-Chang; Wang, Yu-Chen; Ding, Wang-Hsien

    2012-02-01

    A simple sample pretreatment technique, dispersive micro-solid phase extraction, was applied for the extraction of N-nitrosodimethylamine (NDMA) and other four N-nitrosamines (NAs) from samples of swimming pool water. The parameters affecting the extraction efficiency were systematically investigated. The best extraction conditions involved immersing 75 mg of carbon molecular sieve, Carboxen™ 1003 (as an adsorbent), in a 50-mL water sample (pH 7.0) containing 5% sodium chloride in a sample tube. After 20 min of extraction by vigorous shaking, the adsorbent was collected on a filter and the NAs desorbed by treatment with 150 μL of dichloromethane. A 10-μL aliquot was then directly determined by large-volume injection gas chromatography with chemical ionization mass spectrometry using the selected ion storage mode. The limits of quantitation were <0.9 ng/L. The precision for these analytes, as indicated by relative standard deviations, were <8% for both intra- and inter-day analyses. Accuracy, expressed as the mean extraction recovery, was between 62% and 109%. A preliminary analysis of swimming pool water samples revealed that NDMA was present in the highest concentration, in the range from n.d. to 100 ng/L. PMID:22222914

  17. Prediction of response factors for gas chromatography with flame ionization detection: Algorithm improvement, extension to silylated compounds, and application to the quantification of metabolites

    PubMed Central

    de Saint Laumer, Jean‐Yves; Leocata, Sabine; Tissot, Emeline; Baroux, Lucie; Kampf, David M.; Merle, Philippe; Boschung, Alain; Seyfried, Markus

    2015-01-01

    We previously showed that the relative response factors of volatile compounds were predictable from either combustion enthalpies or their molecular formulae only 1. We now extend this prediction to silylated derivatives by adding an increment in the ab initio calculation of combustion enthalpies. The accuracy of the experimental relative response factors database was also improved and its population increased to 490 values. In particular, more brominated compounds were measured, and their prediction accuracy was improved by adding a correction factor in the algorithm. The correlation coefficient between predicted and measured values increased from 0.936 to 0.972, leading to a mean prediction accuracy of ± 6%. Thus, 93% of the relative response factors values were predicted with an accuracy of better than ± 10%. The capabilities of the extended algorithm are exemplified by (i) the quick and accurate quantification of hydroxylated metabolites resulting from a biodegradation test after silylation and prediction of their relative response factors, without having the reference substances available; and (ii) the rapid purity determinations of volatile compounds. This study confirms that Gas chromatography with a flame ionization detector and using predicted relative response factors is one of the few techniques that enables quantification of volatile compounds without calibrating the instrument with the pure reference substance. PMID:26179324

  18. Determination of alkyltrimethylammonium surfactants in hair conditioners and fabric softeners by gas chromatography-mass spectrometry with electron-impact and chemical ionization.

    PubMed

    Tsai, Pei-Chuan; Ding, Wang-Hsien

    2004-02-20

    The commercial hair conditioners and fabric softeners were analyzed for the content of alkyltrimethylammonium compounds (ATMACs) by gas chromatography-mass spectrometry (GC-MS) with electron impact (EI) and low-pressure positive-ion chemical ionization (PICI) modes. The method involves mixed diluted samples (adjust pH to 10.0) with potassium iodide to enhance the extraction of iodide-ATMA+ ion pairs by direct liquid-liquid extraction. The iodide-ATMA+ pairs were then demethylated to their corresponding nonionic alkyldimethylamines (ADMAs) by thermal decomposition in a GC injection-port. A high abundance of ADMAs was detected at the temperature above 300 degrees C in the GC injection-port. The enhanced selectivity of quasi-molecular ion chromatograms of C12-C18-ADMA, obtained using methanol PICI-MS enables ADMAs to be identified. The accuracy and precision of the method was validated and was successfully applied to determine contents of ATMAC in commercial hair conditioners and fabric softeners. The contents of total measured ATMAC ranged from 0.4 to 6.9% for hair conditioners, and from 3.3 to 4.6% for fabric softeners. PMID:14971489

  19. Novel analytical approach for brominated flame retardants based on the use of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry with emphasis in highly brominated congeners.

    PubMed

    Portolés, Tania; Sales, Carlos; Gómara, Belén; Sancho, Juan Vicente; Beltrán, Joaquim; Herrero, Laura; González, María José; Hernández, Félix

    2015-10-01

    The analysis of brominated flame retardants (BFRs) commonly relies on the use of gas chromatography coupled to mass spectrometry (GC-MS) operating in electron ionization (EI) and electron capture negative ionization (ECNI) modes using quadrupole, triple quadrupole, ion trap, and magnetic sector analyzers. However, these brominated contaminants are examples of compounds for which a soft and robust ionization technique might be favorable since they show high fragmentation in EI and low specificity in ECNI. In addition, the low limits of quantification (0.01 ng/g) required by European Commission Recommendation 2014/118/EU on the monitoring of traces of BFRs in food put stress on the use of highly sensitive techniques/methods. In this work, a new approach for the extremely sensitive determination of BFRs taking profit of the potential of atmospheric pressure chemical ionization (APCI) combined with GC and triple quadrupole (QqQ) mass analyzer is proposed. The objective was to explore the potential of this approach for the BFRs determination in samples at pg/g levels, taking marine samples and a cream sample as a model. Ionization and fragmentation behavior of 14 PBDEs (congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two novel BFRs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in the GC-APCI-MS system has been investigated. The formation of highly abundant (quasi) molecular ion was the main advantage observed in relation to EI. Thus, a notable improvement in sensitivity and specificity was observed when using it as precursor ion in tandem MS. The improved detectability (LODs < 10 fg) achieved when using APCI compared to EI has been demonstrated, which is especially relevant for highly brominated congeners. Analysis of samples from an intercomparison exercise and samples from the marine field showed the potential of this approach for the reliable identification and quantification at very low

  20. Novel analytical approach for brominated flame retardants based on the use of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry with emphasis in highly brominated congeners.

    PubMed

    Portolés, Tania; Sales, Carlos; Gómara, Belén; Sancho, Juan Vicente; Beltrán, Joaquim; Herrero, Laura; González, María José; Hernández, Félix

    2015-10-01

    The analysis of brominated flame retardants (BFRs) commonly relies on the use of gas chromatography coupled to mass spectrometry (GC-MS) operating in electron ionization (EI) and electron capture negative ionization (ECNI) modes using quadrupole, triple quadrupole, ion trap, and magnetic sector analyzers. However, these brominated contaminants are examples of compounds for which a soft and robust ionization technique might be favorable since they show high fragmentation in EI and low specificity in ECNI. In addition, the low limits of quantification (0.01 ng/g) required by European Commission Recommendation 2014/118/EU on the monitoring of traces of BFRs in food put stress on the use of highly sensitive techniques/methods. In this work, a new approach for the extremely sensitive determination of BFRs taking profit of the potential of atmospheric pressure chemical ionization (APCI) combined with GC and triple quadrupole (QqQ) mass analyzer is proposed. The objective was to explore the potential of this approach for the BFRs determination in samples at pg/g levels, taking marine samples and a cream sample as a model. Ionization and fragmentation behavior of 14 PBDEs (congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two novel BFRs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in the GC-APCI-MS system has been investigated. The formation of highly abundant (quasi) molecular ion was the main advantage observed in relation to EI. Thus, a notable improvement in sensitivity and specificity was observed when using it as precursor ion in tandem MS. The improved detectability (LODs < 10 fg) achieved when using APCI compared to EI has been demonstrated, which is especially relevant for highly brominated congeners. Analysis of samples from an intercomparison exercise and samples from the marine field showed the potential of this approach for the reliable identification and quantification at very low

  1. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    PubMed

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  2. Molecular characterization of dissolved organic matter in contrasted freshwater environments by electrospray ionization mass spectrometry and EEM-PARAFAC

    NASA Astrophysics Data System (ADS)

    Parot, Jérémie; Parlanti, Edith; Guéguen, Céline

    2015-04-01

    Dissolved organic matter (DOM) is a key parameter in the fate, transport and mobility of inorganic and organic pollutants in natural waters. Excitation emission matrix (EEM) spectra coupled to parallel factor analysis (PARAFAC) provide insights on the main fluorescent DOM constituents. However, the molecular structures associated with PARAFAC DOM remain poorly understood. In this study, DOM from rivers, marshes and algal culture was characterized by EEM-PARAFAC and electrospray ionization Fourier transform mass spectrometry (ESI-FT-MS, Orbitrap Q Exactive). The high resolution of the Orbitrap (i.e. 140,000) allowed us to separate unique molecular species from the complex DOM mixtures. The majority of chemical species were found within the mass to charge ratio (m/z) 200 to 400. Weighted averages of neutral mass were 271.254, 236.480, 213.992Da for river, marsh and algal-derived DOM, respectively, congruent with previous studies. The assigned formula were dominated by CHO in humic-rich river waters whereas N- and S-containing compounds were predominant in marsh and algal samples. Marsh consisted of N and S-containing compounds, which were presumed to be linear alkylbenzene sulfonates. And the double bond equivalent (DBE) was higher in the marsh and in comparison was lower in the algal culture. Kendrick masses, used to identify homologous compounds differing only by a number of base units in high resolution mass spectra, and Van Krevelen diagrams, plot of molar ratio of hydrogen to carbon (H/C) versus oxygen to carbon (O/C), will be discussed in relation to PARAFAC components to further discriminate freshwater systems based on the origin and maturity of DOM. Together, these results showed that ESI-FT-MS has a great potential to distinguish freshwater DOM at the molecular level without any fractionation.

