Natural gas odor level testing: Instruments and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberson, E.H.
1995-12-01
An odor in natural and LP gases is necessary. The statistics are overwhelming; when gas customers can smell a leak before the percentage of gas in air reaches a combustible mixture, the chances of an accident are greatly reduced. How do gas companies determine if there is sufficient odor reaching every gas customers home? Injection equipment is important. The rate and quality of odorant is important. Nevertheless, precision odorization alone does not guarantee that customers` homes always have gas with a readily detectable odor. To secure that goal, odor monitoring instruments are necessary.
USDA-ARS?s Scientific Manuscript database
Simultaneous chemical and sensory analyses using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for air samples collected at barn exhaust fans were used for quantification and ranking of odor impact of target odorous gases. Fifteen target odorous VOCs (odorants) were selected. Air sampl...
Brattoli, Magda; Cisternino, Ezia; Dambruoso, Paolo Rosario; de Gennaro, Gianluigi; Giungato, Pasquale; Mazzone, Antonio; Palmisani, Jolanda; Tutino, Maria
2013-01-01
The gas chromatography-olfactometry (GC-O) technique couples traditional gas chromatographic analysis with sensory detection in order to study complex mixtures of odorous substances and to identify odor active compounds. The GC-O technique is already widely used for the evaluation of food aromas and its application in environmental fields is increasing, thus moving the odor emission assessment from the solely olfactometric evaluations to the characterization of the volatile components responsible for odor nuisance. The aim of this paper is to describe the state of the art of gas chromatography-olfactometry methodology, considering the different approaches regarding the operational conditions and the different methods for evaluating the olfactometric detection of odor compounds. The potentials of GC-O are described highlighting the improvements in this methodology relative to other conventional approaches used for odor detection, such as sensoristic, sensorial and the traditional gas chromatographic methods. The paper also provides an examination of the different fields of application of the GC-O, principally related to fragrances and food aromas, odor nuisance produced by anthropic activities and odorous compounds emitted by materials and medical applications. PMID:24316571
Kleeberg, K K; Liu, Y; Jans, M; Schlegelmilch, M; Streese, J; Stegmann, R
2005-01-01
A solid-phase microextraction (SPME) method has been developed for the extraction of odorous compounds from waste gas. The enriched compounds were characterized by gas chromatography-mass spectrometry (GC-MS) and gas chromatography followed by simultaneous flame ionization detection and olfactometry (GC-FID/O). Five different SPME fiber coatings were tested, and the carboxen/polydimethylsiloxane (CAR/PDMS) fiber showed the highest ability to extract odorous compounds from the waste gas. Furthermore, parameters such as exposure time, desorption temperature, and desorption time have been optimized. The SPME method was successfully used to characterize an odorous waste gas from a fat refinery prior to and after waste gas treatment in order to describe the treatment efficiency of the used laboratory scale plant which consisted of a bioscrubber/biofilter combination and an activated carbon adsorber. The developed method is a valuable approach to provide detailed information of waste gas composition and complements existing methods for the determination of odors. However, caution should be exercised if CAR/PDMS fibers are used for the quantification of odorous compounds in multi-component matrices like waste gas emissions since the relative affinity of each analyte was shown to differ according to the total amount of analytes present in the sample.
Yang, Zhongyuan; Sassa, Fumihiro; Hayashi, Kenshi
2018-06-22
Improving the efficiency of detecting the spatial distribution of gas information with a mobile robot is a great challenge that requires rapid sample collection, which is basically determined by the speed of operation of gas sensors. The present work developed a robot equipped with a high-speed gas sensor module based on localized surface plasmon resonance. The sensor module is designed to sample gases from an on-ground odor source, such as a footprint material or artificial odor marker, via a fine sampling tubing. The tip of the sampling tubing was placed close to the ground to reduce the sampling time and the effect of natural gas diffusion. On-ground ethanol odor sources were detected by the robot at high resolution (i.e., 2.5 cm when the robot moved at 10 cm/s), and the reading of gas information was demonstrated experimentally. This work may help in the development of environmental sensing robots, such as the development of odor source mapping and multirobot systems with pheromone tracing.
Measurement of the odor impact of a waste deposit using the SF6-tracer method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roetzer, H.; Muehldorf, V.; Riesing, J.
1994-12-01
Landfill gas emitted from a waste disposal often causes odor nuisance in the vicinity. To verify that the odor concentrations were below these limit values, the odor contributions of different sources had to be distinguished. A tracer method was applied to measure the odor impact of the sanitary landfill to its environment. The emitted landfill gas was labelled with the tracer gas SF6. The tracer gas was parted to even amounts and released through ten special nozzles equally distributed over the surface of the landfill. In the area around the landfill the concentration of the tracer gas was measured bymore » collecting air samples and analyzing them with a gas chromatograph with an electron capture detector. Fifteen air sampling units were used to collect eight consecutive air samples at each selected point. These measurements gave the relation between the emission of landfill gas and the resulting concentrations in ambient air.« less
Identification and Quantitation of Potent Odorants in Spearmint Oils.
Kelley, Lauren E; Cadwallader, Keith R
2018-03-14
Potent odorants in Native spearmint, Scotch spearmint, and Macho mint oils were determined by the combined use of gas chromatography-olfactometry (GCO), gas chromatography-mass spectrometry (GC-MS), and aroma extract dilution analysis (AEDA). Of the 85 odorants detected, ( R)-(-)-carvone was the most potent odorant in all three spearmint oils. Additional predominant odorants in all spearmint oils included eugenol, ethyl ( S)-(+)-2-methylbutanoate, ( E)-β-damascenone, and (3 E,5 Z)-1,3,5-undecatriene. Forty-six compounds were quantitated using various methods, including 19 by gas chromatography with flame ionization detection (GC-FID), 20 by stable isotope dilution analysis (SIDA), and 14 by GCO dilution analysis. Concentrations were used to calculate the odor activity values (OAVs) for predominant odorants in the oils. Among the compounds quantitated, those with the highest OAVs were ( R)-(-)-carvone, 1,8-cineole, ( E, Z)-2,6-nonadienal, ( E)-β-damascenone, and (3 E,5 Z)-1,3,5-undecatriene.
49 CFR 192.625 - Odorization of gas.
Code of Federal Regulations, 2010 CFR
2010-10-01
...; (iii) A gas dehydration plant; or (iv) An industrial plant using gas in a process where the presence of... 49 Transportation 3 2010-10-01 2010-10-01 false Odorization of gas. 192.625 Section 192.625... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS...
Olfactometry Profiles and Quantitation of Volatile Sulfur Compounds of Swiss Tilsit Cheeses.
Fuchsmann, Pascal; Stern, Mireille Tena; Brügger, Yves-Alain; Breme, Katharina
2015-09-02
To establish the odor profiles of three differently fabricated commercial Swiss Tilsit cheeses, analyses were conducted using headspace solid-phase microextraction gas chromatography-mass spectrometry/pulsed flame photometric detection and gas chromatography-olfactometry to identify and quantitate volatile compounds. In addition, odor quality and the impact of target sulfur compounds on the overall odor of the cheeses were investigated. The odor profile was found to be mainly influenced by buttery-cheesy and sulfury odor notes in all cheeses. Buttery-cheesy odor notes were attributed to three main molecules: butanoic acid, 3-methylbutanoic acid, and butane-2,3-dione. Over a dozen volatile sulfur compounds were detected at parts per billion levels, but only a few influenced the odor profile of the cheeses: methanethiol, dimethyl disulfide, bis(methylthio)methane, dimethyl trisulfide, 3-(methylthio)propanal, and 2-methyltetrahydrothiophen-3-one (tentative). In conclusion, the conducted analyses allowed differentiation of the cheeses, and gas chromatography-olfactometry results confirmed that partially thermized milk cheese has a more intense and more multifaceted overall flavor.
Brand, J M; Galask, R P
1986-11-01
The vaginal discharge of women with bacterial vaginosis often has a prominent fishy odor. Intensification of this fishy odor by the addition of strong base to the vaginal discharge suggests that it could be due to trimethylamine, the substance responsible for the characteristic odor of spoiling fish. Samples were collected from 11 women with a vaginal discharge having a fishy odor and from 10 women with no detectable odor. Gas chromatographic analysis of headspace samples of alkalinized vaginal discharges indicated the presence of trimethylamine in all 11 samples with the fishy odor but not in the other samples. The chemical identity of trimethylamine was confirmed by gas chromatography-mass spectrometry of headspace samples from two vaginal discharge samples. It is concluded that trimethylamine is the primary cause of the fishy odor associated with bacterial vaginosis.
Odor and odorous chemical emissions from animal buildings: Part 3 - chemical emissions
USDA-ARS?s Scientific Manuscript database
This study was an add-on study to the National Air Emission Monitoring Study (NAEMS). The objective of this study was to measure odor emissions and corresponding concentrations and emissions of target odorous gases. Odor and odorous gas measurements at four NAEMS sites (dairy barns in Wisconsin-WI5B...
Odor and odorous chemical emissions from animal buildings: Part 3. Chemical emissions
USDA-ARS?s Scientific Manuscript database
The objective of this study was to measure the long-term odor emissions and corresponding concentrations and emissions of 20 odorous volatile organic compounds (VOCs). This study was an add-on study to the National Air Emission Monitoring Study (NAEMS). Odor and odorous gas measurements at four NAEM...
Odor intensity and characterization studies of exhaust from a turbojet engine combustor
NASA Technical Reports Server (NTRS)
Butze, H. F.; Kendall, D. A.
1973-01-01
Sensory odor tests of the exhaust from a turbojet combustor operating at simulated idle conditions were made by a human panel sniffing diluted exhaust gas. Simultaneously, samples of undiluted exhaust gas were collected on adsorbent substrates, subsequently removed by solvent flushing, and analyzed chemically by liquid chromatographic methods. The concentrations of the principal malodorous species, the aromatic (unburned fuel-related) and the oxygenated (partially burned fuel) fractions, as determined chromatographically, correlated well with the intensity of the odor as determined by sniffing. Odor intensity increased as combustion efficiency decreased. Combustor modifications which increased combustion efficiency decreased odor intensity.
Iqbal, Mohammad Asif; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo
2014-01-01
The gas-liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling.
Findings and Recommendations From the Joint NIST—AGA Workshop on Odor Masking
Rawson, Nancy; Quraishi, Ali; Bruno, Thomas J.
2011-01-01
Since the days of the alchemist, the observation that some substances have a smell while other substances do not has been a source of fascination. The sense of smell, or olfaction, is our least understood sense, however it is important for many human functions, including digestion, food selection and hazard avoidance. The detailed explanation of why individual chemicals (called odorants) might have a particular smell is still elusive. The situation with mixtures of odorants is even more complex and interesting. A number of distinct odorant mixture phenomena have been documented. Odorant suppression (sometimes called masking), conjugation (as described first by Zwaadermaker) and cross-adaptation are among a collection of such phenomena. They are related to the differential effects that one odorant species will have when mixed with another. Masking is a term that describes situations in which one odorant can overpower the sensation of another. There may be profound technological implications in a number of industrial sectors, most prominently in the fuel gas sector. Here, masking is suspected when the odorant that is added to natural gas can be detected by analytical instrumentation, but cannot be properly detected by an observer with a normal sense of smell. Note that this phenomenon is distinct from odor fade, which more properly describes a decrease in the concentration of an odorant rather than a decrease, disappearance or qualitative change in the perception of the odor in the absence of a change in absolute concentration. Anecdotal descriptions of masking events in the natural gas industry have persisted for over a decade, with the frequency of such events on the rise. Pursuant to the philosophy that the technological problem cannot be addressed until the basic science is understood, NIST, in collaboration with the American Gas Association (AGA), sponsored a workshop that brought together olfactory scientists and natural gas operations personnel in an effort to achieve a common understanding and identify critical research questions. This document is a summary of that workshop, and most importantly, a compendium of the findings and recommendations that resulted from the meeting. PMID:26989604
Findings and Recommendations From the Joint NIST-AGA Workshop on Odor Masking.
Rawson, Nancy; Quraishi, Ali; Bruno, Thomas J
2011-01-01
Since the days of the alchemist, the observation that some substances have a smell while other substances do not has been a source of fascination. The sense of smell, or olfaction, is our least understood sense, however it is important for many human functions, including digestion, food selection and hazard avoidance. The detailed explanation of why individual chemicals (called odorants) might have a particular smell is still elusive. The situation with mixtures of odorants is even more complex and interesting. A number of distinct odorant mixture phenomena have been documented. Odorant suppression (sometimes called masking), conjugation (as described first by Zwaadermaker) and cross-adaptation are among a collection of such phenomena. They are related to the differential effects that one odorant species will have when mixed with another. Masking is a term that describes situations in which one odorant can overpower the sensation of another. There may be profound technological implications in a number of industrial sectors, most prominently in the fuel gas sector. Here, masking is suspected when the odorant that is added to natural gas can be detected by analytical instrumentation, but cannot be properly detected by an observer with a normal sense of smell. Note that this phenomenon is distinct from odor fade, which more properly describes a decrease in the concentration of an odorant rather than a decrease, disappearance or qualitative change in the perception of the odor in the absence of a change in absolute concentration. Anecdotal descriptions of masking events in the natural gas industry have persisted for over a decade, with the frequency of such events on the rise. Pursuant to the philosophy that the technological problem cannot be addressed until the basic science is understood, NIST, in collaboration with the American Gas Association (AGA), sponsored a workshop that brought together olfactory scientists and natural gas operations personnel in an effort to achieve a common understanding and identify critical research questions. This document is a summary of that workshop, and most importantly, a compendium of the findings and recommendations that resulted from the meeting.
Starkenmann, Christian; Chappuis, Charles Jean-Francois; Niclass, Yvan; Deneulin, Pascale
2016-11-30
Through the accidental contamination of a gas cylinder of H 2 S, the importance of polysulfanes for flint, gun powder, and match odors was discovered. The hydrogen disulfane was prepared from disulfanediylbis[methyl(diphenyl)silane], and its odor descriptor was evaluated in the gas phase from a gas chromatograph coupled to an olfaction port. The occurrence of this compound in flint and pebbles was confirmed by analyses after derivatization with pentafluorobromobenzene. The occurrence of this sulfane was also confirmed in two dry white Swiss Chasselas wines, sorted by a large-scale sensory analysis from 80 bottles and evaluated by 62 wine professionals. The occurrence of disulfane was confirmed for the two wines described as the most mineral. Polysulfane comprises a class of compounds contributing to the flint odor and that may contribute to the wine mineral odor descriptor. Due to the high volatility and instability pure HSSH was not isolated but kept in solution and its odor profile was described by gas chromatography coupled to an olfaction port as flint, matches, and fireworks with a higher odor intensity compared to H 2 S.
JPRS Report Environmental Issues
1990-08-02
of landfill gas. For example, the unpleasant odor of landfill gas is due to sulfur-containing compounds . Chlorofluorocarbons merit attention because...intense odors originating in the refineries are liable to cause these phenomena. A New Problem—Coal A new environmental problem is developing in...plant’s start was accompanied by a public storm raised by residents of the site, who complained of foul odors coming from the oxygenation basins. With
USDA-ARS?s Scientific Manuscript database
Simultaneous chemical and sensory analysis based on gas chromatography-mass spectrometry-olfactometry (GC-MS-O) of air samples from livestock operations is a very useful approach for quantification of target odorous gases and also for ranking of odorous compounds. This information can help link spec...
Kong, Xin; Liu, Jianguo; Ren, Lianhai; Song, Minying; Wang, Xiaowei; Ni, Zhe; Nie, Xiaoqin
2015-10-01
Odorous gas emission characteristic along with the successive processes of a typical full-scale food waste (FW) anaerobic digestion plant in China was investigated in September and January. Seasonal variations in pollutant concentration and principal component analysis (PCA) showed markedly different characteristics between the two months. However, the main reason for the seasonal difference at the sorting process differed from the reason for the seasonal difference at other treatment units. Most odorous volatile organic compound (VOC) concentrations tested near an anaerobic digestion tank were similar and low in both months. Odor indices, including odor contribution (OC) and odor activity value (OAV) of various odorants, were further calculated to evaluate the malodor degree and contribution to the nuisance smell of any odorant. Brought about by people's different dietary habits, H2S and sulfocompounds were found to be dominant contributors to the large total OVA in the January test. By contrast, oxygenated organic compounds played an important role on the sum of OVA in September.
Barba, Carmen; Beno, Noelle; Guichard, Elisabeth; Thomas-Danguin, Thierry
2018-08-15
Gas chromatography/olfactometry-associated taste (GC/O-AT) analysis combined with mass spectrometry allowed identification of odorant compounds associated with taste attributes (sweet, salty, bitter and sour) in a multi-fruit juice. Nine compounds were selected for their odor-associated sweetness enhancement in a multi-fruit juice odor context using Olfactoscan and for their odor-induced sweet taste enhancement in sucrose solution and sugar-reduced fruit juice through sensory tests. Sweetness of the fruit juice odor was significantly enhanced by methyl 2-methylbutanoate, ethyl butanoate, ethyl 2-methylbutanoate and linalool; sweet perception was significantly enhanced in 7% sucrose solution by ethyl 2-methylbutanoate, furaneol and γ-decalactone, and in 32% sugar-reduced fruit juice by ethyl 2-methylbutanoate. GC/O-AT analysis is a novel, efficient approach to select odorants associated with a given taste. The further screening of taste-associated odorants by Olfactoscan helps to identify the most efficient odorants to enhance a target taste perception and may be used to find new ways to modulate taste perception in foods and beverages. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Xiuyan; Zhu, Wenda; Koziel, Jacek A; Cai, Lingshuang; Jenks, William S; Laor, Yael; Leeuwen, J Hans van; Hoff, Steven J
2015-10-02
Aerial emissions of odorous volatile organic compounds (VOCs) are an important nuisance factor from livestock production systems. Reliable air sampling and analysis methods are needed to develop and test odor mitigation technologies. Quantification of VOCs responsible for livestock odor remains an analytical challenge due to physicochemical properties of VOCs and the requirement for low detection thresholds. A new air sampling and analysis method was developed for testing of odor/VOCs mitigation in simulated livestock emissions system. A flow-through standard gas generating system simulating odorous VOCs in livestock barn emissions was built on laboratory scale and tested to continuously generate ten odorous VOCs commonly defining livestock odor. Standard VOCs included sulfur VOCs (S-VOCs), volatile fatty acids (VFAs), and p-cresol. Solid-phase microextraction (SPME) was optimized for sampling of diluted odorous gas mixtures in the moving air followed by gas chromatography-mass spectrometry (GC-MS) analysis. CAR/PDMS 85μm fiber was shown to have the best sensitivity for the target odorous VOCs. A practical 5-min sampling time was selected to ensure optimal extraction of VFAs and p-cresol, as well as minimum displacement of S-VOCs. Method detection limits ranged from 0.39 to 2.64ppbv for S-VOCs, 0.23 to 0.77ppbv for VFAs, and 0.31ppbv for p-cresol. The method developed was applied to quantify VOCs and odorous VOC mitigation with UV light treatment. The measured concentrations ranged from 20.1 to 815ppbv for S-VOCs, 10.3 to 315ppbv for VFAs, and 4.73 to 417ppbv for p-cresol. Relative standard deviations between replicates ranged from 0.67% to 12.9%, 0.50% to 11.4%, 0.83% to 5.14% for S-VOCs, VFAs, and p-cresol, respectively. This research shows that a simple manual SPME sampler could be used successfully for quantification of important classes of odorous VOCs at concentrations relevant for real aerial emissions from livestock operations. Copyright © 2015 Elsevier B.V. All rights reserved.
[Specific odor component produced by Mycobacterium lepraemurium on Ogawa yolk medium].
Mori, T; Aishima, T
1992-11-01
When Mycobacterium lepraemurium is grown on the 1% Ogawa yolk medium, it produces a specific odor. This odor was not observed in other easily cultivable acid-fast bacilli. Therefore, identification of the components responsible for the specific odor produced by M. lepraemurium was attempted. The odor components were extracted for overnight with sterilized and distilled water from the Ogawa yolk medium on which M. lepraemurium had been cultivated for two months. The odor components in the extract was adsorbed on refined charcoal. After washing with distilled water for three times, the charcoal was dried. Then the odor components were eluted from the charcoal with ethanol and the eluate was condensed under nitrogen gas flow at 40 degrees C. The condensate was analyzed by Gas-Chromatography-Mass-Spectrum (GC-MS). Phenylethanol and phenylacetic acid were identified as major odor components. A mixture of authentic phenylacetic acid, its methyl and ethyl esters, smelled similar to the odor of cultivated medium of M. lepraemurium. Thus, phenylacetic acid was identified as the key odor component produced by M. lepraemurium. When initial isolation culture of M. lepraemurium from murine leproma was cultivated on the Ogawa yolk medium by adding phenylacetic acid, growth inhibition was brought by the compound.
Direct nuclear magnetic resonance observation of odorant binding to mouse odorant receptor MOR244-3.
Burger, Jessica L; Jeerage, Kavita M; Bruno, Thomas J
2016-06-01
Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition. Published by Elsevier Inc.
Test 6, Test 7, and Gas Standard Analysis Results
NASA Technical Reports Server (NTRS)
Perez, Horacio, III
2007-01-01
This viewgraph presentation shows results of analyses on odor, toxic off gassing and gas standards. The topics include: 1) Statistical Analysis Definitions; 2) Odor Analysis Results NASA Standard 6001 Test 6; 3) Toxic Off gassing Analysis Results NASA Standard 6001 Test 7; and 4) Gas Standard Results NASA Standard 6001 Test 7;
NASA Astrophysics Data System (ADS)
de Wild, P. J.; Nyqvist, R. G.; de Bruijn, F. A.; Stobbe, E. R.
Natural gas (NG) and liquefied petroleum gas (LPG) are important potential feedstocks for the production of hydrogen for fuel cell-based (e.g. proton exchange membrane fuel cells (PEMFC) or solid oxide fuel Cells (SOFC) combined heat and power (CHP) applications. To prevent detrimental effects on the (electro)catalysts in fuel cell-based combined heat and power installations (FC-CHP), sulphur removal from the feedstock is mandatory. An experimental bench-marking study of adsorbents has identified several candidates for the removal of sulphur containing odorants at low temperature. Among these adsorbents a new material has been discovered that offers an economically attractive means to remove TetraHydroThiophene (THT), the main European odorant, from natural gas at ambient temperature. The material is environmentally benign, easy to use and possesses good activity (residual sulphur levels below 20 ppbv) and capacity for the common odorant THT in natural gas. When compared to state-of-the-art metal-promoted active carbon the new material has a THT uptake capacity that is up to 10 times larger, depending on temperature and pressure. Promoted versions of the new material have shown potential for the removal of THT at higher temperatures and/or for the removal of other odorants such as mercaptans from natural gas or from LPG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshika, Y.; Nihei, Y.; Muto, G.
1981-04-01
A simple circular odor chart is proposed for the explanation of the relationship between sensory responses (to odor quality and intensity) to odors and chemical analysis data of the odorants responsible for each odor discharged from thirteen odor sources. The odorants were classified into eight odorant groups and were analyzed by a systematic gas chromatographic (GC) technique. The characterization of the trace amounts of the odorants was carried out by using the values of a new proposed unit (pOU) based on the ratio of detected concentration to recognition threshold value. The calculated pOU values of the eight groups were plottedmore » in circular charts. It was found that the shape and size of each circular odor chart represent the quality and the intensity of each odor.« less
Ding, Wenjie; Li, Lin; Liu, Junxin
2015-01-01
Sludge drying is a necessary step for sludge disposal. In this study, sludge was collected from two wastewater treatment plants, and dried at different temperatures in the laboratory. The emission of odor and total volatile organic compounds (TVOCs) during the sludge drying process were determined by an online odor monitoring system. The volatile organic compounds (VOCs) in off-gas were analyzed by gas chromatography-mass spectrometry. Results showed that sludge with 30% moisture content could be obtained in 51 minutes under drying temperature 100 °C but only within 27 minutes under 150 °C. Concentration of odor, TVOCs, sulfur-containing compounds (SCCs), and amines were changed with drying temperature and sludge sources. The maximum concentration of odor, TVOCs, SCCs, and amines were 503.13 ppm, 3.01 ppm, 8.15 ppm, and 11.27 ppm, respectively, at drying temperature 100 °C. These values reached 1,250.79, 8.10, 53.51, and 37.80 ppm when sludge dried at 150 °C. Odor concentration had a close relationship with emission of SCCs, amines, and TVOCs. The main VOCs released were benzene series and organic acid. Potential migration of substances in sludge was examined via analysis of off-gas and condensate, aiming to provide scientific data for effective sludge treatment and off-gas control.
Dispersion of odorants in natural gas distribution networks
NASA Astrophysics Data System (ADS)
Gross, R.; Fontana, E.; Silva, A.; Quadri, M. B.; Souza, S. M. A. G. U.
2018-03-01
A numerical modeling analysis of a pulse train diffusion, representing an odorant injection in a natural gas pipeline, was carried out and compared with experimental data from a real pipeline. The main purpose of this study is to evaluate how the odorant dispersion occurs along the pipe. Due to technical limitations, the odorant is injected in the line as a pulse and it is important to find out the point in the pipeline where the oscillating concentration of odorant fits into a range of values that meet both the legislation and the interests of customers who may have the quality of their products affected by this oscillation. Since the natural gas pipelines do not have strong streamline curvatures and the flow is always turbulent, it is relatively easy to determine the velocity and concentration fields using the Computational Fluid Dynamics techniques. In this study the RANS (Reynolds Average Navier-Stokes) equations with the k - ɛ turbulence model was used to build the mathematical model. Comparisons of the experimental data and numerical results show a strong agreement for the studied cases. Based on the results, it was possible to know the minimum and maximum values of odorant concentration along the pipelines.
Elaborated Odor Test for Extended Exposure
NASA Technical Reports Server (NTRS)
Buchanan, Vanessa D.; Henry, Emily J.; Mast, Dion J.; Harper, Susana A.; Beeson, Harold D.; Tapia, Alma S.
2016-01-01
Concerns were raised when incidental exposure to a proprietary bonding material revealed the material had an irritating odor. The NASA-STD-6001B document describes a supplemental test method option for programs to evaluate materials with odor concerns (Test 6, Odor Assessment). In addition to the supplemental standard odor assessment with less than 10 seconds of exposure, the NASA White Sands Test Facility (WSTF) Materials Flight Acceptance Testing section was requested to perform an odor test with an extended duration to evaluate effects of an extended exposure and to more closely simulate realistic exposure scenarios. With approval from the NASA Johnson Space Center Industrial Hygienist, WSTF developed a 15-minute odor test method. WSTF performed this extended-duration odor test to evaluate the odor and physical effects of the bonding material configured between two aluminum plates, after the safety of the gas was verified via toxicity analysis per NASA-STD-6001B Test 7, Determination of Offgassed Products. During extended-duration testing, odor panel members were arranged near the test material in a small room with the air handlers and doors closed to minimize dilution. The odor panel members wafted gas toward themselves and recorded their individual assessments of odor and physical effects at various intervals during the 15-minute exposure and posttest. A posttest interview was conducted to obtain further information. Testing was effective in providing data for comparison and selection of an optimal offgassing and odor containment configuration. The developed test method for extended exposure is proposed as a useful tool for further evaluating materials with identified odors of concern if continued use of the material is anticipated.
Can Biochar Covers Reduce Emissions from Manure Lagoons While Capturing Nutrients?
The unique physical and chemical properties of biochars make them promising materials for odor, gas, and nutrient sorption. Floating covers made from organic materials (biocovers) are one option for reducing odor and gas emissions from livestock manure lagoons. This study evaluat...
Odor modeling methodology for determining the odor buffer distance for sanitary landfills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Dukman.
1991-01-01
The objective of this study is to create a methodology whereby reductions in off-site odor migrations resulting from operational and design changes in new or expanded sanitary landfills can be evaluated. The Ann Arbor Sanitary Landfill was chosen as a prototype landfill to test a hypothesis for this study. This study is a unique approach to odor prediction at sanitary landfills using surface flux measurements, odor threshold panel measurements, and dispersion modeling. Flux measurements were made at open tipping face, temporary cover, final cover, vents, and composting zones of the Ann Arbor Sanitary Landfill. Surface gas velocities and in-ground concentrationsmore » were determined to allow a quantification of the total and methane gas flow rate. Odor threshold panel measurements were performed to determine the odor intensity in odor units at the corresponding sites. The used the flux and odor panel measurements in the Industrial Source Complex Terrain Model to determine the hourly averaged highest and second highest odor levels at 175 receptors placed at the property boundary and 25 nearby residential locations. Using measured values for velocity, subsurface CH{sub 4} concentration and odor intensity, it was determined that the proposed 1990 operations with a buffer distance of 600 feet provided at least a factor of five protection below 1 o.u. of the odor threshold for all receptors, and dilution protection equal to the historic 1984 operations with a 1,200 feet isolation distance.« less
Chemical indices and methods of multivariate statistics as a tool for odor classification.
Mahlke, Ingo T; Thiesen, Peter H; Niemeyer, Bernd
2007-04-01
Industrial and agricultural off-gas streams are comprised of numerous volatile compounds, many of which have substantially different odorous properties. State-of-the-art waste-gas treatment includes the characterization of these molecules and is directed at, if possible, either the avoidance of such odorants during processing or the use of existing standardized air purification techniques like bioscrubbing or afterburning, which however, often show low efficiency under ecological and economical regards. Selective odor separation from the off-gas streams could ease many of these disadvantages but is not yet widely applicable. Thus, the aim of this paper is to identify possible model substances in selective odor separation research from 155 volatile molecules mainly originating from livestock facilities, fat refineries, and cocoa and coffee production by knowledge-based methods. All compounds are examined with regard to their structure and information-content using topological and information-theoretical indices. Resulting data are fitted in an observation matrix, and similarities between the substances are computed. Principal component analysis and k-means cluster analysis are conducted showing that clustering of indices data can depict odor information correlating well to molecular composition and molecular shape. Quantitative molecule describtion along with the application of such statistical means therefore provide a good classification tool of malodorant structure properties with no thermodynamic data needed. The approximate look-alike shape of odorous compounds within the clusters suggests a fair choice of possible model molecules.
Hallier, Arnaud; Prost, Carole; Serot, Thierry
2005-09-07
Volatile compounds of cooked fillets of Silurus glanis reared under two conditions occurring in France were studied. They were extracted by dynamic headspace, identified by gas chromatography/mass spectrometry, and quantified by gas chromatography-flame ionization detection. Odor active volatile compounds were characterized by gas chromatography-olfactometry. Sixty volatile compounds were detected in dynamic headspace extracts, among which 33 were odor active. Rearing conditions affected their estimated concentrations and their odor intensities, but very few qualitative differences were exhibited (only seven volatile compounds were concerned). A good correlation between quantitative and olfactometric results is shown. 2-Methylisoborneol and (E)-2-hexenal were less represented in OUTDOOR extracts, while 2-butanone was less represented in INDOOR extracts. In addition, olfactometric results can be closely related to those previously obtained by sensory analysis. Boiled potato sensory odor of the silurus cooked fillets can be related to (Z)-4-heptenal and methional, and buttery odor can be related to 2,3-butanedione, an unknown compound (RI = 1010), and 2,3-pentadione.
Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo
2008-09-12
As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.
Odorant transfer characteristics of white bread during baking.
Onishi, Masanobu; Inoue, Michiko; Araki, Tetsuya; Iwabuchi, Hisakatsu; Sagara, Yasuyuki
2011-01-01
The potent odorants in the crust and crumb of white bread were identified and quantified by gas chromatography-mass spectrometry and gas chromatography/olfactometry. The weight loss ratio of the samples baked at 220 °C was controlled in the range of 0-28%. The odorants were classified into 5 types by the transfer characteristics: i) All amounts of odorant transferred from the crust to external space (type-I). ii) All transferred from the crust to the crumb and external space (type-II). iii) Certain amount remaining in the crust and the rest transferred to the crumb and external space (type-III). iv) All transferred from the crumb to external space (type-IV). v) Certain amount remaining in the crumb and the rest transferred to the crust and external space (type-V). The odorants of type-IV were not apparent after the crust had formed. The results indicate that the crust could be a barrier to prevent the odorants from being transferred to external space.
Variable selection based cotton bollworm odor spectroscopic detection
NASA Astrophysics Data System (ADS)
Lü, Chengxu; Gai, Shasha; Luo, Min; Zhao, Bo
2016-10-01
Aiming at rapid automatic pest detection based efficient and targeting pesticide application and shooting the trouble of reflectance spectral signal covered and attenuated by the solid plant, the possibility of near infrared spectroscopy (NIRS) detection on cotton bollworm odor is studied. Three cotton bollworm odor samples and 3 blank air gas samples were prepared. Different concentrations of cotton bollworm odor were prepared by mixing the above gas samples, resulting a calibration group of 62 samples and a validation group of 31 samples. Spectral collection system includes light source, optical fiber, sample chamber, spectrometer. Spectra were pretreated by baseline correction, modeled with partial least squares (PLS), and optimized by genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS). Minor counts differences are found among spectra of different cotton bollworm odor concentrations. PLS model of all the variables was built presenting RMSEV of 14 and RV2 of 0.89, its theory basis is insect volatilizes specific odor, including pheromone and allelochemics, which are used for intra-specific and inter-specific communication and could be detected by NIR spectroscopy. 28 sensitive variables are selected by GA, presenting the model performance of RMSEV of 14 and RV2 of 0.90. Comparably, 8 sensitive variables are selected by CARS, presenting the model performance of RMSEV of 13 and RV2 of 0.92. CARS model employs only 1.5% variables presenting smaller error than that of all variable. Odor gas based NIR technique shows the potential for cotton bollworm detection.
46 CFR 95.15-60 - Odorizing units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-60 Odorizing units. Each carbon dioxide... 46 Shipping 4 2013-10-01 2013-10-01 false Odorizing units. 95.15-60 Section 95.15-60 Shipping... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas...
46 CFR 95.15-60 - Odorizing units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-60 Odorizing units. Each carbon dioxide... 46 Shipping 4 2014-10-01 2014-10-01 false Odorizing units. 95.15-60 Section 95.15-60 Shipping... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas...
Odorant Metabolism Analysis by an Automated Ex Vivo Headspace Gas-Chromatography Method.
Faure, Philippe; Legendre, Arièle; Hanser, Hassan-Ismail; Andriot, Isabelle; Artur, Yves; Guichard, Elisabeth; Coureaud, Gérard; Heydel, Jean-Marie
2016-01-01
In the olfactory epithelium (OE), odorant metabolizing enzymes have the dual function of volatile component detoxification and active clearance of odorants from the perireceptor environment to respectively maintain the integrity of the tissues and the sensitivity of the detection. Although emphasized by recent studies, this enzymatic mechanism is poorly documented in mammals. Thus, olfactory metabolism has been characterized mainly in vitro and for a limited number of odorants. The automated ex vivo headspace gas-chromatography method that was developed here was validated to account for odorant olfactory metabolism. This method easily permits the measurement of the fate of an odorant in the OE environment, taking into account the odorant gaseous state and the cellular structure of the tissue, under experimental conditions close to physiological conditions and with a high reproducibility. We confirmed here our previous results showing that a high olfactory metabolizing activity of the mammary pheromone may be necessary to maintain a high level of sensitivity toward this molecule, which is critical for newborn rabbit survival. More generally, the method that is presented here may permit the screening of odorants metabolism alone or in mixture or studying the impact of aging, pathology, polymorphism or inhibitors on odorant metabolism. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Airborne Human Odorants: Detection, Dispersion and Characterization
2012-03-01
begin this research. To allow the quantification of various human odorants we first calibrated the gas chromatography -mass spectrometry system that...odorants we have chosen for study are emitted from the body in axillary sweat which is a complex mixture of water, protein, lipids and other small...will be employed to quantify odorants collected from various headspaces . Experiment 1: a.) Calibration of GC-MS system was performed by injecting
Di, Yanqiang; Liu, Jiemin; Liu, Jianguo; Liui, Siyuan; Yan, Luchun
2013-10-01
Gas chromatography-mass spectrometry, olfactometry, and other related methods were applied for the qualitative and quantitative analysis of the characteristics of odorous gases in the pretreatment workshop. The composition of odorous gases emitted from municipal food waste was also investigated in this study. The results showed that the tested gases are mainly composed of aromatic gases, which account for 49% of the total volatile organic compounds (VOC) concentrations. The nitrogenous compounds comprise 15% of the total concentration and the other gases comprise the remaining 36%. The level of odor concentration ranged from 2523 odor units (OU) m(-3) to 3577 OU m(-3). The variation of the total chemical composition ranged from 19,725 microg m(-3) to 24,184 microg m(-3). Among the selected four sampling points, the discharge outlet was detected to have the highest concentration in terms of odor, total chemical, sulfur compounds, and aromatics. The correlation analysis showed that the odor concentrations were evidently related to the total chemical composition, sulfur compounds, and aromatics (P < 0.05, n = 5). The odor activity value analysis identified the top three compounds, hydrogen sulfide (91.8), ethyl sulfide (35.8), and trimethylamine (70.6), which contribute to air pollution complaint of waste materials.
Characterization and control of odorous gases at a landfill site: a case study in Hangzhou, China.
Ying, Ding; Chuanyu, Cai; Bin, Hu; Yueen, Xu; Xuejuan, Zheng; Yingxu, Chen; Weixiang, Wu
2012-02-01
Municipal solid waste (MSW) landfills are one of the major sources of offensive odors potentially creating annoyance in adjacent communities. At the end of May 2007, an odor pollution incident occurred at the Tianziling landfill site, Hangzhou, China, where the residents lodged complaints about the intense odor from the landfill, which drew a significant attention from the government. In this study, ambient air monitoring was conducted at the Tianziling landfill site. The main odor composition of the gas samples collected on June 1st 2007 and the reduction of various odorous gases from the samples collected on June 1st 2009 due to the applied odor control techniques were determined using gas chromatography-mass spectrometry (GC-MS). In addition, variations of primary odorous gaseous (NH(3) and H(2)S) concentrations at different locations in the landfill site from July 2007 to June 2009 were also investigated by using classical spectrophotometric methods. Results showed that a total of 68 volatile compounds were identified among which H(2)S (56.58-579.84 μg/m(3)) and NH(3) (520-4460 μg/m(3)) were the notable odor components contributing to 4.47-10.92% and 83.91-93.94% of total concentrations, respectively. Similar spatial and temporal shifts of H(2)S and NH(3) concentrations were observed and were significantly affected by environmental factors including temperature, air pressure and wind direction. Odor pollution was worse when high temperature, high humidity, low air pressure, and southeast, northeast or east wind appeared. Moreover, the environmental sampling points of the dumping area and the leachate treatment plant were found to be the main odor sources at the Tianziling landfill site. The odor control technologies used in this project had a good mitigating effect on the primary odorous compounds. This study provides long-term valuable information concerning the characteristics and control of odors at landfill sites in a long run. Copyright © 2011 Elsevier Ltd. All rights reserved.
Precursors of chicken flavor. II. Identification of key flavor precursors using sensory methods.
Aliani, Michel; Farmer, Linda J
2005-08-10
Sensory evaluation was used to identify flavor precursors that are critical for flavor development in cooked chicken. Among the potential flavor precursors studied (thiamin, inosine 5'-monophosphate, ribose, ribose-5-phosphate, glucose, and glucose-6-phosphate), ribose appears most important for chicken aroma. An elevated concentration (added or natural) of only 2-4-fold the natural concentration gives an increase in the selected aroma and flavor attributes of cooked chicken meat. Assessment of the volatile odor compounds by gas chromatography-odor assessment and gas chromatography-mass spectrometry showed that ribose increased odors described as "roasted" and "chicken" and that the changes in odor due to additional ribose are probably caused by elevated concentrations of compounds such as 2-furanmethanethiol, 2-methyl-3-furanthiol, and 3-methylthiopropanal.
A Real-Time De-Noising Algorithm for E-Noses in a Wireless Sensor Network
Qu, Jianfeng; Chai, Yi; Yang, Simon X.
2009-01-01
A wireless e-nose network system is developed for the special purpose of monitoring odorant gases and accurately estimating odor strength in and around livestock farms. This system is to simultaneously acquire accurate odor strength values remotely at various locations, where each node is an e-nose that includes four metal-oxide semiconductor (MOS) gas sensors. A modified Kalman filtering technique is proposed for collecting raw data and de-noising based on the output noise characteristics of those gas sensors. The measurement noise variance is obtained in real time by data analysis using the proposed slip windows average method. The optimal system noise variance of the filter is obtained by using the experiments data. The Kalman filter theory on how to acquire MOS gas sensors data is discussed. Simulation results demonstrate that the proposed method can adjust the Kalman filter parameters and significantly reduce the noise from the gas sensors. PMID:22399946
49 CFR 192.625 - Odorization of gas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... concentration in air of one-fifth of the lower explosive limit, the gas is readily detectable by a person with a... activity of a catalyst; or (C) Reduces the percentage completion of a chemical reaction; (3) In the case of... be exposed. (d) The odorant may not be soluble in water to an extent greater than 2.5 parts to 100...
USDA-ARS?s Scientific Manuscript database
Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. The objective of this paper is to review the use of soybean peroxidase (SBP) and peroxides as a manure additive to mitigate emissions of odor...
[Evaluation of treatment technology of odor pollution source in petrochemical industry].
Mu, Gui-Qin; Sui, Li-Hua; Guo, Ya-Feng; Ma, Chuan-Jun; Yang, Wen-Yu; Gao, Yang
2013-12-01
Using an environmental technology assessment system, we put forward the evaluation index system for treatment technology of the typical odor pollution sources in the petroleum refining process, which has been applied in the assessment of the industrial technology. And then the best available techniques are selected for emissions of gas refinery sewage treatment plant, headspace gas of acidic water jars, headspace gas of cold coke jugs/intermediate oil tank/dirty oil tank, exhaust of oxidative sweetening, and vapors of loading and unloading oil.
Stable Odor Recognition by a neuro-adaptive Electronic Nose
Martinelli, Eugenio; Magna, Gabriele; Polese, Davide; Vergara, Alexander; Schild, Detlev; Di Natale, Corrado
2015-01-01
Sensitivity, selectivity and stability are decisive properties of sensors. In chemical gas sensors odor recognition can be severely compromised by poor signal stability, particularly in real life applications where the sensors are exposed to unpredictable sequences of odors under changing external conditions. Although olfactory receptor neurons in the nose face similar stimulus sequences under likewise changing conditions, odor recognition is very stable and odorants can be reliably identified independently from past odor perception. We postulate that appropriate pre-processing of the output signals of chemical sensors substantially contributes to the stability of odor recognition, in spite of marked sensor instabilities. To investigate this hypothesis, we use an adaptive, unsupervised neural network inspired by the glomerular input circuitry of the olfactory bulb. Essentially the model reduces the effect of the sensors’ instabilities by utilizing them via an adaptive multicompartment feed-forward inhibition. We collected and analyzed responses of a 4 × 4 gas sensor array to a number of volatile compounds applied over a period of 18 months, whereby every sensor was sampled episodically. The network conferred excellent stability to the compounds’ identification and was clearly superior over standard classifiers, even when one of the sensors exhibited random fluctuations or stopped working at all. PMID:26043043
Identification of Key Odorants in Used Disposable Absorbent Incontinence Products
Hall, Gunnar; Forsgren-Brusk, Ulla
2017-01-01
PURPOSE: The purpose of this study was to identify key odorants in used disposable absorbent incontinence products. DESIGN: Descriptive in vitro study SUBJECTS AND SETTING: Samples of used incontinence products were collected from 8 residents with urinary incontinence living in geriatric nursing homes in the Gothenburg area of Sweden. Products were chosen from a larger set of products that had previously been characterized by descriptive odor analysis. METHODS: Pieces of the used incontinence products were cut from the wet area, placed in glass bottles, and kept frozen until dynamic headspace sampling of volatile compounds was completed. Gas chromatography–olfactometry was used to identify which compounds contributed most to the odors in the samples. Compounds were identified by gas chromatography–mass spectrometry. RESULTS: Twenty-eight volatiles were found to be key odorants in the used incontinence products. Twenty-six were successfully identified. They belonged to the following classes of chemical compounds: aldehydes (6); amines (1); aromatics (3); isothiocyanates (1); heterocyclics (2); ketones (6); sulfur compounds (6); and terpenes (1). CONCLUSION: Nine of the 28 key odorants were considered to be of particular importance to the odor of the used incontinence products: 3-methylbutanal, trimethylamine, cresol, guaiacol, 4,5-dimethylthiazole-S-oxide, diacetyl, dimethyl trisulfide, 5-methylthio-4-penten-2-ol, and an unidentified compound. PMID:28328644
Quality assured measurements of animal building emissions: odor concentrations.
Jacobson, Larry D; Hetchler, Brian P; Schmidt, David R; Nicolai, Richard E; Heber, Albert J; Ni, Ji-Qin; Hoff, Steven J; Koziel, Jacek A; Zhang, Yuanhui; Beasley, David B; Parker, David B
2008-06-01
Standard protocols for sampling and measuring odor emissions from livestock buildings are needed to guide scientists, consultants, regulators, and policy-makers. A federally funded, multistate project has conducted field studies in six states to measure emissions of odor, coarse particulate matter (PM(10)), total suspended particulates, hydrogen sulfide, ammonia, and carbon dioxide from swine and poultry production buildings. The focus of this paper is on the intermittent measurement of odor concentrations at nearly identical pairs of buildings in each state and on protocols to minimize variations in these measurements. Air was collected from pig and poultry barns in small (10 L) Tedlar bags through a gas sampling system located in an instrument trailer housing gas and dust analyzers. The samples were analyzed within 30 hr by a dynamic dilution forced-choice olfactometer (a dilution apparatus). The olfactometers (AC'SCENT International Olfactometer, St. Croix Sensory, Inc.) used by all participating laboratories meet the olfactometry standards (American Society for Testing and Materials and European Committee for Standardization [CEN]) in the United States and Europe. Trained panelists (four to eight) at each laboratory measured odor concentrations (dilution to thresholds [DT]) from the bag samples. Odor emissions were calculated by multiplying odor concentration differences between inlet and outlet air by standardized (20 degrees C and 1 atm) building airflow rates.
Schreiner, Linda; Bauer, Patrick; Buettner, Andrea
2018-05-29
Being one of the most common trees in forests, Pinus sylvestris L. is a frequently used raw material for wood products. Its specific odour is, however, mostly unresolved to date. Accordingly, we investigated Scots pine wood samples grown in Germany for their main odorant composition. We employed dedicated odorant analysis techniques such as gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA) and successfully detected 44 odour-active compounds; of these, 39 substances were successfully identified by gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and two-dimensional gas chromatography-mass spectrometry/olfactometry (2D-GC-MS/O). Among the main odorants found were (E,E)-nona-2,4-dienal, vanillin, phenylacetic acid, 3-phenylpropanoic acid, δ-octalactone and α-pinene, all of them having been detected with high flavour dilution factors during GC-O analyses. The majority of the identified odorants were fatty acid degradation products, plus some terpenoic substances and odorous substances resulting from the degradation of lignin. Although some of the detected substances have previously been reported as constituents of wood, 11 substances are reported here for the first time as odour-active compounds in wood, amongst them heptanoic acid, γ-octalactone, δ-nonalactone and (E,Z,Z)-trideca-2,4,7-trienal.
Recovery of Agricultural Odors and Odorous Compounds from Polyvinyl Fluoride Film Bags
Parker, David B.; Perschbacher-Buser, Zena L.; Cole, N. Andy; Koziel, Jacek A.
2010-01-01
Accurate sampling methods are necessary when quantifying odor and volatile organic compound emissions at agricultural facilities. The commonly accepted methodology in the U.S. has been to collect odor samples in polyvinyl fluoride bags (PVF, brand name Tedlar®) and, subsequently, analyze with human panelists using dynamic triangular forced-choice olfactometry. The purpose of this research was to simultaneously quantify and compare recoveries of odor and odorous compounds from both commercial and homemade PVF sampling bags. A standard gas mixture consisting of p-cresol (40 μg m−3) and seven volatile fatty acids: acetic (2,311 μg m−3), propionic (15,800 μg m−3), isobutyric (1,686 μg m−3), butyric (1,049 μg m−3), isovaleric (1,236 μg m−3), valeric (643 μg m−3), and hexanoic (2,158 μg m−3) was placed in the PVF bags at times of 1 h, 1 d, 2 d, 3 d, and 7 d prior to compound and odor concentration analyses. Compound concentrations were quantified using sorbent tubes and gas chromatography/mass spectrometry. Odor concentration, intensity, and hedonic tone were measured using a panel of trained human subjects. Compound recoveries ranged from 2 to 40% after 1 h and 0 to 14% after 7 d. Between 1 h and 7 d, odor concentrations increased by 45% in commercial bags, and decreased by 39% in homemade bags. Minimal changes were observed in intensity and hedonic tone over the same time period. These results suggest that PVF bags can bias individual compound concentrations and odor as measured by dynamic triangular forced-choice olfactometry. PMID:22163671
Sasaki, Tetsuya; Koshi, Erina; Take, Harumi; Michihata, Toshihide; Maruya, Masachika; Enomoto, Toshiki
2017-04-01
Roasted stem tea has a characteristic flavour, which is obtained by roasting tea stems, by-product of green tea production. This research aims to understand the characteristic odorants in roasted stem tea by comparing it to roasted leaf tea. We revealed potent odorants in commercial roasted stem tea using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry with aroma extract dilution analysis (AEDA). The difference between roasted stem and leaf tea derived from the same tea plants were investigated using GC-MS. Pyrazine compounds exhibited a roasted odour and high flavour dilution (FD) factors, as determined via AEDA. Roasted stem tea was richer in these pyrazines than roasted leaf tea. Geraniol and linalool exhibited high FD factors and a floral odour, and roasted stem tea was richer in these compounds than roasted leaf tea. These results may have a positive impact on the development of tea products. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Juhlke, Florian; Lorber, Katja; Wagenstaller, Maria; Buettner, Andrea
2017-12-01
Chlorinated guaiacol derivatives are found in waste water of pulp mills using chlorine in the bleaching process of wood pulp. They can also be detected in fish tissue, possibly causing off-odors. To date, there is no systematic investigation on the odor properties of halogenated guaiacol derivatives. To close this gap, odor thresholds in air and odor qualities of 14 compounds were determined by gas chromatography-olfactometry. Overall, the investigated compounds elicited smells that are characteristic for guaiacol, namely smoky, sweet, vanilla-like, but also medicinal and plaster-like. Their odor thresholds in air were, however, very low, ranging from 0.00072 to 23 ng/Lair. The lowest thresholds were found for 5-chloro- and 5-bromoguaiacol, followed by 4,5-dichloro- and 6-chloroguaiacol. Moreover, some inter-individual differences in odor threshold values could be observed, with the highest variations having been recorded for the individual values of 5-iodo- and 4-bromoguaiacol.
Baba, Ryoko; Amano, Yohei; Wada, Yoshiyuki; Kumazawa, Kenji
2017-03-31
The odorants contributing to the characteristic aroma of matcha were investigated by analysis of the headspace samples and the volatile fractions prepared by a combination of solvent extraction and the SAFE techniques using three matcha powders of different grades (high, medium, and low). Gas chromatography-olfactometry of the headspace samples (GCO-H) and aroma extract dilution analysis (AEDA) applied to the volatile fractions revealed 16 (FD factor ≥1) and 39 (FD factor ≥4 3 ) odor-active peaks, respectively. Among them, 14 and 37 of the odorants, most of which were newly detected in matcha, were identified or tentatively identified by GC-MS and GC-O, respectively. By comparing the perceived odorants of three matcha powders, it was revealed that eight compounds with sweet, green, metallic, and floral notes showed high flavor dilution (FD) factors irrespective of the grades. In addition, some odorants were suggested to influence the characteristic aroma of each grade. Furthermore, trans-4,5-epoxy-(E)-2-decenal, one of the potent odorants of matcha, was revealed to exist as a racemic mixture in matcha. This result suggested that trans-4,5-epoxy-(E)-2-decenal is formed by a nonenzymatic reaction in matcha, different from that in black tea, and that the unique manufacturing process of matcha has a close connection with its formation.
NASA Astrophysics Data System (ADS)
Kim, Yong-Hyun; Kim, Ki-Hyun
2016-07-01
A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at -25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity.
Odor-Sensing System to Support Social Participation of People Suffering from Incontinence
Ortiz Pérez, Alvaro; Kallfaß-de Frenes, Vera; Filbert, Alexander; Kneer, Janosch; Bierer, Benedikt; Held, Pirmin; Klein, Philipp; Wöllenstein, Jürgen; Benyoucef, Dirk; Kallfaß, Sigrid; Mescheder, Ulrich; Palzer, Stefan
2016-01-01
This manuscript describes the design considerations, implementation, and laboratory validation of an odor sensing module whose purpose is to support people that suffer from incontinence. Because of the requirements expressed by the affected end-users the odor sensing unit is realized as a portable accessory that may be connected to any pre-existing smart device. We have opted for a low-cost, low-power consuming metal oxide based gas detection approach to highlight the viability of developing an inexpensive yet helpful odor recognition technology. The system consists of a hotplate employing, inkjet-printed p-type semiconducting layers of copper(II) oxide, and chromium titanium oxide. Both functional layers are characterized with respect to their gas-sensitive behavior towards humidity, ammonia, methylmercaptan, and dimethylsulfide and we demonstrate detection limits in the parts-per-billion range for the two latter gases. Employing a temperature variation scheme that reads out the layer’s resistivity in a steady-state, we use each sensor chip as a virtual array. With this setup, we demonstrate the feasibility of detecting odors associated with incontinence. PMID:28036081
Odor-Sensing System to Support Social Participation of People Suffering from Incontinence.
Ortiz Pérez, Alvaro; Kallfaß-de Frenes, Vera; Filbert, Alexander; Kneer, Janosch; Bierer, Benedikt; Held, Pirmin; Klein, Philipp; Wöllenstein, Jürgen; Benyoucef, Dirk; Kallfaß, Sigrid; Mescheder, Ulrich; Palzer, Stefan
2016-12-29
This manuscript describes the design considerations, implementation, and laboratory validation of an odor sensing module whose purpose is to support people that suffer from incontinence. Because of the requirements expressed by the affected end-users the odor sensing unit is realized as a portable accessory that may be connected to any pre-existing smart device. We have opted for a low-cost, low-power consuming metal oxide based gas detection approach to highlight the viability of developing an inexpensive yet helpful odor recognition technology. The system consists of a hotplate employing, inkjet-printed p-type semiconducting layers of copper(II) oxide, and chromium titanium oxide. Both functional layers are characterized with respect to their gas-sensitive behavior towards humidity, ammonia, methylmercaptan, and dimethylsulfide and we demonstrate detection limits in the parts-per-billion range for the two latter gases. Employing a temperature variation scheme that reads out the layer's resistivity in a steady-state, we use each sensor chip as a virtual array. With this setup, we demonstrate the feasibility of detecting odors associated with incontinence.
Determination of urine-derived odorous compounds in a source separation sanitation system.
Liu, Bianxia; Giannis, Apostolos; Chen, Ailu; Zhang, Jiefeng; Chang, Victor W C; Wang, Jing-Yuan
2017-02-01
Source separation sanitation systems have attracted more and more attention recently. However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid such issues, it is necessary to monitor the odor related compounds that might be generated during urine storage. This study investigated the odorous compounds that emitted from source-separated human urine under different hydrolysis conditions. Batch experiments were conducted to investigate the effect of temperature, stale/fresh urine ratio and urine dilution on odor emissions. It was found that ammonia, dimethyl disulfide, allyl methyl sulfide and 4-heptanone were the main odorous compounds generated from human urine, with headspace concentrations hundreds of times higher than their respective odor thresholds. Furthermore, the high temperature accelerated urine hydrolysis and liquid-gas mass transfer, resulting a remarkable increase of odor emissions from the urine solution. The addition of stale urine enhanced urine hydrolysis and expedited odor emissions. On the contrary, diluted urine emitted less odorous compounds ascribed to reduced concentrations of odorant precursors. In addition, this study quantified the odor emissions and revealed the constraints of urine source separation in real-world applications. To address the odor issue, several control strategies are recommended for odor mitigation or elimination from an engineering perspective. Copyright © 2016. Published by Elsevier B.V.
An odor interaction model of binary odorant mixtures by a partial differential equation method.
Yan, Luchun; Liu, Jiemin; Wang, Guihua; Wu, Chuandong
2014-07-09
A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE) method. Based on the measurement method (tangent-intercept method) of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture's odor intensity to the individual odorant's relative odor activity value (OAV). Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors) also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions.
Odor compounds in waste gas emissions from agricultural operations and food industries.
Rappert, S; Müller, R
2005-01-01
In the last decades, large-scale agricultural operations and food industries have increased. These operations generate numerous types of odors. The reduction of land areas available for isolation of agricultural and food processing industrial operations from the public area and the increase in sensitivity and demand of the general public for a clean and pleasant environment have forced all of these industries to control odor emissions and toxic air pollutants. To develop environmentally sound, sustainable agricultural and food industrial operations, it is necessary to integrate research that focuses on modern analytical techniques and latest sensory technology of measurement and evaluation of odor and pollution, together with a fundamental knowledge of factors that are the basic units contributing to the production of odor and pollutants. Without a clear understanding of what odor is, how to measure it, and where it originates, it will be difficult to control the odor. The present paper reviews the available information regarding odor emissions from agricultural operations and food industries by giving an overview about odor problems, odor detection and quantification, and identifying the sources and the mechanisms that contribute to the odor emissions. Finally, ways of reducing or controlling the odor problem are discussed.
Evaluation Of Odors Associated With Land Application Of Biosolids
An odor study was performed at a biosolids application demonstration site using several different gas collection devices and analytical methods to determine changes in air concentration of several organic and inorganic compounds associated with biosolids application over various ...
Testing odorants recovery from a novel metallized fluorinated ethylene propylene gas sampling bag.
Zhu, Wenda; Koziel, Jacek A; Cai, Lingshuang; Wright, Donald; Kuhrt, Fred
2015-12-01
Industry-standard Tedlar bags for odor sample collection from confined animal feeding operations (CAFOs) have been challenged by the evidence of volatile organic compound (VOC) losses and background interferences. Novel impermeable aluminum foil with a thin layer of fluorinated ethylene propylene (FEP) film on the surface that is in contact with a gas sample was developed to address this challenge. In this research, Tedlar and metallized FEP bags were compared for (a) recoveries of four characteristic CAFO odorous VOCs (ethyl mercaptan, butyric acid, isovaleric acid and p-cresol) after 30 min and 24 hr sample storage time and for (b) chemical background interferences. All air sampling and analyses were performed with solid-phase microextraction (SPME) followed by gas chromatography-mass spectroscopy (GC-MS). Mean target gas sample recoveries from metallized FEP bags were 25.9% and 28.0% higher than those in Tedlar bags, for 30 min and 24 hr, respectively. Metallized FEP bags demonstrated the highest p-cresol recoveries after 30-min and 24-hr storage, 96.1±44.5% and 44.8±10.2%, respectively, among different types of sampling bags reported in previous studies. However, a higher variability was observed for p-cresol recovery with metallized FEP bags. A 0% recovery of ethyl mercaptan was observed with Tedlar bags after 24-hr storage, whereas an 85.7±7.4% recovery was achieved with metallized FEP bags. Recoveries of butyric and isovaleric acids were similar for both bag types. Two major impurities in Tedlar bags' background were identified as N,N-dimethylacetamide and phenol, while backgrounds of metallized FEP bags were significantly cleaner. Reusability of metallized FEP bags was tested. Caution is advised when using polymeric materials for storage of livestock-relevant odorous volatile organic compounds. The odorants loss with storage time confirmed that long-term storage in whole-air form is ill advised. A focused short-term odor sample containment should be biased toward the most inert material available relative to the highest impact target odorant. Metallized FEP was identified as such a material to p-cresol as the highest impact odorant from confined animal feeding operations. Metallized FEP bags have much cleaner background than commercial Tedlar bags do. Significantly higher recoveries of methyl mercaptan and p-cresol were also observed with metallized FEP bags.
Sensory and analytical evaluations of paints with and without texanol.