  3. ATOMIC AND MOLECULAR PHYSICS: Multiphoton ionization of the hydrogen atom exposed to circularly or linearly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Jie; He, Feng

    2009-12-01

    This paper studies the multiphoton ionization of the hydrogen atom exposed to the linearly or circularly polarized laser pulses by solving the time-dependent Schrödinger equation. It finds that the ratio of the ionization probabilities by linearly and circularly polarized laser pulses varies with the numbers of absorbing photons. With the same laser intensity, the circularly polarized laser pulse favors to ionize the atom with more ease than the linearly polarized laser pulse if only two or three photons are necessary to be absorbed. For the higher order multiphoton ionization, the linearly polarized laser pulse has the advantage over circularly polarized laser pulse to ionize the atom.

  4. Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry.

    PubMed

    Nuño, Manuel; Ball, Richard J; Bowen, Chris R

    2014-08-01

    This paper describes a novel methodology for the real-time study of solid-gas phase photocatalytic reactions in situ. A novel reaction chamber has been designed and developed to facilitate the investigation of photoactive materials under different gas compositions. UV irradiation in the wavelength of ranges 376-387 and 381-392 nm was provided using specially designed high efficiency light emitting diode arrays. The experiments used air containing 190 ppm NO2 in a moist environment with a relative humidity of 0.1%. Photocatalytic samples consisting of pressed pellets of rutile and anatase crystalline forms of TiO2 were monitored over a period of 150 min. An ultra-high vacuum right angled bleed valve allowed a controlled flow of gas from the main reaction chamber at atmospheric pressure to a residual gas analyser operating at a vacuum of 10(-5)  mbar. The apparatus and methodology have been demonstrated to provide high sensitivity (ppb). The rate of degradation of NO2 attributed to reaction at the TiO2 surface was sensitive to both crystal structures (anatase or rutile) and wavelength of irradiation.

  5. Nebular emission from AGN in the ultraviolet/optical: diagnostics of the ionizing source and gas properties

    NASA Astrophysics Data System (ADS)

    Feltre, A.

    2016-08-01

    Spectroscopic studies of active galactic nuclei (AGN) are powerful means of probing the physical properties of the ionized gas within them. In particular, forthcoming facilities such as JWST and the E-ELT, will provide rest-frame ultraviolet and optical spectra of the very distant AGN. To lay the groundwork for the interpretation of these revolutionary datasets, we have recently computed new photoionization models of the narrow-line emitting regions (NLR) of AGN and combined them with similar models of the nebular emission from star-forming galaxies. In this talk, I will first describe how new ultraviolet and standard optical spectral diagnostics allow one to distinguish between nuclear activity and star formation. I will then explain how predictions of AGN nebular emission can be best used to understand the physical properties of the AGN NLR gas. In particular, I will present recent results from a study on one of the most comprehensive set of optical spectra (from VIMOS/VLT) sampling the rest-frame ultraviolet range of ~90 type 2 AGN (1.5 < z < 3), drawn from the z-COSMOS deep survey. To conclude, I will show how the implementation of AGN photoionization calculations in an innovative Bayesian fitting code can help us best interpret current, and future, spectro-photometric data on active galaxies.

  6. Fueling the central engine of radio galaxies. III. Molecular gas and star formation efficiency of 3C 293

    NASA Astrophysics Data System (ADS)

    Labiano, A.; García-Burillo, S.; Combes, F.; Usero, A.; Soria-Ruiz, R.; Piqueras López, J.; Fuente, A.; Hunt, L.; Neri, R.

    2014-04-01

    Context. Powerful radio galaxies show evidence of ongoing active galactic nuclei (AGN) feedback, mainly in the form of fast, massive outflows. But it is not clear how these outflows affect the star formation of their hosts. Aims: We investigate the different manifestations of AGN feedback in the evolved, powerful radio source 3C 293 and their impact on the molecular gas of its host galaxy, which harbors young star-forming regions and fast outflows of H i and ionized gas. Methods: We study the distribution and kinematics of the molecular gas of 3C 293 using high spatial resolution observations of the 12CO(1-0) and 12CO(2-1) lines, and the 3 mm and 1 continuum taken with the IRAM Plateau de Bure interferometer. We mapped the molecular gas of 3C 293 and compared it with the dust and star-formation images of the host. We searched for signatures of outflow motions in the CO kinematics, and re-examined the evidence of outflowing gas in the H i spectra. We also derived the star formation rate (SFR) and star formation efficiency (SFE) of the host with all available SFR tracers from the literature, and compared them with the SFE of young and evolved radio galaxies and normal star-forming galaxies. Results: The 12CO(1-0) emission line shows that the molecular gas in 3C 293 is distributed along a massive (M(H2) ~ 2.2 × 1010M⊙) ~24″(21 kpc-) diameter warped disk, that rotates around the AGN. Our data show that the dust and the star formation are clearly associated with the CO disk. The 12CO(2-1) emission is located in the inner 7 kpc (diameter) region around the AGN, coincident with the inner part of the 12CO(1-0) disk. Both the 12CO(1-0) and 12CO(2-1) spectra reveal the presence of an absorber against the central regions of 3C 293 that is associated with the disk. We do not detect any fast (≳500 km s-1) outflow motions in the cold molecular gas. The host of 3C 293 shows an SFE consistent with the Kennicutt-Schmidt law of normal galaxies and young radio galaxies, and it

  7. On the origins of the diffuse Hα emission: ionized gas or dust-scattered Hα halos?

    NASA Astrophysics Data System (ADS)

    Seon, Kwang-Il; Witt, Adolf N.

    2015-03-01

    We find that the dust-scattering origin of the diffuse Hα emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered Hα halos surrounding H II regions are, in fact, in good agreement with the observed Hα morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/Hα, [N II]/Hα, and He I λ5876/Hα in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the Hα absorption feature in the underlying continuum from the dust-scattered starlight (``diffuse galactic light'') and unresolved stars is able to substantially increase the [S II]/Hα and [N II]/Hα line ratios in the diffuse ISM.

  8. Gas chromatographic quantification of fatty acid methyl esters: flame ionization detection vs. electron impact mass spectrometry.

    PubMed

    Dodds, Eric D; McCoy, Mark R; Rea, Lorrie D; Kennish, John M

    2005-04-01

    The determination of FAME by GC is among the most commonplace analyses in lipid research. Quantification of FAME by GC with FID has been effectively performed for some time, whereas detection with MS has been used chiefly for qualitative analysis of FAME. Nonetheless, the sensitivity and selectivity of MS methods advocate a quantitative role for GC-MS in FAME analysis-an approach that would be particularly advantageous for FAME determination in complex biological samples, where spectrometric confirmation of analytes is advisable. To assess the utility of GC-MS methods for FAME quantification, a comparative study of GC-FID and GC-MS methods has been conducted. FAME in prepared solutions as well as a biological standard reference material were analyzed by GC-FID and GC-MS methods using both ion trap and quadrupole MS systems. Quantification by MS, based on total ion counts and processing of selected ions, was investigated for FAME ionized by electron impact. Instrument precision, detection limits, calibration behavior, and response factors were investigated for each approach, and quantitative results obtained by each technique were compared. Although there were a number of characteristic differences between the MS methods and FID with respect to FAME analysis, the quantitative performance of GC-MS compared satisfactorily with that of GC-FID. The capacity to combine spectrometric examination and quantitative determination advances GC-MS as a powerful alternative to GC-FID for FAME analysis. PMID:16028722

  9. Ultraviolet laser desorption/ionization mass spectrometry of single-core and multi-core polyaromatic hydrocarbons under variable conditions of collisional cooling: insights into the generation of molecular ions, fragments and oligomers.

    PubMed

    Gámez, Francisco; Hortal, Ana R; Martínez-Haya, Bruno; Soltwisch, Jens; Dreisewerd, Klaus

    2014-11-01

    The ultraviolet laser desorption/ionization of polyaromatic hydrocarbons (PAHs) has been investigated under different background pressures of an inert gas (up to 1.2 mbar of N2) in the ion source of a hybrid, orthogonal-extracting time-of-flight mass spectrometer (oTOF-MS). The study includes an ensemble of six model PAHs with isolated single polyaromatic cores and four ones with multiple cross-linked aromatic and polyaromatic cores. In combination with a weak ion extraction field, the variation of the buffer gas pressure allowed to control the degree of collisional cooling of the desorbed PAHs and, thus, to modulate their decomposition into fragments. The dominant fragmentation channels observed are related to dehydrogenation of the PAHs, in most cases through the cleavage of even numbers of C-H bonds. Breakage of C-C bonds leading to the fragmentation of rings, side chains and core linkages is also observed, in particular, at low buffer gas pressures. The precise patterns of the combined fragmentation processes vary significantly between the PAHs. The highest abundances of molecular PAH ions and cleanest mass spectra were consistently obtained at the highest buffer gas pressure of 1.2 mbar. The effective quenching of the fragmentation pathways at this elevated pressure improves the sensitivity and data interpretation for analytical applications, although the fragmentation of side chains and of bonds between (poly)aromatic cores is not completely suppressed in all cases. Moreover, these results suggest that the detected fragments are generated through thermal equilibrium processes rather than as a result of rapid photolysis. This assumption is further corroborated by a laser desorption/ionization post-source decay analysis using an axial time-of-flight MS. In line with these findings, covalent oligomers of the PAHs, which are presumably formed by association of two or more dehydrogenated fragments, are detected with higher abundances at the lower buffer gas

  10. Spectroscopic studies of gas-phase molecular clusters

    NASA Astrophysics Data System (ADS)

    Wong, Chi-Kin

    Spectroscopic investigations of hydrogen-bonding and van der Waals' interactions in molecular clusters were studied by the techniques of infrared predissociation and resonance-enhanced multiphoton ionization spectroscopies (REMPI). Ab initio calculations were applied in conjunction for data interpretation. The infrared predissociation spectroscopy of CN-·(H 2O)n (n = 2--6) clusters was reported in the region of 2950--3850 cm-1. The hydrogen bondings for the C-site and N-site binding, and among the water molecules were identified for n = 2 to 4. A spectral transition was observed for n = 5 and 6, implying that the anion was surface-bound onto the water aggregates in larger clusters. The infrared predissociation spectroscopy of Br-·(NH 3) and I-·(NH3) n (n = 1--3) clusters was reported in the region of 3050--3450 cm-1. For the Br -·(NH3) complex, a dominating ionic NH stretch appeared at 3175 cm-1, and the weaker free NH stretch appeared at 3348 cm-1. The observed spectrum was consistent to the structure in which there was one nearly linear hydrogen bond between Br- and the NH3 moiety. For the I- ·(NH3) complex, five distinct IR absorption bands were observed in the spectrum. The spectrum was not consistent with basic frequency patterns of three geometries considered in the ab initio calculations---complex with one, two and three hydrogen bondings between I- and the NH3 moiety. Substantial inhomogenous broadening were displayed in the spectra for I- ·(NH3)n (n = 2--3), suggesting the presence of multiple isomers. The REMPI spectroscopy of the bound 4p 2pi 1/2 and 2pi3/2 states, and the dissociative 3d 2Sigma+1/2 state in the Al·Ar complex was reported. The dissociative spectrum at Al+ channel suggested the coupling of the 4p 2pi 1/2,3/2 states to the repulsive 3d 2Sigma+1/2 state. The spin-electronic coupling was further manifested in the dissociative Al+ spectrum of the 3d 2Sigma+1/2 state. Using the potential energy curves obtained from ab initio

  11. Kinematics and Excitation of the Ram Pressure Stripped Ionized Gas Filaments in the Coma Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Yagi, Masafumi; Komiyama, Yutaka; Furusawa, Hisanori; Kashikawa, Nobunari; Hattori, Takashi; Okamura, Sadanori

    2012-04-01

    We present the results of deep imaging and spectroscopic observations of very extended ionized gas (EIG) around four member galaxies of the Coma Cluster of galaxies: RB 199, IC 4040, GMP 2923, and GMP 3071. The EIGs were serendipitously found in an Hα narrowband imaging survey of the central region of the Coma Cluster. The relative radial velocities of the EIGs with respect to the systemic velocities of the parent galaxies from which they emanate increase almost monotonically with the distance from the nucleus of the respective galaxies, reaching ~ - 400 to - 800 km s-1 at around 40-80 kpc from the galaxies. The one-sided morphologies and the velocity fields of the EIGs are consistent with the predictions of numerical simulations of ram pressure stripping. We found a very low velocity filament (v rel ~ -1300 km s-1) at the southeastern edge of the disk of IC 4040. Some bright compact knots in the EIGs of RB 199 and IC 4040 exhibit blue continuum and strong Hα emission. The equivalent widths of the Hα emission exceed 200 Å and are greater than 1000 Å for some knots. The emission-line intensity ratios of the knots are basically consistent with those of sub-solar abundance H II regions. These facts indicate that intensive star formation occurs in the knots. Some filaments, including the low-velocity filament of the IC 4040 EIG, exhibit shock-like emission-line spectra, suggesting that shock heating plays an important role in ionization and excitation of the EIGs. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  12. Tensorial slip theory for gas flows and comparison with molecular dynamics simulations using an anisotropic gas-wall collision mechanism.

    PubMed

    Pham, Thanh Tung; To, Quy Dong; Lauriat, Guy; Léonard, Céline

    2013-05-01

    In this paper we examine the anisotropic slip theory for gas flows based on tangential accommodation coefficients and compare it with molecular dynamics (MD) results. A special gas-wall boundary condition is employed within MD simulations to mimic the anisotropic gas-wall collision mechanism. Results from MD simulations with different surface orientations show good agreement with the slip quantification proposed in this work.

  13. Imaging the geometrical structure of the H{sub 2}{sup +} molecular ion by high-order above-threshold ionization in an intense laser field

    SciTech Connect

    Guo Yingchun; Fu Panming; Wang Bingbing; Yan Zongchao; Gong Jiangbin

    2009-12-15

    Using a frequency-domain theory, we demonstrate that an angle-resolved high-order above-threshold ionization (HATI) spectrum carries three pieces of important information: the fingerprint of the molecular wave function in the direct above-threshold-ionization amplitude, the geometrical structure of the molecule in the potential scattering between two plane waves, and the interaction between the ionized electron and the laser field, manifested in a phase factor associated with laser-assisted collisions. As a result all main interference features in the HATI spectrum can be physically explained. As an application it is pointed out that the skeleton structure of a molecule can be better imaged using lasers of higher frequencies.

  14. Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high resolution mass spectrometry (HR-MS) coupled to a nanospray-desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 1300 unique molecular species were detected in the mass range of 50-800 m/z. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO only), and nitrogen-containing organic compounds (NOC). The NOC accounted for 35% (by number) of the compounds observed in the afternoon, and for 59% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O:C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.34 in the early morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry play important roles in forming the compounds observed in this mixed urban-rural environment.

  15. Hubble Space Telescope/WFPC2 and VLA Observations of the Ionized Gas in the Dwarf Starburst Galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    MacKenty, John W.; Maíz-Apellániz, Jesús; Pickens, Christopher E.; Norman, Colin A.; Walborn, Nolan R.

    2000-12-01

    We present new Hα and [O III] λ5007 narrowband images of the starbursting dwarf galaxy NGC 4214, obtained with the Wide Field and Planetary Camera (WFPC2) on board the Hubble Space Telescope (HST), together with VLA observations of the same galaxy. The HST images resolve features down to physical scales of 2-5 pc, revealing several young (<10 Myr) star-forming complexes of various ionized gas morphologies (compact knots, complete or fragmentary shells) and sizes (~10-200 pc). Our results are consistent with a uniform set of evolutionary trends: The youngest, smaller, filled regions that presumably are those just emerging from dense star-forming clouds tend to be of high excitation and are highly obscured. Evolved, larger shell-like regions have lower excitation and are less extincted owing to the action of stellar winds and supernovae. In at least one case we find evidence for induced star formation, which has led to a two-stage starburst. Age estimates based on W(Hα) measurements do not agree with those inferred from wind-driven shell models of expanding H II regions. The most likely explanation for this effect is the existence of an ~2 Myr delay in the formation of superbubbles caused by the pressure exerted by the high-density medium in which massive stars are born. We report the detection of a supernova remnant embedded in one of the two large H II complexes of NGC 4214. The dust in NGC 4214 is not located in a foreground screen but is physically associated with the warm ionized gas. Based on observations with the NASA/ESA Hubble Space Telescope and the NRAO Very Large Array. The HST observations were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  16. Gas-Phase Oxidation of Cm+ and Cm2+ -- Thermodynamics of neutral and ionized CmO

    SciTech Connect

    Gibson, John K; Haire, Richard G.; Santos, Marta; Pires de Matos, Antonio; Marcalo, Joaquim

    2008-12-08

    Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm+ and Cm2+; parallel studies were carried out with La+/2+, Gd+/2+ and Lu+/2+. Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M+-O](M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO+ with dienes, and the second ionization energies, IE[MO+](M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO2+ ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO]= 6.4+-0.2 eV; IE[CmO+]= 15.8+-0.4 eV; D[Cm-O]= 710+-45 kJ mol-1; D[Cm+-O]= 670+-40 kJ mol-1; and D[Cm2+-O]= 342+-55 kJ mol-1. Estimates for the M2+-O bond energies for M = Cm, La, Gd and Lu are all intermediate between D[N2-O]and D[OC-O]--i.e., 167 kJ mol-1< D[M2+-O]< 532 kJ mol-1 -- such that the four MO2+ ions fulfill the thermodynamic requirement for catalytic O-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO2+, LaO2+, GdO2+ and LuO2+ dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO2+ ion appeared during the reaction of Cm+ with O2 when the intermediate, CmO+, was not collisionally cooled -- although its formation is kinetically and/or thermodynamically unfavorable, CmO2+ is a stable species.

  17. Highly-Ionized Gas in the Galactic Halo: A FUSE Survey of O 6 Absorption toward 22 Halo Stars

    NASA Astrophysics Data System (ADS)

    Zsargo, J.; Sembach, K. R.; Howk, J. C.; Savage, B. D.

    2002-12-01

    Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of 22 Galactic halo stars are studied to determine the amount of O 6 in the Galactic halo between ~0.3 and ~10 kpc from the Galactic mid-plane. Strong O 6 λ 1031.93 absorption was detected toward 21 stars, and a reliable 3 σ upper limit was obtained toward HD 97991. The weaker member of the O 6 doublet at 1037.62 Å could be studied toward only six stars. The observed columns are reasonably consistent with a patchy exponential O 6 distribution with a mid-plane density of 1.7x10-8 cm-3 and scale height between 2.3 and 4 kpc. We do not see clear signs of strong high-velocity components in O 6 absorption along the Galactic sight lines, which indicates the general absence of high velocity O 6 within 2-5 kpc of the Galactic mid-plane. The correlation between the H 1 and O 6 intermediate velocity absorption is also poor. The O 6 velocity dispersions are much larger than the value of ~18 km/s expected from thermal broadening for gas at T ~ 3x105 K, the temperature at which O 6 is expected to reach its peak abundance in collisional ionization equilibrium. Turbulence, inflow, and outflow must have an effect on the shape of the O 6 profiles. Kinematical comparisons of O 6 with Ar 1 reveal that 9 of 21 sight lines are closely aligned in LSR velocity (|Δ VLSR| <=5 km/s ), while 8 of 21 exhibit significant velocity differences (|Δ VLSR| >= 15 km/s ). This dual behavior may indicate the presence of two different types of O 6-bearing environments toward the Galactic sight lines. Comparison of O 6 with other highly-ionized species suggests that the high ions are produced primarily by cooling hot gas in the Galactic fountain flow, and that turbulent mixing also has a significant contribution. The role of turbulent mixing is most important toward sight lines that sample supernova remnants like Loop I and IV. We are also able to show that the O 6 enhancement toward the Galactic center region that was observed in the FUSE

  18. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  19. Determination of linoleic acid in toothpaste by gas chromatography with flame ionization detection.