Gallagher, Michelle; Dalton, Pamela; Sitvarin, Laura; Preti, George
2008-01-01
Perception of odor can figure prominently in complaints about indoor air,yet identification of the responsible compound(s) is often difficult. For example, paint emissions contain a variety of odorous volatile organic compounds (VOCs) which maytrigger reports of irritation and upper respiratory health effects. Texanol ester alcohol (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), a paint coalescing agent, is frequently associated with the "persistent, characteristic odor" of water-based paint. To evaluate the sensory impact of Texanol, naive (unfamiliar with paint constituents) and experienced (familiar with paint constituents) subjects evaluated the odor properties of paints with and without Texanol. VOC emissions from neat paint and paint applied to gypsum wallboard were collected via solid-phase microextraction and analyzed by gas chromatography/ mass spectrometry and gas chromatography/olfactometry. Regardless of subjects' prior experience, aromatic hydrocarbons and oxygenated compounds, introduced from other paint additives and not Texanol, were most commonly associated with paint odor. However, quantitative sensory techniques demonstrated that addition of Texanol to paints led to an overall increase in the perceived intensity of the coating. The combined use of these techniques proved to be an effective methodology for analyzing the structure of paint volatiles and their sensory properties and holds promise for solving many odorous indoor air problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Shicheng; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433; Cai Lingshuang
2009-05-23
Characterization and quantification of livestock odorants is one of the most challenging analytical tasks because odor-causing gases are very reactive, polar and often present at very low concentrations in a complex matrix of less important or irrelevant gases. The objective of this research was to develop a novel analytical method for characterization of the livestock odorants including their odor character, odor intensity, and hedonic tone and to apply this method for quantitative analysis of the key odorants responsible for livestock odor. Sorbent tubes packed with Tenax TA were used for field sampling. The automated one-step thermal desorption module coupled withmore » multidimensional gas chromatography-mass spectrometry/olfactometry system was used for simultaneous chemical and odor analysis. Fifteen odorous VOCs and semi-VOCs identified from different livestock species operations were quantified. Method detection limits ranges from 40 pg for skatole to 3590 pg for acetic acid. In addition, odor character, odor intensity and hedonic tone associated with each of the target odorants are also analyzed simultaneously. We found that the mass of each VOCs in the sample correlates well with the log stimulus intensity. All of the correlation coefficients (R{sup 2}) are greater than 0.74, and the top 10 correlation coefficients were greater than 0.90.« less
2015-01-01
Recent US legislation permitting recreational use of marijuana in certain states brings the use of marijuana odor as probable cause for search and seizure to the forefront of forensic science, once again. This study showed the use of solid-phase microextraction with multidimensional gas chromatography—mass spectrometry and simultaneous human olfaction to characterize the total aroma of marijuana. The application of odor activity analysis offers an explanation as to why high volatile chemical concentration does not equate to most potent odor impact of a certain compound. This suggests that more attention should be focused on highly odorous compounds typically present in low concentrations, such as nonanal, decanol, o-cymene, benzaldehyde, which have more potent odor impact than previously reported marijuana headspace volatiles. PMID:26657499
78 FR 42818 - SafetyAlert: Safety Alert: Risks Associated With Liquid Petroleum (LP) Gas Odor Fade
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-17
... stakeholders from industry, fire fighter associations, and other regulatory agencies in order to better... tanks are used. New or recently cleaned tanks may absorb the odorant into the metal shell of these tanks...
Varlet, Vincent; Serot, Thierry; Cardinal, Mireille; Knockaert, Camille; Prost, Carole
2007-05-30
The volatile compounds of salmon fillets smoked according to four smoked generation techniques (smoldering, thermostated plates, friction, and liquid smoke) were investigated. The main odor-active compounds were identified by gas chromatography coupled with olfactometry and mass spectrometry. Only the odorant volatile compounds detected by at least six judges (out of eight) were identified as potent odorants. Phenolic compounds and guaiacol derivatives were the most detected compounds in the olfactometric profile whatever the smoking process and could constitute the smoky odorant skeleton of these products. They were recovered in the aromatic extracts of salmon smoked by smoldering and by friction, which were characterized by 18 and 25 odor-active compounds, respectively. Furannic compounds were more detected in products smoked with thermostated plates characterized by 26 odorants compounds. Finally, the 27 odorants of products treated with liquid smoke were significantly different from the three others techniques applying wood pyrolysis because pyridine derivatives and lipid oxidation products were perceived in the aroma profile.
Odor intensity and characterization of jet exhaust and chemical analytical measurements
NASA Technical Reports Server (NTRS)
Kendall, D. A.; Levins, P. L.
1973-01-01
Odor and chemical analyses were carried out on the exhaust samples from a J-57 combustor can operated over a range of inlet conditions, and with several fuel types and nozzle modifications. The odor characteristics and total intensity of odor for each exhaust were determined over a range of dilutions to allow for a least squares determination of the intensity at 1,000 to 1 dilutions. Analytical measures included the concentration of total hydrocarbons and the concentrations of aromatic organic species and oxygenated organic species from collected samples which were taken concurrently. A correlation was found between the concentration of the odorous oxygenated fraction and the total intensity of aroma. Inlet operating conditions and nozzle modifications which increase the efficiency of combustion as measured by exhaust gas analyses reduce the odor intensity and the quantity of oxygenates in the exhaust. The type of fuel burned altered the intensity of odor in relation to the quantity of oxygenates produced and, in some instances, changed the odor character.
Zhu, JianCai; Chen, Feng; Wang, LingYing; Niu, YunWei; Chen, HeXing; Wang, HongLin; Xiao, ZuoBing
2016-06-22
The volatile compounds of cranberries obtained from four cultivars (Early Black, Y1; Howes, Y2; Searles, Y3; and McFarlin, Y4) were analyzed by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and GC-flame photometric detection (FPD). The result presented that a total of thirty-three, thirty-four, thirty-four, and thirty-six odor-active compounds were identified by GC-O in the Y1, Y2, Y3, and Y4, respectively. In addition, twenty-two, twenty-two, thirty, and twenty-seven quantified compounds were demonstrated as important odorants according to odor activity values (OAVs > 1). Among these compounds, hexanal (OAV: 27-60), pentanal (OAV: 31-51), (E)-2-heptenal (OAV: 17-66), (E)-2-hexenal (OAV: 18-63), (E)-2-octenal (OAV: 10-28), (E)-2-nonenal (OAV: 8-77), ethyl 2-methylbutyrate (OAV: 10-33), β-ionone (OAV: 8-73), 2-methylbutyric acid (OAV: 18-37), and octanal (OAV: 4-24) contributed greatly to the aroma of cranberry. Partial least-squares regression (PLSR) was used to process the mean data accumulated from sensory evaluation by the panelists, odor-active aroma compounds (OAVs > 1), and samples. Sample Y3 was highly correlated with the sensory descriptors "floral" and "fruity". Sample Y4 was greatly related to the sensory descriptors "mellow" and "green and grass". Finally, an aroma reconstitution (Model A) was prepared by mixing the odor-active aroma compounds (OAVs > 1) based on their measured concentrations in the Y1 sample, indicating that the aroma profile of the reconstitution was pretty similar to that of the original sample.
[Characteristics of odors and VOCs from sludge direct drying process].
Chen, Wen-He; Deng, Ming-Jia; Luo, Hui; Zhang, Jing-Ying; Ding, Wen-Jie; Liu, Jun-Xin; Liu, Jun-Xin
2014-08-01
Co-processing sewage sludge by using the high-temperature feature of cement kiln can realize harmless disposal and energy recycling. In this paper, investigation on characteristics of the flue gas from sludge drying process was carried out in Guangzhou Heidelberg Yuexiu Cement Co., LTD. The composition and the main source of odors and volatile organic compounds (VOCs) emitted during the drying process were analyzed, aimed to provide scientific basis for the treatment of sewage sludge. Results showed that there were a large number of malodorous substances and VOCs in the flue gas. Sulfur dioxide and other sulfur-containing compounds were the main components in the malodorous substances, while benzene derivatives were predominant in VOCs. The compositions of odors and VOCs were influenced by the characteristics of the sludge and the heat medium (kiln tail gas). Total organic compounds in the sludge were significantly decreased after drying. Other organic substances such as volatile fatty acid, protein, and polysaccharide were also obviously reduced. The organic matter in sludge was the main source of VOCs in the flue gas. Part of sulfurous substances, such as sulfur dioxide, carbon disulfide, were from sulfur-containing substances in the sludge, and the rest were from the kiln tail gas itself.
Aceña, Laura; Vera, Luciano; Guasch, Josep; Busto, Olga; Mestres, Montserrat
2011-03-23
Key odorants in roasted pistachio nuts have been determined for the first time. Two different pistachio varieties (Fandooghi and Kerman) have been analyzed by means of headspace solid-phase microextraction (HS-SPME) and gas chromatography-olfactometry (GCO). The aroma extract dilution analyses (AEDA) applied have revealed 46 and 41 odor-active regions with a flavor dilution (FD) factor≥64 for the Fandooghi and the Kerman varieties, respectively, and 39 of them were related to precisely identified compounds. These included esters, pyrazines, aldehydes, acids, furans, and phenols. The results show that the Fandooghi variety presents, not only more odor-active regions but also higher FD factors than the Kerman variety that can lead to the conclusion that the first variety has a richer aromatic profile than the second one. The descriptive sensory analysis (DSA) showed that the roasted, chocolate/coffee, and nutty attributes were rated significantly higher in the Fandooghi variety, whereas the green attribute was significantly higher in the Kerman one.
Deodorant Characteristics of Breath Odor Occurred from Favorite Foods Using Metal Oxide Gas Sensors
NASA Astrophysics Data System (ADS)
Seto, Shuichi; Oyabu, Takashi; Cai, Kuiqian; Katsube, Teruaki
Three types of metal oxide gas sensors were adopted to detect the degree of breath odor. Various sorts of information are included in the odor. Each sensor has different sensitivities to gaseous chemical substances and the sensitivities also differ according to human behaviors, for example taking a meal, teeth-brushing and drinking something. There is also a possibility that the sensor can detect degrees of daily fatigue. Sensor sensitivities were low for the expiration of the elderly when the subject drank green tea. In this study, it is thought that the odor system can be incorporated into a healing robot. The robot can communicate with the elderly using several words and also connect to Internet. As for the results, the robot can identify basic human behaviors and recognize the living conditions of the resident. Moreover, it can also execute a kind of information retrieval through the Internet. Therefore, it has healing capability for the aged, and can also receive and transmit information.
Red junglefowl have individual body odors.
Karlsson, Anna-Carin; Jensen, Per; Elgland, Mathias; Laur, Katriann; Fyrner, Timmy; Konradsson, Peter; Laska, Matthias
2010-05-01
Olfaction may play an important role in regulating bird behavior, and has been suggested to be involved in feather-pecking. We investigated possible differences in the body odors of red junglefowl females by using an automated olfactometer which assessed the ability of trained mice to discriminate between the odors of uropygial gland secretions (the main carrier of potential individual odors in chickens) of six feather-pecked and six non-pecked birds. All mice were clearly able to discriminate between all individual red junglefowl odors, showing that each bird has an individual body odor. We analyzed whether it was more difficult to discriminate between the odors of two feather-pecked, or two non-pecked birds, than it was to discriminate between the odors of two randomly selected birds. This was not the case, suggesting that feather-pecked birds did not share a common odor signature. Analyses using gas chromatography and mass spectrometry showed that the composition of aliphatic carboxylic acids in uropygial gland secretions differed consistently between individuals. However, chemical composition did not vary according to feather-pecking status. We conclude that red junglefowl have individual body odors which appear to be largely based on differences in the relative abundance of aliphatic carboxylic acids, but there is no evidence of systematic differences between the body odors of pecked and non-pecked birds.
Identification of character impact odorants of different soybean lecithins.
Stephan, A; Steinhart, H
1999-07-01
The potent odorants of standardized, enzymatically hydrolyzed, and deoiled soybean lecithins were characterized systematically by combined gas chromatography/mass spectrometry and olfactometry. Sixty-one odorants were identified; 53 of these odor-active compounds have not previously been reported as odorants of soybean lecithin flavor. By aroma extract dilution analysis and modified combined hedonic and response measurement the following odorants showed the highest flavor dilution factors and CHARM values: (E,E)-2, 4-decadienal (deep-fried), (E)-beta-damascenone (apple-like), 2, 3-diethyl-5-methylpyrazine (roasty, earthy), (E)-2-nonenal (cardboard-like), trans-4,5-epoxy-(E)-2-decenal (metallic), 1-nonen-3-one (mushroom-like), 2-ethyl-3,5-dimethylpyrazine (roasty, earthy), and 1-octen-3-one (mushroom-like). Enzymatic hydrolysis intensified especially the roasty sensation of 2, 3-diethyl-5-methylpyrazine, whereas deoiling effected a general significant decrease in olfactory perception on the nitrogen-containing compounds. In addition, sensory profiles of nasal and retronasal lecithin odor were performed.
Iwasa, Megumi; Nakaya, Satoshi; Maki, Yusuke; Marumoto, Shinsuke; Usami, Atsushi; Miyazawa, Mitsuo
2015-01-01
The chemical composition of essential oil extracted from Uncaria Hook ("Chotoko" in Japanese), the branch with curved hook of the herbal medicine Uncaria rhynchophylla has been investigated by GC and GC-MS analyses. Eighty-four compounds, representing 90.8% of the total content was identified in oil obtained from Uncaria Hook. The main components i were (E)-cinnamaldehyde (13.4%), α-copaene (8.0%), methyl eugenol (6.8%), δ-cadinene (5.3%), and curcumene (3.6%). The important key aroma-active compounds in the oil were detected by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA), using the flavor dilution (FD) factor to express the odor potency of each compounds. Furthermore, the odor activity value (OAV) has been used as a measure of the relative contribution of each compound to the aroma of the Uncaria Hook oil. The GC-O and AEDA results showed that α-copaene (FD = 4, OAV = 4376), (E)-linalool oxide (FD = 64, OAV = 9.1), and methyl eugenol (FD = 64, OAV = 29) contributed to the woody and spicy odor of Uncaria Hook oil, whereas furfural (FD = 8, OAV = 4808) contributed to its sweet odor. These results warrant further investigations of the application of essential oil from Uncaria Hook in the phytochemical and medicinal fields.
Stability of odorants from pig production in sampling bags for olfactometry.
Hansen, Michael J; Adamsen, Anders P S; Feilberg, Anders; Jonassen, Kristoffer E N
2011-01-01
Odor from pig production facilities is typically measured with olfactometry, whereby odor samples are collected in sampling bags and assessed by human panelists within 30 h. In the present study, the storage stability of odorants in two types of sampling bags that are often used for olfactometry was investigated. The bags were made of Tedlar or Nalophan. In a field experiment, humid and dried air samples were collected from a pig production facility with growing-finishing pigs and analyzed with a gas chromatograph with an amperometric sulfur detector at 4, 8, 12, 28, 52, and 76 h after sampling. In a laboratory experiment, the bags were filled with a humid gas mixture containing carboxylic acids, phenols, indoles, and sulfur compounds and analyzed with proton-transfer-reaction mass spectrometry after 0, 4, 8, 12, and 24 h. The results demonstrated that the concentrations of carboxylic acids, phenols, and indoles decreased by 50 to >99% during the 24 h of storage in Tedlar and Nalophan bags. The concentration of hydrogen sulfide decreased by approximately 30% during the 24 h of storage in Nalophan bags, whereas in Tedlar bags the concentration of sulfur compounds decreased by <5%. In conclusion, the concentrations of odorants in air samples from pig production facilities significantly decrease during storage in Tedlar and Nalophan bags, and the composition changes toward a higher relative presence of sulfur compounds. This can result in underestimation of odor emissions from pig production facilities and of the effect of odor reduction technologies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
49 CFR 192.706 - Transmission lines: Leakage surveys.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not... transports gas in conformity with § 192.625 without an odor or odorant, leakage surveys using leak detector...
49 CFR 192.706 - Transmission lines: Leakage surveys.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not... transports gas in conformity with § 192.625 without an odor or odorant, leakage surveys using leak detector...
49 CFR 192.706 - Transmission lines: Leakage surveys.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not... transports gas in conformity with § 192.625 without an odor or odorant, leakage surveys using leak detector...
49 CFR 192.706 - Transmission lines: Leakage surveys.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not... transports gas in conformity with § 192.625 without an odor or odorant, leakage surveys using leak detector...
49 CFR 192.706 - Transmission lines: Leakage surveys.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not... transports gas in conformity with § 192.625 without an odor or odorant, leakage surveys using leak detector...
46 CFR 34.15-60 - Odorizing units-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-60 Odorizing units—T/ALL. Each carbon dioxide extinguishing system... wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a...
46 CFR 95.15-60 - Odorizing units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...
46 CFR 76.15-60 - Odorizing units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...
46 CFR 34.15-60 - Odorizing units-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-60 Odorizing units—T/ALL. Each carbon dioxide extinguishing system... wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a...
46 CFR 193.15-17 - Odorizing units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-17 Odorizing units. Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved... carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may...
46 CFR 193.15-17 - Odorizing units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-17 Odorizing units. Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved... carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may...
46 CFR 76.15-60 - Odorizing units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...
46 CFR 34.15-60 - Odorizing units-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-60 Odorizing units—T/ALL. Each carbon dioxide extinguishing system... wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a...
46 CFR 76.15-60 - Odorizing units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...
Advanced oxidation technology for H2S odor gas using non-thermal plasma
NASA Astrophysics Data System (ADS)
Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING
2018-05-01
Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.
[Actinobacteria and their odor-producing capacities in a surface water in Shanghai].
Chen, Jiao; Bai, Xiao-hui; Lu, Ning; Wang, Xian-yun; Zhang, Yong-hui; Wu, Pan-cheng; Guo, Xin-chi
2014-10-01
The odor in raw water is one of the main sources of odor in drinking water. The occurrence of actinobacteria and their odor producing capacities in a reservoir in.Shanghai were investigated. Gauze's medium and membrane filtration were used for actinobacteria isolation. Through combined methods of 16S rRNA sequencing, colony and hyphae morphology, carbon source utilization, physiological and biochemical characteristics, 40 strains of actinobacteria were identified from the reservoir. Results showed that there were 38 Streptomyces, an Aeromicrobium and a Pseudonocardia. Liquid culture medium and the real reservoir water were used to test the odor producing capacity of these 40 strains of actinobacteria, and headspace solid phase microextraction (HS-SPME) and high resolution gas chromatography mass spectroscopy (GC/MS) were used to analyze the odor compounds 2-methylisoborneol (2-MIB) and geosmin (GSM) in the fermentation liquor. The test results showed that, the odor-producing capacities of these actinobacteria in different fermentation media showed different variation trends, even within the genera Streptomyces. The odor-producing capacity of actinobacteria in the liquid culture medium could not represent their states in the reservoir water or their actual odor contribution to the aquatic environment.
Liu, Jingke; Zhao, Wei; Li, Shaohui; Zhang, Aixia; Zhang, Yuzong; Liu, Songyan
2018-02-20
The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm Carboxen (CAR)/PDMS, and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers), and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV). Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1), and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50), having a high OAV. Principal component analysis (PCA) showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME) fibers.
Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses
Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat
2015-01-01
Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons. PMID:25602265
Development of fabric-based chemical gas sensors for use as wearable electronic noses.
Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat
2015-01-16
Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.
Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry.
Giannoukos, Stamatios; Marshall, Alan; Taylor, Stephen; Smith, Jeremy
2017-11-01
The synthetic generation/coding and transmission of olfactory information over a gas stream or an odor network is a new and unexplored field. Application areas vary from the entertainment or advertisement industry to security and telemedicine. However, current technological limitations frustrate the accurate reproduction of decoded and transmitted olfactory data. This study describes the development, testing, and characterization of a novel odor emitter (OE) that is used to investigate the generation-encoding of gaseous standards with odorous characteristics with a regulatable way, for scent transmission purposes. The calibration and the responses of a developed OE were examined using a portable quadrupole mass spectrometer (MS). Experiments were undertaken for a range of volatile organic compounds (VOCs) at different temperatures and flow rates. Individual compounds and mixtures were tested to investigate periodic and dynamic transmission characteristics within two different size tubular containers for distances up to 3 m. Olfactory information transmission is demonstrated using MS as the main molecular sensor for odor detection and monitoring and for the first time spatial encryption of olfactory information is shown. Graphical Abstract ᅟ.
Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry
NASA Astrophysics Data System (ADS)
Giannoukos, Stamatios; Marshall, Alan; Taylor, Stephen; Smith, Jeremy
2017-07-01
The synthetic generation/coding and transmission of olfactory information over a gas stream or an odor network is a new and unexplored field. Application areas vary from the entertainment or advertisement industry to security and telemedicine. However, current technological limitations frustrate the accurate reproduction of decoded and transmitted olfactory data. This study describes the development, testing, and characterization of a novel odor emitter (OE) that is used to investigate the generation-encoding of gaseous standards with odorous characteristics with a regulatable way, for scent transmission purposes. The calibration and the responses of a developed OE were examined using a portable quadrupole mass spectrometer (MS). Experiments were undertaken for a range of volatile organic compounds (VOCs) at different temperatures and flow rates. Individual compounds and mixtures were tested to investigate periodic and dynamic transmission characteristics within two different size tubular containers for distances up to 3 m. Olfactory information transmission is demonstrated using MS as the main molecular sensor for odor detection and monitoring and for the first time spatial encryption of olfactory information is shown.
The Rotational Spectrum and Conformational Structures of Methyl Valerate
NASA Astrophysics Data System (ADS)
Nguyen, Ha Vinh Lam; Stahl, Wolfgang
2015-06-01
Methyl valerate, C4H9COOCH3, belongs to the class of fruit esters, which play an important role in nature as odorants of different fruits, flowers, and wines. A sufficient explanation for the structure-odor relation of is not available. It is known that predicting the odor of a substance is not possible by knowing only its chemical formula. A typical example is the blueberry- or pine apple-like odor of ethyl isovalerate while its isomers ethyl valerate and isoamyl acetate smell like green apple and banana, respectively. Obviously, not only the composition but also the molecular structures are not negligible by determining the odor of a substance. Gas phase structures of fruit esters are thus important for a first step towards the determination of structure-odor relation since the sense of smell starts from gas phase molecules. For this purpose, a combination of microwave spectroscopy and quantum chemical calculations (QCCs) is an excellent tool. Small esters often have sufficient vapor pressure to be transferred easily in the gas phase for a rotational study but already contain a large number of atoms which makes them too big for classical structure determination by isotopic substitution and requires nowadays a comparison with the structures optimized by QCCs. On the other hand, the results from QCCs have to be validated by the experimental values. About the internal dynamics, the methoxy methyl group -COOCH3 of methyl acetate shows internal rotation with a barrier of 424.581(56) wn. A similar barrier height of 429.324(23) wn was found in methyl propionate, where the acetyl group is extended to the propionyl group. The investigation on methyl valerate fits well in this series of methyl alkynoates. In this talk, the structure of the most energetic favorable conformer as well as the internal rotation shown by the methoxy methyl group will be reported. It could be confirmed that the internal rotation barrier of the methoxy methyl group remains by longer alkyl chain.
2-Nonenal newly found in human body odor tends to increase with aging.
Haze, S; Gozu, Y; Nakamura, S; Kohno, Y; Sawano, K; Ohta, H; Yamazaki, K
2001-04-01
Human body odor consists of various kinds of odor components. Here, we have investigated the changes in body odor associated with aging. The body odor of subjects between the ages of 26 and 75 was analyzed by headspace gas chromatography/mass spectrometry. 2-Nonenal, an unsaturated aldehyde with an unpleasant greasy and grassy odor, was detected only in older subjects (40 y or older). Furthermore, analysis of skin surface lipids revealed that omega7 unsaturated fatty acids and lipid peroxides also increased with aging and that there were positive correlations between the amount of 2-nonenal in body odor and the amount of omega7 unsaturated fatty acids or lipid peroxides in skin surface lipids. 2-Nonenal was generated only when omega7 unsaturated fatty acids were degraded by degradation tests in which some main components of skin surface lipids were oxidatively decomposed using lipid peroxides as initiator of an oxidative chain reaction. The results indicate that 2-nonenal is generated by the oxidative degradation of omega7 unsaturated fatty acids, and suggest that 2-nonenal may be involved in the age-related change of body odor.
Nakamura, Atsuhiko; Miyazawa, Mitsuo
2013-01-01
Ampelopsis brevipedunculata var. heterophylla is extensively cultivated in Asia, and the dried leaves and branches have a characteristic odor and have been used as a tea. To investigate the odorants contributing to the characteristic odor of A. brevipedunculata var. heterophylla, the aroma extraction dilution analysis method was performed through gas chromatography olfactometry. In addition, volatile sulfur compounds were evaluated using pulsed flame photometric detector. As a result, 86 compounds were identified in the oils of leaves and 78 in branches, accounting for 80.0% and 68.3%, respectively, of the compounds identified. The main compounds in the essential oil of leaves were palmitic acid (12.5%), phenylacetaldehyde (4.1%) and hexahydrofarnesyl acetone (3.9%). On the other hand, the essential oil of branches contained palmitic acid (12.7%), terpinen-4-ol (4.4%) and α-cadinol (3.7%). The total number of odor-active compounds identified in the leaf and branch oils was 39. The most odorous compounds of leaves and branches of A. brevipedunculata var. heterophylla were (E, Z)-2,6-nonadienal (melon, green odor), (E)-2-nonenal (grassy odor), phenylacetaldehyde (honey-like) and (E)-linalool oxide (woody odor).
Ding, Wen-jie; Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Li, Lin; Liu, Jun-xin
2016-02-15
Co-processing of sewage sludge using the cement kiln can realize sludge harmless treatment, quantity reduction, stabilization and reutilization. The moisture content should be reduced to below 30% to meet the requirement of combustion. Thermal drying is an effective way for sludge desiccation. Odors and volatile organic compounds are generated and released during the sludge drying process, which could lead to odor pollution. The main odor pollutants were selected by the multi-index integrated assessment method. The concentration, olfactory threshold, threshold limit value, smell security level and saturated vapor pressure were considered as indexes based on the related regulations in China and foreign countries. Taking the pollution potential as the evaluation target, and the risk index and odor emission intensity as evaluation indexes, the odor pollution potential rated evaluation model of the pollutants was built according to the Weber-Fechner law. The aim of the present study is to form the rating evaluation method of odor potential pollution capacity suitable for the directly drying process of sludge.
2005-05-06
Figure 12: Overlaid TICs of Multiple Extractions for Donor 18 Figure 13: Two Sets of Twins on Same Day Figure 14: Sectioning of Socks for Sock Odors ...considerations they provoked, i.e. sock odors , induced perspiration, Twister® extraction, and glass beads rubbed on hands (which was ultimately...Substances 2.1.2.1 Socks Worn on Feet for Three to Four Hours To test the viability of collecting odors from fragments of clothing, an experiment was
Odor Sensing System Using Preconcentrator with Variable Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaka, Y; Nakamoto, Takamichi; Moriizumi, T
1999-01-01
An odor sensing system using QCM gas sensor array and pattern recognition technique is useful to identify various kinds of odors. A preconcentrator with variable temperature is promising to obtain further pattern separation after the appropriate temperature changes, whereas it has been so far used to enhance sensor sensitivity. After the preconcentrator collects the vapors, it is heated so that they can be thermally desorbed. The combination of the preconcentrator with the sensor array enhances the capability of discrimination among vapors since their desorption temperatures depend upon vapor kinds.
Odor composition analysis and odor indicator selection during sewage sludge composting
Zhu, Yan-li; Zheng, Guo-di; Gao, Ding; Chen, Tong-bin; Wu, Fang-kun; Niu, Ming-jie; Zou, Ke-hua
2016-01-01
ABSTRACT On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography–mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities. PMID:27192607
Odor composition analysis and odor indicator selection during sewage sludge composting.
Zhu, Yan-Li; Zheng, Guo-di; Gao, Ding; Chen, Tong-Bin; Wu, Fang-Kun; Niu, Ming-Jie; Zou, Ke-Hua
2016-09-01
On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities.
Detection and classification of human body odor using an electronic nose.
Wongchoosuk, Chatchawal; Lutz, Mario; Kerdcharoen, Teerakiat
2009-01-01
An electronic nose (E-nose) has been designed and equipped with software that can detect and classify human armpit body odor. An array of metal oxide sensors was used for detecting volatile organic compounds. The measurement circuit employs a voltage divider resistor to measure the sensitivity of each sensor. This E-nose was controlled by in-house developed software through a portable USB data acquisition card with a principle component analysis (PCA) algorithm implemented for pattern recognition and classification. Because gas sensor sensitivity in the detection of armpit odor samples is affected by humidity, we propose a new method and algorithms combining hardware/software for the correction of the humidity noise. After the humidity correction, the E-nose showed the capability of detecting human body odor and distinguishing the body odors from two persons in a relative manner. The E-nose is still able to recognize people, even after application of deodorant. In conclusion, this is the first report of the application of an E-nose for armpit odor recognition.
Detection and Classification of Human Body Odor Using an Electronic Nose
Wongchoosuk, Chatchawal; Lutz, Mario; Kerdcharoen, Teerakiat
2009-01-01
An electronic nose (E-nose) has been designed and equipped with software that can detect and classify human armpit body odor. An array of metal oxide sensors was used for detecting volatile organic compounds. The measurement circuit employs a voltage divider resistor to measure the sensitivity of each sensor. This E-nose was controlled by in-house developed software through a portable USB data acquisition card with a principle component analysis (PCA) algorithm implemented for pattern recognition and classification. Because gas sensor sensitivity in the detection of armpit odor samples is affected by humidity, we propose a new method and algorithms combining hardware/software for the correction of the humidity noise. After the humidity correction, the E-nose showed the capability of detecting human body odor and distinguishing the body odors from two persons in a relative manner. The E-nose is still able to recognize people, even after application of deodorant. In conclusion, this is the first report of the application of an E-nose for armpit odor recognition. PMID:22399995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, W.; Dravnieks, A.; Zussman, R.
Samples of malodorous air and dredged material were collected at diked disposal sites at the following locations: Buffalo, NY; Milwaukee, WI; Mobile, AL; York Harbor, ME; Houston, TX; Detroit, MI; and Anacortes, WA; during the period July--October, 1975. Odorous compounds in the air samples were identified by gas chromatography/mass spectrometry, while the detection threshold, intensity, and character of the various odors were determined by experienced panelists using a dynamic, forced-choice-triangle olfactometer. Although significant problems with malodors were not observed beyond the disposal-area dikes during site visits, noteworthy odor episodes had occurred at some sites. An odor-abatement strategy is presented formore » handling the expected range of odor conditions at dredged-material disposal sites. Its aim is to reduce to an acceptable level the intensity of malodors in an affected community. The main steps in the strategy cover selection of the disposal site, site preparation, odor characterization of sediments to be dredged, malodor abatement during dredging and disposal operations, malodor abatement after filling of the disposal site, and the handling of malodor complaints.« less
USDA-ARS?s Scientific Manuscript database
Calcium hydroxide (lime) is used to reduce microorganisms and odors in human biosolids, animal and poultry manures, and abattoir wastes. In the cattle industry, lime has been used as a disinfectant and is spread on the pen surface to control infections such as diarrhea and foot rot. The increase in ...
Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua
2017-10-01
Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.
Characteristic aroma components of rennet casein.
Karagül-Yüceer, Yonca; Vlahovich, Katrina N; Drake, MaryAnne; Cadwallader, Keith R
2003-11-05
Rennet casein, produced by enzymatic (rennet) precipitation of casein from pasteurized skim milk, is used in both industrial (technical) and food applications. The flavor of rennet casein powder is an important quality parameter; however, the product often contains an odor described as like that of animal/wet dog. Two commercial rennet casein powders were evaluated to determine the compounds responsible for the typical odor. Aroma extracts were prepared by high-vacuum distillation of direct solvent (ether) extracts and analyzed by gas chromatography-olfactometry (GCO), aroma extract dilution analysis (AEDA), and GC-mass spectrometry (MS). Odorants detected by GCO were typical of those previously reported in skim milk powders and consisted mainly of short-chain volatile acids, phenolic compounds, lactones, and furanones. Results of AEDA indicated o-aminoacetophenone to be a potent odorant; however, sensory descriptive sensory analysis of model aroma systems revealed that the typical odor of rennet casein was principally caused by hexanoic acid, indole, guaiacol, and p-cresol.
Development and field testing of a highly sensitive mercaptans instrument.
DOT National Transportation Integrated Search
2012-10-01
Mercaptans are sulfur compounds that are used to odorize natural gas so that leaks are : apparent. They are introduced into the gas stream at various locations in the natural gas : distribution system. As per DoTs regulation 49 CFR 192.625, that a...
ERIC Educational Resources Information Center
Defense Documentation Center, Alexandria, VA.
The report contains annotated references on gas detectors compiled from the Defense Documentation Center's data bank. The range of the topics deals with detection of toxic propellants, odors, gas leaks, oxygen, etc. Included with the bibliographic reference are the corporate author-monitoring agency, subject, and title indexes. (Author/JR)
Smell of danger: an analysis of LP-gas odorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cain, W.S.; Turk, A.
1985-03-01
LP-gas derives warning properties from the odorants ethyl mercaptan or thiophane. Laboratory tests have implied that the average person has the ability to smell the odors before leaking LP-gas reaches one-fifth its lower limit of flammability. Generally, however, laboratory tests ignore or discard persons with a poor sense of smell, especially the elderly and persons with certain types of hyposmia. Some persons who apparently can smell the warning agents when directed may otherwise fail to notice or identify them. Elderly men seem particularly vulnerable to instances of incidental anosmia and olfactory agnosia. Psychophysical testing of the warning agents has beenmore » rather unsophisticated. There exists neither a standard protocol for testing nor adequate specification of the perceptual properties that might make one warning agent better than another. Without such developments, improvement in warning agents will fail to occur. Possible improvements include increases in concentration, the use of blends to insure more uniform delivery of agent and, to decrease the perceptual vulnerability of relatively insensitive people, use of agents with favorable psychophysical (stimulus-response) functions and use of agents with favorable adaptation characteristics. Even without a change in existing products, it seems advisable to learn more about the vulnerability of LP-gas users and to employ educational means to reduce risks.« less
Receptor modeling of a natural gas processing odor source in a rural setting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dattner, S.; Pendleton, D.; Ross, O.
1985-01-01
The use of continuous pollutant monitoring instruments and meteorological instruments has been shown to be useful in identifying the probable sources of elevated levels of gaseous sulfur compounds even when those levels were, significantly below health effect levels or odor threshold, or both. When the elevated concentrations were compared to complaint diaries, significant agreement could be seen. This agreement helped to establish the probable source of the odors. Once the odor sources could be accurately identified, remedial action could be taken to control them. The biggest problem that the TACB encountered was convincing the complainants to keep an odor complaintmore » diary. Two combined actions are being considered to aleviate this difficulty. First, produce a standardized odor complaint diary. This document will have space for all the pertinent information needed. The standardized form may encourage the complainants to complete them, since the complainant won't have to guess what to report. The form should include space for the following information: Date, time, and duration of odor problem; Nature of odor; Associated meteorology; Times when the complainant was not home. Second, encourage the complainants to complete the diary. The complainant has to be convinced that the information reported in the diary is vital to establishing a link between odors and elevated pollutant concentrations. The agency may need to require formally that a diary be kept as a condition to conduct monitoring.« less
USDA-ARS?s Scientific Manuscript database
Many malodorous compounds emitted from the feedlot surface of beef finishing facilities result from protein degradation. The inclusion of wet distillers grain with solubles (WDGS) in beef finishing diets has been shown to increase odorous compounds in waste due to excess nitrogen excretion. Zilpater...
USDA-ARS?s Scientific Manuscript database
Many malodorous compounds emitted from the feedlot surface of beef finishing facilities result from protein degradation of feces and urine. The inclusion of wet distillers grain with solubles (WDGS) in beef finishing diets has been shown to increase nitrogen excretion which can increase odorous comp...
USDA-ARS?s Scientific Manuscript database
Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate the topical application of soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manu...
Deng, Xuwei; Liang, Gaodao; Chen, Jun; Qi, Min; Xie, Ping
2011-06-17
Production and fate of taste and odor (T&O) compounds in natural waters are a pressing environmental issue. Simultaneous determination of these complex compounds (covering a wide range of boiling points) has been difficult. A simple and sensitive method for the determination of eight malodors products of cyanobacterial blooms was developed using automatic purge and trap (P&T) coupled with gas chromatography-mass spectrometry (GC-MS). This extraction and concentration technique is solvent-free. Dimethylsulfide (DMS), dimethyltrisulfide (DMTS), 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), 2-methylisoborneol (MIB), β-cyclocitral, geosmin (GSM) and β-ionone were separated within 15.3 min. P&T uses trap #07 and high-purity nitrogen purge gas. The calibration curves of the eight odors show good linearity in the range of 1-500 ng/L with a correlation coefficient above 0.999 (levels=8) and with residuals ranging from approximately 83% to 124%. The limits of detection (LOD) (S/N=3) are all below 1.5 ng/L that of GSM is even lower at 0.08 ng/L. The relative standard deviations (RSD) are between 3.38% and 8.59% (n=5) and recoveries of the analytes from water samples of a eutrophic lake are between 80.54% and 114.91%. This method could be widely employed for monitoring these eight odors in natural waters. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Jia-Xiao; Schieberle, Peter; Steinhaus, Martin
2017-01-25
Sixteen compounds, previously identified as potent odorants by application of an aroma extract dilution analysis and the gas chromatography-olfactometry analysis of static headspace samples, were quantitated in the pulp of durians, variety Monthong, and odor activity values (OAVs) were calculated by dividing the concentrations obtained by the odor thresholds of the compounds in water. In combination with data recently reported for hydrogen sulfide and short-chain alkanethiols, OAVs > 1 were obtained for 19 compounds, among which ethyl (2S)-2-methylbutanoate (fruity; OAV 1700000), ethanethiol (rotten onion; OAV 480000), and 1-(ethylsulfanyl)ethane-1-thiol (roasted onion; OAV 250000) were the most potent, followed by methanethiol (rotten, cabbage; OAV 45000), ethane-1,1-dithiol (sulfury, durian; OAV 23000), and ethyl 2-methylpropanoate (fruity; OAV 22000). Aroma simulation and omission experiments revealed that the overall odor of durian pulp could be mimicked by only two compounds, namely, ethyl (2S)-2-methylbutanoate and 1-(ethylsulfanyl)ethane-1-thiol, when combined in their natural concentrations.
Watcharananun, Wanwarang; Cadwallader, Keith R; Huangrak, Kittiphong; Kim, Hun; Lorjaroenphon, Yaowapa
2009-02-11
"Tian Op", a traditional Thai scented candle, is used for the smoking and flavoring of sweets, cakes, and other desserts for the purpose of adding a unique aroma to the final product. Gas chromatography-olfactometry, aroma extract dilution analysis, and GC-MS were applied to identify the potent odorants in two types of traditional Thai desserts ("num dok mai" and "gleep lum duan") prepared using a Tian Op smoking process. On the basis of the results of AEDA and calculated odor-activity values, the predominant odorants in the Tian Op flavored desserts were vinyl ketones (C(5)-C(9)), n-aldehydes (C(5)-C(11)), (E)-2-unsaturated aldehydes (C(8)-C(11)), and omega-1-unsaturated aldehydes (C(8) and C(9)). Sensory studies of model mixtures confirmed the importance of n-aldehydes, omega-1-unsaturated aldehydes, and guaiacol as predominant odorants; however, the results showed that vinyl ketones and (E)-2-unsaturated aldehydes, despite having high odor-activity values, may be of only minor importance in the typical aroma profiles of traditional Tian Op smoked desserts.
Advances in artificial olfaction: sensors and applications.
Gutiérrez, J; Horrillo, M C
2014-06-01
The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned. Copyright © 2014 Elsevier B.V. All rights reserved.
Identification of aroma active compounds of cereal coffee brew and its roasted ingredients.
Majcher, Małgorzata A; Klensporf-Pawlik, Dorota; Dziadas, Mariusz; Jeleń, Henryk H
2013-03-20
Cereal coffee is a coffee substitute made mainly from roasted cereals such as barley and rye (60-70%), chicory (15-20%), and sugar beets (6-10%). It is perceived by consumers as a healthy, caffeine free, non-irritating beverage suitable for those who cannot drink regular coffee made from coffee beans. In presented studies, typical Polish cereal coffee brew has been subjected to the key odorants analysis with the application of gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). In the analyzed cereal coffee extract, 30 aroma-active volatiles have been identified with FD factors ranging from 16 to 4096. This approach was also used for characterization of key odorants in ingredients used for the cereal coffee production. Comparing the main odors detected in GC-O analysis of roasted cereals brew to the odor notes of cereal coffee brew, it was evident that the aroma of cereal coffee brew is mainly influenced by roasted barley. Flavor compound identification and quantitation has been performed with application of comprehensive multidimentional gas chromatography and time-of-flight mass spectrometry (GCxGC-ToFMS). The results of the quantitative measurements followed by calculation of the odor activity values (OAV) revealed 17 aroma active compounds of the cereal coffee brew with OAV ranging from 12.5 and 2000. The most potent odorant was 2-furfurylthiol followed by the 3-mercapto-3-methylbutyl formate, 3-isobutyl-2-methoxypyrazine and 2-ethyl-3,5-dimethylpyrazine, 2-thenylthiol, 2,3-butanedione, 2-methoxy phenol and 2-methoxy-4-vinyl phenol, 3(sec-butyl)-2-methoxypyrazine, 2-acetyl-1-pyrroline, 3-(methylthio)-propanal, 2,3-pentanedione, 4-hydroxy-2,5-dimethyl-3-(2H)-furanone, (E,E)-2,4-decadienal, (Z)-4-heptenal, phenylacetaldehyde, and 1-octen-3-one.
USDA-ARS?s Scientific Manuscript database
The influence of diet type and time of incubation (fresh vs. overnight) on the emissions of odors from the feces of beef cattle and swine was evaluated by gas chromatography-mass spectral (GC-MS) analysis. Swine (n=12) and beef cattle (n=24) were fed with two and four separate diets, respectively (n...
Yuan, Su-Fen; Liu, Ze-Hua; Lian, Hai-Xian; Yang, Chuangtao; Lin, Qing; Yin, Hua; Dang, Zhi
2016-10-01
A simple online headspace solid-phase microextraction (HS-SPME) coupled with the gas chromatography-mass spectrometry (GC-MS) method was developed for simultaneous determination of trace amounts of nine estrogenic odorant alkylphenols and chlorophenols and their derivatives in water samples. The extraction conditions of HS-SPME were optimized including fiber selection, extraction temperature, extraction time, and salt concentration. Results showed that divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was the most appropriate one among the three selected commercial fibers, and the optimal extraction temperature, time, and salt concentration were 70 °C, 30 min, and 0.25 g/mL, respectively. The developed method was validated and showed good linearity (R (2) > 0.989), low limit of detection (LOD, 0.002-0.5 μg/L), and excellent recoveries (76-126 %) with low relative standard deviation (RSD, 0.7-12.9 %). The developed method was finally applied to two surface water samples and some of these target compounds were detected. All these detected compounds were below their odor thresholds, except for 2,4,6-TCAS and 2,4,6-TBAS wherein their concentrations were near their odor thresholds. However, in the two surface water samples, these detected compounds contributed to a certain amount of estrogenicity, which seemed to suggest that more attention should be paid to the issue of estrogenicity rather than to the odor problem.
Laor, Yael; Naor, Moshe; Ravid, Uzi; Fine, Pinchas; Halachmi, Ilan; Chen, Yona; Baybikov, Rima
2011-01-01
Malodor emissions limit public acceptance of using municipal biosolids as natural organic resources in agricultural production. We aimed to identify major odorants and to evaluate odor concentrations associated with land application of anaerobically digested sewage sludges (Class B) and their alkaline (lime and coal fly ash)-stabilized products (Class A). These two types of biosolids were applied at 12.6 tonnes ha(-1) (dry weight) to microplots of very fine clayey Vertisol in the Jezreel Valley, northern Israel. The volatile organic compounds (VOCs) emitted from the biosolids before and during alkaline stabilization and after incorporation into the soil were analyzed by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Odor concentrations at the plots were evaluated on site with a Nasal Ranger field olfactometer that sniffed over a defined land surface area through a static chamber. The odors emitted by anaerobically digested sewage sludges from three activated sludge water treatment plants had one characteristic chemical fingerprint. Alkaline stabilization emitted substantial odors associated with high concentrations of ammonia and release of nitrogen-containing VOCs and did not effectively reduce the potential odor annoyance. Odorous VOCs could be generated within the soil after biosolids incorporation, presumably because of anaerobic conditions within soil-biosolids aggregates. We propose that dimethyl disulfide and dimethyl trisulfide, which seem to be most related to the odor concentrations of biosolids-treated soil, be used as potential chemical markers for the odor annoyance associated with incorporation of anaerobically digested sewage sludges. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Enticknap, Julie J; Nonogaki, Hirofumi; Place, Allen R; Hill, Russell T
2006-06-01
Litter from the chicken industry can present several environmental challenges, including offensive odors and runoff into waterways leading to eutrophication. An economically viable solution to the disposal of waste from chicken houses is treatment to produce a natural, granulated fertilizer that can be commercially marketed for garden and commercial use. Odor of the final product is important in consumer acceptance, and an earthy odor is desirable. By understanding and manipulating the microbial processes occurring during this process, it may be possible to modify the odors produced. Geosmin and related volatiles produced by soil actinomycetes are responsible for earthy odors, and actinomycetes are likely to be present in the composting manure. Bacterial communities at each stage of the process were analyzed by culturing studies and denaturing gradient gel electrophoresis (DGGE). The processing steps changed the culturable bacterial community, but the total community was shown by DGGE to be stable throughout the process. A local agricultural soil was analyzed in parallel as a potential source of geosmin-producing actinomycetes. This agricultural soil had higher microbial diversity than the compost at both the culturable and the molecular levels. Actinomycete bacteria were isolated and analyzed by AromaTrax, a gas chromatography-olfactometry system. This system enables the odor production of individual isolates to be monitored, allowing for rational selection of strains for augmentation experiments to improve the odor of the final fertilizer product.
Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C.
2010-01-01
The mixtures of toxins and taste-and-odor compounds present during cyanobacterial blooms are not well characterized and of particular concern when evaluating potential human health risks. Cyanobacterial blooms were sampled in twenty-three Midwestern United States lakes and analyzed for community composition, thirteen cyanotoxins by liquid chromatography/mass spectrometry and immunoassay, and two taste-and-odor compounds by gas chromatography/mass spectrometry. Aphanizomenon, Cylindrospermopsis and/or Microcystis were dominant in most (96%) blooms, but community composition was not strongly correlated with toxin and taste-and-odor occurrence. Microcystins occurred in all blooms. Total microcystin concentrations measured by liquid chromatography/mass spectrometry and immunoassay were linearly related (rs = 0.76, p < 0.01) and LC/MS/MS concentrations were lower than or similar to ELISA in most (85%) samples. Geosmin (87%), 2-methylisoborneol (39%), anatoxin-a (30%), saxitoxins (17%), cylindrospermopsins (9%), and nodularin-R (9%) also were present in these blooms. Multiple classes of cyanotoxins occurred in 48% of blooms and 95% had multiple microcystin variants. Toxins and taste-and-odor compounds frequently co-occurred (91% of blooms), indicating odor may serve as a warning that cyanotoxins likely are present. However, toxins occurred more frequently than taste-and-odor compounds, so odor alone does not provide sufficient warning to ensure human-health protection. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.
Enticknap, Julie J.; Nonogaki, Hirofumi; Place, Allen R.; Hill, Russell T.
2006-01-01
Litter from the chicken industry can present several environmental challenges, including offensive odors and runoff into waterways leading to eutrophication. An economically viable solution to the disposal of waste from chicken houses is treatment to produce a natural, granulated fertilizer that can be commercially marketed for garden and commercial use. Odor of the final product is important in consumer acceptance, and an earthy odor is desirable. By understanding and manipulating the microbial processes occurring during this process, it may be possible to modify the odors produced. Geosmin and related volatiles produced by soil actinomycetes are responsible for earthy odors, and actinomycetes are likely to be present in the composting manure. Bacterial communities at each stage of the process were analyzed by culturing studies and denaturing gradient gel electrophoresis (DGGE). The processing steps changed the culturable bacterial community, but the total community was shown by DGGE to be stable throughout the process. A local agricultural soil was analyzed in parallel as a potential source of geosmin-producing actinomycetes. This agricultural soil had higher microbial diversity than the compost at both the culturable and the molecular levels. Actinomycete bacteria were isolated and analyzed by AromaTrax, a gas chromatography-olfactometry system. This system enables the odor production of individual isolates to be monitored, allowing for rational selection of strains for augmentation experiments to improve the odor of the final fertilizer product. PMID:16751521
Ma, Yue; Tang, Ke; Xu, Yan; Li, Ji-Ming
2017-01-18
The key aroma compounds of Chinese Vidal icewine were characterized by means of gas chromatography-olfactometry (GC-O) coupled with mass spectrometry (MS) on polar and nonpolar columns, and their flavor dilution (FD) factors were determined by aroma extract dilution analysis (AEDA). A total of 59 odor-active aroma compounds in three ranks of Vidal icewines were identified, and 28 odorants (FD ≥ 9) were further quantitated for aroma reconstitution and omission tests. β-Damascenone showed the highest FD value of 2187 in all icewines. Methional and furaneol were first observed as important odorants in Vidal icewine. Aroma recombination experiments revealed a good similarity containing the 28 important aromas. Omission tests corroborated the significant contribution of β-damascenone and the entire group of esters. Besides, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) and 3-(methylthio)-1-propanal (methional) also had significant effects on icewine character, especially on apricot, caramel, and tropical fruit characteristics.
Characterization of Volatiles in Rambutan Fruit (Nephelium lappaceum L.).
Ong; Acree; Lavin
1998-02-16
The volatile compounds from the red-skinned cultivar of rambutan, Jitlee (Nephelium lappaceumL.), a tropical fruit native to Southeast Asia, were extracted using both Freon 113 and ethyl acetate solvents. Isolation and characterization of odor-active compounds present in the fruit were mediated by gas chromatography/olfactory (GC/O), chromatography, and spectrometry. Authentic standards were used to determine mass spectral, retention index, and odor match. Of over 100 volatiles detected by GC/MS, twice as many polar volatiles were detected in the ethyl acetate extract as in the nonpolar Freon extract. GC/O analysis also detected more odor-active compounds in the polar extracts. Over 60 compounds in the extracts had some odor activity. The 20 most potent odorants included beta-damascenone, (E)-4,5-epoxy-(E)-2-decenal, vanillin, (E)-2-nonenal, phenylacetic acid, cinnamic acid, unknown 1 (sweaty), ethyl 2-methylbutyrate, and delta-decalactone. On the basis of calculated odor activity values, beta-damascenone, ethyl 2-methylbutyrate, 2,6-nonadienal, (E)-2-nonenal, and nonanal were determined to be the main contributors to the fruit aroma. Taken together, these results indicate that the exotic aroma character of rambutan is the interaction of fruity-sweet and fatty-green odors, with the possible contribution of "civet-like"-sweaty, spicy, and woody notes.
Bias of Tedlar bags in the measurement of agricultural odorants.
Trabue, Steven L; Anhalt, Jennifer C; Zahn, James A
2006-01-01
Odor regulations typically specify the use of dynamic dilution olfactometery (DDO) as a method to quantify odor emissions, and Tedlar bags are the preferred holding container for grab samples. This study was conducted to determine if Tedlar bags affect the integrity of sampled air from animal operations. Air samples were collected simultaneously in both Tedlar bags and Tenax thermal desorption tubes. Sample sources originated from either a hydrocarbon-free air tank, dynamic headspace chamber (DHC), or swine-production facility, and were analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Several background contaminants were identified from Tedlar bags, which included the odorous compounds N,N-dimethyl acetamide (DMAC), acetic acid, and phenol. Samples from the DHC demonstrated that recovery of malodor compounds was dependent on residence time in the Tedlar bag with longer residence time leading to lower recovery. After 24 h of storage, recovery of C3-C6 volatile fatty acids (VFA) averaged 64%, 4-methylphenol and 4-ethylphenol averaged 10%, and indole and 3-methylindole were below the detection limits of GC-MS-O. The odor activity value (OAV) of grab samples collected in Tedlar bags were 33 to 65% lower following 24 h of storage. These results indicate that significant odorant bias occurs when using Tedlar bags for the sampling of odors from animal production facilities.
Lascano, G J; Heinrichs, A J; Gary, R R; Topper, P A; Brandt, R C; Adviento-Borbe, A; Fabian, E E
2015-03-01
The objective of this experiment was to determine the effects of differing ratios of forage to concentrate (F:C) and fiber levels on odor and gas emissions from manure. Eight Holstein dairy heifers (362.45±4.53 d of age and 335.6±7.41 kg of body weight) were randomly assigned to a split-plot, 4×4 Latin square design (21-d periods) with F:C as the whole plot (20 or 80% forage) and fiber level as sub-plot (0, 20, 40, or 60% inclusion of corn stover). Gas concentration was determined using an infrared photoacoustic analyzer over a 24-h period using a steady-state flux chamber setup. Odorous air samples were collected from chamber headspace and evaluated by 6 human assessors using a forced-choice dynamic olfactometry technique. Emissions of CO2 were greater for the low than high concentrate diets, and no differences were observed for NH3 and CH4 emissions between F:C. Although F:C had no effect on NH3 emissions, as dietary fiber increased, a linear interaction with opposite effects was found for high and low concentrate diets. Nitrous oxide emissions were below minimum detectable levels. Neither F:C nor neutral detergent fiber level affected odor intensity. Odor emissions were successfully assessed, and manipulation of dietary fiber has the potential to influence CH4 and NH3 emissions. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Leclaire, Sarah; Merkling, Thomas; Raynaud, Christine; Giacinti, Géraldine; Bessière, Jean-Marie; Hatch, Scott A.; Danchin, Étienne
2011-07-01
The importance of olfaction in birds' social behavior has long been denied. Avian chemical signaling has thus been relatively unexplored. The black-legged kittiwake provides a particularly appropriate model for investigating this topic. Kittiwakes preferentially mate with genetically dissimilar individuals, but the cues used to assess genetic characteristics remain unknown. As in other vertebrates, their body odors may carry individual and sexual signatures thus potentially reliably signaling individual genetic makeup. Here, we test whether body odors in preen gland secretion and preen down feathers in kittiwakes may provide a sex and an individual signature. Using gas chromatography and mass spectrometry, we found that male and female odors differ quantitatively, suggesting that scent may be one of the multiple cues used by birds to discriminate between sexes. We further detected an individual signature in the volatile and nonvolatile fractions of preen secretion and preen down feathers. These results suggest that kittiwake body odor may function as a signal associated with mate recognition. It further suggests that preen odor might broadcast the genetic makeup of individuals, and could be used in mate choice to assess the genetic compatibility of potential mates.
Leclaire, Sarah; Merkling, Thomas; Raynaud, C.; Giacinti, Géraldine; Bessiere, J.-M.; Hatch, Scott A.; Danchin, Etienne
2011-01-01
The importance of olfaction in birds' social behavior has long been denied. Avian chemical signaling has thus been relatively unexplored. The black-legged kittiwake provides a particularly appropriate model for investigating this topic. Kittiwakes preferentially mate with genetically dissimilar individuals, but the cues used to assess genetic characteristics remain unknown. As in other vertebrates, their body odors may carry individual and sexual signatures thus potentially reliably signaling individual genetic makeup. Here, we test whether body odors in preen gland secretion and preen down feathers in kittiwakes may provide a sex and an individual signature. Using gas chromatography and mass spectrometry, we found that male and female odors differ quantitatively, suggesting that scent may be one of the multiple cues used by birds to discriminate between sexes. We further detected an individual signature in the volatile and nonvolatile fractions of preen secretion and preen down feathers. These results suggest that kittiwake body odor may function as a signal associated with mate recognition. It further suggests that preen odor might broadcast the genetic makeup of individuals, and could be used in mate choice to assess the genetic compatibility of potential mates.
ASSESSMENT OF BIOFILTER MEDIA PARTICLE SIZES FOR REMOVING AMMONIA
USDA-ARS?s Scientific Manuscript database
With increased concerns over odor and gas emissions from livestock production facilities more efficient technologies of air pollution control are needed to mitigate the deleterious effects of air contaminants. Gas-phase biofilters for treating contaminant gases from poultry and livestock operations ...
Assessment of Biofilter Media Particle Sizes for Removing Ammonia
USDA-ARS?s Scientific Manuscript database
With increased concerns over odor and gas emissions from livestock production facilities more efficient technologies of air pollution control are needed to mitigate the deleterious effects of air contaminants. Gas-phase biofilters for treating contaminant gases from poultry and livestock operations ...
Hodgkison, Robert; Ayasse, Manfred; Kalko, Elisabeth K V; Häberlein, Christopher; Schulz, Stefan; Mustapha, Wan Aida Wan; Zubaid, Akbar; Kunz, Thomas H
2007-11-01
We investigated the fruit odors of two bat-dispersed fig species in the Paleotropics, in relation to the foraging behavior of fruit bats, to test the following hypotheses: 1) fruit odor plays a critical role for detection and selection of ripe figs by fruit bats; 2) bat-dispersed fig species are characterized by the same, or similar, chemical compounds; and 3) total scent production, in bat-dispersed figs, increases when fruits ripen. We performed bioassays to test the effect of both natural and synthetic fig fruit odors on the foraging behavior of the short-nosed fruit bat (Cynopterus brachyotis)-an important disperser of figs within the study area. Fruit bats responded to both visual and chemical (olfactory) cues when foraging for figs. However, the strongest foraging reaction that resulted in a landing or feeding attempt was almost exclusively associated with the presence of a ripe fruit odor-either in combination with visual cues or when presented alone. Fruit bats also used fruit odors to distinguish between ripe and unripe fruits. By using gas chromatography (GC) and GC/mass spectrometry (MS), a total of 16 main compounds were identified in the ripe fruit odor of Ficus hispida and 13 in the ripe fruit odor of Ficus scortechinii-including alcohols, ketones, esters, and two terpenes. Additional compounds were also recorded in F. hispida, but not identified-four of which also occurred in F. scortechinii. Total scent production increased in both species when fruits ripened. Both natural and synthetic fruit odors resulted in feeding attempts by bats, with no feeding attempts elicited by unscented controls. Reaction rates to natural fruit odors were higher than those to synthetic blends.
NASA Astrophysics Data System (ADS)
Cai, Lingshuang; Koziel, Jacek A.; Lo, Yin-Cheung; Hoff, Steven J.
2009-05-01
Swine operations can affect air quality by emissions of odor, volatile organic compounds (VOCs) and other gases, and particulate matter (PM). Particulate matter has been proposed to be an important pathway for carrying odor. However, little is known about the odor-VOCs-PM interactions. In this research, continuous PM sampling was conducted simultaneously with three collocated TEOM analyzers inside a 1000-head swine finish barn located in central Iowa. Each TEOM (tapered element oscillating microbalance) was fitted with total suspended particulate (TSP), PM-10, PM-2.5 and PM-1 preseparators. Used filters were stored in 40 mL vials and transported to the laboratory. VOCs adsorbed/absorbed to dust were allowed to equilibrate with vial headspace. Solid-phase microextraction (SPME) Carboxen/polydimethylsiloxane(PDMS) 85 μm fibers were used to extract VOCs. Simultaneous chemical and olfactometry analyses of VOCs and odor associated with swine PM were completed using a gas chromatography-mass-olfactometry (GC-MS-O) system. Fifty VOCs categorized into nine chemical function groups were identified and confirmed with standards. Five of them are classified as hazardous air pollutants. VOCs were characterized with a wide range of molecular weight, boiling points, vapor pressures, water solubilities, odor detection thresholds, and atmospheric reactivities. All characteristic swine VOCs and odorants were present in PM and their abundance was proportional to PM size. However, the majority of VOCs and characteristic swine odorants were preferentially bound to smaller-size PM. The findings indicate that a significant fraction of swine odor can be carried by PM. Research of the effects of PM control on swine odor mitigation is warranted.
Denk, Philipp; Velasco-Schön, Cristina; Buettner, Andrea
2017-09-01
Most children's toys on the market are primarily made out of plastic and other complex composite materials. Consumer complaints about offensive odors or irritating effects associated with toy products have increased in recent years. One example is the strongly perceivable negative odor reported for a particular series of toy swords. Characterizing the presence of contaminants, including those that have the potential to be deleterious to health, in such products is a significant analytical challenge due to the high baseline abundance of chemical constituents of the materials used in the products. In the present study, the nature of offensive odorants associated with toy sword products was examined by gas chromatography (GC). After initial sensory evaluations, the volatile compounds from the toy products were recovered using solvent extraction and solvent-assisted flavor evaporation. The extracts were analyzed using GC-olfactometry (GC-O) and two-dimensional GC-O coupled with mass spectrometry (GC-GC-MS/O). A total of 26 odor-active compounds, including aromatic hydrocarbons and phenols, were identified among numerous non-odorous volatile by-products. These substances also included polycyclic aromatic hydrocarbons, which were analyzed by GC-MS. Representative substances were naphthalene and 1,2-dihydronaphthalene that exhibited moldy, mothball-like odor impressions, and phenol derivatives with leather-like, phenolic, horse-stable-like smells. The odorants detected correlated with the assigned attributes from the sensory analyses. This study clearly shows that the detection and identification of such odorous contaminants can provide key indications of potentially harmful yet unknown substances in everyday products such as toys. Graphical abstract ᅟ.