    PubMed

    Wejnerowska, Grazyna; Gackowska, Alicja; Gaca, Jerzy

    2008-06-01

    A new method for the determination of linoleic acid (LA) in toothpaste by a routine analysis has been proposed. Studies were based on the ISO 5509 procedure, which was modified for the purpose of LA determination in the toothpaste. Gas chromatography (GC) was employed for the qualitative and quantitative determination of linoleic acid methyl ester. The content of LA (5.31%) in sunflower oil added to the toothpaste composition (0.5%) was determined, and then the optimization studies for the determination of LA in the toothpaste samples were carried out. The relative standard deviation (RSD) of the procedure developed was 9.96% (n = 9). The quantitative analysis showed that the content of LA in the toothpaste samples studied was 0.0258 +/- 0.0011%. The detection limit of LA in toothpaste was approximately 0.001%.

  20. The temperature and ionization structure of the emitting gas in HII galaxies: implications for the accuracy of abundance determinations

    NASA Astrophysics Data System (ADS)

    Hägele, Guillermo F.; Pérez-Montero, Enrique; Díaz, Ángeles I.; Terlevich, Elena; Terlevich, Roberto

    2006-10-01

    We propose a methodology to perform a self-consistent analysis of the physical properties of the emitting gas of HII galaxies adequate to the data that can be obtained with the 21st century technology. This methodology requires the production and calibration of empirical relations between the different line temperatures that should supersede currently used ones based on very simple, and poorly tested, photoionization model sequences. As a first step to reach these goals, we have obtained simultaneous blue to far red long-slit spectra with the William Herschel Telescope (WHT) of three compact HII galaxies selected from the Sloan Digital Sky Survey (SDSS) Data Release 2 (DR2) spectral catalogue using the INAOE Virtual Observatory superserver. Our spectra cover the range from 3200 to 10500Å, including the Balmer jump, the [OII]λλ3727, 29Å lines, the [SIII]λλ9069, 9532Å doublet as well as various weak auroral lines such as [OIII]λ4363Å and [SIII]λ6312Å. For the three objects, we have measured at least four line temperatures, T([OIII]), T([SIII]), T([OII]) and T([SII]), and the Balmer continuum temperature T(Bac). These measurements and a careful and realistic treatment of the observational errors yield total oxygen abundances with accuracies between 5 and 9 per cent. These accuracies are expected to improve as better calibrations based on more precise measurements, both on electron temperatures and densities, are produced. We have compared our obtained spectra with those downloaded from the SDSS DR3 finding a satisfactory agreement. The analysis of these spectra yields values of line temperatures and elemental ionic and total abundances which are in general agreement with those derived from the WHT spectra, although for most quantities they can only be taken as estimates since, due to the lack of direct measurements of the required lines, theoretical models had to be used whose uncertainties are impossible to quantify. The ionization structure found for the

  1. Lighting the Dark Molecular Gas Using the Mid Infrared H2 Rotational Lines

    NASA Astrophysics Data System (ADS)

    Togi, Aditya; Smith, JD

    2014-06-01

    The knowledge of molecular gas distribution is necessary to understand star formation in galaxies. The molecular gas content of galaxies must be inferred using indirect tracers since H2 which forms a major component of molecular gas in galaxies is not observable under typical conditions of interstellar medium. Physical processes causing enhancement and reduction of these tracers can cause misleading estimates of the molecular gas content in galaxies. We have devised a new method to measure molecular gas mass using quadrupole rotational lines of H2 found in the mid infrared spectra of various types of galaxies. We apply our model to derive the amount of molecular gas even in low metallicity galaxies where indirect tracers are unable to estimate the dark molecular gas mass. Bigiel, F., Leroy, A., Walter, F., et al. 2008, The Astronomical Journal, 136, 2846 (2008) Solomon, P. M., Rivolo, A. R., Barett, J., and Yahil, A. The Astrophysical Journal, 319, 730 (1987) Wolfire, M. G., Hollenbach, D., and McKee, C. F. The Astrophysical Journal, 716, 1191 (2010)

  2. Two γ-ray bursts from dusty regions with little molecular gas.

    PubMed

    Hatsukade, B; Ohta, K; Endo, A; Nakanishi, K; Tamura, Y; Hashimoto, T; Kohno, K

    2014-06-12

    Long-duration γ-ray bursts are associated with the explosions of massive stars and are accordingly expected to reside in star-forming regions with molecular gas (the fuel for star formation). Previous searches for carbon monoxide (CO), a tracer of molecular gas, in burst host galaxies did not detect any emission. Molecules have been detected as absorption in the spectra of γ-ray burst afterglows, and the molecular gas is similar to the translucent or diffuse molecular clouds of the Milky Way. Absorption lines probe the interstellar medium only along the line of sight, so it is not clear whether the molecular gas represents the general properties of the regions where the bursts occur. Here we report spatially resolved observations of CO line emission and millimetre-wavelength continuum emission in two galaxies hosting γ-ray bursts. The bursts happened in regions rich in dust, but not particularly rich in molecular gas. The ratio of molecular gas to dust (<9-14) is significantly lower than in star-forming regions of the Milky Way and nearby star-forming galaxies, suggesting that much of the dense gas where stars form has been dissipated by other massive stars.

  3. Two γ-ray bursts from dusty regions with little molecular gas.

    PubMed

    Hatsukade, B; Ohta, K; Endo, A; Nakanishi, K; Tamura, Y; Hashimoto, T; Kohno, K

    2014-06-12

    Long-duration γ-ray bursts are associated with the explosions of massive stars and are accordingly expected to reside in star-forming regions with molecular gas (the fuel for star formation). Previous searches for carbon monoxide (CO), a tracer of molecular gas, in burst host galaxies did not detect any emission. Molecules have been detected as absorption in the spectra of γ-ray burst afterglows, and the molecular gas is similar to the translucent or diffuse molecular clouds of the Milky Way. Absorption lines probe the interstellar medium only along the line of sight, so it is not clear whether the molecular gas represents the general properties of the regions where the bursts occur. Here we report spatially resolved observations of CO line emission and millimetre-wavelength continuum emission in two galaxies hosting γ-ray bursts. The bursts happened in regions rich in dust, but not particularly rich in molecular gas. The ratio of molecular gas to dust (<9-14) is significantly lower than in star-forming regions of the Milky Way and nearby star-forming galaxies, suggesting that much of the dense gas where stars form has been dissipated by other massive stars. PMID:24919918

  4. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures

    SciTech Connect

    Littke, R.; Krooss, B.; Frielingsdorf, J.; Idiz, E.

    1995-03-01

    The occurrence of natural gas accumulations with high percentages (up to 100%) of molecular nitrogen in various hydrocarbon provinces represents a largely unresolved problem and a serious exploration risk. In this context, a geochemical and basin modeling study was performed to evaluate the potential of sedimentary organic matter to generate molecular nitrogen. The masses of nitrogen present in coals - if converted into molecular nitrogen - are sufficient to fill commercial gas reservoirs. A calculation for gas accumulations in northern Germany, where percentages of molecular nitrogen range from less than 5 to greater than 90%, reveals that the molecular nitrogen generated in underlying coal-bearing strata is sufficient to account for the nitrogen gas even in the largest fields. In addition, much of the total nitrogen in clay-rich rock types, such as shales and mudstones, is fixed in sedimentary organic matter and may add to the nitrogen generation capacity of the coals.

  5. Spatial variation of the physical conditions of molecular gas in galaxies

    NASA Technical Reports Server (NTRS)

    Jackson, James M.; Eckart, Andreas; Wild, Wolfgang; Genzel, Reinhard; Harris, Andrew I.; Downes, Dennis; Jaffe, D. T.; Ho, Paul T. P.

    1990-01-01

    Multi-line studies of CO-12, CO-13, C-18O, HCN, and HCO(+) at 3 mm, 1.3 mm, and 0.8 mm using the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope, with the IRAM superconductor insulator superconductor (SIS) receivers and the Max Planck Institute for External Physics (MPE) 350 GHz SIS receiver, show that the densities and temperatures of molecular gas in external galaxies change significantly with position. CO-12 measures the densities and temperature of diffuse interclump molecular gas, but not the bulk of the molecular gas. Simple one-component models, with or without external heating, cannot account for the weakness of the CO-12 J = 3 to 2 line relative to J = 2 to 1 and J = 1 to 0. CO-12 does not trace the bulk of the molecular gas, and optical depth effects obviate a straightforward interpretation of CO-12 data. Instead, researchers turned to the optically thin CO isotopes and other molecular species. Isotopic CO lines measure the bulk of the molecular gas, and HCN and HCO(+) pick out denser regions. Researchers find a warm ridge of gas in IC 342 (Eckart et al. 1989), denser gas in the starburst nucleus of IC 342, and a possible hot-spot in NGC 2903. In IC 342, NGC 2146, and NGC 6764, the CO-13 J = 2 to 1 line is subthermally populated, implying gas densities less than or equal to 10(exp 4) cm(-3).