Lee, Sang Mi; Shin, Gil-Ok; Park, Kyung Min; Chang, Pahn-Shick; Kim, Young-Suk
2013-01-01
Static headspace gas chromatographic (SHS-GC) analysis was performed to determine the release of 13 odorants in hydrocolloid model systems containing original or regio-selectively carboxylated cellulose at different pH values. The release of most odor compounds was decreased in the hydrocolloid solutions compared to control, with the amounts of 2-propanol, 3-methyl-1-butanol, and 2,3-butanedione released into the headspace being less than those of any other odor compound in the hydrocolloid model systems. However, there was no considerable difference between original cellulose-containing and carboxylated-cellulose containing systems in the release of most compounds, except for relatively long-chain esters such as ethyl caprylate and ethyl nonanoate. The release from the original and carboxylated cellulose solutions controlled to pH 10 was significantly higher than that from solutions adjusted to pH 4 and 7 in the case of some esters (ethyl acetate, methyl propionate, ethyl propionate, ethyl butyrate, butyl propionate, ethyl caproate) and alcohols (2-propanol, 3-methyl-1-butanol), in particular, ethyl butyrate and 3-methyl-1-butanol. In contrast, the release of 2,3-butanedione from both the original and carboxylated cellulose solutions was increased at pH 4 and 7 compared to that at pH 10 by about 70% and 130%, respectively. Our study demonstrated that the release of some odorants could be changed significantly by addition of both original and carboxylated cellulose in hydrocolloid model systems, but only minor effect was observed in pH of the solution. PMID:23447013
Li, Dong; Lu, Wenjing; Liu, Yanjun; Guo, Hanwen; Xu, Sai; Ming, Zhongyuan; Wang, Hongtao
2015-01-01
Estimating odor emissions from landfill sites is a complicated task because of the various chemical and biological species that exist in landfill gases. In this study, the relative concentration of ethanol and other odorous compounds emitted from the working surface at a landfill in China was analyzed. Gas sampling was conducted at the landfill on a number of selected days from March 2012 to March 2014, which represented different periods throughout the two years. A total of 41, 59, 66, 54, 63, 54, 41, and 42 species of odorous compounds were identified and quantified in eight sampling activities, respectively; a number of 86 species of odorous compounds were identified and quantified all together in the study. The measured odorous compounds were classified into six different categories (Oxygenated compounds, Halogenated compounds, Terpenes, Sulfur compounds, Aromatics, and Hydrocarbons). The total average concentrations of the oxygenated compounds, sulfur compounds, aromatics, halogenated compounds, hydrocarbons, and terpenes were 2.450 mg/m3, 0.246 mg/m3, 0.203 mg/m3, 0.319 mg/m3, 0.530 mg/m3, and 0.217 mg/m3, respectively. The relative concentrations of 59 odorous compounds with respect to the concentration of ethyl alcohol (1000 ppm) were determined. The dominant contaminants that cause odor pollution around the landfill are ethyl sulfide, methyl mercaptan, acetaldehyde, and hydrogen sulfide; dimethyl disulfide and dimethyl sulfide also contribute to the pollution to a certain degree. PMID:25769100
Alternative Fuels Data Center: Propane Basics
released, the liquid propane vaporizes and turns into gas that is used in combustion. An odorant, ethyl petroleum gas (LPG) or propane autogas, propane is a cleaner-burning alternative fuel that's been used for decades to power light-, medium- and heavy-duty propane vehicles. Propane is a three-carbon alkane gas
Identification of Rotundone as a Potent Odor-Active Compound of Several Kinds of Fruits.
Nakanishi, Akira; Fukushima, Yusuke; Miyazawa, Norio; Yoshikawa, Keisuke; Maeda, Tomoko; Kurobayashi, Yoshiko
2017-06-07
An investigation of the aromas of grapefruit, orange, apple, and mango revealed the presence of an odor-active compound that gave off a strong woody odor when assessed by gas chromatography-olfactometry. We isolated the compound from a high-boiling fraction of an orange essential oil, and subsequent nuclear magnetic resonance analyses of the isolated compound identified it as rotundone. Mass spectra and retention indices obtained from aroma concentrates of grapefruit, apple, and mango were identical to those of rotundone, which was therefore determined to be the common woody compound in these fruits. Sensory analyses were performed to assess the effects of rotundone on model beverages of the various fruits. It was revealed that rotundone added at even subthreshold levels to model beverages did not confer directly the woody odor, but had significant effects on the overall flavors of the beverages, helping them to better approximate the natural flavors of the fruits.
Aroma Characterization and Safety Assessment of a Beverage Fermented by Trametes versicolor.
Zhang, Yanyan; Fraatz, Marco Alexander; Müller, Julia; Schmitz, Hans-Joachim; Birk, Florian; Schrenk, Dieter; Zorn, Holger
2015-08-12
A cereal-based beverage was developed by fermentation of wort with the basidiomycete Trametes versicolor. The beverage possessed a fruity, fresh, and slightly floral aroma. The volatiles of the beverage were isolated by liquid-liquid extraction (LLE) and additionally by headspace solid phase microextraction (HS-SPME). The aroma compounds were analyzed by a gas chromatography system equipped with a tandem mass spectrometer and an olfactory detection port (GC-MS/MS-O) followed by aroma (extract) dilution analysis. Thirty-four different odor impressions were perceived, and 27 corresponding compounds were identified. Fifteen key odorants with flavor dilution (FD) factors ranging from 8 to 128 were quantitated, and their respective odor activity values (OAVs) were calculated. Six key odorants were synthesized de novo by T. versicolor. Furthermore, quantitative changes during the fermentation process were analyzed. To prepare for the market introduction of the beverage, a comprehensive safety assessment was performed.
Wijaya, C H; Ulrich, D; Lestari, R; Schippel, K; Ebert, G
2005-03-09
Three cultivars of snake fruits, Pondoh Hitam, Pondoh Super, and Gading, were freshly extracted using liquid-liquid extraction. The aroma compounds of the three samples were analyzed by GC-MS and GC-olfactometry using the nasal impact frequency (NIF) method. A total of 24 odor-active compounds were associated with the aroma of snake fruit. Methyl 3-methylpentanoate was regarded as the character impact odorant of typical snake fruit aroma. 2-Methylbutanoic acid, 3-methylpentanoic acid, and an unknown odorant with very high intensity were found to be responsible for the snake fruit's sweaty odor. Other odorants including methyl 3-methyl-2-butenoate (overripe fruity, ethereal), methyl 3-methyl-2-pentenoate (ethereal, strong green, woody), and 2,5-dimethyl-4-hydroxy-3[2]-furanone (caramel, sweet, cotton candy-like) contribute to the overall aroma of snake fruit. Methyl dihydrojasmonate and isoeugenol, which also have odor impact, were identified for the first time as snake fruit volatiles. The main differences between the aroma of Pondoh and Gading cultivars could be attributed to the olfactory attributes (metallic, chemical, rubbery, strong green, and woody), which were perceived by most of the panelists in the Pondoh samples but were not detected in the Gading samples. This work is a prerequisite for effective selection of salak genotypes with optimal aroma profiles for high consumer acceptance.
Detection of Volatile Metabolites of Garlic in Human Breast Milk
Scheffler, Laura; Sauermann, Yvonne; Zeh, Gina; Hauf, Katharina; Heinlein, Anja; Sharapa, Constanze; Buettner, Andrea
2016-01-01
The odor of human breast milk after ingestion of raw garlic at food-relevant concentrations by breastfeeding mothers was investigated for the first time chemo-analytically using gas chromatography−mass spectrometry/olfactometry (GC-MS/O), as well as sensorially using a trained human sensory panel. Sensory evaluation revealed a clear garlic/cabbage-like odor that appeared in breast milk about 2.5 h after consumption of garlic. GC-MS/O analyses confirmed the occurrence of garlic-derived metabolites in breast milk, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO2). Of these, only AMS had a garlic-like odor whereas the other two metabolites were odorless. This demonstrates that the odor change in human milk is not related to a direct transfer of garlic odorants, as is currently believed, but rather derives from a single metabolite. The formation of these metabolites is not fully understood, but AMSO and AMSO2 are most likely formed by the oxidation of AMS in the human body. The excretion rates of these metabolites into breast milk were strongly time-dependent with large inter-individual differences. PMID:27275838
Quantification and sensory studies of character impact odorants of different soybean lecithins.
Stephan, A; Steinhart, H
1999-10-01
Fifty-four potent odorants in standardized, hydrolyzed, and deoiled and hydrolyzed soybean lecithins were quantified by high-resolution gas chromatography/mass spectrometry (HRGC/MS). The characterization of their aroma impact was performed by calculation of nasal (n) and retronasal (r) odor activity values (OAVs). For this, the nasal and retronasal recognition thresholds of 18 odor-active compounds were determined in vegetable oil. The following compounds showed the highest nOAVs: 2,3-diethyl-5-methylpyrazine, methylpropanal, acetic acid, pentanoic acid, 2-ethyl-3,5-dimethylpyrazine, pentylpyridine, (Z)-1,5-octadien-3-one, 2-methylbutanal, and beta-damascenone. In addition to the compounds above, 1-octen-3-one, 1-nonen-3-one, and 3-methyl-2,4-nonandione showed potent rOAVs. The results of quantification and OAV calculation were confirmed by a model mixture of 25 impact odorants, which yielded a highly similar sensory profile to that of the original soybean lecithin. The sensory importance of pyrazines and free acids increased through enzymatic hydrolysis and decreased by the process of deoiling. The impact of unsaturated ketones on the lecithin aroma was not changed by either process.
Major Odorants Released as Urinary Volatiles by Urinary Incontinent Patients
Pandey, Sudhir Kumar; Kim, Ki-Hyun; Choi, Si On; Sa, In Young; Oh, Soo Yeon
2013-01-01
In this study, volatile urinary components were collected using three different types of samples from patients suffering from urinary incontinence (UI): (1) urine (A); (2) urine + non-used pad (B); and (3) urine + used pad (C). In addition, urine + non-used pad (D) samples from non-patients were also collected as a reference. The collection of urinary volatiles was conducted with the aid of a glass impinger-based mini-chamber method. Each of the four sample types (A through D) was placed in a glass impinger and incubated for 4 hours at 37 °C. Ultra pure air was then passed through the chamber, and volatile urine gas components were collected into Tedlar bags at the other end. These bag samples were then analyzed for a wide range of VOCs and major offensive odorants (e.g., reduced sulfur compounds (RSCs), carbonyls, trimethylamine (TMA), ammonia, etc.). Among the various odorants, sulfur compounds (methanethiol and hydrogen sulfide) and aldehydes (acetaldehyde, butylaldehyde, and isovaleraldehyde) were detected above odor threshold and predicted to contribute most effectively to odor intensity of urine incontinence. PMID:23823973
... Colonoscopy Diet & Treatments Antacids Calcium in Non-Dairy Foods Chlorophyllin for Odor Control Dietary Fiber High Colonics NSAIDs Could Probiotics Help Your Symptoms? Use of Probiotics in Managing ...
ERIC Educational Resources Information Center
Vollmer, John J.
2000-01-01
Describes how to grow crystals of para-dichlorobenzene beginning with household mothballs. The crystals form through sublimation (solid to gas) and deposition (gas to solid). Also discusses demonstrations of evaporation and condensation and odor perception, which can support a study of the kinetic theory and phases of matter. (WRM)
Zhang, Yan; Guo, Shuntang; Liu, Zhisheng; Chang, Sam K C
2012-08-01
Off-flavor of soymilk is a barrier to the acceptance of consumers. The objectionable soy odor can be reduced through inhibition of their formation or through removal after being formed. In this study, soymilk was prepared by three grinding methods (ambient, cold, and hot grinding) from two varieties (yellow Prosoy and a black soybean) before undergoing three heating processes: stove cooking, one-phase UHT (ultrahigh temperature), and two-phase UHT process using a Microthermics direct injection processor, which was equipped with a vacuuming step to remove injected water and volatiles. Eight typical soy odor compounds, generated from lipid oxidation, were extracted by a solid-phase microextraction method and analyzed by gas chromatography. The results showed that hot grinding and cold grinding significantly reduced off-flavor as compared with ambient grinding, and hot grinding achieved the best result. The UHT methods, especially the two-phase UHT method, were effective to reduce soy odor. Different odor compounds showed distinct concentration patterns because of different formation mechanisms. The two varieties behaved differently in odor formation during the soymilk-making process. Most odor compounds could be reduced to below the detection limit through a combination of hot grinding and two-phase UHT processing. However, hot grinding gave lower solid and protein recoveries in soymilk.
Individual odor recognition in birds: an endogenous olfactory signature on petrels' feathers?
Bonadonna, Francesco; Miguel, Eve; Grosbois, Vladimir; Jouventin, Pierre; Bessiere, Jean-Marie
2007-09-01
A growing body of evidence indicates that odors are used in individual, sexual, and species recognition in vertebrates, and may be reliable signals of quality and compatibility. Petrels are seabirds that exhibit an acute sense of smell. During the breeding period, many species of petrels live in dense colonies on small oceanic islands and form pairs that use individual underground burrows. Mates alternate between parental duties and foraging trips at sea. Returning from the ocean at night (to avoid bird predators), petrels must find their nest burrow. Antarctic prions, Pachyptila desolata, are thought to identify their nest by recognizing their partner's odor, suggesting the existence of an individual odor signature. We used gas chromatography and mass spectrometry to analyze extracts obtained from the feathers of 13 birds. The chemical profile of a single bird was more similar to itself, from year to year, than to that of any other bird. The profile contained up to a hundred volatile lipids, but the odor signature may be based on the presence or absence of a few specific compounds. Our results show that the odor signature in Antarctic prions is probably endogenous, suggesting that in some species of petrels it may broadcast compatibility and quality of potential mates.
Nanocellulose-Zeolite Composite Films for Odor Elimination.
Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart
2015-07-08
Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.
Wiedmer, Christoph; Velasco-Schön, Cristina; Buettner, Andrea
2017-06-01
Based on the observation of intense and offensive smells in the product group of aquatic toys, four representative products were exemplarily chosen and sensorially characterized by an expert panel. Panellists reported mostly almond- and rubber-like notes for three of the four samples, whereas the smell of the fourth sample was dominated by organic solvent-associated notes such as "nail polish-like." To elucidate the molecular reasons of these smells, we isolated the volatile fraction of the product by solvent extraction and high vacuum distillation, and identified the main odorants by aroma extract dilution analysis (AEDA), followed by one- and two-dimensional gas chromatography, with parallel mass spectrometric and olfactometric detection. Additionally, the materials of the samples were identified by means of differential scanning calorimetry (DSC), attenuated total reflectance spectroscopy (ATR-spectroscopy), and Beilstein halogen test. Between 32 and 46 odors could be detected in each sample by means of AEDA, whereby five to 13 of these compounds were detectable with by far the highest dilution factors, and were found to primarily correlate with the smells of the respective products. Focussing the subsequent identification on these causative substances led to the successful identification of the majority of these odorants. Among them were several mono- or di-unsaturated carbonyl compounds and their epoxidized derivatives, which are typical odorous artefacts from fatty acid oxidation, but also odor-active organic solvents such as cyclohexanone, isophorone, and phenol.
Miyazaki, Takayuki; Plotto, Anne; Baldwin, Elizabeth A; Reyes-De-Corcuera, José I; Gmitter, Fred G
2012-03-15
Tangerines have a distinct flavor among citrus fruit. However, information on tangerine volatiles remains limited. Volatile compounds from a breeding population of tangerines were earlier identified by gas chromatography-mass spectrometry. In this study, five hybrids with a distinct volatile profile were analyzed by gas-chromatography-olfactometry (GC-O) and descriptive sensory analysis. Forty-nine aroma active compounds were found in a consensus by GC-O. Aldehydes were the most important group with odor activity, as well as monoterpenes, esters, alcohols and ketones. 1,8-Cineole, β-myrcene, (E,E)-2,4-nonadienal, hexanal, ethyl-2-methylbutanoate, and linalool were perceived with high intensity in most samples. Two 'Clementine' × 'Minneola' and one 'Fortune' × 'Murcott' hybrids with tangerine, sulfury and woody/spicy flavors had aroma active compounds with terpeney, fatty/vegetable and metallic/rubber descriptors. A tangerine with 'Valencia' orange in its parentage had a characteristic orange flavor, which could be explained by esters and ketones, high in fruity and floral odor intensities. A hybrid of unknown origin had a distinct fruity-non-citrus and pumpkin/fatty flavor; that sample had the lowest amount of aroma-active volatiles, with the least compounds with terpeney odors. There was no one compound characteristic of tangerine flavor. Nevertheless, each sample sensory characteristic could be explained by a set of aroma-active volatile compounds.
The major histocompatibility complex and the chemosensory signalling of individuality in humans.
Eggert, F; Luszyk, D; Haberkorn, K; Wobst, B; Vostrowsky, O; Westphal, E; Bestmann, H J; Müller-Ruchholtz, W; Ferstl, R
The chemosensory identity of mice and rats is determined partly by polymorphic genes of the major histocompatibility complex (MHC). In inbred strains of mice, as well as in seminatural populations, MHC-associated mating preferences selectively influence reproductive success, thus serving to promote heterozygocity in the MHC. In order to determine whether MHC-associated chemosignals are present in humans, two studies were conducted. In a first study, olfactory identification of MHC-associated chemosignals was conducted on 12 trained rats' responses to the urine odors of humans. In a second study, MHC-associated olfactory cues in humans were analyzed by means of gas chromatography. The results indicate that the urine odors of humans are associated with the MHC and demonstrate that the profile of volatile components in the urine odors shows some association with the MHC. Furthermore, results show that a profile of some specific components, as well as a few ubiquitous volatiles, constitutes MHC-associated odor signals in humans.
Escudero, Ana; Campo, Eva; Fariña, Laura; Cacho, Juan; Ferreira, Vicente
2007-05-30
The aroma profile of five premium red wines has been studied by sensory descriptive analysis, quantitative gas chromatography-olfactometry (GC-O), and chemical quantitative analysis. The most relevant findings have been confirmed by sensory analysis. Forty-five odorants, including the most intense, were identified. At least 37 odorants can be found at concentrations above their odor threshold. A satisfactory agreement between GC-O and quantitative data was obtained in most cases. Isobutyl-2-methoxypyrazine, (E)-whiskey lactone, and guaiacol were responsible for the veggie, woody, and toasted characters of the wines, respectively. The sweet-caramel notes are related to the presence of at least five compounds with flowery and sweet notes. The phenolic character can be similarly related to the presence of 12 volatile phenols. The berry fruit note of these wines is related to the additive effect of nine fruity esters. Ethanol exerts a strong suppression effect on fruitiness, whereas norisoprenoids and dimethyl sulfide enhance fruity notes.
Gao, Hongyu; Zhang, Weijun; Song, Zhenzhen; Yang, Xiaofang; Yang, Lian; Cao, Mengdi; Wang, Dongsheng; Liao, Guiying
2017-06-13
Chemical conditioning has been used for enhancing wastewater sludge dewaterability for many years, but the characteristics of odorous pollutants emission in sludge conditioning were still unclear. In this work, the transfer behavior of different odorous pollutants between air, liquid and solid phases under typical chemical conditioning processes for high-pressure dewatering was systematically investigated. The results indicated that that besides hydrogen sulfide (H 2 S) and ammonia (NH 3 ), 21 kinds of volatile organic contaminants (VOCs) were identified and quantified by gas chromatography-mass spectrometry (GC-MS), while the concentrations and composition of odorous pollutants varied greatly for different conditioning processes. VOCs were composed by three main constituents including benzenes, halogeno benzene and hydrocarbons. According to mass balance analysis, about 50% of VOCs adsorbed within sludge extracellular polymeric substances (EPS) fraction. Since EPS was damaged and/or flocculation in different chemical conditioning processes, VOCs distributed in solid phase transformed into liquid phase and then released into air. The discrepancies in mass of odorous pollutants before and after chemical conditioning were likely to be related to chemical conversion under acidification, oxidation and precipitation in the presence of ferric ions.
Mallia, Silvia; Escher, Felix; Dubois, Sébastien; Schieberle, Peter; Schlichtherle-Cerny, Hedwig
2009-08-26
Dairy products enriched in unsaturated fatty acids (UFA) and conjugated linoleic acids (CLA) have a higher nutritional value and are suggested to have beneficial health effects. However, such acids are susceptible to oxidation, and off-flavors may be formed during storage. This study was aimed to compare the most important odorants in UFA/CLA-enriched butter to that of conventional butter during storage and induced oxidation. Volatiles were isolated by solvent-assisted flavor evaporation and identified by gas chromatography-olfactometry and mass spectrometry. Aroma extract dilution analysis revealed 18 odorants that were quantified by stable isotope dilution analysis. Another important odorant, 3-methyl-1H-indole (mothball-like odor), was quantified by high-performance liquid chromatography. After storage, UFA/CLA-enriched butter showed higher concentrations of pentanal (fatty), heptanal (green), butanoic acid (cheesy), and delta-decalactone (peach-like). Photo-oxidation of butter samples induced increases in heptanal, (E)-2-octenal, and trans-4,5-epoxy-(E)-2-decenal, especially in conventional butter. The higher vitamin content in UFA/CLA samples may protect this butter from oxidation.
ERIC Educational Resources Information Center
Rasmussen, P. W.
1984-01-01
Describes an undergraduate laboratory experiment used to illustrate the use of gas chromatography retention indices for the identification of unknown compounds, specifically for the identification of unknown compounds and for the identification of the volatile compounds responsible for the odor of the banana. Procedures, reference data, and sample…
Wyszynski, Bartosz; Yatabe, Rui; Nakao, Atsuo; Nakatani, Masaya; Oki, Akio; Oka, Hiroaki; Toko, Kiyoshi
2017-01-01
Mimicking the biological olfaction, large odor-sensor arrays can be used to acquire a broad range of chemical information, with a potentially high degree of redundancy, to allow for enhanced control over the sensitivity and selectivity of artificial olfaction systems. The arrays should consist of the largest possible number of individual sensing elements while being miniaturized. Chemosensitive resistors are one of the sensing platforms that have a potential to satisfy these two conditions. In this work we test viability of fabricating a 16-element chemosensitive resistor array for detection and recognition of volatile organic compounds (VOCs). The sensors were fabricated using blends of carbon black and gas chromatography (GC) stationary-phase materials preselected based on their sorption properties. Blends of the selected GC materials with carbon black particles were subsequently coated over chemosensitive resistor devices and the resulting sensors/arrays evaluated in exposure experiments against vapors of pyrrole, benzenal, nonanal, and 2-phenethylamine at 150, 300, 450, and 900 ppb. Responses of the fabricated 16-element array were stable and differed for each individual odorant sample, proving the blends of GC materials with carbon black particles can be effectively used for fabrication of large odor-sensing arrays based on chemosensitive resistors. The obtained results suggest that the proposed sensing devices could be effective in discriminating odor/vapor samples at the sub-ppm level. PMID:28696353
Liu, Jingke; Zhang, Aixia; Li, Shaohui; Zhao, Wei; Zhang, Yuzong; Xing, Guosheng
2017-11-08
To comprehensively understand flavor compounds and aroma characteristics of foxtail millet wine, extraction conditions were optimized with 85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm carboxen (CAR)/PDMS and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers. The flavor compounds in foxtail millet wine were investigated by gas chromatography-mass spectrometry (GC-MS) coupled with headspace solid phase microextraction (HS-SPME), and the odor characteristics and intensity were analyzed by odor active values (OAVs). The samples of 8 mL were placed in headspace vials with 1.5 g NaCl, then the headspace vials were heated at 60℃ for 40 min. Using HS-SPME with different fibers, a total of 55 flavor compounds were identified from the samples, including alcohols, esters, benzene derivatives, hydrocarbons, acids, aldehydes, ketones, terpenes, phenols and heterocycle compounds. The main flavor compounds were alcohols compounds. According to their OAVs, phenylethyl alcohol, styrene, 1-methyl-naphthalene, 2-methyl-naphthalene, benzaldehyde, benzeneacetaldehyde and 2-methoxy-phenol were established to be odor-active compounds. Phenylethyl alcohol and benzeneacetaldehyde were the most prominent odor-active compounds. PA and PDMS fibers had good extraction effect for polar and nonpolar compounds, respectively. CAR/PDMS and DVB/CAR/PDMS provided a similar compounds profile for moderate polar compounds. This research comprehensively determined flavor compounds of foxtail millet wine, and provided theoretical basis for product development and quality control.
NASA Astrophysics Data System (ADS)
Maurer, Devin L.; Koziel, Jacek A.; Bruning, Kelsey; Parker, David B.
2017-02-01
Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate surface-applied soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manure additive to mitigate emissions of odorous volatile organic compounds (VOC) including dimethyl disulfide/methanethiol (DMDS/MT), dimethyl trisulfide, n-butyric acid, valeric acid, isovaleric acid, p-cresol, indole, and skatole. The secondary impact on emissions of NH3, H2S, and GHG was also measured. The SBP was tested at four treatments (2.28-45.7 kg/m2 manure) with CaO2 (4.2% by weight of SBP) over 137 days. Significant reductions in VOC emissions were observed: DMDS/MT (36.2%-84.7%), p-cresol (53.1%-89.5%), and skatole (63.2%-92.5%). There was a corresponding significant reduction in NH3 (14.6%-67.6%), and significant increases in the greenhouse gases CH4 (32.7%-232%) and CO2 (20.8%-124%). The remaining emissions (including N2O) were not statistically different. At a cost relative to 0.8% of a marketed hog it appears that SBP/CaO2 treatment could be a promising option at the lowest (2.28 kg/m2) treatment rate for reducing odorous gas and NH3 emissions at swine operations, and field-scale testing is warranted.
Treesuwan, Witcha; Hirao, Hajime; Morokuma, Keiji; Hannongbua, Supa
2012-05-01
As the mechanism underlying the sense of smell is unclear, different models have been used to rationalize structure-odor relationships. To gain insight into odorant molecules from bread baking, binding energies and vibration spectra in the gas phase and in the protein environment [7-transmembrane helices (7TMHs) of rhodopsin] were calculated using density functional theory [B3LYP/6-311++G(d,p)] and ONIOM [B3LYP/6-311++G(d,p):PM3] methods. It was found that acetaldehyde ("acid" category) binds strongly in the large cavity inside the receptor, whereas 2-ethyl-3-methylpyrazine ("roasted") binds weakly. Lys296, Tyr268, Thr118 and Ala117 were identified as key residues in the binding site. More emphasis was placed on how vibrational frequencies are shifted and intensities modified in the receptor protein environment. Principal component analysis (PCA) suggested that the frequency shifts of C-C stretching, CH(3) umbrella, C = O stretching and CH(3) stretching modes have a significant effect on odor quality. In fact, the frequency shifts of the C-C stretching and C = O stretching modes, as well as CH(3) umbrella and CH(3) symmetric stretching modes, exhibit different behaviors in the PCA loadings plot. A large frequency shift in the CH(3) symmetric stretching mode is associated with the sweet-roasted odor category and separates this from the acid odor category. A large frequency shift of the C-C stretching mode describes the roasted and oily-popcorn odor categories, and separates these from the buttery and acid odor categories.
Analysis of early lipid oxidation in smoked, comminuted pork or poultry sausages with spices.
Olsen, Elisabeth; Vogt, Gjermund; Veberg, Annette; Ekeberg, Dag; Nilsson, Astrid
2005-09-21
Dynamic headspace/gas chromatography-mass spectrometry (GC-MS), front-face fluorescence spectroscopy, and a gas-sensor array technique (electronic nose) have previously detected lipid oxidation in pork back fat or mechanically recovered poultry meat earlier than or at the same time as a sensory panel. The present study was focused on measurement of early lipid oxidation in a more complicated product (freeze-stored, smoked sausages with spices). During the storage time, formation of components contributing to rancid odor and flavor (e.g., hexanal and 1-penten-3-ol) could be monitored with dynamic headspace/GC-MS. The GC-MS data also showed a decrease in 2-furancarboxaldehyde, which could indicate loss of Maillard type components often associated with acidic or meat odor and flavor. The fluorescence spectra were difficult to interpret, probably due to the simultaneous influence from increasing levels of lipid oxidation products and loss of fluorescent Maillard or spice components. The gas-sensor array responses were dominated by signals from, e.g., spice and smoke compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartsfield, B.
1995-12-31
Biofiltration is an emerging technology that is being used for vapor phase treatment at the Silvex hazardous waste site. Biofiltration works by directing the off-gas from the groundwater treatment system through a bed of soil, compost or other medium that supports the growth of bacteria. Contaminants are absorbed into the water present in the medium, and are subsequently degraded by the microorganisms. The biofiltration system at the Silvex hazardous waste site has been effective in removing contaminants from the off-gas. The biofiltration system has also been effective in minimizing the odor problem resulting from mercaptans in the off-gas. Biofiltration hasmore » been used for many years at wastewater and industrial plants to control odor and remove organic contaminants. This technology has only recently been used for hazardous waste site cleanups. The hazardous waste literature is now listing biofiltration as a vapor phase treatment technology, along with carbon, thermal oxidation and others.« less
Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search
Song, Kai; Liu, Qi; Wang, Qi
2011-01-01
Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401
Evaluation of Food Freshness and Locality by Odor Sensor
NASA Astrophysics Data System (ADS)
Koike, Takayuki; Shimada, Koji; Kamimura, Hironobu; Kaneki, Noriaki
The aim of this study was to investigate whether food freshness and locality can be classified using a food evaluation system consisting four SnO2-semiconductor gas sensors and a solid phase column, into which collecting aroma materials. The temperature of sensors was periodically changed to be in unsteady state and thus, the sensor information was increased. The parameters (in quefrency band) were extracted from sensor information using cepstrum analysis that enable to separate superimposed information on sinusoidal wave. The quefrency was used as parameters for principal component and discriminant analyses (PCA and DCA) to detect food freshness and food localities. We used three kinds of strawberries, people can perceive its odors, passed from one to three days after harvest, and kelps and Ceylon tea, people are hardly to perceive its odor, corrected from five areas as sample. Then, the deterioration of strawberries and localities of kelps and Ceylon teas were visually evaluated using the numerical analyses. While the deteriorations were classified using PCA or DCA, the localities were classified only by DCA. The findings indicate that, although odorant intensity influenced the method detecting food quality, the quefrency obtained from odorant information using cepstrum analysis were available to detect the difference in the freshness and the localities of foods.
Pang, Xueli; Cao, Jianmin; Wang, Dabin; Qiu, Jun; Kong, Fanyu
2017-05-24
For the characterization of chemical components contributing to the aroma of ginger, which could benefit the development of deep-processed ginger products, volatile extracts were isolated by a combination of direct solvent extraction-solvent-assisted flavor evaporation and static headspace analysis. Aroma-impact components were identified by gas chromatography-olfactometry-mass spectrometry, and the most potent odorants were further screened by aroma extract dilution analysis (AEDA) and static headspace dilution analysis (SHDA). The AEDA results revealed that geranial, eucalyptol, β-linalool, and bornyl acetate were the most potent odorants, exhibiting the highest flavor dilution factor (FD factor) of 2187. SHDA indicated that the predominant headspace odorants were α-pinene and eucalyptol. In addition, odorants exhibiting a high FD factor in SHDA were estimated to be potent aroma contributors in AEDA. The predominant odorants were found to be monoterpenes and sesquiterpenes, as along with their oxygenated derivatives, providing minty, lemon-like, herbal, and woody aromas. On the other hand, three highly volatile compounds detected by SHDA were not detected by AEDA, whereas 34 high-polarity, low-volatility compounds were identified only by AEDA, demonstrating the complementary natures of SHDA and AEDA and the necessity of utilizing both techniques to accurately characterize the aroma of ginger.
Palmiotto, Marinella; Fattore, Elena; Paiano, Viviana; Celeste, Giorgio; Colombo, Andrea; Davoli, Enrico
2014-07-01
The large amounts of treated waste materials and the complex biological and physicochemical processes make the areas in the proximity of landfills vulnerable not only to emissions of potential toxic compounds but also to nuisance such as odor pollution. All these factors have a dramatic impact in the local environment producing environmental quality degradation. Most of the human health problems come from the landfill gas, from its non-methanic volatile organic compounds and from hazardous air pollutants. In addition several odorants are released during landfill operations and uncontrolled emissions. In this work we present an integrated risk assessment for emissions of hazard compounds and odor nuisance, to describe environmental quality in the landfill proximity. The study was based on sampling campaigns to acquire emission data for polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorobiphenyls, polycyclic aromatic hydrocarbons, benzene and vinyl chloride monomer and odor. All concentration values in the emissions from the landfill were measured and used in an air dispersion model to estimate maximum concentrations and depositions in correspondence to five sensitive receptors located in proximity of the landfill. Results for the different scenarios and cancer and non-cancer effects always showed risk estimates which were orders of magnitude below those accepted from the main international agencies (WHO, US EPA). Odor pollution was significant for a limited downwind area near the landfill appearing to be a significant risk factor of the damage to the local environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Villberg, K; Veijanen, A
2001-03-01
A thermal desorption equipment introducing volatile organic compounds (VOCs) into the gas chromatographic/ mass spectrometric system (GC/MS) with simultaneous sniffing (SNIFF) is a suitable method for identifying the volatile organic off-odor compounds formed during the extrusion coating process of low-density polyethylene. Fumes emitted during the extrusion coating process of three different plastic materials were collected at two different temperatures (285 and 315 degrees C) from an outgoing pipe and near an extruder. The VOCs of fumes were analyzed by drawing a known volume of air through the adsorbent tube filled with a solid adsorbent (Tenax GR). The air samples were analyzed by using a special thermal desorption device and GC/MS determination. The simultaneous sniffing was carried out to detect off-odors and to assist in the identification of those compounds that contribute to tainting and smelling. The amounts of off-odor carbonyl compounds and the total content of the volatile organic compounds were determined. The most odorous compounds were identified as carboxylic acids while the majority of the volatile compounds were hydrocarbons. The detection and quantification of carboxylic acids were based on the characteristic ions of their mass spectra. The higher the extrusion temperature the more odors were detected. An important observation was that the total concentration of volatiles was dependent not only on the extrusion temperature but also on the plastic material.
The banana code-natural blend processing in the olfactory circuitry of Drosophila melanogaster.
Schubert, Marco; Hansson, Bill S; Sachse, Silke
2014-01-01
Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca(2+) signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions.
Odor detection of mixtures of homologous carboxylic acids and coffee aroma compounds by humans.
Miyazawa, Toshio; Gallagher, Michele; Preti, George; Wise, Paul M
2009-11-11
Mixture summation among homologous carboxylic acids, that is, the relationship between detection probabilities for mixtures and detection probabilities for their unmixed components, varies with similarity in carbon-chain length. The current study examined detection of acetic, butyric, hexanoic, and octanoic acids mixed with three other model odorants that differ greatly from the acids in both structure and odor character, namely, 2-hydroxy-3-methylcyclopent-2-en-1-one, furan-2-ylmethanethiol, and (3-methyl-3-sulfanylbutyl) acetate. Psychometric functions were measured for both single compounds and binary mixtures (2 of 5, forced-choice method). An air dilution olfactometer delivered stimuli, with vapor-phase calibration using gas chromatography-mass spectrometry. Across the three odorants that differed from the acids, acetic and butyric acid showed approximately additive (or perhaps even supra-additive) summation at low perithreshold concentrations, but subadditive interactions at high perithreshold concentrations. In contrast, the medium-chain acids showed subadditive interactions across a wide range of concentrations. Thus, carbon-chain length appears to influence not only summation with other carboxylic acids but also summation with at least some unrelated compounds.
Odor analysis of decomposing buried human remains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vass, Arpad Alexander; Smith, Rob R; Thompson, Cyril V
2008-01-01
This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), lists and ranks the primary chemical constituents which define the odor of decomposition of human remains as detected at the soil surface of shallow burial sites. Triple sorbent traps were used to collect air samples in the field and revealed eight major classes of chemicals which now contain 478 specific volatile compounds associated with burial decomposition. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and were collected below and above the body, and at the soil surface of 1.5-3.5 ft. (0.46-1.07 m) deep burial sites of four individualsmore » over a 4-year time span. New data were incorporated into the previously established Decompositional Odor Analysis (DOA) Database providing identification, chemical trends, and semi-quantitation of chemicals for evaluation. This research identifies the 'odor signatures' unique to the decomposition of buried human remains with projected ramifications on human remains detection canine training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.« less
Borg-Karlson, A K; Tengö, J
1986-09-01
The hypothesis of chemical mimesis in the relationship betweenOphrys orchids and their pollinators was tested experimentally using preparations ofOphrys lutea var.lutea odor and the males of the solitary beeAndrena fuscipes, a species constellation that does not coexist under natural conditions. Correspondence in odor production was shown to occur. Identification of the compounds in the cephalic secretion ofA. fuscipes, males and females, and the flower labella extracts, was performed by gas chromatography and mass spectrometry. Geraniol, nerol, citral,E,E-farnesol and 6-methyl-5-hepten-2-one were present in the extracts of both the orchid and one or both sexes of the bee. Extracts, TLC fractions of extracts, blends, and separate compounds were tested in the field in the mating flight areas ofA. fuscipes males. Extracts and blends containingE,E-farnesol, geraniol, and geranial showed the highest attractivity to the male bees. These compounds seem to be responsible for the release of the odor-guided mating behavior at theO. lutea labellum and can be regarded as general attractants for many species ofAndrena.
49 CFR 172.326 - Portable tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... petroleum gas (LPG) that is unodorized as authorized in § 173.315(b)(1) unless it is legibly marked NON... the portable tank are not visible. (d) NON-ODORIZED marking on portable tanks containing LPG. After...
Chen, Shuang; Xu, Yan; Qian, Michael C
2013-11-27
The aroma profile of Chinese rice wine was investigated in this study. The volatile compounds in a traditional Chinese rice wine were extracted using Lichrolut EN and further separated by silica gel normal phase chromatography. Seventy-three aroma-active compounds were identified by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). In addition to acids, esters, and alcohols, benzaldehyde, vanillin, geosmin, and γ-nonalactone were identified to be potentially important to Chinse rice wine. The concentration of these aroma-active compounds in the Chinese rice wine was further quantitated by combination of four different methods, including headsapce-gas chromatography, solid phase microextraction-gas chromatography (SPME)-GC-MS, solid-phase extraction-GC-MS, and SPME-GC-pulsed flame photometric detection (PFPD). Quantitative results showed that 34 aroma compounds were at concentrations higher than their corresponding odor thresholds. On the basis of the odor activity values (OAVs), vanillin, dimethyl trisulfide, β-phenylethyl alcohol, guaiacol, geosmin, and benzaldehyde could be responsible for the unique aroma of Chinese rice wine. An aroma reconstitution model prepared by mixing 34 aroma compounds with OAVs > 1 in an odorless Chinese rice wine matrix showed a good similarity to the aroma of the original Chinese rice wine.
Guichard, Hugues; Lemesle, Stéphane; Ledauphin, Jérôme; Barillier, Daniel; Picoche, Bernard
2003-01-15
Eight freshly distilled samples of Calvados, a fermented and distilled apple juice, were analyzed by sensory evaluation and direct injection GC to determine the composition of higher alcohols, esters, and aldehydes. The composition determined by direct injection was tentatively related to sensory descriptors. Esters have a probable maximum level around 500 g/hl of pure alcohol (PA). This level also corresponds to the threshold of the main ester constituent, ethyl acetate. A high ratio of esters to ethyl acetate seems to be of prime importance for good quality. Total aldehydes, with a maximum level between 8 and 11 g/hl of PA and mainly comprising acetal (maximum between 5 and 9 g/hl of PA), were related to a "green" descriptor. Higher alcohols do not have a direct impact on quality, but other volatile compounds with a positive impact on flavor should probably be present at a high level. As overall quality was not well related to sensory quality, it was necessary to perform more a precise analysis to determine the key odorants. The Calvados samples were thus extracted using pentane. Gas chromatography, employing both a flame ionization detector and an olfactometry port, was used to analyze the obtained extracts. Seventy-one odors were detected and distributed according to Calvados quality determined by sensory evaluation. Nineteen odors common to all Calvados samples constituted the "skeleton" of the aroma. Twenty-eight odors were specific to a quality class: 6 for good quality, 4 for neutral, and 18 for defective. Twenty-four other odors had either too low an odor impact or no evident specificity.
Jha, Sunil K; Hayashi, Kenshi
2015-03-01
In present work, a novel quartz crystal microbalance (QCM) sensor array has been developed for prompt identification of primary aldehydes in human body odor. Molecularly imprinted polymers (MIP) are prepared using the polyacrylic acid (PAA) polymer matrix and three organic acids (propenoic acid, hexanoic acid and octanoic acid) as template molecules, and utilized as QCM surface coating layer. The performance of MIP films is characterized by 4-element QCM sensor array (three coated with MIP layers and one with pure PAA for reference) dynamic and static responses to target aldehydes: hexanal, heptanal, and nonanal in single, binary, and tertiary mixtures at distinct concentrations. The target aldehydes were selected subsequent to characterization of body odor samples with solid phase-micro extraction gas chromatography mass spectrometer (SPME-GC-MS). The hexanoic acid and octanoic acid imprinted PAA exhibit fast response, and better sensitivity, selectivity and reproducibility than the propenoic acid, and non-imprinted PAA in array. The response time and recovery time for hexanoic acid imprinted PAA are obtained as 5 s and 12 s respectively to typical concentrations of binary and tertiary mixtures of aldehydes using the static response. Dynamic sensor array response matrix has been processed with principal component analysis (PCA) for visual, and support vector machine (SVM) classifier for quantitative identification of target odors. Aldehyde odors were identified successfully in principal component (PC) space. SVM classifier results maximum recognition rate 79% for three classes of binary odors and 83% including single, binary, and tertiary odor classes in 3-fold cross validation. Copyright © 2014 Elsevier B.V. All rights reserved.
Markó, Gábor; Novák, Ildikó; Bernáth, Jeno; Altbäcker, Vilmos
2011-07-01
Chemical polymorphism may contribute to variation in browsing damage by mammalian herbivores. Earlier, we demonstrated that essential oil concentration in juniper, Juniperus communis, was negatively associated with herbivore browsing. The aim of the present study was to characterize the volatile chemical composition of browsed and non-browsed J. communis. By using either gas chromatography with flame ionization detection (GC-FID) or an electronic nose device, we could separate sheep-browsed or non-browsed juniper shrubs by their essential oil pattern and complex odor matrix. The main components of the essential oil from J. communis were monoterpenes. We distinguished three chemotypes, dominated either by α-pinene, sabinene, or δ-3-carene. Shrubs belonging to the α-pinene- or sabinene-dominated groups were browsed, whereas all individuals with the δ-3-carene chemotype were unused by the local herbivores. The electronic nose also separated the browsed and non-browsed shrubs indicating that their odor matrix could guide sheep browsing. Responses of sheep could integrate the post-ingestive effects of plant secondary metabolites with sensory experience that stems from odor-phytotoxin interactions. Chemotype diversity could increase the survival rate in the present population of J. communis as certain shrubs could benefit from relatively better chemical protection against the herbivores.
Gikonyo, Nicholas K; Hassanali, Ahmed; Njagi, Peter G N; Saini, Rajinder K
2003-10-01
In a previous study, comparison of the behavior of teneral Glossina morsitans morsitans on waterbuck, Kobus defassa (a refractory host), and on two preferred hosts, buffalo, Syncerus caffer, and ox, Bos indicus, suggested the presence of allomones in the waterbuck odor. Examination of the volatile odors by coupled gas chromatography-electroantennographic detection showed that the antennal receptors of the flies detected constituents common to the three bovids (phenols and aldehydes), as well as a series of compounds specific to waterbuck, including C8-C13 methyl ketones, delta-octalactone, and phenols. In this study, behavioral respones of teneral G. m. morsitans to different blends of these compounds were evaluated in a choice wind tunnel. The flies' responses to known or putative attractant blends (the latter comprising EAG-active constituents common to all three animals and those common to buffalo and ox, excluding the known tseste attractants, 4-methylphenol and 3-n-propylphenol), and to putative repellent (the blend of EAG-active compounds specific to the waterbuck volatiles), were different. A major difference related to their initial and final behaviors. When a choice of attractant blends (known or putative) and clean air was presented, flies initially responded by flying upwind toward the odor source, but later moved downwind and rested on either side of the tunnel, with some preference for the side with the odor treatments. However, when presented with a choice of waterbuck-specific blend (putative repellent) and clean air, the flies' initial reaction appeared random; flies flew upwind on either side, but eventually settled down on the odorless side of the tunnel. Flies that flew up the odor plume showed an aversion behavior to the blend. The results lend further support to previous indications for the existence of a tsetse repellent blend in waterbuck body odor and additional attractive constituents in buffalo and ox body odors.
Zhao, Pengtao; Gao, Jinxin; Qian, Michael; Li, Hua
2017-06-24
The key aroma compounds and the organoleptic quality of two Chinese Syrah wines from the Yunnan Shangri-La region and Ningxia Helan mountain region were characterized. The most important eighty aroma-active compounds were identified by Gas Chromatography-Olfactometry. In both Syrah samples, ethyl 2-methylpropanoate, ethyl 3-methylbutanoate, 3-methylbutyl acetate, 2- and 3-methyl-1-butanol, ethyl hexanoate, ethyl octanoate, 2-phenethyl acetate, methional, 3-methylbutanoic acid, hexanoic acid, octanoic acid, β -damascenone, guaiacol, 2-phenylethanol, trans -whiskylactone, 4-ethylguaiacol, eugenol, 4-ethylphenol, and sotolon were detected to have the highest odor intensities. In the chemical analysis, 72 compounds were quantitated by Stir Bar Sorptive Extraction combined with Gas Chromatography Mass Spectrometry. Based on the Odor Activity Value (OAV), the aromas were reconstituted by combining aroma compounds in the synthetic wine, and sensory descriptive analysis was used to verify the chemical data. Fatty acid ethyl esters, acetate esters, and β -damascenone were found with higher OAVs in the more fruity-smelling sample of Helan Mountain rather than Shangri-La.
Olfaction: New Understandings, Diagnostic Applications.
Ruggiero, Gabrielle F; Wick, Jeannette Y
2016-11-01
Estimates indicate that 14 million Americans have olfactory dysfunction. As with other senses, such as sight and hearing, olfaction frequently declines with age. Impaired olfaction can be a warning sign of Parkinson's disease, sometimes occurring before motor symptoms develop. It's also an initial symptom of Alzheimer's dementia (AD); the amyloid plaques and tangles characterizing AD invade the olfactory bulb and hippocampus early in its course, hampering odor identification. Olfactory dysfunction is associated with some serious problems, including inability to smell warning odors (fire, gas) and impaired ability to taste food. Standardized, validated methods are available to measure several different dimensions of olfactory function, including odor identification, discrimination, and threshold levels. Researchers are currently studying the unique olfactory deficits associated with different conditions in hopes of identifying new, noninvasive tools for early diagnosis and treatment. Drugs may cause or contribute to olfactory dysfunction, but it can be difficult to pinpoint offending medications.
The banana code—natural blend processing in the olfactory circuitry of Drosophila melanogaster
Schubert, Marco; Hansson, Bill S.; Sachse, Silke
2014-01-01
Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca2+ signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions. PMID:24600405
Li, Jia-Xiao; Schieberle, Peter; Steinhaus, Martin
2012-11-14
An aroma extract dilution analysis applied on the volatile fraction isolated from Thai durian by solvent extraction and solvent-assisted flavor evaporation resulted in 44 odor-active compounds in the flavor dilution (FD) factor range of 1-16384, 41 of which could be identified and 24 that had not been reported in durian before. High FD factors were found for ethyl (2S)-2-methylbutanoate (fruity; FD 16384), ethyl cinnamate (honey; FD 4096), and 1-(ethylsulfanyl)ethanethiol (roasted onion; FD 1024), followed by 1-(ethyldisulfanyl)-1-(ethylsulfanyl)ethane (sulfury, onion), 2(5)-ethyl-4-hydroxy-5(2)-methylfuran-3(2H)-one (caramel), 3-hydroxy-4,5-dimethylfuran-2(5H)-one (soup seasoning), ethyl 2-methylpropanoate (fruity), ethyl butanoate (fruity), 3-methylbut-2-ene-1-thiol (skunky), ethane-1,1-dithiol (sulfury, durian), 1-(methylsulfanyl)ethanethiol (roasted onion), 1-(ethylsulfanyl)propane-1-thiol (roasted onion), and 4-hydroxy-2,5-dimethylfuran-3(2H)-one (caramel). Among the highly volatile compounds screened by static headspace gas chromatography-olfactometry, hydrogen sulfide (rotten egg), acetaldehyde (fresh, fruity), methanethiol (rotten, cabbage), ethanethiol (rotten, onion), and propane-1-thiol (rotten, durian) were found as additional potent odor-active compounds. Fourteen of the 41 characterized durian odorants showed an alkane-1,1-dithiol, 1-(alkylsulfanyl)alkane-1-thiol, or 1,1-bis(alkylsulfanyl)alkane structure derived from acetaldehyde, propanal, hydrogen sulfide, and alkane-1-thiols. Among these, 1-(propylsulfanyl)ethanethiol, 1-{[1-(methylsulfanyl)ethyl]sulfanyl}ethanethiol, and 1-{[1-(ethylsulfanyl)ethyl]sulfanyl}ethanethiol were reported for the first time in a natural product.
Zhang, Huiying; Pu, Dandan; Sun, Baoguo; Ren, Fazheng; Zhang, Yuyu; Chen, Haitao
2018-08-30
A study was carried out to determine and compare the key aroma compounds in raw and dry porcini mushroom (Boletus edulis). The volatile fractions were prepared by solvent-assisted flavor evaporation (SAFE), and aroma extract dilution analysis (AEDA) combined with gas chromatography-mass spectrometry (GC-MS) was employed to identify the odorants. Selected aroma compounds were quantitated and odor activity values (OAVs) were calculated revealing OAVs ≥ 1 for 12 compounds in raw porcini, among which 1-octen-3-one showed the highest OAV. In addition to compounds with eight carbon atoms, 3-methylbutanal, (E,E)-2,4-decadienal and (E,E)-2,4-nonadienal were also responsible for the unique aroma profile. In dry mushroom OAVs ≥ 1 were obtained for 20 odorants. Among them, 3-(methylthio)propanal, 1-octen-3-one and pyrazines were determined as predominant odorants. Overall, drying increased complexity of volatile compounds, thus significantly changing the aroma profile of porcini, providing more desirable roasted and seasoning-like flavor and less grass-like and earthy notes. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objective of this experiment was to determine the effects of differing ratios of forage to concentrate (F:C) and fiber levels on odor and gas emissions from manure. Eight Holstein dairy heifers (362.45 ± 4.53 d of age and 335.6 ± 7.41 kg of body weight) were randomly assigned to a split-plot, 4 ...
Development of an Alternative Mixed Odor Delivery Device (MODD) for Canine Training
2017-05-10
solid phase microextraction (SPME) and analysis by gas chromatography / mass spectrometry (GC/MS). Like the computational modeling, the laboratory...outlet was extracted by solid phase microextraction (SPME) and analyzed by gas chromatography with mass spectrometry (GC/MS). A polydimethylsiloxane...Menning and H. Ostmark, "Detection of liquid and homemade explosives: What do we need to know about their properties?," in Detection of Liquid
Glomerular latency coding in artificial olfaction.
Yamani, Jaber Al; Boussaid, Farid; Bermak, Amine; Martinez, Dominique
2011-01-01
Sensory perception results from the way sensory information is subsequently transformed in the brain. Olfaction is a typical example in which odor representations undergo considerable changes as they pass from olfactory receptor neurons (ORNs) to second-order neurons. First, many ORNs expressing the same receptor protein yet presenting heterogeneous dose-response properties converge onto individually identifiable glomeruli. Second, onset latency of glomerular activation is believed to play a role in encoding odor quality and quantity in the context of fast information processing. Taking inspiration from the olfactory pathway, we designed a simple yet robust glomerular latency coding scheme for processing gas sensor data. The proposed bio-inspired approach was evaluated using an in-house SnO(2) sensor array. Glomerular convergence was achieved by noting the possible analogy between receptor protein expressed in ORNs and metal catalyst used across the fabricated gas sensor array. Ion implantation was another technique used to account both for sensor heterogeneity and enhanced sensitivity. The response of the gas sensor array was mapped into glomerular latency patterns, whose rank order is concentration-invariant. Gas recognition was achieved by simply looking for a "match" within a library of spatio-temporal spike fingerprints. Because of its simplicity, this approach enables the integration of sensing and processing onto a single-chip.
Meat Quality Assessment by Electronic Nose (Machine Olfaction Technology)
Ghasemi-Varnamkhasti, Mahdi; Mohtasebi, Seyed Saeid; Siadat, Maryam; Balasubramanian, Sundar
2009-01-01
Over the last twenty years, newly developed chemical sensor systems (so called “electronic noses”) have made odor analyses possible. These systems involve various types of electronic chemical gas sensors with partial specificity, as well as suitable statistical methods enabling the recognition of complex odors. As commercial instruments have become available, a substantial increase in research into the application of electronic noses in the evaluation of volatile compounds in food, cosmetic and other items of everyday life is observed. At present, the commercial gas sensor technologies comprise metal oxide semiconductors, metal oxide semiconductor field effect transistors, organic conducting polymers, and piezoelectric crystal sensors. Further sensors based on fibreoptic, electrochemical and bi-metal principles are still in the developmental stage. Statistical analysis techniques range from simple graphical evaluation to multivariate analysis such as artificial neural network and radial basis function. The introduction of electronic noses into the area of food is envisaged for quality control, process monitoring, freshness evaluation, shelf-life investigation and authenticity assessment. Considerable work has already been carried out on meat, grains, coffee, mushrooms, cheese, sugar, fish, beer and other beverages, as well as on the odor quality evaluation of food packaging material. This paper describes the applications of these systems for meat quality assessment, where fast detection methods are essential for appropriate product management. The results suggest the possibility of using this new technology in meat handling. PMID:22454572
Zimmerman, L.R.; Ziegler, A.C.; Thurman, E.M.
2002-01-01
A method for the determination of two common odor-causing compounds in water, geosmin and 2-methylisoborneol, was modified and verified by the U.S. Geological Survey's Organic Geochemistry Research Group in Lawrence, Kansas. The optimized method involves the extraction of odor-causing compounds from filtered water samples using a divinylbenzene-carboxen-polydimethylsiloxane cross-link coated solid-phase microextraction (SPME) fiber. Detection of the compounds is accomplished using capillary-column gas chromatography/mass spectrometry (GC/MS). Precision and accuracy were demonstrated using reagent-water, surface-water, and ground-water samples. The mean accuracies as percentages of the true compound concentrations from water samples spiked at 10 and 35 nanograms per liter ranged from 60 to 123 percent for geosmin and from 90 to 96 percent for 2-methylisoborneol. Method detection limits were 1.9 nanograms per liter for geosmin and 2.0 nanograms per liter for 2-methylisoborneol in 45-milliliter samples. Typically, concentrations of 30 and 10 nanograms per liter of geosmin and 2-methylisoborneol, respectively, can be detected by the general public. The calibration range for the method is equivalent to concentrations from 5 to 100 nanograms per liter without dilution. The method is valuable for acquiring information about the production and fate of these odor-causing compounds in water.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
... unless you provide it in the body of your comment. If you send e-mail directly to EPA, your e-mail... maintenance product, vehicle wash, odor remover/eliminator, pressurized gas duster, tire or wheel cleaner, and...
Simon, Alison G; Mills, DeEtta K; Furton, Kenneth G
2017-06-01
Raffaelea lauricola, a fungus causing a vascular wilt (laurel wilt) in Lauraceae trees, was introduced into the United States in the early 2000s. It has devastated forests in the Southeast and has now moved into the commercial avocado groves in southern Florida. Trained detection canines are currently one of the few successful methods for early detection of pre-symptomatic diseased trees. In order to achieve the universal and frequent training required to have successful detection canines, it is desirable to create accessible, safe, and long-lasting training aids. However, identification of odorants and compounds is limited by several factors, including both the availability of chemicals and the need to present chemicals individually and in combination to detection canines. A method for the separation and identification of volatile organic compounds (VOCs) from environmental substances for the creation of such a canine training aid is presented here. Headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to identify the odors present in avocado trees infected with the R. lauricola phytopathogen. Twenty-eight compounds were detected using this method, with nine present in greater than 80% of samples. The majority of these compounds were not commercially available as standard reference materials, and a canine trial was designed to identify the active odors without the need of pure chemical compounds. To facilitate the creation of a canine training aid, the VOCs above R. lauricola were separated by venting a 0.53mm ID solgel-wax gas chromatography column to the atmosphere. Ten minute fractions of the odor profile were collected on cotton gauze in glass vials and presented to the detection canines in a series of field trials. The canines alerted to the VOCs from the vials that correspond to a portion of the chromatogram containing the most volatile species from R. lauricola. This innovative fractionation and collection method can be used to develop reliable and cost effective canine training aids. Copyright © 2017 Elsevier B.V. All rights reserved.
Whitehead, Terence R; Spence, Cheryl; Cotta, Michael A
2013-09-01
Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Odor and emissions produced during storage have increased the tension among rural neighbors and among urban and rural residents. Production of these compounds from stored manure is the result of microbial activity of the anaerobic bacteria populations during storage. In the current study, the inhibitory effects of condensed quebracho tannins on in vitro swine manure for reduction of microbial activity and reduced production of gaseous emissions, including the toxic odorant hydrogen sulfide produced by sulfate-reducing bacteria (SRB), was examined. Swine manure was collected from a local swine facility, diluted in anaerobic buffer, and mixed with 1 % w/v fresh feces. This slurry was combined with quebracho tannins, and total gas and hydrogen sulfide production was monitored over time. Aliquots were removed periodically for isolation of DNA to measure the SRB populations using quantitative PCR. Addition of tannins reduced overall gas, hydrogen sulfide, and methane production by greater than 90 % after 7 days of treatment and continued to at least 28 days. SRB population was also significantly decreased by tannin addition. qRT-PCR of 16S rDNA bacteria genes showed that the total bacterial population was also decreased in these incubations. These results indicate that the tannins elicited a collective effect on the bacterial population and also suggest a reduction in the population of methanogenic microorganisms as demonstrated by reduced methane production in these experiments. Such a generalized effect could be extrapolated to a reduction in other odor-associated emissions during manure storage.
Lee, Seung-Woo; Takahara, Naoki; Korposh, Sergiy; Yang, Do-Hyeon; Toko, Kiyoshi; Kunitake, Toyoki
2010-03-15
Quartz crystal microbalance (QCM) gas sensors based on the alternate adsorption of TiO(2) and polyacrilic acid (PAA) were developed for the sensitive detection of amine odors. Individual TiO(2) gel layers could be regularly assembled with a thickness of approximately 0.3 nm by the gas-phase surface sol-gel process (GSSG). The thickness of the poly(acrylic acid) (PAA) layer is dependent on its molecular weight, showing different thicknesses of approximately 0.4 nm for PAA(25) (Mw 250,000) and 0.6-0.8 nm for PAA(400) (Mw 4,000,000). The QCM sensors showed a linear response to ammonia in the concentration range 0.3-15 ppm, depending on the deposition cycle of the alternate TiO(2)/PAA layer. The ammonia binding is based on the acid-base interaction to the free carboxylic acid groups of PAA and the limit of detection (LOD) of the 20-cycle TiO(2)/PAA(400) film was estimated to be 0.1 ppm when exposed to ammonia. The sensor response was very fast and stable in a wide relative humidity (rH) range of 30-70%, showing almost the same frequency changes at a given concentration of ammonia. Sensitivity to n-butylamine and ammonia was higher than to pyridine, which is owing to the difference of molecular weight and basicity of the amine analytes. The alternate TiO(2)/PAA(400) films have a highly effective ability to capture amine odors, and the ambient ammonia concentration of 15 ppm could be condensed up to approximately 20,000 ppm inside the films.
Emissions from diesel and stratified charge powered cars. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, K.J.