  6. Novel molecularly-imprinted solid-phase microextraction fiber coupled with gas chromatography for analysis of furan.

    PubMed

    Hashemi-Moghaddam, Hamid; Ahmadifard, Mojtaba

    2016-04-01

    This study combined a molecularly-imprinted polymer with headspace solid-phase microextraction (HS-SPME). Preparation of molecularly-imprinted polymer is not effective for volatile compounds. To overcome this limitation, pyrrole was chosen as a template for the preparation of the furan-imprinted polymer. The holes in the synthesized polymer were suitable for furan adsorption because the chemical structure of pyrrole is similar to that of furan. The extraction properties of the fiber to furan were examined using an HS-SPME device coupled with gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The effects of the extraction parameters of exposure time, sampling temperature, and salt concentration on extraction efficiency were studied. Satisfactory reproducibility was obtained for extractions from spiked water samples at RSD<7.5% (n=5). The calibration graphs were linear at 0.5-100 ng ml(-1) and the detection limit for furan was 0.042 ng ml(-1). The fabricated fiber was successfully applied for headspace extraction of furan from tap water and canned tuna as shown by GC-MS analysis. PMID:26838393

  7. Warm ionized gas in CALIFA early-type galaxies. 2D emission-line patterns and kinematics for 32 galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Breda, I.; Dos Reis, S. N.; Iglesias-Páramo, J.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Cid Fernandes, R.; Walcher, C. J.; Falcón-Barroso, J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Masegosa, J.; Mollá, M.; Marino, R. A.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-04-01

    Context. The morphological, spectroscopic, and kinematical properties of the warm interstellar medium (wim) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive, quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer an unprecedented opportunity for advancing our understanding of the wim in ETGs. Aims: This article centers on a 2D investigation of the wim component in 32 nearby (≲150 Mpc) ETGs from CALIFA, complementing a previous 1D analysis of the same sample. Methods: The analysis presented here includes Hα intensity and equivalent width (EW) maps and radial profiles, diagnostic emission-line ratios, and ionized-gas and stellar kinematics. It is supplemented by τ-ratio maps, which are a more efficient means to quantify the role of photoionization by the post-AGB stellar component than alternative mechanisms (e.g., AGN, low-level star formation). Results: Confirming and strengthening our previous conclusions, we find that ETGs span a broad continuous sequence in the properties of their wim, exemplified by two characteristic classes. The first (type i) comprises systems with a nearly constant EW(Hα) in their extranuclear component, which quantitatively agrees with (but is no proof of) the hypothesis that photoionization by the post-AGB stellar component is the main driver of extended wim emission. The second class (type ii) stands for virtually wim-evacuated ETGs with a very low (≤0.5 Å), outwardly increasing EW(Hα). These two classes appear indistinguishable from one another by their LINER-specific emission-line ratios in their extranuclear component. Here we extend the tentative classification we proposed previously by the type i+, which is assigned to a subset of type i ETGs exhibiting ongoing low-level star-forming activity in their periphery. This finding along with faint

  8. Three-dimensional modeling of ionized gas. II. Spectral energy distributions of massive and very massive stars in stationary and time-dependent modeling of the ionization of metals in H II regions

    NASA Astrophysics Data System (ADS)

    Weber, J. A.; Pauldrach, A. W. A.; Hoffmann, T. L.

    2015-11-01

    Context. H II regions play a crucial role in the measurement of the chemical composition of the interstellar medium and provide fundamental data about element abundances that constrain models of galactic chemical evolution. Discrepancies that still exist between observed emission line strengths and those predicted by nebular models can be partly attributed to the spectral energy distributions (SEDs) of the sources of ionizing radiation used in the models as well as to simplifying assumptions made in nebular modeling. Aims: One of the main influences on the nebular spectra is the metallicity, both nebular and stellar, which shows large variations even among nearby galaxies. Although nebular modeling often involves testing of different nebular metallicities against their influence on the predicted spectra, adequate grids of stellar atmospheres and realistic SEDs for different metallicities are still lacking. This is unfortunate because the influence of stellar metallicity on nebular line strength ratios, via its effect on the SEDs, is of similar importance as variations in the nebular metallicity. To overcome this deficiency we have computed a grid of model atmosphere SEDs for massive and very massive O-type stars covering a range of metallicities from significantly subsolar (0.1 Z⊙) to supersolar (2 Z⊙). Methods: The SEDs have been computed using a state-of-the-art model atmosphere code that takes into account the attenuation of the ionizing flux by the spectral lines of all important elements and the hydrodynamics of the radiatively driven winds and their influence on the SEDs. For the assessment of the SEDs in nebular simulations we have developed a (heretofore not available) 3D radiative transfer code that includes a time-dependent treatment of the metal ionization. Results: Using the SEDs in both 1D and 3D nebular models we explore the relative influence of stellar metallicity, gas metallicity, and inhomogeneity of the gas on the nebular ionization structure

  9. A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-05-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  10. HERSCHEL SURVEY OF GALACTIC OH{sup +}, H{sub 2}O{sup +}, AND H{sub 3}O{sup +}: PROBING THE MOLECULAR HYDROGEN FRACTION AND COSMIC-RAY IONIZATION RATE

    SciTech Connect

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Falgarone, E.; Schilke, P.; Chambers, E. T.; Ossenkopf, V.; Benz, A. O.; Winkel, B.; Menten, K. M.; Black, John H.; Persson, C. M.; Bruderer, S.; Van Dishoeck, E. F.; Godard, B.; Lis, D. C.; Goicoechea, J. R.; Gupta, H.; Sonnentrucker, P.; Van der Tak, F. F. S.; and others

    2015-02-10

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H{sub 2}. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζ{sub H}) and molecular hydrogen fraction (f{sub H{sub 2}}). We present observations targeting transitions of OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH{sup +} and H{sub 2}O{sup +} are detected in absorption in multiple velocity components along every sight line, but H{sub 3}O{sup +} is only detected along 7 sight lines. From the molecular abundances we compute f{sub H{sub 2}} in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH{sup +} and H{sub 2}O{sup +} primarily reside in gas with low H{sub 2} fractions. We also infer ζ{sub H} throughout our sample, and find a lognormal distribution with mean log (ζ{sub H}) = –15.75 (ζ{sub H} = 1.78 × 10{sup –16} s{sup –1}) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H{sub 3}{sup +} observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies.

  11. Time-of-flight ERD with a 200 mm2 Si3N4 window gas ionization chamber energy detector

    NASA Astrophysics Data System (ADS)

    Julin, Jaakko; Laitinen, Mikko; Sajavaara, Timo

    2014-08-01

    Low energy heavy ion elastic recoil detection work has been carried out in Jyväskylä since 2009 using home made timing detectors, a silicon energy detector and a timestamping data acquisition setup forming a time-of-flight-energy telescope. In order to improve the mass resolution of the setup a new energy detector was designed to replace the silicon solid state detector, which suffered from radiation damage and had poor resolution for heavy recoils. In this paper the construction and operation of an isobutane filled gas ionization chamber with a 14 × 14 mm2 100 nm thick silicon nitride window are described. In addition to greatly improved energy resolution for heavy ions, the detector is also able to detect hydrogen recoils simultaneously in the energy range of 100-1000 keV. Additionally the detector has position sensitivity by means of timing measurement, which can be performed without compromising the performance of the detector in any other way. The achieved position sensitivity improves the depth resolution near the surface.

  12. Determination of fluoride in toothpaste using headspace solid-phase microextraction and gas chromatography-flame ionization detection.

    PubMed

    Wejnerowska, Grazyna; Karczmarek, Anna; Gaca, Jerzy

    2007-05-25

    A new method for determination of fluoride in toothpaste employing the headspace solid-phase microextraction (HS-SPME) followed by gas chromatography/flame ionization detection (GC/FID) has been proposed. It is a development of the method for determination of fluoride using trimethylchlorosilane (TMCS) as the derivatization reagent to form trimethylfluorosilane (TMFS), with the liquid/liquid extraction (LLE) step replaced by HS-SPME. To introduce the latter, it was necessary to determine the conditions of the reaction and to optimize the two stages of the SPME procedure: extraction and desorption. The parameters of the SPME analysis using carboxen/polydimethylsiloxane (CAR/PDMS) fiber were defined and compared with the corresponding ones for the LLE method, used as a reference. Also, these two methods were compared with respect to their linearity, precision, and accuracy. Results from toothpaste analyses using these two methods were highly correlated, indicating the potential to use the SPME extraction as an inexpensive and solventfree alternative to the LLE method.

  13. Simultaneous enantioselective determination of amphetamine and congeners in hair specimens by negative chemical ionization gas chromatography-mass spectrometry.

    PubMed

    Martins, Liliane; Yegles, Michel; Chung, Heesun; Wennig, Robert

    2005-10-15

    Enantioselective quantification of amphetamine (AM), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethylamphetamine (MDEA) enantiomers in hair using gas chromatography-mass spectrometry (GC-MS) is described. Hair specimens were digested with 1M sodium hydroxide at 100 degrees C for 30 min and extracted by a solid phase procedure using Cleanscreen ZSDAU020. Extracted analytes were derivatised with (S)-heptafluorobutyrylprolyl chloride and the resulting diastereoisomers were quantified by GC-MS operating in the negative chemical ionization mode. Extraction yields were between 73.0 and 97.9%. Limits of detection varied in the range of 2.1-45.9 pg/mg hair, whereas the lowest limits of quantification varied between 4.3 and 91.8 pg/mg hair. Intra- and inter-assay precision and respective accuracy were acceptable. The enantiomeric ratios (R versus S) of AM, MA, MDA, MDMA and MDEA were determined in hair from suspected amphetamine abusers. Only MA and AM enantiomers were detectable in this collective and the quantification data showed in most cases higher concentrations of (R)-MA and (R)-AM than those of the corresponding (S)-enantiomers. PMID:16154523

  14. Residue determination of captan and folpet in vegetable samples by gas chromatography/negative chemical ionization-mass spectrometry.

    PubMed

    Barreda, Mercedes; López, Francisco J; Villarroya, Mercedes; Beltran, Joaquim; García-Baudín, Jose María; Hernández, Felix

    2006-01-01

    A gas chromatography/negative chemical ionization-mass spectrometry (GC/NCI-MS) method has been developed for the simultaneous determination of the fungicides captan and folpet in khaki (persimmon; flesh and peel) and cauliflower. Samples were extracted with acetone in the presence of 0.1 M zinc acetate solution in order to avoid degradation of fungicides and were purified using solid-phase extraction with divinylbenzene polymeric cartridges. Purified extracts were evaporated and dissolved in hexane prior to injection into the GC/NCI-MS system. Isotope-labeled captan and folpet were used as surrogate/internal standards, and quantification was performed using matrix-matched calibration. The method showed linear response in the concentration range tested (50-2500 ng/mL). The method was fully validated with untreated blank samples of khaki (flesh and peel) and cauliflower spiked at 0.05 and 0.5 mg/kg. Satisfactory recoveries between 82 and 106% and relative standard deviations lower than 11% in all cases (n = 5) were obtained. The limit of detection for both compounds were estimated to be 0.01 mg/kg. The developed method has been applied to treated and untreated samples collected from residue trials.