A total of ten passenger cars, four powered by diesel engines, two by stratified charge gasoline engines, one by a stratified charge operating on gasoline and diesel fuel, two by control equipped conventional engines, and one powered by a gas turbine, have been subjected to a wide variety of emissions evaluations. The vehicles, all late model, low mileage, included a Nissan Datsun, a Mercedes 220D, a Peugeot 504D, an Opel Rekord 2100D, a standard Capri, a stratified charge (PROCO) Capri, a low emission prototype Ford LTD, the Texaco TCCS stratified charge powered Cricket operated on gasoline and on diesel fuel,more » a Honda CVCC stratified charge, and a Chrysler gas turbine car. All were 4-cylinder except the LTD and the gas turbine. Tailpipe emissions were measured by the 1975 light duty Federal Test Procedure for gaseous emissions. Smoke and fuel economy were also determined during this test cycle. Chassis dynamometer versions of the 1974 heavy duty diesel smoke and gaseous emissions tests were employed. Odor and related instrumental-chemical measurements were made under seven steady state and three acceleration conditions. The prototype diesel odor analytical system, developed under CRC contract, was applied to the exhaust from both diesel and gasoline engines. Its use as a predictive method of diesel odor was investigated. Noise measurements were taken by SAE driveby as well as under a variety of exterior-interior conditions. Comparisons of the results for all vehicles are by emission category. The emissions from the group of diesel cars are compared to the conventional gasoline, Ford PROCO, Texas TCCS, and Honda CVCC.« less
Govere, Ephraim M; Tonegawa, Masami; Bruns, Mary Ann; Wheeler, Eileen F; Kephart, Kenneth B; Voigt, Jean W; Dec, Jerzy
2007-04-01
Enzymes that have proven to be capable of removing toxic compounds from water and soil may also be useful in the deodorization of animal manures. Considering that pork production in the US is a $40-billion industry with over half a million workers, odor control to protect air quality in the neighboring communities must be considered an essential part of managing livestock facilities. This pilot scale (20-120 L) study tested the use of minced horseradish (Armoracia rusticana L.) roots (1:10 roots to swine slurry ratio), with calcium peroxide (CaO(2) at 34 mM) or hydrogen peroxide (H(2)O(2) at 68 mM), to deodorize swine slurry taken from a 40,000-gallon storage pit at the Pennsylvania State University's Swine Center. Horseradish is known to contain large amounts of peroxidase, an enzyme that, in the presence of peroxides, can polymerize phenolic odorants and thus reduce the malodor. Twelve compounds commonly associated with malodor (seven volatile fatty acids or VFAs, three phenolic compounds and two indolic compounds) were used as odor indicators. Their concentration in swine slurry before and after treatment was determined by gas chromatography (GC) to assess the deodorization effect. The pilot scale testing demonstrated a complete removal of phenolic odorants (with a detection limit of 0.5 mg L(-1)) from the swine slurry, which was consistent with our previous laboratory experiments using 30-mL swine slurry samples. Horseradish could be recycled (reused) five times while retaining significant reduction in the concentration of phenolic odorants. In view of these findings, inexpensive plant materials, such as horseradish, represent a promising tool for eliminating phenolic odorants from swine slurry.
Setchell, Joanna M; Vaglio, Stefano; Moggi-Cecchi, Jacopo; Boscaro, Francesca; Calamai, Luca; Knapp, Leslie A
2010-03-01
Primates are traditionally considered to be microsmatic, with decreased reliance on olfactory senses in comparison to other sensory modalities such as vision. This is particularly the case for Old World monkeys and apes (catarrhines). However, various lines of evidence suggest that chemical communication may be important in these species, including the presence of a sternal scent-gland in the mandrill. We investigated the volatile components of mandrill odor using gas chromatography-mass spectrometry. We identified a total of 97 volatile components in 88 swabs of the sternal gland secretion and 95 samples of sternal gland hair saturated with scent-gland secretion collected from 27 males and 18 females. We compared odor profiles with features of the signaler using principle components and discriminant function analyses and found that volatile profiles convey both variable (age, dominance rank in males) and fixed (sex, possibly individual identity) information about the signaler. The combination of an odor profile that signals sex, age, and rank with increased motivation to scent-mark and increased production of secretion in high-ranking males leads to a potent signal of the presence of a dominant, adult male with high testosterone levels. This may be particularly relevant in the dense Central African rain forest which mandrills inhabit. By contrast, we were unable to differentiate between either female cycle stage or female rank based on odor profiles, which accords with behavioral studies suggesting that odor signals are not as important in female mandrills as they are in males. The similarity of our findings to those for other mammals and in primates that are more distantly related to humans suggests a broader role for odor in primate communication than is currently recognized.
Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang
2009-02-01
Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.
1987-01-01
Both regional differences in mucosal sensitivity and a gas chromatography-like process along the mucosal sheet have been separately proposed in two sets of earlier studies to produce different odorant-dependent activity patterns across the olfactory mucosa. This investigation evaluated, in one study, whether and to what degree these two mechanisms contribute to the generation of these activity patterns. Summated multiunit discharges were simultaneously recorded from lateral (LN) and medial (MN) sites on the bullfrog's olfactory nerve to sample the mucosal activity occurring near the internal and external nares, respectively. Precisely controlled sniffs of four odorants (benzaldehyde, butanol, geraniol, and octane) were drawn through the frog's olfactory sac in both the forward (H1) and reverse (H2) hale directions. By combining the four resulting measurements, LNH1, LNH2, MNH1, and MNH2, in different mathematical expressions, indexes reflecting the relative effects of the chromatographic process, regional sensitivity, and hale direction could be calculated. Most importantly, the chromatographic process and the regional sensitivity differences both contributed significantly to the mucosal activity patterns. However, their relative roles varied markedly among the four odorants, ranging from complete dominance by either one to substantial contributions from each. In general, the more strongly an odorant was sorbed by the mucosa, the greater was the relative effect of the chromatographic process; the weaker the sorption, the greater the relative effect of regional sensitivity. Similarly, the greater an odorant's sorption, the greater was the effect of hale direction. Other stimulus variables (sniff volume, sniff duration, and the number of molecules within the sniff) had marked effects upon the overall size of the response. For strongly sorbed odorants, the effect of increasing volume was positive; for a weakly sorbed odorant, it was negative. The reverse may be true for duration. In contrast, the effect of increasing the number of molecules was uniformly positive for all four odorants. However, there was little evidence that these other stimulus variables had a major influence upon the effects of the chromatographic process and regional sensitivity differences in their generation of mucosal activity patterns. PMID:3500998
Removal of nitrogen oxides from gas streams by biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, K.B.; Barnes, J.M.; Apel, W.A.
1994-12-31
Nitrogen oxides (NO{sub x}) are primary air pollutants and, as such, there is considerable interest in the development of efficient, cost effective technologies to remediate NO{sub x} containing emissions. Biofiltration involves the venting of contaminated gas streams through biologically active material such as soil or compost. This technology has been used successfully to control odors as well as volatile organic compounds from a variety of industrial and public sources. The purpose of this study was to evaluate the feasibility of using biofiltration to convert NO{sub x} to nitrogen gas.
Zhou, Huaying; Luo, Dehan; GholamHosseini, Hamid; Li, Zhong; He, Jiafeng
2017-01-01
This paper provides a review of the most recent works in machine olfaction as applied to the identification of Chinese Herbal Medicines (CHMs). Due to the wide variety of CHMs, the complexity of growing sources and the diverse specifications of herb components, the quality control of CHMs is a challenging issue. Much research has demonstrated that an electronic nose (E-nose) as an advanced machine olfaction system, can overcome this challenge through identification of the complex odors of CHMs. E-nose technology, with better usability, high sensitivity, real-time detection and non-destructive features has shown better performance in comparison with other analytical techniques such as gas chromatography-mass spectrometry (GC-MS). Although there has been immense development of E-nose techniques in other applications, there are limited reports on the application of E-noses for the quality control of CHMs. The aim of current study is to review practical implementation and advantages of E-noses for robust and effective odor identification of CHMs. It covers the use of E-nose technology to study the effects of growing regions, identification methods, production procedures and storage time on CHMs. Moreover, the challenges and applications of E-nose for CHM identification are investigated. Based on the advancement in E-nose technology, odor may become a new quantitative index for quality control of CHMs and drug discovery. It was also found that more research could be done in the area of odor standardization and odor reproduction for remote sensing. PMID:28486407
Zhou, Huaying; Luo, Dehan; GholamHosseini, Hamid; Li, Zhong; He, Jiafeng
2017-05-09
This paper provides a review of the most recent works in machine olfaction as applied to the identification of Chinese Herbal Medicines (CHMs). Due to the wide variety of CHMs, the complexity of growing sources and the diverse specifications of herb components, the quality control of CHMs is a challenging issue. Much research has demonstrated that an electronic nose (E-nose) as an advanced machine olfaction system, can overcome this challenge through identification of the complex odors of CHMs. E-nose technology, with better usability, high sensitivity, real-time detection and non-destructive features has shown better performance in comparison with other analytical techniques such as gas chromatography-mass spectrometry (GC-MS). Although there has been immense development of E-nose techniques in other applications, there are limited reports on the application of E-noses for the quality control of CHMs. The aim of current study is to review practical implementation and advantages of E-noses for robust and effective odor identification of CHMs. It covers the use of E-nose technology to study the effects of growing regions, identification methods, production procedures and storage time on CHMs. Moreover, the challenges and applications of E-nose for CHM identification are investigated. Based on the advancement in E-nose technology, odor may become a new quantitative index for quality control of CHMs and drug discovery. It was also found that more research could be done in the area of odor standardization and odor reproduction for remote sensing.
Zhan, Ping; Tian, Honglei; Zhang, Xiaoming; Wang, Liping
2013-03-15
Changes in the aroma characteristics of mutton process flavors (MPFs) prepared from sheep bone protein hydrolysates (SBPHs) with different degrees of hydrolysis (DH) were evaluated using gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and descriptive sensory analysis (DSA). Five attributes (muttony, meaty, roasted, mouthful, and simulate) were selected to assess MPFs. The results of DSA showed a distinct difference among the control sample MPF0 and other MPF samples with added SBPHs for different DHs of almost all sensory attributes. MPF5 (DH 25.92%) was the strongest in the muttony, meaty, and roasted attributes, whereas MPF6 (DH 30.89%) was the strongest in the simulate and roasted attributes. Thirty-six compounds were identified as odor-active compounds for the evaluation of the sensory characteristics of MPFs via GC-MS-O analysis. The results of correlation analysis among odor-active compounds, molecular weight, and DSA further confirmed that the SBPH with a DH range of 25.92-30.89% may be a desirable precursor for the sensory characteristics of MPF. Copyright © 2013 Elsevier B.V. All rights reserved.
Hernandez Bennetts, Victor; Lilienthal, Achim J; Neumann, Patrick P; Trincavelli, Marco
2011-01-01
Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms.
Hernandez Bennetts, Victor; Lilienthal, Achim J.; Neumann, Patrick P.; Trincavelli, Marco
2011-01-01
Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully “translated” into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms. PMID:22319493
Kiwifruit Flower Odor Perception and Recognition by Honey Bees, Apis mellifera.
Twidle, Andrew M; Mas, Flore; Harper, Aimee R; Horner, Rachael M; Welsh, Taylor J; Suckling, David M
2015-06-17
Volatile organic compounds (VOCs) from male and female kiwifruit (Actinidia deliciosa 'Hayward') flowers were collected by dynamic headspace sampling. Honey bee (Apis mellifera) perception of the flower VOCs was tested using gas chromatography coupled to electroantennogram detection. Honey bees consistently responded to six compounds present in the headspace of female kiwifruit flowers and five compounds in the headspace of male flowers. Analysis of the floral volatiles by gas chromatography-mass spectrometry and microscale chemical derivatization showed the compounds to be nonanal, 2-phenylethanol, 4-oxoisophorone, (3E,6E)-α-farnesene, (6Z,9Z)-heptadecadiene, and (8Z)-heptadecene. Bees were then trained via olfactory conditioning of the proboscis extension response (PER) to synthetic mixtures of these compounds using the ratios present in each flower type. Honey bees trained to the synthetic mixtures showed a high response to the natural floral extracts, indicating that these may be the key compounds for honey bee perception of kiwifruit flower odor.
Membrane Inlet Mass Spectrometry for Homeland Security and Forensic Applications
NASA Astrophysics Data System (ADS)
Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; France, Neil
2015-02-01
A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times.
Membrane inlet mass spectrometry for homeland security and forensic applications.
Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; France, Neil
2015-02-01
A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times.
Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme
2016-05-01
Due to lipid oxidation, off-flavors, characterized by a fishy odor, are emitted during the heating of rapeseed oil in a fryer and affect the flavor of rapeseed oil even at low concentrations. Thus, there is a need for analytical methods to identify and quantify these products. To study the headspace composition of degraded rapeseed oil, and more specifically the compounds responsible for the fishy odor, a headspace trap gas chromatography with mass spectrometry method was developed and validated. Six volatile compounds formed during the degradation of rapeseed oil were quantified: 1-penten-3-one, (Z)-4-heptenal, hexanal, nonanal, (E,E)-heptadienal, and (E)-2-heptenal. Validation using accuracy profiles allowed us to determine the valid ranges of concentrations for each compound, with acceptance limits of 40% and tolerance limits of 80%. This method was then successfully applied to real samples of degraded oils. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of nitrite on a thermophilic, methanogenic consortium from an oil storage tank.
Kaster, Krista M; Voordouw, Gerrit
2006-10-01
Samples from an oil storage tank (resident temperature 40 to 60 degrees C), which experienced unwanted periodic odorous gas emissions, contained up to 2,400/ml of thermophilic, lactate-utilizing, sulfate-reducing bacteria. Significant methane production was also evident. Enrichments on acetate gave sheathed filaments characteristic of the acetotrophic methanogen Methanosaeta thermophila of which the presence was confirmed by determining the PCR-amplified 16S rDNA sequence. 16S rDNA analysis of enrichments, grown on lactate- and sulfate-containing media, indicated the presence of bacteria related to Garciella nitratireducens, Clostridium sp. and Acinetobacter sp. These sulfidogenic enrichments typically produced sulfide to a maximum concentration of 5-7 mM in media containing excess lactate and 10 mM sulfate or thiosulfate. Both the production of sulfide and the consumption of acetate by the enrichment cultures were inhibited by low concentrations of nitrite (0.5-1.0 mM). Hence, addition of nitrite may be an effective way to prevent odorous gas emissions from the storage tank.
Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage.
Wu, Yuwen; Zhu, Baoqing; Tu, Cui; Duan, Changqing; Pan, Qiuhong
2011-05-11
Evolution of volatile components during litchi (Litchi chinensis Sonn.) winemaking was monitored, and aroma profiles of litchi wines bottle aged for 5 months at ambient temperature (25-28 °C) and low temperature (8-10 °C) were compared via headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The majority of terpenoids deriving from litchi juice decreased, even disappeared along with alcoholic fermentation, while terpenol oxides, ethers, and acetates came into being and increased. Ethyl octanote, isoamyl acetate, ethyl hexanoate, ethyl butanoate, cis-rose oxide, and trans-rose oxide had the highest odor activity values (OAVs) in young litchi wines. Six aromatic series were obtained by grouping OAVs of odor-active compounds with similar odor descriptions to establish the aroma profile for young litchi wines, and floral and fruity attributes were two major aroma series. Compared to ambient temperature when bottle aging, lower temperature benefited key aroma retention and expectantly extended the shelf life of young litchi wines.
Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster.
Zhu, Junwei; Park, Kye-Chung; Baker, Thomas C
2003-04-01
Bioassays with a variety of overripe fruits, including mango, plum, pear, and grape, and their extracts showed that odors from overripe mango were most attractive to adult vinegar flies, Drosophila melanogaster. Combined gas chromatography-electroantennographic detection (GC-EAD) analyses of solid-phase microextraction (SPME) and Tenax extracts of overripe mango odors showed that several volatile compounds, including ethanol, acetic acid, amyl acetate, 2-phenylethanol, and phenylethyl acetate elicited significant EAG responses from antennae of female flies. Most of the volatile compounds in the extracts were identified by mass spectral and retention index comparisons with synthetic standards. In cage bioassays, lures with a blend of ethanol, acetic acid, and 2-phenylethanol in a ratio of 1:22:5 attracted six times more flies than any single EAG-active compound. This blend also attracted four times more flies than traps baited with overripe mango or unripe mango. However, in field trials, the blend was not as attractive as suggested by the laboratory bioassay.
Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin
2016-05-04
The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.
Sensory-Analytical Comparison of the Aroma of Different Horseradish Varieties (Armoracia rusticana)
Kroener, Eva-Maria; Buettner, Andrea
2018-01-01
Horseradish (Armoracia rusticana) is consumed and valued for the characteristic spicy aroma of its roots in many countries all over the world. In our present study we compare six different horseradish varieties that were grown under comparable conditions, with regard to their aroma profiles, using combined sensory-analytical methods. Horseradish extracts were analyzed through gas chromatography-olfactometry (GC-O) and their aroma-active compounds ranked according to their smell potency using the concept of aroma extract dilution analysis (AEDA). Identification was carried out through comparison of retention indices, odor qualities and mass spectra with those of reference substances. Besides some differences in relative ratios, we observed some main odorants that were common to all varieties such as 3-isopropyl-2-methoxypyrazine and allyl isothiocyanate, but also characteristics for specific varieties such as higher contents for 3-isopropyl-2-methoxypyrazine in variety Nyehemes. Moreover, three odorous compounds were detected that have not been described in horseradish roots before. PMID:29868555
Ammonia emissions from cattle feeding operations.
USDA-ARS?s Scientific Manuscript database
Ammonia is a colorless gas with an pungent odor that occurs naturally in trace amounts in the atmosphere, where it is the dominant base. Ammonia is produced during the decomposition of livestock manure. There is concern about atmospheric ammonia because of its potential effects on air quality, wat...
Characterization of volatile aroma compounds in different brewing barley cultivars.
Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin
2015-03-30
Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.
Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina
2010-04-01
The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.
Li, Shou-Nan; Chang, Chin-Ta; Shih, Hui-Ya; Tang, Andy; Li, Alen; Chen, Yin-Yung
2003-01-01
A mobile extractive Fourier transform infrared (FTIR) spectrometer was successfully used to locate, identify, and quantify the "odor" sources inside the cleanroom of a semiconductor manufacturing plant. It was found that ozone (O(3)) gas with a peak concentration of 120 ppm was unexpectedly releasing from a headspace of a drain for transporting used ozonized water and that silicon tetrafluoride (SiF(4)) with a peak concentration of 3 ppm was off-gassed from silicon wafers after dry-etching processing. When the sources of the odors was pinpointed by the FTIR, engineering control measures were applied. For O(3) control, a water-sealed pipeline was added to prevent the O(3) gas (emitting from the ozonized water) from entering the mixing unit. A ventilation system also was applied to the mixing unit in case of O(3) release. For SiF(4) mitigation, before the wafer-out chamber was opened, N(2) gas with a flow rate of 150 L/min was used for 100 sec to purge the wafer-out chamber, and a vacuum system was simultaneously activated to pump away the purging N(2). The effectiveness of the control measures was assured by using the FTIR. In addition, the FTIR was used to monitor the potential hazardous gas emissions during preventative maintenance of the semiconductor manufacturing equipment.
IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR HYDROGEN SULFIDE (EXTERNAL REVIEW DRAFT)
Hydrogen sulfide (H2S) is a colorless gas with a strong odor of rotten eggs. Its primary uses include the production of elemental sulfur and sulfuric acid, the manufacture of heavy water and other chemicals. Occupational exposure occurs primarily from its presence in petroleum, n...
ELEVATED DISSOLVED SULFIDES IN SURFICIAL SEDIMENTS OF YAQUINA BAY ESTUARY, OREGON
Dissolved sulfide concentrations were measured in porewater of surficial sediments collected from two exposed intertidal sites in Yaquina Bay, Oregon. Idaho Pt. (IP) is an area where drift green macroalgae is known to accumulate, and the odor of hydrogen sulfide gas (H2S) on th...
USDA-ARS?s Scientific Manuscript database
A lab-scaled simulated bedded pack model was developed to study air quality and nutrient composition of deep-bedded packs found in cattle monoslope facilities. This protocol has been used to effectively evaluate many different bedding materials, environmental variables (temperature, humidity), and ...
Analyses of volatile organic compounds from human skin
Gallagher, M.; Wysocki, C.J.; Leyden, J.J.; Spielman, A.I.; Sun, X.; Preti, G.
2008-01-01
Summary Background Human skin emits a variety of volatile metabolites, many of them odorous. Much previous work has focused upon chemical structure and biogenesis of metabolites produced in the axillae (underarms), which are a primary source of human body odour. Nonaxillary skin also harbours volatile metabolites, possibly with different biological origins than axillary odorants. Objectives To take inventory of the volatile organic compounds (VOCs) from the upper back and forearm skin, and assess their relative quantitative variation across 25 healthy subjects. Methods Two complementary sampling techniques were used to obtain comprehensive VOC profiles, viz., solid-phase micro extraction and solvent extraction. Analyses were performed using both gas chromatography/mass spectrometry and gas chromatography with flame photometric detection. Results Nearly 100 compounds were identified, some of which varied with age. The VOC profiles of the upper back and forearm within a subject were, for the most part, similar, although there were notable differences. Conclusions The natural variation in nonaxillary skin odorants described in this study provides a baseline of compounds we have identified from both endogenous and exogenous sources. Although complex, the profiles of volatile constituents suggest that the two body locations share a considerable number of compounds, but both quantitative and qualitative differences are present. In addition, quantitative changes due to ageing are also present. These data may provide future investigators of skin VOCs with a baseline against which any abnormalities can be viewed in searching for biomarkers of skin diseases. PMID:18637798
Soso, Simone B; Koziel, Jacek A
2016-06-25
Scent-marking is the most effective method of communication in the presence or absence of a signaler. These complex mixtures result in a multifaceted interaction triggered by the sense of smell. The objective was to identify volatile organic compound (VOC) composition and odors emitted by total marking fluid (MF) associated with Siberian tigers (Panthera tigris altaica). Siberian tiger, an endangered species, was chosen because its MF had never been analyzed. Solid phase microextraction (SPME) for headspace volatile collection combined with multidimensional gas chromatography-mass spectrometry-olfactometry for simultaneous chemical and sensory analyses were used. Thirty-two VOCs emitted from MF were identified. 2-acetyl-1-pyrroline, the sole previously identified compound responsible for the "characteristic" odor of P. tigris MF, was identified along with two additional compounds confirmed with standards (urea, furfural) and four tentatively identified compounds (3-methylbutanamine, (R)-3-methylcyclopentanone, propanedioic acid, and 3-hydroxybutanal) as being responsible for the characteristic aroma of Siberian tiger MF. Simultaneous chemical and sensory analyses improved characterization of scent-markings and identified compounds not previously reported in MF of other tiger species. This research will assist animal ecologists, behaviorists, and zookeepers in understanding how scents from specific MF compounds impact tiger and wildlife communication and improve management practices related to animal behavior. Simultaneous chemical and sensory analyses is applicable to unlocking scent-marking information for other species.
NASA Astrophysics Data System (ADS)
Cai, Lingshuang; Koziel, Jacek A.; O'Neal, Matthew E.
2009-05-01
Winemakers, small fruit growers, and homeowners are concerned with noxious compounds released by multicolored Asian ladybird beetles (Harmonia axyridis, Coleoptera: Coccinellidae). New method based on headspace solid phase microextraction (HS-SPME) coupled with multidimensional gas chromatography mass spectrometry—olfactometry (MDGC-MS-O) system was developed for extraction, isolation and simultaneous identification of compounds responsible for the characteristic odor of live H. axyridis. Four methoxypyrazines (MPs) were identified in headspace volatiles of live H. axyridis as those responsible for the characteristic odor: 2, 5-dimethy1-3-methoxypyrazine (DMMP), 2-isopropy1-3-methoxypyrazine (IPMP), 2-sec-buty1-3-methoxypyrazine (SBMP), and 2-isobuty1-3-methoxypyrazine (IBMP). To the best of our knowledge this is the first report of H. axyridis releasing DMMP and the first report of this compound being a component of the H. axyridis characteristic odor. Quantification of three MPs (IPMP, SBMP and IBMP) emitted from live H. axyridis were performed using external calibration with HS-SPME and direct injections. A linear relationship (R2>0.9958 for all 3 MPs) between MS response and concentration of standard was observed over a concentration range from 0.1 ng L-1 to 0.05 μg L-1 for HS-SPME-GC-MS. The method detection limits (MDL) based on multidimensional GC-MS approach for three MPs were estimated to be between 0.020 ng L-1. to 0.022 ng L-1. This methodology is applicable for in vivo determination of odor-causing chemicals associated with emissions of volatiles from insects.
Hosoglu, Fatih; Fitch, Mark W
2012-01-01
In this study, a single silicone rubber membrane biofilter was compared to a lava rock biotrickling filter to examine the aerobic biofiltration of synthetic landfill gas including odorous limonene. The membrane bioreactor and biotrickling filter showed, respectively, maximum elimination capacities of 17 g m(-3) h(-1) and 31.3 g m(-3) h(-1) for limonene and removal efficiencies of 11 % and 18 % for methane. The membrane bioreactor was apparently mass transfer-limited and the biotrickling filter was reaction-limited.
Jirovetz, Leopold; Buchbauer, Gerhard; Ngassoum, Martin Benoit; Geissler, Margit
2002-11-08
The investigation of aroma compounds of the essential oils of dried fruits of black pepper (Piper nigrum) and black and white "Ashanti pepper" (Piper guineense) from Cameroon by means of solid-phase microextraction (SPME) was carried out for the first time to identify the odorous target components responsible for the characteristic odor of these valuable spices and food flavoring products. By means of GC-flame ionization detection (FID) and GC-MS (using different polar columns) the main compounds (concentration >3.0%, calculated as area of GC-FID analysis using a non-polar fused-silica open tubular RSL-200 column) of the SPME headspace samples of P. nigrum (black) and P. guineense (black and white) were found to be: P. nigrum (black)--germacrene D (11.01%), limonene (10.26%), beta-pinene (10.02%), alpha-phellandrene (8.56%), beta-caryophyllene (7.29%), alpha-pinene (6.40%) and cis-beta-ocimene (3.19%); P. guineense (black)--beta-caryophyllene (57.59%), beta-elemene (5.10%), bicyclogermacrene (5.05%) and alpha-humulene (4.86%); and P. guineense (white)--beta-caryophyllene (51.75%), cis-beta-ocimene (6.61%), limonene (5.88%), beta-pinene (4.56%), linalool (3.97%) and alpha-humulene (3.29%). The most intense odor impressions of the essential oils of the various dried pepper fruits were given byprofessional perfumers as follows: P nigrum (black)--fine, pleasant black pepper note; P. guineense (black)--black pepper top-note; and P. guineense (white)--pleasant white pepper note. These analytical results for the SPME headspace samples of three different pepper species from Cameroon are in accordance with the olfactoric data of the corresponding essential oils. A GC-sniffing technique was used to correlate the single odor impression of the identified SPME headspace volatiles of the three investigated pepper samples with the following results: themain compounds such as beta-caryophyllene, germacrene D, limonene, beta-pinene, alpha-phellandrene and alpha-humulene, as well as minor constituents such as delta-carene, beta-phellandrene, isoborneol, alpha-guaiene, sarisan, elemicin, calamenene, caryophyllene alcohol, isoelemicin, T-muurolol, cubenol and bulnesol, are of greatest importance for the characteristic pepper odor notes of these three Piper samples. Further aroma impressions can be attributed to mono- and sesquiterpenes, hexane, octane and nonane derivatives.
Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection
Climent, Enric; Pelegri-Sebastia, Jose; Sogorb, Tomas; Talens, J. B.; Chilo, Jose
2017-01-01
In this paper, we describe a new low-cost and portable electronic nose instrument, the Multisensory Odor Olfactory System MOOSY4. This prototype is based on only four metal oxide semiconductor (MOS) gas sensors suitable for IoT technology. The system architecture consists of four stages: data acquisition, data storage, data processing, and user interfacing. The designed eNose was tested with experiment for detection of volatile components in water pollution, as a dimethyl disulphide or dimethyl diselenide or sulphur. Therefore, the results provide evidence that odor information can be recognized with around 86% efficiency, detecting smells unwanted in the water and improving the quality control in bottled water factories. PMID:28825645
Ikeura, Hiromi; Kohara, Kaori; Li, Xin-Xian; Kobayashi, Fumiyuki; Hayata, Yasuyoshi
2010-10-27
The leaves of coriander ( Coriandrum sativum L.) exhibited a strong deodorizing effect against porcine internal organs (large intestine). The effective deodorizing compounds of coriander were identified by separating the volatile component of coriander, testing the effectiveness of each fraction against the offensive odor of porcine large intestine, and then identifying the compounds by GC-MS. The volatile component of coriander was first separated into six fractions (A-F) by preparative gas chromatography, and the deodorizing activity of each of these fractions against the offensive odor was measured. Fraction D, which showed the strongest deodorizing effect, was then separated into 12 subfractions by preparative GC. The deodorant activity of each subfraction was evaluated, and the deodorant compounds were identified by GC-MS. It was discovered that (E,E)-2,4-undecadienal was the most effective deodorizing compound. The deodorizing activity of (E,E)-2,4-undecadienal on the porcine large intestine increased as with concentration, reaching almost complete deodorizing ability at 10 ppb.
Kortesniemi, Maaria; Rosenvald, Sirli; Laaksonen, Oskar; Vanag, Anita; Ollikka, Tarja; Vene, Kristel; Yang, Baoru
2018-04-25
The sensory-chemical profiles of Finnish honeys (labeled as buckwheat, cloudberry-bog, lingonberry, sweet clover, willowherb and multifloral honeys) were investigated using a multi-analytical approach. The sensory test (untrained panel, n = 62) was based on scaling and check-all-that-apply (CATA) methods accompanied with questions on preference and usage of honey. The results were correlated with corresponding profiles of odor-active compounds, determined using gas chromatography coupled with mass spectrometry/olfactometry (GC-MS/O). Botanical origins and chemical compositions including sugars were evaluated using NMR spectroscopy. A total of 73 odor-active compounds were listed based on GC-O. Sweet and mild honeys with familiar sensory properties were preferred by the panelists (PCA, R 2 X(1) = 0.7) while buckwheat and cloudberry-bog honeys with strong odor, flavor and color were regarded as unfamiliar and unpleasant. The data will give the honey industry novel information on honey properties in relation to the botanical origin, and consumer preference. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Odorous gas emissions from stored swine manure are becoming serious environmental and health issues as the livestock industry becomes more specialized, concentrated, and industrialized. These nuisance gasses include hydrogen sulfide (H2S), ammonia, and methane, which are produced as a result of ana...
Corral, Sara; Leitner, Erich; Siegmund, Barbara; Flores, Mónica
2016-01-01
The identification of odor-active sulfur and nitrogen compounds formed during the processing of dry fermented sausages was the objective of this study. In order to elucidate their possible origin, free amino acids (FAAs) were also determined. The volatile compounds present in the dry sausages were extracted using solvent assisted flavor evaporation (SAFE) and monitored by one and two-dimensional gas chromatography with different detectors: mass spectrometry (MS), nitrogen phosphorous (NPD), flame photometric (FPD) detectors, as well as gas chromatography-olfactometry. A total of seventeen sulfur and nitrogen compounds were identified and quantified. Among them, 2-acetyl-1-pyrroline was the most potent odor active compound, followed by methional, ethylpyrazine and 2,3-dihydrothiophene characterized by toasted, cooked potato, and nutty notes. The degradation of FAAs, generated during processing, was related to the production of aroma compounds, such as methionine forming methional and benzothiazole while ornithine was the precursor compound for 2-acetyl-1-pyrroline and glycine for ethylpyrazine. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Yufei; Hou, Hu; Li, Bafang
2016-06-01
Codfish is a kind of abyssal fish species with a great value in food industry. However, the flavor of codfish, especially the unpleasant odor, has caused serious problems in its processing. To accurately identify the volatile compounds in codfish, a combination of solid phase micro-extraction (SPME) method and simultaneous distillation extraction (SDE) method was used to extract the volatiles. Gas chromatography-mass spectrometry (GC-MS) along with Kovats indices (KI) and authentic standard compounds were used to identify the volatiles. The results showed that a total of 86 volatile compounds were identified in codfish, of them 24 were extracted by SDE, 69 compounds by SPME, and 10 compounds by both SDE and SPME. Seventy volatile compounds were found to have specific odors, of them 7 typical compounds contributed significantly to the flavor of codfish. Alcohols ( i.e., (E)-2-penten-1-ol and 2-octanol), esters ( i.e., ethyl butyrate and methyl geranate), aldehydes ( i.e., 2-dodecenal and pentadecanal) contributed the most to fresh flavor while nitrogen compounds, sulphur compounds, furans, as well as some ketones ( i.e., 2-hydroxy-3-pentanone) brought unpleasant odor, such as fishy and earthy odor. It was indicated that the combination of multiple extraction methods and GC-MS analysis can enhance the accuracy of identification, and provide a reference for the further study on flavor of aquatic products.
Behbod, Behrooz; Parker, Erin M; Jones, Erin A; Bayleyegn, Tesfaye; Guarisco, John; Morrison, Melissa; McIntyre, Mary G; Knight, Monica; Eichold, Bert; Yip, Fuyuen
2014-01-01
In 2008, a lightning strike caused a leak of tert-butyl mercaptan from its storage tank at the Gulf South Natural Gas Pumping Station in Prichard, Alabama. On July 27, 2012, the Alabama Department of Public Health requested Centers for Disease Control and Prevention epidemiologic assistance investigating possible health effects resulting from airborne exposure to mercaptan from a contaminated groundwater spring, identified in January 2012. To assess the self-reported health effects in the community, to determine the scope of the reported medical services received, and to develop recommendations for prevention and response to future incidents. In September 2012, we performed a representative random sampling design survey of households, comparing reported exposures and health effects among residents living in 2 circular zones located within 1 and 2 miles from the contaminated source. Eight Mile community, Prichard, Alabama. We selected 204 adult residents of each household (≥ 18 years) to speak for all household members. Self-reported mercaptan odor exposure, physical and mental health outcomes, and medical-seeking practices, comparing residents in the 1- and 2-mile zones. In the past 6 months, 97.9% of respondents in the 1-mile zone and 77.6% in the 2-mile zone reported mercaptan odors. Odor severity was greater in the 1-mile zone, in which significantly more subjects reported exposures aggravating their physical and mental health including shortness of breath, eye irritations, and agitated behavior. Overall, 36.5% sought medical care for odor-related symptoms. Long-term odorous mercaptan exposures were reportedly associated with physical and psychological health complaints. Communication messages should include strategies to minimize exposures and advise those with cardiorespiratory conditions to have medications readily available. Health care practitioners should be provided information on mercaptan health effects and approaches to prevent exacerbating existing chronic diseases.
Taylor, Kaitlyn; Wick, Cheryl; Castada, Hardy; Kent, Kyle; Harper, W James
2013-10-01
Swiss cheese contains more than 200 volatile organic compounds (VOCs). Gas chromatography-mass spectrometry has been utilized for the analysis of volatile compounds in food products; however, it is not sensitive enough to measure VOCs directly in the headspace of a food at low concentrations. Selected ion flow tube mass spectrometry (SIFT-MS) provides a basis for determining the concentrations of VOCs in the head space of the sample in real time at low concentration levels of parts per billion/trillion by volume. Of the Swiss cheese VOCs, relatively few have a major impact on flavor quality. VOCs with odor activity values (OAVs) (concentration/odor threshold) greater than one are considered high-impact flavor compounds. The objective of this study was to utilize SIFT-MS concentrations in conjunction with odor threshold values to determine OAVs thereby identifying high-impact VOCs to use for differentiating Swiss cheese from five factories and identify the factory variability. Seventeen high-impact VOCs were identified for Swiss cheese based on an OAV greater than one in at least 1 of the 5 Swiss cheese factories. Of these, 2,3-butanedione was the only compound with significantly different OAVs in all factories; however, cheese from any pair of factories had multiple statistically different compounds based on OAV. Principal component analysis using soft independent modeling of class analogy statistical differentiation plots, with all of the OAVs, showed differentiation between the 5 factories. Overall, Swiss cheese from different factories was determined to have different OAV profiles utilizing SIFT-MS to determine OAVs of high impact compounds. © 2013 Institute of Food Technologists®
Li, Shengju; Ahmed, Lucky; Zhang, Ruina; Pan, Yi; Matsunami, Hiroaki; Burger, Jessica L; Block, Eric; Batista, Victor S; Zhuang, Hanyi
2016-10-03
Mammalian survival depends on ultrasensitive olfactory detection of volatile sulfur compounds, since these compounds can signal the presence of rancid food, O 2 depleted atmospheres, and predators (through carnivore excretions). Skunks exploit this sensitivity with their noxious spray. In commerce, natural and liquefied gases are odorized with t-BuSH and EtSH, respectively, as warnings. The 100-million-fold difference in olfactory perception between structurally similar EtSH and EtOH has long puzzled those studying olfaction. Mammals detect thiols and other odorants using odorant receptors (ORs), members of the family of seven transmembrane G-protein-coupled receptors (GPCRs). Understanding the regulator cofactors and response of ORs is particularly challenging due to the lack of X-ray structural models. Here, we combine computational modeling and site-directed mutagenesis with saturation transfer difference (STD) NMR spectroscopy and measurements of the receptor response profiles. We find that human thiol receptor OR2T11 responds specifically to gas odorants t-BuSH and EtSH requiring ionic copper for its robust activation and that this role of copper is mimicked by ionic and nanoparticulate silver. While copper is both an essential nutrient for life and, in excess, a hallmark of various pathologies and neurodegenerative diseases, its involvement in human olfaction has not been previously demonstrated. When screened against a series of alcohols, thiols, sulfides, and metal-coordinating ligands, OR2T11 responds with enhancement by copper to the mouse semiochemical CH 3 SCH 2 SH and derivatives, to four-membered cyclic sulfide thietane and to one- to four-carbon straight- and branched-chain and five-carbon branched-chain thiols but not to longer chain thiols, suggesting compact receptor dimensions. Alcohols are unreactive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Félix, Juliana S., E-mail: jfelix@unizar.es; Domeño, Celia, E-mail: cdomeno@unizar.es; Nerín, Cristina, E-mail: cnerin@unizar.es
Graphical abstract: This work details the characterization of VOCs of WPC, produced from residual materials which would have landfills as current destination, and evaluates their odor profile. Highlights: ► More than 140 volatile compounds were identified in raw materials and WPC products. ► Markers were related to the thermal degradation, sawdust or coupling agents. ► WPC prototype showed a characteristic odor profile of burnt, sweet and wax-like. ► Aldehydes, carboxylic acids, ketones and phenols were odor descriptors of WPC. - Abstract: Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by theirmore » composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Lingshuang; Koziel, Jacek A.; O'Neal, Matthew E.
2009-05-23
Winemakers, small fruit growers, and homeowners are concerned with noxious compounds released by multicolored Asian ladybird beetles (Harmonia axyridis, Coleoptera: Coccinellidae). New method based on headspace solid phase microextraction (HS-SPME) coupled with multidimensional gas chromatography mass spectrometry--olfactometry (MDGC-MS-O) system was developed for extraction, isolation and simultaneous identification of compounds responsible for the characteristic odor of live H. axyridis. Four methoxypyrazines (MPs) were identified in headspace volatiles of live H. axyridis as those responsible for the characteristic odor: 2, 5-dimethy1-3-methoxypyrazine (DMMP), 2-isopropy1-3-methoxypyrazine (IPMP), 2-sec-buty1-3-methoxypyrazine (SBMP), and 2-isobuty1-3-methoxypyrazine (IBMP). To the best of our knowledge this is the first report of H.more » axyridis releasing DMMP and the first report of this compound being a component of the H. axyridis characteristic odor. Quantification of three MPs (IPMP, SBMP and IBMP) emitted from live H. axyridis were performed using external calibration with HS-SPME and direct injections. A linear relationship (R{sup 2}>0.9958 for all 3 MPs) between MS response and concentration of standard was observed over a concentration range from 0.1 ng L{sup -1} to 0.05 {mu}g L{sup -1} for HS-SPME-GC-MS. The method detection limits (MDL) based on multidimensional GC-MS approach for three MPs were estimated to be between 0.020 ng L{sup -1}. to 0.022 ng L{sup -1}. This methodology is applicable for in vivo determination of odor-causing chemicals associated with emissions of volatiles from insects.« less
Mimura, Natsuki; Isogai, Atsuko; Iwashita, Kazuhiro; Bamba, Takeshi; Fukusaki, Eiichiro
2014-10-01
Sake is a Japanese traditional alcoholic beverage, which is produced by simultaneous saccharification and alcohol fermentation of polished and steamed rice by Aspergillus oryzae and Saccharomyces cerevisiae. About 300 compounds have been identified in sake, and the contribution of individual components to the sake flavor has been examined at the same time. However, only a few compounds could explain the characteristics alone and most of the attributes still remain unclear. The purpose of this study was to examine the relationship between the component profile and the attributes of sake. Gas chromatography coupled with mass spectrometry (GC/MS)-based non-targeted analysis was employed to obtain the low molecular weight component profile of Japanese sake including both nonvolatile and volatile compounds. Sake attributes and overall quality were assessed by analytical descriptive sensory test and the prediction model of the sensory score from the component profile was constructed by means of orthogonal projections to latent structures (OPLS) regression analysis. Our results showed that 12 sake attributes [ginjo-ka (aroma of premium ginjo sake), grassy/aldehydic odor, sweet aroma/caramel/burnt odor, sulfury odor, sour taste, umami, bitter taste, body, amakara (dryness), aftertaste, pungent/smoothness and appearance] and overall quality were accurately explained by component profiles. In addition, we were able to select statistically significant components according to variable importance on projection (VIP). Our methodology clarified the correlation between sake attribute and 200 low molecular components and presented the importance of each component thus, providing new insights to the flavor study of sake. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Odor source identification by grounding linguistic descriptions in an artificial nose
NASA Astrophysics Data System (ADS)
Loutfi, Amy; Coradeschi, Silvia; Duckett, Tom; Wide, Peter
2001-03-01
This paper addresses the problem of enabling autonomous agents (e.g., robots) to carry out human oriented tasks using an electronic nose. The nose consists of a combination of passive gas sensors with different selectivity, the outputs of which are fused together with an artificial neural network in order to recognize various human-determined odors. The basic idea is to ground human-provided linguistic descriptions of these odors in the actual sensory perceptions of the nose through a process of supervised learning. Analogous to the human nose, the paper explains a method by which an electronic nose can be used for substance identification. First, the receptors of the nose are exposed to a substance by means of inhalation with an electric pump. Then a chemical reaction takes place in the gas sensors over a period of time and an artificial neural network processes the resulting sensor patterns. This network was trained to recognize a basic set of pure substances such as vanilla, lavender and yogurt under controlled laboratory conditions. The complete system was then validated through a series of experiments on various combinations of the basic substances. First, we showed that the nose was able to consistently recognize unseen samples of the same substances on which it had been trained. In addition, we presented some first results where the nose was tested on novel combinations of substances on which it had not been trained by combining the learned descriptions - for example, it could distinguish lavender yogurt as a combination of lavender and yogurt.
Zhang, Zheng-qun; Sun, Xiao-ling; Xin, Zhao-jun; Luo, Zong-xiu; Gao, Yu; Bian, Lei; Chen, Zong-mao
2013-10-01
Volatile organic compounds derived from non-host plants, Ocimum basilicum, Rosmarinus officinalis, Corymbia citriodora, and Ruta graveolens, can be used to mask host plant odors, and are repellent to the tea geometrid, Ectropis obliqua. Volatile compounds were collected by headspace absorption, and the components were identified and quantified by using gas chromatography/mass spectrometry. The responses of antennae of female E. obliqua to the compounds were evaluated with gas chromatography/electroantennography detection. Qualitative and quantitative differences were found among the four odor profiles. Consistent electroantennographic activity was obtained for eight of the volatiles from the four plants: β-myrcene, α-terpinene, γ-terpinene, linalool, cis-verbenol, camphor, α-terpineol, and verbenone. In a Y-tube bioassay, six chemicals, β-myrcene, γ-terpinene, (R)-(-)-linalool, (S)-(-)-cis-verbenol, (R)-(+)-camphor, and (S)-(-)-verbenone, were the main compounds responsible for repelling E. obliqua. An eight-component mixture including all of the bioactive compounds (in a ratio of 13:2:13:8:1:24:6:17) from R. officinalis was significantly more effective at repelling the moths than any single compound or a mixture of equal amounts of the eight compounds. Field results demonstrated that intercropping tea plants with R. officinalis effectively suppressed E. obliqua infestations in a tea plantation. Our findings suggests that odor blends of R. officinalis play a role in disturbing host orientation behavior, and in repelling E. obliqua adults, and that R. officinalis should be considered when developing "push-pull" strategies aimed at optimizing the control of E. obliqua with semiochemicals.
Key Odorants Regulate Food Attraction in Drosophila melanogaster
Giang, Thomas; He, Jianzheng; Belaidi, Safaa; Scholz, Henrike
2017-01-01
In insects, the search for food is highly dependent on olfactory sensory input. Here, we investigated whether a single key odorant within an odor blend or the complexity of the odor blend influences the attraction of Drosophila melanogaster to a food source. A key odorant is defined as an odorant that elicits a difference in the behavioral response when two similar complex odor blends are offered. To validate that the observed behavioral responses were elicited by olfactory stimuli, we used olfactory co-receptor Orco mutants. We show that within a food odor blend, ethanol functions as a key odorant. In addition to ethanol other odorants might serve as key odorants at specific concentrations. However, not all odorants are key odorants. The intensity of the odor background influences the attractiveness of the key odorants. Increased complexity is only more attractive in a concentration-dependent range for single compounds in a blend. Orco is necessary to discriminate between two similarly attractive odorants when offered as single odorants and in food odor blends, supporting the importance of single odorant recognition in odor blends. These data strongly indicate that flies use more than one strategy to navigate to a food odor source, depending on the availability of key odorants in the odor blend and the alternative odor offered. PMID:28928642
USDA-ARS?s Scientific Manuscript database
Spoilage of foods and beverages by yeasts is often characterized by objectionable odors, appearance, taste, texture or build-up of gas in packaging containers, resulting in loss of the product. Seldom is human health compromised by products spoiled by yeasts even though some spoilage is caused by sp...
46 CFR 169.703 - Cooking and heating.
Code of Federal Regulations, 2014 CFR
2014-10-01
... compressed natural gas (CNG) is authorized for cooking purposes only. (1) The design, installation and..., installation, and testing of each CNG system must meet either Chapter 6 of NFPA 302 or ABYC A-22. (3) The... additional requirements must also be met: (i) LPG or CNG must be odorized in accordance with ABYC A-1.5.d or...
46 CFR 169.703 - Cooking and heating.
Code of Federal Regulations, 2013 CFR
2013-10-01
... compressed natural gas (CNG) is authorized for cooking purposes only. (1) The design, installation and..., installation, and testing of each CNG system must meet either Chapter 6 of NFPA 302 or ABYC A-22. (3) The... additional requirements must also be met: (i) LPG or CNG must be odorized in accordance with ABYC A-1.5.d or...
46 CFR 169.703 - Cooking and heating.
Code of Federal Regulations, 2012 CFR
2012-10-01
... compressed natural gas (CNG) is authorized for cooking purposes only. (1) The design, installation and..., installation, and testing of each CNG system must meet either Chapter 6 of NFPA 302 or ABYC A-22. (3) The... additional requirements must also be met: (i) LPG or CNG must be odorized in accordance with ABYC A-1.5.d or...
USDA-ARS?s Scientific Manuscript database
Although a total of 150 volatiles were detected by GC-MS, only 49 aroma active peaks were found in a consensus by the three panelists. Aldehydes were the most important group with odor activity, as well as monoterpenes, esters, alcohols and ketones. 1,8-Cineole, ·-myrcene, (E,E)-2,4-nonadienal, hexa...
Methods and techniques for measuring gas emissions from agricultural and animal feeding operations.
Hu, Enzhu; Babcock, Esther L; Bialkowski, Stephen E; Jones, Scott B; Tuller, Markus
2014-01-01
Emissions of gases from agricultural and animal feeding operations contribute to climate change, produce odors, degrade sensitive ecosystems, and pose a threat to public health. The complexity of processes and environmental variables affecting these emissions complicate accurate and reliable quantification of gas fluxes and production rates. Although a plethora of measurement technologies exist, each method has its limitations that exacerbate accurate quantification of gas fluxes. Despite a growing interest in gas emission measurements, only a few available technologies include real-time, continuous monitoring capabilities. Commonly applied state-of-the-art measurement frameworks and technologies were critically examined and discussed, and recommendations for future research to address real-time monitoring requirements for forthcoming regulation and management needs are provided.
Anaerobic storage as a pretreatment for enhanced biodegradability of dewatered sewage sludge.
Xu, Huacheng; He, Pinjing; Wang, Guanzhao; Shao, Liming; Lee, Duujong
2011-01-01
Dewatered sewage sludge is often stored still before further processing and final disposal. This study showed that anaerobic storage of dewatered sewage sludge could hydrolyze organic matter from the sludge matrix, and increase soluble organic acid content from 90 to 2400 mg/L and soluble organic carbon content from 220 to 1650 mg/L. Correspondingly, the contents of proteins, celluloses and hemicelluloses were reduced by 2-9%. Applying anaerobic storage markedly enhanced the efficiency of the subsequent bio-drying process on stored sludge. Correspondingly, biogas and odor gas were produced immediately after commencing the sludge storage. Anaerobic storage with odor control can be applied as a pretreatment process for dewatered sewage sludge in wastewater treatment plants. Copyright © 2010 Elsevier Ltd. All rights reserved.
Orientation to determine quality attributes of flavoring excipients containing volatile molecules.
Kiene, Florian E; Pein, Miriam; Thommes, Markus
2015-06-10
Pharmaceutical excipients containing volatile odor-active molecules can be used in pharmaceutical development to increase patients' compliance. However, capturing the molecular composition of these odor-active substances is challenging. Therefore, guidance for the analytical investigation of these excipients should be developed. Using a model flavor, lead molecules were chosen and a gas chromatographic method was validated according to pharmaceutical guidelines. Changes during storage as well as batch homogeneity and conformity were investigated. The knowledge gained could be used to understand molecular differences between batches caused by aging. A suitable attempt to capture the volatile molecular composition of flavoring substance was presented and the found results could be used for the determination and interpretation of quality attributes. Copyright © 2015 Elsevier B.V. All rights reserved.
Two lactones in the androconial scent of the lycaenid butterfly Celastrina argiolus ladonides
NASA Astrophysics Data System (ADS)
Ômura, Hisashi; Yakumaru, Kazuhisa; Honda, Keiichi; Itoh, Takao
2013-04-01
Male adult butterflies of many species have characteristic odors originating from the disseminating organs known as androconia. Despite the fact that androconia exist in several species, there have been few investigations on adult scents from the lycaenid species. Celastrina argiolus ladonides (Lycaenidae) is a common species in Eurasia. We have reported that male adults of this species emit a faint odor, and the major components causing this odor have been newly found in the Insecta. By using field-caught individuals, we determined the chemical nature and location of this odor in the butterfly. Gas chromatography-mass spectrometry (GC-MS) analyses revealed that two lactone compounds, lavender lactone and δ-decalactone, are present in the extracts of males but absent in those of the females. On an average, approximately 50 ng of each compound was found per male. Chiral GC analyses performed using enantiomerically pure standards revealed that the natural lavender lactone was a mixture of two enantiomers with an R/ S ratio of 32:68, whereas the natural δ-decalactone contained only the R-enantiomer. When the analyses were conducted using different parts—forewings, hindwings, and body—of three males, the lactones were more abundantly found on the forewings and hindwings than on the body. Microscopic observation of the wings demonstrated that battledore scales known as androconia are scattered on the upper surface of both the wings of C. argiolus ladonides males. These results indicate that the specialized scales on the wings of males serve as scent-disseminating organs.
Transmission of olfactory information for tele-medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, P.E.; Kouzes, R.T.; Kangas, L.J.
1995-01-01
While the inclusion of visual, aural, and tactile senses into virtual reality systems is widespread, the sense of smell has been largely ignored. We have developed a chemical vapor sensing system for the automated identification of chemical vapors (smells). Our prototype chemical vapor sensing system is composed of an array of tin-oxide vapor sensors coupled to an artificial neural net-work. The artificial neural network is used in the recognition of different smells and is constructed as a standard multilayer feed-forward network trained with the backpropagation algorithm. When a chemical sensor array is combined with an automated pattern identifier, it ismore » often referred to as an electronic or artificial nose. Applications of electronic noses include monitoring food and beverage odors, automated flavor control, analyzing fuel mixtures, and quantifying individual components in gas mixtures. Our prototype electronic nose has been used to identify odors from common household chemicals. An electronic nose will potentially be a key component in an olfactory input to a telepresent virtual reality system. The identified odor would be electronically transmitted from the electronic nose at one site to an odor generation system at another site. This combination would function as a mechanism for transmitting olfactory information for telepresence. This would have direct applicability in the area of telemedicine since the sense of smell is an important sense to the physician and surgeon. In this paper, our chemical sensing system (electronic nose) is presented along with a proposed method for regenerating the transmitted olfactory information.« less
Identification of odor volatile compounds and deodorization of Paphia undulata enzymatic hydrolysate
NASA Astrophysics Data System (ADS)
Chen, Deke; Chen, Xin; Chen, Hua; Cai, Bingna; Wan, Peng; Zhu, Xiaolian; Sun, Han; Sun, Huili; Pan, Jianyu
2016-12-01
Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from untreated samples and three deodorized samples (under the optimal conditions) of Paphia undulata enzymatic hydrolysate revealed that the compounds contributing to the distinctive odor were 1-octen-3-ol, n-hexanal, n-heptanal, 2,4-heptadienal, and 2,4-decadienal, whereas n-pentanal, n-octanal, n-octanol, benzaldehyde, 2-ethylfuran and 2-pentylfuran were the main contributors to the aromatic flavor. The deodorizing effects of activated carbon (AC) adsorption, yeast extract (YE) masking and tea polyphenol (TP) treatment on a P. undulata enzymatic hydrolysate were investigated using orthogonal experiments with sensory evaluation as the index. The following optimized deodorization conditions were obtained: AC adsorption (35 mg mL-1, 80°C, 40 min), YE masking (7 mg mL-1, 45°C, 30 min) and TP treatment (0.4 mg mL-1, 40°C, 50 min). AC adsorption effectively removed off-flavor volatile aldehydes and ketones. YE masking modified the odor profile by increasing the relative contents of aromatic compounds and decreasing the relative contents of aldehydes and ketones. The TP treatment was not effective in reducing the odor score, but it significantly reduced the relative content of aldehydes while increasing that of alkanes. It is also notable that TP effectively suppressed trimethylamine (TMA) formation in a P. undulate hydrolysate solution for a period of 72 h.
Cheng, Hsin-Han; Hsieh, Chu-Chin
2010-10-15
There are many types of technologies to control cooking oil fumes (COFs), but current typical technologies, such as electrostatic precipitator, conventional scrubber, catalyst, or condenser, are unable to efficiently remove the odorous materials present in COFs which are the primary cause of odor-complaint cases. There is also a lack of information about using sodium hypochlorite (NaOCl) and surfactants to remove contaminants in COFs, and previous studies lack on-site investigations in restaurants. This study presents a chemical scrubber integrated with an automatic control system (ACS) to treat hydrocarbons (HCs) in COFs, and to monitor non-methane HCs (NMHC) and odor as indicators for its efficiency evaluation. The chemical scrubber effectively treats hydrophobic substances in COFs by combining surfactant and NaOCl under optimal operational conditions with NHMC removal efficiency as high as 85%. The mass transfer coefficient (K(L)a) of NMHC was enhanced by 50% under the NaOCl and surfactant conditions, as compared to typical wet scrubber. Further, this study establishes the fuzzy equations of the ACS, including the relationship between the removal efficiency and K(L)a, liquid/gas ratio, pH and C(NaOCl). 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vass, Arpad Alexander
2012-01-01
This study, the third of a series on the odor signature of human decomposition, reports on the intermittent nature of chemical evolution from decomposing human remains, and focuses primarily on headspace analysis from soil associated with older human remains (10-60+ years) from different environments around the globe. Fifty grams of soil were collected in 40mL glass vials with polypropylene sealed lids from soil above known or suspected graves and from subsurface chemical plumes associated with human decompositional events. One hundred eighty six separate samples were analyzed using gas chromatography-mass spectrometry (GC-MS). After comparison to relevant soil controls, approximately fifty volatilemore » chemical compounds were identified as being associated with human remains. This manuscript reports these findings and identifies when and where they are most likely to be detected showing an overall decrease in cyclic and halogenated compounds and an increase in aldehydes and alkanes as time progresses. This research identifies the 'odor signatures' unique to the decomposition of human remains with projected ramifications on cadaver dog training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.« less
Fort Dix Remedial Investigation/Feasibility Study for MAG-1 Area
1994-01-01
by PID headspace results or odor ), samples should be diluted to bring the target compound concentrations within the instrument calibration range...Conductivity Testing ................... 2-38 2.9 ANALYTICAL PROCEDURES FOR FIELD SCREENING SAMPLES .. 2-38 2.9.1 Volatile Organic Compounds ...ANALYSIS OF VOLATILE ORGANIC COMPOUNDS BY FIELD GAS CHROMATOGRAPHY - STANDARD OPERATING PROCEDURE APPENDIX B RDX EXPLOSIVES FIELD TEST KIT PROCEDURES
THE "MUD VOLCANO," A STINKY THERMAL FEATURE ON THE GRAND ...
THE "MUD VOLCANO," A STINKY THERMAL FEATURE ON THE GRAND LOOP ROAD. ACIDIC HOT SPRINGS HAVE REDUCED THE UNDERLYING LAVA TO A FINE CLAY, PRODUCING AN AREA OF BOILING MUD. THE ODOR OF ROTTEN EGGS IS FROM HYDROGEN SULFIDE GAS. - Grand Loop Road, Forming circuit between Mammoth Hot Springs, Norris Junction, Madison Junction, Old Faithful, Mammoth, Park County, WY
Human breath, along with urine and blood, has long been one of the three major biological media for assessing human health and environmental exposure. In fact, the detection of odor on human breath, as described by Hippocrates in 400 BC, is considered the first analytical healt...
Hydrogen sulfide (H2S) gas can be emitted from both construction and demolition (C&D) debris and municipal solid waste (MSW) landfills. H2S emissions may be problematic at a landfill as they can cause odor, impact surrounding communities, cause wear or dama...
Yan, Luchun; Liu, Jiemin; Qu, Chen; Gu, Xingye; Zhao, Xia
2015-01-28
In order to explore the odor interaction of binary odor mixtures, a series of odor intensity evaluation tests were performed using both individual components and binary mixtures of aldehydes. Based on the linear relation between the logarithm of odor activity value and odor intensity of individual substances, the relationship between concentrations of individual constituents and their joint odor intensity was investigated by employing a partial differential equation (PDE) model. The obtained results showed that the binary odor interaction was mainly influenced by the mixing ratio of two constituents, but not the concentration level of an odor sample. Besides, an extended PDE model was also proposed on the basis of the above experiments. Through a series of odor intensity matching tests for several different binary odor mixtures, the extended PDE model was proved effective at odor intensity prediction. Furthermore, odorants of the same chemical group and similar odor type exhibited similar characteristics in the binary odor interaction. The overall results suggested that the PDE model is a more interpretable way of demonstrating the odor interactions of binary odor mixtures.
Fischer, Jochen; Haas, Torsten; Leppert, Jan; Lammers, Peter Schulze; Horner, Gerhard; Wüst, Matthias; Boeker, Peter
2014-09-01
Boar taint is a specific off-odour of boar meat products, known to be caused by at least three unpleasant odorants, with very low odour thresholds. Androstenone is a boar pheromone produced in the testes, whereas skatole and indole originate from the microbial breakdown of tryptophan in the intestinal tract. A new procedure, applying stable isotope dilution analysis (SIDA) and dynamic headspace-thermal desorption-gas chromatography/time-of-flight mass spectrometry (dynHS-TD-GC/TOFMS) for the simultaneous quantitation of these boar taint compounds in pig fat was elaborated and validated in this paper. The new method is characterised by a simple and solvent-free dynamic headspace sampling. The deuterated compounds d3-androstenone, d3-skatole and d6-indole were used as internal standards to eliminate matrix effects. The method validation performed revealed low limits of detection (LOD) and quantitation (LOQ) with high accuracy and precision, thus confirming the feasibility of the new dynHS-TD-GC/TOFMS approach for routine analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Miller, Daniel N; Berry, Elaine D
2005-01-01
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.
Moth Sex Pheromone Receptors and Deceitful Parapheromones
Xu, Pingxi; Garczynski, Stephen F.; Atungulu, Elizabeth; Syed, Zainulabeuddin; Choo, Young-Moo; Vidal, Diogo M.; Zitelli, Caio H. L.; Leal, Walter S.
2012-01-01
The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs). Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs) were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs) housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z)-hexadecadienal (Z11Z13-16Ald), and its formate analog, (9Z,11Z)-tetradecen-1-yl formate (Z9Z11-14OFor). We cloned an odorant receptor co-receptor (Orco) and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1) was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z)-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13) showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z)-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors. PMID:22911835
Weiß, Brigitte M; Kücklich, Marlen; Thomsen, Ruth; Henkel, Stefanie; Jänig, Susann; Kulik, Lars; Birkemeyer, Claudia; Widdig, Anja
2018-01-01
Scents play an important role in the life of most terrestrial mammals and may transmit valuable information about conspecifics. Olfaction was long considered of low importance in Old World monkeys due to their relative reduction of olfactory structures and low incidence of scent-marking behavior but has been increasingly recognized for mediating social relationships in recent years. Yet, studies investigating the composition of their chemical cues remain scarce. In the present study, we analyzed the potential information content of chemicals present on the skin of rhesus macaques ( Macaca mulatta ). We collected axillary secretions from 60 animals of the semifree-ranging population on Cayo Santiago (Puerto Rico, USA) with precleaned cotton swabs from which the secretions were subsequently extracted and analyzed by gas chromatography-mass spectrometry. Rhesus macaque axillary odorants varied in their overall similarity and composition. This variation was attributable to differences in sex, group membership, and kinship and further appeared to reflect age and rank in parts of our sample. The compounds most strongly associated with this variation primarily comprised larger molecular weight aldehydes and steroids. Such compounds are considered to be perceivable by the primate olfactory system through close-range interactions or through breakdown into smaller molecules by bacterial fermentation. Overall, our results provide additional evidence that odors of Old World monkeys reflect a wealth of potential information about their carrier, which provides the basis for chemical communication via body odors; however, its use by conspecifics needs to be confirmed in bioassays. One prerequisite for olfactory communication is the presence of systematic variation in animal odors that is related to attributes such as age, sex, or kinship. The composition of odors has been examined in numerous mammals but, with the exception of humans, remains poorly understood in Old World monkeys and apes, taxonomic groups in which most species do not show scent-marking behavior. In the present study, we show that the composition of axillary secretions of an Old World monkey, the rhesus macaque, reflects sex, group membership, relatedness, and possibly also age and rank. This variation thus provides a basis for olfactory communication in Old World monkeys.
Principal Factors for High Performance of Odor and Methane degrading Biocover using Network Analysis
NASA Astrophysics Data System (ADS)
Jung, H.; Yun, J.; O, G. C.; Ryu, H. W.; Jeon, J. M.; Cho, K. S.
2016-12-01
Methane is 25 times more powerful greenhouse gas than carbon dioxide and plays an important role in global warming. Landfills are one of the biggest methane sources and have emitted 37% of anthropogenic methane in Korea. Applying biocovers in landfills is known to be efficient for the simultaneous mitigation of methane as well as odor which occurs severe civil claims. In this study, three pilot-scale biocovers (2.5mx5mx1m) were constructed in a sanitary landfill at Gwangyang, Korea to establish the optimal operational conditions of biocover. All biocovers are filled with soil, EG microbial agent, food waste compost, and perlite with different combination. Pilot-scale biocovers have been operated since January in this year for simultaneous removal of odor and methane. The concentrations of methane and odors such as ammonia, H2S, methyl mercaptane, methylsulfide, dimetyl disulfide, i-valeraldehyde, and styrene were measured at the inlet and outlet of biocovers each month using GC and HPLC for removal performance evaluation. The biocover with highest removal efficiency eliminated 98.4% of odor and 100.0% of methane. All removal efficiencies of odor measured during experiment are in 81.1 98.4% range, and those of methane are in 3.6 100.0%. Three months later after biocover construction, all biocovers with mixed packing material showed better methane degradation performance than the biocovers packed only with soil. The packing materials of biocovers were sampled during winter (January), spring (April) and summer (July), and their microbial communities were examined based on 16S rDNA using 454 pyrosequencing to detect microbial factors that affects the removal efficiency. Methanotrophs which are known as methane-degradable bacteria take 10 25% of microbial community in biocovers, and most of those found in biocovers are type methanothrophs. Network analysis is performed and principal factors for performance improvement of biocovers are derived. Based on this study, well-designed biocovers will be newly set up in the operational landfill with the consideration of derived principal factors for high efficiency. This research was supported by the Korea Ministry of Environment as a "Converging Technology Project (2015001640003)".
Odors: appetizing or satiating? Development of appetite during odor exposure over time.
Ramaekers, M G; Boesveldt, S; Lakemond, C M M; van Boekel, M A J S; Luning, P A
2014-05-01
Exposure to palatable food odors influences appetite responses, either promoting or inhibiting food intake. Possibly, food odors are appetizing after a short exposure (of circa 1-3 min), but become satiating over time (circa 10-20 min). To investigate the effect of odor exposure on general appetite and sensory-specific appetite (SSA) over time. In a cross-over study, 21 unrestrained women (age: 18-45 years; BMI: 18.5-25 kg m(-2)) were exposed for 20 min to eight different odor types: five food odors, two nonfood odors and no-odor. All odors were distributed in a test room at suprathreshold levels. General appetite, SSA and salivation were measured over time. All food odors significantly increased general appetite and SSA, compared with the no-odor condition. The nonfood odors decreased general appetite. All effects did not change over time during odor exposure. Savory odors increased the appetite for savory foods, but decreased appetite for sweet foods, and vice versa after exposure to sweet odors. Neither food odors nor nonfood odors affected salivation. Palatable food odors were appetizing during and after odor exposure and did not become satiating over a 20-min period. Food odors had a large impact on SSA and a small impact on general appetite. Moreover, exposure to food odors increased the appetite for congruent foods, but decreased the appetite for incongruent foods. It may be hypothesized that, once the body is prepared for intake of a certain food with a particular macronutrient composition, it is unfavorable to consume foods that are very different from the cued food.
Unravelling important odorants in horseradish (Armoracia rusticana).
Kroener, Eva-Maria; Buettner, Andrea
2017-10-01
Horseradish (Armoracia rusticana) is a plant well known for its roots' spicy aroma. The present study investigates the main aroma constituents of horseradish roots in general by analysing the aroma profiles of six different horseradish varieties, with one variety grown in two different soils. Odorants were characterised by means of gas chromatography-olfactometry and identified via their mass spectra, retention indices on two columns with different polarity, and their characteristic odour. A series of new aroma compounds from different substance groups were identified that have hitherto not been described in horseradish. Moreover, several of these constituents were successfully shown to exhibit high odour potency, alongside a high potential to influence the overall aroma of horseradish roots, like (3S,3aS,7aR)-wine lactone and 3-isopropyl-2-methoxypyrazine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aroma profiles and preferences of Jasminum sambac L. flowers grown in Thailand.
Kanlayavattanakul, Mayuree; Kitsiripaisarn, Sarun; Lourith, Nattaya
2013-01-01
Comparison of volatile constituents and odor preference of Jasminum sambac cultivated in Thailand was performed by enfleurage and solvent extractions. Enfleurage bases consisting of spermaceti wax, olive, sunflower, and rice bran oils were prepared. The defleurage flower was daily replaced with fresh jasmine for a period of 12 days. The absolute de pomades and extraits of each base were subjected to gas chromatography mass spectrometry (GC/MS) analysis, comparing with the concrete and absolute values obtained from maceration of jasmine in n-hexane for 24 h. Linalool, benzyl acetate, and α-farnesene were found as the main volatile compounds in the jasmine extracts. Spermaceti wax and olive oil gave the best quality base, exhibiting the most preferred resemblance of jasmine odor with the least difference from fresh jasmine, as evaluated by 103 Thai volunteers.
Gudziol, H
1995-02-01
About two million Americans suffer from anosmia. Most result from nasal obstruction, head injuries, and viral infections. Brain disorders like epileptic seizures, tumours, and dementia can distort can distort the sense of smell. Anosmia adversely affects patient well-being. Patients cannot detect spoiled food, gas leakage, or dangerous smoke. They are unable to distinguish flavour and smell the springtime or the ocean. Many products as soaps, cat litter, toilet paper, etc. are perfumed because consumers will more readily buy a product that smells nice than one that has no smell at all. Historically, the importance of odors was very different. The ancient Romans loved exotic aromas during their banquets and orgies. In the Middle Ages the church did not like fragrances. The French revolution of 1789 brought a revolution of deodorization to Europe. Today, fragrance companies' increasing sales are an indication of the power of odor.
de Valk, Josje M; Wnuk, Ewelina; Huisman, John L A; Majid, Asifa
2017-08-01
People appear to have systematic associations between odors and colors. Previous research has emphasized the perceptual nature of these associations, but little attention has been paid to what role language might play. It is possible odor-color associations arise through a process of labeling; that is, participants select a descriptor for an odor and then choose a color accordingly (e.g., banana odor → "banana" label → yellow). If correct, this would predict odor-color associations would differ as odor descriptions differ. We compared speakers of Dutch (who overwhelmingly describe odors by referring to the source; e.g., smells like banana) with speakers of Maniq and Thai (who also describe odors with dedicated, abstract smell vocabulary; e.g., musty), and tested whether the type of descriptor mattered for odor-color associations. Participants were asked to select a color that they associated with an odor on two separate occasions (to test for consistency), and finally to label the odors. We found the hunter-gatherer Maniq showed few, if any, consistent or accurate odor-color associations. More importantly, we found the types of descriptors used to name the smells were related to the odor-color associations. When people used abstract smell terms to describe odors, they were less likely to choose a color match, but when they described an odor with a source-based term, their color choices more accurately reflected the odor source, particularly when the odor source was named correctly (e.g., banana odor → yellow). This suggests language is an important factor in odor-color cross-modal associations.
Multivariate prediction of odor from pig production based on in-situ measurement of odorants
NASA Astrophysics Data System (ADS)
Hansen, Michael J.; Jonassen, Kristoffer E. N.; Løkke, Mette Marie; Adamsen, Anders Peter S.; Feilberg, Anders
2016-06-01
The aim of the present study was to estimate a prediction model for odor from pig production facilities based on measurements of odorants by Proton-Transfer-Reaction Mass spectrometry (PTR-MS). Odor measurements were performed at four different pig production facilities with and without odor abatement technologies using a newly developed mobile odor laboratory equipped with a PTR-MS for measuring odorants and an olfactometer for measuring the odor concentration by human panelists. A total of 115 odor measurements were carried out in the mobile laboratory and simultaneously air samples were collected in Nalophan bags and analyzed at accredited laboratories after 24 h. The dataset was divided into a calibration dataset containing 94 samples and a validation dataset containing 21 samples. The prediction model based on the measurements in the mobile laboratory was able to explain 74% of the variation in the odor concentration based on odorants, whereas the prediction models based on odor measurements with bag samples explained only 46-57%. This study is the first application of direct field olfactometry to livestock odor and emphasizes the importance of avoiding any bias from sample storage in studies of odor-odorant relationships. Application of the model on the validation dataset gave a high correlation between predicted and measured odor concentration (R2 = 0.77). Significant odorants in the prediction models include phenols and indoles. In conclusion, measurements of odorants on-site in pig production facilities is an alternative to dynamic olfactometry that can be applied for measuring odor from pig houses and the effects of odor abatement technologies.
Characterizing odors from cattle feedlots with different odor techniques
USDA-ARS?s Scientific Manuscript database
Odors from cattle feedlots negatively affect local communities. The purpose of this study was to characterize odors and odorants using different odor sampling techniques. Odors were characterized with field olfactometers (Nasal Ranger®), sensory techniques (GC-O) and analytical techniques (sorbent t...
Sotnikov, E E; Kir'ianova, L F; Mikhaĭlova, R I; Ryzhova, I N; Moskovkin, A S
2009-01-01
The paper provides the results of gas chromatographic analysis of organic impurities in the drinking water after its contact with various packs and filters made from polymer materials. Vapor-phase analysis in combination with selective gas chromatographic detectors was used to determine volatile substances and liquid extraction in combination with chromatographic mass-spectrometry was employed to identify high-boiling compounds. The release sources of toxic compounds from materials to water, the taste and odor of which is affected by them were studied.
Walking patterns induced by learned odors in the honeybee, Apis mellifera L.
Yamashita, Toshiya; Haupt, S Shuichi; Ikeno, Hidetoshi; Ai, Hiroyuki
2016-01-01
The odor localization strategy induced by odors learned via differential conditioning of the proboscis extension response was investigated in honeybees. In response to reward-associated but not non-reward-associated odors, learners walked longer paths than non-learners and control bees. When orange odor reward association was learned, the path length and the body turn angles were small during odor stimulation and greatly increased after stimulation ceased. In response to orange odor, bees walked locally with alternate left and right turns during odor stimulation to search for the reward-associated odor source. After odor stimulation, bees walked long paths with large turn angles to explore the odor plume. For clove odor, learning-related modulations of locomotion were less pronounced, presumably due to a spontaneous preference for orange in the tested population of bees. This study is the first to describe how an odor-reward association modulates odor-induced walking in bees. © 2016. Published by The Company of Biologists Ltd.
Petrulis, A; Peng, M; Johnston, R E
1999-03-01
Removal of the vomeronasal organ (VNX) did not eliminate the ability of female hamsters to discriminate between individual male's flank gland or urine odors in a habituation/discrimination task nor did it impair preference for male odors over female odors from a distance. Vomeronasal organ removal did reduce overall levels of investigation of flank gland odor in the habituation/discrimination task. Although VNX females did not show severe impairments in the frequency of either flank or vaginal marking in response to odors, they did show an abnormal pattern of marking. VNX females, unlike shams, did not flank mark more to female odors than to male odors, nor did they vaginal mark more to male odors than to female odors. Thus, the vomeronasal organ in female hamsters appears to be important for differences in scent marking toward male and female odors, but is not essential for discrimination of individual odors or for preferences for male over female odors.
Cook, Stephanie; Fallon, Nicholas; Wright, Hazel; Thomas, Anna; Giesbrecht, Timo; Field, Matt; Stancak, Andrej
2015-01-01
Odors can alter hedonic evaluations of human faces, but the neural mechanisms of such effects are poorly understood. The present study aimed to analyze the neural underpinning of odor-induced changes in evaluations of human faces in an odor-priming paradigm, using event-related potentials (ERPs). Healthy, young participants (N = 20) rated neutral faces presented after a 3 s pulse of a pleasant odor (jasmine), unpleasant odor (methylmercaptan), or no-odor control (clean air). Neutral faces presented in the pleasant odor condition were rated more pleasant than the same faces presented in the no-odor control condition, which in turn were rated more pleasant than faces in the unpleasant odor condition. Analysis of face-related potentials revealed four clusters of electrodes significantly affected by odor condition at specific time points during long-latency epochs (600-950 ms). In the 620-640 ms interval, two scalp-time clusters showed greater negative potential in the right parietal electrodes in response to faces in the pleasant odor condition, compared to those in the no-odor and unpleasant odor conditions. At 926 ms, face-related potentials showed greater positivity in response to faces in the pleasant and unpleasant odor conditions at the left and right lateral frontal-temporal electrodes, respectively. Our data shows that odor-induced shifts in evaluations of faces were associated with amplitude changes in the late (>600) and ultra-late (>900 ms) latency epochs. The observed amplitude changes during the ultra-late epoch are consistent with a left/right hemisphere bias towards pleasant/unpleasant odor effects. Odors alter evaluations of human faces, even when there is a temporal lag between presentation of odors and faces. Our results provide an initial understanding of the neural mechanisms underlying effects of odors on hedonic evaluations.
Cook, Stephanie; Fallon, Nicholas; Wright, Hazel; Thomas, Anna; Giesbrecht, Timo; Field, Matt; Stancak, Andrej
2015-01-01
Odors can alter hedonic evaluations of human faces, but the neural mechanisms of such effects are poorly understood. The present study aimed to analyze the neural underpinning of odor-induced changes in evaluations of human faces in an odor-priming paradigm, using event-related potentials (ERPs). Healthy, young participants (N = 20) rated neutral faces presented after a 3 s pulse of a pleasant odor (jasmine), unpleasant odor (methylmercaptan), or no-odor control (clean air). Neutral faces presented in the pleasant odor condition were rated more pleasant than the same faces presented in the no-odor control condition, which in turn were rated more pleasant than faces in the unpleasant odor condition. Analysis of face-related potentials revealed four clusters of electrodes significantly affected by odor condition at specific time points during long-latency epochs (600−950 ms). In the 620−640 ms interval, two scalp-time clusters showed greater negative potential in the right parietal electrodes in response to faces in the pleasant odor condition, compared to those in the no-odor and unpleasant odor conditions. At 926 ms, face-related potentials showed greater positivity in response to faces in the pleasant and unpleasant odor conditions at the left and right lateral frontal-temporal electrodes, respectively. Our data shows that odor-induced shifts in evaluations of faces were associated with amplitude changes in the late (>600) and ultra-late (>900 ms) latency epochs. The observed amplitude changes during the ultra-late epoch are consistent with a left/right hemisphere bias towards pleasant/unpleasant odor effects. Odors alter evaluations of human faces, even when there is a temporal lag between presentation of odors and faces. Our results provide an initial understanding of the neural mechanisms underlying effects of odors on hedonic evaluations. PMID:26733843
Sun, Qun; Gates, Matthew J; Lavin, Edward H; Acree, Terry E; Sacks, Gavin L
2011-10-12
Native American grape (Vitis) species have many desirable properties for winegrape breeding, but hybrids of these non-vinifera wild grapes with Vitis vinifera often have undesirable aromas. Other than the foxy-smelling compounds in Vitis labrusca and Vitis rotundifolia , the aromas inherent to American Vitis species are not well characterized. In this paper, the key odorants in wine produced from the American grape species Vitis riparia and Vitis cinerea were characterized in comparison to wine produced from European winegrapes (V. vinifera). Volatile compounds were extracted by solid-phase microextraction (SPME) and identified by gas chromatography-olfactometry/mass spectrometry (GC-O/MS). On the basis of flavor dilution values, most grape-derived compounds with fruity and floral aromas were at similar potency, but non-vinifera wines had higher concentrations of odorants with vegetative and earthy aromas: eugenol, cis-3-hexenol, 1,8-cineole, 3-isobutyl-2-methoxypyrazine (IBMP), and 3-isopropyl-2-methoxypyrazine (IPMP). Elevated concentrations of these compounds in non-vinifera wines were confirmed by quantitative GC-MS. Concentrations of IBMP and IPMP were well above sensory threshold in both non-vinifera wines. In a follow-up study, IBMP and IPMP were surveyed in 31 accessions of V. riparia, V. rupestris, and V. cinerea. Some accessions had concentrations of >350 pg/g IBMP or >30 pg/g IPMP, well above concentrations reported in previous studies of harvest-ripe vinifera grapes. Methyl anthranilate and 2-aminoacetophenone, key odorants responsible for the foxiness of V. labrusca grapes, were undetectable in both the V. riparia and V. cinerea wines (<10 μg/L).
Kuhn, Fabian; Natsch, Andreas
2009-04-06
It is currently not fully established whether human individuals have a genetically determined, individual-specific body odour. Volatile carboxylic acids are a key class of known human body odorants. They are released from glutamine conjugates secreted in axillary skin by a specific Nalpha-acyl-glutamine-aminoacylase present in skin bacteria. Here, we report a quantitative investigation of these odorant acids in 12 pairs of monozygotic twins. Axilla secretions were sampled twice and treated with the Nalpha-acyl-glutamine-aminoacylase. The released acids were analysed as their methyl esters with comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry detection. The pattern of the analytes was compared with distance analysis. The distance was lowest between samples of the right and the left axilla taken on the same day from the same individual. It was clearly greater if the same subject was sampled on different days, but this intra-individual distance between samples was only slightly lower than the distance between samples taken from two monozygotic twins. A much greater distance was observed when comparing unrelated individuals. By applying cluster and principal component analyses, a clear clustering of samples taken from one pair of monozygotic twins was also confirmed. In conclusion, the specific pattern of precursors for volatile carboxylic acids is subject to a day-to-day variation, but there is a strong genetic contribution. Therefore, humans have a genetically determined body odour type that is at least partly composed of these odorant acids.
Vesterinen, Sanna; Parshintsev, Jevgeni; Johansson, Per; Riekkola, Marja-Liisa; Björkroth, Johanna
2014-01-01
Leuconostoc gelidum subsp. gasicomitatum is a common spoilage bacterium in meat products packaged under oxygen-containing modified atmospheres. Buttery off-odors related to diacetyl/acetoin formation are frequently associated with the spoilage of these products. A whole-genome microarray study, together with gas chromatography (GC)-mass spectrometry (MS) analyses of the pathway end products, was performed to investigate the transcriptome response of L. gelidum subsp. gasicomitatum LMG18811T growing on semidefined media containing glucose, ribose, or inosine, which are essential carbon sources in meat. Generally, the gene expression patterns with ribose and inosine were quite similar, indicating that catabolism of ribose and nucleosides is closely linked. Diacetyl/acetoin concentrations as high as 110 or 470 μM were measured when growth was based on inosine or ribose, respectively. The gene expression results for pyruvate metabolism (upregulation of α-acetolactate synthase, downregulation of l-lactate dehydrogenase and pyruvate dehydrogenase) were as expected when diacetyl and acetoin were the end products. No diacetyl production (<7.5 μM) was detected with the glucose-containing medium, even though the cell counts of LMG18811T was 6 or 10 times higher than that on inosine or ribose, respectively. Although glucose was the most effective carbon source for the growth of L. gelidum subsp. gasicomitatum, utilization of inosine and ribose resulted in the production of the unwanted buttery-odor compounds. These results increase our understanding of which compounds are likely to enhance the formation of buttery odors during meat spoilage caused by L. gelidum subsp. gasicomitatum. PMID:25548057
Honeybees Learn Odour Mixtures via a Selection of Key Odorants
Reinhard, Judith; Sinclair, Michael; Srinivasan, Mandyam V.; Claudianos, Charles
2010-01-01
Background The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures. Methodology/Principal Findings This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant's volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants. Conclusions/Significance Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees. PMID:20161714
What's that smell? An ecological approach to understanding preferences for familiar odors.
Schloss, Karen B; Goldberger, Carolyn S; Palmer, Stephen E; Levitan, Carmel A
2015-01-01
How do odor preferences arise? Following Palmer and Schloss's (2010, PNAS, 107, 8877-8882) ecological valence theory of color preferences, we propose that preference for an odor is determined by preferences for all objects and/or entities associated with that odor. The present results showed that preferences for familiar odors were strongly predicted by average preferences for all things associated with the odors (eg people liked the apple odor which was associated with mostly positive things, such as apples, soap, and candy, but disliked the fish odor, which was associated with mostly negative things, such as dead fish, trash, and vomit). The odor WAVEs (weighted affective valence estimates) performed significantly better than one based on preference for only the namesake object (eg predicting preference for the apple odor based on preference for apples). These results suggest that preferences for familiar odors are based on a summary statistic, coding the valence of previous odor-related experiences. We discuss how this account of odor preferences is consistent with the idea that odor preferences exist to guide organisms to approach beneficial objects and situations and avoid harmful ones.
Autonomic nervous responses according to preference for the odor of jasmine tea.
Inoue, Naohiko; Kuroda, Kyoko; Sugimoto, Akio; Kakuda, Takami; Fushiki, Tohru
2003-06-01
The effect of jasmine tea odor on the autonomic nervous system was investigated by a power spectral analysis of the heart rate variability. We assigned eight volunteers to two groups with either a predilection for or antipathy toward the jasmine tea odor. We tested both high- and low-intensity jasmine tea odors. The low-intensity odor was produced by diluting 20-fold the jasmine tea used for the high-intensity odor test. The low-intensity odor produced an increase in parasympathetic nervous activity in both the predilection and antipathy groups. The high-intensity odor produced an increase in parasympathetic nervous activity in the predilection group, but an increase in sympathetic nervous activity in the antipathy group. The odor of Chinese green tea, a basic ingredient of jasmine tea, produced no effects similar to those of the jasmine tea odor. These results suggest that the jasmine tea odor activated the parasympathetic nerve, whereas the higher-intensity odor activated the sympathetic nerve in those subjects who disliked the odor.
Jebreili, Mahnaz; Neshat, Hanieh; Seyyedrasouli, Aleheh; Ghojazade, Morteza; Hosseini, Mohammad Bagher; Hamishehkar, Hamed
2015-09-01
The main purpose of this study was to investigate the calming effects of breastmilk odor and vanilla odor on preterm infants during and after venipuncture. One hundred thirty-five preterm infants were randomly selected and divided into three groups: control, vanilla odor, and breastmilk odor. Infants in the breastmilk group were exposed to breastmilk odor, and infants in the vanilla group were exposed to vanilla odor from 5 minutes before the start of sampling until 30 seconds after sampling. The Premature Infant Pain Profile was used for calculating quality of pain in infants during and after sampling. Statistical analyses showed that both vanilla and breastmilk odors had calming effects on premature infants during sampling, but just breastmilk odor had calming effects on infants after the end of sampling. Compared with vanilla odor, breastmilk odor has more calming effects on premature infants. Breastmilk odor can be used for calming premature infants during and after venipuncture.
Yan, Luchun; Liu, Jiemin; Jiang, Shen; Wu, Chuandong; Gao, Kewei
2017-07-13
The olfactory evaluation function (e.g., odor intensity rating) of e-nose is always one of the most challenging issues in researches about odor pollution monitoring. But odor is normally produced by a set of stimuli, and odor interactions among constituents significantly influenced their mixture's odor intensity. This study investigated the odor interaction principle in odor mixtures of aldehydes and esters, respectively. Then, a modified vector model (MVM) was proposed and it successfully demonstrated the similarity of the odor interaction pattern among odorants of the same type. Based on the regular interaction pattern, unlike a determined empirical model only fit for a specific odor mixture in conventional approaches, the MVM distinctly simplified the odor intensity prediction of odor mixtures. Furthermore, the MVM also provided a way of directly converting constituents' chemical concentrations to their mixture's odor intensity. By combining the MVM with usual data-processing algorithm of e-nose, a new e-nose system was established for an odor intensity rating. Compared with instrumental analysis and human assessor, it exhibited accuracy well in both quantitative analysis (Pearson correlation coefficient was 0.999 for individual aldehydes ( n = 12), 0.996 for their binary mixtures ( n = 36) and 0.990 for their ternary mixtures ( n = 60)) and odor intensity assessment (Pearson correlation coefficient was 0.980 for individual aldehydes ( n = 15), 0.973 for their binary mixtures ( n = 24), and 0.888 for their ternary mixtures ( n = 25)). Thus, the observed regular interaction pattern is considered an important foundation for accelerating extensive application of olfactory evaluation in odor pollution monitoring.
Influence of Body Odors and Gender on Perceived Genital Arousal.
Alves-Oliveira, Patrícia; Carvalho, Joana; Ferreira, Jacqueline; Alho, Laura; Nobre, Pedro; Olsson, Mats J; Soares, Sandra C
2018-04-01
Olfaction is often linked to mating behavior in nonhumans. Additionally, studies in mating behavior have shown that women seem to be more affected by odor cues than men. However, the relationship between odor cues and sexual response-specifically, sexual arousal-has not been studied yet. The aim of this study was to evaluate the impact of the exposure to human body odors (from individuals of the opposite gender) on perceived genital arousal, while these were presented concomitantly to sexually explicit video clips. Eighty university students (40 women) rated their perceived genital arousal (perceived degree of erection/genital lubrication) in response to an audiovisual sexual stimulus, while simultaneously exposed to a body odor from an opposite-gender donor or no odor. Participants also rated each odor sample's (body odor and no odor) perceived pleasantness, intensity, and familiarity. Findings indicated that odor condition had an effect on women's (but not men's) perceived genital arousal, with women showing higher levels of perceived genital arousal in the no odor condition. Also, results showed that women rated body odors as less pleasant than no odor. Notwithstanding, the odor ratings do not seem to explain the association between body odor and perceived genital arousal. The current results support the hypothesis that women, rather than men, are sensitive to odors in the context of sexual response. The findings of this study have relevance for the understanding of human sexuality with respect to chemosensory communication.
NASA Astrophysics Data System (ADS)
Zinn, Sabrina; Betz, Thomas; Medcraft, Chris; Schnell, Melanie
2015-06-01
The rotational spectrum of trans-cinnamaldehyde ((2E)-3-phenylprop-2-enal) has been obtained with chirped-pulse microwave spectroscopy in the frequency range of 2 - 8.5 GHz. The odorant molecule is the essential component in cinnamon oil and causes the characteristic smell. In the measured high-resolution spectrum, we were able to assign the rotational spectra of two conformers of trans-cinnamaldehyde as well as all singly 13C-substituted species of the lowest-energy conformer in natural abundance. Two different methods were used to determine the structure from the rotational constants, which will be compared within this contribution. In addition, the current progress of studying ether-alcohol complexes, aiming at an improved understanding of the interplay between hydrogen bonding and dispersion interaction, will be reported. Here, a special focus is placed on the complexes of diphenylether with small aliphatic alcohols.
NASA Astrophysics Data System (ADS)
Liu, Gaoyuan; Ji, Jian; Hu, Peng; Lin, Sixin; Huang, Haibao
2018-03-01
Odor pollution causes great harm to the atmospheric environment and human health. H2S, as an odor gas, is highly toxic and corrosive and thus requires removal efficiently. In this study, TiO2 catalysts modified by transition metals including Mn, Cu, Ni and Co, were prepared using a modified sol-gelatin method and tested under UV-PCO or VUV-PCO process. H2S degradation was great enhanced in VUV-PCO compared with conventional UV-PCO. Among the catalysts, 1 wt% Mn-TiO2 showed the highest removal efficiency of 89.9%, which is 30 times higher than that under 254 nm UV irradiation. Residual ozone in the outlet can be completely eliminated by Mn-TiO2. Photocatalytic oxidation, photolysis and ozone-assisted catalytic oxidation all involved in the VUV-PCO process and their contribution were determined by H2S removal efficiency.
Key Aroma Compounds in Smoked Cooked Loin.
Kosowska, Monika; Majcher, Małgorzata A; Jeleń, Henryk H; Fortuna, Teresa
2018-04-11
Smoked cooked loin is one of the most popular meat products in Poland. In this study, key volatile compounds in this traditional Polish meat product were determined using gas chromatography-olfactometry and aroma extract dilution analysis (AEDA). In total, 27 odor-active volatile compounds were identified, with flavor dilution (FD) factors ranging from 4 to 1024, with the highest FD factors noted for 2-methoxyphenol, 2-methoxy-4-(prop-2-enyl)phenol, and 2-methoxy-4-( E)-(prop-1-en-1-yl)phenol. Results of the quantitative analyses based on determinations with stable isotope dilution assays (SIDAs) and standard addition (SA), followed by calculations of the odor activity value (OAV), enabled identifying 24 of the volatile compounds responsible for flavor development in the analyzed smoked cooked loin. The highest OAVs were obtained for 2-methoxyphenol, 2-methyl-3-furanthiol, 1-octen-3-one, and 2-methyl-3-(methyldithio)furan.
Grabowska-Polanowska, Beata; Miarka, Przemysław; Skowron, Monika; Sułowicz, Joanna; Wojtyna, Katarzyna; Moskal, Karolina; Śliwka, Ireneusz
2017-10-01
The studies on volatile organic compounds emitted from skin are an interest for chemists, biologists and physicians due to their role in development of different scientific areas, including medical diagnostics, forensic medicine and the perfume design. This paper presents a proposal of two sampling methods applied to skin odor collection: the first one uses a bag of cellulose film, the second one, using cellulose sachets filled with active carbon. Volatile organic compounds were adsorbed on carbon sorbent, removed via thermal desorption and analyzed using gas chromatograph with mass spectrometer. The first sampling method allowed identification of more compounds (52) comparing to the second one (30). Quantitative analyses for acetone, butanal, pentanal and hexanal were done. The skin odor sampling method using a bag of cellulose film, allowed the identification of many more compounds when compared with the method using a sachet filled with active carbon.
Boers, D; Geelen, L; Erbrink, H; Smit, L A M; Heederik, D; Hooiveld, M; Yzermans, C J; Huijbregts, M; Wouters, I M
2016-04-01
Odor annoyance is an important environmental stressor for neighboring residents of livestock farms and may affect their quality of life and health. However, little is known about the relation between odor exposure due to livestock farming and odor annoyance. Even more, the relation between odor exposure and odor annoyance is rather complicated due to variable responses among individuals to comparable exposure levels and a large number of factors (such as age, gender, education) that may affect the relation. In this study, we (1) investigated the relation between modeled odor exposure and odor annoyance; (2) investigated whether other factors can affect this relation; and (3) compared our dose-response relation to a dose-response relation established in a previous study carried out in the Netherlands, more than 10 years ago, in order to investigate changes in odor perception and appreciation over time. We used data from 582 respondents who participated in a questionnaire survey among neighboring residents of livestock farms in the south of the Netherlands. Odor annoyance was established by two close-ended questions in a questionnaire; odor exposure was estimated using the Stacks dispersion model. The results of our study indicate a statistically significant and positive relation between modeled odor exposure and reported odor annoyance from livestock farming (OR 1.92; 95 % CI 1.53-2.41). Furthermore, age, asthma, education and perceived air pollution in the environment are all related to odor annoyance, although they hardly affect the relation between estimated livestock odor exposure and reported odor annoyance. We also found relatively more odor annoyance reported among neighboring residents than in a previous study conducted in the Netherlands. We found a strong relation between modeled odor exposure and odor annoyance. However, due to some uncertainties and small number of studies on this topic, further research and replication of results is recommended.
Development switch in neural circuitry underlying odor-malaise learning.
Shionoya, Kiseko; Moriceau, Stephanie; Lunday, Lauren; Miner, Cathrine; Roth, Tania L; Sullivan, Regina M
2006-01-01
Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.
Miyazawa, Mitsuo; Nakashima, Yoshimi; Nakahashi, Hiroshi; Hara, Nobuyuki; Nakagawa, Hiroki; Usami, Atsushi; Chavasiri, Warinthorn
2015-01-01
The present study focuses on the volatile compounds with characteristic odor of essential oil from the leaves of Magnolia obovata by hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE) method. Eighty-seven compounds, representing 98.0% of the total oil, were identified using HD. The major compounds of HD oil were (E)-β-caryophyllene (23.7%), α-humulene (11.6%), geraniol (9.1%), and borneol (7.0%). In SAFE oil, fifty-eight compounds, representing 99.7% of the total oil, were identified. The main compounds of SAFE oil were (E)-β-caryophyllene (48.9%), α-humulene (15.7%), and bicyclogermacrene (4.2%). In this study, we newly identified eighty-five compounds of the oils from M. obovata leaves. These oils were also subjected to aroma evaluation by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). As a result, twenty-four (HD) and twenty-five (SAFE) aroma-active compounds were detected. (E)-β-Caryophyllene, α-humulene, linalool, geraniol, 1,8-cineole, and bicyclogermacrene were found to impart the characteristic odor of M. obovata leaves. These results imply that the oils of M. obovata leaves must be investigated further to clarify their potential application in the food and pharmaceutical industries.
Lasekan, Ola; Muniady, Megala; Lin, Mee; Dabaj, Fatma
2018-04-24
Food flavor appreciation is one of the first signals along with food appearance and texture encountered by consumers during eating of food. Also, it is well known that flavor can strongly influence consumer's acceptability judgment. The increase in the consumption of snail meat across the world calls for the need to research into the aroma compounds responsible for the distinctive aroma notes of processed snail meat. The odorants responsible for the unique aroma notes in thermally processed giant African snail meats were evaluated by means of aroma extract dilution analysis (AEDA), gas chromatography-olfactometry (GC-O) and odor activity values (OAVs) respectively. Results revealed significant differences in the aroma profiles of the raw and thermally processed snail meats. Whilst the aroma profile of the raw snail meat was dominated with the floral-like β-ionone and β-iso-methyl ionone, sweaty/cheesy-like butanoic acid, and the mushroom-like 1-octen-3-one, the boiled and fried samples were dominated with the thermally generated odorants like 2-methylpyrazine, 2,5-dimethylpyrazine, 2-acetylthiazole and 2-acetylpyridine. Finally, results have shown that sotolon, 2-acetyl-1-pyrroline, 2-furanmethanethiol, 2-methylbutanal, 1-octen-3-one, octanal, furanone, 2-methoxyphenol, 2-acetylpyridine, 2-acetylthiazole, and 2-methylpyrazine contributed to the overall aroma of the thermally processed snail meat.
Martinec Nováková, Lenka; Plotěná, Dagmar; Roberts, S. Craig; Havlíček, Jan
2015-01-01
Hedonic ratings of odors and olfactory preferences are influenced by a number of modulating factors, such as prior experience and knowledge about an odor’s identity. The present study addresses the relationship between knowledge about an odor’s identity due to prior experience, assessed by means of a test of cued odor identification, and odor pleasantness ratings in children who exhibit ongoing olfactory learning. Ninety-one children aged 8–11 years rated the pleasantness of odors in the Sniffin’ Sticks test and, subsequently, took the odor identification test. A positive association between odor identification and pleasantness was found for two unpleasant food odors (garlic and fish): higher pleasantness ratings were exhibited by those participants who correctly identified these odors compared to those who failed to correctly identify them. However, we did not find a similar effect for any of the more pleasant odors. The results of this study suggest that pleasantness ratings of some odors may be modulated by the knowledge of their identity due to prior experience and that this relationship might be more evident in unpleasant odors. PMID:26029143
Graded Encoding of Food Odor Value in the Drosophila Brain
Beshel, Jennifer
2013-01-01
Odors are highly evocative, yet how and where in the brain odors derive meaning remains unknown. Our analysis of the Drosophila brain extends the role of a small number of hunger-sensing neurons to include food-odor value representation. In vivo two-photon calcium imaging shows the amplitude of food odor-evoked activity in neurons expressing Drosophila neuropeptide F (dNPF), the neuropeptide Y homolog, strongly correlates with food-odor attractiveness. Hunger elevates neural and behavioral responses to food odors only, although food odors that elicit attraction in the fed state also evoke heightened dNPF activity in fed flies. Inactivation of a subset of dNPF-expressing neurons or silencing dNPF receptors abolishes food-odor attractiveness, whereas genetically enhanced dNPF activity not only increases food-odor attractiveness but promotes attraction to aversive odors. Varying the amount of presented odor produces matching graded neural and behavioral curves, which can function to predict preference between odors. We thus demonstrate a possible motivationally scaled neural “value signal” accessible from uniquely identifiable cells. PMID:24089477
Cell-Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors.
Termtanasombat, Maneerat; Mitsuno, Hidefumi; Misawa, Nobuo; Yamahira, Shinya; Sakurai, Takeshi; Yamaguchi, Satoshi; Nagamune, Teruyuki; Kanzaki, Ryohei
2016-07-01
The olfactory system of living organisms can accurately discriminate numerous odors by recognizing the pattern of activation of several odorant receptors (ORs). Thus, development of an odorant sensor array based on multiple ORs presents the possibility of mimicking biological odor discrimination mechanisms. Recently, we developed novel odorant sensor elements with high sensitivity and selectivity based on insect OR-expressing Sf21 cells that respond to target odorants by displaying increased fluorescence intensity. Here we introduce the development of an odorant sensor array composed of several Sf21 cell lines expressing different ORs. In this study, an array pattern of four cell lines expressing Or13a, Or56a, BmOR1, and BmOR3 was successfully created using a patterned polydimethylsiloxane film template and cell-immobilizing reagents, termed biocompatible anchor for membrane (BAM). We demonstrated that BAM could create a clear pattern of Sf21 sensor cells without impacting their odorant-sensing performance. Our sensor array showed odorant-specific response patterns toward both odorant mixtures and single odorant stimuli, allowing us to visualize the presence of 1-octen-3-ol, geosmin, bombykol, and bombykal as an increased fluorescence intensity in the region of Or13a, Or56a, BmOR1, and BmOR3 cell lines, respectively. Therefore, we successfully developed a new methodology for creating a cell-based odorant sensor array that enables us to discriminate multiple target odorants. Our method might be expanded into the development of an odorant sensor capable of detecting a large range of environmental odorants that might become a promising tool used in various applications including the study of insect semiochemicals and food contamination.
Combinatorial effects of odorants on mouse behavior
Saraiva, Luis R.; Kondoh, Kunio; Ye, Xiaolan; Yoon, Kyoung-hye; Hernandez, Marcus; Buck, Linda B.
2016-01-01
The mechanisms by which odors induce instinctive behaviors are largely unknown. Odor detection in the mouse nose is mediated by >1, 000 different odorant receptors (ORs) and trace amine-associated receptors (TAARs). Odor perceptions are encoded combinatorially by ORs and can be altered by slight changes in the combination of activated receptors. However, the stereotyped nature of instinctive odor responses suggests the involvement of specific receptors and genetically programmed neural circuits relatively immune to extraneous odor stimuli and receptor inputs. Here, we report that, contrary to expectation, innate odor-induced behaviors can be context-dependent. First, different ligands for a given TAAR can vary in behavioral effect. Second, when combined, some attractive and aversive odorants neutralize one another’s behavioral effects. Both a TAAR ligand and a common odorant block aversion to a predator odor, indicating that this ability is not unique to TAARs and can extend to an aversive response of potential importance to survival. In vitro testing of single receptors with binary odorant mixtures indicates that behavioral blocking can occur without receptor antagonism in the nose. Moreover, genetic ablation of a single receptor prevents its cognate ligand from blocking predator odor aversion, indicating that the blocking requires sensory input from the receptor. Together, these findings indicate that innate odor-induced behaviors can depend on context, that signals from a single receptor can block innate odor aversion, and that instinctive behavioral responses to odors can be modulated by interactions in the brain among signals derived from different receptors. PMID:27208093
Masaoka, Yuri; Kawase, Akiko; Homma, Ikuo
2013-01-01
No previous report has described whether information regarding an odor used in aromatherapy has placebo effects. We investigated whether placebo analgesia was engendered by verbal information regarding the analgesic effects of an odor. Twelve of 24 subjects were provided with the information that a lavender odor would reduce pain (informed), whereas the other 12 subjects were not (not-informed). Concurrent with respiration recording, the subjects were administered a lavender-odor or no-odor treatment during application of painful stimulation to the forefinger. The subjects reported their experience of pain and its unpleasantness on a visual analogue scale after the painful stimulation. The lavender-odor treatment significantly alleviated pain and unpleasantness compared with the no-odor treatment in the informed (P < 0.01) and not-informed groups (P < 0.05). The no-odor treatment in the informed group significantly alleviated pain and unpleasantness compared with both the no-odor and lavender-odor treatments in the not-informed group (P < 0.05). Rapid and shallow breathing induced by the painful stimulation became slow and deep during the lavender-odor and no-odor treatments in both groups. Information regarding a lavender odor, the lavender odor itself, and slower breathing contributed to reduced perceptions of pain and unpleasantness during painful stimulation, suggesting that placebo effects significantly contribute to analgesia in aromatherapy. PMID:23840270
Novel cell-based odorant sensor elements based on insect odorant receptors.
Mitsuno, Hidefumi; Sakurai, Takeshi; Namiki, Shigehiro; Mitsuhashi, Hiroyuki; Kanzaki, Ryohei
2015-03-15
Development of cell-based odorant sensor elements combined not only high degree of sensitivity and selectivity but also long-term stability is crucial for their practical applications. Here we report the development of a novel cell-based odorant sensor element that sensitively and selectively detects odorants and displays increased fluorescent intensities over a long period of time. Our odorant sensor elements, based on Sf21 cell lines expressing insect odorant receptors, are sensitive to the level of several tens of parts per billion in solution, can selectively distinguish between different types of odorants based on the odorant selectivity intrinsic to the expressed receptors, and have response times of approximately 13s. Specifically, with the use of Sf21 cells and insect odorant receptors, we demonstrated that the established cell lines stably expressing insect odorant receptors are able to detect odorants with consistent responsiveness for at least 2 months, thus exceeding the short life-span normally associated with cell-based sensors. We also demonstrated the development of a compact odorant sensor chip by integrating the established insect cell lines into a microfluidic chip. The methodology we established in this study, in conjunction with the large repertoire of insect odorant receptors, will aid in the development of practical cell-based odorant sensors for various applications, including food administration and health management. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willse, Alan R.; Belcher, Ann; Preti, George
2005-04-15
Gas chromatography (GC), combined with mass spectrometry (MS) detection, is a powerful analytical technique that can be used to separate, quantify, and identify volatile compounds in complex mixtures. This paper examines the application of GC-MS in a comparative experiment to identify volatiles that differ in concentration between two groups. A complex mixture might comprise several hundred or even thousands of volatile compounds. Because their number and location in a chromatogram generally are unknown, and because components overlap in populous chromatograms, the statistical problems offer significant challenges beyond traditional two-group screening procedures. We describe a statistical procedure to compare two-dimensional GC-MSmore » profiles between groups, which entails (1) signal processing: baseline correction and peak detection in single ion chromatograms; (2) aligning chromatograms in time; (3) normalizing differences in overall signal intensities; and (4) detecting chromatographic regions that differ between groups. Compared to existing approaches, the proposed method is robust to errors made at earlier stages of analysis, such as missed peaks or slightly misaligned chromatograms. To illustrate the method, we identify differences in GC-MS chromatograms of ether-extracted urine collected from two nearly identical inbred groups of mice, to investigate the relationship between odor and genetics of the major histocompatibility complex.« less
Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao
2015-12-01
Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.
77 FR 22381 - Odorant Fade in Railroad Tank Cars
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... can lead to the loss of odorant. 4. Facilities that load odorized LPG into tank cars take any other... diminished levels of odorant or no odorant present, represents significant safety risks. Absent sufficient... the LPG in the storage tanks at the construction site had virtually no odorant present, explaining why...
USDA-ARS?s Scientific Manuscript database
Livestock facilities have historically generated public concerns due to their emissions of odorous air and various chemical pollutants. Odor emission factors and identification of principal odorous chemicals are needed to better understand the problem. Applications of odor emission factors include i...
ERIC Educational Resources Information Center
Raineki, Charlis; Shionoya, Kiseko; Sander, Kristin; Sullivan, Regina M.
2009-01-01
Both odor-preference and odor-aversion learning occur in perinatal pups before the maturation of brain structures that support this learning in adults. To characterize the development of odor learning, we compared three learning paradigms: (1) odor-LiCl (0.3M; 1% body weight, ip) and (2) odor-1.2-mA shock (hindlimb, 1sec)--both of which…
Factors affecting the water odor caused by chloramines during drinking water disinfection.
Wang, An-Qi; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Gao, Ze-Chen; Liu, Zhi; Cao, Tong-Cheng; Gao, Nai-Yun
2018-10-15
Chloramine disinfection is one of the most common disinfection methods in drinking water treatment. In this study, the temporal variability of water odors during monochloramine auto-decomposition was investigated to elucidate the characteristics of odor problems caused by adopting chloramine disinfection in tap water. Odor intensities and dominant odorant contributions were determined using the flavor profile analysis (FPA) and odor active value (OAV), respectively. During auto-decomposition of monochloramine, Cl 2 /N molar ratio, pH, temperature, and the presence of NOM all affected odor intensity and odor temporal variation in drinking water. In general, decreasing pH from 8.5 to 6.0 led to increasing perceived odor intensity due to the formation of dichloramine. The major odorants responsible for chlorinous odor under acidic and non-acidic conditions were dichloramine and monochloramine, respectively. Chloraminated water with a Cl 2 /N molar ratio of 0.6 or NOM concentration <2 mg-C L -1 inhibited odor intensity. Furthermore, the influence of rechlorination on chlorinous odor intensity for chloraminated water should not be neglected. The results of this study will be beneficial for the control of chlorinous odors caused by chloramine disinfection in drinking water. Copyright © 2018 Elsevier B.V. All rights reserved.
Maras, Pamela M; Petrulis, Aras
2008-07-05
Rodent reproductive behavior relies heavily on odor processing, and evidence suggests that many odor-guided sexual behaviors are shaped by prior experience. We sought to determine if exposure to male odors during development is required for the adult expression of proceptive sexual behavior toward male odors in female Syrian hamsters. Exposure to male odors was restricted in naïve subjects by removing all male siblings from the litter at three to five days of age. Control litters were also culled, but included equal numbers of male and female pups. As adults, naïve females displayed investigatory preferences toward male odors in a Y-maze that were comparable to control females; this preference was observed whether contact with the odor stimuli was prevented of allowed. In contrast, naïve females vaginal scent-marked equally toward male and female volatile odors, suggesting an inability to target behavior toward sexually relevant odors. However, naïve females marked preferentially toward male odors when allowed to contact the odor stimuli. These results provide evidence for the experience-dependent development of vaginal marking behavior toward volatile components of sexual odors. Furthermore, they suggest that distinct mechanisms regulate the development of odor preferences and vaginal marking behavior in this species.
Individually identifiable body odors are produced by the gorilla and discriminated by humans.
Hepper, Peter G; Wells, Deborah L
2010-05-01
Many species produce odor cues that enable them to be identified individually, as well as providing other socially relevant information. Study of the role of odor cues in the social behavior of great apes is noticeable by its absence. Olfaction has been viewed as having little role in guiding behavior in these species. This study examined whether Western lowland gorillas produce an individually identifiable odor. Odor samples were obtained by placing cloths in the gorilla's den. A delayed matching to sample task was used with human participants (n = 100) to see if they were able to correctly match a target odor sample to a choice of either: 2 odors (the target sample and another, Experiment 1) and 6 odors (the target sample and 5 others, Experiment 2). Participants were correctly able to identify the target odor when given either 2 or 6 matches. Subjects made fewest errors when matching the odor of the silverback, whereas matching the odors of the young gorillas produced most errors. The results indicate that gorillas do produce individually identifiable body odors and introduce the possibility that odor cues may play a role in gorilla social behavior.
NASA Astrophysics Data System (ADS)
Ranzato, Laura; Barausse, Alberto; Mantovani, Alice; Pittarello, Alberto; Benzo, Maurizio; Palmeri, Luca
2012-12-01
Unpleasant odors are a major cause of public complaints concerning air quality and represent a growing social problem in industrialized countries. However, the assessment of odor pollution is still regarded as a difficult task, because olfactory nuisance can be caused by many different chemical compounds, often found in hard-to-detect concentrations, and the perception of odors is influenced by subjective thresholds; moreover, the impact of odor sources on air quality is mediated by complex atmospheric dispersion processes. The development of standardized assessment approaches to odor pollution and proper international regulatory tools are urgently needed. In particular, comparisons of the methodologies commonly used nowadays to assess odor impacts on air quality are required. Here, we assess the olfactory nuisance caused by an anaerobic treatment plant for municipal solid waste by means of two alternative techniques: the field inspection procedure and the atmospheric dispersion model CALPUFF. Our goal was to compare rigorously their estimates of odor nuisance, both qualitatively (spatial extent of odor impact) and quantitatively (intensity of odor nuisance). To define the impact of odors, we referred to the German standards, based on the frequency of odor episodes in terms of odor hours. We report a satisfying, although not perfect agreement between the estimates provided by the two techniques. For example, they assessed similar spatial extents of odor pollution, but different frequencies of odor episodes in locations where the odor nuisance was highest. The comparison highlights strengths and weaknesses for both approaches. CALPUFF is a cheaper methodology which can be used predictively, but fugitive emissions are difficult to model reliably, because of uncertainty regarding timing, location and emission rate. Field inspection takes into account the role of human perception, but unlike the model it does not always characterize precisely the extent of the odor nuisance caused by a single source when other odors are present, because only the most unpleasant odor is reported. We conclude that these two assessment methods provide reasonable estimates of odor nuisance.
NASA Technical Reports Server (NTRS)
Weitzmann, A. L.
1977-01-01
The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.
USDA-ARS?s Scientific Manuscript database
Livestock facilities have received numerous criticisms due to their emissions of odorous air and chemicals. Hence, there is a significant need for odor emission factors and identification of principle odorous chemicals. Odor emission factors are used as inputs to odor setback models, while chemica...
The effect of meat consumption on body odor attractiveness.
Havlicek, Jan; Lenochova, Pavlina
2006-10-01
Axillary body odor is individually specific and potentially a rich source of information about its producer. Odor individuality partly results from genetic individuality, but the influence of ecological factors such as eating habits are another main source of odor variability. However, we know very little about how particular dietary components shape our body odor. Here we tested the effect of red meat consumption on body odor attractiveness. We used a balanced within-subject experimental design. Seventeen male odor donors were on "meat" or "nonmeat" diet for 2 weeks wearing axillary pads to collect body odor during the final 24 h of the diet. Fresh odor samples were assessed for their pleasantness, attractiveness, masculinity, and intensity by 30 women not using hormonal contraceptives. We repeated the same procedure a month later with the same odor donors, each on the opposite diet than before. Results of repeated measures analysis of variance showed that the odor of donors when on the nonmeat diet was judged as significantly more attractive, more pleasant, and less intense. This suggests that red meat consumption has a negative impact on perceived body odor hedonicity.
Functional identification and reconstitution of an odorant receptor in single olfactory neurons
Touhara, Kazushige; Sengoku, Shintaro; Inaki, Koichiro; Tsuboi, Akio; Hirono, Junzo; Sato, Takaaki; Sakano, Hitoshi; Haga, Tatsuya
1999-01-01
The olfactory system is remarkable in its capacity to discriminate a wide range of odorants through a series of transduction events initiated in olfactory receptor neurons. Each olfactory neuron is expected to express only a single odorant receptor gene that belongs to the G protein coupled receptor family. The ligand–receptor interaction, however, has not been clearly characterized. This study demonstrates the functional identification of olfactory receptor(s) for specific odorant(s) from single olfactory neurons by a combination of Ca2+-imaging and reverse transcription–coupled PCR analysis. First, a candidate odorant receptor was cloned from a single tissue-printed olfactory neuron that displayed odorant-induced Ca2+ increase. Next, recombinant adenovirus-mediated expression of the isolated receptor gene was established in the olfactory epithelium by using green fluorescent protein as a marker. The infected neurons elicited external Ca2+ entry when exposed to the odorant that originally was used to identify the receptor gene. Experiments performed to determine ligand specificity revealed that the odorant receptor recognized specific structural motifs within odorant molecules. The odorant receptor-mediated signal transduction appears to be reconstituted by this two-step approach: the receptor screening for given odorant(s) from single neurons and the functional expression of the receptor via recombinant adenovirus. The present approach should enable us to examine not only ligand specificity of an odorant receptor but also receptor specificity and diversity for a particular odorant of interest. PMID:10097159
Nilsson, Sara; Sjöberg, Johanna; Amundin, Mats; Hartmann, Constanze; Buettner, Andrea; Laska, Matthias
2014-01-01
Only little is known about whether single volatile compounds are as efficient in eliciting behavioral responses in animals as the whole complex mixture of a behaviorally relevant odor. Recent studies analysing the composition of volatiles in mammalian blood, an important prey-associated odor stimulus for predators, found the odorant trans-4,5-epoxy-(E)-2-decenal to evoke a typical "metallic, blood-like" odor quality in humans. We therefore assessed the behavior of captive Asian wild dogs (Cuon alpinus), African wild dogs (Lycaon pictus), South American bush dogs (Speothos venaticus), and Siberian tigers (Panthera tigris altaica) when presented with wooden logs that were impregnated either with mammalian blood or with the blood odor component trans-4,5-epoxy-(E)-2-decenal, and compared it to their behavior towards a fruity odor (iso-pentyl acetate) and a near-odorless solvent (diethyl phthalate) as control. We found that all four species displayed significantly more interactions with the odorized wooden logs such as sniffing, licking, biting, pawing, and toying, when they were impregnated with the two prey-associated odors compared to the two non-prey-associated odors. Most importantly, no significant differences were found in the number of interactions with the wooden logs impregnated with mammalian blood and the blood odor component in any of the four species. Only one of the four species, the South American bush dogs, displayed a significant decrease in the number of interactions with the odorized logs across the five sessions performed per odor stimulus. Taken together, the results demonstrate that a single blood odor component can be as efficient in eliciting behavioral responses in large carnivores as the odor of real blood, suggesting that trans-4,5-epoxy-(E)-2-decenal may be perceived by predators as a "character impact compound" of mammalian blood odor. Further, the results suggest that odorized wooden logs are a suitable manner of environmental enrichment for captive carnivores.
Lenochová, Pavlína; Vohnoutová, Pavla; Roberts, S. Craig; Oberzaucher, Elisabeth; Grammer, Karl; Havlíček, Jan
2012-01-01
Cross-culturally, fragrances are used to modulate body odor, but the psychology of fragrance choice has been largely overlooked. The prevalent view is that fragrances mask an individual's body odor and improve its pleasantness. In two experiments, we found positive effects of perfume on body odor perception. Importantly, however, this was modulated by significant interactions with individual odor donors. Fragrances thus appear to interact with body odor, creating an individually-specific odor mixture. In a third experiment, the odor mixture of an individual's body odor and their preferred perfume was perceived as more pleasant than a blend of the same body odor with a randomly-allocated perfume, even when there was no difference in pleasantness between the perfumes. This indicates that fragrance use extends beyond simple masking effects and that people choose perfumes that interact well with their own odor. Our results provide an explanation for the highly individual nature of perfume choice. PMID:22470479
Lenochová, Pavlína; Vohnoutová, Pavla; Roberts, S Craig; Oberzaucher, Elisabeth; Grammer, Karl; Havlíček, Jan
2012-01-01
Cross-culturally, fragrances are used to modulate body odor, but the psychology of fragrance choice has been largely overlooked. The prevalent view is that fragrances mask an individual's body odor and improve its pleasantness. In two experiments, we found positive effects of perfume on body odor perception. Importantly, however, this was modulated by significant interactions with individual odor donors. Fragrances thus appear to interact with body odor, creating an individually-specific odor mixture. In a third experiment, the odor mixture of an individual's body odor and their preferred perfume was perceived as more pleasant than a blend of the same body odor with a randomly-allocated perfume, even when there was no difference in pleasantness between the perfumes. This indicates that fragrance use extends beyond simple masking effects and that people choose perfumes that interact well with their own odor. Our results provide an explanation for the highly individual nature of perfume choice.
Addition of Olfactory Stimuli to Virtual Reality Simulations for Medical Training Applications
1996-11-01
surveyed and a working set of odorants were indentified or developed in sufficient quantities to support further testing. Extensive studies were performed...Olfactory Displays for HMD Systems 8 Ambulatory Olfactory HMD Display 11 Odor Display--Booth Environment 19 Odor Display in CAVE 20 Odor Survey and Odor...HMDs, it may be welcome in some scenarios such as those that might be used for training medics. Odorant Survey and Odor Development A second area of
Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP(3)-odors".
Chen, S; Lane, A P; Bock, R; Leinders-Zufall, T; Zufall, F
2000-07-01
Vertebrate olfactory receptor neurons (ORNs) transduce odor stimuli into electrical signals by means of an adenylyl cyclase/cAMP second messenger cascade, but it remains widely debated whether this cAMP cascade mediates transduction for all odorants or only certain odor classes. To address this problem, we have analyzed the generator currents induced by odors that failed to produce cAMP in previous biochemical assays but instead produced IP(3) ("IP(3)-odors"). We show that in single salamander ORNs, sensory responses to "cAMP-odors" and IP(3)-odors are not mutually exclusive but coexist in the same cells. The currents induced by IP(3)-odors exhibit identical biophysical properties as those induced by cAMP odors or direct activation of the cAMP cascade. By disrupting adenylyl cyclase to block cAMP formation using two potent antagonists of adenylyl cyclase, SQ22536 and MDL12330A, we show that this molecular step is necessary for the transduction of both odor classes. To assess whether these results are also applicable to mammals, we examine the electrophysiological responses to IP(3)-odors in intact mouse main olfactory epithelium (MOE) by recording field potentials. The results show that inhibition of adenylyl cyclase prevents EOG responses to both odor classes in mouse MOE, even when "hot spots" with heightened sensitivity to IP(3)-odors are examined.
NASA Astrophysics Data System (ADS)
Zee, Frank C.
2011-12-01
The ability to "smell" various gas vapors and complex odors is important for many applications such as environmental monitoring for detecting toxic gases as well as quality control in the processing of food, cosmetics, and other chemical products for commercial industries. Mimicking the architecture of the biological nose, a miniature electronic nose system was designed and developed consisting of an array of sensor devices, signal-processing circuits, and software pattern-recognition algorithms. The array of sensors used polymer/carbon-black composite thin-films, which would swell or expand reversibly and reproducibly and cause a resistance change upon exposure to a wide variety of gases. Two types of sensor devices were fabricated using silicon micromachining techniques to form "wells" that confined the polymer/carbon-black to a small and specific area. The first type of sensor device formed the "well" by etching into the silicon substrate using bulk micromachining. The second type built a high-aspect-ratio "well" on the surface of a silicon wafer using SU-8 photoresist. Two sizes of "wells" were fabricated: 500 x 600 mum² and 250 x 250 mum². Custom signal-processing circuits were implemented on a printed circuit board and as an application-specific integrated-circuit (ASIC) chip. The circuits were not only able to measure and amplify the small resistance changes, which corresponded to small ppm (parts-per-million) changes in gas concentrations, but were also adaptable to accommodate the various characteristics of the different thin-films. Since the thin-films were not specific to any one particular gas vapor, an array of sensors each containing a different thin-film was used to produce a distributed response pattern when exposed to a gas vapor. Pattern recognition, including a clustering algorithm and two artificial neural network algorithms, was used to classify the response pattern and identify the gas vapor or odor. Two gas experiments were performed, one at low gas concentrations between 100 and 600 ppm for two gas vapors and the other at high gas concentrations between 2000 ppm and the saturated vapor pressure of three gas vapors. The array of sensors and circuits were able to uniquely detect and measure these gas vapors and showed a linear response to their concentration levels for both experiments. The results also demonstrated that a reduction in the sensor area by two orders of magnitude (from 4.32 mm² to 0.0625 mm²) did not affect the sensor response. By applying pattern-recognition algorithms, the electronic nose system was able to correctly identify the different gas vapors from the pattern responses of the sensor array.