  15. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. II. DISCOVERY OF A DOUBLE INFRARED CLUSTER IN II Zw 40

    SciTech Connect

    Beck, Sara; Lahad, Ohr; Turner, Jean; Lacy, John; Greathouse, Thomas

    2013-04-10

    The nearby dwarf galaxy II Zw 40 hosts an intense starburst. At the center of the starburst is a bright compact radio and infrared source, thought to be a giant dense H II region containing Almost-Equal-To 14, 000 O stars. Radio continuum images suggest that the compact source is actually a collection of several smaller emission regions. We accordingly use the kinematics of the ionized gas to probe the structure of the radio-infrared emission region. With TEXES on the NASA-IRTF we measured the 10.5 {mu}m [S IV] emission line with effective spectral resolutions, including thermal broadening, of {approx}25 and {approx}3 km s{sup -1} and spatial resolution {approx}1''. The line profile shows two distinct, spatially coextensive, emission features. The stronger feature is at galactic velocity and has FWHM 47 km s{sup -1}. The second feature is {approx}44 km s{sup -1} redward of the first and has FWHM 32 km s{sup -1}. We argue that these are two giant embedded clusters, and estimate their masses to be Almost-Equal-To 3 Multiplication-Sign 10{sup 5} M{sub Sun} and Almost-Equal-To 1.5 Multiplication-Sign 10{sup 5} M{sub Sun }. The velocity shift is unexpectedly large for such a small spatial offset. We suggest that it may arise in a previously undetected kinematic feature remaining from the violent merger that formed the galaxy.

  16. Determination of butyltin species in water and sediment by solid-phase microextraction-gas chromatography-flame ionization detection.

    PubMed

    Millán, E; Pawliszyn, J

    2000-03-17

    A procedure for determination of tetraethyltin (TeET) and tetrabutyltin (TeBT) in water by solid-phase microextraction (SPME) using the headspace approach has been developed. The method has been adapted for the simultaneous determination of mono-, di- and tributyltin species (MBT, DBT and TBT) after derivatization with sodium tetraethylborate in water and sediment samples. The analytical procedures were optimized with respect to stirring conditions, extraction time and extraction temperature. The pH and the amount of derivatizing reagent were also considered in derivatization reaction procedures. The analysis was carried out using gas chromatography equipped with flame ionization detection. The detection limits obtained for TeET and TeBT, in equilibrium conditions (room temperature for TeET and 40 degrees C for TeBT) were 28 and 20 ng/l (as Sn), respectively. The detection limit for butyltin species in water, which was limited by signals which are non-specific for the tin compounds and the sensitivity of the FID system, was found ca. 1 microg/l (as Sn). The SPME method was validated for analysis of sediments by analyzing the certified reference material PACS-2 finding a good agreement with the certified values. PMID:10757285

  17. Exploring petroleum hydrocarbons in groundwater by double solid phase extraction coupled to gas chromatography-flame ionization detector.

    PubMed

    Pindado Jiménez, Oscar; Pérez Pastor, Rosa Ma; Escolano Segovia, Olga; del Reino Querencia, Susana

    2015-01-01

    This work proposes an analytical procedure for measuring aliphatic and aromatic hydrocarbons fractions present in groundwater. In this method, hydrocarbons are solid phase extracted (SPE) twice from the groundwater and the resulting fractions are analyzed by gas chromatography with flame ionization detection. The first SPE disposes the hydrocarbons present in groundwater in organic solvents and the second SPE divides them into aliphatic and aromatic hydrocarbons. The validation study is carried out and its uncertainties are discussed. Identifying the main sources of uncertainty is evaluated through applying the bottom-up approach. Limits of detection for hydrocarbons ranges are below 5 µg L(-1), precision is not above of 30%, and acceptable recoveries are reached for aliphatic and aromatic fractions studied. The uncertainty due to volume of the sample, factor of calibration and recovery are the highest contributions. The expanded uncertainty range from 13% to 26% for the aliphatic hydrocarbons ranges and from 14% to 23% for the aromatic hydrocarbons ranges. As application, the proposed method is satisfactorily applied to a set of groundwater samples collected in a polluted area where there is evidence to present a high degree of hydrocarbons. The results have shown the range of aliphatic hydrocarbons >C21-C35 is the most abundant, with values ranging from 215 µg L(-1) to 354 µg L(-1), which it is associated to a contamination due to diesel.

  18. Simultaneous generation of quasi-monoenergetic electron and betatron X-rays from nitrogen gas via ionization injection

    SciTech Connect

    Huang, K.; Yan, W. C.; Li, M. H.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Chen, L. M.; Li, D. Z.; Chen, Z. Y.; Ge, X. L.; Liu, F.; Hafz, N. M.; Zhang, J.

    2014-11-17

    Upon the interaction of 60 TW Ti: sapphire laser pulses with 4 mm long supersonic nitrogen gas jet, a directional x-ray emission was generated along with the generation of stable quasi-monoenergetic electron beams having a peak energy of 130 MeV and a relative energy spread of ∼ 20%. The betatron x-ray emission had a small divergence of 7.5 mrad and a critical energy of 4 keV. The laser wakefield acceleration process was stimulated in a background plasma density of merely 5.4 × 10{sup 17 }cm{sup −3} utilizing ionization injection. The non-self-focusing and stable propagation of the laser pulse in the pure nitrogen gaseous plasma should be responsible for the simultaneous generation of the high-quality X-ray and electron beams. Those ultra-short and naturally-synchronized beams could be applicable to ultrafast pump-probe experiments.

  19. Determination of free amino compounds in betalainic fruits and vegetables by gas chromatography with flame ionization and mass spectrometric detection.

    PubMed

    Kugler, Florian; Graneis, Stephan; Schreiter, Pat P-Y; Stintzing, Florian C; Carle, Reinhold

    2006-06-14

    Amino acids and amines are the precursors of betalains. Therefore, the profiles of free amino compounds in juices obtained from cactus pears [Opuntia ficus-indica (L.) Mill. cv. Bianca, cv. Gialla, and cv. Rossa], pitaya fruits [Selenicereus megalanthus (K. Schumann ex Vaupel) Moran, Hylocereus polyrhizus (Weber) Britton & Rose, and Hylocereus undatus (Haworth) Britton & Rose], and in extracts from differently colored Swiss chard [Beta vulgaris L. ssp. cicla (L.) Alef. cv. Bright Lights] petioles and red and yellow beets (B. vulgaris L. ssp. vulgaris var. conditiva Alef. cv. Burpee's Golden) were investigated for the first time. Amino compounds were derivatized with propyl chloroformate. While gas chromatography (GC) with mass spectrometry was used for peak assignment, GC flame ionization detection was applied for quantification of individual compounds. Whereas proline was the major free amino compound of cactus pear and pitaya fruit juices, glutamine dominated in Swiss chard stems and beets, respectively. Interestingly, extremely high concentrations of dopamine were detected in Swiss chard stems and beets. Furthermore, the cleavage of betaxanthins caused by derivatization in alkaline reaction solutions is demonstrated for the first time. Amino acids and amines thus released might increase the actual free amino compound contents of the respective sample. To evaluate the contribution of betaxanthin cleavage to total amino acid and amine concentration, isolated betaxanthins were derivatized according to the "EZ:faast" method prior to quantification of the respective amino compounds released. On a molar basis, betaxanthin contribution to overall amino compound contents was always below 6.4%.

  20. [Determination of 16 polychlorinated biphenyls in fish oil by gas chromatography-negative ion chemical ionization-mass spectrometry].

    PubMed

    Wang, Li; Li, Shushu; Zhang, Zhan; Wang, Shoulin; Li, Lei

    2015-08-01

    An analytical method for the simultaneous determination of 16 polychlorinated biphenyls (PCBs) in fish oil was developed. PCBs were extracted from fish oil with n-hexane, purified by sulfuric acid and determined by using gas chromatography-negative ion chemical ionization-mass spectrometry (GC-NCI-MS) in selected ion-monitoring (SIM) mode. A good linear relationship (r > 0.99) was observed with the PCBs concentrations from 0.01 µg/L to 10 µg/L, and the limits of quantification (LOQ, S/N = 10) were between 3 pg/g and 67 pg/g for different kinds of PCBs. The average recoveries ranged from 62.3% to 121.8% with the relative standard deviations ( RSDs, n = 3) smaller than 12%. Compared with the traditional pre-treatment of multiple material solid phase extraction, this new method is simple, rapid and less organic solvent usage. Meanwhile the method has good selectivity and sensitivity, and it is suitable for the determination of multiple trace PCBs in fish oil. PMID:26749866

  1. The Relationship between the Dense Neutral and Diffuse Ionized Gas in the Thick Disks of Two Edge-on Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rueff, Katherine M.; Howk, J. Christopher; Pitterle, Marissa; Hirschauer, Alec S.; Fox, Andrew J.; Savage, Blair D.