Different methods for volatile sampling in mammals
Möller, Manfred; Marcillo, Andrea; Einspanier, Almuth; Weiß, Brigitte M.
2017-01-01
Previous studies showed that olfactory cues are important for mammalian communication. However, many specific compounds that convey information between conspecifics are still unknown. To understand mechanisms and functions of olfactory cues, olfactory signals such as volatile compounds emitted from individuals need to be assessed. Sampling of animals with and without scent glands was typically conducted using cotton swabs rubbed over the skin or fur and analysed by gas chromatography-mass spectrometry (GC-MS). However, this method has various drawbacks, including a high level of contaminations. Thus, we adapted two methods of volatile sampling from other research fields and compared them to sampling with cotton swabs. To do so we assessed the body odor of common marmosets (Callithrix jacchus) using cotton swabs, thermal desorption (TD) tubes and, alternatively, a mobile GC-MS device containing a thermal desorption trap. Overall, TD tubes comprised most compounds (N = 113), with half of those compounds being volatile (N = 52). The mobile GC-MS captured the fewest compounds (N = 35), of which all were volatile. Cotton swabs contained an intermediate number of compounds (N = 55), but very few volatiles (N = 10). Almost all compounds found with the mobile GC-MS were also captured with TD tubes (94%). Hence, we recommend TD tubes for state of the art sampling of body odor of mammals or other vertebrates, particularly for field studies, as they can be easily transported, stored and analysed with high performance instruments in the lab. Nevertheless, cotton swabs capture compounds which still may contribute to the body odor, e.g. after bacterial fermentation, while profiles from mobile GC-MS include only the most abundant volatiles of the body odor. PMID:28841690
On-tap passive enrichment, a new way to investigate off-flavor episodes in drinking water.
Tondelier, Christophe; Thouvenot, Thomas; Genin, Arnaud; Benanou, David
2009-04-03
Because taste and odor events in drinking water are often fleeting and unpredictable phenomena, an innovative enrichment sampler has been developed to trap off-flavor compounds directly at the consumer's tap. The ARISTOT (Advanced Relevant Investigation Sampler for Taste & Odor at Tap) consists of a tap adapter in which seven polydimethylsiloxane (PDMS) coated stir bars are placed, allowing the stir bar sorptive extraction (SBSE) of organic compounds during each tap opening. In order to study the efficiency of ARISTOT, a private network pilot unit has been constructed in our laboratory, equipped with four faucets in parallel, solenoid valves for an automation of the system and a mixing chamber to spike drinking water with odorous compounds in order to have homogenously smelling water at each tap. After enrichment, the stir bars are taken out, in-line thermo-desorbed and analyzed by gas chromatography coupled with a mass spectrometer. The results showed the high sensitivity of ARISTOT, which was able to quickly monitor odorous compounds at the sub ng/L level. A "multishot" method was developed to analyze chemicals concentrated on the seven stir bars in only one chromatographic run, thereby increasing the sensitivity of the system. Higher enrichment factors were obtained under low water flow rates or by using longer stir bars and/or stir bars with a higher PDMS film thickness. No significant loss of extracted compounds was reported for flow rates between 2 and 4L/min. This allowed us to spike the stir bars with an internal standard prior to sampling in order to monitor the analytical variations. It was also observed that hot water increases the loss of enriched solutes but the quantification can be corrected by internal standard addition.
Patt, J M; Sétamou, M
2010-04-01
Diaphorina citri Kuwayama (Hemiptera: Psyllidae) carries Candidatus liberibacter spp., the putative causal agents of Huanglongbing. D. citri reproduces and develops only on the flushing shoots of its rutaceous host plants. Here we examined whether D. citri is attracted to host plant odors and a mixture of synthetic terpenes. Tests conducted in a vertically oriented Y-tube olfactometer showed that both males and females preferentially entered the Y-tube arm containing the odor from the young shoots of Murraya paniculata (L.) Jack and Citrus limon L. Burm. f. cultivar Eureka. Only males exhibited a preference for the odor of C. sinensis L., whereas the odor of C. x paradisi MacFadyen cultivar Rio Red was not attractive to both sexes. The volatiles emitted by young shoots of grapefruit cultivar Rio Red, Meyer lemon (Citrus x limon L. Burm.f.), and M. paniculata were analyzed by gas chromatograph-mass spectrometry. The samples were comprised of monoterpenes, monoterpene esters, and sesquiterpenes. The number of compounds present varied from 2 to 17, whereas the total amount of sample collected over 6 h ranged from 5.6 to 119.8 ng. The quantitatively dominant constituents were (E)-beta-ocimene, linalool, linalyl acetate, and beta-caryophyllene. The attractiveness of a mixture of synthetic terpenes, modeled on the volatiles collected from M. paniculata, was evaluated in screened cages in a no-choice test. At three observation intervals, significantly more individuals were trapped on white targets scented with the mixture than on unscented targets. These results indicate the feasibility of developing D. citri attractants patterned on actual host plant volatiles.
Aroma profile and volatiles odor activity along gold cultivar pineapple flesh.
Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Martín-Belloso, Olga
2010-01-01
Physicochemical attributes, aroma profile, and odor contribution of pineapple flesh were studied for the top, middle, and bottom cross-sections cut along the central axis of Gold cultivar pineapple. Relationships between volatile and nonvolatile compounds were also studied. Aroma profile constituents were determined by headspace solid-phase microextraction at 30 °C, followed by gas chromatography/mass spectrometry analysis. A total of 20 volatile compounds were identified and quantified. Among them, esters were the major components which accounted for 90% of total extracted aroma. Methyl butanoate, methyl 2-methyl butanoate, and methyl hexanoate were the 3 most abundant components representing 74% of total volatiles in pineapple samples. Most odor active contributors were methyl and ethyl 2-methyl butanoate and 2,5-dimethyl 4-methoxy 3(2H)-furanone (mesifuran). Aroma profile components did not vary along the fruit, but volatile compounds content significantly varied (P < 0.05) along the fruit, from 7560 to 10910 μg/kg, from the top to the bottom cross-sections of the fruit, respectively. In addition, most odor-active volatiles concentration increased from the top to the bottom 3rd of the fruit, concurrently with soluble solids content (SSC) and titratable acidity (TA) differences attributed to fruitlets distinct degree of ripening. Large changes in SSC/TA ratio and volatiles content throughout the fruit found through this study are likely to provoke important differences among individual fresh-cut pineapple trays, compromising consumer perception and acceptance of the product. Such finding highlighted the need to include volatiles content and SSC/TA ratio and their variability along the fruit as selection criteria for pineapples to be processed and quality assessment of the fresh-cut fruit. © 2010 Institute of Food Technologists®
Content and Formation Cause of VOCs in Medical Waste Non-incineration Treatment Project
NASA Astrophysics Data System (ADS)
Dengchao, Jin; Hongjun, Teng; Zhenbo, Bao; Yang, Li
2018-02-01
When medical waste is treated by non-incineration technology, volatile organic compounds in the waste will be volatile out and form odor pollution. This paper studied VOCs productions in medical waste steam treatment project, microwave treatment project and chemical dinifection project. Sampling and analysis were carried out on the waste gas from treatment equipment and the gas in treatment workshop. The contents of nine VOCs were determined. It was found that the VOCs content in the exhaust gas at the outlet of steam treatment unit was much higher than that of microwave and chemical treatment unit, while the content of VOCs in the chemical treatment workshop was higher than that in the steam and microwave treatment workshop. The formation causes of VOCs were also analyzed and discussed in this paper.
Capelli, Laura; Sironi, Selena; Rosso, Renato Del
2013-01-01
Sampling is one of the main issues pertaining to odor characterization and measurement. The aim of sampling is to obtain representative information on the typical characteristics of an odor source by means of the collection of a suitable volume fraction of the effluent. The most important information about an emission source for odor impact assessment is the so-called Odor Emission Rate (OER), which represents the quantity of odor emitted per unit of time, and is expressed in odor units per second (ou·s−1). This paper reviews the different odor sampling strategies adopted depending on source type. The review includes an overview of odor sampling regulations and a detailed discussion of the equipment to be used as well as the mathematical considerations to be applied to obtain the OER in relation to the sampled source typology. PMID:23322098
[Perception of odor quality by Free Image-Association Test].
Ueno, Y
1992-10-01
A method was devised for evaluating odor quality. Subjects were requested to freely describe the images elicited by smelling odors. This test was named the "Free Image-Association Test (FIT)". The test was applied for 20 flavors of various foods, five odors from the standards of T&T olfactometer (Japanese standard olfactory test), butter of yak milk, and incense from Lamaism temples. The words for expressing imagery were analyzed by multidimensional scaling and cluster analysis. Seven clusters of odors were obtained. The feature of these clusters were quite similar to that of primary odors which have been suggested by previous studies. However, the clustering of odors can not be explained on the basis of the primary-odor theory, but the information processing theory originally proposed by Miller (1956). These results support the usefulness of the Free Image-Association Test for investigating odor perception based on the images associated with odors.
Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.
Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen
2017-11-07
Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.
Capelli, Laura; Sironi, Selena; Del Rosso, Renato
2013-01-15
Sampling is one of the main issues pertaining to odor characterization and measurement. The aim of sampling is to obtain representative information on the typical characteristics of an odor source by means of the collection of a suitable volume fraction of the effluent. The most important information about an emission source for odor impact assessment is the so-called Odor Emission Rate (OER), which represents the quantity of odor emitted per unit of time, and is expressed in odor units per second (ou∙s-1). This paper reviews the different odor sampling strategies adopted depending on source type. The review includes an overview of odor sampling regulations and a detailed discussion of the equipment to be used as well as the mathematical considerations to be applied to obtain the OER in relation to the sampled source typology.
Stevenson, Richard J; Mahmut, Mehmet K
2011-10-01
Odor "sweetness" may arise from experiencing odors and tastes together, resulting in a flavor memory that is later reaccessed by the odor. Forming a flavor memory may be impaired if the taste and odor elements are apparent during exposure, suggesting that configural processing may underpin learning. Using a new procedure, participants made actual flavor discriminations for one odor-taste pair (e.g., Taste A vs. Odor X-Taste A) and mock discriminations for another (e.g., Odor Y-Taste B vs. Odor Y-Taste B). Participants, who were successful at detecting the actual flavor discriminations, demonstrated equal amounts of learning for both odor-taste pairings. These results suggest that although a capacity to discriminate flavor into its elements may be necessary to support learning, whether participants experience a configural or elemental flavor representation may not.
Order of exposure to pleasant and unpleasant odors affects autonomic nervous system response.
Horii, Yuko; Nagai, Katsuya; Nakashima, Toshihiro
2013-04-15
When mammals are exposed to an odor, that odor is expected to elicit a physiological response in the autonomic nervous system. An unpleasant aversive odor causes non-invasive stress, while a pleasant odor promotes healing and relaxation in mammals. We hypothesized that pleasant odors might reduce a stress response previously induced by an aversive predator odor. Rats were thus exposed to pleasant and unpleasant odors in different orders to determine whether the order of odor exposure had an effect on the physiological response in the autonomic nervous system. The first trial examined autonomic nerve activity via sympathetic and parasympathetic nerve response while the second trial examined body temperature response. Initial exposure to a pleasant odor elicited a positive response and secondary exposure to an unpleasant odor elicited a negative response, as expected. However, we found that while initial exposure to an unpleasant odor elicited a negative stress response, subsequent secondary exposure to a pleasant odor not only did not alleviate that negative response, but actually amplified it. These findings were consistent for both the autonomic nerve activity response trial and the body temperature response trial. The trial results suggest that exposure to specific odors does not necessarily result in the expected physiological response and that the specific order of exposure plays an important role. Our study should provide new insights into our understanding of the physiological response in the autonomic nervous system related to odor memory and discrimination and point to areas that require further research. Copyright © 2013 Elsevier B.V. All rights reserved.
OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.
Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M
2007-01-01
Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.
Choi, Il; Lee, Hyunjoo; Shin, Joungdu; Kim, Hyunook
2012-01-01
Sewer odors have been a concern to citizens of the Metropolitan Seoul region, which has installed combined sewer systems (CSSs) in 86% of its area. Although a variety of odorants are released from sewers, volatile sulfur compounds (VSCs) have been recognized as major ones. A number of technologies have been proposed to monitor or control odors from sewers. One of the most popular strategies adopted for the control of sewage odor is by applying a commercial odor-reducing agent into the sewer. In this study, the effectiveness of five different commercial odor-reducing agents (i.e., an odor masking agent, an alkaline solution, two microbial agents, and a chemical oxidant) was evaluated by continuously monitoring VSCs released from the sewer with an on-line total reduced sulfur (TRS) analyzer before and after each agent was sprayed into CSSs at five different locations of the city. In short, when the effectiveness of odor treatment was tested in the sewer system using five commercial odor reducing treatments, only the chemical oxidant was good enough to reduce the odor in terms of TRS levels measured before and after the application (p < 0.01). PMID:23223148
Recruits of the stingless bee Scaptotrigona pectoralis learn food odors from the nest atmosphere.
Reichle, Christian; Jarau, Stefan; Aguilar, Ingrid; Ayasse, Manfred
2010-05-01
The ability to learn food odors inside the nest and to associate them with food sources in the field is of essential importance for the recruitment of nestmates in social bees. We investigated odor learning by workers within the hive and the influence of these odors on their food choice in the field in the stingless bee Scaptotrigona pectoralis. During the experiments, recruited bees had to choose between two feeders, one with an odor that was present inside the nest during the recruitment process, and one with an unknown odor. In all experiments with different odor combinations (linalool/phenylacetaldehyde, geraniol/eugenol) a significant majority of bees visited the feeder with the odor they had experienced in their nest (chi (2)-tests; p < 0.05). By contrast, the bees showed no preference for one of two feeders when they were either baited with the same odor (linalool) or contained no odor. Our results clearly show that naïve workers of S. pectoralis can learn the odor of a food source during the recruitment process from the nest atmosphere and that their subsequent food search in the field is influenced by the learned odor.
Recruits of the stingless bee Scaptotrigona pectoralis learn food odors from the nest atmosphere
NASA Astrophysics Data System (ADS)
Reichle, Christian; Jarau, Stefan; Aguilar, Ingrid; Ayasse, Manfred
2010-05-01
The ability to learn food odors inside the nest and to associate them with food sources in the field is of essential importance for the recruitment of nestmates in social bees. We investigated odor learning by workers within the hive and the influence of these odors on their food choice in the field in the stingless bee Scaptotrigona pectoralis. During the experiments, recruited bees had to choose between two feeders, one with an odor that was present inside the nest during the recruitment process, and one with an unknown odor. In all experiments with different odor combinations (linalool/phenylacetaldehyde, geraniol/eugenol) a significant majority of bees visited the feeder with the odor they had experienced in their nest ( χ 2-tests; p < 0.05). By contrast, the bees showed no preference for one of two feeders when they were either baited with the same odor (linalool) or contained no odor. Our results clearly show that naïve workers of S. pectoralis can learn the odor of a food source during the recruitment process from the nest atmosphere and that their subsequent food search in the field is influenced by the learned odor.
The effects of predator odors in mammalian prey species: a review of field and laboratory studies.
Apfelbach, Raimund; Blanchard, Caroline D; Blanchard, Robert J; Hayes, R Andrew; McGregor, Iain S
2005-01-01
Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding.
Cordero, Chiara; Kiefl, Johannes; Schieberle, Peter; Reichenbach, Stephen E; Bicchi, Carlo
2015-01-01
Modern omics disciplines dealing with food flavor focus the analytical efforts on the elucidation of sensory-active compounds, including all possible stimuli of multimodal perception (aroma, taste, texture, etc.) by means of a comprehensive, integrated treatment of sample constituents, such as physicochemical properties, concentration in the matrix, and sensory properties (odor/taste quality, perception threshold). Such analyses require detailed profiling of known bioactive components as well as advanced fingerprinting techniques to catalog sample constituents comprehensively, quantitatively, and comparably across samples. Multidimensional analytical platforms support comprehensive investigations required for flavor analysis by combining information on analytes' identities, physicochemical behaviors (volatility, polarity, partition coefficient, and solubility), concentration, and odor quality. Unlike other omics, flavor metabolomics and sensomics include the final output of the biological phenomenon (i.e., sensory perceptions) as an additional analytical dimension, which is specifically and exclusively triggered by the chemicals analyzed. However, advanced omics platforms, which are multidimensional by definition, pose challenging issues not only in terms of coupling with detection systems and sample preparation, but also in terms of data elaboration and processing. The large number of variables collected during each analytical run provides a high level of information, but requires appropriate strategies to exploit fully this potential. This review focuses on advances in comprehensive two-dimensional gas chromatography and analytical platforms combining two-dimensional gas chromatography with olfactometry, chemometrics, and quantitative assays for food sensory analysis to assess the quality of a given product. We review instrumental advances and couplings, automation in sample preparation, data elaboration, and a selection of applications.
The Coast Artillery Journal. Volume 64, Number 5, May 1926
1926-05-01
PROFESSIONAL NOTES Non-Detonating Motor Fnels By hEUT. COL. JAMES PRENTICE Coast Artiller)" Corps No longer need the refiner market his cracked...principles involved. Shortly after this there appeared on the market some sickly yellow gasolines which, when burned in gas engines, emitted frightful...odors. These came in for the ridicule and disapproval of the popular press and soon disappeared from the market . Technical men said that these gasses
Eapi, Gautam R; Sabnis, Madhu S; Sattler, Melanie L
2014-08-01
Production of natural gas from shale formations is bringing drilling and production operations to regions of the United States that have seen little or no similar activity in the past, which has generated considerable interest in potential environmental impacts. This study focused on the Barnett Shale Fort Worth Basin in Texas, which saw the number of gas-producing wells grow from 726 in 2001 to 15,870 in 2011. This study aimed to measure fence line concentrations of methane and hydrogen sulfide at natural gas production sites (wells, liquid storage tanks, and associated equipment) in the four core counties of the Barnett Shale (Denton, Johnson, Tarrant, and Wise). A mobile measurement survey was conducted in the vicinity of 4788 wells near 401 lease sites, representing 35% of gas production volume, 31% of wells, and 38% of condensate production volume in the four-county core area. Methane and hydrogen sulfide concentrations were measured using a Picarro G2204 cavity ring-down spectrometer (CRDS). Since the research team did not have access to lease site interiors, measurements were made by driving on roads on the exterior of the lease sites. Over 150 hr of data were collected from March to July 2012. During two sets of drive-by measurements, it was found that 66 sites (16.5%) had methane concentrations > 3 parts per million (ppm) just beyond the fence line. Thirty-two lease sites (8.0%) had hydrogen sulfide concentrations > 4.7 parts per billion (ppb) (odor recognition threshold) just beyond the fence line. Measured concentrations generally did not correlate well with site characteristics (natural gas production volume, number of wells, or condensate production). t tests showed that for two counties, methane concentrations for dry sites were higher than those for wet sites. Follow-up study is recommended to provide more information at sites identified with high levels of methane and hydrogen sulfide. Implications: Information regarding air emissions from shale gas production is important given the recent increase in number of wells in various regions in the United States. Methane, the primary natural gas constituent, is a greenhouse gas; hydrogen sulfide, which can be present in gas condensate, is an odor-causing compound. This study surveyed wells representing one-third of the natural gas production volume in the Texas Barnett Shale and identified the percent of sites that warrant further study due to their fence line methane and hydrogen sulfide concentrations.
2017-01-01
Abstract Early sensory experience shapes the anatomy and function of sensory circuits. In the mouse olfactory bulb (OB), prenatal and early postnatal odorant exposure through odorized food (food/odorant pairing) not only increases the volume of activated glomeruli but also increases the number of mitral and tufted cells (M/TCs) connected to activated glomeruli. Given the importance of M/TCs in OB output and in mediating lateral inhibitory networks, increasing the number of M/TCs connected to a single glomerulus may significantly change odorant representation by increasing the total output of that glomerulus and/or by increasing the strength of lateral inhibition mediated by cells connected to the affected glomerulus. Here, we seek to understand the functional impact of this long-term odorant exposure paradigm on the population activity of mitral cells (MCs). We use viral expression of GCaMP6s to examine odor-evoked responses of MCs following prenatal and early postnatal odorant exposure to two dissimilar odorants, methyl salicylate (MS) and hexanal, which are both strong activators of glomeruli on the dorsal OB surface. Previous work suggests that odor familiarity may decrease odor-evoked MC response in rodents. However, we find that early food-based odorant exposure significantly changes MC responses in an unexpected way, resulting in broad increases in the amplitude, number, and reliability of excitatory MC responses across the dorsal OB. PMID:28955723
Lübke, Katrin T; Hoenen, Matthias; Pause, Bettina M
2012-03-17
On an individual level, human body odors carry information about whether a person is an eligible mate. The current studies investigate if body odors also transmit information about individuals being potential partners in more general terms, namely in regards to gender and sexual orientation. In study 1, 14 gay and 14 heterosexual men were presented with body odors obtained from potential partners (gay male and heterosexual female body odors, respectively) and heterosexual male body odor as a control. In study 2, 14 lesbian and 14 heterosexual women were presented with lesbian female and heterosexual male body odors representing body odors of potential partners, and heterosexual female body odor as a control. Central nervous processing was analyzed using chemosensory event-related potentials and current source density analysis (64-channel EEG recording). Gay and heterosexual men responded with shorter P2 latencies to the body odors of their preferred sexual partners, and lesbian women responded with shorter P2 latencies to body odors of their preferred gender. In response to heterosexual male body odors, lesbian women displayed the most pronounced P3 amplitude, and distinct neuronal activation in medial frontal and parietal neocortical areas. A similar pattern of neuronal activation was observed in gay men when presented with heterosexual male body odor. Both the early processing advantage (P2) for desirable partners' body odors as well as the enhanced evaluative processing (P3, CSD) of undesirable partners' body odors suggest that human body odors indeed carry information about individuals being potential partners in terms of gender and sexual orientation. Copyright © 2011 Elsevier B.V. All rights reserved.
Descriptive epidemiology of indoor odor complaints at a large teaching institution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boswell, R.T.; DiBerardinis, L.; Ducatman, A.
1994-04-01
Investigation of indoor odor complaints consumes a substantial portion of the time and resources of many industrial hygiene offices, yet very little information has been published on the subject. We examined 3 years of data on indoor odor complaints at the Massachusetts Institute of Technology in Cambridge, Massachusetts in order to identify factors that may trigger complaints of odors. Plumbing and maintenance accounted for the majority of activities responsible for the identified sources (35% of calls), while research and teaching activities accounted for only 11 percent of calls. A larger number of calls were received during the winter months whenmore » windows are closed and school is in session. There was generally good correlation between the description of an odor by a complainant and the actual source. Offices/secretarial areas/office support rooms accounted for almost half of the calls, while laboratory facilities accounted for 19 percent of the calls. Despite the fact that the chemistry department was responsible for the most number of calls, the odor sources from these complaints were related primarily to plumbing (dried sink and floor drains) and not the chemicals used for research and teaching. Four types of abatement measures were used when odor sources could be identified: natural dissipation of the odor (23%), advice for prevention of future odors (11%), controlling an odor source (16%), and correction of the odor source (33%). We conclude that the majority of sources of indoor odors which trigger complaints are related to the maintenance of the physical plant, and that complaints are likely to be generated by unfamiliarity with certain odors. Recommendations are given to help reduce indoor odors and the time-consuming investigations into complaints from these odors. 10 refs., 4 figs.« less
Effect of fragrance use on discrimination of individual body odor.
Allen, Caroline; Havlíček, Jan; Roberts, S Craig
2015-01-01
Previous research suggests that artificial fragrances may be chosen to complement or enhance an individual's body odor, rather than simply masking it, and that this may create an odor blend with an emergent quality that is perceptually distinguishable from body odor or fragrance alone. From this, it can be predicted that a new emergent odor might be more easily identified than an individual's body odor in isolation. We used a triangle test paradigm to assess whether fragrance affects people's ability to distinguish between individual odors. Six male and six female donors provided axillary odor samples in three conditions (without fragrance, wearing their own fragrance, and wearing an assigned fragrance). In total, 296 female and 131 male participants selected the odd one from three odor samples (two from one donor, one from another; both of the same sex). We found that participants could discriminate between the odors at above chance levels in all three odor conditions. Olfactory identification ability (measured using Sniffin' Sticks) positively predicted discrimination performance, and sex differences in performance were also observed, with female raters being correct more often than men. Success rates were also higher for odors of male donors. Additionally, while performance was above chance in all conditions, individual odor discrimination varied across the three conditions. Discrimination rate was significantly higher in the "no fragrance" condition than either of the fragranced conditions. Importantly, however, discrimination rate was also significantly higher in the "own fragrance" condition than the "assigned fragrance" condition, suggesting that naturally occurring variance in body odor is more preserved when blended with fragrances that people choose for themselves, compared with other fragrances. Our data are consistent with the idea that fragrance choices are influenced by fragrance interactions with an individual's own body odor.
Effect of fragrance use on discrimination of individual body odor
Allen, Caroline; Havlíček, Jan; Roberts, S. Craig
2015-01-01
Previous research suggests that artificial fragrances may be chosen to complement or enhance an individual’s body odor, rather than simply masking it, and that this may create an odor blend with an emergent quality that is perceptually distinguishable from body odor or fragrance alone. From this, it can be predicted that a new emergent odor might be more easily identified than an individual’s body odor in isolation. We used a triangle test paradigm to assess whether fragrance affects people’s ability to distinguish between individual odors. Six male and six female donors provided axillary odor samples in three conditions (without fragrance, wearing their own fragrance, and wearing an assigned fragrance). In total, 296 female and 131 male participants selected the odd one from three odor samples (two from one donor, one from another; both of the same sex). We found that participants could discriminate between the odors at above chance levels in all three odor conditions. Olfactory identification ability (measured using Sniffin’ Sticks) positively predicted discrimination performance, and sex differences in performance were also observed, with female raters being correct more often than men. Success rates were also higher for odors of male donors. Additionally, while performance was above chance in all conditions, individual odor discrimination varied across the three conditions. Discrimination rate was significantly higher in the “no fragrance” condition than either of the fragranced conditions. Importantly, however, discrimination rate was also significantly higher in the “own fragrance” condition than the “assigned fragrance” condition, suggesting that naturally occurring variance in body odor is more preserved when blended with fragrances that people choose for themselves, compared with other fragrances. Our data are consistent with the idea that fragrance choices are influenced by fragrance interactions with an individual’s own body odor. PMID:26300812
Restrained eaters show altered brain response to food odor.
Kemmotsu, Nobuko; Murphy, Claire
2006-02-28
Do restrained and unrestrained eaters differ in their brain response to food odor? We addressed this question by examining restrained eaters' brain response to food (chocolate) and non-food (geraniol, floral) odors, both when odor was attended to and when ignored. Using olfactory event-related potentials (OERPs), we found that restrained eaters and controls responded similarly to the non-food odor; however, unlike controls, restrained eaters showed no increase in brain response to the food odor when they focused attention on it. Rather, restrained eaters showed attenuated OERP amplitudes to the food odor in both attended and ignored conditions, suggesting that the brain's response to attended food odor was abnormally suppressed.
Cognitive Facilitation Following Intentional Odor Exposure
Johnson, Andrew J.
2011-01-01
This paper reviews evidence that, in addition to incidental olfactory pollutants, intentional odor delivery can impact cognitive operations both positively and negatively. Evidence for cognitive facilitation/interference is reviewed alongside four potential explanations for odor-induced effects. It is concluded that the pharmacological properties of odors can induce changes in cognition. However, these effects can be accentuated/attenuated by the shift in mood following odor exposure, expectancy of cognitive effects, and cues to behavior via the contextual association with the odor. It is proposed that greater consideration is required in the intentional utilization of odors within both industrial and private locations, since differential effects are observed for odors with positive hedonic qualities. PMID:22163909
Robust and Rapid Air-Borne Odor Tracking without Casting1,2,3
Bhattacharyya, Urvashi
2015-01-01
Abstract Casting behavior (zigzagging across an odor stream) is common in air/liquid-borne odor tracking in open fields; however, terrestrial odor localization often involves path selection in a familiar environment. To study this, we trained rats to run toward an odor source in a multi-choice olfactory arena with near-laminar airflow. We find that rather than casting, rats run directly toward an odor port, and if this is incorrect, they serially sample other sources. This behavior is consistent and accurate in the presence of perturbations, such as novel odors, background odor, unilateral nostril stitching, and turbulence. We developed a model that predicts that this run-and-scan tracking of air-borne odors is faster than casting, provided there are a small number of targets at known locations. Thus, the combination of best-guess target selection with fallback serial sampling provides a rapid and robust strategy for finding odor sources in familiar surroundings. PMID:26665165
Olfactory receptor antagonism between odorants
Oka, Yuki; Omura, Masayo; Kataoka, Hiroshi; Touhara, Kazushige
2004-01-01
The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist–OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality. PMID:14685265
Hot and Cold Smells: Odor-Temperature Associations across Cultures
Wnuk, Ewelina; de Valk, Josje M.; Huisman, John L. A.; Majid, Asifa
2017-01-01
It is often assumed odors are associated with hot and cold temperature, since odor processing may trigger thermal sensations, such as coolness in the case of mint. It is unknown, however, whether people make consistent temperature associations for a variety of everyday odors, and, if so, what determines them. Previous work investigating the bases of cross-modal associations suggests a number of possibilities, including universal forces (e.g., perception), as well as culture-specific forces (e.g., language and cultural beliefs). In this study, we examined odor-temperature associations in three cultures—Maniq (N = 11), Thai (N = 24), and Dutch (N = 24)—who differ with respect to their cultural preoccupation with odors, their odor lexicons, and their beliefs about the relationship of odors (and odor objects) to temperature. Participants matched 15 odors to temperature by touching cups filled with hot or cold water, and described the odors in their native language. The results showed no consistent associations among the Maniq, and only a handful of consistent associations between odor and temperature among the Thai and Dutch. The consistent associations differed across the two groups, arguing against their universality. Further analysis revealed cross-modal associations could not be explained by language, but could be the result of cultural beliefs. PMID:28848482
Ventilation/odor study, field study. Final report, Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffee, R.A.; Jann, P.
1981-04-01
The results are presented of field investigations in schools, hospitals, and an office building on the relation between ventilation rate and odor within the buildings. The primary objective of the study was to determine: the reduction in ventilation rates that could be achieved in public buildings without causing adverse effects on odor; the sources of odor in public buildings; and the identity of the odorants. The variables of particular interest include: type of odor, occupant density, odorant identity and concentration, differences in impressions between occupants adapted to prevailing conditions and visitors, and the influence of temperature and humidity on bothmore » the generation and perception of common contaminants. Sensory odor measurements, chemical measurements, fresh air ventilation measurements, and acceptability evaluations via questionnaires were made. Sensory odor levels were found to be quite low in most buildings tested. A three-to-five-fold reduction in the fresh air ventilation in schools, hospitals, and office buildings can be achieved without significantly affecting perceived odor intensities or detectability. Tobacco smoking was found to be the most significant, pervasive contributor to interior odor level. Total hydrocarbon content of indoor air varies directly with ventilation rates; odor, however, does not. The complete set of reduced data are contained in Volume II. (LEW)« less
Sniffing shapes the dynamics of olfactory bulb gamma oscillations in awake behaving rats.
Rosero, Mario A; Aylwin, María L
2011-09-01
Mammals actively sample the environment for relevant olfactory objects. This active sampling is revealed by rapid changes in respiratory rate that influence the olfactory input. Yet the role of sniffing in shaping the neural responses to odorants has not been elucidated. In the olfactory bulb (OB), odorant-evoked gamma oscillations reflect the synchronous activity of mitral/tufted cells, a proposed mechanism for odorant representation. Here we examined the effect of sniffing frequency on the odorant-evoked gamma oscillations in the OB. We simultaneously recorded the respiratory rate and the local field potential while rats performed a lick/no-lick olfactory discrimination task with low odorant concentrations. High-frequency sniffing (HFS) augmented the power of gamma oscillations, suggesting an increase in the sensitivity to odorants. By contrast, coupling of the gamma oscillations to the sniff cycle and the amplitude of individual bursts were not modified by the respiratory rate. However, HFS prolonged the overall response to odorants and increased the frequency of the gamma oscillations, indicating that HFS reduces the adaptation to continuous odorant stimulation. Therefore, the increase in gamma power during HFS is the result of more frequent gamma bursts and the extended response to odorants. As odorant discrimination can be performed in a single sniff, a reduction in the adaptation mediated by HFS of novel odorants may facilitate odorant memory formation for subsequent odorant identification. Finally, these results corroborate that olfactory sampling should be integrated to the study of odorant coding in behaving animals. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Saive, Anne-Lise; Royet, Jean-Pierre; Ravel, Nadine; Thévenet, Marc; Garcia, Samuel; Plailly, Jane
2014-01-01
We behaviorally explore the link between olfaction, emotion and memory by testing the hypothesis that the emotion carried by odors facilitates the memory of specific unique events. To investigate this idea, we used a novel behavioral approach inspired by a paradigm developed by our team to study episodic memory in a controlled and as ecological as possible way in humans. The participants freely explored three unique and rich laboratory episodes; each episode consisted of three unfamiliar odors (What) positioned at three specific locations (Where) within a visual context (Which context). During the retrieval test, which occurred 24–72 h after the encoding, odors were used to trigger the retrieval of the complex episodes. The participants were proficient in recognizing the target odors among distractors and retrieving the visuospatial context in which they were encountered. The episodic nature of the task generated high and stable memory performances, which were accompanied by faster responses and slower and deeper breathing. Successful odor recognition and episodic memory were not related to differences in odor investigation at encoding. However, memory performances were influenced by the emotional content of the odors, regardless of odor valence, with both pleasant and unpleasant odors generating higher recognition and episodic retrieval than neutral odors. Finally, the present study also suggested that when the binding between the odors and the spatio-contextual features of the episode was successful, the odor recognition and the episodic retrieval collapsed into a unique memory process that began as soon as the participants smelled the odors. PMID:24936176
Body Odor Based Personality Judgments: The Effect of Fragranced Cosmetics
Sorokowska, Agnieszka; Sorokowski, Piotr; Havlíček, Jan
2016-01-01
People can accurately assess various personality traits of others based on body odor (BO) alone. Previous studies have shown that correlations between odor ratings and self-assessed personality dimensions are evident for assessments of neuroticism and dominance. Here, we tested differences between assessments based on natural body odor alone, without the use of cosmetics and assessments based on the body odor of people who were allowed to use cosmetics following their daily routine. Sixty-seven observers assessed samples of odors from 113 odor donors (each odor donor provided two samples – one with and one without cosmetic use); the donors provided their personality ratings, and the raters judged personality characteristics of the donors based on the provided odor samples. Correlations between observers’ ratings and self-rated neuroticism were stronger when raters assessed body odor in the natural body odor condition (natural BO condition; rs = 0.20) than in the cosmetics use condition (BO+cosmetics condition; rs = 0.15). Ratings of dominance significantly predicted self-assessed dominance in both conditions (rs = 0.34 for natural BO and rs = 0.21 for BO+cosmetics), whereas ratings of extraversion did not predict self-assessed extraversion in either condition. In addition, ratings of body odor attractiveness and pleasantness were significantly lower in natural BO condition than in BO+cosmetics condition, although the intensity of donors’ body odors was similar under both conditions. Our findings suggest that although olfaction seems to contribute to accurate first impression judgments of certain personality traits, cosmetic use can affect assessments of others based on body odor. PMID:27148138
Olfactory cortical adaptation facilitates detection of odors against background.
Kadohisa, Mikiko; Wilson, Donald A
2006-03-01
Detection and discrimination of odors generally, if not always, occurs against an odorous background. On any given inhalation, olfactory receptor neurons will be activated by features of both the target odorant and features of background stimuli. To identify a target odorant against a background therefore, the olfactory system must be capable of grouping a subset of features into an odor object distinct from the background. Our previous work has suggested that rapid homosynaptic depression of afferents to the anterior piriform cortex (aPCX) contributes to both cortical odor adaptation to prolonged stimulation and habituation of simple odor-evoked behaviors. We hypothesize here that this process may also contribute to figure-ground separation of a target odorant from background stimulation. Single-unit recordings were made from both mitral/tufted cells and aPCX neurons in urethan-anesthetized rats and mice. Single-unit responses to odorant stimuli and their binary mixtures were determined. One of the odorants was randomly selected as the background and presented for 50 s. Forty seconds after the onset of the background stimulus, the second target odorant was presented, producing a binary mixture. The results suggest that mitral/tufted cells continue to respond to the background odorant and, when the target odorant is presented, had response magnitudes similar to that evoked by the binary mixture. In contrast, aPCX neurons filter out the background stimulus while maintaining responses to the target stimulus. Thus the aPCX acts as a filter driven most strongly by changing stimuli, providing a potential mechanism for olfactory figure-ground separation and selective reading of olfactory bulb output.
Martinez, Luis A.; Petrulis, Aras
2013-01-01
Precopulatory behaviors that are preferentially directed towards opposite-sex conspecifics are critical for successful reproduction, particularly in species wherein the sexes live in isolation, such as Syrian hamsters (Mesocricetus auratus). In females, these behaviors include sexual odor preference and vaginal scent marking. The neural regulation of precopulatory behaviors is thought to involve a network of forebrain areas that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). Although MA and BNST are necessary for sexual odor preference and preferential vaginal marking to male odors, respectively, the role of MPOA in odor-guided female precopulatory behaviors is not well understood. To address this issue, female Syrian hamsters with bilateral, excitotoxic lesions of MPOA (MPOA-X) or sham lesions (SHAM) were tested for sexual odor investigation, scent marking, and lordosis. MPOA-X females did not investigate male odors more than female odors in an odor preference test, indicating that MPOA may be necessary for normal sexual odor preference in female hamsters. This loss of preference cannot be attributed to a sensory deficit, since MPOA-X females successfully discriminated male odors from female odors during an odor discrimination test. Surprisingly, no deficits in vaginal scent marking were observed in MPOA-X females, although these females did exhibit decreased overall levels of flank marking compared to SHAM females. Finally, all MPOA-X females exhibited lordosis appropriately. These results suggest that MPOA plays a critical role in the neural regulation of certain aspects of odor-guided precopulatory behaviors in female Syrian hamsters. PMID:23415835
Ritter, Simone M; Strick, Madelijn; Bos, Maarten W; van Baaren, Rick B; Dijksterhuis, Ap
2012-12-01
Both scientists and artists have suggested that sleep facilitates creativity, and this idea has received substantial empirical support. In the current study, we investigate whether one can actively enhance the beneficial effect of sleep on creativity by covertly reactivating the creativity task during sleep. Individuals' creative performance was compared after three different conditions: sleep-with-conditioned-odor; sleep-with-control-odor; or sleep-with-no-odor. In the evening prior to sleep, all participants were presented with a problem that required a creative solution. In the two odor conditions, a hidden scent-diffuser spread an odor while the problem was presented. In the sleep-with-conditioned-odor condition, task reactivation during sleep was induced by means of the odor that was also presented while participants were informed about the problem. In the sleep-with-control-odor condition, participants were exposed to a different odor during sleep than the one diffused during problem presentation. In the no odor condition, no odor was presented. After a night of sleep with the conditioned odor, participants were found to be: (i) more creative; and (ii) better able to select their most creative idea than participants who had been exposed to a control odor or no odor while sleeping. These findings suggest that we do not have to passively wait until we are hit by our creative muse while sleeping. Task reactivation during sleep can actively trigger creativity-related processes during sleep and thereby boost the beneficial effect of sleep on creativity. © 2012 European Sleep Research Society.
Cerreta, Michelle M; Furton, Kenneth G
2015-06-01
In recent years, the high frequency of illicit substance abuse reported in the United States has made the development of efficient and rapid detection methods important. Biological detectors, such as canines (Canis familiaris), are valuable tools for rapid, on-site identification of illicit substances. However, research indicates that in many cases canines do not alert to the contraband, but rather to the volatile organic compounds (VOCs) that are released from the contraband, referred to as the "active odor." In 2013, canine accuracy and reliability were challenged in the Supreme Court case, State of Florida v. Jardines. In this case, it was stated that if a canine alerts to the active odor, and not the contraband, the canine's accuracy and selectivity could be questioned, since many of these compounds have been found in common household products. Specifically, methyl benzoate, the active odor of cocaine, has been found to be the most abundant compound produced by snapdragon flowers. Therefore, the purpose of this study is to evaluate the odor profiles of various species of snapdragon flowers to assess how significantly methyl benzoate contributes to the total VOC profile or fragrance that is produced. Particularly, this study examines the VOCs released from newly grown snapdragon flowers and determines its potential at eliciting a false alert from specially trained detection canines. The ability of detection canines to differentiate between cocaine and snapdragon flowers was determined in order to validate the field accuracy and discrimination power of these detectors. An optimized method using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to test the different types and abundances of compounds generated from snapdragon flowers at various stages throughout the plants' life cycle. The results indicate that although methyl benzoate is present in the odor profile of snapdragon flowers, other compounds are present that contribute significantly, if not more, than that of methyl benzoate. Canine teams, from various police departments throughout South Florida, certified for narcotics detection, took part in this study. Two canine trials involving 21 canines teams were performed by exposing the teams to 4 different species of snapdragon flowers. Of the 21 canine teams tested, none alerted to the snapdragon flowers presented, while all (100%) alerted to real cocaine samples, the positive control. Notably, the results revealed that although methyl benzoate is produced by snapdragon flowers, certified narcotics detection canines can distinguish cocaine's odor profile from that of snapdragon flowers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Dan, Tong; Jin, Rulin; Ren, Weiyi; Li, Ting; Chen, Haiyan; Sun, Tiansong
2018-04-11
The lactic acid bacterium Streptococcus thermophilus is a major starter culture for the production of dairy products. In this study, the physiochemical characteristics of milk fermented by the MGA45-4 isolate of S. thermophilus were analyzed. Our data indicate that milk fermented using S. thermophilus MGA45-4 maintained a high viable cell count (8.86 log10 colony-forming units/mL), and a relatively high pH (4.4), viscosity (834.33 mPa·s), and water holding capacity (40.85%) during 14 days of storage. By analyzing the volatile compound profile using solid-phase microextraction and gas chromatography/mass spectrometry, we identified 73 volatile compounds in the fermented milk product, including five carboxylic acids, 21 aldehydes, 13 ketones, 16 alcohols, five esters, and 13 aromatic carbohydrates. According to the odor activity values, 11 of these volatile compounds were found to play a key role in producing the characteristic flavor of fermented milk, particularly octanal, nonanal, hexanal, 2,3-butanedione, and 1-octen-3-ol, which had the highest odor activity values among all compounds analyzed. These findings thus provide more insights in the chemical/molecular characteristics of milk fermented using S. thermophilus , which may provide a basis for improving dairy product flavor/odor during the process of fermentation and storage.
Asikin, Yonathan; Kusumiyati; Taira, Eizo; Wada, Koji
2018-04-01
Petai seeds are one of the well-known strong-smelling foods of the Southeast Asian region that have been harvested and commercially offered in different ripening forms. The current study focused on alterations in the size, color, sugar composition, and volatile flavor properties of petai seeds in the four ripening stages (unripe, mid ripe, ripe, and over-ripe). The ripening process was mainly indicated by the increase in size and weight as seed color turned paler and less greenish. The total sugar content gradually increased during ripening, and then elevated from 1.60 g/100 g (ripe seed) to the level of 2.82 g/100 g in the over-ripe seed. Ripening also altered the volatile flavor composition of petai seed, wherein the predominant aldehydes (hexanal and acetaldehyde) were decreased, and the sulfuric compounds (hydrogen sulfide, methanethiol, and 1,2,4-trithiolane) tended to increase. Additionally, gas chromatography-olfactometry (GC-O) analysis revealed alterations in the perceived odor strength and sensation of each volatile compound and demonstrated volatile flavor profiles, viz. detection percentages of volatile group odor strengths and descriptive odors, of petai seed. These results provide valuable information for monitoring alterations in the physical appearance, sugar composition, and aroma that represent the flavor quality in seasonal petai seed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Odor and odorous chemical emissions from animal buildings: Part 2. Odor emissions
USDA-ARS?s Scientific Manuscript database
This study was an add-on project to the National Air Emissions Monitoring Study (NAEMS) and focused on comprehensive measurement of odor emissions considering variations in seasons, animal types and olfactometry laboratories. Odor emissions from four of 14 NEAMS sites with nine barns/rooms (two dair...
Odor and odorous chemical emissions from animal buildings: Part 6.Odor activity value
USDA-ARS?s Scientific Manuscript database
There is a growing concern with air and odor emissions from agricultural facilities. A supplementary research project was conducted to complement the U.S. National Air Emissions Monitoring Study (NAEMS). The overall goal of the project was to establish odor and chemical emission factors for animal...
[Odor pollution from landfill sites and its control: a review].
Hu, Bin; Ding, Ying; Wu, Wei-Xiang; Hu, Bei-Gang; Chen, Ying-Xu
2010-03-01
Landfill sites are the major sources of offensive odor in urban public facilities. With the progress of urbanization and the residents' demands for a higher living environment quality, the odor emission from landfill sites has become a severe pollution problem, and the odor control at landfill sites has been one of the research hotspots. This paper summarized the main components and their concentrations of the odor from landfill sites, and expatiated on the research progress in the in-situ control of the odor. The further research directions in in-situ control of the odor from landfill sites were prospected.
Functional neuronal processing of body odors differs from that of similar common odors.
Lundström, Johan N; Boyle, Julie A; Zatorre, Robert J; Jones-Gotman, Marilyn
2008-06-01
Visual and auditory stimuli of high social and ecological importance are processed in the brain by specialized neuronal networks. To date, this has not been demonstrated for olfactory stimuli. By means of positron emission tomography, we sought to elucidate the neuronal substrates behind body odor perception to answer the question of whether the central processing of body odors differs from perceptually similar nonbody odors. Body odors were processed by a network that was distinctly separate from common odors, indicating a separation in the processing of odors based on their source. Smelling a friend's body odor activated regions previously seen for familiar stimuli, whereas smelling a stranger activated amygdala and insular regions akin to what has previously been demonstrated for fearful stimuli. The results provide evidence that social olfactory stimuli of high ecological relevance are processed by specialized neuronal networks similar to what has previously been demonstrated for auditory and visual stimuli.
Subliminal smells can guide social preferences.
Li, Wen; Moallem, Isabel; Paller, Ken A; Gottfried, Jay A
2007-12-01
It is widely accepted that unconscious processes can modulate judgments and behavior, but do such influences affect one's daily interactions with other people? Given that olfactory information has relatively direct access to cortical and subcortical emotional circuits, we tested whether the affective content of subliminal odors alters social preferences. Participants rated the likeability of neutral faces after smelling pleasant, neutral, or unpleasant odors delivered below detection thresholds. Odor affect significantly shifted likeability ratings only for those participants lacking conscious awareness of the smells, as verified by chance-level trial-by-trial performance on an odor-detection task. Across participants, the magnitude of this priming effect decreased as sensitivity for odor detection increased. In contrast, heart rate responses tracked odor valence independently of odor awareness. These results indicate that social preferences are subject to influences from odors that escape awareness, whereas the availability of conscious odor information may disrupt such effects.
Maternal prefrontal cortex activation by newborn infant odors.
Nishitani, Shota; Kuwamoto, Saori; Takahira, Asuka; Miyamura, Tsunetake; Shinohara, Kazuyuki
2014-03-01
Mothers are attracted by infant cues of a variety of different modalities. To clarify the possible neural mechanisms underlying maternal attraction to infant odor cues, we used near-infrared spectroscopy to examine prefrontal cortex (PFC) activity during odor detection tasks in which 19 mothers and 19 nulliparous females (nonmothers) were presented with infant or adult male odors. They were instructed to make a judgment about whether they smelled an odor during each task. We estimated the PFC activity by measuring the relative oxyhemoglobin (oxyHb) concentrations. The results showed that while detecting the infant odors, bilateral PFC activities were increased in mothers but not in nonmothers. In contrast, adult male odors activated the PFC similarly in mothers and nonmothers. These findings suggest that maternal activation of the PFC in response to infant odors explains a part of the neural mechanisms for maternal attraction to infant odors.
Recollective experience in odor recognition: influences of adult age and familiarity.
Larsson, Maria; Oberg, Christina; Bäckman, Lars
2006-01-01
We examined recollective experience in odor memory as a function of age, intention to learn, and familiarity. Young and older adults studied a set of familiar and unfamiliar odors with incidental or intentional encoding instructions. At recognition, participants indicated whether their response was based on explicit recollection (remembering), a feeling of familiarity (knowing), or guessing. The results indicated no age-related differences in the distribution of experiential responses for unfamiliar odors. By contrast, for familiar odors the young demonstrated more explicit recollection than the older adults, who produced more "know" and "guess" responses. Intention to learn was unrelated to recollective experience. In addition, the observed age differences in "remember" responses for familiar odors were eliminated when odor naming was statistically controlled. This suggests that age-related deficits in activating specific odor knowledge (i.e., odor names) play an important role for age differences in recollective experience of olfactory information.
Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources.
Gao, Xiang; Acar, Levent
2016-07-04
This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors' data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.
Human Odorant Reception in the Common Bed Bug, Cimex lectularius.
Liu, Feng; Liu, Nannan
2015-11-02
The common bed bug Cimex lectularius is a temporary ectoparasite on humans and currently resurgent in many developed countries. The ability of bed bugs to detect human odorants in the environment is critical for their host-seeking behavior. This study deciphered the chemical basis of host detection by investigating the neuronal response of olfactory sensilla to 104 human odorants using single sensillum recording and characterized the electro-physiological responses of bed bug odorant receptors to human odorants with the Xenopus expression system. The results showed that the D type of olfactory sensilla play a predominant role in detecting the human odorants tested. Different human odorants elicited different neuronal responses with different firing frequencies and temporal dynamics. Particularly, aldehydes and alcohols are the most effective stimuli in triggering strong response while none of the carboxylic acids showed a strong stimulation. Functional characterization of two bed bug odorant receptors and co-receptors in response to human odorants revealed their specific responses to the aldehyde human odorants. Taken together, the findings of this study not only provide exciting new insights into the human odorant detection of bed bugs, but also offer valuable information for developing new reagents (attractants or repellents) for the bed bug control.
Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius.
Liu, Feng; Chen, Zhou; Liu, Nannan
2017-04-06
As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs.
Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb
Gschwend, Olivier; Beroud, Jonathan; Vincis, Roberto; Rodriguez, Ivan; Carleton, Alan
2016-01-01
Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness). PMID:27824096
Peripheral and Central Olfactory Tuning in a Moth
Ong, Rose C.
2012-01-01
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain. PMID:22362866
Human Odorant Reception in the Common Bed Bug, Cimex lectularius
Liu, Feng; Liu, Nannan
2015-01-01
The common bed bug Cimex lectularius is a temporary ectoparasite on humans and currently resurgent in many developed countries. The ability of bed bugs to detect human odorants in the environment is critical for their host-seeking behavior. This study deciphered the chemical basis of host detection by investigating the neuronal response of olfactory sensilla to 104 human odorants using single sensillum recording and characterized the electro-physiological responses of bed bug odorant receptors to human odorants with the Xenopus expression system. The results showed that the D type of olfactory sensilla play a predominant role in detecting the human odorants tested. Different human odorants elicited different neuronal responses with different firing frequencies and temporal dynamics. Particularly, aldehydes and alcohols are the most effective stimuli in triggering strong response while none of the carboxylic acids showed a strong stimulation. Functional characterization of two bed bug odorant receptors and co-receptors in response to human odorants revealed their specific responses to the aldehyde human odorants. Taken together, the findings of this study not only provide exciting new insights into the human odorant detection of bed bugs, but also offer valuable information for developing new reagents (attractants or repellents) for the bed bug control. PMID:26522967
Saive, Anne-Lise; Royet, Jean-Pierre; Plailly, Jane
2014-01-01
Odors are powerful cues that trigger episodic memories. However, in light of the amount of behavioral data describing the characteristics of episodic odor memory, the paucity of information available on the neural substrates of this function is startling. Furthermore, the diversity of experimental paradigms complicates the identification of a generic episodic odor memory network. We conduct a systematic review of the literature depicting the current state of the neural correlates of episodic odor memory in healthy humans by placing a focus on the experimental approaches. Functional neuroimaging data are introduced by a brief characterization of the memory processes investigated. We present and discuss laboratory-based approaches, such as odor recognition and odor associative memory, and autobiographical approaches, such as the evaluation of odor familiarity and odor-evoked autobiographical memory. We then suggest the development of new laboratory-ecological approaches allowing for the controlled encoding and retrieval of specific multidimensional events that could open up new prospects for the comprehension of episodic odor memory and its neural underpinnings. While large conceptual differences distinguish experimental approaches, the overview of the functional neuroimaging findings suggests relatively stable neural correlates of episodic odor memory. PMID:25071494
Odor Perception by Dogs: Evaluating Two Training Approaches for Odor Learning of Sniffer Dogs.
Fischer-Tenhagen, Carola; Johnen, Dorothea; Heuwieser, Wolfgang; Becker, Roland; Schallschmidt, Kristin; Nehls, Irene
2017-06-01
In this study, a standardized experimental set-up with various combinations of herbs as odor sources was designed. Two training approaches for sniffer dogs were compared; first, training with a pure reference odor, and second, training with a variety of odor mixtures with the target odor as a common denominator. The ability of the dogs to identify the target odor in a new context was tested. Six different herbs (basil, St. John's wort, dandelion, marjoram, parsley, ribwort) were chosen to produce reference materials in various mixtures with (positive) and without (negative) chamomile as the target odor source. The dogs were trained to show 1 of 2 different behaviors, 1 for the positive, and 1 for the negative sample as a yes/no task. Tests were double blind with one sample presented at a time. In both training approaches, dogs were able to detect chamomile as the target odor in any presented mixture with an average sensitivity of 72% and a specificity of 84%. Dogs trained with odor mixture containing the target odor had more correct indications in the transfer task. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Elsharif, Shaimaa; Banerjee, Ashutosh; Buettner, Andrea
2015-10-01
Linalool 1 is an odorant that is commonly perceived as having a pleasant odor, but is also known to elicit physiological effects such as inducing calmness and enhancing sleep. However, no comprehensive studies are at hand to show which structural features are responsible for these prominent effects. Therefore, a total of six oxygenated derivatives were synthesized from both 1 and linalyl acetate 2, and were tested for their odor qualities and relative odor thresholds (OTs) in air. Linalool was found to be the most potent odorant among the investigated compounds, with an average OT of 3.2 ng/L, while the 8-hydroxylinalool derivative was the least odorous compound with an OT of 160 ng/L; 8-carboxylinalool was found to be odorless. The odorant 8-oxolinalyl acetate, which has very similar odor properties to linalool, was the most potent odorant besides linalool, exhibiting an OT of 5.9 ng/L. By comparison, 8-carboxylinalyl acetate had a similar OT (6.1 ng/L) as its corresponding 8-oxo derivative but exhibited divergent odor properties (fatty, greasy, musty). Overall, oxygenation on carbon 8 had a substantial effect on the aroma profiles of structural derivatives of linalool and linalyl acetate.
Identification of pleasant, neutral, and unpleasant odors in schizophrenia
Kamath, Vidyulata; Turetsky, Bruce I.; Moberg, Paul J.
2010-01-01
Recent work on odor hedonics in schizophrenia has indicated that patients display abnormalities in hedonic judgments of odors in comparison to healthy comparison participants. In the current study, identification accuracy for pleasant, neutral, and unpleasant odors in individuals with schizophrenia and healthy controls was examined. Thirty-three schizophrenia patients (63% male) and thirty-one healthy volunteers (65% male) were recruited. The groups were well matched on age, sex, and smoking status. Participants were administered the University of Pennsylvania Smell Identification Test, which was subsequently divided into 16 pleasant, 15 neutral, and 9 unpleasant items. Analysis of identification z-scores for pleasant, neutral, and unpleasant odors revealed a significant diagnosis by valence interaction. Post-hoc analysis revealed that schizophrenia participants made more identification errors on pleasant and neutral odors compared to healthy controls, with no differences observed for unpleasant odors. No effect was seen for sex. The findings from the current investigation suggest that odor identification accuracy in patients is influenced by odor valence. This pattern of results parallels a growing body of literature indicating that patients display aberrant pleasantness ratings for pleasant odors and highlights the need for additional research on the influence of odor valence on olfactory identification performance in individuals with schizophrenia. PMID:21239063
Soh, Zu; Nishikawa, Shinya; Kurita, Yuichi; Takiguchi, Noboru; Tsuji, Toshio
2016-01-01
To predict the odor quality of an odorant mixture, the interaction between odorants must be taken into account. Previously, an experiment in which mice discriminated between odorant mixtures identified a selective adaptation mechanism in the olfactory system. This paper proposes an olfactory model for odorant mixtures that can account for selective adaptation in terms of neural activity. The proposed model uses the spatial activity pattern of the mitral layer obtained from model simulations to predict the perceptual similarity between odors. Measured glomerular activity patterns are used as input to the model. The neural interaction between mitral cells and granular cells is then simulated, and a dissimilarity index between odors is defined using the activity patterns of the mitral layer. An odor set composed of three odorants is used to test the ability of the model. Simulations are performed based on the odor discrimination experiment on mice. As a result, we observe that part of the neural activity in the glomerular layer is enhanced in the mitral layer, whereas another part is suppressed. We find that the dissimilarity index strongly correlates with the odor discrimination rate of mice: r = 0.88 (p = 0.019). We conclude that our model has the ability to predict the perceptual similarity of odorant mixtures. In addition, the model also accounts for selective adaptation via the odor discrimination rate, and the enhancement and inhibition in the mitral layer may be related to this selective adaptation.
Fire Detection Using tin Oxide Gas Sensors Installed in an Indoor Space
NASA Astrophysics Data System (ADS)
Shibata, Shin-Ichi; Higashino, Tsubasa; Sawada, Ayako; Oyabu, Takashi; Takei, Yoshinori; Nanto, Hidehito; Toko, Kiyoshi
Many lives and facilities were lost by fire. Especially, there are many damages to elderly, toddlers and babies. In Japan, number of deaths over 65 years old reached to 53% in 2004. Number of over 81 years olds went to 20%. It takes for the elderly person more time to sense fire and also to evacuate to safe places. Although it is important to prevent the fire, it also needs to inform the fire breaking as early as possible. Human sense decreases with age and it is difficult to perceive the fire at an early stage. It is desired to develop a higher sensitive element for fire and its system which can detect fire at an early stage. In this experiment, tin oxide gas sensors were adopted to detect a smoldering fire at the early stage. Most common case of fire is the smoldering fire. The reliability of the sensor is higher and it is adopted in a gas alarm detector. The sensor can also detect slight amount of odor molecule. In our previous experiment, it became obvious that it was better to install the sensor to the ceiling to detect odor components generating from smoldering fire. Therefore, five sensors were installed in the ceiling away from each other and the method to detect the fire was examined. As a result, a characteristic was newly derived by adding the sensor outputs for one minute. The sensor output was input every 0.1s. The characteristic is called as the integrated characteristic. After that, the differential characteristic was derived using the integrated characteristic. The fire was determined using the differential characteristics. The materials causing a smoldering fire were woodchip, wallpaper and carpet as subjects. The system could detect the fire in several minutes for whole materials. The sensor is effective to detect the smoldering fire at an early stage. It is necessary to detect a cigarette smoke to distinguish as non fire. In this study, the discrimination was also examined using a quadratic function (ax2+b). The coefficients a and b were effective to identify smoldering fire and cigarette smoke. Principal component analysis for the arrival speed S which meant a kind of odor-speed was also useful to distinguish fire from non fire.
How the brain assigns a neural tag to arbitrary points in a high-dimensional space
NASA Astrophysics Data System (ADS)
Stevens, Charles
Brains in almost all organisms need to deal with very complex stimuli. For example, most mammals are very good at face recognition, and faces are very complex objects indeed. For example, modern face recognition software represents a face as a point in a 10,000 dimensional space. Every human must be able to learn to recognize any of the 7 billion faces in the world, and can recognize familiar faces after a display of the face is viewed for only a few hundred milliseconds. Because we do not understand how faces are assigned locations in a high-dimensional space by the brain, attacking the problem of how face recognition is accomplished is very difficult. But a much easier problem of the same sort can be studied for odor recognition. For the mouse, each odor is assigned a point in a 1000 dimensional space, and the fruit fly assigns any odor a location in only a 50 dimensional space. A fly has about 50 distinct types of odorant receptor neurons (ORNs), each of which produce nerve impulses at a specific rate for each different odor. This pattern of firing produced across 50 ORNs is called `a combinatorial odor code', and this code assigns every odor a point in a 50 dimensional space that is used to identify the odor. In order to learn the odor, the brain must alter the strength of synapses. The combinatorial code cannot itself by used to change synaptic strength because all odors use same neurons to form the code, and so all synapses would be changed for any odor and the odors could not be distinguished. In order to learn an odor, the brain must assign a set of neurons - the odor tag - that have the property that these neurons (1) should make use of all of the information available about the odor, and (2) insure that any two tags overlap as little as possible (so one odor does not modify synapses used by other odors). In the talk, I will explain how the olfactory system of both the fruit fly and the mouse produce a tag for each odor that has these two properties. Supported by NSF.