    2013-03-01

    We present high-resolution, optical images (BVI + Hα) of the multiphase interstellar medium (ISM) in the thick disks of the edge-on spiral galaxies NGC 4013 and NGC 4302. Our images from the Hubble Space Telescope (HST), Large Binocular Telescope, and WIYN 3.5 m telescope reveal an extensive population of filamentary dust absorption seen to z ~2-2.5 kpc. Many of these dusty thick disk structures have characteristics reminiscent of molecular clouds found in the Milky Way disk. Our Hα images show that the extraplanar diffuse ionized gas (DIG) in these galaxies is dominated by a smooth, diffuse component. The strongly filamentary morphologies of the dust absorption have no counterpart in the smoothly distributed Hα emission. We argue that the thick disk DIG and dust-bearing filaments trace physically distinct phases of the thick disk ISM, the latter tracing a dense, warm or cold neutral medium. The dense, dusty matter in the thick disks of spiral galaxies is largely tracing matter ejected from the thin disk via energetic feedback from massive stars. The high densities of the gas may be a result of converging gas flows. This dense material fuels some thick disk star formation, as evidenced by the presence of thick disk H II regions. Based on observations obtained with the NASA/ESA Hubble Space Telescope operated at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also, based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the US, Italy, and Germany. LBT Corporation partners are the University of Arizona, on behalf of the Arizona University System; Instituto Nazionale do Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute of Potsdam, and Heidelberg University; Ohio State University, and the Research Corporation, on

  2. Dependence of the concentration of ionized donors on epitaxy temperature for Si:Er/Si layers grown by sublimation molecular-beam epitaxy

    SciTech Connect

    Kuznetsov, V. P.; Shmagin, V. B.; Drozdov, M. N.; Marychev, M. O.; Kudryavtsev, K. E.; Kuznetsov, M. V.; Andreev, B. A.; Kornaukhov, A. V.; Krasilnik, Z. F.

    2011-01-15

    The dependence of the concentrations of the Er impurity and ionized donors on the epitaxy temperature has been studied before and after annealing of Si:Er/Si layers grown by sublimation molecular-beam epitaxy. n-Si:Er layers have been grown in the temperature range 400-800 Degree-Sign C and annealed in hydrogen atmosphere at a temperature of 800 Degree-Sign C for 30 min. The possible nature of the donor centers is discussed.

  3. Development of a portable mass spectrometer characterized by discontinuous sample gas introduction, a low-pressure dielectric barrier discharge ionization source, and a vacuumed headspace technique.

    PubMed

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2013-05-21

    The present study has attempted to downscale a mass spectrometer in order to make it portable and enable onsite analysis with it. The development of a small mass spectrometer required the use of a compact pump whose displacement was small, decreasing the sensitivity of that spectrometer. To get high sensitivity with a small mass spectrometer, we have integrated novel techniques: a highly sensitive ionization source and efficient extraction of sample vapor. The low-pressure dielectric barrier discharge ionization (LP-DBDI) source made it possible to increase the conductance between the source and the mass analyzer, compared with ambient ionization sources, enhancing the efficiency of the ion transfer from the ionization source to the mass analyzer. We have also developed a vacuumed headspace method efficiently transporting the sample vapor to the ionization source. The sensitivity was further enhanced by also using a discontinuous sample gas introduction technique. A prototype portable mass spectrometer using those novel techniques was found to be sensitive enough to detect 0.1 ppm methamphetamine, 1 ppm amphetamine, 1 ppm 3,4-methylenedioxymethamphetamine, and 10 ppm cocaine in liquid.

  4. Bipolar flows, molecular gas disks, and the collapse and accretion of rotating interstellar clouds

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1987-01-01

    Rigorous numerical models of the collapse and accretion of rotating, axisymmetric, isothermal interstellar clouds are studied. The results show that molecular gas disks and evacuated bipolar cavities both appear to be natural consequences of the collapse of rotating interstellar clouds. Dynamically significant magnetic fields may not be necessary for explaining either phenomenon. The models strongly support theoretical models of the type where an isotropic wind from a pre-main sequence star is extrinsically collimated by a rotationally derived molecular gas cloud. The models imply that collimation should be strongest on small scales where rotational effects are most important, i.e., in the dense region of the molecular gas disk.

  5. Time-dependent Gas-liquid Interaction in Molecular-sized Nanopores

    PubMed Central

    Sun, Yueting; Li, Penghui; Qiao, Yu; Li, Yibing

    2014-01-01

    Different from a bulk phase, a gas nanophase can have a significant effect on liquid motion. Herein we report a series of experimental results on molecular behaviors of water in a zeolite β of molecular-sized nanopores. If sufficient time is provided, the confined water molecules can be “locked” inside a nanopore; otherwise, gas nanophase provides a driving force for water “outflow”. This is due to the difficult molecular site exchanges and the relatively slow gas-liquid diffusion in the nanoenvironment. Depending on the loading rate, the zeolite β/water system may exhibit either liquid-spring or energy-absorber characteristics. PMID:25293525

  6. Time-dependent gas-liquid interaction in molecular-sized nanopores.

    PubMed

    Sun, Yueting; Li, Penghui; Qiao, Yu; Li, Yibing

    2014-01-01

    Different from a bulk phase, a gas nanophase can have a significant effect on liquid motion. Herein we report a series of experimental results on molecular behaviors of water in a zeolite β of molecular-sized nanopores. If sufficient time is provided, the confined water molecules can be "locked" inside a nanopore; otherwise, gas nanophase provides a driving force for water "outflow". This is due to the difficult molecular site exchanges and the relatively slow gas-liquid diffusion in the nanoenvironment. Depending on the loading rate, the zeolite β/water system may exhibit either liquid-spring or energy-absorber characteristics. PMID:25293525

  7. Resolved Spectroscopy of the Narrow-Line Region in NGC 1068: Kinematics of the Ionized Gas.

    PubMed

    Crenshaw; Kraemer

    2000-04-01

    We have determined the radial velocities of the [O iii]-emitting gas in the inner narrow-line region of the Seyfert 2 galaxy NGC 1068, along a slit at position angle 202 degrees, from STIS observations at a spatial resolution of 0&farcs;1 and a spectral resolving power of lambda&solm0;Deltalambda approximately 1000. We use these data to investigate the kinematics of the narrow-line region within 6&arcsec; ( approximately 430 pc) of the nucleus. The emission-line knots show evidence for radial acceleration to a projected angular distance of 1&farcs;7 in most cases, followed by deceleration that approaches the systemic velocity at a projected distance of approximately 4&arcsec;. We find that a simple kinematic model of biconical radial outflow can match the general trend of observed radial velocities. In this model, the emitting material is evacuated along the bicone axis, and the axis is inclined 5 degrees out of the plane of the sky. The acceleration of the emission-line clouds provides support for dynamical models that invoke radiation and/or wind pressure. We suggest that the deceleration of the clouds is due to their collision with a patchy and anistropically distributed ambient medium.

  8. Ubiquitous argonium (ArH+) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas

    NASA Astrophysics Data System (ADS)

    Schilke, P.; Neufeld, D. A.; Müller, H. S. P.; Comito, C.; Bergin, E. A.; Lis, D. C.; Gerin, M.; Black, J. H.; Wolfire, M.; Indriolo, N.; Pearson, J. C.; Menten, K. M.; Winkel, B.; Sánchez-Monge, Á.; Möller, T.; Godard, B.; Falgarone, E.

    2014-06-01

    Aims: We describe the assignment of a previously unidentified interstellar absorption line to ArH+ and discuss its relevance in the context of hydride absorption in diffuse gas with a low H2 fraction. The confidence of the assignment to ArH+ is discussed, and the column densities are determined toward several lines of sight. The results are then discussed in the framework of chemical models, with the aim of explaining the observed column densities. Methods: We fitted the spectral lines with multiple velocity components, and determined column densities from the line-to-continuum ratio. The column densities of ArH+ were compared to those of other species, tracing interstellar medium (ISM) components with different H2 abundances. We constructed chemical models that take UV radiation and cosmic ray ionization into account. Results: Thanks to the detection of two isotopologues, 36ArH+ and 38ArH+, we are confident about the carrier assignment to ArH+. NeH+ is not detected with a limit of [NeH+]/[ArH+] ≤ 0.1. The derived column densities agree well with the predictions of chemical models. ArH+ is a unique tracer of gas with a fractional H2 abundance of 10-4 - 10-3 and shows little correlation to H2O+, which traces gas with a fractional H2 abundance of ≈0.1. Conclusions: A careful analysis of variations in the ArH+, OH+, H2O+, and HF column densities promises to be a faithful tracer of the distribution of the H2 fractional abundance by providing unique information on a poorly known phase in the cycle of interstellar matter and on its transition from atomic diffuse gas to dense molecular gas traced by CO emission. Abundances of these species put strong observational constraints upon magnetohydrodynamical (MHD)simulations of the interstellar medium, and potentially could evolve into a tool characterizing the ISM. Paradoxically, the ArH+ molecule is a better tracer of almost purely atomic hydrogen gas than Hi itself, since Hi can also be present in gas with a significant

  9. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    NASA Astrophysics Data System (ADS)

    Menk, R. H.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.; Amenitsch, H.; Bernstorff, S.

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30 000 and more) provides stable operation yielding a huge dynamic range of about 10 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  10. Study of the molecular structure, ionization spectrum, and electronic wave function of 1,3-butadiene using electron momentum spectroscopy and benchmark Dyson orbital theories

    NASA Astrophysics Data System (ADS)

    Deleuze, M. S.; Knippenberg, S.