Fujiwara, Masaya; Nitta, Asano; Chiba, Atsuhiko
2016-06-01
Our previous study in male rats demonstrated that bilateral administration of flutamide, an androgen receptor (AR) antagonist, into the posterodorsal medial amygdala (MePD) increased the time sniffing male odors to as high as that sniffing estrous odors, eliminating the preference for estrous odors over male odors. This made us speculate that under blockade of AR in the MePD, testosterone-derived estrogen acting on the same brain region arouses interest in male odors which is otherwise suppressed by concomitant action of androgen. In cyclic female rats, endogenous androgen has been thought to be involved in inhibitory regulation of estrogen-activated sexual behavior. Thus, in the present study, we investigated the possibility that in female rats the arousal of interest in male odors is also normally regulated by both estrogen and androgen acting on the MePD, as predicted by our previous study in male rats. Implantation of either the estrogen receptor blocker tamoxifen (TX) or a non-aromatizable androgen 5α-dihydrotestosterone (DHT) into the MePD of ovariectomized, estrogen-primed female rats eliminated preference for male odors over estrous odors by significantly decreasing the time sniffing male odors to as low as that sniffing estrous odors. The subsequent odor discrimination tests confirmed that the DHT and TX administration did not impair the ability to discriminate between male and estrous odors. These results suggest that in estrous female rats estrogen action in the MePD plays critical roles in the expression of the preference for male odors while androgen action in the same brain region interferes with the estrogen action. Copyright © 2016 Elsevier Inc. All rights reserved.
Isarida, Takeo; Sakai, Tetsuya; Kubota, Takayuki; Koga, Miho; Katayama, Yu; Isarida, Toshiko K
2014-04-01
The present study investigated context effects of incidental odors in free recall after a short retention interval (5 min). With a short retention interval, the results are not confounded by extraneous odors or encounters with the experimental odor and possible rehearsal during a long retention interval. A short study time condition (4 s per item), predicted not to be affected by adaptation to the odor, and a long study time condition (8 s per item) were used. Additionally, we introduced a new method for recovery from adaptation, where a dissimilar odor was briefly presented at the beginning of the retention interval, and we demonstrated the effectiveness of this technique. An incidental learning paradigm was used to prevent overshadowing from confounding the results. In three experiments, undergraduates (N = 200) incidentally studied words presented one-by-one and received a free recall test. Two pairs of odors and a third odor having different semantic-differential characteristics were selected from 14 familiar odors. One of the odors was presented during encoding, and during the test, the same odor (same-context condition) or the other odor within the pair (different-context condition) was presented. Without using a recovery-from-adaptation method, a significant odor-context effect appeared in the 4-s/item condition, but not in the 8-s/item condition. Using the recovery-from-adaptation method, context effects were found for both the 8- and the 4-s/item conditions. The size of the recovered odor-context effect did not change with study time. There were no serial position effects. Implications of the present findings are discussed.
Guidobaldi, F; Guerenstein, P G
2016-07-01
Triatomines, vectors of Chagas Disease, are hematophagous insects. Efforts have been made to develop synthetic attractants based on vertebrate odor-to lure them into traps. However, because those lures are not practical or have low capture efficiency, they are not in use in control programs. Therefore, more work is needed to reach a practical and efficient odor lure. Recently, a three-component, CO 2 -free, synthetic blend of vertebrate odor (consisting of ammonia, l-(+)-lactic acid, and hexanoic acid), known as Sweetscent (Biogents AG, Regensburg, Germany), was shown to attract and capture triatomines in the laboratory. In this study, using a trap olfactometer and an odor blend with constituents similar to those of Sweetscent (delivered from low-density polyethylene sachets) we found that the odorant ratios of the mixtures have a strong effect in the capture of triatomines. The blend with the most efficient combination of odorant ratios evoked ca. 81% capture in two relevant triatomine species. In the case of the most effective odor mixtures, we measured the odor mass emission for the three components of the mixture and therefore were able to estimate the odorant ratios emitted that were responsible for such a high capture performance. Thus, in those mixtures, pentanoic acid was the main component (ca. 65 %) followed by ammonia (ca. 28%) and, l(+)-lactic acid (ca. 7 %). Our results are encouraging as efficient, practical, and cheap odor baits to trap triatomines in the field would be within reach. The odor-delivery system used should be improved to increase stability of odor emission. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Martinez, Luis A; Petrulis, Aras
2013-04-01
Precopulatory behaviors that are preferentially directed towards opposite-sex conspecifics are critical for successful reproduction, particularly in species wherein the sexes live in isolation, such as Syrian hamsters (Mesocricetus auratus). In females, these behaviors include sexual odor preference and vaginal scent marking. The neural regulation of precopulatory behaviors is thought to involve a network of forebrain areas that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). Although MA and BNST are necessary for sexual odor preference and preferential vaginal marking to male odors, respectively, the role of MPOA in odor-guided female precopulatory behaviors is not well understood. To address this issue, female Syrian hamsters with bilateral, excitotoxic lesions of MPOA (MPOA-X) or sham lesions (SHAM) were tested for sexual odor investigation, scent marking, and lordosis. MPOA-X females did not investigate male odors more than female odors in an odor preference test, indicating that MPOA may be necessary for normal sexual odor preference in female hamsters. This loss of preference cannot be attributed to a sensory deficit, since MPOA-X females successfully discriminated male odors from female odors during an odor discrimination test. Surprisingly, no deficits in vaginal scent marking were observed in MPOA-X females, although these females did exhibit decreased overall levels of flank marking compared to SHAM females. Finally, all MPOA-X females exhibited lordosis appropriately. These results suggest that MPOA plays a critical role in the neural regulation of certain aspects of odor-guided precopulatory behaviors in female Syrian hamsters. Copyright © 2013 Elsevier Inc. All rights reserved.
The smell of age: perception and discrimination of body odors of different ages.
Mitro, Susanna; Gordon, Amy R; Olsson, Mats J; Lundström, Johan N
2012-01-01
Our natural body odor goes through several stages of age-dependent changes in chemical composition as we grow older. Similar changes have been reported for several animal species and are thought to facilitate age discrimination of an individual based on body odors, alone. We sought to determine whether humans are able to discriminate between body odor of humans of different ages. Body odors were sampled from three distinct age groups: Young (20-30 years old), Middle-age (45-55), and Old-age (75-95) individuals. Perceptual ratings and age discrimination performance were assessed in 41 young participants. There were significant differences in ratings of both intensity and pleasantness, where body odors from the Old-age group were rated as less intense and less unpleasant than body odors originating from Young and Middle-age donors. Participants were able to discriminate between age categories, with body odor from Old-age donors mediating the effect also after removing variance explained by intensity differences. Similarly, participants were able to correctly assign age labels to body odors originating from Old-age donors but not to body odors originating from other age groups. This experiment suggests that, akin to other animals, humans are able to discriminate age based on body odor alone and that this effect is mediated mainly by body odors emitted by individuals of old age.
The Smell of Age: Perception and Discrimination of Body Odors of Different Ages
Mitro, Susanna; Gordon, Amy R.; Olsson, Mats J.; Lundström, Johan N.
2012-01-01
Our natural body odor goes through several stages of age-dependent changes in chemical composition as we grow older. Similar changes have been reported for several animal species and are thought to facilitate age discrimination of an individual based on body odors, alone. We sought to determine whether humans are able to discriminate between body odor of humans of different ages. Body odors were sampled from three distinct age groups: Young (20–30 years old), Middle-age (45–55), and Old-age (75–95) individuals. Perceptual ratings and age discrimination performance were assessed in 41 young participants. There were significant differences in ratings of both intensity and pleasantness, where body odors from the Old-age group were rated as less intense and less unpleasant than body odors originating from Young and Middle-age donors. Participants were able to discriminate between age categories, with body odor from Old-age donors mediating the effect also after removing variance explained by intensity differences. Similarly, participants were able to correctly assign age labels to body odors originating from Old-age donors but not to body odors originating from other age groups. This experiment suggests that, akin to other animals, humans are able to discriminate age based on body odor alone and that this effect is mediated mainly by body odors emitted by individuals of old age. PMID:22666457
Odor and odorous chemical emissions from animal buildings: Part 2 - odor emissions
USDA-ARS?s Scientific Manuscript database
This study was an add-on project to the National Air Emissions Monitoring Study (NAEMS) and focused on comprehensive measurement of odor emissions. Odor emissions from two animal species (dairy and swine) from four sites with nine barns/rooms (two dairy barns in Wisconsin, two dairy barns and two sw...
Schwaighofer, Andreas; Pechlaner, Maria; Oostenbrink, Chris; Kotlowski, Caroline; Araman, Can; Mastrogiacomo, Rosa; Pelosi, Paolo; Knoll, Wolfgang; Nowak, Christoph; Larisika, Melanie
2014-04-18
Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant. Copyright © 2014 Elsevier Inc. All rights reserved.
Burger, J; Boarman, W; Kurzava, L; Gochfeld, M
1991-01-01
The abilities of hatchling pine snakes (Pituophis melanoleucus) and king snakes (Lampropeltis getulus) to discriminate the chemical trails of pine and king snakes was investigated inY-maze experiments. Pine snakes were housed for 17 days either with shavings impregnated with pine snake odor, king snake odor, or no odor to test for the effect of experience on choice. Both pine and king snake hatchlings entered the arm with the pine snake odor and did not enter the arm with the king snake odor. The data support the hypothesis that hatchlings of both species can distinguish conspecific odors from other odors and that our manipulation of previous experience was without effect for pine snake hatchlings.
Predicting the response of olfactory sensory neurons to odor mixtures from single odor response
NASA Astrophysics Data System (ADS)
Marasco, Addolorata; de Paris, Alessandro; Migliore, Michele
2016-04-01
The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration.
Schoenauer, Sebastian; Schieberle, Peter
2018-04-25
Furan-2-ylmethanethiol (2-furfurylthiol; 2-FFT, 1) is long-known as a key odorant in roast and ground coffee and was also previously identified in a wide range of thermally treated foods such as meat, bread, and roasted sesame seeds. Its unique coffee-like odor quality elicited at very low concentrations, and the fact that only a very few compounds showing a similar structure have previously been described in foods make 1 a suitable candidate for structure-odor activity studies. To gain insight into the structural features needed to evoke a coffee-like odor at low concentrations, 46 heterocyclic mercaptans and thio ethers were synthesized, 32 of them for the first time, and their odor qualities and odor thresholds were determined. A movement of the mercapto group to the 3-position kept the coffee-like aroma but led to an increase in odor threshold. A separation of the thiol group from the furan ring by an elongation of the carbon side chain caused a loss of the coffee-like odor and also led to an increase in odor thresholds, especially for ω-(furan-2-yl)alkane-1-thiols with six or seven carbon atoms in the side chain. A displacement of the furan ring by a thiophene ring had no significant influence on the odor properties of most of the compounds studied, but the newly synthesized longer-chain 1-(furan-2-yl)- and 1-(thiophene-2-yl)alkane-1-thiols elicited interesting passion fruit-like scents. In total, only 4 out of the 46 compounds also showed a coffee-like odor quality like 1, but none showed a lower odor threshold. Besides the odor attributes, also retention indices, mass spectra, and NMR data of the synthesized compounds were elaborated, which are helpful in possible future identification of these compounds in trace levels in foods or other materials.
Keeping their distance? Odor response patterns along the concentration range
Strauch, Martin; Ditzen, Mathias; Galizia, C. Giovanni
2012-01-01
We investigate the interplay of odor identity and concentration coding in the antennal lobe (AL) of the honeybee Apis mellifera. In this primary olfactory center of the honeybee brain, odors are encoded by the spatio-temporal response patterns of olfactory glomeruli. With rising odor concentration, further glomerular responses are recruited into the patterns, which affects distances between the patterns. Based on calcium-imaging recordings, we found that such pattern broadening renders distances between glomerular response patterns closer to chemical distances between the corresponding odor molecules. Our results offer an explanation for the honeybee's improved odor discrimination performance at higher odor concentrations. PMID:23087621
Miyazaki, Tamako; Nakata, Katsushi; Nishimura, Takashi; Abe, Shintaro; Yamashita, Tetsuro; Miyazaki, Masao
2018-02-01
The small Indian mongoose (Herpestes auropunctatus) is an invasive species in Okinawa and Amami-Oshima, Japan. Major strategies for their eradication have been the use of baited traps, which suffer from decreasing efficiency with declining populations and the bycatch of native animals. To address these concerns, mongoose-specific lures are required. In this study, we aimed to identify species- and/or sex-specific compounds from anal sac secretions of small Indian mongooses. Volatile compounds emitted from male and female mongoose anal sac secretions were analyzed by thermal desorption-gas chromatography-mass spectrometry. In addition to several fatty acids, 2-phenylethanol was identified as a minor compound, which is uncommon in mammalian secretions but a dominant odorant in roses. Female samples emitted higher levels of 2-phenylethanol than male samples did. These findings indicate that 2-phenylethanol is a female-specific volatile compound of anal sac secretions in small Indian mongooses, and it may be useful as an ingredient of mongoose-specific scent lures.
Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control
Gabriel, David; Deshusses, Marc A.
2003-01-01
Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen sulfide (H2S) in the converted scrubber was possible even at gas contact times as low as 1.6 s. That is 8–20 times shorter than previous biotrickling filtration reports and comparable to usual contact times in chemical scrubbers. Significant removal of reduced sulfur compounds, ammonia, and volatile organic compounds present in traces in the air was also observed. Continuous operation for >8 months showed stable performance and robust behavior for H2S treatment, with pollutant-removal performance comparable to that achieved by using a chemical scrubber. Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control. PMID:12740445
Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control.
Gabriel, David; Deshusses, Marc A
2003-05-27
Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen sulfide (H2S) in the converted scrubber was possible even at gas contact times as low as 1.6 s. That is 8-20 times shorter than previous biotrickling filtration reports and comparable to usual contact times in chemical scrubbers. Significant removal of reduced sulfur compounds, ammonia, and volatile organic compounds present in traces in the air was also observed. Continuous operation for >8 months showed stable performance and robust behavior for H2S treatment, with pollutant-removal performance comparable to that achieved by using a chemical scrubber. Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control.
Zhu, Hong; Zhu, Jie; Wang, Lili; Li, Zaigui
2016-01-01
A solid-phase microextraction followed by gas chromatography-mass spectrometry method was developed to determine the volatile compounds in Shanxi aged vinegar. The optimal extraction conditions were: 50 °C for 20 min with a PDMS/DVB fiber. This analytical method was validated and showed satisfactory repeatability (0.5 %
Steinhaus, Martin; Sinuco, Diana; Polster, Johannes; Osorio, Coralia; Schieberle, Peter
2008-06-11
The volatiles present in fresh, pink-fleshed Colombian guavas ( Psidium guajava, L.), variety regional rojo, were carefully isolated by solvent extraction followed by solvent-assisted flavor evaporation, and the aroma-active areas in the gas chromatogram were screened by application of the aroma extract dilution analysis. The results of the identification experiments in combination with the FD factors revealed 4-methoxy-2,5-dimethyl-3(2 H)-furanone, 4-hydroxy-2,5-dimethyl-3(2 H)-furanone, 3-sulfanylhexyl acetate, and 3-sulfanyl-1-hexanol followed by 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, ( Z)-3-hexenal, trans-4,5-epoxy-( E)-2-decenal, cinnamyl alcohol, ethyl butanoate, hexanal, methional, and cinnamyl acetate as important aroma contributors. Enantioselective gas chromatography revealed an enantiomeric distribution close to the racemate in 3-sulfanylhexyl acetate as well as in 3-sulfanyl-1-hexanol. In addition, two fruity smelling diastereomeric methyl 2-hydroxy-3-methylpentanoates were identified as the ( R,S)- and the ( S,S)-isomers, whereas the ( S,R)- and ( R,R)-isomers were absent. Seven odorants were identified for the first time in guavas, among them 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, trans-4,5-epoxy-( E)-2-decenal, and methional were the most odor-active.
Sensory Characterization of Odors in Used Disposable Absorbent Incontinence Products
Widén, Heléne; Forsgren-Brusk, Ulla; Hall, Gunnar
2017-01-01
PURPOSE: The objectives of this study were to characterize the odors of used incontinence products by descriptive analysis and to define attributes to be used in the analysis. A further objective was to investigate to what extent the odor profiles of used incontinence products differed from each other and, if possible, to group these profiles into classes. SUBJECTS AND SETTING: Used incontinence products were collected from 14 residents with urinary incontinence living in geriatric nursing homes in the Gothenburg area, Sweden. METHODS: Pieces were cut from the wet area of used incontinence products. They were placed in glass bottles and kept frozen until odor analysis was completed. A trained panel consisting of 8 judges experienced in this area of investigation defined terminology for odor attributes. The intensities of these attributes in the used products were determined by descriptive odor analysis. Data were analyzed both by analysis of variance (ANOVA) followed by the Tukey post hoc test and by principal component analysis and cluster analysis. RESULTS: An odor wheel, with 10 descriptive attributes, was developed. The total odor intensity, and the intensities of the attributes, varied considerably between different, used incontinence products. The typical odors varied from “sweetish” to “urinal,” “ammonia,” and “smoked.” Cluster analysis showed that the used products, based on the quantitative odor data, could be divided into 5 odor classes with different profiles. CONCLUSIONS: The used products varied considerably in odor character and intensity. Findings suggest that odors in used absorptive products are caused by different types of compounds that may vary in concentration. PMID:28328646
The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume.
Reidenbach, Matthew A; Koehl, M A R
2011-09-15
Odors are dispersed across aquatic habitats by turbulent water flow as filamentous, intermittent plumes. Many crustaceans sniff (take discrete samples of ambient water and the odors it carries) by flicking their olfactory antennules. We used planar laser-induced fluorescence to investigate how flicking antennules of different morphologies (long antennules of spiny lobsters, Panulirus argus; short antennules of blue crabs, Callinectes sapidus) sample fluctuating odor signals at different positions in a turbulent odor plume in a flume to determine whether the patterns of concentrations captured can provide information about an animal's position relative to the odor source. Lobster antennules intercept odors during a greater percentage of flicks and encounter higher peak concentrations than do crab antennules, but because crabs flick at higher frequency, the duration of odor-free gaps between encountered odor pulses is similar. For flicking antennules there were longer time gaps between odor encounters as the downstream distance to the odor source decreases, but shorter gaps along the plume centerline than near the edge. In contrast to the case for antennule flicking, almost all odor-free gaps were <500 ms at all positions in the plume if concentration was measured continuously at the same height as the antennules. Variance in concentration is lower and mean concentration is greater near the substratum, where leg chemosensors continuously sample the plume, than in the water where antennules sniff. Concentrations sampled by legs increase as an animal nears an odor source, but decrease for antennules. Both legs and antennules encounter higher concentrations near the centerline than at the edge of the plume.
Knaapila, Antti; Laaksonen, Oskar; Virtanen, Markus; Yang, Baoru; Lagström, Hanna; Sandell, Mari
2017-02-01
The primary dimension of odor is pleasantness, which is associated with a multitude of factors. We investigated how the pleasantness, familiarity, and identification of spice odors were associated with each other and with the use of the respective spice, overall use of herbs, and level of food neophobia. A total of 126 adults (93 women, 33 men; age 25-61 years, mean 39 years) rated the odors from 12 spices (oregano, anise, rosemary, mint, caraway, sage, thyme, cinnamon, fennel, marjoram, garlic, and clove) for pleasantness and familiarity, and completed a multiple-choice odor identification. Data on the use of specific spices, overall use of herbs, and Food Neophobia Scale score were collected using an online questionnaire. Familiar odors were mostly rated as pleasant (except garlic), whereas unfamiliar odors were rated as neutral (r = 0.63). We observed consistent and often significant trends that suggested the odor pleasantness and familiarity were positively associated with the correct odor identification, consumption of the respective spice, overall use of herbs, and food neophilia. Our results suggest that knowledge acquisition through repetitive exposure to spice odor with active attention may gradually increase the odor pleasantness within the framework set by the chemical characteristics of the aroma compound. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identification of pleasant, neutral, and unpleasant odors in schizophrenia.
Kamath, Vidyulata; Turetsky, Bruce I; Moberg, Paul J
2011-05-15
Recent work on odor hedonics in schizophrenia has indicated that patients display abnormalities in hedonic judgments of odors in comparison to healthy comparison participants. In the current study, identification accuracy for pleasant, neutral, and unpleasant odors in individuals with schizophrenia and healthy controls was examined. Thirty-three schizophrenia patients (63% male) and thirty-one healthy volunteers (65% male) were recruited. The groups were well matched on age, sex, and smoking status. Participants were administered the University of Pennsylvania Smell Identification Test, which was subsequently divided into 16 pleasant, 15 neutral, and 9 unpleasant items. Analysis of identification z-scores for pleasant, neutral, and unpleasant odors revealed a significant diagnosis by valence interaction. Post-hoc analysis revealed that schizophrenia participants made more identification errors on pleasant and neutral odors compared to healthy controls, with no differences observed for unpleasant odors. No effect was seen for sex. The findings from the current investigation suggest that odor identification accuracy in patients is influenced by odor valence. This pattern of results parallels a growing body of literature indicating that patients display aberrant pleasantness ratings for pleasant odors and highlights the need for additional research on the influence of odor valence on olfactory identification performance in individuals with schizophrenia. Copyright © 2010 Elsevier Ltd. All rights reserved.
Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius
Liu, Feng; Chen, Zhou; Liu, Nannan
2017-01-01
As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs. PMID:28383033
Lawson, M J; Craven, B A; Paterson, E G; Settles, G S
2012-07-01
Olfaction begins when an animal draws odorant-laden air into its nasal cavity by sniffing, thus transporting odorant molecules from the external environment to olfactory receptor neurons (ORNs) in the sensory region of the nose. In the dog and other macrosmatic mammals, ORNs are relegated to a recess in the rear of the nasal cavity that is comprised of a labyrinth of scroll-like airways. Evidence from recent studies suggests that nasal airflow patterns enhance olfactory sensitivity by efficiently delivering odorant molecules to the olfactory recess. Here, we simulate odorant transport and deposition during steady inspiration in an anatomically correct reconstructed model of the canine nasal cavity. Our simulations show that highly soluble odorants are deposited in the front of the olfactory recess along the dorsal meatus and nasal septum, whereas moderately soluble and insoluble odorants are more uniformly deposited throughout the entire olfactory recess. These results demonstrate that odorant deposition patterns correspond with the anatomical organization of ORNs in the olfactory recess. Specifically, ORNs that are sensitive to a particular class of odorants are located in regions where that class of odorants is deposited. The correlation of odorant deposition patterns with the anatomical organization of ORNs may partially explain macrosmia in the dog and other keen-scented species.
Health effects of indoor odorants.
Cone, J E; Shusterman, D
1991-01-01
People assess the quality of the air indoors primarily on the basis of its odors and on their perception of associated health risk. The major current contributors to indoor odorants are human occupant odors (body odor), environmental tobacco smoke, volatile building materials, bio-odorants (particularly mold and animal-derived materials), air fresheners, deodorants, and perfumes. These are most often present as complex mixtures, making measurement of the total odorant problem difficult. There is no current method of measuring human body odor, other than by human panel studies of expert judges of air quality. Human body odors have been quantitated in terms of the "olf" which is the amount of air pollution produced by the average person. Another quantitative unit of odorants is the "decipol," which is the perceived level of pollution produced by the average human ventilated by 10 L/sec of unpolluted air or its equivalent level of dissatisfaction from nonhuman air pollutants. The standard regulatory approach, focusing on individual constituents or chemicals, is not likely to be successful in adequately controlling odorants in indoor air. Besides the current approach of setting minimum ventilation standards to prevent health effects due to indoor air pollution, a standard based on the olf or decipol unit might be more efficacious as well as simpler to measure. PMID:1821378
Johnson, Brett A.; Ong, Joan; Leon, Michael
2014-01-01
To determine how responses evoked by natural odorant mixtures compare to responses evoked by individual odorant chemicals, we mapped 2-deoxyglucose uptake during exposures to vapors arising from a variety of odor objects that may be important to rodents in the wild. We studied 21 distinct natural odor stimuli ranging from possible food sources such as fruits, vegetables, and meats to environmental odor objects such as grass, herbs, and tree leaves. The natural odor objects evoked robust and surprisingly focal patterns of 2-deoxyglucose uptake involving clusters of neighboring glomeruli, thereby resembling patterns evoked by pure chemicals. Overall, the patterns were significantly related to patterns evoked by monomolecular odorant components that had been studied previously. Object patterns also were significantly related to the molecular features present in the mixture components. Despite these overall relationships, there were individual examples of object patterns that were simpler than might have been predicted given the multiplicity of components present in the vapors. In these cases, the object patterns lacked certain responses evoked by their major odorant mixture components. These data suggest the possibility of mixture response interactions and provide a foundation for understanding the neural coding of natural odor stimuli. PMID:20187145
Age-Related Changes in Children's Hedonic Response to Male Body Odor.
ERIC Educational Resources Information Center
Stevenson, Richard J.; Repacholi, Betty M.
2003-01-01
Examined children's and adolescents' ability to identify male sweat and other odors and their rating of odors for liking. Found that only female adolescents could identify and disliked male sweat. When cued about odor identity, both male and female adolescents disliked male sweat more than children. Concluded that dislike for male sweat odor may…
9 CFR 311.20 - Sexual odor of swine.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Sexual odor of swine. 311.20 Section... Sexual odor of swine. (a) Carcasses of swine which give off a pronounced sexual odor shall be condemned. (b) The meat of swine carcasses which give off a sexual odor less than pronounced may be passed for...
9 CFR 311.20 - Sexual odor of swine.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Sexual odor of swine. 311.20 Section... Sexual odor of swine. (a) Carcasses of swine which give off a pronounced sexual odor shall be condemned. (b) The meat of swine carcasses which give off a sexual odor less than pronounced may be passed for...
9 CFR 311.20 - Sexual odor of swine.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Sexual odor of swine. 311.20 Section... Sexual odor of swine. (a) Carcasses of swine which give off a pronounced sexual odor shall be condemned. (b) The meat of swine carcasses which give off a sexual odor less than pronounced may be passed for...
9 CFR 311.20 - Sexual odor of swine.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Sexual odor of swine. 311.20 Section... Sexual odor of swine. (a) Carcasses of swine which give off a pronounced sexual odor shall be condemned. (b) The meat of swine carcasses which give off a sexual odor less than pronounced may be passed for...
Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera).
Wright, Geraldine A; Smith, Brian H
2004-02-01
Naturally occurring odors used by animals for mate recognition, food identification and other purposes must be detected at concentrations that vary across several orders of magnitude. Olfactory systems must therefore have the capacity to represent odors over a large range of concentrations regardless of dramatic changes in the salience, or perceived intensity, of a stimulus. The stability of the representation of an odor relative to other odors across concentration has not been extensively evaluated. We tested the ability of honey bees to discriminate pure odorants across a range of concentrations at and above their detection threshold. Our study showed that pure odorant compounds became progressively easier for honey bees to discriminate with increasing concentration. Discrimination is, therefore, a function of odorant concentration. We hypothesize that the recruitment of sensory cell populations across a range of concentrations may be important for odor coding, perhaps by changing its perceptual qualities or by increasing its salience against background stimuli, and that this mechanism is a general property of olfactory systems.
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination.
Lin, Andrew C; Bygrave, Alexei M; de Calignon, Alix; Lee, Tzumin; Miesenböck, Gero
2014-04-01
Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories.
Functional Neuronal Processing of Human Body Odors
Lundström, Johan N.; Olsson, Mats J.
2013-01-01
Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as diet and hygiene. Although a substantial number of studies have investigated the behavioral effects of body odors, only a handful have studied central processing. Recent studies have, however, demonstrated that the human brain responds to fear signals hidden within the body odor cocktail, is able to extract kin specific signals, and processes body odors differently than other perceptually similar odors. In this chapter, we provide an overview of the current knowledge of how the human brain processes body odors and the potential importance these signals have for us in everyday life. PMID:20831940
Do trained dogs discriminate individual body odors of women better than those of men?
Jezierski, Tadeusz; Sobczyńska, Magdalena; Walczak, Marta; Gorecka-Bruzda, Aleksandra; Ensminger, John
2012-05-01
Scent identification lineups using dogs are a potentially valuable forensic tool, but have been dismissed by some critics because of cases where a false identification was shown to have occurred. It is not known, however, why dogs appear to make more false indications to the odors of some persons than of others. In this study, human genders were compared as to the degree their individual odors are distinguishable or "attractive" to dogs. Six dogs were trained to smell an individual's hand odor sample and then find the matching hand odor sample in a lineup of five odors. Using one-gender lineups and two-gender lineups with different gender ratios, it was found that dogs trained for the study identified individual women's hand odors more accurately than those of men. It is hypothesized that this is either because of differences in chemical compounds making discrimination of women's odors easier, or because of greater "odor attractiveness" of women's scents to dogs. © 2012 American Academy of Forensic Sciences.
Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph
2014-03-01
In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.
Odor-identity dependent motor programs underlie behavioral responses to odors
Jung, Seung-Hye; Hueston, Catherine; Bhandawat, Vikas
2015-01-01
All animals use olfactory information to perform tasks essential to their survival. Odors typically activate multiple olfactory receptor neuron (ORN) classes and are therefore represented by the patterns of active ORNs. How the patterns of active ORN classes are decoded to drive behavior is under intense investigation. In this study, using Drosophila as a model system, we investigate the logic by which odors modulate locomotion. We designed a novel behavioral arena in which we could examine a fly’s locomotion under precisely controlled stimulus condition. In this arena, in response to similarly attractive odors, flies modulate their locomotion differently implying that odors have a more diverse effect on locomotion than was anticipated. Three features underlie odor-guided locomotion: First, in response to odors, flies modulate a surprisingly large number of motor parameters. Second, similarly attractive odors elicit changes in different motor programs. Third, different ORN classes modulate different subset of motor parameters. DOI: http://dx.doi.org/10.7554/eLife.11092.001 PMID:26439011
Introducing Computational Fluid Dynamics Simulation into Olfactory Display
NASA Astrophysics Data System (ADS)
Ishida, Hiroshi; Yoshida, Hitoshi; Nakamoto, Takamichi
An olfactory display is a device that delivers various odors to the user's nose. It can be used to add special effects to movies and games by releasing odors relevant to the scenes shown on the screen. In order to provide high-presence olfactory stimuli to the users, the display must be able to generate realistic odors with appropriate concentrations in a timely manner together with visual and audio playbacks. In this paper, we propose to use computational fluid dynamics (CFD) simulations in conjunction with the olfactory display. Odor molecules released from their source are transported mainly by turbulent flow, and their behavior can be extremely complicated even in a simple indoor environment. In the proposed system, a CFD solver is employed to calculate the airflow field and the odor dispersal in the given environment. An odor blender is used to generate the odor with the concentration determined based on the calculated odor distribution. Experimental results on presenting odor stimuli synchronously with movie clips show the effectiveness of the proposed system.
Central insulin administration improves odor-cued reactivation of spatial memory in young men.
Brünner, Yvonne F; Kofoet, Anja; Benedict, Christian; Freiherr, Jessica
2015-01-01
Insulin receptors are ubiquitously found in the human brain, comprising the olfactory bulb, essential for odor processing, and the hippocampus, important for spatial memory processing. The present study aimed at examining if intranasal insulin, which is known to transiently increase brain insulin levels in humans, would improve odor-cued reactivation of spatial memory in young men. We applied a double-blind, placebo-controlled, counterbalanced within-subject design. The study was conducted at the research unit of a university hospital. Interventions/Participants/Main Outcome Measures: Following intranasal administration of either insulin (40 I.U.) or placebo, male subjects (n = 18) were exposed to eight odors. During each odor exposure, a green-colored field was presented on a 17-in. computer screen. During immediate recall (comprising 3 runs), the participants were re-exposed to each odor cue, and were asked to select the corresponding field (with visual feedback after each response). The delayed recall was scheduled ∼10 min later (without feedback). To test if insulin's putative effect on odor-place memory would be domain-specific, participants also performed a separate place and odor recognition task. Intranasal insulin improved the delayed but not immediate odor-cued recall of spatial memory. This effect was independent of odor type and in the absence of systemic side effects (eg, fasting plasma glucose levels remained unaltered). Place and odor recognition were unaffected by the insulin treatment. These findings suggest that acute intranasal insulin improves odor-cued reactivation of spatial memory in young men.
Differential associative training enhances olfactory acuity in Drosophila melanogaster.
Barth, Jonas; Dipt, Shubham; Pech, Ulrike; Hermann, Moritz; Riemensperger, Thomas; Fiala, André
2014-01-29
Training can improve the ability to discriminate between similar, confusable stimuli, including odors. One possibility of enhancing behaviorally expressed discrimination (i.e., sensory acuity) relies on differential associative learning, during which animals are forced to detect the differences between similar stimuli. Drosophila represents a key model organism for analyzing neuronal mechanisms underlying both odor processing and olfactory learning. However, the ability of flies to enhance fine discrimination between similar odors through differential associative learning has not been analyzed in detail. We performed associative conditioning experiments using chemically similar odorants that we show to evoke overlapping neuronal activity in the fly's antennal lobes and highly correlated activity in mushroom body lobes. We compared the animals' performance in discriminating between these odors after subjecting them to one of two types of training: either absolute conditioning, in which only one odor is reinforced, or differential conditioning, in which one odor is reinforced and a second odor is explicitly not reinforced. First, we show that differential conditioning decreases behavioral generalization of similar odorants in a choice situation. Second, we demonstrate that this learned enhancement in olfactory acuity relies on both conditioned excitation and conditioned inhibition. Third, inhibitory local interneurons in the antennal lobes are shown to be required for behavioral fine discrimination between the two similar odors. Fourth, differential, but not absolute, training causes decorrelation of odor representations in the mushroom body. In conclusion, differential training with similar odors ultimately induces a behaviorally expressed contrast enhancement between the two similar stimuli that facilitates fine discrimination.
Do Valenced Odors and Trait Body Odor Disgust Affect Evaluation of Emotion in Dynamic Faces?
Syrjänen, Elmeri; Liuzza, Marco Tullio; Fischer, Håkan; Olofsson, Jonas K
2017-12-01
Disgust is a core emotion evolved to detect and avoid the ingestion of poisonous food as well as the contact with pathogens and other harmful agents. Previous research has shown that multisensory presentation of olfactory and visual information may strengthen the processing of disgust-relevant information. However, it is not known whether these findings extend to dynamic facial stimuli that changes from neutral to emotionally expressive, or if individual differences in trait body odor disgust may influence the processing of disgust-related information. In this preregistered study, we tested whether a classification of dynamic facial expressions as happy or disgusted, and an emotional evaluation of these facial expressions, would be affected by individual differences in body odor disgust sensitivity, and by exposure to a sweat-like, negatively valenced odor (valeric acid), as compared with a soap-like, positively valenced odor (lilac essence) or a no-odor control. Using Bayesian hypothesis testing, we found evidence that odors do not affect recognition of emotion in dynamic faces even when body odor disgust sensitivity was used as moderator. However, an exploratory analysis suggested that an unpleasant odor context may cause faster RTs for faces, independent of their emotional expression. Our results further our understanding of the scope and limits of odor effects on facial perception affect and suggest further studies should focus on reproducibility, specifying experimental circumstances where odor effects on facial expressions may be present versus absent.
Immunization alters body odor.
Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K
2014-04-10
Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.
Semantic networks for odors and colors in Alzheimer's disease.
Razani, Jill; Chan, Agnes; Nordin, Steven; Murphy, Claire
2010-05-01
Impairment in odor-naming ability and in verbal and visual semantic networks raised the hypothesis of a breakdown in the semantic network for odors in Alzheimer's disease (AD). The current study addressed this hypothesis. Twenty-four individuals, half patients with probable AD and half control participants, performed triadic-similarity judgments for odors and colors, separately, which, utilizing the multidimensional scaling (MDS) technique of individual difference scaling analysis (INDSCAL), generated two-dimensional configurations of similarity. The abilities to match odors and colors with written name labels were assessed to investigate disease-related differences in ability to identify and conceptualize the stimuli. In addition, responses on attribute-sorting tasks, requiring the odor and color perceptions to be categorized as one polarity of a certain dimension, were obtained to allow for objective interpretation of the MDS spatial maps. Whereas comparison subjects generated spatial maps based predominantly on relatively abstract characteristics, patients with AD classified odors on perceptual characteristics. The maps for patients with AD also showed disorganized groupings and loose associations between odors. Their normal configurations for colors imply that the patients were able to comprehend the task per se. The data for label matching and for attribute sorting provide further evidence for a disturbance in semantic odor memory in AD. The patients performed poorer than controls on both these odor tasks, implying that the ability to identify and/or conceptualize odors is impaired in AD. The results provide clear evidence for deterioration of the structure of semantic knowledge for odors in AD.
Ito, Yuriko; Kubota, Kikue
2005-01-01
The mechanism for the contribution of subthreshold aroma constituents to the overall jasmine tea odor impression was studied on the basis of a sensory evaluation. Binary model aqueous solutions containing the authentic odorants of a jasmine tea infusion, (E)-2-hexenyl hexanoate (I), (Z)-3-hexenol (II), and indole (III), were each prepared in a concentration below the odor threshold. Each solution had no aroma, but when 4-hexanolide replaced only 5% of each odorant, the odor intensity of each model solution was significantly strengthened. An astringent note and heavy note were recognized for each solution as the commonly perceived characteristics from the sensory evaluation. The concentration of 4-hexanolide added was also at the subthreshold level. The results suggest mutual interaction between odorants I, II, or III and 4-hexanolide. The effect on the overall odor sensation of a jasmine tea infusion by adding 4-hexanolide at a concentration below its odor threshold was also studied. In this case, the intensity of both the sweet and astringent notes was significantly strengthened in comparison with the odor impression of the original jasmine tea infusion. This phenomenon is considered to have been a synergistic effect between subthreshold odor compounds in the jasmine tea infusion. The results of this study clarify for the first time that the subthreshold aroma constituents play an important role in the characteristic flavor of a jasmine tea infusion.
Retronasal odor representations in the dorsal olfactory bulb of rats
Gautam, Shree Hari; Verhagen, Justus V.
2012-01-01
Animals perceive their olfactory environment not only from odors originating in the external world (orthonasal route) but also from odors released in the oral cavity while eating food (retronasal route). Retronasal olfaction is crucial for the perception of food flavor in humans. However, little is known about the retronasal stimulus coding in the brain. The most basic question is if and how route affects the odor representations at the level of the olfactory bulb (OB), where odor quality codes originate. We used optical calcium imaging of presynaptic dorsal OB responses to odorants in anesthetized rats to ask whether the rat OB could be activated retronasally, and how these responses compare to orthonasal responses under similar conditions. We further investigated the effects of specific odorant properties on orthoversus retronasal response patterns. We found that at a physiologically relevant flow rate retronasal odorants can effectively reach the olfactory receptor neurons, eliciting glomerular response patterns that grossly overlap with those of orthonasal responses, but differ from the orthonasal patterns in the response amplitude and temporal dynamics. Interestingly, such differences correlated well with specific odorant properties. Less volatile odorants yielded relatively smaller responses retronasally, but volatility did not affect relative temporal profiles. More polar odorants responded with relatively longer onset latency and time to peak retronasally, but polarity did not affect relative response magnitudes. These data provide insight into the early stages of retronasal stimulus coding and establish relationships between ortho- and retronasal odor representations in the rat OB. PMID:22674270
Yu, Jianwei; An, Wei; Cao, Nan; Yang, Min; Gu, Junong; Zhang, Dong; Lu, Ning
2014-07-01
Taste and odor (T/O) in drinking water often cause consumer complaints and are thus regulated in many countries. However, people in different regions may exhibit different sensitivities toward T/O. This study proposed a method to determine the regional drinking water odorant regulation goals (ORGs) based on the odor sensitivity distribution of the local population. The distribution of odor sensitivity to 2-methylisoborneol (2-MIB) by the local population in Beijing, China was revealed by using a normal distribution function/model to describe the odor complaint response to a 2-MIB episode in 2005, and a 2-MIB concentration of 12.9 ng/L and FPA (flavor profile analysis) intensity of 2.5 was found to be the critical point to cause odor complaints. Thus the Beijing ORG for 2-MIB was determined to be 12.9 ng/L. Based on the assumption that the local FPA panel can represent the local population in terms of sensitivity to odor, and that the critical FPA intensity causing odor complaints was 2.5, this study tried to determine the ORGs for seven other cities of China by performing FPA tests using an FPA panel from the corresponding city. ORG values between 12.9 and 31.6 ng/L were determined, showing that a unified ORG may not be suitable for drinking water odor regulations. This study presents a novel approach for setting drinking water odor regulations. Copyright © 2014. Published by Elsevier B.V.
Complex Odor from Plants under Attack: Herbivore's Enemies React to the Whole, Not Its Parts
van Wijk, Michiel; de Bruijn, Paulien J. A.; Sabelis, Maurice W.
2011-01-01
Background Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported. PMID:21765908
Epac Activation Initiates Associative Odor Preference Memories in the Rat Pup
ERIC Educational Resources Information Center
Grimes, Matthew T.; Powell, Maria; Gutierrez, Sandra Mohammed; Darby-King, Andrea; Harley, Carolyn W.; McLean, John H.
2015-01-01
Here we examine the role of the exchange protein directly activated by cAMP (Epac) in ß-adrenergic-dependent associative odor preference learning in rat pups. Bulbar Epac agonist (8-pCPT-2-O-Me-cAMP, or 8-pCPT) infusions, paired with odor, initiated preference learning, which was selective for the paired odor. Interestingly, pairing odor with Epac…
Food odors trigger an endocrine response that affects food ingestion and metabolism.
Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R
2015-08-01
Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.
Zarzo, Manuel
2015-06-01
Many authors have proposed different schemes of odor classification, which are useful to aid the complex task of describing smells. However, reaching a consensus on a particular classification seems difficult because our psychophysical space of odor description is a continuum and is not clustered into well-defined categories. An alternative approach is to describe the perceptual space of odors as a low-dimensional coordinate system. This idea was first proposed by Crocker and Henderson in 1927, who suggested using numeric profiles based on 4 dimensions: "fragrant," "acid," "burnt," and "caprylic." In the present work, the odor profiles of 144 aroma chemicals were compared by means of statistical regression with comparable numeric odor profiles obtained from 2 databases, enabling a plausible interpretation of the 4 dimensions. Based on the results and taking into account comparable 2D sensory maps of odor descriptors from the literature, a 3D sensory map (odor cube) has been drawn up to improve understanding of the similarities and dissimilarities of the odor descriptors most frequently used in fragrance chemistry. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Neshat, Hanieh; Jebreili, Mahnaz; Seyyedrasouli, Aleheh; Ghojazade, Morteza; Hosseini, Mohammad Bagher; Hamishehkar, Hamed
2016-06-01
Different studies have shown that the use of olfactory stimuli during painful medical procedures reduces infants' response to pain. The main purpose of the current study was to investigate the effect of breast milk odor and vanilla odor on premature infants' vital signs including heart rate and blood oxygen saturation during and after venipuncture. A total of 135 preterm infants were randomly selected and divided into three groups of control, vanilla odor, and breast milk odor. Infants in the breast milk group and the vanilla group were exposed to breast milk odor and vanilla odor from 5 minutes prior to sampling until 30 seconds after sampling. The results showed that breast milk odor has a significant effect on the changes of neonatal heart rate and blood oxygen saturation during and after venipuncture and decreased the variability of premature infants' heart rate and blood oxygen saturation. Vanilla odor has no significant effect on premature infants' heart rate and blood oxygen saturation. Breast milk odor can decrease the variability of premature infants' heart rate and blood oxygen saturation during and after venipuncture. Copyright © 2015. Published by Elsevier B.V.
Watanabe, Keiko; Masaoka, Yuri; Kawamura, Mitsuru; Yoshida, Masaki; Koiwa, Nobuyoshi; Yoshikawa, Akira; Kubota, Satomi; Ida, Masahiro; Ono, Kenjiro; Izumizaki, Masahiko
2018-01-01
Autobiographical odor memory (AM-odor) accompanied by a sense of realism of a specific memory elicits strong emotions. AM-odor differs from memory triggered by other sensory modalities, possibly because olfaction involves a unique sensory process. Here, we examined the orbitofrontal cortex (OFC), using functional magnetic resonance imaging (fMRI) to determine which OFC subregions are related to AM-odor. Both AM-odor and a control odor successively increased subjective ratings of comfortableness and pleasantness. Importantly, AM-odor also increased arousal levels and the vividness of memories, and was associated with a deep and slow breathing pattern. fMRI analysis indicated robust activation in the left posterior OFC (L-POFC). Connectivity between the POFC and whole brain regions was estimated using psychophysiological interaction analysis (PPI). We detected several trends in connectivity between L-POFC and bilateral precuneus, bilateral rostral dorsal anterior cingulate cortex (rdACC), and left parahippocampus, which will be useful for targeting our hypotheses for future investigations. The slow breathing observed in AM-odor was correlated with rdACC activation. Odor associated with emotionally significant autobiographical memories was accompanied by slow and deep breathing, possibly involving rdACC processing.
Molecular receptive range variation among mouse odorant receptors for aliphatic carboxylic acids
Repicky, Sarah E.; Luetje, Charles W.
2009-01-01
The ability of mammals to identify and distinguish among many thousands of different odorants suggests a combinatorial use of odorant receptors, with each receptor detecting multiple odorants and each odorant interacting with multiple receptors. Numerous receptors may be devoted to the sampling of particularly important regions of odor space. Here we explore the similarities and differences in the molecular receptive ranges of four mouse odorant receptors (MOR23-1, MOR31-4, MOR32-11 and MOR40-4), which have previously been identified as receptors for aliphatic carboxylic acids. Each receptor was expressed in Xenopus oocytes, along with Gαolf and the cystic fibrosis transmembrane regulator to allow electrophysiological assay of receptor responses. We find that even though these receptors are relatively unrelated, there is extensive overlap among their receptive ranges. That is, these receptors sample a similar region of odor space. However, the receptive range of each receptor is unique. Thus, these receptors contribute to the depth of coverage of this small region of odor space. Such a group of receptors with overlapping, but distinct receptive ranges, may participate in making fine distinctions among complex mixtures of closely related odorant compounds. PMID:19166503
Olfactory systems and neural circuits that modulate predator odor fear
Takahashi, Lorey K.
2014-01-01
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear. PMID:24653685
Olfactory systems and neural circuits that modulate predator odor fear.
Takahashi, Lorey K
2014-01-01
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear.
NASA Astrophysics Data System (ADS)
Sówka, Izabela; Karski, Leszek
2018-01-01
The problem of odor nuisance requires undertaking legal means that aim towards implementation of regulations in order to improve the odor-related quality of air in selected areas in Poland. So far the works carried out in the country were concluded by drawing up `The guidelines for the bill on counteracting the odor nuisance'. However, as a result of completed social consultations in Poland, the Ministry of Environment, in 2015, resigned from implementing of so called anti-odor act. Currently, the legislature is taking steps which aim at undertaking specific actions in order to introduce solutions, which would directly regulate the issues of odors and the odor nuisance, to the national system. In the countries of the European Union, the issues related to odors are solved in diversified ways and the system still lacks of a uniform proposition, among others related to odor standards. In connection with the above, actions that are taken on a national level should fundamentally aim at developing national odor standards which would take into account the type / the kind of economic activity being a source of odor emission (e.g. clearly separated for existing objects and planned investments), at establishing a procedure and also legal and operational requirements related to determination and the types of zones with defined values of acceptable concentration and determination of reference methodology in monitoring, and modeling the dispersion of odors e.g. including strictly defined frequency of necessary tests. In addition, the process should be accompanied by a creation of financial mechanisms and streams in range of investments related to the development of technology and methods used to limit emission of odors.
Martinez, Luis A; Petrulis, Aras
2011-11-01
Successful reproduction in vertebrates depends critically upon a suite of precopulatory behaviors that occur prior to mating. In Syrian hamsters (Mesocricetus auratus), these behaviors include vaginal scent marking and preferential investigation of male odors. The neural regulation of vaginal marking and opposite-sex odor preference likely involves an interconnected set of steroid-sensitive nuclei that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). For example, lesions of MA eliminate opposite-sex odor preference and reduce overall levels of vaginal marking, whereas lesions of MPOA decrease vaginal marking in response to male odors. Although BNST is densely interconnected with both MA and MPOA, little is known about the role of BNST in female precopulatory behaviors. To address this question, females received either bilateral, excitotoxic lesions of BNST (BNST-X) or sham lesions (SHAM), and were tested for scent marking and for investigatory responses to male and female odors. Whereas SHAM females vaginal marked more to male odors than female odors on two days of the estrous cycle, BNST-X females marked at equivalent levels to both odors. This deficit is not due to alterations in social odor investigation, as both BNST-X and SHAM females investigated male odors more than female odors. Finally, BNST lesions did not generally disrupt the cyclic changes in reproductive behaviors that occur across the estrous cycle. Taken together, these results demonstrate that BNST is critical for the normal expression of solicitational behaviors by females in response to male odor stimuli. Copyright © 2011 Elsevier Inc. All rights reserved.
Martinez, Luis A.; Petrulis, Aras
2011-01-01
Successful reproduction in vertebrates depends critically upon a suite of precopulatory behaviors that occur prior to mating. In Syrian hamsters (Mesocricetus auratus), these behaviors include vaginal scent marking and preferential investigation of male odors. The neural regulation of vaginal marking and opposite-sex odor preference likely involves an interconnected set of steroid-sensitive nuclei that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). For example, lesions of MA eliminate opposite-sex odor preference and reduce overall levels of vaginal marking, whereas lesions of MPOA decrease vaginal marking in response to male odors. Although BNST is densely interconnected with both MA and MPOA, little is known about the role of BNST in female precopulatory behaviors. To address this question, females received either bilateral, excitotoxic lesions of BNST (BNST-X) or sham lesions (SHAM), and were tested for scent marking and for investigatory responses to male and female odors. Whereas SHAM females vaginal marked more to male odors than female odors on two days of the estrous cycle, BNST-X females marked at equivalent levels to both odors. This deficit is not due to alterations in social odor investigation, as both BNST-X and SHAM females investigated male odors more than female odors. Finally, BNST lesions did not generally disrupt the cyclic changes in reproductive behaviors that occur across the estrous cycle. Taken together, these results demonstrate that BNST is critical for the normal expression of solicitational behaviors by females in response to male odor stimuli. PMID:21925504
Wintermann, Gloria-Beatrice; Donix, Markus; Joraschky, Peter; Gerber, Johannes; Petrowski, Katja
2013-01-01
Patients with Panic Disorder (PD) direct their attention towards potential threat, followed by panic attacks, and increased sweat production. Onés own anxiety sweat odor influences the attentional focus, and discrimination of threat or non-threat. Since olfactory projection areas overlap with neuronal areas of a panic-specific fear network, the present study investigated the neuronal processing of odors in general and of stress-related sweat odors in particular in patients with PD. A sample of 13 patients with PD with/ without agoraphobia and 13 age- and gender-matched healthy controls underwent an fMRI investigation during olfactory stimulation with their stress-related sweat odors (TSST, ergometry) as well as artificial odors (peach, artificial sweat) as non-fearful non-body odors. The two groups did not differ with respect to their olfactory identification ability. Independent of the kind of odor, the patients with PD showed activations in fronto-cortical areas in contrast to the healthy controls who showed activations in olfaction-related areas such as the amygdalae and the hippocampus. For artificial odors, the patients with PD showed a decreased neuronal activation of the thalamus, the posterior cingulate cortex and the anterior cingulate cortex. Under the presentation of sweat odor caused by ergometric exercise, the patients with PD showed an increased activation in the superior temporal gyrus, the supramarginal gyrus, and the cingulate cortex which was positively correlated with the severity of the psychopathology. For the sweat odor from the anxiety condition, the patients with PD showed an increased activation in the gyrus frontalis inferior, which was positively correlated with the severity of the psychopathology. The results suggest altered neuronal processing of olfactory stimuli in PD. Both artificial odors and stress-related body odors activate specific parts of a fear-network which is associated with an increased severity of the psychopathology.
Effects of historically familiar and novel predator odors on the physiology of an introduced prey
Mella, Valentina S. A.; Cooper, Christine E.; Davies, Stephen J. J. F.
2016-01-01
Abstract Predator odors can elicit fear responses in prey and predator odor recognition is generally associated with physiological responses. Prey species are often more likely to respond to the odor of familiar rather than alien predators. However, predator naïvety in an introduced prey species has rarely been investigated. We examined the physiological response, as shown by changes in ventilatory variables, of an introduced terrestrial herbivore, the European rabbit Oryctolagus cuniculus, in Australia, to the odor of potential predators and to control odors (distilled water and horse), to explore if responses were limited to historical (cat and fox) predators, or extended to historically novel predators (snake and quoll). All odors except distilled water elicited a response, with rabbits showing long-term higher respiratory frequencies and lower tidal volumes after introduction of the odors, indicating an increase in alertness. However, the intensity of the rabbits’ reaction could not be directly linked to any pattern of response with respect to the history of predator–prey relationships. Rabbits exhibited significantly stronger reactions in response to both cat and quoll odors than they did to distilled water, but responses to horse, fox, and snake odor were similar to that of water. Our results show that the introduced rabbit can respond to both historical and novel predators in Australia, and suggest that shared evolutionary history is not necessarily a prerequisite to predator odor recognition. PMID:29491891
Effects of historically familiar and novel predator odors on the physiology of an introduced prey.
Mella, Valentina S A; Cooper, Christine E; Davies, Stephen J J F
2016-02-01
Predator odors can elicit fear responses in prey and predator odor recognition is generally associated with physiological responses. Prey species are often more likely to respond to the odor of familiar rather than alien predators. However, predator naïvety in an introduced prey species has rarely been investigated. We examined the physiological response, as shown by changes in ventilatory variables, of an introduced terrestrial herbivore, the European rabbit Oryctolagus cuniculus , in Australia, to the odor of potential predators and to control odors (distilled water and horse), to explore if responses were limited to historical (cat and fox) predators, or extended to historically novel predators (snake and quoll). All odors except distilled water elicited a response, with rabbits showing long-term higher respiratory frequencies and lower tidal volumes after introduction of the odors, indicating an increase in alertness. However, the intensity of the rabbits' reaction could not be directly linked to any pattern of response with respect to the history of predator-prey relationships. Rabbits exhibited significantly stronger reactions in response to both cat and quoll odors than they did to distilled water, but responses to horse, fox, and snake odor were similar to that of water. Our results show that the introduced rabbit can respond to both historical and novel predators in Australia, and suggest that shared evolutionary history is not necessarily a prerequisite to predator odor recognition.
Recognition of Bread Key Odorants by Using Polymer Coated QCMs
NASA Astrophysics Data System (ADS)
Nakai, Takashi; Kouno, Shinji; Hiruma, Naoya; Shuzo, Masaki; Delaunay, Jean-Jacques; Yamada, Ichiro
Polyisobutylene (PIB) polymer and methylphenylsiloxane (25%) diphenylsiloxane (75%) copolymer (OV25) were coated on Quartz Crystal Microbalance (QCM) sensors and used in recognition of bread key odorants. Representative compounds of key roasty odorants of bread were taken as 3-acetylpyridine and benzaldehyde, and representative key fatty odorants were hexanal and (E)-2-nonenal. Both OV25- and PIB-coated QCM fabricated sensors could detect concentration as low as 0.9 ppm of 3-acetylpyridine and 1.2 ppm of (E)-2-nonenal. The sensitivity to 3-acetylpyridine of the OV25-coated QCM was about 1000 times higher than that of ethanol, the major interference compound in bread key odorant analysis. Further, the OV25-coated QCM response was 5-6 times and 2-3 times larger than that of the PIB-coated QCM when exposed to roasty odorants and to fatty odorants, respectively. The difference in sensitivity of the OV25- and PIB-coated QCMs we fabricated made possible to discriminate roasty from fatty odorants as was evidenced by the odor recognition map representing the frequency shifts of the OV25-coated QCM against the frequency shift of the PIB-coated QCM. In conclusion, we found that the combination of an OV25-coated QCM and a PIB-coated QCM was successful in discriminating roasty odorants from fatty odorants at the ppm level.
Sharma, Manju; O'Connell, Susan; Garelli, Brett; Sattayatewa, Chakkrid; Moschandreas, Demetrios; Pagilla, Krishna
2012-01-01
Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies. The results showed that air quality in the building complies with occupational safety and health guidelines; however, nuisance odors that can increase stress and productivity loss still persist. Excess roof fan capacity induced odor dispersion to the upper levels. Lack of a local air exhaust system of sufficient capacity and optimum design was found to be the contributor to occasional less than adequate indoor air quality and odors. Overall, air ventilation rate in the building has less effect on persistence of odors in the building. Odor/odorant emission rates from centrifuge drops were approximately 100 times higher than those from the open conveyors. Based on measurements and modeling, the key control strategies recommended include increasing local air exhaust system capacity and relocation of exhaust hoods closer to the centrifuge drops.
An olfactory cocktail party: figure-ground segregation of odorants in rodents.
Rokni, Dan; Hemmelder, Vivian; Kapoor, Vikrant; Murthy, Venkatesh N
2014-09-01
In odorant-rich environments, animals must be able to detect specific odorants of interest against variable backgrounds. However, studies have found that both humans and rodents are poor at analyzing the components of odorant mixtures, suggesting that olfaction is a synthetic sense in which mixtures are perceived holistically. We found that mice could be easily trained to detect target odorants embedded in unpredictable and variable mixtures. To relate the behavioral performance to neural representation, we imaged the responses of olfactory bulb glomeruli to individual odors in mice expressing the Ca(2+) indicator GCaMP3 in olfactory receptor neurons. The difficulty of segregating the target from the background depended strongly on the extent of overlap between the glomerular responses to target and background odors. Our study indicates that the olfactory system has powerful analytic abilities that are constrained by the limits of combinatorial neural representation of odorants at the level of the olfactory receptors.
Effects of extraneous odors on canine detection
NASA Astrophysics Data System (ADS)
Waggoner, L. Paul; Jones, Meredith H.; Williams, Marc; Johnston, J. M.; Edge, Cindy C.; Petrousky, James A.
1998-12-01
Dogs are often required to detect target substances under challenging conditions. One of these challenges is to detect contraband in the presence of extraneous odors, whether they are part of the ambient environment or placed there for the purpose of evading detection. This paper presents the results of two studies evaluating the ability of dogs to detect target substances in the presence of varying concentrations of extraneous odors. The studies were conducted under behavioral laboratory conditions, providing good control over vapor sources and a clear basis for evaluation of detection responses. Dogs were trained to sample an air stream consisting of the extraneous odor only or the extraneous odor plus the target odor and then press the appropriate lever to earn food. The results are described in terns of the ability of dogs to detect target odors in the presence of a wide range of concentrations of the extraneous odors.
Design and analysis of a pilot scale biofiltration system for odorous air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, J.J.; Young, J.S.; Bottcher, R.W.
2000-02-01
Three pilot-scale biofilters and necessary peripheral equipment were built to clean odorous air from the pit of a swine gestation building at North Carolina State University. A computer measured temperatures, flow rates, and pressure drops. It also controlled and measured the moisture content of a biofilter medium comprised of a 3:1 mixture of yard waste compost to wood chips mixture (by volume). The system was evaluated to ensure that the biofilters would be useful for performing scientific experiments concerning the reduction of swine odor on future research projects. The capability of the biofilters to remove odor was measured using amore » cotton swatch absorption method and an odor panel. The average odor reductions measured by odor intensity, irritation intensity, and unpleasantness for five tests were 61%, 58%, and 84%, respectively. No significant differences in odor reduction performance were found between the biofilters.« less
The effects of passive smoking on olfaction in children.
Nageris, B; Hadar, T; Hansen, M C
2002-01-01
The effect of passive smoking on odor identification was studied in 10 children exposed to passive smoke at home. All had at least one parent who smoked at least one pack of cigarettes a day. The control group consisted of 10 children of nonsmoking parents. Ten odorants were tested: vinegar, ammonia, peppermint, roses, bleach, vanilla, cough drops, turpentine, licorice and mothballs. Each child was presented with five test trays containing all 10 odorants in random order. Of the total of 500 odors presented, the control group correctly identified 396 (79%) and the study group, 356 (71%) (p < 0.005). This work demonstrates that children exposed to passive smoke have difficulty identifying odors in comparison to children raised in relatively smoke-free environments. Since the study group tend to misidentify four of the 10 odorants tested--vanilla, roses, mothballs and cough drops--we suggest that these four odorants should suffice in testing odor identification in children.
Odors as cues for orientation to mothers by weanling Virginia opossums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, D.J.