    2006-09-01

    The scope of the present work is to reconcile electron momentum spectroscopy with elementary thermodynamics, and refute conclusions drawn by Saha et al. in J. Chem. Phys. 123, 124315 (2005) regarding fingerprints of the gauche conformational isomer of 1,3-butadiene in electron momentum distributions that were experimentally inferred from gas phase (e,2e) measurements on this compound [M. J. Brunger et al., J. Chem. Phys. 108, 1859 (1998)]. Our analysis is based on thorough calculations of one-electron and shake-up ionization spectra employing one-particle Green's function theory along with the benchmark third-order algebraic diagrammatic construction [ADC(3)] scheme. Accurate spherically averaged electron momentum distributions are correspondingly computed from the related Dyson orbitals. The ionization spectra and Dyson orbital momentum distributions that were computed for the trans-conformer of 1,3-butadiene alone are amply sufficient to quantitatively unravel the shape of all available experimental (e,2e) electron momentum distributions. A comparison of theoretical ADC(3) spectra for the s-trans and gauche energy minima with inner- and outer-valence high-resolution photoelectron measurements employing a synchrotron radiation beam [D. M. P. Holland et al., J. Phys. B 29, 3091 (1996)] demonstrates that the gauche structure is incompatible with ionization experiments in high-vacuum conditions and at standard temperatures. On the other hand, outer-valence Green's function calculations on the s-trans energy minimum form and approaching basis set completeness provide highly quantitative insights, within ˜0.2eV accuracy, into the available experimental one-electron ionization energies. At last, analysis of the angular dependence of relative (e,2e) ionization intensities nicely confirms the presence of one rather intense π-2 π*+1 satellite at ˜13.1eV in the ionization spectrum of the s-trans conformer.

  11. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Portolés, T; Mol, J G J; Sancho, J V; López, Francisco J; Hernández, F

    2014-08-01

    A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS(E)). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20mg kg(-1). For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01mg kg(-1) level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01mg kg(-1) for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01mg kg(-1) level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20mg kg(-1) level, respectively. Insufficient sensitivity for the second ion was the main reason for the inability to identify detected pesticides, followed by deviations in mass accuracy and ion ratios.

  12. Identification and quantification of seven volatile n-nitrosamines in cosmetics using gas chromatography/chemical ionization-mass spectrometry coupled with head space-solid phase microextraction.

    PubMed

    Choi, Na Rae; Kim, Yong Pyo; Ji, Won Hyun; Hwang, Geum-Sook; Ahn, Yun Gyong

    2016-01-01

    An analytical method was developed for the identification and quantification of seven volatile n-nitrosamines (n-nitrosodimethylamine [NDMA], n-nitrosoethylmethylamine [NMEA], n-nitrosodiethylamine [NDEA], n-nitrosodipropylamine [NDPA], n-nitrosodibutylamine [NDBA], n-nitrosopiperidine [NPIP], and n-nitrosopyrrolidine [NPYR]) in water insoluble cream type cosmetics. It was found that the head space-solid phase microextraction (HS-SPME) was suitable for extraction, clean up, and pre-concentration of n-nitrosamines in the cream type samples so its optimal conditions were investigated. Identification and quantification of n-nitrosamines using single quadrupole gas chromatography/mass spectrometry (GC/MS) in chemical ionization (CI) mode were carried out with accurate mass measurements. Their accurate masses of protonated molecular ions were obtained within 10 mDa of the theoretical masses when sufficiently high signal was acquired from the unique calibration method using mass and isotope accuracy. For the method validation of quantification, spiking experiments were carried out to determine the linearity, recovery, and method detection limit (MDL) using three deuterated internal standards. The average recovery was 79% within 20% relative standard deviation (RSD) at the concentration of 50 ng/g. MDLs ranged from 0.46 ng/g to 36.54 ng/g, which was satisfactory for the directive limit of 50 ng/g proposed by the European Commission (EC). As a result, it was concluded that the method could be provided for the accurate mass screening, confirmation, and quantification of n-nitrosamines when applied to cosmetic inspection.

  13. Identification and quantification of seven volatile n-nitrosamines in cosmetics using gas chromatography/chemical ionization-mass spectrometry coupled with head space-solid phase microextraction.

    PubMed

    Choi, Na Rae; Kim, Yong Pyo; Ji, Won Hyun; Hwang, Geum-Sook; Ahn, Yun Gyong

    2016-01-01

    An analytical method was developed for the identification and quantification of seven volatile n-nitrosamines (n-nitrosodimethylamine [NDMA], n-nitrosoethylmethylamine [NMEA], n-nitrosodiethylamine [NDEA], n-nitrosodipropylamine [NDPA], n-nitrosodibutylamine [NDBA], n-nitrosopiperidine [NPIP], and n-nitrosopyrrolidine [NPYR]) in water insoluble cream type cosmetics. It was found that the head space-solid phase microextraction (HS-SPME) was suitable for extraction, clean up, and pre-concentration of n-nitrosamines in the cream type samples so its optimal conditions were investigated. Identification and quantification of n-nitrosamines using single quadrupole gas chromatography/mass spectrometry (GC/MS) in chemical ionization (CI) mode were carried out with accurate mass measurements. Their accurate masses of protonated molecular ions were obtained within 10 mDa of the theoretical masses when sufficiently high signal was acquired from the unique calibration method using mass and isotope accuracy. For the method validation of quantification, spiking experiments were carried out to determine the linearity, recovery, and method detection limit (MDL) using three deuterated internal standards. The average recovery was 79% within 20% relative standard deviation (RSD) at the concentration of 50 ng/g. MDLs ranged from 0.46 ng/g to 36.54 ng/g, which was satisfactory for the directive limit of 50 ng/g proposed by the European Commission (EC). As a result, it was concluded that the method could be provided for the accurate mass screening, confirmation, and quantification of n-nitrosamines when applied to cosmetic inspection. PMID:26653425

  14. Fingerprinting and source identification of an oil spill in China Bohai Sea by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry coupled with multi-statistical analyses.

    PubMed

    Sun, Peiyan; Bao, Mutai; Li, Guangmei; Wang, Xinping; Zhao, Yuhui; Zhou, Qing; Cao, Lixin

    2009-01-30

    This paper describes a case study in which advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical composition and determine the source of an unknown spilled oil reported on the beach of China Bohai Sea in 2005. The spilled oil was suspected to be released from nearby platforms. In response to this specific site investigation need, a tiered analytical approach using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID) was applied. A variety of diagnostic ratios of "source-specific marker" compounds, in particular isomers of biomarkers, were determined and compared. Several statistical data correlation analysis methods were applied, including clustering analysis and Student's t-test method. The comparison of the two methods was conducted. The comprehensive analysis results reveal the following: (1) The oil fingerprinting of three spilled oil samples (S1, S2 and S3) positively match each other; (2) The three spilled oil samples have suffered different weathering, dominated by evaporation with decrease of the low-molecular-mass n-alkanes at different degrees; (3) The oil fingerprinting profiles of the three spilled oil samples are positive match with that of the suspected source oil samples C41, C42, C43, C44 and C45; (4) There are significant differences in the oil fingerprinting profiles between the three spilled oil samples and the suspected source oil samples A1, B1, B2, B3, B4, C1, C2, C3, C5 and C6.

  15. Probing Molecular Composition of Soil Organic Matter with Nanospray Desorption Electrospray Ionization (nano-DESI) High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Laskin, A.; Laskin, J.; Nizkorodov, S.

    2014-12-01

    The standard techniques for chemical analysis of SOM often lack molecular detail necessary for characterization of the key classes of compounds in soil necessary for the development of predictive models. High-resolution mass spectrometry (HR-MS) combined with tandem mass spectrometry (MSn) is the technique of choice for structural characterization of individual molecules in complex environmental mixtures because HR-MS enables chemical characterization of complex samples with a level of detail that is not attainable using other techniques. However, the power of this technique for characterization of SOM has been demonstrated only recently. Nanospray desorption ionization (nano-DESI) bypasses the traditional SOM extraction steps and provides the unique ability to record SOM mass spectra from small whole-soil samples. Nano-DESI benefits from a short sample preparation time (dozens of samples can be analyzed in a matter of hours by simply swapping the samples on the sample holder and running a pre-programmed positioning stage protocol), fast analysis time (useful signal results from only a few seconds of contact between the sample and the liquid bridge), and highly sensitive detection (less than 10 ng of organic mass is required for analysis). The nano-DESI method is minimally destructive. Only a small spot (typically < 1mm) is in contact with the solvent bridge during the analysis, and the rest of the sample is unaffected. Sampling over multiple spots on the same sample in effect replaces the need to extract a large amount of SOM from a soil sample in order to homogenize it, as done in conventional soil analysis. Another critical advantage of nano-DESI is that it makes it possible to observe organic components that cannot be easily detected using traditional ESI method (69). Specifically, by minimizing the residence time of analyte in the spray solvent, it enables detection and structural characterization of chemically labile molecules in environmental samples, which

  16. Abundant molecular gas and inefficient star formation in intracluster regions: ram pressure stripped tail of the Norma galaxy ESO137-001

    SciTech Connect

    Jáchym, Pavel; Combes, Françoise; Cortese, Luca; Sun, Ming; Kenney, Jeffrey D. P.

    2014-09-01

    For the first time, we reveal large amounts of cold molecular gas in a ram-pressure-stripped tail, out to a large 'intracluster' distance from the galaxy. With the Actama Pathfinder EXperiment (APEX) telescope, we have detected {sup 12}CO(2-1) emission corresponding to more than 10{sup 9} M {sub ☉} of H{sub 2} in three Hα bright regions along the tail of the Norma cluster galaxy ESO 137-001, out to a projected distance of 40 kpc from the disk. ESO 137-001 has an 80 kpc long and bright X-ray tail associated with a shorter (40 kpc) and broader tail of numerous star forming H II regions. The amount of ∼1.5 × 10{sup 8} M {sub ☉} of H{sub 2} found in the most distant region is similar to molecular masses of tidal dwarf galaxies, though the standard Galactic CO-to-H{sub 2} factor could overestimate the H{sub 2} content. Along the tail, we find the amount of molecular gas to drop, while masses of the X-ray-emitting and diffuse ionized components stay roughly constant. Moreover, the amounts of hot and cold gas are large and similar, and together nearly account for the missing gas from the disk. We find a very low SFE (τ{sub dep} > 10{sup 10} yr) in the stripped gas in ESO 137-001 and suggest that this is due to a low average gas density in the tail, or turbulent heating of the interstellar medium that is induced by a ram pressure shock. The unprecedented bulk of observed H{sub 2} in the ESO 137-001 tail suggests that some stripped