1992-12-01
Three experiments were conducted to investigate whether whole-body and pouch odors facilitate social cohesion between young Virginia opossums and their mothers just prior to weaning. In experiment 1, young oriented toward plastic buckets containing their mothers, directing significantly higher levels of investigative behavior and more distress vocalizations toward them than toward buckets containing unrelated lactating females. In experiment 2, young oriented toward and investigated empty buckets containing whole-body odors of their mothers more than empty buckets containing odors of other females. Similarly, more investigative behavior was directed toward plastic bucket lids containing pouch odors from subjects mothers than toward pouchmore » odors from unrelated females in experiment 3. These results suggest that social odors help young didelphid marsupials maintain contact with their mothers, as in other mammals, and that whole-body and pouch gland odors are important chemical signals in this nongregarious species.« less
ERIC Educational Resources Information Center
Calhoun-Haney, R.; Murphy, C.
2005-01-01
Individuals with the apolipoprotein E e4 genetic risk factor for Alzheimer's disease (AD) show deficits in olfactory function. The purpose of the present study was to examine longitudinally odor identification (odor ID), odor threshold, picture identification, and global cognitive status in allele positive (e4+) and negative (e4-) persons.…
Differential Odor Sensitivity in PTSD: Implications for Treatment and Future Research
Cortese, Bernadette M.; Leslie, Kimberly; Uhde, Thomas W.
2015-01-01
Background Given that odors enhance the retrieval of autobiographical memories, induce physiological arousal, and trigger trauma-related flashbacks, it is reasonable to hypothesize that odors play a significant role in the pathophysiology of posttraumatic stress disorder (PTSD). For these reasons, this preliminary study sought to examine self-reported, odor-elicited distress in PTSD. Methods Combat veterans with (N=30) and without (N=22) PTSD and healthy controls (HC: N=21), completed an olfactory questionnaire that provided information on the hedonic valence of odors as well as their ability to elicit distress or relaxation. Results Two main findings were revealed: Compared to HC, CV+PTSD, but not CV-PTSD, reported a higher prevalence of distress to a limited number of select odors that included fuel (p=.004), blood (p=.02), gunpowder (p=.03), and burning hair (p=.02). In contrast to this increased sensitivity, a blunting effect was reported by both groups of veterans compared to HC that revealed lower rates of distress and relaxation in response to negative hedonic odors (p=.03) and positive hedonic odors (p<.001), respectively. Limitations The study is limited by its use of retrospective survey methods, whereas future investigations would benefit from laboratory measures taken prior, during, and after deployment. Conclusion The present findings suggest a complex role of olfaction in the biological functions of threat detection. Several theoretical models are discussed. One possible explanation for increased sensitivity to select odors with decreased sensitivity to other odors is the co-occurrence of attentional bias toward threat odors with selective ignoring of distractor odors. Working together, these processes may optimize survival. PMID:25845746
Levels-of-processing effects on a task of olfactory naming.
Royet, Jean-Pierre; Koenig, Olivier; Paugam-Moisy, Helene; Puzenat, Didier; Chasse, Jean-Luc
2004-02-01
The effects of odor processing were investigated at various analytical levels, from simple sensory analysis to deep or semantic analysis, on a subsequent task of odor naming. Students (106 women, 23.6 +/- 5.5 yr. old; 65 men, 25.1 +/- 7.1 yr. old) were tested. The experimental procedure included two successive sessions, a first session to characterize a set of 30 odors with criteria that used various depths of processing and a second session to name the odors as quickly as possible. Four processing conditions rated the odors using descriptors before naming the odor. The control condition did not rate the odors before naming. The processing conditions were based on lower-level olfactory judgments (superficial processing), higher-level olfactory-gustatory-somesthetic judgments (deep processing), and higher-level nonolfactory judgments (Deep-Control processing, with subjects rating odors with auditory and visual descriptors). One experimental condition successively grouped lower- and higher-level olfactory judgments (Superficial-Deep processing). A naming index which depended on response accuracy and the subjects' response time were calculated. Odor naming was modified for 18 out of 30 odorants as a function of the level of processing required. For 94.5% of significant variations, the scores for odor naming were higher following those tasks for which it was hypothesized that the necessary olfactory processing was carried out at a deeper level. Performance in the naming task was progressively improved as follows: no rating of odors, then superficial, deep-control, deep, and superficial-deep processings. These data show that the deepest olfactory encoding was later associated with progressively higher performance in naming.
Goubet, Nathalie; Durand, Karine; Schaal, Benoist; McCall, Daniel D
2018-02-01
We investigated the occurrence and underlying processes of odor-color associations in French and American 6- to 10-year-old children (n = 386) and adults (n = 137). Nine odorants were chosen according to their familiarity to either cultural group. Participants matched each odor with a color, gave hedonic and familiarity judgments, and identified each odor. By 6 years of age, children displayed culture-specific odor-color associations, but age differences were noted in the type of associations. Children and adults in both cultural groups shared common associations and formed associations that were unique to their environment, underscoring the importance of exposure learning in odor-color associations. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamauchi, Masahito; Matsumoto, Hirotaka; Yamada, Masayoshi; Yagi, Fumio; Murayama, Ryou; Yamaguchi, Yoshinori; Yamaguchi, Takashi
In this study, odor substances from mushroom culture media containing 'shochu' lees and starch wastes were identified and determined. It was apparent that in the media, acetoin, butyric acid and diacetyl were found as main odor substances, and mixed with some other ordor substances to produce unpleasant odor. The main substances disappeared with growth of mycelia. It was not likely that these ordor substances were degraded by extracellular enzymes but suggested that they were degraded by mycelia. Further it was found with the growth of mycelia that odor quality changed from rancid ordor (unpleasant ordor) to mushroom smell (pleasant odor) and the odor index was decreasing.
Identification of Odorant-Receptor Interactions by Global Mapping of the Human Odorome
Audouze, Karine; Tromelin, Anne; Le Bon, Anne Marie; Belloir, Christine; Petersen, Rasmus Koefoed; Kristiansen, Karsten; Brunak, Søren; Taboureau, Olivier
2014-01-01
The human olfactory system recognizes a broad spectrum of odorants using approximately 400 different olfactory receptors (hORs). Although significant improvements of heterologous expression systems used to study interactions between ORs and odorant molecules have been made, screening the olfactory repertoire of hORs remains a tremendous challenge. We therefore developed a chemical systems level approach based on protein-protein association network to investigate novel hOR-odorant relationships. Using this new approach, we proposed and validated new bioactivities for odorant molecules and OR2W1, OR51E1 and OR5P3. As it remains largely unknown how human perception of odorants influence or prevent diseases, we also developed an odorant-protein matrix to explore global relationships between chemicals, biological targets and disease susceptibilities. We successfully experimentally demonstrated interactions between odorants and the cannabinoid receptor 1 (CB1) and the peroxisome proliferator-activated receptor gamma (PPARγ). Overall, these results illustrate the potential of integrative systems chemical biology to explore the impact of odorant molecules on human health, i.e. human odorome. PMID:24695519
Functional neuronal processing of human body odors.
Lundström, Johan N; Olsson, Mats J
2010-01-01
Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as diet and hygiene. Although a substantial number of studies have investigated the behavioral effects of body odors, only a handful have studied central processing. Recent studies have, however, demonstrated that the human brain responds to fear signals hidden within the body odor cocktail, is able to extract kin specific signals, and processes body odors differently than other perceptually similar odors. In this chapter, we provide an overview of the current knowledge of how the human brain processes body odors and the potential importance these signals have for us in everyday life. Copyright © 2010 Elsevier Inc. All rights reserved.
Odors and incontinence: What does the nose know?
Dalton, Pamela; Maute, Christopher
2018-06-01
The fear of producing malodors that can be detected by others is a daily cause of anxiety for millions of people with incontinence. For many, the risk-whether real or imagined-that leaked waste products will be detectable by odor is sufficiently concerning to result in limitations on many types of activities. However, worry about personal odors can sensitize our olfactory system and cause us to be more aware of odors that may otherwise not be perceptible. In addition, heightened olfactory attention can often lead to odor misattributions, such as when we erroneously identify our body as the source of an odor that may simply be present in the environment. Odors produced by our bodies (endogenous odors) do enjoy a greater access to emotional brain centers and are processed faster than general odors. Here we provide examples from both everyday life and laboratory studies to explain how and why the olfactory system is unique among our sensory systems and how this knowledge can provide insights to our concerns about smell and incontinence and inform the development of products and solutions for incontinence.
Odors as cues for the recall of words unrelated to odor.
Morgan, C L
1996-12-01
The effectiveness of an ambient odor as a retrieval cue for words unrelated to odor was investigated. After incidental learning of 40 adjectives, 40 participants were tested for recall during three unannounced recall phases (15 min., 48 hr., and 5 days). Participants in two control conditions learned with no odor present and either had no odor present during any recall phase or only during recall after 5 days. Participants in two conditions learned with an odor present and either had the odor present during recall only after 5 days or during recall both after 15 min. and after 5 days. Analyses indicated that, while participants in the control conditions recalled significantly less during each succeeding recall phase, recall by participants in the two experimental conditions did not decrease significantly. Recall by participants in the two experimental conditions was significantly higher during recall after 5 days (when the odor was reintroduced) than either control group. The addition of a salient cue during learning and retrieval facilitated recall more than the presence of constant environmental cues.
Odor from a chemical perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wray, T.K.
1995-06-01
Early odor-detection measurements categorized chemicals according to odor quality. Recent methods focus on the odor threshold, or the quantitative amount of a chemical in air that can be detected by the human sense of smell. Researchers characterize and quantify odor using an array of sensory and analytical procedures. Humans possess one of the dullest mammalian senses of smell; however, they can recognize about 10,000 distinct odors at concentrations ranging from less than 1 part per billion to several hundred thousand parts per million. Each time humans inhale, they chemically analyze microscopic pieces of the environment that make physical contact withmore » the nerves in their noses. Individual molecules travel up the nose to a sheet of moist, mucus-bathed tissue that consists of about 5 million smell-sensing, olfactory neurons. After dissolving in the mucus, odor molecules ``float`` into appropriately shaped receptor pockets. A series of cellular reactions then transmit impulses to the limbic system, hippocampus and, finally, the neocortex. Odor detection is an important defense mechanism. The author presents the odor thresholds for selected organic compounds, and other hazardous chemicals.« less
Muñoz-Abellán, C; Andero, R; Nadal, R; Armario, A
2008-09-01
Exposure of rodents to cats or certain cat odors results in long-term behavioral effects reminiscent of enhanced anxiety that have been considered to model post-traumatic stress disorder. However, other severe stressors such as tail-shock or immobilization in wooden boards (IMO) appear to induce shorter lasting changes in anxiety. In addition, there are controversial results regarding the effects of urine/feces odors. In the present work, we studied in two experiments the relationship between the degree of stress experienced by the animals during exposure to IMO, urine odors or fur odors (as assessed by hypothalamic-pituitary-adrenal activation and plasma glucose) and the short- and long-term behavioral consequences. In the first experiment, rats were individually exposed for 15 min to a novel environment (white large cages) containing either clean cat litter (controls) or litter soiled by cats (urine odors). Half of the rats in each condition were left to freely explore the environment whereas the others were subjected to immobilization (IMO) within the cages. Although ACTH, corticosterone and glucose responses to IMO were much stronger than those to the white cages with clean litter or urine odors (which did not differ from each other), no effect of treatments on anxiety-like behavior in the elevated plus-maze (EPM) were found one week later. However, previous IMO exposure did cause sensitization of the ACTH response to the EPM. In the second experiment, the response to white large cages containing either no odor (controls), litter soiled by cats (urine odor) or a cloth impregnated with cat odor (fur odor) was compared. Urine and fur odors elicited similar ACTH and corticosterone responses that were higher than those of controls, but plasma glucose levels were slightly higher in rats exposed to fur odor. When compared to controls, activity was only diminished in the novel cages containing fur odor. Similarly, fur odor-exposed rats, but not those exposed to urine odor, showed signs of enhanced anxiety in the EPM seven days later, although the ACTH response to the EPM was similar in the three groups. The present data demonstrate: (a) a marked dissociation between the degree of ACTH, corticosterone and glucose responses to stressors and their long-term anxiety-like effects; (b) that the type of cat odor is critical in determining the short-term and long-term physiological and behavioral consequences of exposure; and (c) that plasma ACTH released during brief exposure to the EPM does not appear to reflect anxiety-like behavior.
Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo
2014-07-15
Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
2013-09-01
nearly identical responses to the chemically similar odorants 2-heptanone and n-amyl acetate. The molecules differ only by a single oxygen atom in...briefly bathed in activation buffer and placed in a solution of 11.3 mM NR,NR-bis(carboxymethyl)-L-lysine hydrate (NTA- NH2) prepared with PBS (0.1 M...purity nitrogen or argon gas. A solution containing mORs in digitonin micelles or nanodiscs, prepared as described above, was de- posited on the
Determination of Phenols and Trimethylamine in Industrial Effluents
NASA Technical Reports Server (NTRS)
Levaggi, D. A.; Feldstein, M.
1971-01-01
For regulatory purposes to control certain odorous compounds the analysis of phenols and trimethylamines in industrial effluents is necessary. The Bay Area Air Pollution Control District laboratory has been determining these gases by gas chromatographic techniques. The procedures for sample collection, preparation for analysis and determination are described in detail. Typical data from various sources showing the effect of proposed regulations is shown. Extensive sampling and usage of these procedures has shown them to be accurate, reliable and suitable to all types of source effluents.
Eckmann, Ted C; Wright, Samantha G; Simpson, Logan K; Walker, Joe L; Kolmes, Steven A; Houck, James E; Velasquez, Sandra C
2018-01-01
This study combines Ordinary Kriging, odor monitoring, and wind direction data to demonstrate how these elements can be applied to identify the source of an industrial odor. The specific case study used as an example of how to address this issue was the University Park neighborhood of Portland, Oregon (USA) where residents frequently complain about industrial odors, and suspect the main source to be a nearby Daimler Trucks North America LLC manufacturing plant. We collected 19,665 odor observations plus 105,120 wind measurements, using an automated weather station to measure winds in the area at five-minute intervals, logging continuously from December 2014 through November 2015, while we also measured odors at 19 locations, three times per day, using methods from the American Society of the International Association for Testing and Materials. Our results quantify how winds vary with season and time of day when industrial odors were observed versus when they were not observed, while also mapping spatiotemporal patterns in these odors using Ordinary Kriging. Our analyses show that industrial odors were detected most frequently to the northwest of the Daimler plant, mostly when winds blew from the southeast, suggesting Daimler's facility is a likely source for much of this odor.
The olfactory hole-board test in rats: a new paradigm to study aversion and preferences to odors
Wernecke, Kerstin E. A.; Fendt, Markus
2015-01-01
Odors of biological relevance (e.g., predator odors, sex odors) are known to effectively influence basic survival needs of rodents such as anti-predatory defensiveness and mating behaviors. Research focused on the effects of these odors on rats’ behavior mostly includes multi-trial paradigms where animals experience single odor exposures in subsequent, separated experimental sessions. In the present study, we introduce a modification of the olfactory hole-board test that allows studying the effects of different odors on rats’ behavior within single trials. First, we demonstrated that the corner holes of the hole-board were preferentially visited by rats. The placement of different odors under the corner holes changed this hole preference. We showed that holes with carnivore urine samples were avoided, while corner holes with female rat urine samples were preferred. Furthermore, corner holes with urine samples from a carnivore, herbivore, and omnivore were differentially visited indicating that rats can discriminate these odors. To test whether anxiolytic treatment specifically modulates the avoidance of carnivore urine holes, we treated rats with buspirone. Buspirone treatment completely abolished the avoidance of carnivore urine holes. Taken together, our findings indicate that the olfactory hole-board test is a valuable tool for measuring avoidance and preference responses to biologically relevant odors. PMID:26379516
Composition of key offensive odorants released from fresh food materials
NASA Astrophysics Data System (ADS)
Kim, Ki-Hyun; Kim, Yong-Hyun
2014-06-01
A refrigerator loaded with a variety of foods without sealed packaging can create quite an olfactory nuisance, and it may come as a surprise that fresh foods emit unpleasant odorants just as those that are decaying. To learn more about nuisance sources in our daily lives, we measured a list of 22 compounds designated as the key offensive odorants (e.g., reduced sulfur, nitrogenous, volatile fatty acid (VFA), and carbonyls) from nine types of common food items consumed in S. Korea: raw beef, raw fish, spam, yolks and albumin of boiled eggs (analyzed separately), milk, cheese, onions, and strawberries. The odor intensity (OI) of each food item was computed initially with the aid of previously used empirical equations. This indicates that the malodor properties of target foods tend to be governed by a few key odorants such as VFA, S, and N compounds. The extent of odorant mixing of a given food was then evaluated by exploring the correlation between the human olfaction (e.g., dilution-to-threshold (D/T) ratio) and the odor potential determined indirectly (instrumentally) such as odor activity value (OAV) or sum of odor intensity (SOI). The overall results of our study confirm the existence of malodorant compounds released from common food items and their contribution to their odor characteristics to a certain degree.
Family scents: developmental changes in the perception of kin body odor?
Ferdenzi, Camille; Schaal, Benoist; Roberts, S Craig
2010-08-01
There is increasing evidence that human body odors are involved in adaptive behaviors, such as parental attachment in infants or partner choice in adults. The aim of the present study was to investigate changes in body-odor perception around puberty, a period largely ignored for odor-mediated behavioral changes, despite major changes in social needs and in odor emission and perception. Nine families with two children (8 pre-pubertal, aged 7-10, and 10 pubertal, aged 11-18) evaluated body odors of family members and unfamiliar individuals for pleasantness, intensity, and masculinity, and performed a recognition task. The hypothesized emergence of a parent-child mutual aversion for the odor of opposite-sex family members at puberty was not found, contradicting one of the few studies on the topic (Weisfeld et al., J. Exp. Child Psychol. 85:279-295, 2003). However, some developmental changes were observed, including reduced aversion for odor of the same-sex parent, and increased ability of adults, compared to children, to recognize odor of family members. Sex and personality (depressive and aggressive traits) also significantly influenced odor judgments. Further research with larger samples is needed to investigate the poorly explored issue of how olfactory perception of self and family members develops, and how it could correlate with normal reorganizations in social interactions at adolescence.
Nielsen, Birte L.; Rampin, Olivier; Meunier, Nicolas; Bombail, Vincent
2015-01-01
It has long been known that the behavior of an animal can be affected by odors from another species. Such interspecific effects of odorous compounds (allelochemics) are usually characterized according to who benefits (emitter, receiver, or both) and the odors categorized accordingly (allomones, kairomones, and synomones, respectively), which has its origin in the definition of pheromones, i.e., intraspecific communication via volatile compounds. When considering vertebrates, however, interspecific odor-based effects exist which do not fit well in this paradigm. Three aspects in particular do not encompass all interspecific semiochemical effects: one relates to the innateness of the behavioral response, another to the origin of the odor, and the third to the intent of the message. In this review we focus on vertebrates, and present examples of behavioral responses of animals to odors from other species with specific reference to these three aspects. Searching for a more useful classification of allelochemical effects we examine the relationship between the valence of odors (attractive through to aversive), and the relative contributions of learned and unconditioned (innate) behavioral responses to odors from other species. We propose that these two factors (odor valence and learning) may offer an alternative way to describe the nature of interspecific olfactory effects involving vertebrates compared to the current focus on who benefits. PMID:26161069
Kolmes, Steven A.; Houck, James E.; Velasquez, Sandra C.
2018-01-01
This study combines Ordinary Kriging, odor monitoring, and wind direction data to demonstrate how these elements can be applied to identify the source of an industrial odor. The specific case study used as an example of how to address this issue was the University Park neighborhood of Portland, Oregon (USA) where residents frequently complain about industrial odors, and suspect the main source to be a nearby Daimler Trucks North America LLC manufacturing plant. We collected 19,665 odor observations plus 105,120 wind measurements, using an automated weather station to measure winds in the area at five-minute intervals, logging continuously from December 2014 through November 2015, while we also measured odors at 19 locations, three times per day, using methods from the American Society of the International Association for Testing and Materials. Our results quantify how winds vary with season and time of day when industrial odors were observed versus when they were not observed, while also mapping spatiotemporal patterns in these odors using Ordinary Kriging. Our analyses show that industrial odors were detected most frequently to the northwest of the Daimler plant, mostly when winds blew from the southeast, suggesting Daimler’s facility is a likely source for much of this odor. PMID:29385136
Cross-Cultural Color-Odor Associations
Levitan, Carmel A.; Ren, Jiana; Woods, Andy T.; Boesveldt, Sanne; Chan, Jason S.; McKenzie, Kirsten J.; Dodson, Michael; Levin, Jai A.; Leong, Christine X. R.; van den Bosch, Jasper J. F.
2014-01-01
Colors and odors are associated; for instance, people typically match the smell of strawberries to the color pink or red. These associations are forms of crossmodal correspondences. Recently, there has been discussion about the extent to which these correspondences arise for structural reasons (i.e., an inherent mapping between color and odor), statistical reasons (i.e., covariance in experience), and/or semantically-mediated reasons (i.e., stemming from language). The present study probed this question by testing color-odor correspondences in 6 different cultural groups (Dutch, Netherlands-residing-Chinese, German, Malay, Malaysian-Chinese, and US residents), using the same set of 14 odors and asking participants to make congruent and incongruent color choices for each odor. We found consistent patterns in color choices for each odor within each culture, showing that participants were making non-random color-odor matches. We used representational dissimilarity analysis to probe for variations in the patterns of color-odor associations across cultures; we found that US and German participants had the most similar patterns of associations, followed by German and Malay participants. The largest group differences were between Malay and Netherlands-resident Chinese participants and between Dutch and Malaysian-Chinese participants. We conclude that culture plays a role in color-odor crossmodal associations, which likely arise, at least in part, through experience. PMID:25007343
Hoenen, Matthias; Müller, Katharina; Pause, Bettina M.; Lübke, Katrin T.
2016-01-01
Aromatherapy claims that citrus essential oils exert mood lifting effects. Controlled studies, however, have yielded inconsistent results. Notably, studies so far did not control for odor pleasantness, although pleasantness is a critical determinant of emotional responses to odors. This study investigates mood lifting effects of d-(+)-limonene, the most prominent substance in citrus essential oils, with respect to odor quality judgments. Negative mood was induced within 78 participants using a helplessness paradigm (unsolvable social discrimination task). During this task, participants were continuously (mean duration: 19.5 min) exposed to d-(+)-limonene (n = 25), vanillin (n = 26), or diethyl phthalate (n = 27). Participants described their mood (Self-Assessment-Manikin, basic emotion ratings) and judged the odors’ quality (intensity, pleasantness, unpleasantness, familiarity) prior to and following the helplessness induction. The participants were in a less positive mood after the helplessness induction (p < 0.001), irrespective of the odor condition. Still, the more pleasant the participants judged the odors, the less effective the helplessness induction was in reducing happiness (p = 0.019). The results show no odor specific mood lifting effect of d-(+)-limonene, but indicate a positive effect of odor pleasantness on mood. The study highlights the necessity to evaluate odor judgments in aromatherapy research. PMID:26869973
El Haj, Mohamad; Gandolphe, Marie Charlotte; Gallouj, Karim; Kapogiannis, Dimitrios; Antoine, Pascal
2017-12-25
Research suggests that odors may serve as a potent cue for autobiographical retrieval. We tested this hypothesis in Alzheimer's disease (AD) and investigated whether odor-evoked autobiographical memory is an involuntary process that shares similarities with music-evoked autobiographical memory. Participants with mild AD and controls were asked to retrieve 2 personal memories after odor exposure, after music exposure, and in an odor-and music-free condition. AD participants showed better specificity, emotional experience, mental time travel, and retrieval time after odor and music exposure than in the control condition. Similar beneficial effects of odor and music exposure were observed for autobiographical characteristics (i.e., specificity, emotional experience, and mental time travel), except for retrieval time which was more improved after odor than after music exposure. Interestingly, regression analyses suggested executive involvement in memories evoked in the control condition but not in those evoked after music or odor exposure. These findings suggest the involuntary nature of odor-evoked autobiographical memory in AD. They also suggest that olfactory cuing could serve as a useful and ecologically valid tool to stimulate autobiographical memory, at least in the mild stage of the disease. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Odorants selectively activate distinct G protein subtypes in olfactory cilia.
Schandar, M; Laugwitz, K L; Boekhoff, I; Kroner, C; Gudermann, T; Schultz, G; Breer, H
1998-07-03
Chemoelectrical signal transduction in olfactory neurons appears to involve intracellular reaction cascades mediated by heterotrimeric GTP-binding proteins. In this study attempts were made to identify the G protein subtype(s) in olfactory cilia that are activated by the primary (odorant) signal. Antibodies directed against the alpha subunits of distinct G protein subtypes interfered specifically with second messenger reponses elicited by defined subsets of odorants; odor-induced cAMP-formation was attenuated by Galphas antibodies, whereas Galphao antibodies blocked odor-induced inositol 1,4, 5-trisphosphate (IP3) formation. Activation-dependent photolabeling of Galpha subunits with [alpha-32P]GTP azidoanilide followed by immunoprecipitation using subtype-specific antibodies enabled identification of particular individual G protein subtypes that were activated upon stimulation of isolated olfactory cilia by chemically distinct odorants. For example odorants that elicited a cAMP response resulted in labeling of a Galphas-like protein, whereas odorants that elicited an IP3 response led to the labeling of a Galphao-like protein. Since odorant-induced IP3 formation was also blocked by Gbeta antibodies, activation of olfactory phospholipase C might be mediated by betagamma subunits of a Go-like G protein. These results indicate that different subsets of odorants selectively trigger distinct reaction cascades and provide evidence for dual transduction pathways in olfactory signaling.
Potential for reduction of odorous compounds in swine manure through diet modification.
Sutton, A L; Kephart, K B; Verstegen, M W; Canh, T T; Hobbs, P J
1999-02-01
Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.
Activation of Neural Pathways Associated with Sexual Arousal in Non-Human Primates
Ferris, Craig F.; Snowdon, Charles T.; King, Jean A.; Sullivan, John M.; Ziegler, Toni E.; Olson, David P.; Schultz-Darken, Nancy J.; Tannenbaum, Pamela L.; Ludwig, Reinhold; Wu, Ziji; Einspanier, Almuth; Vaughan, J. Thomas; Duong, Timothy Q.
2006-01-01
Purpose To evaluate brain activity associated with sexual arousal, fully conscious male marmoset monkeys were imaged during presentation of odors that naturally elicit high levels of sexual activity and sexual motivation. Material and Methods Male monkeys were lightly anesthetized, secured in a head and body restrainer with a built-in birdcage resonator and positioned in a 9.4-Tesla spectrometer. When fully conscious, monkeys were presented with the odors of a novel receptive female or an ovariectomized monkey. Both odors were presented during an imaging trial and the presentation of odors was counterbalanced. Significant changes in both positive and negative BOLD signal were mapped and averaged. Results Periovulatory odors significantly increased positive BOLD signal in several cortical areas: the striatum, hippocampus, septum, periaqueductal gray, and cerebellum, in comparison with odors from ovariectomized monkeys. Conversely, negative BOLD signal was significantly increased in the temporal cortex, cingulate cortex, putamen, hippocampus, substantia nigra, medial preoptic area, and cerebellum with presentation of odors from ovariectomized marmosets as compared to periovulatory odors. A common neural circuit comprising the temporal and cingulate cortices, putamen, hippocampus, medial preoptic area, and cerebellum shared both the positive BOLD response to periovulatory odors and the negative BOLD response to odors of ovariectomized females. Conclusion These data suggest the odor-driven enhancement and suppression of sexual arousal affect neuronal activity in many of the same general brain areas. These areas included not only those associated with sexual activity, but also areas involved in emotional processing and reward. PMID:14745749
Pavlovian conditioning enhances resistance to disruption of dogs performing an odor discrimination.
Hall, Nathaniel J; Smith, David W; Wynne, Clive D L
2015-05-01
Domestic dogs are used to aid in the detection of a variety of substances such as narcotics and explosives. Under real-world detection situations there are many variables that may disrupt the dog's performance. Prior research on behavioral momentum theory suggests that higher rates of reinforcement produce greater resistance to disruption, and that this is heavily influenced by the stimulus-reinforcer relationship. The present study tests the Pavlovian interpretation of resistance to change using dogs engaged in an odor discrimination task. Dogs were trained on two odor discriminations that alternated every six trials akin to a multiple schedule in which the reinforcement probability for a correct response was always 1. Dogs then received several sessions of either odor Pavlovian conditioning to the S+ of one odor discrimination (Pavlovian group) or explicitly unpaired exposure to the S+ of one odor discrimination (Unpaired group). The remaining odor discrimination pair for each dog always remained an unexposed control. Resistance to disruption was assessed under presession feeding, a food-odor disruptor condition, and extinction, with baseline sessions intervening between disruption conditions. Equivalent baseline detection rates were observed across experimental groups and odorant pairs. Under disruption conditions, Pavlovian conditioning led to enhanced resistance to disruption of detection performance compared to the unexposed control odor discrimination. Unpaired odor conditioning did not influence resistance to disruption. These results suggest that changes in Pavlovian contingencies are sufficient to influence resistance to change. © Society for the Experimental Analysis of Behavior.
Feinberg, Leila M; Allen, Timothy A; Ly, Denise; Fortin, Norbert J
2012-01-01
The contributions of the hippocampus (HC) and perirhinal cortex (PER) to recognition memory are currently topics of debate in neuroscience. Here we used a rapidly-learned (seconds) spontaneous novel odor recognition paradigm to assess the effects of pre-training N-methyl-D-aspartate lesions to the HC or PER on odor recognition memory. We tested memory for both social and non-social odor stimuli. Social odors were acquired from conspecifics, while non-social odors were household spices. Conspecific odor stimuli are ethologically-relevant and have a high degree of overlapping features compared to non-social household spices. Various retention intervals (5 min, 20 min, 1h, 24h, or 48 h) were used between study and test phases, each with a unique odor pair, to assess changes in novelty preference over time. Consistent with findings in other paradigms, modalities, and species, we found that HC lesions yielded no significant recognition memory deficits. In contrast, PER lesions caused significant deficits for social odor recognition memory at long retention intervals, demonstrating a critical role for PER in long-term memory for social odors. PER lesions had no effect on memory for non-social odors. The results are consistent with a general role for PER in long-term recognition memory for stimuli that have a high degree of overlapping features, which must be distinguished by conjunctive representations. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jinyi; Yang, Sen; Wang, Ruixue; Du, Zhenhui; Wei, Yingying
2017-10-01
Ammonia (NH3) is the most abundant alkalescency trace gas in the atmosphere having a foul odor, which is produced by both natural and anthropogenic sources. Chinese Emission Standard for Odor Pollutants has listed NH3 as one of the eight malodorous pollutants since 1993, specifying the emission concentration less than 1 mg/m3 (1.44ppmv). NH3 detection continuously from ppb to ppm levels is significant for protection of environmental atmosphere and safety of industrial and agricultural production. Tunable laser absorption spectroscopy (TLAS) is an increasingly important optical method for trace gas detection. TLAS do not require pretreatment and accumulation of the concentration of the analyzed sample, unlike, for example, more conventional methods such as mass spectrometry or gas chromatography. In addition, TLAS can provide high precision remote sensing capabilities, high sensitivities and fast response. Hollow waveguide (HWG) has recently emerged as a novel concept serving as an efficient optical waveguide and as a highly miniaturized gas cell. Among the main advantages of HWG gas cell compared with conventional multi-pass gas cells is the considerably decreased sample which facilitates gas exchanging. An ammonia sensor based on TLAS using a 5m HWG as the gas cell is report here. A 9.56μm, continuous-wave, distributed feed-back (DFB), room temperature quantum cascade laser (QCL), is employed as the optical source. The interference-free NH3 absorption line located at 1046.4cm-1 (λ 9556.6nm) is selected for detection by analyzing absorption spectrum from 1045-1047 cm-1 within the ν2 fundamental absorption band of ammonia. Direct absorption spectroscopy (DAS) technique is utilized and the measured spectral line is fitted by a simulation model by HITRAN database to obtain the NH3 concentration. The sensor performance is tested with standard gas and the result shows a 1σ minimum detectable concentration of ammonia is about 200 ppb with 1 sec time resolution. Benefitting from the use of QCL and HWG, the sensor is simple and compact. Moreover, the concentration inversion algorithm is simple and suitable for embedding into the microprocessor to form a more compact and miniaturized system. The absolute measurement based on DAS without calibration can reduce the influence of light variation on measurement which may attribute to the instability of electrocircuit, optical path and laser source. Therefore, the sensor based on HWG gas cell is very well suited for sensitive and real-time monitoring ammonia in the atmosphere. Furthermore, this sensor provides the capabilities for improved the in-situ gas-phase NH3 sensing relevant for emission source characterization and exhaled breath measurements.
Air ionization as a control technology for off-gas emissions of volatile organic compounds.
Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar
2017-06-01
High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.
Children's hedonic judgments of cigarette smoke odor: effects of parental smoking and maternal mood.
Forestell, Catherine A; Mennella, Julie A
2005-12-01
Age-appropriate tasks were used to assess 3- to 8-year-old children's liking, identification, and preference for a variety of odors, including that of exhaled cigarette smoke. Children whose parents smoke took longer to decide whether they liked the cigarette odor and were significantly more likely to prefer the odor of cigarette to the neutral and unfamiliar odor of green tea compared with children of nonsmokers. Among children of smokers, relative preferences for the cigarette odor were related to maternal mood disturbance and depression scores. These findings suggest that some early learning about cigarette smoke odor is based on sensory experiences at home and anchors it to the emotional context in which their mothers smoke. ((c) 2005 APA, all rights reserved).
An odor flux model for cattle feedlots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ormerod, R.J.
1994-12-31
Odor nuisance associated with cattle feedlots has been an issue of major interest and concern to regulators, rural communities and the beef industry in Australia over the past decade. Methods of assessing the likely impacts of new feedlots on community odor exposure are still being developed, but in the past few years much has been learnt about the processes of odor generation, flux and dispersion as well as the acceptability of feedlot odor to exposed communities. This paper outlines a model which simulates the complex physical and chemical processes leading to odor emissions in a simple and practical framework. Themore » model, named BULSMEL, has been developed as a response to regulatory requirements for quantitative assessments of odor impact. It will continue to be refined as more data are gathered.« less
Putrefactive rigor: apparent rigor mortis due to gas distension.
Gill, James R; Landi, Kristen
2011-09-01
Artifacts due to decomposition may cause confusion for the initial death investigator, leading to an incorrect suspicion of foul play. Putrefaction is a microorganism-driven process that results in foul odor, skin discoloration, purge, and bloating. Various decompositional gases including methane, hydrogen sulfide, carbon dioxide, and hydrogen will cause the body to bloat. We describe 3 instances of putrefactive gas distension (bloating) that produced the appearance of inappropriate rigor, so-called putrefactive rigor. These gases may distend the body to an extent that the extremities extend and lose contact with their underlying support surface. The medicolegal investigator must recognize that this is not true rigor mortis and the body was not necessarily moved after death for this gravity-defying position to occur.
Scrubbing intensification for sulphur and ammonia compounds removal.
Couvert, A; Sanchez, C; Laplanche, A; Renner, C
2008-02-01
Operating conditions were optimised in a new compact scrubber in order to remove odorous sulphur (H(2)S and CH(3)SH) and ammonia compounds. The influence of the superficial gas and liquid velocities, pH, contactor length, inlet concentrations (sulphur compounds, ammonia, chlorine), and the mixing effects was characterised. Whereas abatement increased with velocities, pH and the chlorine concentration, an increase of inlet CH(3)SH concentration drove to a worse efficiency of process. Moreover, the contactor length and the presence of another pollutant in the gas phase only played a role on the methylmercaptan removal. Finally, the reactive consumptions were estimated at the outlet of the reactor. The chlorination by-product quantification permitted to understand the under-stoichiometry.
Impact of ambient odors on food intake, saliva production and appetite ratings.
Proserpio, Cristina; de Graaf, Cees; Laureati, Monica; Pagliarini, Ella; Boesveldt, Sanne
2017-05-15
The aim of this study was to investigate the effect of ambient odor exposure on appetite, salivation and food intake. 32 normal-weight young women (age: 21.4±5.3year; BMI: 21.7±1.9kg/m 2 ) attended five test sessions in a non-satiated state. Each participant was exposed to ambient odors (chocolate, beef, melon and cucumber), in a detectable but mild concentration, and to a control condition (no-odor exposure). During each condition, at different time points, participants rated appetite for 15 food products, and saliva was collected. After approximately 30min, ad libitum intake was measured providing a food (chocolate rice, high-energy dense product) that was congruent with one of the odors they were exposed to. A significant odor effect on food intake (p=0.034) and salivation (p=0.017) was found. Exposure to odors signaling high-energy dense products increased food intake (243.97±22.84g) compared to control condition (206.94±24.93g; p=0.03). Consistently, salivation was increased significantly during chocolate and beef exposure (mean: 0.494±0.050g) compared to control condition (0.417±0.05g; p=0.006). Even though odor exposure did not induce specific appetite for congruent products (p=0.634), appetite scores were significantly higher during odor exposure (p<0.0001) compared to the no-odor control condition and increased significantly over time (p=0.010). Exposure to food odors seems to drive behavioral and physiological responses involved in eating behavior, specifically for odors and foods that are high in energy density. This could have implications for steering food intake and ultimately influencing the nutritional status of people. Copyright © 2017 Elsevier Inc. All rights reserved.
Olfactory Sensitivity for Six Predator Odorants in CD-1 Mice, Human Subjects, and Spider Monkeys
Sarrafchi, Amir; Odhammer, Anna M. E.; Hernandez Salazar, Laura Teresa; Laska, Matthias
2013-01-01
Using a conditioning paradigm, we assessed the olfactory sensitivity of six CD-1 mice (Mus musculus) for six sulfur-containing odorants known to be components of the odors of natural predators of the mouse. With all six odorants, the mice discriminated concentrations <0.1 ppm (parts per million) from the solvent, and with five of the six odorants the best-scoring animals were even able to detect concentrations <1 ppt (parts per trillion). Four female spider monkeys (Ateles geoffroyi) and twelve human subjects (Homo sapiens) tested in parallel were found to detect the same six odorants at concentrations <0.01 ppm, and with four of the six odorants the best-scoring animals and subjects even detected concentrations <10 ppt. With all three species, the threshold values obtained here are generally lower than (or in the lower range of) those reported for other chemical classes tested previously, suggesting that sulfur-containing odorants may play a special role in olfaction. Across-species comparisons showed that the mice were significantly more sensitive than the human subjects and the spider monkeys with four of the six predator odorants. However, the human subjects were significantly more sensitive than the mice with the remaining two odorants. Human subjects and spider monkeys significantly differed in their sensitivity with only two of the six odorants. These comparisons lend further support to the notion that the number of functional olfactory receptor genes or the relative or absolute size of the olfactory bulbs are poor predictors of a species’ olfactory sensitivity. Analysis of odor structure–activity relationships showed that in both mice and human subjects the type of alkyl rest attached to a thietane and the type of oxygen moiety attached to a thiol significantly affected olfactory sensitivity. PMID:24278296
Odor impact assessment of trace sulfur compounds from working faces of landfills in Beijing, China.
Liu, Yanjun; Lu, Wenjing; Wang, Hongtao; Huang, Qifei; Gao, Xingbao
2018-08-15
Odor pollution from landfills is causing a growing number of public complaints and concerns. Compared with hydrogen sulfide (H 2 S) and ammonia (NH 3 ), odor impacts of trace sulfur compounds (TSCs) are arousing concerns due to their low odor threshold values (OTVs). Working face on landfill sites has been claimed as major source of odor impacts. This study estimated the odor impacts of fugitive TSCs from the working face of a large typical municipal solid waste (MSW) landfill in Beijing, China. A modified wind tunnel system was introduced to estimate emission rates of TSCs, which is a basic requirement for odor impact assessment. The odor activity value (OAV) method was introduced for odor evaluation. Fieldwork in the selected landfill was conducted from 2014 to 2015. Methyl mercaptan (CH 3 SH), dimethyl sulfide, dimethyl disulfide (DMDS), and carbon disulfide (CS 2 ) were the TSCs studied in this work. The spatial concentration distributions of the TSCs were calculated on the basis of the Gaussian dispersion model in a "normal case" scenario and a "worst case" scenario. DMDS showed the highest emission rate (7.18 μg m -2 s -1 ), and CH 3 SH was the dominant odorous compound with an average emission rate of 4.58 μg m -2 s -1 . The dispersion modeling indicated that the odor impact distances of the TSCs in the studied landfill for the normal case and worst case scenarios were 495 ± 96 m and 9230 m at the downwind regions, respectively. Results of this study can benefit the formulation of strategies for odor control and abatement in landfill sites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Juan; Li, Baizhan; Yang, Qin; Yu, Wei; Wang, Han; Norback, Dan; Sundell, Jan
2013-01-01
The prevalence of perceptions of odors and sensations of air humidity and sick building syndrome symptoms in domestic environments were studied using responses to a questionnaire on the home environment. Parents of 4530 1–8 year old children from randomly selected kindergartens in Chongqing, China participated. Stuffy odor, unpleasant odor, pungent odor, mold odor, tobacco smoke odor, humid air and dry air in the last three month (weekly or sometimes) was reported by 31.4%, 26.5%, 16.1%, 10.6%, 33.0%, 32.1% and 37.2% of the parents, respectively. The prevalence of parents’ SBS symptoms (weekly or sometimes) were: 78.7% for general symptoms, 74.3% for mucosal symptoms and 47.5% for skin symptoms. Multi-nominal regression analyses for associations between odors/sensations of air humidity and SBS symptoms showed that the odds ratio for “weekly” SBS symptoms were consistently higher than for “sometimes” SBS symptoms. Living near a main road or highway, redecoration, and new furniture were risk factors for perceptions of odors and sensations of humid air and dry air. Dampness related problems (mold spots, damp stains, water damage and condensation) were all risk factors for perceptions of odors and sensations of humid air and dry air, as was the presence of cockroaches, rats, and mosquitoes/flies, use of mosquito-repellent incense and incense. Protective factors included cleaning the child’s bedroom every day and frequently exposing bedding to sunshine. In conclusion, adults’ perceptions of odors and sensations of humid air and dry air are related to factors of the home environment and SBS symptoms are related to odor perceptions. PMID:23991107
Diagnostic Value of the Impairment of Olfaction in Parkinson's Disease
Casjens, Swaantje; Eckert, Angelika; Woitalla, Dirk; Ellrichmann, Gisa; Turewicz, Michael; Stephan, Christian; Eisenacher, Martin; May, Caroline; Meyer, Helmut E.; Brüning, Thomas; Pesch, Beate
2013-01-01
Background Olfactory impairment is increasingly recognized as an early symptom in the development of Parkinson's disease. Testing olfactory function is a non-invasive method but can be time-consuming which restricts its application in clinical settings and epidemiological studies. Here, we investigate odor identification as a supportive diagnostic tool for Parkinson's disease and estimate the performance of odor subsets to allow a more rapid testing of olfactory impairment. Methodology/Principal Findings Odor identification was assessed with 16 Sniffin' sticks in 148 Parkinson patients and 148 healthy controls. Risks of olfactory impairment were estimated with proportional odds models. Random forests were applied to classify Parkinson and non-Parkinson patients. Parkinson patients were rarely normosmic (identification of more than 12 odors; 16.8%) and identified on average seven odors whereas the reference group identified 12 odors and showed a higher prevalence of normosmy (31.1%). Parkinson patients with rigidity dominance had a twofold greater prevalence of olfactory impairment. Disease severity was associated with impairment of odor identification (per score point of the Hoehn and Yahr rating OR 1.87, 95% CI 1.26–2.77). Age-related impairment of olfaction showed a steeper gradient in Parkinson patients. Coffee, peppermint, and anise showed the largest difference in odor identification between Parkinson patients and controls. Random forests estimated a misclassification rate of 22.4% when comparing Parkinson patients with healthy controls using all 16 odors. A similar rate (23.8%) was observed when only the three aforementioned odors were applied. Conclusions/Significance Our findings indicate that testing odor identification can be a supportive diagnostic tool for Parkinson's disease. The application of only three odors performed well in discriminating Parkinson patients from controls, which can facilitate a wider application of this method as a point-of-care test. PMID:23696904
Default Mode Network (DMN) Deactivation during Odor-Visual Association
Karunanayaka, Prasanna R.; Wilson, Donald A.; Tobia, Michael J.; Martinez, Brittany; Meadowcroft, Mark; Eslinger, Paul J.; Yang, Qing X.
2017-01-01
Default mode network (DMN) deactivation has been shown to be functionally relevant for goal-directed cognition. In this study, we investigated the DMN’s role during olfactory processing using two complementary functional magnetic resonance imaging (fMRI) paradigms with identical timing, visual-cue stimulation and response monitoring protocols. Twenty-nine healthy, non-smoking, right-handed adults (mean age = 26±4 yrs., 16 females) completed an odor-visual association fMRI paradigm that had two alternating odor+visual and visual-only trial conditions. During odor+visual trials, a visual cue was presented simultaneously with an odor, while during visual-only trial conditions the same visual cue was presented alone. Eighteen of the 29 participants (mean age = 27.0 ± 6.0 yrs.,11 females) also took part in a control no-odor fMRI paradigm that consisted of visual-only trial conditions which were identical to the visual-only trials in the odor-visual association paradigm. We used Independent Component Analysis (ICA), extended unified structural equation modeling (euSEM), and psychophysiological interaction (PPI) to investigate the interplay between the DMN and olfactory network. In the odor-visual association paradigm, DMN deactivation was evoked by both the odor+visual and visual-only trial conditions. In contrast, the visual-only trials in the no-odor paradigm did not evoke consistent DMN deactivation. In the odor-visual association paradigm, the euSEM and PPI analyses identified a directed connectivity between the DMN and olfactory network which was significantly different between odor+visual and visual-only trial conditions. The results support a strong interaction between the DMN and olfactory network and highlights DMN’s role in task-evoked brain activity and behavioral responses during olfactory processing. PMID:27785847
Retort beef aroma that gives preferable properties to canned beef products and its aroma components.
Migita, Koshiro; Iiduka, Takao; Tsukamoto, Kie; Sugiura, Sayuri; Tanaka, Genichiro; Sakamaki, Gousuke; Yamamoto, Yasufumi; Takeshige, Yusuke; Miyazawa, Toshio; Kojima, Ayako; Nakatake, Tomoko; Okitani, Akihiro; Matsuishi, Masanori
2017-12-01
The objective of this study is to identify the properties and responsible compounds for the aromatic roast odor (retort beef aroma) that commonly occurs in canned beef products and could contribute to their palatability. The optimal temperature for generating retort beef aroma was 121°C. An untrained panel evaluated both uncured corned beef and canned yamato-ni beef and found that they had an aroma that was significantly (P < 0.01) similar to the odor of 121°C-heated beef than 100°C-heated beef. The panel also noted that the aroma of 121°C-heated beef tended to be (P < 0.1) preferable than that of 100°C-heated beef. These results suggest that retort beef aroma is one constituent of palatability in canned beef. GC-MS (gas chromatography-mass spectrometry) analysis of the volatile fraction obtained from 100°C- and 121°C-heated beef showed that the amounts of pyrazine, 2-methylpyrazine and diacetyl were higher in the 121°C-heated beef than in the 100°C-heated beef. GC-sniffing revealed that the odor quality of pyrazines was similar to that of retort beef aroma. Therefore, pyrazines were suggested to be a candidate responsible for the retort beef aroma. Analysis of commercial uncured corned beef and cured corned beef confirmed the presence of pyrazine, 2-methylpyrazine and 2,6-dimethylpyrazine. © 2017 Japanese Society of Animal Science.
Ding, Zhen; Xia, Weiwen; Zheng, Hao; Xia, Yuting; Chen, Xiaodong
2013-01-01
Geosmin and 2-MIB are responsible for the majority of earthy and musty events related to the drinking water. These two odorants have extremely low odor threshold concentrations at ng L−1 level in the water, so a simple and sensitive method for the analysis of such trace levels was developed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. In this study, the orthogonal experiment design L32 (49) was applied to arrange and optimize experimental conditions. The optimum was the following: temperatures of extraction and desorption, 65°C and 260°C, respectively; times of extraction and desorption, 30 min and 5 min, respectively; ionic strength, 25% (w/v); rotate-speed, 600 rpm; solution pH, 5.0. Under the optimized conditions, limits of detection (S/N = 3) were 0.04 and 0.13 ng L−1 for geosmin and 2-MIB, respectively. Calculated calibration curves gave high levels of linearity with a correlation coefficient value of 0.9999 for them. Finally, the proposed method was applied to water samples, which were previously analyzed and confirmed to be free of target analytes. Besides, the proposal method was applied to test environmental water samples. The RSDs were 2.75%~3.80% and 4.35%~7.6% for geosmin and 2-MIB, respectively, and the recoveries were 91%~107% and 91%~104% for geosmin and 2-MIB, respectively. PMID:24000317
Abraham, Michael H.
2010-01-01
We have measured concentration detection (i.e., psychometric) functions to determine the odor detectability of homologous aliphatic aldehydes (propanal, butanal, hexanal, octanal, and nonanal) and helional. Subjects (16 ≤ n ≤ 18) used a 3-alternative forced-choice procedure against carbon-filtered air (blanks), under an ascending concentration approach. Generation, delivery, and control of each vapor were achieved via an 8-station vapor delivery device. Gas chromatography served to quantify the concentrations presented. Group and individual functions were modeled by a sigmoid (logistic) equation. Odor detection thresholds (ODTs) were defined as the concentration producing a detectability (P) halfway (P = 0.5) between chance (P = 0.0) and perfect detection (P = 1.0). ODTs decreased with carbon chain length: 2.0, 0.46, 0.33, and 0.17 ppb, respectively, from propanal to octanal, but the threshold increased for nonanal (0.53 ppb), revealing maximum sensitivity for the 8-carbon member. The strong olfactory receptor (OR) ligands octanal and helional (0.14 ppb) showed the lowest thresholds. ODTs fell at the lower end of previously reported values. Interindividual variability (ODT ratios) amounted to a factor ranging from 10 to 50, lower than typically reported, and was highest for octanal and hexanal. The behavioral dose–response functions emerge at concentrations 2–5 orders of magnitude lower than those required for functions tracing the activation of specific human ORs by the same aldehydes in cell/molecular studies, after all functions were expressed as vapor concentrations. PMID:20190010
Robin, O; Alaoui-Ismaïli, O; Dittmar, A; Vernet-Maury, E
1999-06-01
Subjective individual experiences seem to indicate that odors may form strong connections with memories, especially those charged with emotional significance. In the dental field, this could be the case with the odorant eugenol, responsible for the typical clinging odor impregnating the dental office. The odor of eugenol could evoke memories of unpleasant dental experiences and, therefore, negative feelings such as anxiety and fear, since eugenates (cements containing eugenol) are used in potentially painful restorative dentistry. This hypothesis was tested by evaluating the emotional impact of the odor of eugenol through autonomic nervous system (ANS) analysis. The simultaneous variations of six ANS parameters (two electrodermal, two thermovascular and two cardiorespiratory), induced by the inhalation of this odorant, were recorded on volunteer subjects. Vanillin (a pleasant odorant) and propionic acid (an unpleasant one) served as controls. After the experiment, subjects were asked to rate the pleasantness versus unpleasantness of each odorant on an 11-point hedonic scale. The patterns of autonomic responses, obtained for each odorant and each subject, were transcribed into one of the six basic emotions defined by Ekman et al. (happiness, surprise, sadness, fear, anger and disgust). Results were compared between two groups of subjects divided according to their dental experience (fearful and non-fearful dental care subjects) and showed significant differences only for eugenol. This odorant was rated as pleasant by non-fearful dental subjects but unpleasant by fearful dental subjects. The evoked autonomic responses were mainly associated with positive basic emotions (happiness and surprise) in non-fearful dental subjects and with negative basic emotions (fear, anger, disgust) in fearful dental subjects. These results suggest that eugenol can be responsible for different emotional states depending on the subjects' dental experience, which seems to confirm the potential role of odors as elicitors of emotional memories. This study also supports the possible influence of the ambient odor impregnating the dental office, strengthening a negative conditioning toward dental care in some anxious patients.
Petrulis, A; Alvarez, P; Eichenbaum, H
2005-01-01
Recognition of individual conspecifics is important for social behavior and requires the formation of memories for individually distinctive social signals. Individual recognition is often mediated by olfactory cues in mammals, especially nocturnal rodents such as golden hamsters. In hamsters, this form of recognition requires main olfactory system input to the lateral entorhinal cortex (LEnt). Here, we tested whether neurons in LEnt and the nearby ventral subiculum (VS) would show cellular correlates of this natural form of recognition memory. Two hundred ninety single neurons were recorded from both superficial (SE) and deep layers of LEnt (DE) and VS while male hamsters investigated volatile odorants from female vaginal secretions. Many neurons encoded differences between female's odors with many discriminating between odors from different individual females but not between different odor samples from the same female. Other neurons discriminated between odor samples from one female and generalized across collections from other females. LEnt and VS neurons showed enhanced or suppressed cellular activity during investigation of previously presented odors and in response to novel odors. A majority of SE neurons decreased firing to odor repetition and increased activity to novel odors. In contrast, DE neurons often showed suppressed activity in response to novel odors. Thus, neurons in LEnt and VS of male hamsters encode information that is critical for the identification and recognition of individual females by odor cues. This study reveals cellular mechanisms in LEnt and VS that may mediate a natural form of recognition memory in hamsters. These neuronal responses were similar to those observed in rats and monkeys during performance in standard recognition memory tasks. Consequently, the present data extend our understanding of the cellular basis for recognition memory and suggest that individual recognition requires similar neural mechanisms as those employed in laboratory tests of recognition memory.
NASA Astrophysics Data System (ADS)
Furton, Kenneth G.; Harper, Ross J.; Perr, Jeannette M.; Almirall, Jose R.
2003-09-01
A comprehensive study and comparison is underway using biological detectors and instrumental methods for the rapid detection of ignitable liquid residues (ILR) and high explosives. Headspace solid phase microextraction (SPME) has been demonstrated to be an effective sampling method helping to identify active odor signature chemicals used by detector dogs to locate forensic specimens as well as a rapid pre-concentration technique prior to instrumental detection. Common ignitable liquids and common military and industrial explosives have been studied including trinitrotoluene, tetryl, RDX, HMX, EGDN, PETN and nitroglycerine. This study focuses on identifying volatile odor signature chemicals present, which can be used to enhance the level and reliability of detection of ILR and explosives by canines and instrumental methods. While most instrumental methods currently in use focus on particles and on parent organic compounds, which are often involatile, characteristic volatile organics are generally also present and can be exploited to enhance detection particularly for well-concealed devices. Specific examples include the volatile odor chemicals 2-ethyl-1-hexanol and cyclohexanone, which are readily available in the headspace of the high explosive composition C-4; whereas, the active chemical cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) is not. The analysis and identification of these headspace 'fingerprint' organics is followed by double-blind dog trials of the individual components using certified teams in an attempt to isolate and understand the target compounds to which dogs are sensitive. Studies to compare commonly used training aids with the actual target explosive have also been undertaken to determine their suitability and effectiveness. The optimization of solid phase microextraction (SPME) combined with ion trap mobility spectrometry (ITMS) and gas chromatography/mass spectrometry/mass spectrometry (GC/MSn) is detailed including interface development and comparisons of limits of detection. These instrumental methods are being optimized in order to detect the same target odor chemicals used by detector dogs to reliably locate explosives and ignitable liquids.
Hoffman, Howard J.; Rawal, Shristi; Li, Chuan-Ming; Duffy, Valerie B.
2016-01-01
The U.S. NHANES included chemosensory assessments in the 2011–2014 protocol. We provide an overview of this protocol and 2012 olfactory exam findings. Of the 1818 NHANES participants aged ≥40 years, 1281 (70.5 %) completed the exam; non-participation mostly was due to time constraints. Health technicians administered an 8-item, forced-choice, odor identification task scored as normosmic (6–8 odors identified correctly) versus olfactory dysfunction, including hyposmic (4–5 correct) and anosmic/severe hyposmic (0–3 correct). Interviewers recorded self-reported smell alterations (during past year, since age 25, phantosmia), histories of sinonasal problems, xerostomia, dental extractions, head or facial trauma, and chemosensory-related treatment and changes in quality of life. Olfactory dysfunction was found in 12.4 % (13.3 million adults; 55 % males/45 % females) including 3.2 % anosmic/severe hyposmic (3.4 million; 74 % males/26 % females). Selected age-specific prevalences were 4.2 % (40–49 years), 12.7 % (60–69 years), and 39.4 % (80+ years). Among adults ≥70 years, misidentification rates for warning odors were 20.3 % for smoke and 31.3 % for natural gas. The highest sensitivity (correctly identifying dysfunction) and specificity (correctly identifying normosmia) of self-reported olfactory alteration was among anosmics/severe hyposmics (54.4 % and 78.1 %, respectively). In age- and sex-adjusted logistic regression analysis, risk factors of olfactory dysfunction were racial/ethnic minority, income-to-poverty ratio ≤ 1.1, education
CONTROLLING ODOROUS EMISSIONS FROM IRON FOUNDRIES
The report discusses the control of odorous emissions from iron foundries. he main process sources of odors in iron foundries are mold and core making, casting, and sand shakeout. he odors are usually caused by chemicals, which may be present as binders and other additives to the...
Long-Term Memory for Odors: Influences of Familiarity and Identification Across 64 Days
Jönsson, Fredrik U.; Willander, Johan; Sikström, Sverker; Larsson, Maria
2015-01-01
Few studies have investigated long-term odor recognition memory, although some early observations suggested that the forgetting rate of olfactory representations is slower than for other sensory modalities. This study investigated recognition memory across 64 days for high and low familiar odors and faces. Memory was assessed in 83 young participants at 4 occasions; immediate, 4, 16, and 64 days after encoding. The results indicated significant forgetting for odors and faces across the 64 days. The forgetting functions for the 2 modalities were not fundamentally different. Moreover, high familiar odors and faces were better remembered than low familiar ones, indicating an important role of semantic knowledge on recognition proficiency for both modalities. Although odor recognition was significantly better than chance at the 64 days testing, memory for the low familiar odors was relatively poor. Also, the results indicated that odor identification consistency across sessions, irrespective of accuracy, was positively related to successful recognition. PMID:25740304
Staples, Lauren G
2010-11-01
Prey animals such as rats display innate defensive responses when exposed to the odor of a predator, providing a valuable means of studying the neurobiology of anxiety. While the unconditioned behavioral and neural responses to a single predator odor exposure have been well documented, the paradigm can also be used to study learning-dependent adaptations that occur following repeated exposure to a stressor or associated stimuli. In developing preclinical models for human anxiety disorders this is advantageous, as anxiety disorders seldom involve a single acute experience of anxiety, but rather are chronic and/or recurring illnesses. Part 1 of this review summarizes current research on the three most commonly used predator-related odors: cat odor, ferret odor, and trimethylthiazoline (a component of fox odor). Part 2 reviews the learning-based behavioral and neural adaptations that underlie predator odor-induced context conditioning, one-trial tolerance, sensitization, habituation and dishabituation. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zmuda, J.
1994-07-01
Few environmental issues attract more attention than odor emissions. The odor source can quickly be identified, coming under immediate public scrutiny. Often, odor is not merely a public nuisance problem but can be indicative of volatile organic compound (VOC) control needs at the facility. In some cases, odor-producing compounds are VOCs regulated under different sections of federal, state or local law. Specific requirements for VOC or odor control depend on many factors, including the source and nature of the emissions, the quantity of emissions and the location of the facility. Many states impose specific odor-control requirements, in addition to themore » regulations of the Clean Air Act Amendments of 1990 (CAAA), under which odor-causing emissions may be regulated under Titles 1 and/or 3. Under Title 1, the non-attainment title, facilities located in major metropolitan areas not in attainment of the National Ambient Air Quality Standards (NAAQS) for ozone likely will be required to reduce emissions of VOCs.« less
Odor Discrimination in Drosophila: From Neural Population Codes to Behavior
Parnas, Moshe; Lin, Andrew C.; Huetteroth, Wolf; Miesenböck, Gero
2013-01-01
Summary Taking advantage of the well-characterized olfactory system of Drosophila, we derive a simple quantitative relationship between patterns of odorant receptor activation, the resulting internal representations of odors, and odor discrimination. Second-order excitatory and inhibitory projection neurons (ePNs and iPNs) convey olfactory information to the lateral horn, a brain region implicated in innate odor-driven behaviors. We show that the distance between ePN activity patterns is the main determinant of a fly’s spontaneous discrimination behavior. Manipulations that silence subsets of ePNs have graded behavioral consequences, and effect sizes are predicted by changes in ePN distances. ePN distances predict only innate, not learned, behavior because the latter engages the mushroom body, which enables differentiated responses to even very similar odors. Inhibition from iPNs, which scales with olfactory stimulus strength, enhances innate discrimination of closely related odors, by imposing a high-pass filter on transmitter release from ePN terminals that increases the distance between odor representations. PMID:24012006